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Abstract

In the semiclassical limit, it is well-known that the first eigenvector
of a Toeplitz operator concentrates on the minimal set of the symbol.
In this paper, we give a more precise criterion for concentration in
the case where the minimal set of the symbol is a submanifold, in the
spirit of the “miniwell condition” of Helffer-Sjöstrand.
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1 Introduction

1.1 Motivations

A few decades ago, a mathematical foundation was given for a common
heuristic in the physics literature. The problem was the study, as h → 0,
of the lowest energy eigenfunction of a Schrödinger operator −h2∆ + V
on a Riemannian manifold, in the case where V ≥ 0 and {V = 0} is a
submanifold. It is well-known that this eigenfunction is O(h∞) outside
every neighbourhood of {V = 0}. Helffer and Sjöstrand [5] proposed a
more precise criterion for localization, based on the Hessian matrix of V
on the submanifold. If this matrix is “minimal” at only one point (the
miniwell condition), then, as h → 0, the lowest energy eigenfunction is
O(h−∞) outside any fixed neighbourhood of this point. An example of this
is the Schrödinger operator on L2(R2) with potential:

V (x1, x2) = (x2
1 + x2

2)(1 + (x1 + 1)2),

which vanishes on the unit circle but which is “smaller” near (−1, 0) than
near any other point of the unit circle. In this case, the main result of [5]
is that an eigenvector of −h2∆ + V with minimal eigenvalue is, for h small,
located near (−1, 0).

This result validates, in the setting of Schrödinger operators, the phys-
ical effect of semiclassical order from disorder [4]: not all points in classical
phase space where the energy is minimal are equivalent for quantum sys-
tems. However, the main physical application of semiclassical order from
disorder lies in the setting of frustrated spin systems, where the classical
symplectic manifold is a product of spheres. The mathematical setting here
strongly differs from Schrödinger operators.

We propose to study Toeplitz operators, of which spin systems are a
particular case. As for pseudo-differential operators, to a real function (or
symbol) on a symplectic manifold we associate an auto-adjoint operator
on a Hilbert space, depending on a small parameter. For this we need an
additional geometric structure on the manifold. For pseudo-differential op-
erators the symplectic manifold is supposed to be of the form T ∗X and the
Hilbert space is L2(X). For Toeplitz operators we suppose that the mani-
fold has a Kähler structure, and the Hilbert space is a set of holomorphic
sections in a convenient bundle.

In a previous paper [3], we developed a set of techniques in order to
study the first eigenvalues of a Toeplitz operator, under the hypothesis
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that the minimal set of the symbol is a finite set of non-degenerate critical
points. In this article, we show that these techniques can be used to show
an result analogous to the concentration on the miniwell.

1.2 Outline

In section 2, we recall the necessary material on Toeplitz operators, which
allow us to state the main result in precise terms.

that was developped in our previous paper [3]. In particular, one can
build approximate eigenfunctions for Toeplitz operators with non-degenerate
minimal points by pulling back by normal coordinates the eigenfunctions
of a model quadratic Toeplitz operator. We also recall a positivity lemma,
which holds for sequence of functions sufficiently close to a point.

In section 3 we use a technique developed in a previous paper [3] to give
an upper bound for the first eigenvalue in the miniwell case.

In section 4 we give a lower bound for the first eigenvalue, which allow
us to conclude.

2 Toeplitz quantization

2.1 The Szegő projector

Let M be a Kähler manifold of dimension n, with symplectic form ω. If
the Chern class of ω is integer, there exists a hermitian holomorphic line
bundle (L, h) over M , with curvature ω [9].

Let (L∗, h∗) be the dual line bundle of L, with dual metric. Let D be
the unit ball of L∗, that is:

{D = (m, v) ∈ L∗, ‖v‖h∗ < 1}.

The boundary of D is denoted by X. It admits an S1 action

rθ : X 7→ X

(m, v) 7→ (m, eiθv).

We are interested in the equivariant Hardy spaces on X, defined as
follows:

Definition 2.1.

• The Hardy space H(X) is the closure in L2(X) of

{f |X , f ∈ C∞(D ∪ X), f holomorphic in D}.
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• The Szegő projector S is the orthogonal projection from L2(X) onto
H(X).

• Let N ∈ N. The equivariant Hardy space HN(X) is defined by:

HN (X) = {f ∈ H(X), ∀(x, θ) ∈ X × S
1, f(rθx) = eiNθf(x)}.

• Let N ∈ N. The equivariant Szegő projector SN is the orthogonal
projection from L2(X) onto HN (X).

Throughout this paper, we will work with the sequence of spaces HN (X).
If M is compact, then the spaces HN (X) are finite-dimensional spaces of
smooth functions. Another important example is the case M = C

n, with
standard Kähler form, where the equivariant Hardy spaces are explicit:

Proposition 2.2. If M = C
n with standard Kähler form, then

HN(X) ≃ BN := L2(Cn) ∩ {z 7→ e− N
2

|z|2f(z), f is an entire function}.

The space BN is a closed subspace of L2(Cn). The orthogonal projector

ΠN from L2(Cn) to BN admits as Schwartz kernel the function

ΠN : z, w 7→

(

N

π

)n

exp
(

−
1
2

N |z − w|2 + iNℑ(z · w)
)

.

Observe that the sequence of kernels ΠN is rapidly decreasing outside
the diagonal set. A very important fact is that this property holds also in
the case of a compact Kähler manifold:

Proposition 2.3 ([2],prop 4.1). Let M be a compact Kähler manifold,

and (SN )N≥1 be the sequence of Szegő projectors of definition 2.1. Let

δ ∈ [0, 1/2). For every k ≥ 0 there exists C such that, for every N ∈ N, for

every x, y ∈ X such that dist(π(x), π(y)) ≥ N−δ, one has

|SN (x, y)| ≤ CN−k.

This roughly means that, though the operators SN are non-local, their
“interaction range” decreases with N .

In the spirit of the previous proposition, we define what it means for a
sequence of functions in HN (X) to be localized.

Definition 2.4. Let u = (uN )N∈N be a sequence of unit elements of L2(X).
Let dV ol denote the Liouville volume form on M . For every N , the prob-
ability measure |uN |2dV ol ⊗ dθ is well-defined on X, and we call µN the
pull-back of this measure on M .
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Let moreover Z ⊂ M . We say that the sequence u localizes on Z when,
for every δ ∈ [0, 1/2), one has

µN ({m ∈ M, dist(m, Z) ≥ N−δ}) = O(N−∞).

A corollary of this definition is that, if a sequence (uN )N∈N concentrates
on a set Z, then so does the sequence (SNuN )N∈N.

To complete the proposition 2.3, we have to describe how SN acts on
functions localized on a point. For this we need a convenient choice of
coordinates.

Let P0 ∈ M . The real tangent space TP0
M carries a Euclidian structure

and an almost complex structure coming from the Kähler structure on M .
We then can (non-uniquely) identify C

n with TP0
M .

Definition 2.5. Let U be a neighbourhood of 0 in C
n and V be a neigh-

bourhood of a point P0 in M .
A smooth diffeomorphism ρ : U × S

1 → π−1(V ) is said to be a normal

map or map of normal coordinates under the following conditions:

• ∀(z, v) ∈ U × S
1, ∀θ ∈ R, ρ(z, veiθ) = rθρ(z, v);

• Identifying C
n with TP0

M as previously, one has:

∀(z, v) ∈ U × S
1, π(ρ(z, v)) = exp(z).

Remark 2.6. The choice a normal map around a point P0 reflects the
choice of an identification of C

n with TP0
(M) and a point over P0 in X.

Hence, if ρ1 and ρ2 are two normal maps around the same point P0, then
ρ−1

1 ◦ ρ2 ∈ U(n) × SO(2).

We can pull-back by a normal map the projector ΠN on the Bargmann
spaces by the following formula:

ρ∗ΠN (ρ(z, θ), ρ(w, φ)) := eiN(θ−φ)ΠN (z, w).

By convention, ρ∗ΠN is zero outside π−1(V )2.

Proposition 2.7. Let P0 ∈ M , and ρ a normal map around P0. For every

ǫ > 0 there exists δ ∈ (0, 1/2) and C > 0 such that for every N ∈ N, for

every u ∈ L2(X), if the support of u lies inside ρ(B(0, N−δ) × S
1), then

‖(SN − ρ∗ΠN )u‖L2 < CN− 1

2
+ǫ.

In a sense, the proposition 2.7 states that the kernel SN asymptotically
looks like ΠN . This proposition was proven in [3], as a consequence of
previously known results on the asymptotical behaviour of the Schwartz
kernel of SN near the diagonal set [8, 2, 1].
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2.2 Toeplitz operators

Definition 2.8. Let M be a Kähler manifold, with equivariant Szegő pro-
jectors SN .

Let f ∈ C∞(M) be a smooth function on M .
The Toeplitz operator TN (f) : HN (X) → HN(X) associated with the

symbol f is defined as
TN (f) = SNfSN .

2.2.1 Toeplitz operators on C
n

We will use the special notation T flat
N to denote Toeplitz operators on C

n.
We also release the condition that the symbol is bounded. This defines
Toeplitz operators as unbounded operators on BN .

If q is a quadratic form on R
2n identified with C

n, then T flat
N (q) is essen-

tially self-adjoint. This operator is related to the Weyl quantization Oph
W (q)

with semi-classical parameter h = N−1. In fact, T flat
h−1 (q) is conjugated, via

a Bargmann transform, to Oph
W (q) +

h

2
tr(q).

Definition 2.9. Let q be a non-negative quadratic form on R
2n, identified

with C
n.

We define µ(q) := inf
(

Sp(T flat
1 (q))

)

.

Remark 2.10. The function µ is invariant under the U(n) symmetry, and
continuous on the set of semi-definite quadratic forms [6].

2.2.2 Toeplitz operators on compact manifolds

When the base manifold M is compact and f is real-valued, for fixed N
the operator TN (f) is a symmetric operator on a finite-dimensional space.
In this setting, we will speak freely about eigenvalues and eigenvectors of
Toeplitz operators.

It turns out that the definition 2.8 is not robust enough for the set of all
Toeplitz operators to be an algebra. One finds instead that the composition
of two Toeplitz operators can be written, in the general case, as a formal
series of Toeplitz operators [7], that is:

TN (f)TN (g) = TN (fg) + N−1TN (C1(f, g)) + N−2TN (C2(f, g)) + . . . .

This calls for a construction of Toeplitz operators associated with formal
series, which are defined modulo the O(N−∞) sequences of operators. In
this paper we only need to use the definition 2.8 and we will not compose
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two Toeplitz operators. However, the properties of the C∗-algebra of formal
series of Toeplitz operators lead to the following property, which appears in
previous work [3], and which is an important first step towards the study
of the low-energy spectrum.

Proposition 2.11. Let M be a compact Kähler manifold and h a real

nonnegative smooth function on M . Suppose that h vanishes exactly at

order 2 on {h = 0}.

Let u = (uN )N∈N be a sequence of unit elements of L2(X) such that,

for every N , one has

TN (h)uN = λNuN ,

with λN = O(N−1).
Then the sequence u concentrates on {h = 0}.

On a minimal point of h, one can pull-back the definition 2.9 by normal
coordinates:

Definition 2.12. Let h ∈ C
∞(M,R+). Let P ∈ M such that P (h) = 0.

Let ρ be a normal map around P ; the function h ◦ ρ is well-defined and
non-negative on a neighbourhood of 0 in C

n, and the image of 0 is 0. Hence
the 2-jet of h ◦ ρ is a quadratic form q.

We define µ(P ) as µ(q).

Remark 2.13. A different choice of normal coordinates corresponds to a
U(n) change of variables for q, under which µ is invariant. Hence µ(P )
does not depend on the choice of normal coordinates.

The function P 7→ µ(P ) is continuous as it is a composition of two
continuous functions.

2.3 Main result

In a previous paper, the author studied the case where {h = 0} consists in
a finite set of non-degenerate critical points of h. The main result was that
the sequence of first eigenvectors concentrates only on the points where µ
is minimal. A similar results holds when {h = 0} is a submanifold.

Theorem A. Let h ∈ C
∞(M,R+) be such that {h = 0} is a submanifold

of M . Suppose that h vanishes exactly at order 2 on {h = 0}. Let µmin =
minh(P )=0(µ(P )).

Let v = (vN )N∈N be a sequence of unit vectors of L2(X) such that, for

each N , vN is an eigenvector of TN (h) with minimal eigenvalue.

Let U ⊂ M open, and suppose that

µmin < inf(µ(P ), P ∈ U, h(P ) = 0).
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Then, as N → +∞, one has

‖vN 1x∈π∗U ‖L2(X) = O(N−∞).

3 Upper bound on the first eigenvalue

Proposition 3.1. Let h ≥ 0 be a smooth function on M . Suppose {h = 0}
is a non-empty submanifold of M . Let µmin = minh(P )=0(µ(P )).

Then for every ǫ > 0 there exists N0 such that, for every N ≥ N0, one

has

min Sp(TN (h)) ≥ N−1(µmin + ǫ).

Proof. Let P ∈ M be such that h(P ) = 0, and ρ a normal map around
P . Let q denote the 2-jet of h at P , read from the map ρ. Then q ≥ 0.

If q > 0, it follows from the proposition 4.2 of [3] that, for every N ,
one can build an approximate eigenvector (with O(N−1/2) error) for TN (h)
with eigenvalue N−1µ(P ), hence the first eigenvalue of TN (h) is less than
N−1µ(P )+CN−3/2 for some C. Hence, for every ǫ > 0, for N large enough
one has

min Sp(TN (h)) ≥ N−1(µ(P ) + ǫ).

In the general case, for δ > 0, let hδ be a smooth function on M such
that hδ ≥ h and such that the 2-jet of hδ at P , read from the map ρ, is
z 7→ qδ(z) := q(z) + δ|z|2.

Now qδ > 0, so that, for every ǫ, there exists N0 such that, for N ≥ N0,
one has

min Sp(TN (hδ)) ≥ N−1
(

µ(qδ) +
ǫ

2

)

.

On one hand, TN (h) ≤ TN (hδ) because the Toeplitz quantization is positive.
On the other hand, µ is continuous, so for δ small enough one has µ(qδ) ≤
µ(q) + ǫ

2 , which allow us to conclude. �

4 Localization at the miniwell

The following proposition was proven in previous work:

Proposition 4.1 (cf [3], prop 4.3). There exists δ ∈ [0, 1/2) such that, for

every smooth function h ≥ 0 on M , for every ǫ > 0, there exists N0 such

that, for every N ≥ N0, for every u ∈ L2(X), if there exists P ∈ M such

that supp u ⊂ B(P, N−δ), then

〈u, TN (h)u〉 ≥ N−1(µ(P ) − ǫ)‖SN u‖2.

8



Thus, if the considered functions are sufficiently localized, then to min-
imize the quadratic form associated with TN (h) one has to get close to the
points where µ is as small as possible.

In order to “localize” a generic function of L2(X), we wish to consider
convenient open subsets of the zero set of h. They should be such that, on
the overlap between two such subsets, the considered function is relatively
small. A precise formulation of this lies in the following lemma.

Lemma 4.2. Let Y be a compact Riemannian manifold. There exists a

constant C > 0 such that, for every positive integrable function f on Y ,

for every a > 0 and t ∈ (0, 1), there exists a finite family (Uj)j∈J of open

subsets of Y with the following properties:

∀j ∈ J, diam(Uj) < a.

∀j ∈ J, dist



Y \ Uj, Y \
⋃

i6=j

Ui



 ≥ ta

∑

i6=j

∫

Ui∩Uj

f ≤ Ct

∫

Y
f.

Proof. Let m ∈ N be such that there exists a smooth embedding of
differential manifolds from Y to R

m, and let Φ be such an embedding. Φ
may not preserve the Riemannian structure, so let c1 be such that, for any
ξ ∈ T Y , one has

c1‖Φ∗ξ‖ ≤ ‖ξ‖.

We now let L > 0 such that any hypercube H in R
m of side 2/L is such

that diam(Φ−1(H)) < a.
At this point we make the further claim that C = 2maL

c1
.

Let 1 ≤ k ≤ m, and let Φk denote the k-th component of Φ. The
function Φk is continuous from Y to a segment of R. Without loss of
generality this segment is [0, 1]. Let gk denote the integral of f along the
level sets of Φk. The function gk is a positive integrable function on [0, 1].
Let t′ > 0 be the inverse of an integer, and 0 ≤ ℓ ≤ L − 1. In the interval
[ℓ/L, (ℓ + 1)/L], there exists a subinterval I, of length t′/L, such that

∫

I
gk ≤ t′

∫ (ℓ+1)/L

ℓ/L
gk. (1)

Indeed, one can cut the interval [ℓ/L, (ℓ + 1)/L] into 1/t′ intervals of size
t′/L. If none of these intervals was verifying (1), then the total integral
would be strictly greater than itself.
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Let xk,ℓ denote the centre of such an interval. Then, let

Vk,0 =
[

0, xk,0 +
t′

2L

)

Vk,ℓ =
(

xk,ℓ−1 −
t′

2L
, xk,ℓ +

t′

2L

)

for 1 ≤ ℓ ≤ L

Vk,L+1 =
(

xk,L −
t′

2L
, 1
]

.

Each open set Vk,l has a length smaller than 2/L. The overlap of two
consecutive sets has a length t′, and the sum of the integrals on the overlaps
is less than t′

∫ 1
0 gk = t′

∫

Y f .
Now let ν denote a polyindex (νk)1≤k≤m, with νk ≤ L + 1 for every k.

Define
Uν = Φ−1 (V1,ν1

× V2,ν2
× . . . × Vm,νm) .

Then diam Uν ≤ a because it is the pull-back of an open set contained in a
hypercube of side 2/L. Moreover, one has

dist



Y \ Uν , Y \
⋃

ν′ 6=ν

Uν′



 ≥
c1t′

L
.

To conclude, observe that

∑

ν 6=ν′

∫

Uν∩Uν′

f =
m
∑

k=1

L
∑

ℓ=0

∫

Vk,ℓ∩Vk,ℓ+1

gk ≤ mt′
∫

Y
f.

It only remains to choose t′ conveniently. The fraction taL
c1

may not
be the inverse of an integer; however the inverse of some integer lies in
[ aL
2c1

, aL
c1

]. This allow us to conclude. �

Remark 4.3. In the previous lemma, the number of elements of J is
bounded by a polynomial in a that depends only on the geometry of Y .

Let now Z denote the zero set of h. Let V0 a small tubular neighbour-
hood of Z. It is well-known that V0 is diffeomorphic to a neighbourhood
of the zero section in a vector bundle over Z. We let p : V 7→ Z denote
the composition of such a diffeomorphism and the projection on the base
point.

For N ∈ N, let λN = min Sp(TN (h)). Because of proposition 3.1, one
has λN = O(N−1).
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Let u = (uN )N∈N denote a sequence of normalized elements of L2(X)
such that, for every N ∈ N, one has TN (h)uN = λNuN . Then u concen-
trates on Z. In particular, uN is O(N−∞) outside V . Hence, with

fN : Z 7→ R
+

z 7→
∫

p−1(z) |uN (x)|2dx,

one has ‖fN‖L1(Z) = 1 − O(N−∞).
For every N ∈ N, we apply lemma 4.2 with the following data:

• Y = Z

• f = fN

• a = N−δ

• t = N−α.

Here α and δ will be chosen later on. Let (Uj,N)j∈JN
denote a family of

open subsets obtained by lemma 4.2, and for every c > 0, let

U c
j,N = {z ∈ Z, dist(z, Z \ Uj,N) ≥ cN−α−δ}.

If c < 1
2 , then by the second property of lemma 4.2, for every N , the

family (U ǫ
j,N)j∈JN

covers Z. For every N , let (χj,N)j∈JN
denote a partition

of the unity on π−1V , associated with the family (π−1p−1U c
j,N)j∈JN

.
Now choose δ < 1

2 from the proposition 4.1 and let ǫ > 0. There exists
N0 such that, for every N ≥ N0, for every j ∈ JN , one has

〈uN χj,N , TN (h), χj,NuN 〉 ≥ N−1(inf(µ(z), z ∈ U c
j,N) + ǫ)‖SN χj,Nu‖2.

Let now i 6= j ∈ JN . We wish to estimate the quantity

|〈uN χi,N , TN (h), uN χj,N〉|

≤

∫∫∫

V c
i,N

×X×V c
j,N

∣

∣

∣uN (x)SN (x, y)h(y)SN (y, z)uN (z)
∣

∣

∣ dxdydz.

Here V c
j,N = π−1p−1U c

j,N . Then, by definition of U c
j,N , one has

dist(V c
i,N , X \ π−1p−1Ui,N ) = cNα+δ .

Lemma 4.4. Choose α such that α+δ < 1
2 .There exists a constant C such

that, for every N , for every i 6= j ∈ JN , for every δ′ < 1
2 , there holds

|〈uN χi,N , TN (h), uN χj,N〉| ≤ CN−2δ′

∫

Ui,N ∩Uj,N

fN + O(N−∞).
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Proof. Let V c
j,N = π−1p−1U c

j,N ⊂ X. We wish to estimate the integral

∫∫∫

V c
i,N

×X×V c
j,N

∣

∣

∣uN (x)SN (x, y)h(y)SN (y, z)uN (z)
∣

∣

∣ dxdydz.

For this, we reduce in two steps the domain of integration.
By definition of U c

j,N , one has

dist(V c
i,N , X \ π−1p−1Ui,N ) = cNα+δ .

If x ∈ V c
i,N , then SN (x, y)SN (y, z) is O(N−∞) unless z ∈ π−1p−1Ui,N .

Hence, up to an O(N−∞) error, the domain of integration can be replaced
with

π−1p−1(Ui,N ∩ Uj,N) × X × π−1p−1(Ui,N ∩ Uj,N).

Moreover, recall uN is an eigenvector of TN (h) with eigenvalue O(N−1).
Hence, the sequence u concentrates on Z so that for any δ′, up to an
O(N−∞) error, the domain of integration can be replaced with

π−1p−1(Ui,N ∩Uj,N)×{z ∈ X, dist(π(X), Z) ≤ N−δ′

}×π−1p−1(Ui,N ∩Uj,N).

On {z ∈ X, dist(π(X), Z) ≤ N−δ′

}, the function h is smaller than CN−2δ′

for some constant C. In particular, there holds

|〈uN χi,N , TN (h), uN χj,N〉| ≤ CN−2δ′

∫

Ui,N ∩Uj,N

fN + O(N−∞).

�

The number of elements of JN grows polynomially with N . Hence, one
can sum the previous inequality:

∑

i6=j

|〈uN χi,N , TN (h), uN χj,N〉| ≤ CN−2δ′
∑

i6=j

∫

Ui,N ∩Uj,N

fN + O(N−∞).

Now, by lemma 4.2, and the fact that ‖uN‖ = 1, as N → +∞ there holds
∑

i6=j

|〈uN χi,N , TN (h), uN χj,N〉| ≤ CN−2δ′−α + O(N−∞).

Choose δ′ such that 2δ′ + α > 1. Then, as N → +∞, one has

〈uN , TN (h)uN 〉 ≥ N−1
∑

j∈JN

(inf(µ(z), z ∈ U c
j,N )+ǫ)‖SNχj,NuN‖L2+o(N−1).
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Let now W be an open set of Z such that infz∈W µ(z) ≥ µmin + 2ǫ.
Then

∑

Uc
j,N

⊂W

‖SN χj,Nu‖L2 = o(1).

In particular, with χN =
∑

Uc
j,N

⊂W χj,N , one has ‖SNχN u‖L2 = o(1).

Moreover, for every W ′ ⊂⊂ W , there is N1 such that χN = 1 on W ′

for N ≥ N0. Hence, for every W ′′ ⊂⊂ W ′, on W ′′ there holds u = SNu =
SNχNu + O(N−∞).

We are able to conclude: for every W ′′ ⊂⊂ W , the L2 norm of uN on
W ′′ is o(1). This concludes the proof.
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