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POISSON KERNEL EXPANSIONS FOR SCHRÖDINGER OPERATORS

ON TREES

NALINI ANANTHARAMAN AND MOSTAFA SABRI

Abstract. We study Schrödinger operators on trees and construct associated Poisson
kernels, in analogy to the laplacian on the unit disc. We show that in the absolutely
continuous spectrum, the generalized eigenfunctions of the operator are generated by the
Poisson kernel. We use this to define a “Fourier transform”, giving a Fourier inversion
formula and a Plancherel formula, where the domain of integration runs over the energy
parameter and the geometric boundary of the tree.

1. Introduction

1.1. Presentation of results. In this note we are interested in the spectral theory of
discrete Schrödinger operators on trees. Our main purpose is to use the simple combi-
natorics of paths on trees to understand better the geometric structure of generalized
eigenfunctions.

Let T be a tree with a uniformly bounded degree. By some abuse of notation, we also
denote its vertex set by T . We study a Schrödinger operator H on T given by

H = A+ V ,

where A is the adjacency matrix

(Aψ)(v) =
∑

w∼v

ψ(w)

and V : T −→ R is a real-valued potential, so that H is self-adjoint on its domain

D(H) = {ψ ∈ ℓ2(T ) : V ψ ∈ ℓ2(T )} .
Here, w ∼ v means that w and v are nearest neighbors.

Let us give some background on the theory of generalized eigenfunctions.
If F is a bounded Borel function on R, we know by the spectral theorem that for any

v,w ∈ T , we may find a Borel measure µv,w on R such that

(1.1) F (H)(v,w) =

∫

R

F (E) dµv,w(E) .

Here F (H)(v,w) = 〈δv , F (H)δw〉 is the matrix of F (H) in the basis {δv}v∈T . The theory
of generalized eigenfunction expansions refines this expression by constructing a spectral
measure ρH on R and functions QE,w : T −→ C satisfying HQE,w = EQE,w, such that

(1.2) F (H)(v,w) =

∫

R

F (E)QE,w(v) dρH(E) .

See [22, Section 7] and [6, Chapter 15] for details. Such an expansion proved to be useful in
the context of Anderson localization when Hω is a random Schrödinger operator. In fact,
pure point spectrum in an interval I will follow if one shows that for ρH -a.e. E ∈ I, the
function QE,w lives in ℓ2(T ). Expression (1.2) is also used to estimate the Hilbert-Schmidt
norms that arise in the study of dynamical localization; see [14, Lemma 4.1].
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2 NALINI ANANTHARAMAN AND MOSTAFA SABRI

Efforts have been made to push the expansion further. In [6, Section 15.3] and [21],
the authors abstractly construct functions ϕE,j : T −→ C, j = 1, . . . , NE ≤ ∞, such that
HϕE,j = EϕE,j for ρH -a.e. E, and

(1.3) F (H)(v,w) =

∫

R

F (E)

NE∑

j=1

ϕE,j(v)ϕE,j(w) dρH(E) .

In other words, QE,w(v) =
∑NE

j=1 ϕE,j(v)ϕE,j(w) for ρH -a.e. E. The importance of this
expression is that it allows to define an abstract Fourier transform by

f̂j(E) = 〈ϕE,j , f〉CT =
∑

w∈T

ϕE,j(w)f(w)

for functions f : T → C of finite support. The functions ϕE,j thus play the role of the
“plane waves” for the euclidean laplacian. As a consequence of (1.3), one obtains a Fourier
inversion formula

f(v) =

∫

R

NE∑

j=1

f̂j(E)ϕE,j(v) dρH(E) ,

and a Plancherel formula, namely if f, g : T → C have finite support, then

(1.4) 〈f, g〉ℓ2(T ) =

∫

R

NE∑

j=1

f̂j(E)ĝj(E) dρH(E) .

The Plancherel formula can be extended by continuity to all f, g ∈ ℓ2(T ). Moreover, the
previous expansions are actually valid for general self-adjoint operators on abstract Hilbert
spaces H (see [6]).

In this paper we show that for particular models, one can obtain expansion formulas
which are very explicit. Our approach is totally different, it uses a direct geometric analysis
of the Green function, and is inspired by an existing analogy between the adjacency matrix
on the tree and the laplacian on the unit disc.

The functions ϕE,j in our case are replaced by explicit functions PE,ξ, which we call
Poisson kernel. The name “Poisson kernel” is borrowed from the potential theory of the
unit disc, which we briefly recall in Section 1.2. The parameter ξ runs over the geometric
boundary ∂T of the tree. In Proposition 3.5, we first establish the existence of the Poisson
kernel for Lebesgue-a.e. E ∈ R, and show that HPE,ξ = EPE,ξ. Next, assuming the
Schrödinger operator H has purely absolutely continuous spectrum in some measurable
set I, we construct an explicit positive measure νE on ∂T such that

(1.5) F (H)(v,w) =

∫

I

∫

∂T
F (E)PE,ξ(v)PE,ξ(w) dνE(ξ) dE

for any bounded Borel function F : I → C.
The assumption of absolutely continuous spectrum is known to hold for example if

H = A on T , for many trees T of finite cone type (in particular, if T is a regular tree).
In this case, the spectrum is purely absolutely continuous. In fact, the authors in [18]
establish more generally that the absolutely continuous spectrum of A remains stable
under small radially symmetric perturbations H = A + λV , if the tree is non-regular.
Large parts of the absolutely continuous spectrum also remain stable under small random
perturbationsHω = A+λVω; see [19]. For example, in the particular case of (q+1)-regular
trees, it is shown in [23, 13] that the Anderson model has purely absolutely continuous
spectrum almost surely in any interval I = [−E0, E0] ⊂ (−2

√
q, 2

√
q), if the disorder λ is

small enough. The results of Aizenman and Warzel [1] go further, by showing existence
of absolutely continuous spectrum outside (−2

√
q, 2

√
q). Our results thus apply to these

models.
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As in the previous discussion, we define the Fourier transform

f̂ξ(E) = 〈PE,ξ, f〉CT

for f : T → C of finite support. The content of Theorem 3.8 is an inversion formula

[F (H)f ](v) =

∫

I

∫

∂T
F (E)f̂ξ(E)PE,ξ(v) dνE(ξ) dE

which implies a Plancherel formula

〈f, F (H)g〉 =
∫

I

∫

∂T
F (E)f̂ξ(E)ĝξ(E) dνE(ξ) dE ,

for any f and g on T of finite support.
In Theorem 3.3, we obtain a representation formula for eigenfunctions of the Schrödinger

operator H by integrals of the Poisson kernel over the boundary. This is valid for com-
plex eigenvalues γ ∈ C \ R, as well as for almost-every real eigenvalue in the absolutely
continuous spectrum (the associated eigenfunctions are necessarily not in ℓ2).

The analogy between the spectral theory on regular trees and on the unit disc was first
put forward in the influential paper [7]. There, seeing the tree as a Cayley graph for a free
group, the author obtains an isomorphism between the space of harmonic functions (i.e.
solutions of Af = 0), and a space of distributions on ∂T . Our work builds on previous
constructions in [8, 11, 10, 5, 12], where expansions in Poisson kernel are proved for H = A
on a regular tree, and for anisotropic random walks on the free product Z/2Z ⋆ · · · ⋆Z/2Z.
In those situations, the tree has a homogeneous structure, and the results can be used to
understand the unitary representations of the automorphism groups of the tree and of the
group Z/2Z⋆Z/2Z⋆ . . . ⋆Z/2Z. This work arose from the remark that the aforementioned
theories may be extended to more general Schrödinger operators on trees. However, since
those trees have no homogeneous structures, no representation theory will be involved.

The Plancherel formula in our Theorem 3.8 implies that

‖F (H)K‖2HS =

∫

I

∫

∂T
|F (E)|2‖KPE,ξ‖2ℓ2(T ) dνE(ξ) dE

for any K on T × T of finite support. This provides a convenient formula to estimate
Hilbert-Schmidt norms, as the Poisson kernel plays an interesting geometric role. In
fact, the first named author already used it in [2] in the study of quantum ergodicity for
homogeneous and anisotropic random walks on regular trees.

Remark 1.1. The results of this paper generalize without difficulty to self-adjoint opera-
tors of the form (Hpψ)(v) =

∑
w pv(w)f(w), where pv(w) = 0 if d(v,w) > 1, assuming all

coefficients pv(w) are real, with pv(w) = pw(v) and pv(w) 6= 0 whenever v ∼ w. For more
details see Remark 3.9.

1.2. Background on Poisson kernels. The word “Poisson kernel” is traditionally used
in the potential theory of the 2-dimensional disc D = {z = x + iy ∈ C, |z| < 1}. In this
context, the Poisson kernel is a family of functions parametrized by the boundary of the
disc ∂D = {z = x+ iy ∈ C, |z| = 1}. For ω ∈ ∂D and z ∈ D, we let

Pω(z) =
1− |z|2
|z − ω|2 .

For all ω, Pω is a solution to ∆Pω = 0, where ∆ = ∂2x + ∂2y is the euclidean laplacian. The
Poisson kernel is useful to solve the Laplace problem on the disc : if f is an integrable
function on ∂D for the Lebesgue measure, and if we put

(Pf)(z) =

∫

∂D

Pω(z)f(ω)dω ,
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then Pf is a solution to ∆(Pf) = 0. Moreover, for almost-all ω ∈ ∂D, the limit of Pf(z)
as z tends to a boundary point ω (in a nontangential way) is equal to f(ω). If we started
with a continuous f , then this is true for all ω (see for instance [25, Chapter 11]).

If, instead of the euclidean laplacian on D, we consider the hyperbolic laplacian

∆hyp =
(1− |z|2)2

4
(∂2x + ∂2y) ,

the picture is even more complete. Define now, for s ∈ C,

Pω,s(z) =

(
1− |z|2
|z − ω|2

)s
.

We have ∆hypPω,s = −s(1− s)Pω,s, that is to say, the functions Pω,s are eigenfunctions of
the hyperbolic laplacian. In this context, the fundamental work by Helgason [17] gives

• an integral representation theorem for arbitrary eigenfunctions : “every eigenfunc-
tion of eigenvalue −s(1− s) can be represented in a unique way by integrating the
Poisson kernel Pω,s against some analytic functional over the boundary ∂D ” ([17],
Theorem 4.3);

• a “Fourier transform” allowing to represent compactly supported functions as su-
perpositions of the Poisson kernels Pω,s, summed over ω ∈ ∂D and over the spectral
parameter s. The Poisson kernels are constant on horocycles and thus play the
role of “plane waves” ([17], Theorem 4.2 (i));

• a Plancherel formula expressing the L2-norm of a function in terms of its Fourier
representation ([17], Theorem 4.2 (ii)).

Open questions. It would be interesting to ask if our construction of the “Poisson ker-
nel” for Schrödinger operators on trees can be extended to other types of graphs, assumed
for instance to be Gromov-hyperbolic. In the region of “positive spectrum” (meaning the
region of existence of positive eigenfunctions), the question has been extensively studied,
with some very recent remarkable advances. In that context, what we called “Poisson
kernel” bears the name “Martin kernel”, and allows to represent all non-negative eigen-
functions by an integral of the kernel over the boundary. For Gromov-hyperbolic graphs,
the coincidence of the Martin boundary with the geometric boundary has been proven in
[3, 4] in the interior of the positive spectrum, in [16, 15] at the top of the positive spectrum,
which coincides with the bottom of the ℓ2-spectrum. This relies highly on the fact that
we are in a region where the Green function is positive. Inside the ℓ2-spectrum, not much
is known in general. Our construction relies on the existence of absolutely continuous
spectrum, but except for trees, no examples of Gromov-hyperbolic graphs with absolutely
continuous spectrum seem to be known (see [20] for a more detailed discussion).

A similar question arises in the case of the spectral theory of the laplacian on M̃ , the
universal cover of a compact negatively curved surfaceM . IfM has constant curvature −1,

then M̃ is isometric to the hyperbolic disc, the spectrum is purely absolutely continuous,
and the spectral theory is completely described by the Helgason-Fourier transform de-
scribed above [17]. However, if the curvature is variable, not much seems to be known. In
the positive spectrum, a Martin kernel can be constructed, and allows for integral represen-
tation of all positive eigenfunctions by integrating the “Martin kernel” over the geometric
boundary [4, 24]. But again, the nature of the ℓ2-spectrum is not known, which prevents
from going further towards a theory of Poisson kernels in that part of the spectrum.

2. The Green function on the tree

Given v,w ∈ T with v ∼ w, we denote by T (v|w) the tree obtained by removing from T
the branch emanating from v that passes through w. We keep the vertex v, so v ∈ T (v|w).
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We define the restriction H(v|w)(u, u′) = H(u, u′) if u, u′ ∈ T (v|w) and zero otherwise.
The Green functions are denoted by

G(u, u′; γ) = 〈δu, (H − γ)−1δu′〉 and G(v|w)(u, u′; γ) = 〈δu, (H(v|w) − γ)−1δu′〉
for γ in the resolvent set of H and H(v|w), respectively.

Recall that for any v ∈ T and γ ∈ C \ R, we have

(2.1) G(v, v; γ) =
1

V (v) − γ −∑
u∼v G

(u|v)(u, u; γ)
.

If v,w ∈ T and v ∼ w, we also have

(2.2) G(v|w)(v, v; γ) =
1

V (v)− γ −∑
u∈Nv\{w}

G(u|v)(u, u; γ)
,

where Nv = {u : u ∼ v}. These identities are well-known and follow from the resolvent
identity; see [23, Proposition 2.1] for a proof.

If (v0, . . . , vk) is a non-backtracking path in T and γ ∈ C \ R, we have

(2.3) G(v0, vk; γ) = (−1)k
k−1∏

j=0

G(vj |vj+1)(vj , vj ; γ) ·G(vk, vk; γ) .

This is also well-known; see [12, Chapter 1] or [23, Equation (2.8)] and use induction.
Given γ ∈ C \R, we denote

G(v, v; γ) =
−1

2mγ
v

and ζγw(v) = −G(v|w)(v, v; γ) .

Lemma 2.1. For any v ∈ T and γ = E + iη ∈ C
+ = {z ∈ C, Im z > 0}, we have

(2.4) γ = V (v) +
∑

u∼v

ζγv (u) + 2mγ
v and γ = V (v) +

∑

u∈Nv\{w}

ζγv (u) +
1

ζγw(v)
.

For any non-backtracking path (v0, . . . , vk) in T ,

(2.5) G(v0, vk; γ) =
−∏k−1

j=0 ζ
γ
vj+1(vj)

2mγ
vk

,

(2.6) G(v0, vk; γ) = ζγv1(v0)G(v1, vk; γ) = ζγvk−1
(vk)G(v0, vk−1; γ) ,

(2.7) G(vk |vk+1)(v0, vk; γ) = −
k∏

j=0

ζγvj+1
(vj) and G(v1|v0)(v1, vk; γ) = −

k−1∏

j=0

ζγvj(vj+1) .

Also, for any w ∼ v, we have

(2.8) ζγw(v) =
mγ
w

mγ
v
ζγv (w) and

1

ζγw(v)
− ζγv (w) = 2mγ

v .

For any v,w ∈ T , we have

(2.9) G(v,w; γ) = G(w, v; γ) .

Next,

(2.10)
∑

u∈Nv\{w}

| Im ζγv (u)| =
| Im ζγw(v)|
|ζγw(v)|2

− η .

Finally, if Ψγ,v(w) =
1
π
ImG(v,w; γ), then for any path (v0, . . . , vk) in T ,

(2.11) Ψγ,v0(vk)− ζγvk−1
(vk)Ψγ,v0(vk−1) = π−1 Im ζγvk−1

(vk) ·G(v0, vk−1; γ) .
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Proof. The first three assertions follow from (2.1), (2.2) and (2.3), respectively.

By (2.5), we have G(v0, vk; γ) = ζγv1(v0)
−

∏k−1
j=1 ζ

γ
vj+1

(vj)

2mγ
vk

= ζγv1(v0)G(v1, vk; γ). Next, on

the path (vk, vk−1, . . . , v0), we have G(v0, vk; γ) = G(vk, v0; γ) = ζγvk−1(vk)G(vk−1, v0; γ) =

ζγvk−1(vk)G(v0, vk−1; γ). In the last equality, we used ζγw(v) = −〈δv , (H(v|w) − γ)−1δv〉 =

−〈δv, (H(v|w) − γ)−1δv〉 = ζγw(v). This proves (2.6).
As in [23, Equation (2.8)], one proves thatG(vk |vk+1)(v0, vk; γ) = −G(vk−1|vk)(v0, vk−1; γ)·

G(vk |vk+1)(vk, vk; γ) by studying T (vk |vk+1) instead of T . The claim on G(vk |vk+1)(v0, vk; γ)

follows by induction. For G(v1|v0)(v1, vk; γ), consider (vk, . . . , v1) as before.
Since G(v,w; γ) = ζγw(v)G(w,w; γ) and G(v,w; γ) = ζγv (w)G(v, v; γ) for v ∼ w, we have

ζγw(v) =
G(v,v;γ)
G(w,w;γ) ζ

γ
v (w) =

m
γ
w

m
γ
v
ζγv (w).

Next, by (2.4), γ = V (v)+
∑

u∼v ζ
γ
v (u)+2mγ

v = V (v)+
∑

u∈Nv\{w}
ζγv (u)+

1
ζ
γ
w(v)

, so we

get 2mγ
v = 1

ζ
γ
w(v)

− ζγv (w).

Next, let (v0, . . . , vk) with v0 = v and vk = w. Then G(v,w; γ) = G(v0, vk; γ) =

ζγv1(v0)G(v1, vk; γ) =
∏k−1
j=0 ζ

γ
vj+1(vj)G(vk, vk; γ). Considering the path (vk, vk−1, . . . , v0),

we have G(w, v; γ) = G(vk, v0; γ) = ζγv1(v0)G(vk, v1; γ) =
∏k−1
j=0 ζ

γ
vj+1(vk)G(vk, vk; γ). Thus,

G(v,w; γ) = G(w, v; γ).

By (2.4),
∑

u∈Nv\{w}
Im ζγv (u) = Im(γ−V (v)− 1

ζ
γ
w(v)

) = Im ζ
γ
w(v)

|ζγw(v)|2
+η. Since Im ζγw(v) < 0

for any γ ∈ C
+ and v ∼ w, relation (2.10) follows.

Since G(v0, vk; γ) = ζγvk−1(vk)G(v0, vk−1; γ), Im(zz′) = (Re z)(Im z′)+ (Im z)(Re z′) and
z(Im z′) = (Re z)(Im z′) + i(Im z)(Im z′), we have

ImG(v0, vk; γ)− ζγvk−1
(vk) ImG(v0, vk−1; γ) = Im ζγvk−1

(vk) ·G(v0, vk−1; γ) .

so (2.11) follows. �

3. The Poisson kernel

An arc is a non-backtracking path (u0, . . . , uk). If v,w ∈ T , there is a unique arc joining
v to w; we denote it by [v,w].

A chain is an infinite non-backtracking path (u0, u1, . . . ). Two chains (u0, u1, . . .) and
(v0, v1, . . .) are equivalent if uk = vk+n for some n ∈ Z and all k. Any equivalence class of
chains ξ has a representative starting at an arbitrary v ∈ T , which we denote by [v, ξ].

The geometric boundary ∂T of T is the set of equivalence classes of chains.
In the following, we fix a vertex o ∈ T and call it the origin. We denote |v| := d(v, o).
Given u ∈ T , we denote N+

u = {w ∼ u : |w| = |u|+ 1}.
Given v,w ∈ T , v 6= w, we define

∂Tv,w = {ξ ∈ ∂T : [v,w] is a subchain of [v, ξ]} and ∂Tw := ∂To,w .
Then for any v ∈ T and n ∈ N, {∂Tv,w : d(v,w) = n} is a partition of ∂T .

Given v, ξ ∈ T ∪∂T , v 6= ξ, define v∧ξ as the vertex with maximal length in [o, v]∩[o, ξ].
We also set v ∧ v = v for v ∈ T .

o v ∧ ξ

ξ

v
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For a sequence (vn) of elements of T ∪ ∂T , we say that

(3.1) vn −→ ξ if |vn ∧ ξ| −→ +∞ .

This notion does not depend on the choice of the origin o.
Let γ ∈ C

+ and ξ ∈ ∂T . We define the Poisson kernel of H by

(3.2) Pγ,ξ(v) :=
G(v ∧ ξ, v; γ)
G(o, v ∧ ξ; γ) .

The following lemma collects its basic properties.

Lemma 3.1. Fix ξ ∈ ∂T and γ ∈ C
+.

(a) If (v0, . . . , vk) is a path with v0 = o, vk = v and vr = v ∧ ξ, then

Pγ,ξ(v) =

∏k−1
j=r ζ

γ
vj (vj+1)∏r−1

j=0 ζ
γ
vj+1(vj)

=
G(vr+1|vr)(vr+1, vk; γ)

G(vr−1|vr)(v0, vr−1; γ)
.

(b) Let u ∈ T and u+ ∈ N+
u . Then

Pγ,ξ(u+) =

{
ζγu(u+)Pγ,ξ(u) if ξ /∈ ∂Tu+ ,

1
ζ
γ
u+

(u)
Pγ,ξ(u) if ξ ∈ ∂Tu+ .

(c) For any v ∈ T , we have

Pγ,ξ(v) = lim
u→ξ

G(u, v; γ)

G(o, u; γ)
.

More precisely, if v ∈ T and w = v ∧ ξ, then for any u ∈ [w, ξ], we have

Pγ,ξ(v) =
G(u, v; γ)

G(o, u; γ)
.

(d) We have HPγ,ξ = γPγ,ξ.

Proof. (a) Pγ,ξ(v) =
G(vr ,vk;γ)
G(v0,vr ;γ)

=
ζ
γ
vk−1

(vk)G(vr ,vk−1;γ)

ζ
γ
v1

(v0)G(v1,vr;γ)
=

∏k−1
j=r ζ

γ
vj

(vj+1)G(vr ,vr ;γ)
∏r−1

j=0 ζ
γ
vj+1

(vj)G(vr ,vr ;γ)
, so the claim

follows by (2.7).
(b) If ξ /∈ ∂Tu+, then u+ is farther than u to ξ, so u+ ∧ ξ = u ∧ ξ and Pγ,ξ(u+) =

G(u+∧ξ,u+;γ)
G(o,u+∧ξ;γ) = ζ

γ
u(u+)G(u∧ξ,u;γ)
G(o,u∧ξ;γ) = ζγu(u+)Pγ,ξ(u). If ξ ∈ ∂Tu+ , then u+ ∧ ξ = u+ and

u ∧ ξ = u. Thus, Pγ,ξ(u+) =
G(u+,u+;γ)
G(o,u+;γ) = G(u,u;γ)

ζ
γ
u (u+)G(o,u;γ)

· ζ
γ
u (u+)
ζ
γ
u+

(u)
= 1

ζ
γ
u+

(u)
Pγ,ξ(u).

(c) Let u ∈ [w, ξ] and let (u0, . . . , uk) be an arc with u0 = w and uk = u. Then we

have G(o, u; γ) = G(o, uk; γ) = ζγuk−1(uk)G(o, uk−1; γ) =
∏k−1
j=0 ζ

γ
uj(uj+1)G(o, u0; γ) =∏k−1

j=0 ζ
γ
uj(uj+1)G(o,w; γ). On the inverted path (v0, . . . , vk) with v0 = u and vk = w,

we have G(u, v; γ) = G(v0, v; γ) = ζγv1(v0)G(v1, v; γ) =
∏k−1
j=0 ζ

γ
vj+1(vj)G(vk, v; γ) =

∏k−1
j=0 ζ

γ
uj(uj+1)G(w, v; γ). Thus, G(u,v;γ)

G(o,u;γ) =
G(w,v;γ)
G(o,w;γ) = Pγ,ξ(v).

(d) Let fγv (w) = G(v,w; γ). We first show that Hfγv = δv + γfγv . Indeed, using (2.9),

(Hfγv )(w) =
∑

u

H(w, u)fγv (u) =
∑

u

H(w, u)G(v, u; γ) =
∑

u

H(w, u)G(u, v; γ)

= [H(H − γ)−1](w, v) = 〈δw,H(H − γ)−1δv〉
= 〈δw, δv〉+ γ〈δw, (H − γ)−1δv〉 = δv(w) + γfγv (w)(3.3)

as asserted. Now let v ∈ T and ξ ∈ ∂T , say ξ = (o, s1, s2, . . . ). Let n > |v|+ 1. Then

by (c), for any w ∈ {v}∪Nv , we have Pγ,ξ(w) = Pγ,sn(w) =
G(sn,w;γ)
G(o,sn;γ)

=
f
γ
sn(w)

f
γ
o (sn)

. Hence,

(HPγ,ξ)(v) =
∑

w∼v
f
γ
sn(w)
f
γ
o (sn)

+ V (v)
f
γ
sn (v)
f
γ
o (sn)

=
(Hfγsn )(v)
f
γ
o (sn)

=
δsn (v)+γf

γ
sn (v)

f
γ
o (sn)

= γPγ,ξ(v). �
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Remark 3.2. One could define the Poisson kernel (3.2) alternatively as follows. Given

γ ∈ C
+, let Kγ,v(u) = G(u,v;γ)

G(o,u;γ) . Then F = (Kγ,v)v∈T is a family of bounded functions

on T . Item (c) in Lemma 3.1 says that this family extends continuously to ∂T (in the
sense (3.1)) via the formula Kγ,v(ξ) = Kγ,v(v ∧ ξ). One then defines Pγ,ξ(v) := Kγ,v(ξ).
Note that the family F separates the points of ∂T : if ξ 6= ξ′ ∈ ∂T , let w = ξ ∧ ξ′

and let v ∈ Nw ∩ [w, ξ]. Then Kγ,v(ξ) = Kγ,v(v) and Kγ,v(ξ
′) = Kγ,v(w). By (2.6),

we have G(w, v; γ) = ζγv (w)G(v, v; γ) and G(o,w; γ) = G(o,v;γ)
ζ
γ
w(v)

, so Kγ,v(w) = G(w,v;γ)
G(o,w;γ) =

ζγv (w)ζ
γ
w(v)Kγ,v(v). Moreover, ζγv (w)ζ

γ
w(v) 6= 1 since G(v,w; γ) = −ζγw(v)

2mγ
w

= −ζγw(v)
1

ζ
γ
v (w)

−ζγw(v)
=

−ζγw(v)ζγv (w)
1−ζγv (w)ζ

γ
w(v)

and |G(v,w; γ)| ≤ 1
Im γ

< ∞. Hence, Kγ,v(ξ) 6= Kγ,v(ξ
′). It follows that

the geometric compactification T ∪ ∂T coincides with the compactification T̂F induced
by F , see e.g. [27, Theorem 7.13]. The previous argument is very similar to the one in
[27, Chapter 9.C], which shows that the Martin compactification of a transient nearest-
neighbor random walk on T coincides with T ∪ ∂T .

Item (d) in Lemma 3.1 shows that the Poisson kernel is a “generalized eigenfunction”.
The following theorem shows that any generalized eigenfunction with eigenvalue γ ∈ C

+

can actually be expanded in Poisson kernels. Let M be the algebra generated by the sets
(∂Tv)v∈T .

Theorem 3.3. Let γ ∈ C
+ and f : T → C.

(i) If f(v) =
∫
∂T Pγ,ξ(v) dν(ξ) for some finitely additive measure ν on M, then Hf =

γf . Moreover, we must have

(3.4) ν(∂T ) = f(o) and ν(∂Tu+) = −G(o, u; γ) {f(u+)− ζγu(u+)f(u)}

for any u ∈ T and u+ ∈ N+
u .

(ii) Conversely, if Hf = γf , the assignment (3.4) defines a finitely additive measure ν
on M such that f(v) =

∫
∂T Pγ,ξ(v) dν(ξ).

Proof. (i) Suppose f(v) =
∫
∂T Pγ,ξ(v) dν(ξ). Since for each ξ we have HPγ,ξ = γPγ,ξ, it

follows that Hf = γf . Indeed, let v ∈ T , ξ = (o, s1, s2, . . . ) and n > |v| + 1. Then
Pγ,ξ(w) = Pγ,sn(w) for all w ∈ {v} ∪ Nv. Hence,

γf(v) =

∫

∂T
(HPγ,ξ)(v) dν(ξ) =

∑

|sn|=n

[(∑

w∼v

Pγ,sn(w)
)
+ V (v)Pγ,sn(v)

]
ν(∂Tsn)

=
∑

w∼v

∑

|sn|=n

Pγ,sn(w)ν(∂Tsn) + V (v)
∑

|sn|=n

Pγ,sn(v)ν(∂Tsn) = (Hf)(v)

as asserted. Moreover, f(o) =
∫
∂T Pγ,ξ(o) dν(ξ) = ν(∂T ) as claimed.

Given u ∈ T and u+ ∈ N+
u , we have Pγ,ξ(u+) = ζγu(u+)Pγ,ξ(u) if ξ /∈ ∂Tu+, while

Pγ,ξ(u+) =
1

ζ
γ
u+

(u)
Pγ,ξ(u) if ξ ∈ ∂Tu+ by Lemma 3.1. Hence,

f(u+) =

∫

∂T
Pγ,ξ(u+) dν(ξ) =

∫

∂T \∂Tu+

Pγ,ξ(u+) dν(ξ) +

∫

∂Tu+

Pγ,ξ(u+) dν(ξ)

= ζγu(u+)

∫

∂T \∂Tu+

Pγ,ξ(u) dν(ξ) +
1

ζγu+(u)

∫

∂Tu+

Pγ,ξ(u) dν(ξ)

= ζγu(u+)

∫

∂T
Pγ,ξ(u) dν(ξ) +

( 1

ζγu+(u)
− ζγu(u+)

) ∫

∂Tu+

Pγ,ξ(u) dν(ξ)
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By assumption,
∫
∂T Pγ,ξ(u) dν(ξ) = f(u). Also, if ξ ∈ ∂Tu+, then u ∧ ξ = u, so

Pγ,ξ(u) =
G(u,u;γ)
G(o,u;γ) . Using (2.8) we thus get

f(u+) = ζγu(u+)f(u) + 2mγ
u

G(u, u; γ)

G(o, u; γ)
ν(∂Tu+) ,

so ν(∂Tu+) = −G(o, u; γ) {f(u+)− ζγu(u+)f(u)} as asserted.
(ii) Suppose Hf = γf . To see that ν is finitely additive, it suffices to show that for any

u ∈ T , we have ν(∂Tu) =
∑

u+∈N+
u
ν(∂Tu+). For this, given u 6= o, let u− be the

unique neighbor of u with |u−| = |u| − 1. Then using (2.4) and (2.6), we have
∑

u+∈N+
u

ν(∂Tu+) = −G(o, u; γ)
( ∑

u+∈N+
u

f(u+)− f(u)
∑

u+∈N+
u

ζγu(u+)
)

= −G(o, u; γ)
(
[(Hf)(u)− f(u−)− V (u)f(u)]− f(u)

[
γ − V (u)− 1

ζγu−(u)

])

= −G(o, u; γ)
ζγu−(u)

(
f(u)− ζγu−(u)f(u−)

)
= ν(∂Tu) .

The case u = o is similar. This proves finite additivity.
We next prove that f(v) =

∫
∂T Pγ,ξ(v) dν(ξ) using induction on |v|.

For v = o, we have
∫
∂T Pγ,ξ(o) dν(ξ) = ν(∂T ) = f(o) as asserted.

Suppose the relation is true for all vertices u with |u| = n. Let |u+| = n+ 1, say
u+ ∈ N+

u for some u with |u| = n. Then using Lemma 3.1, we have
∫

∂T
Pγ,ξ(u+) dν(ξ) =

∫

∂T \∂Tu+

Pγ,ξ(u+) dν(ξ) +

∫

∂Tu+

Pγ,ξ(u+) dν(ξ)

= ζγu(u+)

∫

∂T \∂Tu+

Pγ,ξ(u) dν(ξ) +
1

ζγu(u+)

∫

∂Tu+

Pγ,ξ(u) dν(ξ)

= ζγu(u+)

∫

∂T
Pγ,ξ(u) dν(ξ) +

( 1

ζγu+(u)
− ζγu(u+)

) ∫

∂Tu+

Pγ,ξ(u) dν(ξ) .

By the induction hypothesis,
∫
∂T Pγ,ξ(u) dν(ξ) = f(u). Also, if ξ ∈ ∂Tu+ , then

u ∧ ξ = u, so Pγ,ξ(u) =
G(u,u;γ)
G(o,u;γ) . Using (2.8) and (3.4), we thus get

∫

∂T
Pγ,ξ(u+) dν(ξ) = ζγu(u+)f(u) + 2mγ

u

G(u, u; γ)

G(o, u; γ)
ν(∂Tu+) = f(u+) .

This completes the proof of (ii). �

Our target now is to extend the previous results to γ = E + i0. We start with the
following lemma.

Lemma 3.4. There is a Lebesgue-null set A ⊂ R such that for any E ∈ S := R \ A and

any v ∈ T , w ∼ v, the limits

G(v, v;E + i0) := lim
η↓0

G(v, v;E + iη) and ζE+i0
w (v) := lim

η↓0
ζE+iη
w (v)

exist, are finite and are non-zero.

Proof. Let µv(J) = 〈δv , χJ(H)δv〉 and µ
(v|w)
v (J) = 〈δv , χJ(H(v|w))δv〉 for Borel J ⊆ R.

Since G(v, v; γ) and ζγw(v) are the Borel transforms of µv and µ
(v|w)
v , respectively, we

know the limits exist and are finite; see e.g. [26, Theorem 1.4]. Let Av and A(v|w) be
the Lebesgue-null sets outside which the limits are finite. Put A = ∪v∈T Av, A ′ =
∪v∈T ∪w∼v A (v|w) and A = A ∪ A ′. Then A is Lebesgue-null.
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Let E /∈ A. Since G(v, v; γ) = 1
V (v)−γ+

∑
u∼v ζ

γ
v (u)

, and since the limit of the denominator

is finite as η ↓ 0, we get G(v, v;E + i0) 6= 0. Similarly, we deduce from the identity
ζγw(v) =

1
V (v)−γ+

∑
u∈Nv\{w} ζ

γ
v (u)

that ζE+i0
w (v) 6= 0. �

This directly implies the following proposition :

Proposition 3.5. Let E ∈ S. Then for any v ∈ T and ξ ∈ ∂T , the limit

PE,ξ(v) := lim
η↓0

PE+iη,ξ(v)

exists.

Proof. By Lemma 3.1, Pγ,ξ(v) =

∏k−1
j=r ζ

γ
vj

(vj+1)
∏r−1

j=0 ζ
γ
vj+1

(vj)
, so the claim follows from Lemma 3.4. �

Let v,w ∈ T and γ ∈ C
+. Recall the notation

Ψγ,v(w) =
1

π
ImG(v,w; γ)

introduced in Lemma 2.1. The following lemma shows that in the regions where the
operator H has AC spectrum, we may expand the kernel of H in terms of the explicit
generalized eigenfunctions ΨE,v. In other words, (1.2) holds with QE,w(v) = ΨE,v(w) and
dρH(E) = dE. This will later be combined with the previous lemmas on the Poisson
kernel to prove the main result.

Lemma 3.6. Denote ΨE,v := limη↓0 ΨE+iη,v when the limit exists.

(i) If H has purely absolutely continuous spectrum in I ⊂ R, then for any bounded Borel

F : I → C, and for any v,w ∈ T , we have F (H)(v,w) =
∫
I
F (E)ΨE,v(w) dE.

(ii) For any E ∈ S, we have HΨE,v = EΨE,v.

Proof. (i) Denote µφ,ψ(J) = 〈φ, χJ (H)ψ〉 for Borel J ⊆ R, µφ = µφ,φ and µv,w =
µδv,δw . Since the spectrum is purely absolutely continuous in I, all measures µφ,ψ
are absolutely continuous in w.r.t. the Lebesgue measure in I.

By the spectral theorem F (H)(v,w) =
∫
I
F (E) dµv,w(E). We now show that

dµv,w(E) = ΨE,v(w) dE in I.
Since µφ is a finite positive measure which is absolutely continuous on I, we have

by [26, Theorem 1.6] that µφ(J) = π−1
∫
J
Im〈φ, (H −E − i0)−1φ〉dE for any J ⊆ I.

Now note that

(3.5) 〈δv + δw, A(δv + δw)〉 − 〈δv − δw, A(δv − δw)〉 = 2〈δv , Aδw〉+ 2〈δw, Aδv〉 .
Taking A = (H − γ)−1 and using (2.9), we get

(3.6) G(v,w; γ) =
〈φ, (H − γ)−1φ〉 − 〈ψ, (H − γ)−1ψ〉

4

for φ = δv + δw and ψ = δv − δw. If γ = E + iη, taking η ↓ 0 on a Lebesgue full set,
we get for J ⊆ I,

∫

J

ΨE,v(w) dE =
1

4π

∫

J

Im〈φ, (H − E − i0)−1φ〉dE

− 1

4π

∫

J

Im〈ψ, (H − E − i0)−1ψ〉dE .

Applying (3.5) with A = χJ(H), we thus get
∫

J

ΨE,v(w) dE =
µφ(J)− µψ(J)

4
=
µv,w(J) + µw,v(J)

2
= µv,w(J) .
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as asserted. Here we used that µv,w = µw,v. This follows e.g. from (2.9) using the

relation
µv,w[a,b]+µv,w(a,b)

2 = limη↓0
1
π

∫ b
a
ImG(v,w;E + iη) dE, which is a consequence

of Fubini’s theorem (regardless of the continuity of µv,w).
(ii) We showed in (3.3) that if fγv (w) = G(v,w; γ), then Hfγv = δv + γfγv . If γ = E + iη

and Ψγ,v(w) = 1
π
ImG(v,w; γ), we thus have HΨγ,v = η

π
Re fγv + EΨγ,v. Assume

E ∈ S. Then taking η ↓ 0, we get using [26, Theorem 1.6] along with (3.6) that
ηRe fγv → 0. Hence, HΨE,v = EΨE,v. �

Theorem 3.3 clearly continues to hold if we replace γ ∈ C
+ by γ = E + i0, E ∈ S. So

we may apply Theorem 3.3 to the generalized eigenfunction ΨE,v, assuming E ∈ S. Our
next aim is to refine this expansion.

Lemma 3.7. For any E ∈ S, we have

ΨE,v(w) =

∫

∂T
PE,ξ(v)PE,ξ(w) dνE(ξ) ,

where νE(∂T ) = ΨE,o(o), and if u+ ∈ N+
u , then

νE(∂Tu+) =
1

π
· |G(o, u;E + i0)|2 · | Im ζE+i0

u (u+)| .

Note that since νE is non-negative, it extends to a countably additive measure on the
σ-algebra generated by the sets {∂Tv}; see e.g. [9].

Proof. We first assume v = o. We know by Theorem 3.3 (ii) that

(3.7) ΨE,o(w) =

∫

∂T
PE,ξ(w) dνE(ξ) ,

with νE(∂T ) = ΨE,o(o) and νE(∂Tu+) = −G(o, u;E+ i0){ΨE,o(u+)− ζE+i0
u (u+)ΨE,o(u)}.

If (v0, . . . , vk) is an arc with v0 = o and vk = u+ (so that vk−1 = u), then using (2.11), we

get νE(∂Tu+) = −1
π
G(o, u;E + i0) · Im ζE+i0

u (u+) ·G(o, u;E + i0).
This proves the claim for v = o, since PE,ξ(o) = 1. Now let v ∈ T . Since o ∈ T is

arbitrary, by placing the origin at v, we get by (3.7),

(3.8) ΨE,v(w) =

∫

∂T
P

(v)
E,ξ(w) dνE,v(ξ) .

Here

P
(v)
E,ξ(w) =

G(t0, w;E + i0)

G(v, t0;E + i0)
,

where t0 is the vertex of maximal distance from v in [v,w]∩ [v, ξ] and if u ∈ T , and u+ ∼ u
has d(u+, v) = d(u, v) + 1, then

νE,v(∂Tv,u+) =
1

π
· |G(v, u;E + i0)|2 · | Im ζE+i0

u (u+)| .

One can show as before that P
(v)
E,ξ(w) = limt→ξ

G(t,w;E+i0)
G(v,t;E+i0) . Using (2.9), we have

G(t, w;E + i0)

G(v, t;E + i0)
=
G(t, w;E + i0)

G(o, t;E + i0)
· G(o, t;E + i0)

G(t, v;E + i0)
.

Taking the limit as t→ ξ, we thus get

(3.9) P
(v)
E,ξ(w) =

PE,ξ(w)

PE,ξ(v)
.

Now fix ξ = (o, s1, s2, . . . ) ∈ ∂T and let v ∈ T . Say |v| < n for some n. We will show that

(3.10) νE,v(∂Tsn) = |PE,ξ(v)|2 · νE(∂Tsn) .
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First note that since |v| < |sn|, then ∂Tsn = ∂Tv,sn . Indeed, any ξ′ ∈ ∂Tsn is equivalent to
the element of ∂Tv,sn sharing the infinite intersection [sn, ξ

′] and vice versa. Hence,

(3.11) νE,v(∂Tsn) =
1

π
· |G(v, sn−1;E + i0)|2 · | Im ζE+i0

sn−1
(sn)| ,

because |v| < n implies d(v, sn) = d(v, sn−1) + 1. Let sr = v ∧ ξ and let (v0, . . . , vk)
be an arc with v0 = o and vk = v. By definition, vj = sj for all j ≤ r. Now, consid-
ering the arc (vk, vk−1, . . . , vr, sr+1, . . . , sn−1), we have G(v, sn−1; γ) = G(vk, sn−1; γ) =

ζγvk−1(vk)G(vk−1, sn−1; γ) =
∏k−1
j=r ζ

γ
vj (vj+1)G(vr , sn−1; γ). Furthermore, G(o, sn−1; γ) =

ζγs1(o)G(s1, sn−1; γ) =
∏r−1
j=0 ζ

γ
vj+1(vj)G(vr, sn−1; γ) because vj = sj for all j ≤ r. Hence,

G(v, sn−1; γ) =

k−1∏

j=r

ζγvj (vj+1)G(vr, sn−1; γ) =

∏k−1
j=r ζ

γ
vj (vj+1)∏r−1

j=0 ζ
γ
vj+1(vj)

G(o, sn−1; γ) .

It follows by (3.11) and Lemma 3.1 that

νE,v(∂Tsn) =
1

π
· |PE,ξ(v)|2 · |G(o, sn−1;E + i0)|2 · | Im ζE+i0

sn−1
(sn)| ,

which proves (3.10). Finally, choosing n such that n > max(|v|, |w|), we have PE,ξ′(v) =
PE,sn(v) and PE,ξ′(w) = PE,sn(w) for any ξ

′ ∈ ∂Tsn . So by (3.8) and (3.9),

ΨE,v(w) =
∑

|sn|=n

PE,sn(w)

PE,sn(v)
νE,v(∂Tsn) =

∑

|sn|=n

PE,sn(w)

PE,sn(v)
· |PE,sn(v)|2 νE(∂Tsn)

=

∫

∂T
PE,ξ′(v)PE,ξ′(w) dνE(ξ

′) . �

We may finally prove our main result.

Theorem 3.8 (Fourier transform, Plancherel formula). Suppose H has purely absolutely

continuous spectrum in some measurable set I and let νE be the measure constructed in

Lemma 3.7.

(i) For any bounded Borel F : I → C and any v,w ∈ T , we have

F (H)(v,w) =

∫

I

F (E)ΨE,v(w) dE =

∫

I

∫

∂T
F (E)PE,ξ(v)PE,ξ(w) dνE(ξ) dE .

(ii) For any f on T with finite support and any bounded Borel F : I → C, we have

[F (H)f ](v) =

∫

I

F (E)〈f ,ΨE,v〉dE =

∫

I

∫

∂T
F (E)PE,ξ(v)〈PE,ξ , f〉dνE(ξ) dE .

(iii) For any K on T × T with finite support and any bounded Borel F : I → C, we have

tr[F (H)K] =

∫

I

∫

∂T
F (E)〈PE,ξ ,KPE,ξ〉dνE(ξ) dE .

Proof. We proved that F (H)(v,w) =
∫
I
F (E)ΨE,v(w) dE in Lemma 3.6. Since ΨE,v(w) =

ΨE,w(v) by (2.9), we obtain (i) using Lemma 3.7 and the fact that
∫
I
=

∫
I ∩S

.
Next, given f with finite support, say f =

∑
w f(w)δw, we have

[F (H)f ](v) = 〈δv , F (H)f〉 =
∑

w∈T

f(w)〈δv , F (H)δw〉 =
∑

w∈T

f(w)

∫
F (E)ΨE,v(w) dE .

On one hand this equals
∫
F (E)〈f ,ΨE,v〉dE, on the other hand, if we use (i), we see it is

equal to
∫
I

∫
∂T F (E)PE,ξ(v)〈PE,ξ , f〉dνE(ξ) dE.
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Finally, given K with finite support, we have by (i),
∫

I×∂T
F (E)〈PE,ξ ,KPE,ξ〉dνE(ξ)dE =

∫

I×∂T

∑

w∈T

F (E)PE,ξ(w)(KPE,ξ)(w) dνE(ξ)dE

=
∑

v,w∈T

K(w, v)

∫

I×∂T
F (E)PE,ξ(w)PE,ξ(v) dνE(ξ)dE

=
∑

v,w∈T

K(w, v)F (H)(v,w) = tr[KF (H)] = tr[F (H)K] . �

Remark 3.9. The results of this paper generalize without difficulty to self-adjoint oper-
ators of the form (Hpψ)(v) =

∑
w pv(w)f(w), where pv(w) = 0 if d(v,w) > 1, assuming

all coefficients pv(w) are real, with pv(w) = pw(v) and pv(w) 6= 0 whenever v ∼ w. In this
case, relation (2.1) becomes Gp(v, v; γ) = 1

pv(v)−γ−
∑

u∼v pv(u)pu(v)G
(u|v)
p (u,u;γ)

, while (2.3)

becomes Gp(v0, vk; γ) = (−1)k
∏k−1
j=0 pvj (vj+1)G

(vj |vj+1)
p (vj , vj ; γ) · Gp(vk, vk; γ). We then

put Gp(v, v; γ) = −1
2mγ

v
and ζγw(v) = −pv(w)G(v|w)

p (v, v; γ). Then one may obtain similar

expansions in Poisson kernels, with minor modifications in the formulas of νE . Note that
pv(v) plays the role of V (v) for such operators.
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