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The rational bacterial strain design is a major challenge in synthetic biology. This paper deals with the optimization of a bacterial strain for specific processes taking place in a bioreactor. Such problems are namely maximizing the growth and the production of a product of interest. First, a model combining the internal behavior of the cells with a bioreactor environment is developed assuming mass balance and biological constraints. This model assumes that the production of proteins can be controlled. The problem is then solved with constant optimization variables and returns an optimal strategy for synthetic strains.

I. INTRODUCTION

Bioengineering is the application of engineering techniques to biological systems. Biological systems and in particular micro-organisms like bacteria have become a new way to produce interest chemical product. Growing micro-organisms in a bioreactor fed with glucose is common [START_REF] Bastin | Adaptive control of bioreactors[END_REF], [START_REF] Srinivasan | Dynamic optimization of batch processes: II. role of measurements in handling uncertainty[END_REF] and the challenge is now to design new bacterial strains with better behavior for practical applications [START_REF] Xie | Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in saccharomyces cerevisiae[END_REF], [START_REF] Waldherr | Dynamic optimization of metabolic networks coupled with gene expression[END_REF], [START_REF] Holtz | Engineering static and dynamic control of synthetic pathways[END_REF], [START_REF] Gadkar | Estimating optimal profiles of genetic alterations using constraint-based models[END_REF]. Biologists have usually created synthetic cell strains which are more efficient, more resistant, faster to reproduce, etc., by trial and error approaches. This procedure is time consuming, expensive and does not guarantee any optimality, except the fact that they are proved by experiments. Among others, the difficulty to anticipate the behavior of the obtained cells and the lack of property in the supposed optimality are reasons why we need to model cells. The goal is to model cellular behavior of a process in a bioreactor and then to use optimization techniques to describe how would perform a better strain. It is fundamental to understand and predict internal behavior of cells in order, then, to design strains optimized according to a given criterion in a given context. Besides, the coupling with a model of bioreactor directly includes the strain design in an application context and allows a point of view different from a pure theoretical or general one, under laboratory conditions. There are plenty of models for cellular behavior [START_REF] Varma | Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wildtype Escherichia coli W3110[END_REF], [START_REF] Goelzer | Cell design in bacteria as a convex optimization problem[END_REF], [START_REF] Unrean | Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae[END_REF], [START_REF] Weiße | Mechanistic links between cellular trade-offs, gene expression, and growth[END_REF]. Steady-state models under constraints [START_REF] Varma | Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wildtype Escherichia coli W3110[END_REF], [START_REF] Goelzer | Cell design in bacteria as a convex optimization problem[END_REF] are very accurate and can return faithful cellular fluxes values of internal species. Unfortunately, the trade-off between prediction capacity and simplicity turns these models to be very complex to use and to connect to bioreactor models for example. Indeed, they describe well the wild cells, but if we want to design a new strain and compare it to the natural one, the change would be difficult to interpret. As a matter of fact, to model both the bioreactor and the intracellular state, the idea developed in this paper is to keep the same approach as those faithful steady-state models, i.e. (i) focus on biological main species, (ii) arise biological constraints, and couple it with a dynamical model describing the evolution of internal concentrations. Optimization techniques can then be used on this comprehensible representation to determine optimized strains. This paper is organized as follows: Section II gives a description of an internal cell model and biological components integrated in this model. Section III presents two optimization problems, namely the improvement of growth and production maximization of the product of interest and the constraints to add in order to represent at best the biological behavior of the cells. Section IV starts by setting the numerical and computational details and then presents the solutions found for two optimization problems. Section V gives some conclusions and perspectives.

II. CELL DESCRIPTION AND PROCESS MODELING

This work focuses on processes in batch reactors (i.e. no addition or removal of culture media), in finite time horizon, exclusively. This choice was motivated by the simplicity of the expressions in terms of concentration variation and of the derived optimization problem. A cell is considered to be an entity with a fixed volume v bact and composed of different kinds of proteins, ribosomes, internal substrate and metabolites. The reactor has a constant volume V react and contains external substrate, the bacteria colony and a product of interest produced by the cells. The total volume of bacteria, denoted V pop (t), equals the number of bacteria N pop (t) multiplied by a unitary volume v bact . In this paper, the bacteria and culture medium are assumed homogeneous.

A. Mass Balance Equations

n ξ (t) denotes the amount and [ξ](t) the concentration of species ξ at time t. If ξ is internal to the cell, then

[ξ int ](t) = n ξint (t) V pop (t) (1) 
978-1-5090-2720-0/16/$31.00 c 2016 IEEE Otherwise, if ξ is external, then

[ξ ext ](t) = n ξext (t) V react (2)
Hence, the time derivatives are given by:

d[ξ int ] dt (t) = 1 V pop (t) × dn ξint dt (t) - [ξ int ](t) V pop (t) × dV pop dt (t) (3) and d[ξ ext ] dt (t) = 1 V react dn ξext dt (t) (4) 
The second term of the right hand side of (3) is due to the growth of the colony. In fact, the specific growth rate μ is defined as the logarithmic time derivative of the bacteria population:

μ(t) Δ = 1 N pop (t) dN pop dt (t) = 1 V pop (t) dV pop dt (t) (5) 
Macroscopically, this term is often replaced by an empirical Monod or Haldane expression [START_REF] Bastin | Adaptive control of bioreactors[END_REF]. With such an expression, the growth rate only depends on external parameters, namely the external substrate concentration. In this paper, μ will depend on concentrations of cell internal compounds.

Denoting q the material flows for the whole colony, expressed in number of molecules per hour, the time derivatives of amounts are given by:

dn ξ dt (t) = ±q exchanged (t) + q produced (t) -q consumed (t) (6) 
Those fluxes are global to the colony and the same for each bacterium of the colony. Thus, they can be expressed per bacterium. In addition, assuming that the medium is uniform, they can be normalized by the volume of a cell and in this way be defined per unit of volume:

ν(t) = q(t) v bact N pop (t) = q(t) V pop (t) (7) 
with ν(t) expressed in mole per liter per hour. Keeping these notations, (6) becomes

1 V pop (t) dn ξ dt (t) = ±ν exchanged (t)+ν produced (t)-ν consumed (t) (8 
) To summarize equations (3), ( 4), ( 5) and ( 8),

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d[ξ int ] dt (t) = ± ν ξint exchanged (t) + ν ξint produced (t) -ν ξint consumed (t) -μ(t)[ξ int ](t) d[ξ ext ] dt (t) = ± ν ξext exchanged (t) + ν ξext produced (t) -ν ξext consumed (t) × V pop (t) V react (9)
The time dependence is further omitted to simplify notations.

B. Cell internal model and dynamics 1) Resource Balance Analysis Approach:

This work is based on the Resource Balance Analysis (RBA) [START_REF] Goelzer | Cell design in bacteria as a convex optimization problem[END_REF] philosophy for the cell internal phenomena modeling and understanding. The RBA approach gives a description of the inner behavior of the cell in steady-state, using a constraints approach easily reducible and adaptable to a bioprocess perspective. From the cells point of view, steady-state means the internal concentrations are constant as well as the growth rate. As a consequence, the overall population growth is exponential. While respecting all the stoichiometric constraints due to mass balance in the cell, a cell has to (i) produce enough metabolic precursors, macrocomponents, and internal compounds, respecting the mass conservation, (ii) maintain the rate of protein production high enough to ensure the production of necessary protein, (iii) limit its internal mass. Respecting theses constraints, the RBA model finds the optimal repartition of resources between the different cellular processes, especially metabolic pathways and the ribosome concentration in the cell ensuring the highest growth rate in steady-state. In this paper, we kept the intrinsic constraints while reducing the model dimension. Simplifications come from gathering biological elements into "pools". The concentrations variations are expressed as fluxes and these fluxes are subject to constraints. As said in the introduction, the goal is to obtain a modestly sized model which permits better comprehension. The pools are presented in Fig. 1 and in the following subsections, and the constraints are defined in paragraph III-B of the Optimization Section. The figure 1 also sums up the exchanges between pools, where the notations will be defined hereafter. 2) Metabolic Precursors: First of all, there is an internal substrate pool, denoted S in , gathering the metabolic precursors necessary to build bigger elements in the cell (as for example macrocomponents or proteins). Outside the cells, the substrate is denoted S ext and the stoichiometry between S in and S ext is exactly one. It assumes there is no entrance cost for elements. Thus the mass balance is: [START_REF] Weiße | Mechanistic links between cellular trade-offs, gene expression, and growth[END_REF] Remark: the ATP (Adenosine triphosphate), the free amino acids and other tiny elements are all in this pool.

S ext νimport -→ S in
3) Metabolites & Macrocomponents Synthesis: X P denotes an external chemical species of interest produced by the cells. One mole of S in can proceed α P mole of X P , leading to:

S in ν X P -→ α P .X P ( 11 
)
X B is the pool of all the internal elements X B i different from the ribosomes, the proteins, and whose concentration cannot vary much around the nominal value. There are two categories: the heavy macro components (the DNA, the membrane, the cell wall) that are a few but really heavy in equivalent amino acids and all the metabolites (the intermediates and products of metabolism) which are very numerous but much more lightweight in equivalent amino acids. The stoichiometry is given by the α Bi and summed up as follows:

S in ν X B -→ i α Bi .X Bi = α B .X B ( 12 
)
4) Protein & Ribosomes Synthesis: The fluxes ( 10), ( 11) and ( 12) are catalyzed by enzymes e B , e P and e T . All these enzymes are produced by ribosomes e R and consuming a specific amount of S in . We pose that 1 mole of S in produces α ei mole of e i . e B is the pool of enzymes involved in the whole metabolic network of the cell synthesizing X B . Their production is modeled by:

S in νe B -→ α e B .e B ( 13 
)
e P are the enzymes producing (from S in ) and excreting X P outside the cell. They are produced from S in as:

S in νe P -→ α e P .e P ( 14 
)
e T are the membranous proteins. Among them, a constant proportion is responsible for the substrate import inside the cell. The reaction scheme is:

S in νe T -→ α e T .e T ( 15 
)
e R are the ribosomes. They follow the same production process as proteins. They are considered as big proteins, 30 times bigger than other proteins in equivalent amino acids [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF].

As other proteins, their production is modeled as:

S in νe R -→ α e R .e R ( 16 
)

C. Fluxes Expressions & Overall Dynamics

All fluxes expressions are based on a common structure: the concentration of the enzymes which catalyze the reaction multiplied by an efficiency. The formulation of this term differs for the different reactions.

For the import, the efficiency saturates with the external substrate concentration and the internal substrate concentration. The catalysts are a proportion of membranous enzymes e T . Then, denoting r imp the ratio of proteins causing the import of S among all the membranous proteins, and with v T , K T and K S three constants, the import flux formula is:

ν import = r imp v T [S ext ] [S ext ] + K T (1 + [S in ]/K S ) × [e T ] (17) 
The efficiencies for the production of X B and X P depend on the concentration of internal substrate. Hence, mass action laws appear:

ν X B = k B [S in ] × [e B ] ν X P = k P [S in ] × [e P ] (18) 
The enzymes and ribosomes production fluxes are catalyzed by ribosomes. The efficiencies depend on the internal substrate concentration and are controlled by the genes expressions level u ei . When u ei is high, the production of e i is important. These are the inputs of the system. They are positive and bounded by a maximum value, u MAX . Hence, the production flux of enzymes and ribosomes are:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ν e B = u e B [S in ] × [e R ] ν e P = u e P [S in ] × [e R ] ν e T = u e T [S in ] × [e R ] ν e R = u e R [S in ] × [e R ] (19) 
Consequently, from [START_REF] Unrean | Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae[END_REF], fluxes expressions (17), ( 18) and ( 19), and growth rate (5), the dynamics of the bioreactor can be expressed with 9 state variables as follows:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ [S in ] = r imp v T [S ext ][e T ] [S ext ] + K T (1 + [S in ]/K S ) -k P [e P ][S in ] -k B [e B ][S in ] - B,P,T,R u ei [e R ][S in ] -μ[S in ] [e B ] = α e B u e B [e R ][S in ] -μ[e B ] [e P ] = α e P u e P [e R ][S in ] -μ[e P ] [e T ] = α e T u e T [e R ][S in ] -μ[e T ] [e R ] = α e R u e R [e R ][S in ] -μ[e R ] [X B ] = α B k B [e B ][S in ] -μ[X B ] [S ext ] = - r imp v T [S ext ][e T ] [S ext ] + K T (1 + [S in ]/K S ) × V pop V react [X P ] = α P k P [e P ][S in ] × V pop V react Vpop = μ × V pop (20)
As previously said, these dynamics need biological constraints to fully characterize the problem.

Remarks: the problem can easily be generalized to more metabolic pathways, other internal reactions and other internal substrates, by reproducing the previous patterns of equations.

D. Growth Rate depending on Density Constraint

In this model, the bacteria are supposed to duplicate continuously, without perturbation on the enzymes action. The duplication is motivated by the regulation of the internal density. When the internal mass increases, the cell divides and the total volume rises, so that the mass per cell (the density) remains constant.

1) Cell Density: The intracellular mass is expressed in equivalent amino acids and the density D is expressed in equivalent amino acids per unit of volume. The metabolites and the internal substrate mass is negligible with respect to the proteins and ribosomes one. It simplifies the expression as only the proteins and ribosomes contributions are taken into consideration in the mass. Thus, the density is defined as:

D = B,P,T,R aa ei n ei V pop = B,P,T,R aa ei [e i ] (21) 
where aa ξ is the equivalent mass of chemical species ξ in amino acids.

The membranous proteins and the cytosolic ones are all counted for the "internal density" without distinguishing membranous and cytosolic densities.

2) Density regulation: Time derivative of the density in (21) leads to:

Ḋ = B,P,T,R aa ei [e i ] (22) 
From (20), it comes:

Ḋ = B,P,T,R aa ei u ei α ei [e R ][S in ] -μ[e i ] (23) 
and thus,

Ḋ = B,P,T,R aa ei α ei u ei [e R ][S in ] -μD (24) 
In the literature, the density is observed to be constant in steady-state [START_REF] Kubitschek | Independence of buoyant cell density and growth rate in Escherichia coli[END_REF]. Here, the density is supposed to be around a constant value D d . The evolution of D is supposed to be given by a first-order dynamics with characteristic time τ D small compared to characteristic times of enzymes dynamics, thus,

Ḋ = - 1 τ D (D -D d ) (25) 
Hence, from (24)-( 25), the volume growth regulates the density and induce a growth rate equal to:

μ = [e R ][S in ] D B,P,T,R aa ei α ei u ei + 1 τ D (1 - D d D ) (26) 
with D given by (21). μ depends on the inputs u ei and on the state variables, i.e. the four [e i ] and [S in ].

III. OPTIMIZATION

A. Optimization Problems

In this paper, the objective is to determine the optimal genes expressions u ei , that maximize either the final bacteria volume or the X P produced. The problem is, thus, as follows: The criterion J is either V pop (t = t f ), or [X P ](t = t f ), depending on the considered objective. The inputs u ei are assumed constant along all the culture duration. Biological constraints that are included are detailed hereafter.

max ue B ,ue P ,ue T ,ue R J subject to ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 0 ≤ u e B ,

B. Biological Constraints 1) Translation:

The translation of messengers RNA into proteins involves ribosomes and thus the global production flux of proteins cannot exceed what the ribosomes can produce. In fact, with k T the ribosome efficiency, a ribosome efficiency constraint can be given by (28). Note that there is no competition between the genes. This assumption is very simplistic and reflects the absence of messengers RNA in this model.

B,P,T,R

ν ei ≤ k T [e R ] (28) 
From [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF], the ribosome efficiency depends only on the growth rate as follows:

k T (μ) = v k T μ K k T + μ (29)
The two constants v k T and K k T can be computed using data from [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF].

In addition, with (19), the translation constraint is rewritten as:

[S in ] B,P,T,R u ei ≤ v k T μ K k T + μ (30)
2) Metabolism Constraints: As mentioned in II-B, X B gathers all the internal elements (macrocomponents and metabolites) whose concentration is crucial for the cell survival. A metabolism constraint consists in the control of [X B ] around its initial value X B 0 . A cell is assumed to be viable as long as the metabolites and the macrocomponents are present in the cell around a given concentration. This given concentration is the initial one and the tolerance is a specific ratio. In this paper, an arbitrary tolerance of 10% is chosen, leading to:

∀t, 0.9 ≤ [X B ](t) X B 0 ≤ 1.1 (31) 
Indeed, as in [START_REF] Varma | Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wildtype Escherichia coli W3110[END_REF], the composition of macrocomponents (DNA, cell wall, membrane, etc.) does not change with growth rate.

3) Constraints Summary: Biological constraints impose 2 bounds on state variables and 1 constraint linking command variables and states. These constraints are summarized below:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ [X B ] ≤ 1.1 × X B 0 [X B ] ≥ 0.9 × X B 0 [S in ] B,P,T,R u ei ≤ v k T μ K k T + μ (32)
with μ defined in (26). These constraints are added to problem (27).

IV. SIMULATION RESULTS

A. Numerical and Computation Details

The initial states for the cell composition are given by the RBA Model [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF] in Table I and the reactor initial states are provided in Table II. All parameters values can be found in Table III [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF]. g CDW denotes gram of Cell Dry Weight, it is the common way to measure micro-organisms population in constraint-based models and thus cellular volumes of bacteria. aa unit stands for equivalent amino acids. In order to consider [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF] mM.g -1

CDW (mM aa.g -1 CDW ) [S in ] 0 0.1484 (0.1187) [e B ] 0 9.0.10 -3 (3.24) [e P ] 0 0 (0) [e T ] 0 4.8.10 -3 (1.728) [e R ] 0 7.07.10 -5 (0.7141) [X B ] 0 2.15.10 -2 (0.1281) TABLE II INITIAL REACTOR STATE [Sext] 0 20 mM [X P ] 0 0 m M Vreac 10 L Vpop 0 0.045 g CDW
the same orders of magnitude, the states variables are normalized with the number of equivalent amino acids per molecule of each chemical species (right column of Table I).

In problem (27), equations (20), ( 26) and (32) are discretized with an explicit Euler method with 0.001h sampling time.

The four optimal u ei are then determined using a Sequential Quadratic Programming algorithm [START_REF] Fletcher | Practical methods of optimization[END_REF] (SQP, by means of Matlab fmincon function) adding state constraints to ensure concentration positivity. The algorithm is initialized by the wild case (defined hereafter in section IV-B). 

TABLE III PARAMETERS VALUES USED BY THE SOLVER [11] Notation Value (Unit) v T 370 × 3600 (h -1 ) r imp 0.01 K T 0.8 (mmol.L -1 ) K S 1 (mmol.L -1 ) k B 12 × 3600 (h -1 ) k P 12 × 3600 (h -1 )

B. Optimal solutions

Hereinafter, the wild case denotes the cell with inputs computed to keep the enzymes concentration constant. These inputs are supposed to be the natural resource allocation in a genetically non-modified cell. In fact, the concentrations of enzymes are constant in steady-state and the RBA model gives the initial condition as steady-state values for exponential growth. Computing u wild ei is as simple as setting all the time derivatives to zero in (20). Optimization results are summarized in the table IV. The ratio over the P,B,R,T u ei are bracketed.

The evolution of the internal and external concentrations is given in Fig. 2. It compares the evolution of 3 cases: (i) wild strains, (ii) strains optimized for growth, (iii) strains optimized for production.

C. Interpretation

Comparing the strains maximizing the final state volume with the wild cells, we can see that there is not much difference at the final point. The benefit is of 5%, but the strategy is different. Instead of a quasi constant growth rate, decreasing with the external substrate exhaust as in the wild case, the designed strain tries to save resources at the beginning and has a bell-curved growth rate evolution. This curve ends exactly at zero, as the cells manage to consume all the external and internal substrates at final time. However, the cells maximizing the growth shall end up in bad shape as they do not have any internal resource to go on producing enzymes. This model does not include any cellular process for maintenance. Consequently, since the cell does not spend any cellular resources for maintenance, the optimal cells have no internal resources at final state. Concerning the strain maximizing the product of interest production, we can see that the growing strategy is similar to the one maximizing the volume. The cells grow and produce X P simultaneously. In both optimized cases, the fraction of resources u e T / u ei is greater than in the wild case and u e R / u ei is also greater, while the total amount of resources is lower. It reflects a storing strategy for the cell. In fact, less ressources are used to produce enzymes. The growth rate is lower at the begnning of the simulation but reaches an higher value than the wild strain at mid-simulation leading to higher final biomass. An interesting point to notice is that the sum of all inputs is much smaller in designed strains than in wild one. The translation constraint is not saturated in both modified strains compared to the wild one. Indeed, the ratio ue j ue i is more significant for the concentrations evolutions than the absolute value u ei . In fact, the inputs are related to the resources allocation in the different proteins production. The sum of the inputs is the total allocation and is, thus, closely linked to the growth rate. The ratios represent the relative repartition of the resources between biomass, product of interest synthesis, import and ribosome synthesis. Hence, same ratios correspond approximately to same cellular strategy, with different growth rates. Inputs of enzymes devoted to metabolic networks and product of interest synthesis are approximately half of the total inputs in both cases. It looks like the maximizing volume strain is not constrained that much with time and has enough time to consume efficiently its resources even with having supplement resources to produce X P . The difference is then that the strain optimized for the production does not manage to consume all the substrate as opposed to the maximizing volume strain.

V. CONCLUSION & PERSPECTIVES

In this paper, we propose a simple model coupling a macro-description of bioreactor to the intracellular scale of microorganisms. Using this new model of bioreactor, we investigated the optimal strategies of resource allocation between internal cellular processes maximizing the production of biomass or of a compound of interest. The model leads to an explicit expression of bacterial growth rate with respect to internal biological mechanisms instead of using the standard Monod relation.

Further work will consider model validation on experimental data. Other operating modes for the bioreactor like fedbatch are also still to be explored and tested. Indeed, by reconciling the infracellular and macroscopic scales, we can optimize simultaneously complex strategies of genetic modifications of bacterial strains (u ei ) and of bioreactor control (feed rate). Biologically, u ei is related to the cost of messenger RNAs (mRNAs) coding for the protein e i . It aggregates all the gene transcription process (synthesis of the mRNA from the DNA sequence, the mRNA will further be translated by ribosomes into proteins). The biological realization of the optimal trajectory u ei remains obviously a biological challenge. However, our model could drive the biological implementation of synthetic u ei .
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 1 Fig. 1. General representation of the bioreactor and exchanges between species

Fig. 2 .

 2 Fig.2. In dotted turquoise, max Xp. In dashed blue max V. In solid red, wild. Green crossed lines in X B (t) represent constraint (31).
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