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Abstract

We devise and analyze a new stabilized finite element method to solve the first-
order transport (or advection-reaction) equation. The method combines the usual
Galerkin/Least-Squares approach to achieve stability with a nonlinear consistent
penalty term inspired by recent discretizations of contact problems to weakly enforce
a positivity condition on the discrete solution. We prove the existence and the
uniqueness of the discrete solution. Then we establish quasi-optimal error estimates
for smooth solutions bounding the usual error terms in the Galerkin/Least-Squares
error analysis together with the violation of the maximum principle by the discrete
solution. Numerical examples are presented to illustrate the performances of the
method.
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1 Introduction

The design of robust and accurate finite element methods for first-order trans-
port (or advection-reaction) equations or for advection-dominated advection-
diffusion equations remains an active field of research. Indeed, the task of
designing a numerical scheme that is of higher order than one in the zone
where the exact solution is smooth, but preserves the monotonicity properties
of the exact solution on the discrete level, is nontrivial. Since it is known that
such a scheme necessarily must be nonlinear even for linear equations, one
typical strategy adopted when working with stabilized finite element methods
is to add an additional nonlinear shock-capturing term, designed to make the
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method satisfy a discrete maximum principle; see, e.g., [1,2]. These methods,
however, often result in ill-conditioned nonlinear equations and include param-
eters that may be difficult to tune and that depend on the mesh geometry.
Another approach is the so-called flux-corrected finite element method [3,4]. In
this scheme, the system matrix is manipulated so that it becomes a so called
M-matrix, the inverse of which has positive coefficients which yields a maxi-
mum principle. Such a scheme is monotonicity preserving, but of first order.
In order to improve the accuracy, anti-diffusive mechanisms, or flux-limiter
techniques, have been proposed so as to reduce the amount of dissipation in
the smooth regions by blending a low- and a high-order approximation [4,5].

In this paper, we consider a method that follows a completely different ap-
proach. The starting observation is that, if the problem satisfies a maximum
principle of the form

u ≥ 0, (1)

then this constraint can be added to the problem without any perturbation. On
the discrete level however, this the condition (1) is not necessarily satisfied,
unless enforced by the numerical method, which is the purpose of all the
methods discussed above. One may argue that one can solve the problem with
any method under the constraint (1). This was proposed in [6]. The resulting
method, in the form of a variational inequality, is unwieldy, with the need
of Lagrange multipliers to impose the constraint and associated stability and
solver issues. In the present work, we instead draw on recent advances in
the field of contact problems [7,8], where the variational inequality instead
is discretized on the form of a nonlinear consistent penalty method. Note
however that in the present context the formulation cannot be associated
with an augmented Lagrangian method, due to the lack of symmetry of the
formulation.

Our method combines the well-known Galerkin/Least Squares (GaLS) dis-
cretization of the transport equation (see [9,10]) with a nonlinear switch in-
spired from [8] and that changes the equations in the zones where (1) is vi-
olated to a least-squares penalty on this inequality (more precisely, the neg-
ative part of the discrete solution) together with a least-squares penalty on
the residual. Our method is not meant to enforce strictly a discrete maximum
principle, but to blend asymptotically the satisfaction of the GaLS approxi-
mation of the PDE with the satisfaction of the discrete maximum principle,
in the same spirit of the above-mentioned methods for contact problems. We
first prove the existence and uniqueness of the discrete solution. Then, our
main result is Theorem 3.1 where we establish a quasi-optimal error estimate
bounding at the same time the error measured in the usual GaLS norm (com-
bining the L2-norm on the solution, its boundary values, and the advective
derivative weighted by the local mesh size) and the violation of the positiv-
ity condition (1) measured by the weighted L2-norm of the negative part of
the discrete solution. These convergence results hold for all polynomial orders

2



k ≥ 1. Another salient feature of our method is its flexibility in incorporating
a priori lower and upper bounds on the discrete solution by simply adding the
corresponding consistent penalty term to the discrete formulation. Finally, we
report some numerical experiments illustrating that accurate solutions with
mild and asymtotically vanishing violations of the discrete maximum principle
can be obtained at moderate computational costs.

2 Model problem and GaLS discretization

Let Ω be an open, bounded, Lipschitz set in Rd, d ∈ {2, 3}, let β ∈ W 1,∞(Ω;Rd)
be a given advection velocity, and let σ ∈ L∞(Ω;R) be a given reaction co-
efficient. We assume that β and σ satisfy the following (classical) positivity
assumption: There exists σ0 > 0 such that

0 < σ0 ≤ σ − 1

2
∇·β, a.e. in Ω. (2)

We split the boundary ∂Ω of Ω as ∂Ω = ∂Ω− ∪ ∂Ω0 ∪ ∂Ω+ with ∂Ω− =
{x ∈ ∂Ω | (β·n)(x) < 0} (inflow boundary), ∂Ω0 = {x ∈ ∂Ω | (β·n)(x) = 0}
(characteristic boundary), and ∂Ω+ = {x ∈ ∂Ω | (β·n)(x) > 0} (outflow
boundary). We consider the following model problem: Find u : Ω → R such
that

A(u) := β·∇u+ σu = f in Ω, (3a)

u = g on ∂Ω. (3b)

We assume that f ∈ L2(Ω;R) and g ∈ L2
|β·n|(∂Ω−;R) and look for a weak

solution in the graph space V := {v ∈ L2(Ω;R) | β·∇v ∈ L2(Ω;R)}. Assuming
that dist(∂Ω−, ∂Ω+) > 0, one can show [11] that functions in the graph space
admit a trace in the weighted space L2

|β·n|(∂Ω;R) and that there exists one
and only one weak solution in the graph space V to the model problem (3).
In particular, we observe that the following positivity condition holds:

σ0‖v‖2
Ω +

1

2
‖|β·n|

1
2v‖2

∂Ω ≤ (β·∇v+ σv, v)Ω− 〈(β·n)v, v〉∂Ω− , ∀v ∈ V. (4)

Several stabilized H1-conforming finite element methods are available in the
literature to discretize (3). We focus on the Galerkin/Least-Squares method
(GaLS). Let Th be a mesh from a shape-regular mesh sequence. We assume for
simplicity that Ω is a polytope (polygon/polyhedron) so that Th can cover Ω
exactly. Let k ≥ 1 be the polynomial degree and consider the H1-conforming
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finite element space

V k
h := {vh ∈ C0(Ω;R) | vh|T ∈ Pk(T ;R), ∀T ∈ Th}, (5)

where Pk(T ;R) denotes the space composed of R-valued functions that are the
restriction to T of polynomials of degree at most k. We consider the following
discrete problem: Find uh ∈ V k

h such that

aτh(uh, wh) = `τh(wh), ∀wh ∈ V k
h , (6)

with the following bilinear and linear forms:

aτh(vh, wh) := (A(vh), wh + τA(wh))Ω − 〈(β·n)vh, wh〉∂Ω− , (7a)

`τh(wh) := (f, wh + τA(wh))Ω − 〈(β·n)g, wh〉∂Ω− . (7b)

The cut-off parameter τ is piecewise constant on Th and is of the order of
the local mesh size hT for all T ∈ Th; more precisely, a suitable choice is
τ |T = min(σ−1

0 , β−1
T hT ) with βT = ‖β‖L∞(T ;Rd). By construction, the discrete

bilinear form aτh is coercive with respect to the norm:

aτh(v, v) ≥ |||v|||2 := σ0‖v‖2
Ω + ‖|β·n|

1
2v‖2

∂Ω + ‖τ
1
2A(v)‖2

Ω, ∀v ∈ V. (8)

Moreover, exact consistency holds, and the following quasi-optimal error esti-
mates can be established [9,10]: There exists C, uniform, such that

|||u−uh||| ≤ C inf
vh∈V k

h

(‖τ−
1
2 (u−vh)‖Ω+‖|β·n|

1
2 (u−vh)‖∂Ω+‖τ

1
2A(u−vh)‖Ω), (9)

and if u ∈ Hk+1(Ω), |||u − uh||| ≤ C(
∑
T∈Th φTh

2k+1
T |u|2Hk+1(T ;R))

1
2 with φT =

max(βT , σ0hT ).

3 The consistent penalty method

The model problem (3) has a maximum principle; for instance, if f ≥ 0 and
g ≥ 0, then u ≥ 0 in Ω. Unfortunately, this property rarely carries over to
finite element discretizations. Our goal is to modify the GaLS finite element
approximation (6) by using a consistent penalty method.

Let γ > 0 be a penalty parameter. For any function v ∈ V , let us define the
function Ω→ R such that

ξγ(v) := [v − γ(A(v)− f)]−, (10)

where x− = 1
2
(x − |x|) denotes the negative part of the real number x. Note

that ξγ(u) = 0 in Ω for the weak solution u since A(u) = f and u− = 0. Let
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us consider the following discrete problem: Find uh ∈ V k
h such that

aτγh (uh;wh) = `τh(wh), ∀wh ∈ V k
h , (11)

with
aτγh (vh;wh) := aτh(vh, wh) + (γ−1ξγ(vh), wh)Ω. (12)

Since ξγ(u) vanishes identically in Ω, exact consistency still holds for (11).
The discrete problem (11) remains meaningful and exactly consistent if the
penalty parameter γ is replaced by a function taking uniformly positive values
in Ω. We will take γ to be piecewise constant on the mesh Th since the error
analysis below will reveal that quasi-optimal error estimates are obtained by
taking γ to be locally of the order of hT (on quasi-uniform mesh sequences, a
constant function γ can be considered).

3.1 Rationale of the consistent penalty method

Before embarking on the analysis of the method, let us briefly discuss the de-
sign principle behind the approach. First, we observe that if [uh − γ(A(uh)−
f)]− = 0, then the formulation coincides with the standard GaLS discretiza-
tion. Assume now that [uh − γ(A(uh)− f)]− 6= 0 everywhere in the macroele-
ment Ωi := supp(ϕi) where ϕi is an interior nodal (or hat) basis function.
Then, since x− = x if x− 6= 0, we observe that the standard Galerkin part is
eliminated by the second term in the penalty term, so that (11) with wh = ϕi
becomes

(γ−1uh, ϕi)Ωi
+ (τ(A(uh)− f), A(ϕi))Ωi

= 0. (13)

This shows that the nonlinear penalty term changes the discrete equation
locally to the sum of two least-squares contributions, one on the violation of
positivity by the discrete solution and one on the PDE residual. By choosing γ
small, one can expect that the violation of the maximum principle is reduced.
This is indeed one of the main conclusions of the error analysis below, where
we additionally prove that quasi-optimal error estimates of the form (9) also
hold for the consistent penalty method.

3.2 Well-posedness and convergence

Let us first establish that aτγh has reasonable monotonicity properties.

Lemma 3.1 (Monotonicity) There exists α > 0, uniform, such that the
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following holds for all u1, u2 ∈ V ,

α(|||u1 − u2|||2 + ‖γ−
1
2 (ξγ(u1)− ξγ(u2))‖2

Ω) ≤ aτγh (u1;u1 − u2)− aτγh (u2;u1 − u2),
(14a)

α(|||u1|||2 + ‖γ−
1
2 ξγ(u1)‖2

Ω) ≤ aτγh (u1;u1) + γ‖f‖2
Ω. (14b)

Proof. We observe that

aτγh (u1;u1 − u2)− aτγh (u2;u1 − u2)

= aτh(u1 − u2, u1 − u2) + (γ−1(ξγ(u1)− ξγ(u2)), u1 − u2)Ω

≥ |||u1 − u2|||2 + (γ−1(ξγ(u1)− ξγ(u2)), u1 − u2)Ω,

where we have used (8). Moreover, we have

(γ−1(ξγ(u1)− ξγ(u2)), u1 − u2)Ω

= (γ−1(ξγ(u1)− ξγ(u2)), u1 − γ(A(u1)− f)− (u2 − γ(A(u2)− f)))Ω

+ (ξγ(u1)− ξγ(u2), A(u1 − u2))Ω

≥ ‖γ−
1
2 (ξγ(u1)− ξγ(u2))‖2

Ω + (ξγ(u1)− ξγ(u2), A(u1 − u2))Ω,

where we have used the fact that

|x− − y−|2 ≤ (x− − y−)(x− y), ∀x, y ∈ R. (15)

Using a Young’s inequality and the fact that γ ≤ τ , we infer that

((ξγ(u1)−ξγ(u2)), A(u1−u2))Ω ≥ −
1

2
‖γ−

1
2 (ξγ(u1)−ξγ(u2))‖2

Ω−
1

2
‖τ

1
2A(u1−u2)‖2

Ω.

Putting everything together shows that (14a) holds with α = 1
2
. Proceeding

similarly, we infer that

aτγh (u1;u1) = aτh(u1, u1) + (γ−1ξγ(u1), u1)

≥ |||u1|||2 + (γ−1ξγ(u1), u1)

≥ |||u1|||2 + ‖γ−
1
2 ξγ(u1)‖2

Ω + (ξγ(u1), A(u1)− f)Ω,

and we conclude that (14b) also holds with α = 1
2
.

We can now prove that the discrete problem (11) is well-posed.

Proposition 3.1 (Well-posedness) Assume that 0 < γ ≤ τ , then the dis-
crete problem (11) admits one and only one solution.

Proof. Uniqueness follows from (14a). To prove existence, let NV := dimV k
h

and let G : RNV → RNV be the map defined by (G(U), V )RNV := aτγh (uh; vh)−
`τh(vh), where U, V ∈ RNV are the component vectors associated with the
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functions uh, vh in the Lagrange basis of V k
h . It is readily seen that G is a

continuous map (observe in particular that |x− − y−| ≤ |x − y| for all x, y ∈
R). Furthermore, since Cauchy–Schwarz inequalities and τ ≤ σ−1

0 show that

|`τh(vh)| ≤ K|||vh||| with K = (2σ
− 1

2
0 ‖f‖Ω + ‖|β·n| 12 g‖∂Ω−), we infer using (14b)

that

(G(U), U)RNV = aτγh (uh;uh)− `τh(uh)
≥ 1

2
(|||uh|||2 + ‖γ−

1
2 ξγ(uh)‖2

Ω)− γ‖f‖2
Ω −K|||uh|||.

This proves that there is a real number, say K ′, so that (G(U), U)RNV > 0 for
all U ∈ RNV with ‖U‖RNV ≥ K ′. Reasoning by contradiction, let us assume
that G(U) = 0 does not have any solution in the ball with radius K ′, say
B := B(0RNV , K

′). Let us define the map

φ(U) := − G(U)

‖G(U)‖RNV

,

which maps B into itself, and φ is continuous by the continuity of G. By
Brouwer’s fixed point theorem, there exists U ∈ B such that U = φ(U).
However, this implies that

‖U‖2
RNV = −(G(U), U)RNV

‖G(U)‖RNV

and this is impossible by the positivity property of G.

The next theorem is the main result of this paper. It shows that the GaLS
finite element method with penalty has essentially the same behavior as that
without penalty when approximating smooth solutions.

Theorem 3.1 (Error estimate) Let u ∈ V be the solution to (3) and let
uh ∈ V k

h be the solution to (11). Assume that 0 < γ ≤ τ . Then there exists
C > 0, uniform, such that

|||u− uh|||+ ‖γ−
1
2 [uh]−‖Ω ≤

C inf
vh∈V k

h

(‖τ
1
2A(u− vh)‖Ω + ‖|β·n|

1
2 (u− vh)‖∂Ω + ‖γ−

1
2 (u− vh)‖Ω). (16)

Moreover, if u ∈ Hk+1(Ω), τ is chosen as in the GaLS method as τ |T =
min(σ−1

0 , β−1
T hT ), and cτ |T ≤ γ|T for all T ∈ Th with c uniformly bounded

from below away from zero, then

|||u− uh|||+ ‖γ−
1
2 [uh]−‖Ω ≤ C

 ∑
T∈Th

φTh
2k+1
T ‖u‖2

Hk+1(T ;R)

 1
2

. (17)
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Proof. Let e = u− uh. Then, using (8), we infer that

|||e|||2 ≤ aτh(e, e) = aτh(e, u− vh) + aτh(e, vh − uh).

Moreover, the exact consistency of the GaLS approximation and the definition
of the discrete problem (11) imply that

aτh(e, vh − uh) = `τh(vh − uh)− `τh(vh − uh) + (γ−1ξγ(uh), vh − uh)Ω

= (γ−1ξγ(uh), vh − uh)Ω

= (γ−1ξγ(uh), vh − u+ γA(e))Ω + (γ−1ξγ(uh), u− uh − γA(e))Ω.

Since ξγ(u) = 0, using the monotonicity property (15), we infer that

(γ−1ξγ(uh), u− uh − γA(e))Ω ≤ −‖γ−
1
2 ξγ(uh)‖2

Ω.

As a result, we obtain

|||e|||2 + ‖γ−
1
2 ξγ(uh)‖2

Ω ≤ aτh(e, u− vh) + (γ−1ξγ(uh), vh − u+ γA(e))Ω.

The boundedness properties of the GaLS approximation yield

aτh(e, u− vh) ≤ |||e|||(‖τ
1
2A(u− vh)‖Ω + ‖|β·n|

1
2 (u− vh)‖∂Ω + ‖τ−

1
2 (u− vh)‖Ω).

Moreover, we have

(γ−1ξγ(uh), vh−u+γA(e))Ω ≤ ‖γ−
1
2 ξγ(uh)‖Ω(‖γ−

1
2 (u−vh)‖Ω+‖γ

1
2A(u−vh)‖Ω).

Collecting these two bounds and using that γ ≤ τ , we infer that |||e||| +

‖γ− 1
2 ξγ(uh)‖Ω is bounded by the right-hand side of (16). To conclude that (16)

holds, it thus suffices to establish that

‖γ−
1
2 [uh]−‖Ω ≤ ‖γ−

1
2 ξγ(uh)‖Ω + |||e|||.

This inequality, in turn, follows from the elementary inequality |[x + y]−| ≤
|x−|+ |y−| for arbitrary real numbers x and y, leading to

‖γ−
1
2 [uh]−‖Ω ≤ ‖γ−

1
2 ξγ(uh)‖Ω + ‖γ

1
2 [(A(uh)− f)]−‖Ω,

together with the fact that A(u) = f and the assumption that γ ≤ τ so

that ‖γ 1
2 [(A(uh)− f)]−‖Ω ≤ |||e|||. Finally, (17) results from the approximation

properties of finite elements and the assumptions on τ and γ.

The error estimates derived in Theorem 3.1 show that the present consistent
penalty method delivers similar bounds on the error |||u−uh||| to those obtained
with the usual GaLS discretization, while additionally controlling the violation
of positivity by means of the measure ‖γ− 1

2 [uh]−‖Ω (note that γ scales as the

mesh size, so that the factor γ−
1
2 in front of [uh]− makes the bound even
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stronger.

4 Numerical example

We consider problem (3) in the domain Ω ⊂ R2 shown in the left panel of
Figure 1, with

β = (x2 + y2)−
1
2

 y

−x

 , σ = 0, f = 0.

The advection field β rotates clockwise, and the inflow boundary corresponds
to the part of ∂Ω where x = 0. The exact solution given by u = 1

2
(tanh(((x2 +

y2)
1
2 − 0.5)/ε) + 1.0) is a consequence of inflow data imposed on the inflow

boundary (see the contourlines in the right panel of Figure 1). The boundary
data has a sharp layer of width ε at y = 0.5. This creates spurious under- and
overshoots that are transported downstream throughout the domain. We solve
the problem (3) with affine (k = 1) and quadratic (k = 2) finite elements on a
sequence of quasi-uniform meshes characterized by the mesh sizes h = 0.1/2l

with l ∈ {0, 1, 2, 3, 4}. Nodal quadrature was used for the evaluation of The
nonlinear penalty term was evaluated using nodal quadrature when k = 1 and
a quadrature exact for polynomials of order five when k = 2. Observe that the
integrand of the nonlinear term is only H1 in the interior of the element, and
an exact quadrature requires a careful local analysis of where the nonlinearity
is active.

We compute approximate solutions for both a smooth layer (ε = 0.1) and a
sharp layer (ε = 0.01) using either the nonlinear method (11) or the standard
GaLS method obtained by dropping the nonlinear term. We set the penalty
parameter to γ = 0.0001h for k = 1 and to γ = 0.005h for k = 2. Our
results show that these choices are sufficient to reduce undershoots to less than
one percent in all cases. Strengthening the penalty in the case of quadratic
approximation did not improve the positivity, but increased the stiffness of the
nonlinear problem. The results for the error e = u−uh in the L2-norm and in
the streamline derivative, the violations of the maximum principle evaluated
as emin := −minx∈Ω(uh(x))− and emax := maxx∈Ω u(x)−1, and the error on the
global conservation property Φ(uh) := |

∫
∂Ω(β·n)uh ds| = 0 are presented in

Tables 1 to 6 where the symbol ‘–’ in the columns for emin or emax means that
the discrete maximum principle was satisfied. Note that the lack of exact global
conservation is due to quadrature errors. In all cases we solved the nonlinear
system using fixed-point iteration to an accuracy of 10−6 on the increment
‖unh−un+1

h ‖Ω. Such a stringent convergence criterion has been used for the sole
purpose of numerical illustrations. In practice, one computationally-effective
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l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 1.13e-2 9.13e-2 – 1.09e-2 4.59-3

1 2.33e-3 2.65e-2 – 1.93e-3 1.49e-4

2 9.57e-4 1.94e-2 – 9.20e-4 2.72e-5

3 2.54e-4 9.92e-3 – 3.90e-4 8.59e-6

4 6.35e-5 4.64e-3 – 1.6e-4 2.17e-6

Table 1
Nonlinear method, k = 1, γ = 0.0001h, τ = h/2, ε = 0.1

l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 1.18e-2 9.69e-2 2.37e-2 1.09e-2 3.44e-4

1 2.33e-3 2.65e-2 – 1.93e-3 1.45e-4

2 9.57e-4 1.94e-2 – 9.20e-4 2.72e-5

3 2.54e-4 9.92e-3 – 3.90e-4 8.59e-6

4 6.35e-5 4.64e-3 – 1.60e-4 2.17e-6

Table 2
Linear method, k = 1, τ = h/2, ε = 0.1

possibility is to set the fixed-point convergence tolerance to (0.01/l)
3
2 (where l

denotes the level of mesh refinement) rather than to the fixed (and very small)
value of 10−6. For example, for the case presented in Table 3, this modified
tolerance leads to identical results as for the fixed tolerance, but using only
two iterations at each mesh refinement level. In this context it is interesting
to compare the behaviour of the present method with diffusion based shock-
capturing terms with artificial viscosity depending on the residual. We observe
that for the present method, the computational cost is reduced as the solution
improves and the violation of the DMP is isolated close to layers, whereas
no such reduction is observed for nonlinear diffusion, where the nonlinearity
appears to have a much more global character.

Figure 1. Left: computational mesh. Right: contourlines of solution
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