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Abstract

A level set based shape and topology optimization framework is used to study the effect of
graded interfaces in the optimization process of micro-architectured multi-materials. In contrast
to previous studies interfaces are considered as smooth transition between phases instead of
a sharp delimitation between two phases. A study on extreme thermoelastic properties of 2D
isotropic composites is achieved and optimal design are presented. The study shows how taking
into account smooth interfaces can influence the optimal design of these materials.
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1 Introduction

Architectured materials are a new class of materials whose properties are governed not only by their
constitutive phases volume fraction but their properties are also dependant by the geometry. In
this case, architecture refers to the materials organization on a scale that is between the material
microstructure and the macroscopic shape (Ashby, 2013; Ashby and Brechet, 2003; Brechet and
Embury, 2013; Torquato, 2010). Beyond the chemical composition or the microstructure, architec-
ture can also be regarded as a parameter to control the material’s design to reach target effective
properties. This new degree of freedom allows for properties that are unattainable with assemblies
of bulk materials.

Recent improvements in manufacturing methods also offer new possibilities for proceeding ar-
chitectured materials. It is now possible to build micro-lattices, or other complex shapes, using
additive manufacturing techniques like Selective Laser Melting (SLM) (Mines et al., 2013), Fused
Deposition Modeling (FDM) (Compton and Lewis, 2014) or Electron Beam Melting (EBM) (Suard
et al., 2014). For instance, this new flexibility in the manufacturing landscape allows designers to
work with more complex material architectures and further explore the material property space
(Ashby, 2005). Several authors have adressed the problem of selecting the best architecture for a
given problem, either empirically (Sigmund, 2000), or using numerical optimization methods that
are coupled with the homogenization analysis of heterogeneous periodic media (Allaire, 2002; An-
dreassen et al., 2014; Bendsøe and Kikuchi, 1988; Wang et al., 2004). In these previous studies,
the goals included: (i) obtaining materials with target or extremal properties that are close to the-
oretical bounds, or (ii) understanding mechanisms used to achieve a desired behavior or material
response. For example, most of the composite or heterogeneous materials design problems related
to achieve precribed thermal properties (for instance materials with a low coefficient of thermal
expansion) in the literature employ mechanisms similar to those presented in Figure 1. This illus-
trates which kind of mechanism can control the vertical expansion of a structure consisting in: a)
a standard structure subject to thermal expansion, b) and c) a vertical contraction making use of
a bending or a bimetallic mechanism, respectively. In this study, we focus on achieving extremal
thermoelastic properties (Sigmund and Torquato, 1997) with the level-set topology optimization
approach (Allaire et al., 2004; Wang et al., 2003).

As in (Sigmund and Torquato, 1997), most of the studies in multi-material optimization assume
a sharp transition of properties across material interfaces. However, there are many cases where
this transition is not sharp, but smooth or graded (see Figure 2), for instance Creton et al. (2001)
report that the interface in polymers can be strengthened by using anchor chains . Graded interfacial
properties are induced by the processing or can be controlled in some cases as in functiontionnally
graded materials (Kieback et al., 2003). There are also many cases where this interface transition
may be non-monotonic, introducing new material properties that are not provided by the bulk
constitutive or phases. For instance, Tan et al. (2016) report non-monotonic variations of hardness
accross an interface between two metallic phases and Markworth et al. (1995) report non-monotonic
variations of thermal stress across graded interfaces in polymers.

In this study, we investigate the design of hybrid micro-architectured materials with target
extremal thermoelastic properties in a shape optimization framework. In particular, we evaluate
the effects of graded interfaces between the constitutive materials or phases.The paper is organised
as follow: in the first section, we define the shape optimization framework. We describe how an
heterogeneous multi-material composite with graded interfaces can be represented (Vermaak et al.,
2013), and how the graded interfaces are included in the shape optimization formulation. In the
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Figure 1: Illustration of conceptual mechanism used to adjust thermal expansion. (i) a monolithic
bulk material subject to a uniform temperature rise for reference (ii) first mechanism of thermal
expansion control (“three point flexion”) and (iii) second mechanism of thermal expansion control
(“bi-metallic”). Applications of these mechanisms are presented by Jefferson et al. (2009)

second section, we present the computational aspects of the optimization problem. Results of the
optimized microstructure for a selection of extreme thermoelastic target properties are presented
in a third section followed by a discussion in section 4. Concluding remarks close the study.
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Figure 2: Scheme of interface transition zone models between materials (Φ1,Φ2). Theoretically,
interfaces are infinitely sharp transitions from one material or phase to another, but most of real
interfaces exhibit a smooth transition in chemical composition, which can lead to a wide array of
properties.

2 Optimization framework

This section is an overview of all the key point that should be treated to build a numerical optimiza-
tion process that takes into account the graded interfaces effects. The basis is a shape optimization
code as the one used by Vermaak et al. (2016), adapted to be used with homogenization framework.

2.1 Calculation of homogenized properties

We aim at designing periodic multi-material composites with prescribed effective thermoelastic
properties that are estimated by periodic homogenization (see Figure 3). We consider a domain
made of a periodic unit cell, Y , with its periodic lengthscale, δ. We denote C(x) the fourth order
elastic tensor and α(x) the second order thermal expansion tensor. The thermal stress tensor is
defined as A(x) = C(x)α(x). Note that all of these properties depend on the spatial variable x. The
linearized thermoelastic system that governed the thermoelastic response of this periodic domain
as: {

−div(C(x)(ε(u)− α(x)∆T )) = 0 x ∈ Ω
u = 0 x ∈ ∂Ω

, (1)

with u the displacement field and solution of equation (1), ∆T a uniform temperature field, and ε(u)
the strain operator (defined as ε(u) = (∇u+∇uT )/2, where ()T denotes the transpose operator).

Using the theory of two-scale asymptotic development (Allaire, 2002), the effective properties
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Figure 3: Homogenization scheme for a multi-material or multi-phase periodic composite.

of the periodic heterogeneous medium are derived. The effective elastic tensor, we have

C∗ijkl =

∫
Y

C(y)(eij + εy(ωij))ekl dv, (2)

and for the effective thermal stress tensor

A∗ij =

∫
Y

C(y)(eij − ε(ωij))(α(y)− εy(ωθ)) dv, (3)

where y = x
ε (the so-called “fast” variable that denotes the scale separation between the heteroge-

neous domain and the unit cell Y ), and where ωij and ωθ are the solutions of the so-called “cell
problems”. The cell problems describe the response of the heterogeneous periodic unit cell to unit
strain

eij =
ei ⊗ ej + ej ⊗ ei

2
, (4)

where ei and ej are orthogonal vectors of the spatial basis (in two dimensions, 1 ≤ i ≤ 2). Thus,
each ωij is the solution of the cell problem when eij is the applied unit deformation, in a similar
way, ωθ is the the solution of the cell problem where the unit deformation is α.

The fields ωij are the solution for the cell problems{
−divy(C(y)(eij + εy(ωij(y))) = 0 in Y

ωij(y) Y − periodic , (5)

and in the same way, ωθ corresponds to the thermal cell problem defined as{
−divy(C(y)(α(x)− εy(ωθ(y))) = 0 in Y

ωθ(y) Y − periodic . (6)
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With an expression for the effective elasticity tensor, C∗, and the effective thermal stress tensor,
A∗, we can also derive the effective thermal expansion tensor

α∗ = (C∗)−1 : A∗. (7)

The foregoing formulation defines the homogenization procedure.

2.2 Formulation of the optimization problem

In this study, we propose an optimization methodology to design isotropic composites with ex-
tremal thermal expansion coefficients (CTE) and a minimum stiffness that is prescribed through a
minimum bulk modulus. Composites with extremal CTE are of interest for a number of industrial
applications and their range of use is extended by requiring baseline stiffness properties. Without a
minimum stiffness constrain, optimized mechanisms will contain a lot of hinges, leading to appro-
priate mechanisms but poor mechanical properties (thin parts that are expected to be weaken the
structure). Although some authors have already addressed this problem (Sigmund and Torquato,
1997; Wang et al., 2004), we extend the previous frameworks in order to account for interface effects
between the constitutive material phases. We evaluate how interface effects offers new possibili-
ties for exploring the material’s property space and especially the design of architectured materials
(Vermaak et al., 2016). We focus on the following two optimization problems which are restricted
to 2D cases for sake of simplicity.

i ) Find the lowest possible effective thermal expansion coefficient for a composite,

min
Ω
J (Ω) = α∗11 + α∗22 = tr(α∗) (8)

ii ) Achieving the highest possible effective thermal expansion coefficient for a composite,

min
Ω
J (Ω) = −α∗11 − α∗22 = −tr(α∗). (9)

The lowest or highest possible values are constrained by the theoretical thermoelastic bounds (de-
scribed below)(Gibiansky and Torquato, 1997) which provide extreme frontiers for isotropic effective
CTE α∗ and the bulk modulus K∗. However during the optimization iterations, the design does
not warranty isotropic effective properties. Thus, we could estimate a bulk modulus by considering
the spherical part of the effective elastic moduli tensor. We adopt a simpler and practical approach
consisting in deriving K from the volumetric strain induced by a hydrostatic loading as

K =
tr(¯̄σ)

tr(¯̄ε)
,with ¯̄σ = −P¯̄I (10)

where ¯̄I is the second order identity tensor and tr() denotes the trace. If the composite is isotropic,
we have K = κ. In order to obtain isotropic microstructures for a proper comparison with the
theroetical bounds, we define an isotropy error estimator. Let Ciso be the isotropized elastic tensor
of a composite defined as 

Ciso1111 = Ciso2222 =
C∗1111+C∗2222

2
Ciso1122 = C∗1122

Ciso1112 = 0
Ciso2212 = 0

Ciso1212 = Ciso1111 −
C∗1122

2

. (11)
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In this way, Ciso is an isotropic equivalent of the effective elastic tensor, C∗.To force rhe isotropic
symmetry, we minimize the difference between C∗ and Ciso in order to design an isotropic composite.
An isotropy error estimator is defined as

err2
iso =

∑
ijkl

(
C∗ijkl − Cisoijkl

)2

(Ciso1111)2
. (12)

This estimator could also be added as a parameter to be constrained in the optimization problem,
as it is done by Andreassen et al. (2014).

In a same manner, the isotropic symmetry of thermal expansion tensor α∗ at the end of the
optimization process is not ensured. It is possible to define another error estimator for the CTE
isotropy. However, we prefer to force the isotropy of α∗ by definning a symmetry on geometry. The
use of a symmetry on the unit cell reduces the constraints of the optimization problem.

Thus, the optimization problem corresponding to equation (8) reads

minΩ α∗11 + α∗22

s.t. K > Kmin

erriso < errmax
Vi = Vi,prescribed
4thorder rotation symmetry

(13)

The above description defines the objective and constraints of the problem under consideration. Now
that we have defined the problem and the homogenization framework, we present the interpolation
scheme for the physical interfacial properties: the elastic tensor, C(y), and thermal expansion
tensor, α(y).

2.3 Level-set method

The level-set method is adopted to describe the spatial distribution of materials because of its
efficiency in tracking evolving domains (Osher and Sethian, 1988). The level-set method’s ability
to handle topological changes in a natural way also makes it a robust approach for performing
topology optimization by keeping a geometric description of the evolving shape. Since the first
publications on the topic (Allaire et al., 2004; Sethian and Wiegmann, 2000; Wang et al., 2003),
the level-set method for topology optimization continues to gain popularity, providing solutions to
problems that cannot be adressed by conventional density approaches, in particular for the account
for interface effects under consideration here.

In the level-set framework, the boundary of a domain, Ω, is defined via the zero level-set of an
auxiliary function, φ (see Figure 4) as φ(x) = 0 ↔ x ∈ ∂Ω ∩D,

φ(x) < 0 ↔ x ∈ Ω,
φ(x) > 0 ↔ x ∈ (D \ Ω) .

(14)

In order to represent an evolving domain, Ω, we update the level-set function φ(x) by solving a
Hamilton-Jacobi transport equation using an explicit “upwind” finite difference scheme (Sethian,
1999). The level-set function is advected with a normal velocity field that describes the velocity of
the interface, ∂Ω, along its normal direction. The advection time step is chosen such that it verifies
the Courant-Friedrichs-Lewys (CFL) stability condition.
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Figure 4: Level-set description of a do-
main, Ω ⊂ D.
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Figure 5: Definition of four materials domains that are
represented by the regions Φ1,2,3,4 using two level-set
functions, φ1 and φ2.

Using one level-set function allows the description of two domains in space, i.e. Ω and D\Ω. In
our study, we account for more than two materials or phases in space. It is then necessary to handle
more than one level-set function. As presented in Allaire et al. (2014); Vermaak et al. (2016), it is
possible to represent 2N material domains, Φi, using N level-set functions, φj , (see Figure 5). The
different materials are defined by combining the values of the level-set functions as

φ1(x) < 0 and φ2(x) > 0 , x ∈ Φ1

φ1(x) > 0 and φ2(x) < 0 , x ∈ Φ2

φ1(x) < 0 and φ2(x) < 0 , x ∈ Φ3

φ1(x) > 0 and φ2(x) > 0 , x ∈ Φ4

. (15)

2.4 Definition of the interpolation scheme for the thermoelastic proper-
ties

In this section, we propose an interpolation scheme that accounts for graded interfaces between
different phases in an heterogeneous media. Using the multi-material representation (Section 2.3),
we can construct the signed distance functions, dΩ1

and dΩ2
, of the domains, Ω1 and Ω2, that are

described by the level-set functions, φ1 and φ2, respectively. We first focus on the definition of the
interface between materials Φ1 and Φ4. According to Figure 5, this corresponds to a change of sign
for φ1. We use an interpolation function, hi as in Allaire et al. (2014)

hi =


0 , dΩi < −ε
1
2 +

dΩi

2ε + 1
2π sin

πdΩi

ε , | dΩi |< ε
1 , dΩi > ε

, (16)

where ε is the half thickness of the interface zone. We adopt this expression because it is smooth
and differentiable.

Assuming that φ2 > 0, the Young’s modulus, E, at a point x in space is

E(x) = E4h1 + E1(1− h1), (17)
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where Ei the Young’s modulus of the ith material/phase. Figure 6 presents this interpolation scheme
along a transition between materials Φ1 and Φ4. The same interpolation can be calculated for each

dΩ1
E( d   ),

-ε ε0

ε-ε 0

Φ

Φ
1

4

Ω1

E1

E4

Figure 6: Model for graded interfaces. The material property related to stiffness, Young’s modulus
or E, is defined as a function of the signed distance, dΩ. E1 and E4 define Young’s Modulus for
phase Φ1 and Φ4 respectively. We see that for dΩ1

< −ε we have E(dΩ1
) = E1, for dΩ1

> ε we have
E(dΩ1) = E4, and for −ε ≤ dΩ1 ≤ ε, E(dΩ1) is inteprolated using the equations (17) and (16).

material interface transition. In more general terms, one can define a global interpolation scheme
that handles all of the transitions between materials or phases simultaneously:

P (x) = P1(1− h1)h2 + P2h1(1− h2)
+P3(1− h1)(1− h2) + P4h1h2,

(18)

where P represents a mechanical or a thermal property. The subscript in P denotes the index of
the material under consideration. Figure 7 shows an example of the interpolation scheme defined
by equation (18).

This interpolation scheme (18) is similar to the one used by Vermaak et al. (2013). In the present
work, instead of varying the interpolation function for the properties as was done in Vermaak et al.
(2013), we introduce a new region that represents the interface, denoted by the subscript “int′′.
We define Pint the property of the interface between materials Φ1 and Φ4, and we use the following
interpolation scheme (see Figure 8):

P = P1(1− hm)h2 + P2h1(1− h2)+
P3(1− h1)(1− h2) + P4h

ph2

Pint(h
m)h2 + Pint(1− hp)h2,

(19)

where hm and hp are two functions:

hm =

{
0 , dΩ1 < −ε
1 +

dΩ1

ε + 1
2π sin

2π(dΩ1+ ε
2 )

ε ,−ε ≤ dΩ1 < 0,
(20)

and

hp =

{
dΩ1

ε + 1
2π sin

2π(dΩ1
− ε2 )

ε , 0 < dΩ1
≤ ε

1 , dΩ1
> ε

. (21)
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0

1
h1 h2

Figure 7: Example of the interpolation scheme for a 1D multi-material in the case of a monotonic
graded interface between two adjacent bulks. Pi corresponds to a property of phase Φi, (elastic
moduli, thermal expansion). We see how the scheme defined in the equation (18) interpolates a
given property P depending on the signed distance functions dΩ1 and dΩ2 . The functions h1 and
h2 used in the equation (18) are also presented.

The same interpolation scheme (19) could be used to handle non-monotonic interfaces between
any bulks. In order to remain consistent with the interpolation function, hi, defined in equation
(16), we choose to use the same expression of interpolation function for the description of the non-
monotonic interfaces. Note that because of the interpolation choice, the dependency on the spatial
variable is replaced by one on the signed distance functions. Thus, we change the notation C(y)
and α(y) to C(dΩ1

, dΩ2
) and α(dΩ1

, dΩ2
), respectively.

Having the spatial distribution of the interpolated thermoelastic properties, the effective prop-
erties can be derived by homogenization. In order to complete the optimization protocol, it is now
necessary to compute the shape derivatives of these effective properties.

2.5 Shape derivative

We first compute the shape derivatives C ′ijkl(θ) and A′ij(θ), that are used in the expression of the
functional we want to optimize (K∗, α∗, erriso) defined in Section 2.2. We adopt the interpolation
scheme presented in section 2.4, with the effective elastic moduli are derived from

C∗ijkl =

∫
Y

C(dΩ1
, dΩ2

)(eij + εy(ωij))ekl dy, (22)

where ωij is the solution of the cell problem (equation 5). Note that ωij depends on both Ω1 and
Ω2. Its direct derivation is not straightforward. Therefore, we adopt Céa’s shape derivation method
(Céa, 1986) for its estimation.
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Figure 8: Example of the interpolation scheme for a 1D multi-material in the case of a non-
monotonic interface. Pi indicates a property of phase Φi, (elastic moduli, thermal expansion). We
see how the scheme defined in the equation (21) interpolates a given property P depending on the
signed distance functions dΩ1 and dΩ2 . The additional functions hm and hp used in the equation
(21) are also represented.

In particular, to caluclate the shape derivative of C∗ijkl, we formuate the Lagrangian of the
problem

L(Ω1,Ω2, ω̂ij , η̂ij) =∫
Y

C(dΩ1 , dΩ2)(eij + εy(ω̂ij))ekl dy+∫
Y

C(dΩ1
, dΩ2

)(eij + εy(ω̂ij)) : εy(η̂ij) dy,

(23)

where ω̂ij and η̂ij are vector fields that are independent of Ω1 and Ω2. By differentiating the
Lagrangian with respect to η̂ij , along the direction φ, and by assuming that this derivative is zero
at the optimal point (Ω1,Ω2, ω

∗
ij , η

∗
ij), we obtain

∂L(Ω1,Ω2,ω
∗
ij ,η
∗
ij)

∂η̂ij
(φ) =∫

Y

C(dΩ1 , dΩ2)(eij + εy(ω∗ij)) : εy(φ) dy

= 0.

(24)

from which we derive that ω∗ij is the solution of the cell problem (equation 5).
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Taking the derivative of the Lagrangian with respect to ω̂ij , along the direction φ, and at the
optimal point where the derivative is equal to zero, we obtain

∂L(Ω1,Ω2,ω
∗
ij ,η
∗
ij)

∂ω̂ij
(φ) =∫

Y

C(dΩ1
, dΩ2

)(ekl + εy(ω∗kl)) : εy(φ) dy+∫
Y

C(dΩ1
, dΩ2

)(εy(η∗ij)) : εy(φ) dy = 0.

(25)

The first term in equation (25) corresponds to the weak formulation of the cell problem (equation
5), then it vanishes at the optimal point. The second term leads to η∗ij = 0. Thus the problem is
self-adjoint.

The shape derivatives of the effective elastic moduli are equal to those of the Lagrangian function
at the optimal point (Ω1,Ω2, ω

∗
ij , η

∗
ij) (Allaire, 2007), for any variation of the domains, Ω1 and Ω2,

along a direction θ1 and θ2, respectively

C∗
′

ijkl(Ω1,Ω2)(θ1) = L′(Ω1,Ω2, ω
∗
ij , η

∗
ij)(θ1)

C∗
′

ijkl(Ω1,Ω2)(θ2) = L′(Ω1,Ω2, ω
∗
ij , η

∗
ij)(θ2)

. (26)

In the sequel, we illustrate how the shape derivative proceeds for the domain Ω1, the same holds

∂(Ω1(Id + θ1)) ∂Ω1

D

Ω1

∂(Ω2(Id + θ2))

Ω2

∂Ω2

Figure 9: Perturbation of the boundary, ∂Ω, by a small vector field, θ̄, that defines the new domain,
Ω(Id+ θ̄).

for Ω2. From the expression od the Lagrangian in (23) and the relation (26), the shape derivative
is

C∗
′

ijkl(Ω1,Ω2)(θ1) =∫
Y

(
d′Ω1

(θ1)
∂C(dΩ1 , dΩ2)

∂dΩ1

· (ε(ωij) + eij)ekl

)
dv,

(27)

where d
′

Ω1
(θ1) is the shape derivative of the signed distance function, dΩ1

.
Similarly, one can obtain the shape derivative for the thermal stress

A∗
′

ij(Ω1,Ω2)(θ1) =∫
Y

(
d′Ω1

(θ1)
∂C

∂dΩ1

· (α(y)− ε(ωθij))eij
)
dv.

(28)

12
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θ(p∂Ω (x))
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Figure 10: Illustration of the terms used in
the expression of the shape derivative of the
signed distance function.

Ω
1

Cartesian integration

Coarea integration

x

y n
t

Figure 11: Scheme for the integration per-
formed along rays and a comparison to
Cartesian integration.

In (27) and (28), the shape derivative of the signed distance function d′Ω1
(θ1) is taken as in Allaire

et al. (2014). Some additional steps are still required to compute the shape derivative explicitly. For
instance, obtaining explicit expressions for the shape derivatives of the signed distance functions,
dΩ1

and dΩ2
. This step is addressed in Allaire et al. (2014), and the expression is

d′Ω1
(θ1)(x) = −θ(p∂Ω1(x)) · n(p∂Ω1(x)), (29)

in which, for any point x ∈ Y , p∂Ω(x) denotes its orthogonal projection on the boundary ∂Ω1, and
n(p∂Ω1(x)) denotes the exterior normal at this projected point (illustrated in Figure 10).

In order to obtain a descent direction defined along the boundary of the shape, we apply the
coarea formula (Allaire et al., 2014). This essentially consists in splitting the integration over
the domain Y into two separate integrations: one along the boundary and another along the rays
emerging from the boundary (see (Allaire et al., 2014)). Figure 11 illustrates this coarea integration
schematically.

After simplifaction of the coarea formula (see (Allaire et al., 2014)), the Jacobian-free expression
of the shape derivative of the effective elastic moduli tensor becomes

C∗
′

ijkl(θ1) =∫
∂Ω1

d′Ω1
(θ1)

∫
ray

(
∂C

∂dΩ1

· (ε(ωij) + eij)ekl

)
dv.

(30)

Similarly,that for the effective thermal stress tensor is

A∗
′

ij(θ1) =∫
∂Ω1

d′Ω1
(θ1)

∫
ray

(
∂C

∂dΩ1

· (α(y)− ε(ωθij))eij
)
dv.

(31)

At this point, all the required shape derivatives can be computed. We now present the opti-
mization algorithm used to solve the optimization problem.
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2.6 Optimization algorithm

Now all of the bricks for the optimization problem are defined. We assemble these to set the
optimization protocol. The algorithm is as follow (see Figure 12):

1. Initialize the level-set function.

2. Evaluate the objective function and constraints, and calculate their shape derivatives.

3. Select a descent direction (using shape gradients of the objective function and any constraints).
Regularize the velocity field by solving a variational problem (Allaire et al., 2014, 2004). This
step is done using a linear programming algorithm.

4. Check the convergence criteria. This includes checking the norm of the velocity field V k and
stopping the procedure if it becomes smaller than a given value Vmin.

5. Advect the level-set functions using a Hamilton-Jacobi transport equation, then return to
Step 2.

Initialization of 
the level sets

φ1(x)k, φ2(x)k

Interpolation of
properties

E(x)k, α(x)k

Criteria evaluation
(FEM)

J    k J'(θ1, θ2)
k

Velocity computing

φ1(x)k, φ2(x)k,Vk 

Advection
(H-J equation)

Vk

Convergence test
is ||Vk|| < dmin ?

φ1(x)k+1, φ2(x)k+1

Figure 12: Description of the optimization algorithm used in this study. V k is the velocity field
used to advect the level sets (Sethian, 1999).

3 Results

The optimization problem is defined by the set of equation (13) and aims at finding the heteroge-
neous microstructure that meets prescribed extremal properties. Gibiansky and Torquato (1997)
have previously established theoretical bounds for the thermoelastic properties of isotropic com-
posites. An example of such bounds is shown in Figure 13 using the same material properties and
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Property phase 1 phase 2 & 3 phase 4

E [GPa] 0.91 0.91× 10−4 0.91
ν 0.3 0.3 0.3

α [ppm/K] 1 1 10
Vol. fraction 0.25 0.5 0.25

Color black white gray

Table 1: Material properties and parameters used for calculations (Young’s modulus, E, Poisson’s
ratio, ν, CTE, α, and prescribed volume fraction).

volume fractions as in Sigmund and Torquato (1997) (Table 1). The constitutive phases are made
of two region with identical elastic moduli but different CTE. These are denoted as 1 and 4 in Table
1 (note that having two bulks and one erzatz of void imply the use of 2 level sets functions). Their
volume fraction is 0.25, the rest of the volume is void that is refered to phase 2 and 3 in Table 1.

We now attempt to design architectured composites of which thermoelastic properties are closed
to these theoretical bounds with our optimization protocol.
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Figure 13: Theoretical bounds on the effective coefficient of thermal expansion (CTE) as a function
of the effective bulk modulus (as presented in Gibiansky and Torquato (1997)). All computations
were made with the material properties given in Table 1. Each of the results plotted in this chart
represent the best design selected from 96 simulations that were initialized slightly differently (see
Section 4.1).
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The optimization problem defined in (13) is practically addressed as follow

search
minΩ α∗11 + α∗22

K∗ > Kmin

V1 = 0.25
V4 = 0.25

→

isotropizing
minΩ err2

iso

α∗ii < αref
K∗ > Kmin

V1 = 0.25
V4 = 0.25

(32)

We first look for an optimization step ”search” intended to provide a first solution without taking
into account the isotropy constrain. The CTE estimated at this step is denoted αref . Then, the
step ”isotropizing” aims at defining the isotropic effective properties without ”degrading too much”
the results obtained after the ”search” step.

We next define two case studies which differ only in the minimum value prescribed for the bulk
modulus, Kmin.

• Case (a), the minimum bulk modulus is set to Kmin = 0.03, refered as the ”compliant” case.

• Case (b), the minimum bulk modulus is set to Kmin = 0.05, refered as the ”stiff” case.

In the following sections, we report and comment the results obtained for several different interface
profiles between phases 1 and 4 for the two case studies (a) and (b). The interface properties are
derived from the interpolation defined in (18) and (19), for monotonic and non-monotonic profiles
respectively. The thickness profile is calculated over four elements, the unit cell being discretized
by a 120× 120 quadrangle elements mesh.

3.1 Monotonic interface profile

In this section, we present the closest optimized design to the theoretical bounds among a set of
96 realizations, consisting in various initialization. For case (a) and (b), the corresponding effective
properties are reported in figure 13, the filled triangle correspond to case (a) and the empty triangle
correspond to case (b).

In Figure 14, we present snapshot of the optimization process for case (a). The unit cell at
initialization (top left), ”search” step iterations (top middle and top right), end of ”search” step
(top right), end of ”isotropizing” step (bottom middle) and final values of optimized properties
(bottom right) are reported. We first observe that the contraints on volume and bulk modulus are
fullfiled, and that the final CTE is negative and close from the theoretical one. The final isotropy
error is also smaller than 1%.

Result for case (b) is illustrated similarly in figure 15. For this case, the designed microstructure
results in properties closer to the theoretical bound. The error estimator is slightly larger thant
for case (a) but isotropy is found reasonably. The constraint in volume fraction of phase 4 is not
completely fullfilled (0.23 attained while 0.25 is prescribed) but acceptable.

In Figure 14 and 15, we observe that the proposed design employs a bending mechanism to
control thermal expansion like the one shown in Figure 1 b).

3.2 Non-monotonic interface profile

In this section results that account for the effect of graded and non-monotonic interfaces are pre-
sented. The mechanical properties of the constitutive phases are these reported in table 1. We now
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Initialization Search (step 10) Search (step 20)

Search (final) Isotropized Property value
αii (ppm/K)

erriso

K(GPa)

vol1

vol4

-1

0.3%

0.03

0.25

0.25

Figure 14: Optimization Case (a) (less
stiff modulus constraint), with compressibility
modulus, K > 0.03, and monotonic interface
transitions.

Initialization Search (step 10) Search (step 20)

Search (final) Istropized Property value
αii (ppm/K)

erriso

K(GPa)

vol1

vol2

0.06

1%

0.051

0.25

0.23

Figure 15: Optimization Case (b) (stiffer mod-
ulus constraint), with compressibility modulus,
K > 0.05, and monotonic interface transitions.

consider a non-monotonic transition between the constitutive phases as depicted in Figure 16. First,
we present the results with the interface region that has a stiffer response than the surrounding
bulks which have identical Young’s modulus and Poisson’s ratio, their CTE being different by a
factor of 10. We observe in figure 13 that accounting for a stiffer interface results in a lower CTE as
the optimized microstructure presented in Figure 14. In contrast, Figure 17 presents a simulation
where interface is more compliant thant the bulk materials, for which the effective properties are
also reported in Figure 13

Figures 16 and 17 are results for the compliant effective bulk modulus constraint Case (a)
(K > 0.03). These can be compared with the results in Figure 14, and are represented by the red
triangle and blue triangle, respectively, in Figure 13. As in the previous results, the constraints
on the general optimization problem are fulfilled. Similarly for the Case (b), Figure 18 can be
compared to Figure 15.

By comparing results in Figures 14, 16 and 17, where only the profile of the interface properties
is changed, we observe that the optimal shapes are noticeably different. The performance of these
three architectured materials is also different (see Figure 13). It appears that, for this optimization
problem, a stiffer interface has a positive effect on the performance whereas, a less stiff interface
transition is detrimental to reach the theoretical performance or extreme bound. Based on the
optimized shapes, the conceptual mechanism for effective thermal expansion control differs markedly
between the monotonic interface case (see Figure 14) and the stiffer interface case (see Figure 16).
In the monotonic interface case (Figure 14) where the interface properties are a weighted average
of the bulk materials/phases, a flexion mechanism operates. In the case of a stiffer interface(Figure
16), a planar “bi-metallic” mechanism is promoted.
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Figure 16: Optimization Case (a) (compliant
effective modulus constraint), with compress-
ibility modulus, K > 0.03, and non-monotonic
interface transitions. In this case, the non-
monotonic interface transition allows for the
interfacial properties to be stiffer than either
of the bulk constituent materials. The interfa-
cial zone is highlighted in red.
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Figure 17: Optimization Case (a) (compliant
effective modulus constraint), with compress-
ibility modulus, K > 0.03, and non-monotonic
interface transitions. In this case, the non-
monotonic interface transition(see above pro-
file) allows for the interfacial mechanical prop-
erties to be weaker than either of the bulk con-
stituent materials. The interfacial zone is high-
lighted in red.
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Figure 18: Optimization Case (b) (stiffer effective modulus constraint), with compressibility mod-
ulus, K > 0.05, and non-monotonic interface transitions. In this case, the non-monotonic interface
transition(see above profile) allows for the interfacial mechnaical properties to be stiffer than either
of the bulk constituent materials.

4 Discussion

This section addresses comments on the method adopted in this study and highlights some issues
and their proposed solutions.
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4.1 On the global method

A level set shape optimization methodology is presented to attain extreme effective thermoelas-
tic properties for a periodic composite of which properties are estimated by periodic homogeniza-
tion.The present study somehow combines approaches proposed by Wang et al. (2004) and Sigmund
and Torquato (1997). Wang et al. (2004) does not ensure isotropic properties and therefore are not
comparable to the theoretical bounds established by Gibiansky and Torquato (1997). In Sigmund
and Torquato (1997), topology optimization is used to address the problem under consideration
here but the influence of graded interfaces is not explored. Thus, the present work extends these
contribution by accounting for specific interface properties as proposed by Vermaak et al. (2013).
We evidence that considering different interface properties can influence the mechanism to attain
target effective thermal expansion. This is an important point because it implies that an optimal
design obtained without taking interfaces into account may not be optimal if interface effects are
not negligible.

It is worth noting that our methodology employs an automated and systematic optimimization
method that does not require human interaction during the optimization process. In contrast, and
as mentioned in Sigmund and Torquato (1997), the SIMP method that produced the results therein
reported is less automated and does require human interaction: “To arrive at an optimal solution,
depending on the initial guess, several thousand iterations are needed. Including interaction by the
user [...]” Sigmund and Torquato (1997)(sec 2.4, page 1049).

As it is common in shape optimization problems, the method reported here is sensitive to the
initialization step. Results presented here are the best results from a series of 96 realization with
different initial domains. The initializations employ a square shaped pattern of inclusions, it seems
to lead to better optimized shapes than the initialization with circular inclusions commonly used
in the literature. We only change the number of holes for both of the two level sets, from 12x12
holes to 25x25. The motivation for defining such range is that shape optimization is not able to
create holes (except in some restrictive cases), so the initial number of holes globaly determines the
complexity of the final shape. On the other hand, the number of holes has to be small enough such
that their spacial period stays larger than the element size of the finite element mesh. Figure 19
presents microstructure designs that are from the same series of simulations that lead to the result
presented in Figure 14. All of these structures fulfill the prescribed constraints, but all of them also
have a higher effective CTE as that of Figure 14: each of these alternate architectures corresponds
to a local minimum of the optimization problem. The suggestion is that, by exploring more ini-
tial configuration or by including user-interaction during the optimization procedure, designs that
coincide or get close to the theoretical property bounds could be found.

4.2 On the control of interfaces

As presented in Vermaak et al. (2013), accounting for graded interfaces may induce some numerical
artefacts, depending on the prescribed interface properties. This is illustrated in Figure 20. In more
general terms, in the case where the graded properties of the interface are beneficial to fulfill the
problem’s objective, the optimization process will promote as much interface as possible resulting
in a tortuous design. This is a logical trend, but it should be controlled in order to promote
manufacturable designs. In his study, stiffer interfaces are beneficial to the optimization problem
as they bring a higher stiffness. Thus if they are not controlled, the algorithm takes advantage of it
and build interface network (see Figure 20). This is due to a phenomenon that we call the ”ghost
link effect”, depicted in Figure 21. We observe two parts of the domain Ω1 separated by a small
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Figure 19: Examples of less optimal architectures obtained with optimization Case (a) (less stiff
effective compressibility modulus constraint).

Figure 20: Illustration of the distributed interface network effect. In this non-monotonic graded
interface example, the interface between the gray and black bulk materials has stiffer properties
than the bulk materials. On the left: The distribution of phases in the final design creates regions
that are dominated by an interface network. On the right: A magnified zone of the solution on the
left. Here the interface are highlighted in red to show how the optimizer promotes the formation
of small inclusions in order to form a distributed network of interfaces.

strip of domain Ω2. The variation of properties when crossing the interface between Ω1 and Ω2

is depicted at the top-right, it is a case whith a stiffer interface. The transition Ω1 → Ω2 → Ω1

shows a numerical artefact: even if the two parts of domain Ω1 are supposed to be mecanicaly
disconnected, they are connected by a ”ghost link” due to the interpolation scheme.

The Figure 22 then shows how this effect can be used to generates a high stiffness area, which
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Figure 21: Feature of the graded interface formulation. Sometimes two distinct regions of a material,
Ω1, that are ostensibly separated by a region of another material, Ω2, can encroach upon eachother,
replacing the Ω2 region altogether. As a result, regions of material Ω1 are connected purely by
“interface” and without any of the other Ω2 material. Depending on the interpolation scheme used,
this can create an artificial stiff link between regions of the same material as illustrated here.

is not physically acceptable.
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Figure 22: Use of the ghost link effect to generate a high stiffness rod.

To avoid this type of behavior, we proposed to use a simple method that suppress ghost link
effect, and so all the directly induced defects. This is a simple shifting of the level set function that
move the variation of properties inside the solid phase, this is a simple transformation of equation
21:

Cijkl(dΩ + d0) ={
C1
ijkl + (Cintijkl(θ)− C1

ijkl) · hm(dΩ + d0) x ∈ Ω

Cintijkl(θ) + (Cvoidijkl − Cintijkl(θ)) · hp(dΩ + d0) x ∈ D\Ω

(33)

Where d0 is the shifting parameter.
As illustrated by figure 23, adding a shifting parameter avoid ghost link effect. Mathematically
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speaking, d0 could be defined as a projection, but this parameter also has more physical sense,
depending on its value:

• If d0 < 0: It is the minimum thickness of a piece of matter.

• If d0 > 0: It is the minimum thickness of a piece of void.

A convenient value for d0 is ε, so all the graded interface is moved in the negative part of the
level set.
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Figure 23: Shift of the interpolation scheme in order to avoid the ghost link effect.

5 Conclusion

We have investigated the effect of graded interfaces on the optimized performance and predicted
topology of thermoelastic composites. Engineering interfaces, whether chemically or geometrically,
is the frontier for accessing new and extremal functionalities and properties in composite design. To
this end, we have used a level-set approach that takes advantage of recent developments (Vermaak
et al., 2013; Allaire et al., 2014) for the treatment of interfaces. Depending on whether or not
interfacial properties are beneficial to the objective function, the optimization algorithm may try to
build a distributed network of interfaces. When this is not desired, a projection scheme is suggested
to control the interface behavior. When incorporating interface effects, the framework for designing
the optimization procedures must change. Carefully considering the interfacial interactions between
different materials/phases or higher order combinations of materials/phases is a crucial step. Re-
gardless of the prescribed interfacial properties, more approaches to model, handle, and harness
the transition regions between bulk materials or phases are needed. Lastly, recent developments
in manufacturing methods are making directly printing multi-material or multi-phase composites
more and more feasible. This offers new possibilities for realizing extremal architectured materials
that shape and topology optimizations identify. This study shows that including interface behavior
in transition zones between materials and phases is important because it not only changes optimized
performance, but also optimized shapes.
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In this study we proposed a shape optimization method applied for the design of periodic
heterogeneous materials with explicit account for graded interfaces. A numerical modeling based
on Vermaak et al. (2013) is presented and the shape derivation of quantities that depend on a
particular interpolation scheme has been presented. The final framework is then used for the
optimization of microstructures of which properties meet extreme theoretical bound proposed by
Gibiansky and Torquato (1997). By considering different profiles for the interface properties and
also different cases, we evidence that the interfaces govern the local mechanism required to meet
the overall effective properties and moreover the final design of optimized microstructures. This is
thought to be an important issue when manufacturing such architectured materials. In addition, a
method that prevent numerical artefact in the interface distribution is reported.
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