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A note on 2-input neoclassical production functions∗

Gwenaël Moysan† Mehdi Senouci‡

September 26, 2016

Abstract

In this short note, we show how the space of elasticity of substitution functions maps into the space of 2-input

neoclassical production functions. In doing so we derive a general analytical formula for every 2-input neoclassical

production function of class C 2. We present a simple set of sufficient conditions for the Inada conditions to hold;

and prove that the Solow model under capital-augmenting (or investment-specific) technical change is asymptoti-

cally balanced if and only if the capital share converges to a non-degenerated limit as the capital-labor ratio tends to

infinity.

Keywords: Production function, elasticity of substitution, capital share, labor share, Solow model.

Introduction

Production functions constitute the cornerstone of supply side economics; still, perhaps surpris-

ingly, the economist’s standard toolbox contains very few of these. The economist’s toolbox con-

tains the often used Cobb-Douglass specification as well as the more recently popular CES func-

tions. Some variable elasticity of substitution (VES) production functions have come up – see for

example Revankar (1971) – but their use has remained marginal in theoretical as well as in empir-

ical literature. Recent evidence on the existence of medium-run growth regimes makes the design

of new production functions an issue of particular interest to growth theory and empirics.1

∗This paper was written while Gwënael Moysan was PhD student at Ecole Normale Supérieure de Lyon and while Mehdi Senouci was PhD student

at Paris School of Economics and Attaché Temporaire d’Enseignement et de Recherche at Ecole Normale Supérieure de Lyon. The results in this

paper were part of Mehdi Senouci’s PhD thesis. An earlier version of this paper circulated under the title “A general characterization of neoclassical

production functions and an application to physical capital-based growth models”. The authors are grateful to an anonymous referee, Antoine

d’Autume, Daniel Cohen, Rodolphe dos Santos Ferreira, Patrick Pintus, Gilles Saint-Paul, Robert M. Solow and Bertrand Wigniolle, as well as to

conference participants at the Augustin Cournot Doctoral Days 2014 and seminar participants at the Paris School of Economics and at Universitat

de Barcelona (Department of Economic Theory) for useful comments and suggestions on earlier drafts. All remaining errors are our own.
†Global Market Solutions (contact: Global Market Solutions R&D center, 7 Cité de l’Ameublement, 75011 Paris (FRANCE),

gwenael.moysan@globms.com).
‡Université Paris-Saclay/CentraleSupélec, Laboratoire Genie Industriel (contact: CentraleSupélec (Office C428), Grande Voie des Vignes, 92290

Chatenay-Malabry (FRANCE). mehdi.senouci@centralesupelec.fr).
1See Greenwood and Yorukoglu (1997), Greenwood et al. (1997) and Neiman and Karabarbounis (2014).

1



The prime goal of this paper is to derive an analytical formula for every 2-input neoclassical

production function ( f ) of class C 2. The method that we present rests on the elasticity of substi-

tution functions (σ). We prove that for any continuous function of R∗+ into itself σ there exists a

2-input neoclassical production function ( f ) of classC 2 – which is unique up to the choice of two

constants – such thatσ is the elasticity of substitution function associated to f . In short, we prove

that the space of elasticity of substitution functions is exactly the space of continuous functions of

R∗+ into itself, and we map the space of elasticity of substitution functions into the space of neo-

classical production functions through an integral formula.

The rest of the paper is organized as follows. In section 1 we derive the general formula for

2-input production functions of classC 2. In section 2 we focus on two types of production func-

tions that are important for pure neoclassical growth theory: the production functions that sat-

isfy the Inada conditions, and the production functions for which the Solow model under capital-

augmenting (or investment-specific) technical change is asymptotically balanced. Section 3 con-

cludes.

1 A general formula for neoclassical production functions

A neoclassical production function with n ≥ 2 inputs is a constant-returns to scale function of class

C 2 F :
�

R∗+
�n → R∗+, (X1, X2, ..., Xn ) 7→ F (X1, X2, ..., Xn ) satisfying the assumption of strictly positive

and strictly decreasing marginal returns to each input: ∀i ∈ {1, ..., n}, ∂ F
∂ X i
> 0, ∂

2F
∂ X 2

i
< 0.

In the case of two inputs (n = 2), and by labelling X1 = K and X2 = L , the property of constant

returns to scale yields the intensive form of F : ∀K , L > 0, F (K , L ) = L f
�

K
L

�

, with f (·) = F (·, 1).
These assumptions of strictly positive and strictly diminishing marginal returns on F are equiv-

alent to the following assumptions on the intensive form f of F : f ′ > 0, f ′′ < 0. Further these

assumptions on F are sufficient to guarantee the concavity of F . This preliminary result is proven

in appendix A.1; for the rest of the paper we focus on intensive forms.

We denote by N the set of 2-input neoclassical production functions in intensive form: N =
�

f :R∗+ −→R
∗
+,C 2

�

� f ′ > 0, f ′′ < 0
	

.

For any function f ∈N , at any capital-labor ratio k , we can define the elasticity of substitution

of f at k by:

σ(k ) =−
f ′(k )

�

f (k )−k f ′(k )
�

k f (k ) f ′′(k )
(1)

Let S be the following space of functions: S=
�

σ :R∗+ −→R
∗
+,C 0

	

. We prove below that S is pre-

cisely the space of admissible elasticity of substitution functions.

The relationship (1) can be inverted. Let f ∈ N and α(·) be the corresponding capital share

function and Π(·) the relative factor shares function: ∀k > 0, α(k ) = k f ′

f ∈ (0, 1) and Π(k ) = α(k )
1−α(k ) =

k f ′

f −k f ′ > 0. The derivative function of Π(·) is linked to the elasticity of substitution through the fol-

lowing equation:
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Lemma 1.
Π′(k )
Π(k )

=
σ(k )−1

σ(k )
1

k
(2)

Proof.

d lnΠ(k )
d k

=
d ln k f ′

f −k f ′

d k
=

1

k
+

f ′′

f ′
−
−k f ′′

f −k f ′
=

1

k

�

1−
f −k f ′

f

1

σ
−

k f ′

f

1

σ

�

=
σ−1

σ

1

k
.

As is well known, whenσ(k )< 1 (resp. σ(k )> 1), α and Π decrease (resp. increase) in response

to capital deepening around k .

Let’s take k̄ > 0 to be some reference capital-labor ratio – for example, k̄ = 1 – and let’s denote

by Π̄ = Π(k̄ ) the corresponding relative factor shares ratio. Then, by integrating equation (2) be-

tween k̄ and k , it comes that for all k > 0: Π(k ) = Π̄exp
�

∫ k

k̄
σ(k ′)−1
σ(k ′)

dk ′

k ′

�

. Hence, f is a solution to the

differential equation: k f ′

f −k f ′ = Π̄exp
�

∫ k

k̄
σ(k ′)−1
σ(k ′)

dk ′

k ′

�

which can be re-arranged like:

f ′

f
=

1

k

1

1+
exp

�

−
∫ k

k̄
σ(k ′)−1
σ(k ′)

dk ′
k ′
�

Π̄

(3)

Notice that the term 1/
�

1+exp
�

−
∫ k

k̄
σ(k ′)−1
σ(k ′)

dk ′

k ′

�

/Π̄
�

= Π(k )
1+Π(k ) is equal to the capital share α(k ). Inte-

grating (3), we conclude that there exists a constant A > 0 such that, for all k > 0:

f (k ) = A exp









∫ k

k̄

dk ′

k ′
�

1+
exp

�

−
∫ k ′

k̄
σ(k ′′)−1
σ(k ′′)

dk ′′
k ′′

�

Π̄

�









(4)

We can state and prove our first main result, which maps the space of elasticity of substitution

functions into the space of neoclassical production functions :

Theorem 1. Let k̄ > 0 be some reference capital-labor ratio, and let Π̄> 0 and A > 0 be two constants.

Then, for any functionσ ∈S, there exists one and only one production function f ∈N such that (i)

σ is the elasticity substitution function associated to f , and (ii)Π(k̄ ) = Π̄ and A = f
�

k̄
�

. The formula

for this function is given by (4).

Proof. Letσ ∈S and let f be the function ofR∗+ into itself defined by equation (4). By construction,

if f ∈ N then σ is the elasticity of substitution function corresponding to function f ; so there

remains only to demonstrate that f defined in (4) belongs to the setN .

Sinceσ is continuous, f isC 2. f is also nonnegative from (4) and for all k > 0:

f ′(k ) = f (k )

k

�

1+
exp(−∫ k

k̄
σ−1
σ

dk ′
k ′ )

Π̄

� > 0

f ′′(k ) = − 1
σ(k )

f ′(k )
exp

�

−
∫ k

k̄
σ−1
σ

dk ′
k ′

�

Π̄

k

�

1+
exp(−∫ k

k̄
σ−1
σ

dk ′
k ′ )

Π̄

� < 0
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which proves that f ∈N .

Thus, all well-behaved neoclassical production functions have a representation in terms of their

elasticity of substitution function, which can be any continuous function of R∗+ into itself.2

For example, if σ ≡ 1, equation (4) becomes: f (k ) = A exp
�

∫ k

k̄
α
k ′ dk ′

�

= A
�

k
k̄

�α
, where α = Π̄

1+Π̄ ∈
(0, 1).

Ifσ≡ σ̂, with σ̂ 6= 1, then:
∫ k ′

k̄
σ−1
σ

dk ′′

k ′′ =
σ̂−1
σ̂ ln

�

k ′

k̄

�

. In this case, formula (4) translates into:

f (k ) = A exp





∫ k

k̄
dk ′

k ′

�

1+ (k
′/k̄ )−

σ̂−1
σ̂

Π̄

�



= A exp

�

�

σ̂
σ̂−1 ln

�

k̄
�

k ′

k̄

�
1
σ̂ + Π̄k ′

�

− 1
σ̂−1 ln k ′

�k

k ′=k̄

�

= A
�

Π̄
1+Π̄

�

k
k̄

�
σ̂−1
σ̂ + 1

1+Π̄

�

σ̂
σ̂−1

Let us define ᾱ= Π̄
1+Π̄ . The above equation yields: f (k ) = A

�

ᾱ
�

k
k̄

�
σ̂−1
σ̂ +1− ᾱ

�

σ̂
σ̂−1

, which is the expres-

sion of the only CES production function of elasticity parameter σ̂, and such that product at k̄ is

equal to A and capital share at k̄ is ᾱ.3

2 Two classes of production functions

We study how certain restrictions on function σ ensure that the resulting production functions

have some properties that are often required in economic growth models.

2.1 The elasticity of substitution function and the Inada conditions

The integral formula (4) permits to link the Inada conditions to the behavior of the capital share

near zero and infinity.

Letσ ∈S, and k̄ , A and Π̄be strictly positive constants and let f ∈N be the production function

such that σ is the elasticity of substitution function associated to f and such that f (k̄ ) = A and
k̄ f ′(k̄ )

f (k̄ )−k̄ f ′(k̄ ) = Π̄. Theorem 1 proves that function f is unique.

f ∈N , so f is strictly increasing and strictly positive overR∗+ while f ′ is strictly decreasing and

strictly positive overR∗+. Hence, f and f ′ admit some limits at the borders ofR∗+. Let’s denote these

limits by
�

l0, l∞, l ′0, l ′∞
�

:

l0 = lim0 f ∈ R+
l∞ = lim+∞ f ∈ R∗+ ∪{+∞}
l ′0 = lim0 f ′ ∈ R∗+ ∪{+∞}

l ′∞ = lim+∞ f ′ ∈ R+

The Inada conditions hold when l0 = l ′∞ = 0 and l∞ = l ′0 =+∞.

2Remark that equation (4) is equivalent to: f (k ) = A exp
�

∫ k
k̄
α(k ′)

k ′ dk ′
�

, where α(·) is the capital share function. This seems to be a simpler rep-

resentation than (4); however, some restrictions have to be imposed on α(·) to ensure that function A exp
�

∫ k
k̄
α(k ′)

k ′ dk ′
�

is a neoclassical production

function.
3See Arrow, Chenery, Minhas and Solow (1961), who first derived the analytical expression of two-inputs CES production function through to

the same method we use here.
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Call Π(k ) = k f ′

f −k f ′ the relative factor shares function and α(k ) = k f ′

f the capital share function.

We have seen in section 1 that for all k > 0, Π(k ) = Π̄exp
�

∫ k

k̄
σ(k ′)−1
σ(k ′)

dk ′

k ′

�

, and that α(k ) = Π(k )
1+Π(k ) .

Lemma 2.
l0 > 0 =⇒ lim0α = 0

l∞ < +∞ =⇒ lim+∞α = 0

l ′0 < +∞ and l0 = 0 =⇒ lim0α = 1

l ′∞ > 0 and l∞ = +∞ =⇒ lim+∞α = 1

Proof. See appendix A.2.4

This result can be stated in plain English the following way:

Let f be a neoclassical production function. If factor shares do not tend to degenerated values

in the neighborhood of infinity, then f fulfills the Inada conditions near infinity. If factor shares do

not tend to degenerated values in the neighborhood of zero, then f fulfills the Inada conditions near

zero.

Remarkably, the Inada conditions are compatible with ever-fluctuating factor shares. Indeed,

asymptotic fluctuations in factor shares constitute a sufficient condition for f to meet the Inada

conditions – which also follows if factor shares converge to non-degenerated limits as the capital-

labor ratio tends to infinity. In the next section we lay some examples of production functions

pertaining to these different cases.

Let’s call I the set of neoclassical production functions that satisfy the Inada conditions:5

I =
n

f ∈N
�

� lim
0

f = lim
∞

f ′ = 0, lim
∞

f = lim
0

f ′ =∞
o

We also define a special subset of S:

S∗ =

(

σ ∈S

�

�

�

�

�

 

∫ k̄

0

σ−1

σ

dk

k

!

and

�∫ ∞

k̄

σ−1

σ

dk

k

�

do not diverge to +∞ nor to −∞

)

The results of lemma 2 show that:

Theorem 2. Let f ∈N , and letσ be the corresponding elasticity of substitution function. Then:

σ ∈S∗ =⇒ f ∈I

The reciprocal of theorem 2 does not hold: there exists some production functions that fulfill

the Inada conditions, with factor shares converging to degenerated values.6 For example, ifσ1(k ) =
ln k

ln k−1 (for k > exp(1)), then σ1−1
σ1
= 1

ln k . A primitive of 1/k ln k is ln(ln k ), which tends to infinity as k

tends to infinity, and so limk→+∞α(k ) = 1. In virtue of theorem 1, the corresponding functions f1

4We are grateful to an anonymous referee for pointing out a mistake in the proof of this lemma in an earlier version of this paper
5Clearly, I ⊂N but I 6=N , since the CES, non-Cobb-Douglas production functions belong toN but not to I .
6In the same vein, Palivos and Karagiannis (2010) proved thatσ→ 1 is not a sufficient condition for Inada conditions to hold.
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all take the form: f1(k ) = A exp





∫ k

k̄
dk ′′

k ′

�

1+
exp

�

−
∫ k ′

k̄
dk ′′

k ln k ′′
�

Π̄

�



, with k̄ > 0, A > 0 and Π̄ > 0. It is possible to

analytically derive all functions f1:

f1(k ) = A exp

�

∫ k

k̄
dk ′

k ′
�

1+ exp(− ln(ln k ′)+ln(ln k̄ ))
Π̄

�

�

= A exp
�

∫ k

k̄
dk ′

k ′(1+ λ
ln k ′ )

�

= A exp (ln k −λ ln(λ+ ln k )− c )

with λ = ln k̄/Π̄ > 0 and c = ln k̄ −λ ln(λ+ ln k̄ ). Call A′ = A exp(−c ) > 0, then f1 admits the fol-

lowing analytical expression: f1(k ) = A′ k
(λ+ln k )λ . So f1(k )

∞−→ ∞ as a consequence of power func-

tions beating powers of logarithms near infinity. By differentiating the above expression, it comes:

f ′1 (k ) = A′
�

1
(λ+ln k )λ −

λ
(λ+ln k )λ+1

�

= A′ ln k
(λ+ln k )λ+1 , which proves that f ′1

∞−→ 0.

2.2 The asymptotically-quasi-Cobb-Douglas production functions

Robinson (1938) and Uzawa (1961) have shown that, in the canonical neoclassical growth frame-

work, if the growth rate of real variables are constant then technical change has a labor-augmenting

(LATC) representation, i.e. there exists a production function F (·, ·) such that output can be ex-

pressed like Yt = F (Kt , Bt L t ), where Bt = B0 exp(gB t ) is a steadily-increasing productivity term

(gB > 0). Then, output and capital both grow at the constant rate of gB along the stable equilib-

rium path. This result is known as the ‘steady growth theorem’.7

The Robinson-Uzawa theorem is probably the reason for the widespread representation of tech-

nical change as labor-augmenting.8 However, a whole strand of empirical literature, initiated by

Greenwood et al. (1997), has firmly established that technical change was not correctly represented

as labor-augmenting in the USA over the postwar period, and even less so since the early 1980’s –

instead, technical change seems to be mostly embedded in more efficient (and/or cheaper) capital

goods. In addition, it has been noted that the labor share has decreased steadily in most advanced

countries between the late 1970’s and the early 2010’s, which also contradicts the LATC assump-

tion.9

These empirical biases question the relevance of LATC-driven growth and raises the issue of

whether the neoclassical growth framework can account for medium-run imbalances as well as

for long-run regularities.

To do so, we investigate the conditions under which a simple neoclassical growth model yields

asymptotically (rather than absolutely) constant growth rates. More precisely, we consider be-
7Jones and Scrimgeour (2008) interpret this result the following way: if there are several inputs to production, some accumulable and others

not (e.g., capital vs. labor), then economic growth makes the accumulable inputs grow more quickly than the non-accumulable ones, except when

technical change precisely increases the effective quantities of non-accumulable inputs. In the capital and labor inputs framework, technical

change then has to be labor augmenting.
8Barro and Sala-i-Martín (2004, p. 53) reflect the common perception of the range of the Robinson-Uzawa theorem: “If we want to consider

models that possess a steady state, we have to assume that technological progress takes the labor-augmenting form. (...) the long-term experiences

of the United States and some other developed countries indicate that per capita growth rates can be positive and trendless over long periods of time

(...). This empirical phenomenon suggests that a useful theory would predict that per capita growth rates approach constants in the long run; that is,

the model would possess a steady state.” We prove below that some neoclassical growth models can yield asymptotically constant ratios and growth

rates without assuming that technological change is labor-augmenting nor that the production function is Cobb-Douglas.
9See de La Grandville (2009, chapter 5 co-written with Robert M. Solow) and Neiman and Karabarbounis (2014).
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low capital-augmenting (KATC) and investment-specific technical change (ISTC) – which both in-

crease the effective quantity of capital – in a standard, continuous-time Solow model. We prove

that the set of production functions for which growth is asymptotically balanced is exactly the set

of production functions whose labor share function tends to some limit as the capital-labor ratio

tends to infinity; a class of functions that we might dub the asymptotically-quasi-Cobb-Douglas

production functions.

We denote byQ the set of production functions such that the capital share tends to some con-

stant in [0, 1) as the effective capital-labor ratio tends to infinity:

Q =
§

f ∈N
�

�

� lim
x→+∞

x f ′(x )
f (x )

exists and ∈ [0, 1)
ª

For f ∈N , f ∈Q if and only if the corresponding elasticity of substitution functionσ f belongs

to the set SA =
�

σ ∈S
�

�

∫∞
k̄

σ(k )−1
σ(k )

dk
k ∈ [−∞,+∞)

	

.

Definition 1. Let
�

ft

�

t≥0
∈ N [0,+∞) be a family of neoclassical production functions.A growth path

is a specification of differentiable time paths (kt )t≥0 and
�

yt = ft (kt )
�

t≥0
. A growth path is asymp-

totically balanced if and only if the growth rates of kt and yt (respectively k̇t /kt and ẏt /yt ) tend to

positive constants gk ≥ 0 and g y ≥ 0 as t tends to infinity.

Theorem 3. Let s ∈ (0, 1), δ > 0 and n ≥ 0 and let f ∈I .

• Let (kt , yt )t≥0 be the growth path corresponding to the Solow model with steady KATC and LATC:
¨

yt = Bt f
�

At kt
Bt

�

k̇t = s yt − (δ+n )kt

(5)

with Ȧt /At = gA ≥ 0, Ḃt /Bt = gB ≥ 0, k0 > 0, A0 > 0 and B0 > 0 given. Then:

(kt , yt ) is asymptotically balanced ⇐⇒











gA = 0

or

gA > 0 and f ∈Q

The asymptotic growth rates of k and y are then respectively: gk = g y = gB in the case gA = 0;

and gk = g y = gB +
α∞

1−α∞ gA in the case gA > 0 and f ∈Q, where α∞ = limx→+∞
x f ′(x )

f (x ) .

• Let (kt , yt ) be the growth path corresponding to the Solow model with steady ISTC and LATC:
¨

yt = Bt f
�

kt
Bt

�

k̇t = s qt yt − (δ+n )kt

(6)

with Ḃt /Bt = gB ≥ 0, q̇t /qt = gq ≥ 0, k0 > 0, A0 > 0 and q0 > 0 given. Then:

(kt , yt ) is asymptotically balanced ⇐⇒











gq = 0

or

gq > 0 and f ∈Q

The asymptotic growth rates of k and y are then respectively: gk = g y = gB in the case gq = 0;

and gk = gB+
1

1−α∞ gq , g y = gB+
α∞

1−α∞ gq in the case gq > 0 and f ∈Q, whereα∞ = limx→+∞
x f ′(x )

f (x ) .
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Proof. See appendix A.3.

Theorem 3 highlights the set of production functions, as well as the corresponding elasticity of

substitution functions, such that the Solow growth model under KATC or ISTC yields asymptoti-

cally balanced growth. It comes out that these functions are exactly the functions inQ. As such,

theorem 3 constitutes an extension of the Robinson-Uzawa theorem, which implies that balanced

(i.e. constant-rate) growth under KATC or ISTC is only possible if the production function is Cobb-

Douglas.10

Notice that there are some production functions inQ such that the associated elasticity of sub-

stitution function does not tend to one near infinity. More precisely, it is possible that f ∈Q with

σ oscillating around 1. Take, for instance, σ2(k ) =
1

1− sin k
2

for all k ≥ 0, so that σ2(k )−1
σ2(k )

= sin k
2 . Since

function x 7→ sin x/x is integrable near infinity, for any function f2 corresponding to elasticity of

substitutionσ2, the relative factor shares ratio Π(k ) tends to a strictly positive constant as k tends

to infinity. Still,σ2 does not tend to one, asσ2 oscillates periodically between 2/3 and 2.

The effective inputs ratio tends to a constant under pure LATC while it diverges under KATC/ISTC.

Consequently, the production function influences growth dynamics in the KATC/ISTC-driven mod-

els, in which case theorem 3 proves that fluctuations of the labor share around a long-run mean is

compatible with asymptotically balanced growth.

3 Conclusion

In this paper we have investigated the links between the set of 2-inputs neoclassical production

function and the set of elasticity of substitution functions. In doing so we have unveiled an inte-

gral formula for all these production functions of class C 2. We linked this formula to the Inada

conditions and to the asymptotic balance of a standard growth model.

The generalization of this formula to the case of n ≥ 3 inputs – which today is beyond our

means – would be an answer to the question: ‘how to mathematically represent constant-returns-

to-scale aggregation processes?’ and would as such represent a powerful tool for neoclassical anal-

ysis.

A Appendix

A.1 2-input production functions in extensive and intensive forms

Proposition. Let F be a 2-input, constant returns to scale production function of classC 2 in exten-

sive terms: F :
�

R∗+
�2→R∗+ and f be the corresponding production function of classC 2 in intensive

10Another extension found in the literature is due to Meade (1961, appendix II) who proved that a 2-sector growth model with Cobb-Douglas

production functions for consumption and investment, when animated by steady consumption- and investment-specific TFP growth, is (strongly)

balanced.
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terms: f : R∗+→R
∗
+ defined by ∀k ∈R∗+, f (k ) = F (k , 1). Then:

∀(K , L ) ∈
�

R∗+
�2

,



















∂ F
∂ K (K , L ) > 0
∂ F
∂ L (K , L ) > 0
∂ 2F
∂ K 2 (K , L ) < 0
∂ 2F
∂ L 2 (K , L ) < 0

⇐⇒∀k ∈R∗+, f ′(k )> 0, f ′′(k )< 0.

Proof. =⇒ Assume that the left-hand side conditions are fulfilled.

By the definition of f , f (·) = F (·, 1) so ∀k ∈ R∗+, f ′(k ) = ∂ F
∂ K (k , 1) > 0 and ∀k ∈ R∗+, f ′′(k ) =

∂ 2F
∂ K 2 (k , 1)< 0.

⇐= Assume that the right-hand side conditions are fulfilled.

Let (K , L ) ∈
�

R∗+
�2

. By the definition of f , F (K , L ) = L f
�

K
L

�

. Differentiating this identity with

respect to K twice yields:
∂ F
∂ K (K , L ) = f ′

�

K
L

�

> 0
∂ 2F
∂ K 2 (K , L ) = 1

L f ′′
�

K
L

�

< 0

Differentiating identity F (K , L ) = L f
�

K
L

�

with respect to L yields: ∂ F
∂ L (K , L ) = f

�

K
L

�

− K
L f ′

�

K
L

�

.

Since f is assumed to be strictly positive and strictly increasing, f admits a limit near 0+which

we call f (0) ∈R+. Then: f (K /L ) = f (0)+
∫ K /L

0
f ′(u )du ; so the latter identity can be re-written:

∂ F

∂ L
(K , L ) = f (0) +

∫
K
L

0

f ′(u )du −
K

L
f ′
�

K

L

�

= f (0) +

∫
K
L

0

�

f ′(u )− f ′
�

K

L

��

du

Since f ′ is strictly decreasing, then
�

f ′(u )− f ′
�

K
L

��

> 0 for all u < K /L , so
∫

K
L

0

�

f ′(u )− f ′
�

K
L

��

du >

0. Since f (0)≥ 0, we conclude that ∂ F
∂ L (K , L )> 0.

Differentiating the identity F (K , L ) = L f
�

K
L

�

twice with respect to L yields:

∂ 2F

∂ L 2
(K , L ) =−

K

L 2
f ′
�

K

L

�

+
K

L 2
f ′
�

K

L

�

−
K

L

�

−
K

L 2

�

f ′′
�

K

L

�

=
K 2

L 3
f ′′
�

K

L

�

< 0.

It should be noted that the above computations show that for any neoclassical production func-

tions in extensive terms of class C 2 F , the Hessian matrix of F have a zero determinant and a

strictly negative trace. The non-diagonal elements are:

∂ 2F

∂ K ∂ L
=
∂

∂ L

�

f ′
�

K

L

��

=−
K

L 2
f ′′
�

K

L

�

This leads to det H = ∂ 2F
∂ K 2

∂ 2F
∂ L 2 −

�

∂ 2F
∂ K ∂ L

�2
= 0 and Tr H = ∂ 2F

∂ 2K +
∂ 2F
∂ 2L < 0. The Hessian matrix is negative

semi-definite and so function F is globally concave.11

Constant-returns-to-scale functions in extensive terms are never strictly concave. Let n ∈ N∗

and F be a CRS function of Rn into R . Let x ∈Rn\{(0, · · · , 0)} and let µ ∈R\{1} and y = µx . Then,

for any λ ∈ (0, 1):

F
�

λx + (1−λ)y
�

= F
�

(λ+µ(1−λ))x
�

= (λ+µ(1−λ))F (x ) =λF (x ) + (1−λ)F (y )

which proves that F is not strictly concave.
11We acknowledge a referee for pointing out this result.

9



A.2 Proof of lemma 2

• If l0 > 0, then by the definition of f in (4), function k ′ 7→ 1

k ′

�

1+
exp

�

−
∫ k ′

k̄
σ−1
σ

dk ′′
k ′′

�

Π̄

� is a (strictly) posi-

tive function that is integrable in the neighborhood of 0. Since function
�

1
k ′

�

is not integrable

around 0+, in particular it must hold that: 1

1+
exp

�

−
∫ k ′

k̄
σ−1
σ

dk ′′
k ′′

�

Π̄

k ′→0−−→ 0. Hence: limk→0Π(k ) = 0 and

limk→0α(k ) = 0.

• If l∞ <+∞, then function: k ′ 7→ 1

k ′

�

1+
exp

�

−
∫ k ′

k̄
σ−1
σ

dk ′′
k ′′

�

Π̄

� is positive and integrable around+∞ and

so, in particular, must be negligible compared to function
�

1
k ′

�

, which is not integrable near

0+. So 1

1+
exp

�

−
∫ k ′

k̄
σ−1
σ

dk ′′
k ′′

�

Π̄

k ′→+∞−−−−→ 0, and then limk→+∞α(k ) = 0.

• If l ′0 < +∞ and l0 = 0, then by applying de L’Hôpital’s rule we conclude that f (k )
k

k→0−−→ l ′0. But

from equation (3), this implies that 1

1+
exp

�

−
∫ k ′

k̄
σ−1
σ

dk ′′
k ′′

�

Π̄

k ′→0−−→ 1. Hence, limk ′→0

∫ k ′

k̄
σ−1
σ

dk ′′

k ′′ = +∞

and so limk→0α(k ) = 1.

• If l ′∞ > 0 and l∞ = +∞, then by de l’Hôpital’s rule f (k )
k

k∞−→ l ′∞ and so from equation (3):

1

1+
exp

�

−
∫ k ′

k̄
σ−1
σ

dk ′′
k ′′

�

Π̄

k ′→+∞−−−−→ 1. So: limk ′→+∞
∫ k ′

k̄
σ−1
σ

dk ′′

k ′′ =+∞ and limk→+∞α(k ) = 1. �

A.3 Proof of theorem 3

• Let’s denote by xt the effective inputs ratio: xt = At kt /Bt . We rewrite equation (5) in terms of

(xt , yt ):
¨

yt = Bt f (xt )
ẋt = s At f (xt )− (δ+n − gA + gB )xt

(7)

Differentiating the first equation yields:

ẏt

yt
= gB + ẋt

f ′(xt )
f (xt )

= gB +αt

ẋt

xt
(8)

where αt =α(xt ) =
xt f ′(xt )

f (xt )
denotes the relative capital share at date t .

Then, by differentiating the second equation in (7) and re-injecting the same equation and

the definition of the capital share, it comes that ẋ/x follows the process:

•
︷ ︷

ẋt

xt
=
�

gA − (1−α(xt ))
ẋt

xt

��

ẋt

xt
+δ+n − gA + gB

�

(9)

Note that the second term is positive, since k̇t /kt ≥−δ−n at all dates. The differential equa-

tion of ẋt /xt (9) is not autonomous in ẋ/x due to the term α(xt ).

We begin by proving a useful lemma:

Lemma 3. If gA > 0, then xt
t→+∞−−−→+∞.
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Proof. We first show that xt is ultimately increasing, that is: ∃τ≥ 0 |∀t ≥τ, ẋt ≥ 0

– If δ+n − gA + gB < 0, then by the second equation in (7), ẋ is positive at each date.

– If δ+n − gA + gB > 0, let’s define for all t the ratio x ∗t such that

s At f (x ∗t ) = (δ+n − gA + gB )x
∗
t

x ∗t is the limit that xt would take if A stayed constant at At from date t on. If gA > 0 then

x ∗t increases with time and limt∞ x ∗t =∞. By the second equation in (7):

ẋt Ñ 0⇐⇒ xt Ò x ∗t

∗ First case: suppose that x0 < x ∗0 , so that ẋ0 > 0. Suppose that there exists some T > 0

such that ẋT < 0, so x ∗T < xT . Since ẋ is a continuous function of time, we can define

τ= sup
�

t1 < T
�

�ẋt1
≥ 0

	

. Then, by continuity of ẋt ,

ẋτ = 0 (10)

∀t ∈ (τ, T ], ẋt < 0 (11)

From (10), xτ = x ∗τ. But since τ < T , it comes that x ∗τ < x ∗T . So xτ = x ∗τ < x ∗T < xT . But

since τ< T , (11) proves that xτ > xT , which brings a contradiction.

So when ẋ0 > 0, ẋt ≥ 0 at all dates t ≥ 0.

∗ Second case: suppose now that x0 ≥ x ∗0 , so that ẋ0 ≤ 0. If ẋ stays negative forever, then

xt (which is then decreasing and positive) tends to a constant, while ẋt then tends to

zero; which is inconsistent with the second equation in (7) taken to the limit when

gA > 0. So there exists τ > 0 such that ẋτ > 0. Then, by the same reasoning as in the

first case above, ẋt ≥ 0 for all t ≥τ.

Then, since xt is ultimately increasing, xt either converges to a constant or diverges to+∞. If

xt converges to some constant xl , then it converges monotonically to xl and so ẋt must have

limit 0. But these two facts taken together are inconsistent with the second equation in (7)

when At increases steadily, so xt
t∞−→+∞.

We now proceed to the proof of the first part of theorem 3 concerning the Solow model under

KATC and/or LATC.

=⇒ Suppose that ẏt
yt

and k̇t
kt

tend to constants g y ≥ 0 and gk ≥ 0, then by definition of x , ẋt
xt

has

limit gk + gA − gB as t tends to infinity.

– If gk = gB − gA then ẋt
xt

t→+∞−−−→ 0. Equation (9) taken to the limit proves that

•
︷ ︷

ẋt

xt

t→+∞−−−→

gA(δ+n − gA + gB ) = gA(δ+n + gk ). If gA 6= 0 then the limit of

•
︷ ︷

ẋt

xt
is stricly positive,

which is inconsistent with the convergence of ẋt
xt

to 0. Thus, in this case, gA = 0.

– If gk 6= gB −gA then ẋt
xt

t→+∞−−−→ gk +gA −gB . Taking equation (8) to the limit proves that

αt
t→+∞−−−→ g y−gB

gk+gA−gB
.

11



Consequently, if gA > 0 then from lemma 2 xt
t→+∞−−−→ +∞, so the function x 7→ α(x )

admits a limit when x → +∞. Call this limit α∞. Equation (9) taken to the limit

proves that

•
︷ ︷

ẋt

xt

t→+∞−−−→
�

gA − (1−α∞)(gk + gA − gB )
� �

gk +δ+n
�

. This quantity must be

equal to zero, otherwise ẋt
xt

does not converge. The only possibility is that we have

gA = (1−α∞)(gk + gA − gB ), which means that α∞ 6= 1 and gk = gB +
α∞

1−α∞ gA. We get

g y from equation (8): g y = gB +α∞(gk + gA − gB ) = gk . Finally, the limit value of α is
g y−gB

gk+gA−gB
=α∞ ∈ [0, 1), which proves that f ∈Q.

⇐= – If gA = 0, then At = A0 for all t ≥ 0, so the second equation in (7) is autonomous in

xt . Since f satisfies the Inada conditions, xt
t→+∞−−−→ x ∗ characterized by s A f (x ∗) =

(δ+n + gB )x ∗ and ẋt
t→+∞−−−→ 0. From the definition of xt it comes that kt /Bt tends to

a constant, and does monotonically, which proves that k̇t /kt
t→+∞−−−→ gB . Equation (8)

proves that ẏt /yt
t→+∞−−−→ gB .

– If gA > 0 and f ∈Q, let’s call α∞ = limx∞ x f ′(x )/ f (x ) ∈ [0, 1). By lemma 3, αt
t→+∞−−−→

α∞. The differential equation (9) then converges to the following one:
•
︷ ︷

ẋt

xt
=
�

gA − (1−α∞)
ẋt

xt

��

ẋt

xt
+δ+n − gA + gB

�

= Γ
�

ẋt

xt

�

(12)

which intercepts the horizontal axis at gA/(1−α∞). Let ε be a small, strictly positive

number. Since αt converges to α∞ ∈ [0, 1), then after some date T1 αt ∈ (α∞−ε,α∞+
ε).
Let’s respectively denote by Γ− and Γ+ the following functions:

Γ−(χ) =
�

gA − (1−α∞+ ε)χ
� �

χ +δ+n − gA + gB

�

Γ+(χ) =
�

gA − (1−α∞− ε)χ
� �

χ +δ+n − gA + gB

�

With these definitions, ∀t ≥ T1: Γ−
�

ẋt
xt

�

≤ Γ
�

ẋt
xt

�

≤ Γ+
�

ẋt
xt

�

. So after T1, ẋt /xt increases

more than if it was guided by Γ− and less than if it was guided by Γ+. But the processes

χ̇ = Γ−(χ) and χ̇ = Γ+(χ) converge respectively to N = gA/(1−α∞+ε) and O = gA/(1−
α∞− ε). So there exists a date T2 ≥ T1 such that:

∀t ≥ T2, M =N − ε ≤
ẋt

xt
≤O + ε = P

which proves that ẋt /xt
t→+∞−−−→ gA/(1−α∞). By the definition of x , gk = gB +

α∞
1−α∞ gA

and by equation (8) g y = gB +
α∞

1−α∞ gA.

• We denote by ut the effective inputs ratio: ut = kt /Bt . Differentiating the first equation in (6)

yields:
ẏt

yt
= gB +

u̇t

ut
α(ut ) (13)

where α(ut ) =
ut f ′(ut )

f (ut )
.

The evolution of ut is guided by:

u̇t = s qt f (ut )− (δ+n + gB )ut (14)
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Differentiating equation (14) and re-injecting the same equation and the definition of the

capital share yields:
•
︷ ︷

u̇t

ut
=
�

u̇t

ut
+δ+n + gB

��

gq − (1−α(ut ))
u̇t

ut

�

(15)

The same way as in the KATC case, we can prove the following lemma:

Lemma 4. If gq > 0 then ut
t→+∞−−−→+∞.

Proof. Same method as in the proof of lemma (2) applied to (14).

We know prove the assertions of the second part of theorem 3 concerning the Solow model

under ISTC and/or LATC with the same method as in the KATC/LATC case.

=⇒ Suppose that ẏ /y → g y ≥ 0 and k̇/k → gk ≥ 0, then by equation (13) u̇/u→ gk − gB .

– If gk = gB then u̇/u → 0 and so by equation (15)

•
︷ ︷

u̇t

ut

t→+∞−−−→ (δ+n + gB )gq . The only

possibility is that this quantity is zero, so gq = 0.

– If gk 6= gB then by (15) αt
t→+∞−−−→ g y−gB

gk−gB
. Consequently, if gq > 0 then from lemma 4

ut
t→+∞−−−→+∞, so function u 7→α(u ) admits a limit as u tends to infinity. Call this limit

α∞. Equation (15) taken to the limit proves that

•
︷ ︷

u̇t

ut

t→+∞−−−→ (gk+δ+n )
�

gq − (1−α∞)(gk − gB )
�

.

But since u̇t
ut

converges, the limit of

•
︷ ︷

u̇t

ut
must be zero, which proves that gq − (1 −

α∞)(gk−gB ) = 0, soα∞ < 1, which achieves to prove that f ∈Q. Also gk = gB+
1

1−α∞ gq

and equation (13) taken to the limit proves that g y = gB +
α∞

1−α∞ gq .

⇐= – If gq = 0, ut follows the autonomous, stable process u̇t = s q0 f (ut )− (δ+n + gB )ut ,

so ut converges to some limit u ∗ > 0 and the growth path is asymptotically balanced,

with gk = g y = gB .

– If gq > 0 and f ∈Q, the the process for u̇t /ut converges to the following one:

•
︷ ︷

u̇t

ut
=
�

u̇t

ut
+δ+n + gB

��

gq − (1−α∞)
u̇t

ut

�

With the same method than in the Solow model under KATC above, this is straight-

forward to prove that u̇t /ut →
gq

1−α∞ . So k̇t /kt
t∞−→ gB +

gq

1−α∞ and from equation (13),

ẏt /yt
t∞−→ gB + gq

α∞
1−α∞ .
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