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REGULARITY OF OPTIMAL SHIP FORMS BASED ON

MICHELL’S WAVE RESISTANCE

JULIEN DAMBRINE AND MORGAN PIERRE

Abstract. We introduce an optimal shaping problem based on Michell’s wave
resistance formula in order to find the form of a ship which has an immerged hull
with minimal total resistance. The problem is to find a function u ∈ H1

0 (D), even
in the z-variable, and which minimizes the functional

J(u) =

∫
D

|∇u(x, z)|2dxdz +

∫
D

∫
D

k(x, z, x′, z′)u(x, z)u(x′, z′)dxdzdx′dz′

with an area constraint on the set {(x, z) ∈ D : u(x, z) 6= 0} and with the volume
constraint

∫
D
u(x, z)dxdz = V ; D is a bounded open subset of R

2, symmetric
about the x-axis, and k is Michell’s kernel. We prove that u is locally α-Hölder
continuous on D for all 0 < α < 2/5, and locally Lipschitz continuous on D⋆ =
{(x, z) ∈ D : z 6= 0}. The main assumption is the nonnegativity of u. We also
prove that the area constraint is “saturated”. The results are first derived for a
general kernel k ∈ Lq(D×D) with q ∈ (1,+∞]. A numerical simulation illustrates
the theoretical result.

Keywords: shape optimization, existence, regularity, Dirichlet energy, wave resis-
tance.

1. Introduction

1.1. Minimizing the water resistance for a fixed domain. Modelizing the
resistance of water to the motion of a ship is a complex problem. A traditional
approach [1] is to express this resistance as the sum of two terms, namely the wave
resistance and the viscous resistance (which corresponds itself to the sum of the
frictional and eddy resistance).

Michell’s thin-ship theory [21, 28, 32, 33, 38] provides an explicit formula of the
wave resistance for a given speed and for a hull expressed as a function, with its
arguments in a region of the plane of symmetry (see Figure 1). This theoretical
formula, which can be written in terms of an integral kernel (cf. (A.1)), shows a
good agreement with experimental results [19, 37], when it is applied to thin ships
(cf. assumption (2.4)).

A first natural question is then to search the hull of a given volume which minimizes
Michell’s wave resistance for a given speed and a fixed domain of arguments. This
problem was extensively studied by Krein and his collaborators starting in the 1950’s
(see [28, 34] and references therein). In particular, Krein proved that this problem
is ill-posed, in the sense that it has no solution in the set of integrable functions.

In [29] (see also [34]), Krein and Sizov proposed a simplified model for the viscous
term, namely a term proportional to the Dirichlet energy of the function representing
the hull. The Dirichlet energy was obtained as a linearization of the area functional
(cf. (2.9)), a reasonable approximation for thin ships. Then, Krein and Sizov used the
total resistance as a minimization criterion (i.e. the sum of Michell’s wave resistance
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and of their viscous resistance). By solving a linear integro-differential equation,
they proved that the problem of finding a hull of minimal total resistance has a
unique solution in the class of continuous functions. Thus, the viscous term can also
be interpreted as a regularizing term.

In [14], the authors and Rousseaux studied a similar problem in a H1 (Sobolev
space) setting, and they obtained existence and uniqueness of an optimal form.
Because the optimal form was seeked in a class of nonnegative functions, the problem
was no longer linear, as in the previous case, but only convex. As pointed out in [34],
this additional constraint is essential in the modelization, because the function which
represents the half-hull is nonnegative (cf. Section 2).

Then, for various approximations of Michell’s kernel, which all belonged to L∞,
the authors and Rousseaux showed the global W 2,p regularity of the optimal form,
for all p < ∞; they also proved that the optimal function depends continuously
on the speed of the ship. For the problem formulated with the true Michell wave
resistance, the questions of regularity and continuous dependence on the speed were
left open, essentially because it was not known to which Lq space (if any) Michell’s
kernel belonged.

1.2. Optimal shaping approach. In the previous approach, the set of arguments,
say ω, was fixed. In the existing litterature using Michell’s formula, a typical choice
for ω is the rectangle, because this allows easier computations for Wigley hulls [19,
33]. More technical choices for ω are based on classical ship forms (see, e.g., [25, 31]).
In this paper, we adopt a geometric shape optimization point of view (see, e.g., [3, 10,
24]), i.e. we propose to consider also ω as an unknown of the optimization problem,
so as to minimize even more the total resistance. We impose the area of ω in order
to be consistent with the thin-ship assumptions when the volume of the hull tends to
zero (see (2.12)). Some numerical simulations were presented in [13]; here, we focus
on the theoretical aspects (existence, regularity).

Due to the nature of the problem, the optimal set ω⋆ should naturally be seeked in
the lower half-plane, and the optimal function f⋆ω⋆ corresponding to ω⋆ should satisfy
Neumann boundary conditions on the part of the boundary of ω⋆ which intersects
the x-axis, and Dirichlet boundary conditions otherwise. The x-axis corresponds
here to the water/air interface, and the second variable z is the altitude. But, for
the resolution of the problem, we use a symmetrization with respect to the x-axis,
so that the symmetrized optimal set Ω⋆ corresponding to ω⋆ is seeked in the whole
plane, and the optimal function u⋆Ω⋆ corresponding to f⋆Ω⋆ is even in the z-variable.
This approach allows us to deal only with Dirichlet boundary conditions.

Our problem can be viewed as a geometric shape optimization problem for a
modified Dirichlet functional. Following a standard approach for this problem (see,
e.g. [2, 9, 11]), we consider u⋆ = u⋆Ω⋆ as the unknown, rather than Ω⋆. The optimal
set Ω⋆ can be obtained as the superlevel set Ωu⋆ = [u⋆ > 0], at least in the class of
quasi-open sets (see [24] and Remark 3.2).

For the existence result of the optimal function u⋆, which is based on compactness,
we need to introduce a symmetric and bounded domain D ⊂ R

2, and we seek Ωu⋆ in
D (see Section 2.4 for details). We point out that if D is unbounded, then existence
of Ω⋆ may fail [12]. Finally, since our results can possibly be applied to other kernels
than Michell’s kernel, we prove them first for a general kernel belonging to Lq (q > 1).
In this regard, it would be interesting to investigate the regularity of the kernels
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associated to Sretensky’s wave resistance formulaes in confined fluids [35, 36] (see
also [28]).

1.3. Main results. Once the theoretical framework is set, existence of an optimal
and symmetric function u⋆ is obtained by considering a minimizing sequence (The-
orem 3.3). The nonnegativity of the “wave resistance” functional associated to the
kernel is essential here (cf. (3.3)). We first prove the optimal regularity of u⋆ in this
abstract framework (Theorem 6.1). Namely, u⋆ is locally α-Hölder continuous on D
with exponent α = 2/q′ if q < 2 and u⋆ is locally Lipschitz continuous on D if q > 2.
The main assumption is the nonnegativity of u⋆ (see Remark 3.1).

Our proof is very similar to the case of the Dirichlet energy with a nonhomogeneity
treated in [9, 30]. It is based on the tools introduced by Alt and Caffarelli in their
seminal paper [4] (see also [2, 20]). The first step is to find an appropriate penalized
version of the constrained problem (Theorem 5.2). Then, we adapt the standard
method of Alt and Caffarelli, by taking into account the symmetry, namely, the
test functions are even in the z-variable. This approach is fruitful because the local
regularity of u⋆ on D can be interpreted in terms of f⋆ as a regularity up to the
x-axis (where f⋆ is the restriction of u⋆ to the lower half plane). In contrast, we do
not prove regularity of u⋆ up to the boundary of D (but no regularity is required on
the boundary of D).

In Theorem A.1, we establish the optimal regularity of Michell’s kernel, namely
L5/4−ε. To the best of our knowledge, this result has not been previously pub-
lished. By application of our regularity result, this implies that for Michell’s kernel,
the optimized function u⋆ is locally α-Hölder continuous on D for all α ∈ (0, 2/5)
(Theorem 7.1). By taking advantage of an improved regularity of Michell’s kernel
below the water/air interface, we also prove that u⋆ is locally Lipschitz continuous on
D∩ (R×R

⋆) (Theorem 7.3), and that the area constraint is saturated (Theorem 7.4,
based on analycity). We expect that these last two results are the main first step in
proving the regularity of the optimal set Ω⋆ itself (Remark 7.5). Theorems 7.1, 7.3
and 7.4 are our main results.

1.4. Outline of the paper. The paper is organized as follows. We first derive the
model (Section 2). Then, we give the abstract version of the shape optimization
problem and we solve it (Section 3). In Section 4, we give some conditions on the
kernel which ensure that the area constraint is saturated or that the solution of
the problem is nonnegative. The penalized version of the problem is introduced in
Section 5, and the regularity of the optimal solution is proved in Section 6. The
previous results are applied to Michell’s kernel in Section 7. We conclude the paper
by a numerical example of an optimized hull (Section 8). The regularity of Michell’s
kernel is studied in Appendix A, and some technical lemmas are given in Appendix B.

2. From Michell’s formula to the abstract formulation

2.1. Michell’s wave resistance formula.

Consider a ship moving with constant velocity on the surface of an unbounded
fluid. A coordinated system fixed with respect to the ship is introduced. The origin
is located midships in the center line plane, the xy-plane is the undisturbed water
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Figure 1. The projection ω of the hull onto the (x, z) plane

surface, the positive x-axis is in the direction of motion and the z-axis is vertically
upward.

It is assumed that the hull is symmetric with respect to the vertical xz-plane, and
that the half-immerged hull surface can be represented by a continuous nonnegative
function y = f(x, z) ≥ 0. In this representation, z ≤ 0 and the arguments (x, z)
belong to a subset ω which is the orthogonal projection of the hull on the xz-plane.
For the presentation of the model, it will be convenient to split up ω into three
parts, namely its interior ω (an open subset of the lower (x, z) half-plane), in which
f(x, z) > 0, its boundary Γ0 at the free surface z = 0, and its boundary Γ− under
the free surface, on which f(x, z) = 0 (see Figure 1).

It is assumed that the fluid is incompressible, inviscid and that the flow is irro-
tational. The motion has persisted long enough so that a steady state has been
reached. Michell’s theory [25, 28, 32, 33] shows that the wave resistance can be
computed by

RMichell =
4ρg2

πU2

∫ ∞

1
(I1(λ)

2 + I2(λ)
2)

λ2√
λ2 − 1

dλ, (2.1)

with

I1(λ) =

∫

ω

∂f

∂x
(x, z) exp

(

λ2gz

U2

)

cos

(

λgx

U2

)

dxdz, (2.2)

I2(λ) =

∫

ω

∂f

∂x
(x, z) exp

(

λ2gz

U2

)

sin

(

λgx

U2

)

dxdz. (2.3)

In this formula, U (in m ·s−1) is the speed of the ship, ρ (in kg ·m−3) is the (constant)
density of the fluid, and g (in m · s−2) is the standard gravity. The integrals I1(λ)
and I2(λ) are in m2, and RMichell (in Newton) has the dimension of a force. The
integration parameter λ has no dimension: it can be interpreted as λ = 1/ cos θ,
where θ is the angle at which the wave energy is propagating [28].

In order to derive formula (2.1), Michell used a linear theory and made additional
assumptions known as the “thin ship theory” (see [33] for details). In particular, it
is assumed that the angles made by the hull surface with the longitudinal plane of
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symmetry are small, i.e.
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

≪ 1 and

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

≪ 1 in ω. (2.4)

2.2. The viscous resistance. Using a simplified approach (see, e.g., [1]), the total
resistance of water to the motion of the ship is given by

Rtotal = RMichell +Rviscous, (2.5)

where the viscous resistance reads

Rviscous =
1

2
ρU2 CF A . (2.6)

Here, CF is the viscous drag (or friction) dimensionless coefficient and A is the
surface area of the ship’s wetted hull. The coefficient CF is a positive constant, or,
more generally, a positive function which depends continuously on U . For instance,
the ITTC 1957 model-ship correlation line formula reads [1]

CF = 0.075/[log10(Re)− 2]2, (2.7)

where Re = ULref/νvis is the Reynolds number (Lref is a reference length and νvis
is the kinematic viscosity of water).

When the graph of f represents the ship’s (half-)hull, A is given by:

A = 2

∫

ω

√

1 + |∇f(x, z)|2 dxdz. (2.8)

For a slender ship, |∇f | is uniformly small (see (2.4)), and the integral above can be

approximated by performing a Taylor expansion of
√

1 + |∇f |2 at first order:

A/2 =

∫

ω
1dxdz +

1

2

∫

ω
|∇f(x, z)|2 dxdz + o(||∇f ||2∞) . (2.9)

A good approximation of the viscous drag for small ∇f then reads:

Rviscous = ρU2 CF

(

|ω|+ 1

2

∫

ω
|∇f(x, z)|2 dxdz

)

, (2.10)

where |ω| is the area of ω.

2.3. Rough formulation of the optimization problem. Summing up, for a
given f : ω → R+, the total resistance is given by (2.5), (2.1) and (2.10), and we
denote it Rtotal(f) in order to stress its dependence on f . In [14], we considered
the following optimization problem: for a given speed U , a given volume V of the

hull, and a fixed set ω, find a nonnegative function fU,Vω which minimizes Rtotal(f)
among (regular) nonnegative functions f : ω → R such that f = 0 on Γ− and
∫

ω f(x, z)dxdz = V/2.
We proved that this problem is well-posed in an appropriate functional setting,

i.e. there is a unique regular function fU,Vω which minimizes the total resistance.
In [14], we actually assumed that ω was a rectangle, i.e. the length of the ship and
its draft were given, but our results apply essentially in the same way for any open
set ω whose boundary is regular enough. Thus, to every set ω, we can associate the

minimal value of the total resistance, that is Rtotal(f
U,V
ω ).

In the previous approach, choosing ω to be a rectangle or any other shape may
seem somewhat arbitrary. Moreover, we can hope to further decrease the total
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resistance of the ship by allowing more shapes for ω. In this paper, we are there-
fore interested in the following shape optimization problem, denoted (temporarily)

(Qa,+
U,V ): for a given speed U , a given volume V of the hull, and a given area a, find

a set ω⋆ which minimizes Rtotal(f
U,V
ω ) among admissible sets ω such that |ω| = a/2.

The optimal ship hull is then given by fU,Vω⋆ .
From now on, we use a normalization. On multiplying Rtotal(f) by 4/(ρU2CF ),

we obtain the following normalized total resistance,

Rnorm
total (f) = 4|ω|+ 2

∫

ω
|∇f(x, z)|2dxdz

+
16g2

πCFU4

∫ ∞

1
(I1(λ)

2 + I2(λ)
2)

λ2√
λ2 − 1

dλ, (2.11)

where I1 and I2 are defined by (2.2)-(2.3). For a fixed speed U , problem (Qa,+
U,V )

is unchanged if Rtotal(f) is replaced by Rnorm
total (f). This normalization is natural

for the formulation of the abstract problem, where the wave resistance is seen as a
perturbation of the Dirichlet energy (cf. (3.8)). It will also prove useful in order to
understand how the problem depends on the speed U [12].

We note that for a given domain ω, the total resistance Rnorm
total (f) is quadratic in

f , up to the constant 4|ω|; the volume constraint
∫

ω f = V/2 is linear with respect

to f . Thus, fU,Vω depends linearly on V , i.e. fU,Vω = V fU,1ω . As a consequence, using
that |ω| = a/2 is fixed, a set ω⋆ is a minimizer for problem (Qa,+

U,V ) if and only if it is

a minimizer for problem (Qa,+
U,1 ): in other words, the optimal domain ω⋆, if it exists,

does not depend on V . Moreover, if fU,1ω⋆ can be proved to be globally Lipschitz
continuous on ω⋆, then

‖∇fU,Vω⋆ ‖L∞(ω⋆) = V ‖∇fU,1ω⋆ ‖L∞(ω⋆) → 0 (2.12)

as V → 0, and we recover the thin ship assumptions (2.4) in the limit V → 0.
This analysis raises two important questions, namely the existence of an optimal

domain ω⋆ which solves (Qa,+
U,V ), and the regularity of fU,Vω⋆ .

Remark 2.1. Instead of problem (Qa,+
U,V ), where |ω| is constrained, one possibility

would be to seek for ω⋆ which minimizes Rtotal(f
U,V
ω ) among all (regular) sets ω, for

U and V given. However, this approach would not be satisfactory, for the following
reason: if we omit the wave resistance term RMichell in (2.5), and if we use the
area formula (2.6), (2.8) for the viscous resistance, we end up with an isoperimetric
problem formulated in nonparametric form (up to symmetry with respect to the
x-axis and to the xz plane). The solution ω⋆ of such a problem is a half disc, and

the graph of f⋆ = fU,Vω⋆ is the graph of a half hemisphere, so |∇f⋆| → +∞ near the
circular border of ω⋆. This contradicts the thin-ship assumptions (2.4); adding a
wave resistance term based on Michell’s formula does not seem appropriate in such a
context, even if the viscous resistance is approximated by the Dirichlet energy (2.10).

2.4. Symmetrization and bounding box.

In view of the functional setting of the problem, we take advantage that the free
surface z = 0 is horizontal, and we extend any function f : ω → R representing a
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Figure 2. Symmetrization z 7→ −z and a possible bounding box

hull to a function u : Ω → R even in the z-variable, where Ω is the union of ω and
of its symmetric about the x-axis (see Figure 2). The normalized total resistance
Rnorm

total (f) is expressed accordingly in terms of u (compare (2.11) and (7.1)). Since

f = 0 on Γ−, u satisfies homogeneous Dirichlet boundary conditions on ∂Ω: this
simplifies the formulation of the optimization problem.

Following a standard approach in optimal shaping, we seek for the optimal ship

function uU,VΩ⋆ (the even symmetric of fU,Vω⋆ ); the optimal domain Ω⋆ can then be
recovered as a superlevel set (Remark 3.2). A crucial benefit of this approach is

that we will also show the regularity up to the x-axis of the optimal function fU,Vω⋆ .
It would be natural to seek the symmetrized optimal domain Ω⋆ in R

2, but for the
existence result, we need to introduce a “bounding box”D, namely a bounded subset
of R2, symmetric about the x-axis. This bounding box D can possibly be chosen
large, in order to mimic the situation in R

2.

3. Formulation and resolution of the shape optimization problem

3.1. Functional setting. Let D be a nonempty open subset of R2. The space of
distributions onD is the dual space of the space C∞

c (D) of the infinitely differentiable
functions with compact support in D, and the duality product will be denoted 〈·, ·〉.
For p ≥ 1 andm a nonnegative integer, we denoteWm,p(D) the (real-valued) Sobolev
space of order m built on the Lp(D) space [17]. In particular, the space W 1,2(D) =
H1(D) is equipped with the Hilbertian norm ‖u‖2H1 =

∫

D u
2 +

∫

D |∇u|2. We denote

H1
0 (D) the closure for the H1-norm of C∞

c (D). Recall that H1
0 (R

2) = H1(R2). In
contrast, for D bounded, by the Poincaré inequality, the Hilbertian norm ‖u‖2

H1
0
=

∫

D |∇u|2 is equivalent to the H1-norm on H1
0 (D).

We denote (x, z) the cartesian coordinates in the plane R
2. An open set D ⊂ R

2

is symmetric (about the x-axis) if for all (x, z) ∈ D, we have (x,−z) ∈ D. For a
function u defined on a symmetric open set D, we will denote ǔ the function such
that ǔ(x, z) = u(x,−z) for all (x, z) ∈ D.

From now on, and throughout the paper, D denotes a nonempty symmetric open
bounded subset of R2. We make no regularity assumption on the boundary of D
(see Remark 7.7). We work with the space

Ȟ = {u ∈ H1
0 (D), ǔ = u a.e. in D},
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which is a closed subspace of H1
0 (D). For a function u ∈ Ȟ, we denote

Ωu = {(x, z) ∈ D : u(x, z) 6= 0}.
Let |E| denote the Lebesgue measure of any measurable subset E of R2. Then, the
value |Ωu| does not depend on the choice of the representation of u.

A distribution f on D is called symmetric if for all ϕ ∈ C∞
c (D), 〈f, ϕ̌〉 = 〈f, ϕ〉.

We recall that the distributions of order 0 on D are the signed Radon measures over
D [5]. For a signed Radon measure µ, |µ| is the total variation of µ [16]. For a
subset E of R2, we will denote Ě the symmetric of E with respect to the x-axis, i.e.
Ě = {(x, z) ∈ R

2 : (x,−z) ∈ E}; χE will be the characteristic function of E. We
denote by −

∫

E the average over the set E. For (x, z) ∈ R
2, the distance to a subset E

of R2 is

d((x, z), E) = inf{|(x, z) − (x′, z′)| : (x′, z′) ∈ E},
where | · | is the Euclidean norm in R

2 (or R). If E ⊂ D, Ec denotes the complement
of E in D. The open ball of center (x0, z0) ∈ R

2 and radius r > 0 will be denoted
B((x0, z0), r), and for (x0, z0) = (0, 0), we will write Br instead of B((0, 0), r).

For a subset E of R2 and α ∈ (0, 1), we denote

|v|α,E = sup
((x,z),(x′,z′))∈E×E

|v(x, z) − v(z′, z′)|
|(x, z)− (x′, z′)|α (3.1)

the α-Hölder seminorm on E of a function v : E → R. Recall that v is locally
α-Hölder continuous on D if |v|α,E is finite for every compact subset E of D. As
usual, C0(E) denotes the space of continuous functions on E. If E is compact, we
denote Cα(E) the space of α-Hölder continuous functions on E, i.e. the (Banach)
space of all continuous functions on E such that ‖v‖C0(E)+ |v|α,E is finite. Similarly,
v is locally Lipschitz continuous on D if |v|1,E is finite for every compact subset E
of D, where |v|1,E is defined by the right-hand side of (3.1) with α = 1.

3.2. Formulation of the optimization problem. We consider the following “nor-
malized wave resistance” functional:

Jwave(u) =

∫

D

∫

D
k(x, z, x′, z′)u(x, z)u(x′, z′)dxdzdx′dz′, (3.2)

where k : D ×D → R belongs to Lq(D ×D) for some q ∈ (1,+∞] and satisfies
∫

D

∫

D
k(x, z, x′, z′)u(x, z)u(x′, z′)dxdzdx′dz′ ≥ 0, (3.3)

for all u ∈ C(D), and the following symmetry assumptions,

k(x, z, x′, z′) = k(x′, z′, x, z) for a.e. (x, z, x′, z′) ∈ D ×D, (3.4)

k(x,−z, x′, z′) = k(x, z, x′, z′) for a.e. (x, z, x′, z′) ∈ D ×D. (3.5)

Let q′ = q/(q − 1) ∈ [1,+∞) denote the conjugate exponent of q. By Hölder’s
inequality,
∫

D

∫

D
|k(x, z, x′, z′)u(x, z)v(x′, z′)|dxdzdx′dz′ ≤ ‖k‖Lq(D×D)‖u‖Lq′ (D)‖v‖Lq′ (D),

(3.6)

for all u, v ∈ Lq′(D). The Sobolev inclusion H1
0 (D) ⊂ Lq′(D) reads

‖v‖Lq′ (D) ≤ CS‖v‖H1
0
, (3.7)
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for all v ∈ H1
0 (D), where CS = CS(D, q). Thus, Jwave(u) is well-defined and finite

for all u ∈ H1
0 (D). It is easily seen that k is uniquely associated to Jwave. More

precisely, if k1 is a function in Lq1(D ×D) for some q1 > 1 which satisfies (3.2) for
all u ∈ Ȟ, together with the symmetry assumptions (3.4) and (3.5), then k1 = k.

The functional associated to the (normalized) total resistance is

J(u) = J0(u) + Jwave(u), (3.8)

where

J0(u) =

∫

D
|∇u(x, z)|2dxdz. (3.9)

Let V > 0 (the volume of the hull) and 0 < a < |D|. We define

Ca
V = {v ∈ Ȟ :

∫

D
vdxdz = V, |Ωv| ≤ a},

and we consider the following problem:

(Pa
V )

{

Find u ∈ Ca
V such that

J(u) ≤ J(v), ∀v ∈ Ca
V .

Remark 3.1. Since u represents a hull, it would be more natural to require u to
be nonnegative, i.e. to consider a problem (Pa,+

V ) obtained on replacing Ca
V by

the set Ca,+
V = {u ∈ Ca

V : u ≥ 0 a.e. in D} in problem (Pa
V ). The existence result

(Theorem 3.3) and its proof also hold for problem (Pa,+
V ). However, regularity for this

problem is a question which needs to be investigated. In contrast, here we solve (Pa
V )

and we assume that the solution u is nonnegative, in order to prove its regularity
(Theorem 6.1). We note that a nonnegative solution of (Pa

V ) is also a solution

of (Pa,+
V ), because Ca,+

V ⊂ Ca
V . We managed to verify the nonnegativity assumption

only in some specific cases (cf. Proposition 7.6), but numerical simulations suggest
that it is a reasonable assumption for a large set of the parameters U , CF and a [13].

Remark 3.2. Problem (Pa
V ) is related to the following shape optimization prob-

lem [9, 24]: find an open and symmetric set Ω⋆ such that

(Qa
V ) J(uΩ⋆) = inf {J(uΩ), Ω ⊂ D open and symmetric, |Ω| = a} , (3.10)

where uΩ is uniquely defined by

J(uΩ) = min

{

J(v), v ∈ H1
0 (Ω), v̌ = v,

∫

Ω
v = V

}

. (3.11)

Existence of uΩ can be obtained as in the proof of Theorem 3.3, and uniqueness
is a consequence of the strict convexity of J on the convex set of test functions v.
Problem (Qa

V ) may not have a solution Ω⋆ in the family of open sets. However, the
infimum is always reached in the family of quasi-open subsets of D. In some cases,
we expect uΩ⋆ to be at least continuous (cf. Theorem 6.1). Then, if moreover its
support fills in Ω⋆ (that is in the “saturated” case where ΩuΩ⋆ = Ω⋆), we obtain that
Ω⋆ is at least open. These statements are also valid if the functions v in (3.11) are
required to be nonnegative (see previous remark).
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3.3. Resolution of the optimization problem.

Theorem 3.3. Problem (Pa
V ) has a solution u such that J(u) < +∞.

Proof. It is easy to build a function ū ∈ C∞
c (D) which belongs to Ca

V . Consider
now a minimizing sequence (un) for problem (Pa

V ). Since Jwave(un) ≥ 0 and

J(un) ≤ J(ū) < +∞, the sequence (un) is bounded in Ȟ. Up to a subsequence,
(un) converges weakly in H1

0 (D) to some u, which belongs to Ȟ. By Rellich’s the-

orem, (un) converges to u strongly in Lq′(D) and, up to a subsequence, a.e. in D.
Thus,

∫

D u = V , and we have 1Ωu ≤ lim infn 1Ωun
a.e. in D, so by Fatou’s lemma,

|Ωu| =
∫

D
1Ωu ≤ lim inf

n

∫

D
1Ωun

= lim inf
n

|Ωun | ≤ a.

This shows that u belongs to Ca
V . By lower semi-continuity of J0, we have

J0(u) ≤ lim inf
n

J0(un).

By (3.6), Jwave is a continuous quadratic form on Lq′(D), so Jwave(un) tends to
Jwave(u). Therefore,

J0(u) + Jwave(u) ≤ lim inf
n

(

J0(un) + Jwave(un)
)

,

and so u is a solution of problem (Pa
V ). �

Remark 3.4. The set Ca
V is not convex, so that uniqueness of a solution to prob-

lem (Pa
V ) is a delicate question.

Remark 3.5. The functional J is quadratic and the bijection v 7→ V v maps the set
Ca
1 onto the set Ca

V , so that uaV is a solution of problem (Pa
V ) if and only if uaV = V ua1,

where ua1 is a solution of problem (Pa
1 ). In other words, “the” solution uaV depends

linearly on V .

4. First remarks

4.1. About the case Jwave = 0. We denote ua,0V a solution of problem (Pa
V ) when

J = J0 (in this case, the kernel k is 0); ua,0V exists by Theorem 3.3. By the maximum

principle, ua,0V ≥ 0 in D (use Proposition 4.8) and |Ωua,0
V

| = a (use Proposition 4.5).

By linearity (Remark 3.5),

‖ua,0V ‖2H1
0
= J0(u

a,0
V ) = V 2J0(u

a,0
1 ) = V 2m, (4.1)

where m = m(D, a) > 0.
If D contains a disc of area a centered on the x-axis, then by using standard (but

difficult) results, it can be proved that Ω
ua,0
V

is a disc of area a centered on the x-axis,

and so ua,0V can be explicitly determined. This is interesting since Jwave = 0 can be
seen as a Γ-convergence limit of Michell’s wave resistance when U → +∞ (see [12];
see also Proposition A.3 when U → 0+, in the situation of a submarine).

Let now Jwave be defined by a kernel k ∈ Lq(D×D) as in (3.2), and let u denote
a solution of (Pa

V ) with J = J0 + Jwave. Then, by (3.6)-(3.7),

J(u) ≤ J(ua,0V ) ≤ ‖ua,0V ‖2H1
0
+ C2

S‖k‖Lq(D×D)‖ua,0V ‖2H1
0
.
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From (4.1), we deduce that

‖u‖2H1
0
≤ J(u) ≤ V 2m(D, a)(1+C2

S‖k‖Lq(D×D)) = V 2C0(D, a, q, ‖k‖Lq(D×D)). (4.2)

4.2. Saturation of the constraint |Ωu| ≤ a. If u is a solution of problem (Pa
V ),

then no regularity on the boundary of Ωu can be expected in general when |Ωu| <
a. The condition |Ωu| = a itself may not be sufficient (see Proposition 4.3). For
this purpose, we will study a stronger condition, sometimes called “the saturated
case” [8].

In this regard, we define ȞV := {v ∈ Ȟ :
∫

D v = V }, an affine subspace of Ȟ.
The following statement, which follows from the convexity of J , is standard.

Lemma 4.1. The functional J has a unique minimizer u⋆ in ȞV , which is also the
unique solution in ȞV of

−∆u⋆(x, z) +

∫

D
k(x, z, x′, z′)u⋆(x′, z′)dx′dz′ = C in D (4.3)

in the sense of distributions, for some constant C.

In particular, if there exists u ∈ Ca
V which satisfies (4.3) in D, then u is the unique

solution of problem (Pa
V ). We say that the area constraint |Ωu| ≤ a is saturated if

The solution u⋆ ∈ ȞV of (4.3) in D satisfies |Ωu⋆ | > a. (4.4)

The following proposition shows that condition (4.4) implies |Ωu| = a for any
solution u of (Pa

V ).

Proposition 4.2. If u is a solution of problem (Pa
V ) such that |Ωu| < a, then u

satisfies (4.3).

Proof. Since |Ωu| < a, we can consider perturbations of u in C∞
c (D) with a small

support. Using the symmetry of u and the volume constraint, we find that u satis-
fies (4.3). Details are classical and are left to the reader. �

The following counter-example shows that the condition (4.4) may not be satisfied,
and that in this case, no regularity can be expected on the boundary of Ωu.

Proposition 4.3. For every symmetric open subset Ω of D such that 0 < |Ω| ≤ a,
there exist a nonnegative function u ∈ C∞

c (R2) ∩ Ȟ with Ωu = Ω, and k ∈ C∞(R2)
which satisfies (3.3)-(3.5), such that u solves the Euler-Lagrange equation (4.3) as-
sociated to k on D. In particular, u is the unique solution of problem (Pa

V ).

Proof. Let Ω be a symmetric open subset of D. By a standard construction based
on a partition of unity [5], we can find u ∈ C∞

c (R2) such that ǔ = u and u ≥ 0 in
R
2, with Ωu = Ω. In particular, u belongs to Ȟ. Choose C >

(∫

D |∇u|2
)

/
(∫

D u
)

,
let

θ =

[

C

∫

D
u−

∫

D
|∇u|2dx

]−1

> 0,
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and define k(x, z, x′, z′) = θ(∆u(x, z)+C)(∆u(x′, z′)+C). Then k belongs to C∞(R2)
and satisfies (3.3)-(3.5). We have

−∆u(x, z) +

∫

D
k(x, z, x′, z′)u(x′, z′)dx′dz′

= −∆u(x, z) + θ(∆u(x, z) + C)

∫

D
(∆u(x′, z′) + C)u(x′, z′)dx′dz′

= −∆u(x, z) + θ(∆u(x, z) + C)

[

−
∫

D
|∇u|2 + C

∫

D
u

]

= C,

for all (x, z) ∈ D. This proves the assertion. �

In Propositions 4.5 and 4.6, we give some conditions which ensure that the satu-
ration condition (4.4) is satisfied. The following Poincaré inequality will prove useful
(see, for instance, [24]).

Proposition 4.4. There exists a constant CP > 0 independent of D such that for
all u ∈ H1

0 (D) with |Ωu| ≤ a, we have

‖u‖L2(D) ≤ CPa
1/2‖∇u‖L2(D). (4.5)

For the following result, we use that for k small enough in L∞-norm, a maximum
principle applies.

Proposition 4.5. Assume that k ∈ L∞(D×D) with ‖k‖L∞(D×D) < (CPa)
−2. Then

condition (4.4) is satisfied.

Proof. Let u⋆ ∈ ȞV solve (4.3) and assume by contradiction that |Ωu⋆ | ≤ a. Let
now Φ ∈ Ȟ be the unique solution of

−∆Φ(x, z) +

∫

D
k(x, z, x′, z′)Φ(x′, z′)dx′dz′ = 1 in D, (4.6)

which exists by application of the Lax-Milgram theorem. On multiplying (4.6) by Φ
and integrating on D, we have

∫

D
|∇Φ|2 +

∫

D

∫

D
k(x, z, x′, z′)Φ(x, z)Φ(x′, z′)dxdzdx′dz′ =

∫

D
Φ > 0. (4.7)

By linearity and by uniqueness, we have u⋆ = V (
∫

D Φ)−1Φ. In particular, ΩΦ = Ωu⋆ .
From (4.6), by arguing as in the proof of Proposition 4.8, we deduce that −∆Φ = f
in D, with f ∈ L∞(D) and

ess inf f ≥ 1− C2
Pa

2‖k‖L∞(D) > 0.

By elliptic regularity, Φ ∈ W 2,p
loc (D) for all p > 1, so that Φ ∈ C0(D). The strong

maximum principle [17] implies that Φ > 0 in D. The same holds for u⋆, which is
proportional to Φ, but this contradicts |Ωu⋆ | ≤ a < |D|. �

Proposition 4.6. Assume that D+ := {(x, z) ∈ D : z > 0} is connected, and
that the solution u⋆ ∈ ȞV of (4.3) is real analytic in D+. Then condition (4.4) is
satisfied.

Proof. Since u⋆ ∈ ȞV ,
∫

D+ u
⋆ = V/2 > 0 so u⋆ 6= 0 in D+. Moreover, u⋆ is real

analytic in D+ and D+ is connected, so |Ωu⋆ ∩D+| = |D+|, by Proposition 4.7. By
symmetry, |Ωu⋆ | = |D| > a. �
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For the reader’s convenience, we give a simple proof of the following standard
result.

Proposition 4.7. Let ω be an open and connected subset of R2. If u : ω → R is
real analytic on ω, u 6= 0, then |{(x, z) ∈ ω : u(x, z) = 0}| = 0.

Proof. We can write ω = ∪n∈Nωn with ωn = (αn, βn) × (γn, δn) ⊂ ω (αn < βn
and γn < δn). Let n ∈ N be fixed. Since u is a nonzero analytic function and ω
is connected, u is nonzero on ωn [6]. In particular, there exists zn ∈ (γn, δn) such
that x 7→ u(x, zn) is nonzero on (αn, βn). Moreover, x 7→ u(x, zn) is a real analytic
function of one variable, so it has at most a countable set of roots, Xn ⊂ (αn, βn).
Similarly, for every x ∈ (αn, βn) \ Xn, the real analytic function (of one variable)
z 7→ u(x, z) is nonzero, and it has at most a countable set of roots, Zn,x. By Fubini’s
theorem,

|{(x, z) ∈ ωn : u(x, z) = 0)}| =
∫

(αn,βn)\Xn

(

∫

(γn,δn)
1Zn,x(z)dz

)

dx = 0.

The set {(x, z) ∈ ω : u(x, z) = 0} is therefore a countable union of sets of measure
0: it has measure zero. �

4.3. Nonnegativity of the solution. By using the maximum principle, we can
prove:

Proposition 4.8. Assume that k ∈ L∞(D×D) with ‖k‖L∞(D×D) ≤ (CPa)
−2. Then

any solution u of problem (Pa
V ) is nonnegative.

Proof. Let u be a solution of (Pa
V ) and consider the space

W = {v ∈ Ȟ such that v = 0 a.e. in D \ Ωu},
which is a closed subspace of Ȟ. By the Lax-Milgram theorem, the problem
∫

D
∇Φ · ∇v +

∫

D

∫

D
k(x, z, x′, z′)Φ(x, z)v(x′, z′)dxdzdx′dz′ =

∫

D
v ∀v ∈W (4.8)

has a unique solution Φ ∈W . Now let v ∈W and denote vt = u+t(v−(1/V )(
∫

D v)u).
We have vt ∈ Ca

V , so J(u) ≤ J(vt). By letting t tend to 0, we find that
∫

D
∇u · ∇v +

∫

D

∫

D
k(x, z, x′, z′)u(x, z)v(x′, z′)dxdzdx′dz′ = β

∫

D
v (4.9)

for all v ∈ W , for some β ∈ R independent of v. On choosing v = u in (4.9), we see
that β > 0; moreover, by uniqueness of Φ, we have u = βΦ. Therefore, it is sufficient
to show that Φ is nonnegative.

On choosing v = Φ in (4.8), and using the Poincaré inequality (4.5), we obtain

‖∇Φ‖2L2(D) ≤
∫

D
Φ ≤ |Ωu|1/2‖Φ‖L2(D) ≤ CPa‖∇Φ‖L2(D),

that is ‖∇Φ‖L2(D) ≤ CPa. Thus,
∥

∥

∥

∥

∫

D
k(·, ·, x′, z′)Φ(x′, z′)dx′dz′

∥

∥

∥

∥

L∞(D)

≤ ‖k‖L∞(D×D)|Ωu|1/2‖Φ‖L2(D)

≤ ‖k‖L∞(D×D)C
2
Pa

2.
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Now, we choose v = Φ− in (4.8) and we use this L∞ estimate. This yields

−
∫

D
|∇Φ−|2 =

∫

D
Φ− −

∫

D

∫

D
k(x, z, x′, z′)Φ(x′, z′)Φ−(x, z)dxdzdx′dz′

≥
∫

D
Φ−(1− ‖k‖L∞(D×D)C

2
Pa

2).

If the smallness assumption on ‖k‖L∞(D×D) is satisfied, then the right-hand side

above is nonnegative, and this shows that Φ− = 0. The proof is complete. �

5. Penalized version of the problem

In this section, we introduce a penalized version of (Pa
V ) and some immediate

consequences. This is a first step for the proof of Hölder continuity. Our proof is
adapted from [9].

Throughout Section 5, u denotes a (not necessarily nonnegative) solution of (Pa
V ).

We first penalize the volume constraint.

Lemma 5.1. There exists λ1 > 0 such that

∀v ∈ Ȟ such that |Ωv| ≤ a, J(u) ≤ J(v) + λ1

∣

∣

∣

∣

∫

D
v − V

∣

∣

∣

∣

. (5.1)

Moreover, we can choose λ1 = 3V C0(D, a, q, ‖k‖Lq(D×D)) where C0 is as in (4.2).

Proof. We introduce Jλ1(v) = J(v) + λ1
∣

∣

∫

D v − V
∣

∣ and we consider the problem

uλ1 ∈ Ȟ, |Ωuλ1
| ≤ a, and ∀v ∈ Ȟ such that |Ωv| ≤ a, Jλ1(uλ1) ≤ Jλ1(v). (5.2)

We will show that for λ1 large enough the solution of this problem satisfies
∫

D uλ1 =
V , so that we have,

Jλ1(uλ1) = J(uλ1) ≤ Jλ1(u) = J(u).

But, by the definition of u, we also have J(u) ≤ J(uλ1), so that u satisfies (5.2).
By arguing as in the proof of Theorem 3.3, we first note that problem (5.2) has a

solution uλ1 . We assume λ1 > J(u)/V so that
∫

D uλ1 > 0 otherwise

Jλ1(uλ1) ≥ λ1V > J(u) ≥ Jλ1(uλ1).

Next, we write uλ1 = sūλ1 with s = (
∫

D uλ1)/V ∈ R+ so that ūλ1 ∈ Ȟ with
∫

D ūλ1 = V and |Ωūλ1
| ≤ a. We have s ≤ 1 otherwise

Jλ1(uλ1) = Jλ1(sūλ1) ≥ s2J(ūλ1) ≥ s2J(u) > J(u) = Jλ1(u).

For s ∈ [0, 1] we have

Jλ1(uλ1) = Jλ1(sūλ1) = s2J(ūλ1) + λ1V (1− s) ≥ s2J(u) + λ1V (1− s).

Let g(s) = s2J(u) + λ1V (1 − s). Since g′(s) = 2sJ(u) − λ1V , for λ1 > 2J(u)/V ,
we have g′(s) < 0 on [0, 1], so that g has a strict minimizer on [0, 1] at s = 1, with
g(1) = J(u). This shows that uλ1 = ūλ1 and concludes the proof of the lemma. �

Theorem 5.2. There exists λ2 > 0 such that

∀v ∈ Ȟ, J(u) ≤ J(v) + λ1

∣

∣

∣

∣

∫

D
v − V

∣

∣

∣

∣

+ λ2 (|Ωv| − a)+ , (5.3)
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where λ1 is chosen as in Lemma 5.1, and λ2 can be chosen as

λ2 = V 2C1(D, a, q, ‖k‖Lq (D×D)).

Proof. We introduce

Jλ1,λ2(v) = J(v) + λ1

∣

∣

∣

∣

∫

D
v − V

∣

∣

∣

∣

+ λ2 (|Ωv| − a)+ ,

where λ2 will be determined below. We consider the problem

uλ1,λ2 ∈ Ȟ, and ∀v ∈ Ȟ, Jλ1,λ2(uλ1,λ2) ≤ Jλ1,λ2(v). (5.4)

We will show that the solution of this problem satisfies |Ωuλ1,λ2
| ≤ a for λ2 large

enough, so that we have

Jλ1,λ2(uλ1,λ2) = Jλ1(uλ1,λ2) ≤ Jλ1,λ2(u) = Jλ1(u).

By Lemma 5.1, Jλ1(u) ≤ Jλ1(uλ1,λ2). Therefore, Jλ1(u) = Jλ1(uλ1,λ2), so that u
by (5.4), u satisfies (5.3).

By arguing as in the proof of Theorem 3.3, we first note that problem (5.4) has
a solution uλ1,λ2 . Assume that |Ωuλ1,λ2

| > a. Then, for t > 0 small enough, the
function

ut = (uλ1,λ2 − t)+ − (uλ1,λ2 + t)−

also satisfies |Ωut | > a. Therefore, we may write

J(uλ1,λ2) + λ1

∣

∣

∣

∣

∫

D
uλ1,λ2 − V

∣

∣

∣

∣

+ λ2

(

|Ωuλ1,λ2
| − a

)

≤ J(ut) + λ1

∣

∣

∣

∣

∫

D
ut − V

∣

∣

∣

∣

+ λ2 (|Ωut | − a) .

By writing

ut(x, z)ut(x′, z′)− uλ1,λ2(x, z)uλ1,λ2(x
′, z′) = (ut(x, z) − uλ1,λ2(x, z))u

t(x′, z′)

+uλ1,λ2(x, z)(u
t(x′, z′)− uλ1,λ2(x

′, z′)),

and using (3.6), it follows that
∫

[0<|uλ1,λ2
|<t]

|∇uλ1,λ2 |2 + λ2 |[0 < |uλ1,λ2 | < t]|

≤ tλ1|D|+ 2t‖k‖Lq(D×D)‖uλ1,λ2‖Lq′ (D)|D|1/q′ . (5.5)

We have
∫

D
|∇uλ1,λ2 |2 ≤ Jλ1,λ2(uλ1,λ2) ≤ Jλ1,λ2(u) = J(u),

so that, by the Sobolev imbedding H1
0 (D) ⊂ Lq′(D), ‖uλ1,λ2‖Lq′ (D) is bounded by

a constant independent of λ1 and λ2 (see (4.2)). Using the coarea formula (see
e.g. [15, 18]), we may rewrite (5.5) as

∫ t

0
ds

∫

[|uλ1,λ2
|=s]

[

|∇uλ1,λ2 |+
λ2

|∇uλ1,λ2 |

]

dH1 ≤ V Kt,
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where H1 denotes the 1-Hausdorff measure and K = K(D, a, q, ‖k‖Lq (D×D)). But

the function t 7→ t+ λ2/t is bounded from below on (0,∞) by 2
√
λ2. It follows that

2
√

λ2

∫ t

0
ds

∫

[|uλ1,λ2
|=s]

dH1 ≤ V Kt.

Next, we plug the isoperimetric inequality [16]
∫

[|uλ1,λ2
|=s]

dH1 ≥ 2
√
π|[|uλ1,λ2 | > s]|1/2.

Dividing by t and letting t decrease to zero, we finally obtain

4
√
π
√

λ2a
1/2 ≤ V K.

Thus, “|Ωuλ1,λ2
| > a” is impossible when λ2 > λ⋆2 where 4

√
π
√

λ⋆2a
1/2 = V K. We

can choose for instance λ2 = 2λ⋆2 = V 2C1(D, a, q, ‖k‖Lq (D×D)). �

Theorem 5.2 has the two following consequences.

Lemma 5.3. For all ϕ ∈ C∞
c (D) ∩ Ȟ,

∣

∣

∣

∣

〈∆u−
∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′, ϕ〉

∣

∣

∣

∣

≤
√

λ2

(
∫

D
|∇ϕ|2 +

∫

D

∫

D
k(x, z, x′, z′)ϕ(x, z)ϕ(x′, z′)dxdzdx′dz′

)1/2

|Ωϕ|1/2

+
λ1
2

∣

∣

∣

∣

∫

D
ϕ

∣

∣

∣

∣

. (5.6)

Proof. We apply (5.3) with v = u+ tϕ, t > 0. This gives

2〈∆u−
∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′, ϕ〉 ≤ t

∫

D
|∇ϕ|2

+t

∫

D

∫

D
k(x, z, x′, z′)ϕ(x, z)ϕ(x′, z′)dxdzdx′dz′ + λ1

∣

∣

∣

∣

∫

D
ϕ

∣

∣

∣

∣

+
λ2
t
|Ωϕ|.

Minimizing over t > 0 and changing ϕ into −ϕ yield (5.6). �

The following result shows the regularity of u in the “interior” of Ωu.

Lemma 5.4. Let B be a ball included in D such that |B ∩ Ωc
u| = 0. Then there

exists a constant λB with |λB | ≤ λ1/2 such that

−∆u+

∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′ = λB in B.

Proof. Let ψ ∈ C∞
c (B) and let ψ0 ∈ C∞

c (B) such that
∫

B ψ0 = 1. We set

ϕ =
(ψ − ψ0

∫

B ψ) + (ψ̌ − ψ̌0

∫

B ψ)

2
,

so that ϕ ∈ C∞
c (D)∩ Ȟ and

∫

D ϕ = 0. We apply the definition of u in problem (Pa
V )

with v = u+ tϕ, t 6= 0. Since |B ∩ Ωc
u| = 0 and (by symmetry of Ωu) |B̌ ∩ Ωc

u| = 0,
we have |Ωv| ≤ |Ωu| ≤ a. Letting t→ 0+ and t→ 0−, we obtain

〈∆u−
∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′, ϕ〉 = 0.
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Since the distribution ∆u−
∫

D k(·, ·, x′, z′)u(x′, z′)dx′dz′ is symmetric, we also have

〈∆u−
∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′, (ψ − ψ̌)/2〉 = 0.

Writing ψ = ϕ+ (ψ − ψ̌)/2 + (ψ0 + ψ̌0)
∫

D ψ/2, we obtain

〈∆u−
∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′, ψ〉 = −λB

∫

B
ψ,

with

λB = 〈−∆u+

∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′, (ψ0 + ψ̌0)/2〉.

Now, we apply the penalized version (5.1) with v = u + t(ψ0 + ψ̌0)/2, t 6= 0. A
computation similar to that of Lemma 5.3 yields |λB | ≤ (λ1/2)|

∫

D ψ0| = λ1/2. �

6. Hölder and Lipschitz continuity of the optimal solution

Theorem 6.1. Let u solve problem (Pa
V ) with k ∈ Lq(D ×D), q > 1, and assume

that u is nonnegative.

1. If q ∈ (1, 2), then u is locally α-Hölder continuous on D with α = 2/q′.
2. If q = 2, then u is locally α-Hölder continuous on D for all α < 1.
3. If q > 2, then u is locally Lipschitz continuous on D.

The proof is based on the classical approach of Alt and Caffarelli [4] (see also [2, 20]
and [23, Chapter 3]). We mimic the case of the Dirichlet energy with a nonhomo-
geneity in [9, 30], taking also into account the volume constraint, the quadratic wave
resistance term and the symmetry about the x-axis.

Throughout Section 6, u denotes a nonnegative solution of (Pa
V ) for some kernel

k ∈ Lq(D ×D), with q ∈ (1,+∞], and q′ = q/(q − 1) ∈ [1,+∞).

Lemma 6.2. There exist a nonnegative and symmetric measure µs and a constant
λs with |λs| ≤ λ1/2 such that

∆u− χ[u>0]

∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′ = µs + λsχ[u>0] in D, (6.1)

in the sense of distributions.

Proof. We define pn : R → R by

∀r ≤ 0, pn(r) = 0; ∀r ∈ [0, 1/n], pn(r) = nr; ∀r ≥ 1/n, pn(r) = 1,

and qn(r) =
∫ r
0 pn(s)ds. Let ψ ∈ C∞

c (D) and define

ϕn = ψpn(u)−
(
∫

D
ψpn(u)

)

pn(u)
∫

D pn(u)
.

Since pn(u) → χ[u>0] a.e. in D and 0 ≤ pn(u) ≤ χ[u>0], we have pn(u) → χ[u>0] in

L1(D). Thus,
∫

D pn(u) → |Ωu| > 0 so ϕn is well-defined for n large enough, with
∫

D ϕn = 0. We apply the definition of u with v = u + t(ϕn + ϕ̌n)/2 (note that
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|Ωv| ≤ |Ωu| and
∫

D v = V ). Dividing by t and letting t tend to 0 give
∫

D
pn(u)∇(

ψ + ψ̌

2
)∇u+

(ψ + ψ̌)

2
p′n(u)|∇u|2

+

∫

D

∫

D
k(x, z, x′, z′)

(ψ + ψ̌)(x, z)

2
pn(u(x, z))u(x

′, z′)dxdzdx′dz′

= αn

∫

D
pn(u)ψ,

with

αn =
1

∫

D pn(u)

[
∫

D
p′n(u)|∇u|2 +

∫

D

∫

D
k(x, z, x′, z′)pn(u)u(x

′, z′)dxdzdx′dz′
]

.

Writing ψ = (ψ + ψ̌)/2 + (ψ − ψ̌)/2 and using the symmetry of u, this reads

−∆[qn(u)] + n|∇u|2χ[0<u<1/n] + pn(u)

∫

D
k(·, ·, x′, z′)u(x′, z′)dx′dz′ = αnpn

in D, in the sense of distributions. Denote f =
∫

D k(·, ·, x′, z′)u(x′, z′)dx′dz′, so that

f ∈ Lq(D) (cf. (3.6)). As n tends to ∞, qn(u) tends to u in L2(D), pn(u)f tends to
fχ[u>0] in L

q(D) and we will show that the sequence of real numbers (αn) is bounded.
This proves that, up to a subsequence, the sequence of nonnegative functions µn =
n|∇u|2χ[0<u<1/n] converges in the sense of distributions to a distribution µs, and

the sequence (αnpn) converges in L1(D) to −λsχ[χ>0] for some constant λs. The
distribution µs is nonnegative, and so is a nonnegative Radon measure, and we
have (6.1) as claimed.

It remains to prove that (αn) is bounded. We apply the penalized version (5.1)
with v = u + tpn(u)/

∫

D pn(u) (note that |Ωv| ≤ |Ωu|). Dividing by t and letting t
tend to 0 yield |αn| ≤ λ1/2, and the claim is proved. �

From the preceding lemma, we have −∆u ≤ |f |+ |λ1|/2 with

f =

∫

D
k(·, ·, x′, z′, )u(x′, z′)dx′dz′ ∈ Lq(D), (6.2)

whence comes the following L∞ estimate (see for instance [17, Theorem 8.16]):

Lemma 6.3. The function u belongs to L∞(D), and

‖u‖L∞(D) ≤ V C(D, a, q, ‖k‖Lq (D×D)).

Proof. The L∞ estimate reads ‖u‖L∞(D) ≤ C(|D|, q)
(

‖f‖Lq(D) + ‖λ1‖Lq(D)

)

. More-
over, by (3.7),

‖f‖Lq(D) ≤ ‖k‖Lq(D×D)CS‖u‖H1
0
≤ V ‖k‖Lq(D×D)CSC

1/2
0 ,

where C0 is as in (4.2). On the other hand,

‖λ1‖Lq(D) = |λ1||D|1/q = 3V C0|D|1/q.
�

Lemma 6.4. There exists a constant C = C(D, a, q, ‖k‖Lq(D×D), V ) such that for
any ball B((x0, z0), r) ⊂ D with r ≤ 1,

|∆u|(B(x0, z0), r/2)) ≤ Crmin{2/q′,1}.



REGULARITY OF OPTIMAL SHIP FORMS 19

Proof. Let B((x0, z0), r) ⊂ D with r ≤ 1 and consider ψ ∈ C∞
c (B((x0, z0), r)) such

that

ψ = 1 in B((x0, z0), r/2), ψ = 0 out of B((x0, z0), r),

0 ≤ ψ ≤ 1, ‖∇ψ‖L∞ ≤ C2

r
.

We apply Lemma 5.3 with ϕ = (ψ + ψ̌)/2. We obtain

|〈∆u− f, ϕ〉| ≤
√

λ2

(

πC2
2 + ‖k‖Lq(D×D)π

2/q′r4/q
′

)1/2 √
2πr +

λ1
2
πr2 ≤ C3r, (6.3)

where f is defined by (6.2). Using (6.1), we note that

|∆u|(B((x0, z0), r/2)) ≤ 〈|∆u|, ψ〉 ≤ 〈µs, ψ〉+
λ1
2
πr2 + ‖f‖Lq(D)π

1/q′r2/q
′

.

But, by (6.1), we have µs = (∆u−f)+χ[u=0]f−λsχ[u>0], and (∆u−f) is symmetric
so that 〈∆u− f, ψ〉 = 〈∆u− f, ϕ〉. Thus, by (6.3),

〈µs, ψ〉 ≤ C3r + |λ1|πr2 + ‖f‖Lq(D)π
1/q′r2/q

′

,

and the lemma is proved with C = C3 + 2|λ1|π + 2‖f‖Lq(D)π
1/q′ . We can note that

C depends linearly on V , i.e. C = V C ′(D, a, q, ‖k‖Lq(D×D)). �

Integrating the result of the previous lemma, we find that

Lemma 6.5. If r ≤ 1 and B((x0, z0), 2r) ⊂ D, we have
∫ r

0
s−1

∫

B((x0,z0),s)
d (|∆u|) ds ≤ Crmin{2/q′,1}.

Using now Remark B.2, we can take the following representation of u:

∀(x, z) ∈ D, u(x, z) = lim
r→0

−
∫

∂B((x,z),r)
u.

One verifies that according to this particular definition, we also have

∀(x, z) ∈ D, u(x, z) = lim
r→0

−
∫

B((x,z),r)
u.

In what follows, ∂Ωu will always denote the measure-theoretic boundary of Ωu, i.e,

∂Ωu = {(x, z) ∈ D : ∀r > 0, 0 < |B(x, r) ∩ Ωu| < |B(x, r)|}.
Moreover, let us define d((x, z)) = d((x, z), ∂Ωu). The measure-theoretic interior of
Ωu is denoted

Ωint
u = {(x, z) ∈ D : ∃r > 0, B(x, r) ⊂ D, |B(x, r) ∩Ωc

u| = 0}. (6.4)

Note that Ωint
u is open. First of all, we show that u is zero outside Ωint

u .

Lemma 6.6. Let us take (x0, z0) ∈ D such that |B((x0, z0), r) ∩ Ωc
u| > 0 for all

r > 0. Then u(x0, z0) = 0.

Proof. Consider r > 0 such that B((x0, z0), 4r) ⊂ D and (x1, z1) ∈ B((x0, z0), r)
such that u(x1, z1) = 0 (such a point exists because u = 0 almost everywhere outside
Ωu). Let p ∈ (1, 2) such that p ≤ q. From Lemma B.3 (ii), we have

‖u‖L∞(B(x0,z0),r) ≤ ‖u‖L∞(B((x1,z1),2r) ≤ C

(

(3r)2/p
′

+−
∫

∂B((x1,z1),3r)
u

)

.
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But, thanks to Lemmas B.1 and 6.5,

−
∫

∂B((x1,z1),3r)
u = −

∫

∂B((x1,z1),3r)
u− u(x1, z1) ≤ Crmin{2/q′,1}

whence ‖u‖L∞(B(x0,z0),r) ≤ Cr2/p
′

. Finally,

0 ≤ u(x0, z0) = lim
r→0

−
∫

B((x0,z0),r)
u ≤ lim inf

r→0
‖u‖L∞(B(x0,z0),r) = 0.

�

Proof of the Hölder continuity. Let δ ∈ (0, 13). Let us call

Dδ = {(x, z) ∈ D : d((x, z), ∂D) ≥ 6δ}
(where ∂D = D \ D is the topological boundary of D in R

2). In the following,
q ∈ (1, 2), α = 2/q′ ∈ (0, 1), and f is defined by (6.2).

Lemma 6.7. There exists Cδ > 0 such that for any (x0, z0) ∈ Dδ, u(x0, z0) ≤
Cδd(x0, z0)

α.

Proof. Take (x0, z0) ∈ Dδ and denote r0 = d(x0, z0). If r0 = 0, then (x0, z0) belongs
to ∂Ωu and so u(x0, z0) = 0 by Lemma 6.6. Now suppose r0 ≥ δ. Then, since u is
bounded,

u(x0, z0) ≤
‖u‖L∞(D)

δα
rα0 ≤ Cδr

α
0 .

Finally, suppose r0 ∈ (0, δ) and take (x1, z1) ∈ ∂Ωu such that r0 = |(x0, z0)−(x1, z1)|
(such a point exists because Ωu is a closed subset of D). In Lemma 6.6, we saw that
u(x1, z1) = 0 so that, applying Lemmas B.1 and 6.5, we get

−
∫

∂B((x1,z1),3r0)
u = −

∫

∂B((x1,z1),3r0)
u− u(x1, z1)

= (2π)−1

∫ 3r0

0
s−1

∫

B((x1,z1),s)
d(∆u)ds ≤ C(3r0)

α.

Applying point (ii) of Lemma B.3 with p = q and F = χ[u>0]f + λsχ[u>0] ∈ Lq(D)
(cf. (6.1) and (6.2)), we get

‖u‖L∞(B((x0,z0),r0)) ≤ ‖u‖L∞(B((x1,z1),2r0)) ≤ C

[

(3r0)
α +−

∫

∂B((x1,z1),3r0)
u

]

,

and so u(x0, z0) ≤ Cd(x0, z0)
α as claimed. �

Lemma 6.8. There exists C ′
δ such that for any (x0, z0) ∈ Dδ with d(x0, z0) > 0, we

have |u|
α,B((x0,z0),

d(x0,z0)
4

)
≤ C ′

δ.

Proof. Let r0 = d(x0, z0). First suppose that |B((x0, z0), r0) ∩ Ωu| = 0. Thanks to
Lemma 6.6, we know that u ≡ 0 in B((x0, z0), r0). In particular,

|u|α,B((x0 ,z0),
r0
4
) = 0.

Now suppose that |B((x0, z0), r0)∩Ωc
u| = 0 (this is the only other possibility since

(x0, z0) 6∈ ∂Ωu). We have −∆u = λB((x0,z0),r0) − f by Lemma 5.4, where f ∈ Lq(D)
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is defined by (6.2) and |λB((x0,z0),r0)| ≤ λ1. Applying point (i) of Lemma B.3 and
Lemma 6.7, we obtain

|u|α,B((x0,z0),
r0
4
) ≤ C

[

1 + r−α
0 ‖u‖L∞(B((x0,z0),

r0
2
))

]

≤ C ′
δ,

since ‖u‖L∞(B((x0,z0),
r0
2
)) ≤ Cδ(3r0/2)

α by Lemma 6.7. �

To conclude the proof of the Hölder continuity, take (x, z) and (x′, z′) in Dδ, and
assume first that (x, z) or (x′, z′) belong to (Ωint

u )c (cf (6.4)). Then Lemmas 6.6
and 6.7 show that

|u(x, z) − u(x′, z′)| ≤ Cδ|(x, z) − (x′, z′)|α.
Now suppose both (x, z) and (x′, z′) belong to Ωint

u . First suppose |(x, z) −
(x′, z′)| < d(x, z)/4. By Lemma 6.8,

|u(x, z) − u(x′, z′)| ≤ C ′
δ|(x, z) − (x′, z′)|α.

If |(x, z) − (x′, z′)| < d(x′, z′)/4, the result is the same by symmetry.
Now if |(x, z) − (x′, z′)| ≥ max{d(x, z), d(x′ , z′)}/4, using Lemma 6.7,

|u(x, z) − u(x′, z′)| ≤ 2max{u(x, z), u(x′, z′)}
≤ 2Cδ max{d(x, z)α, d(x′, z′)α}
≤ 2Cδ4

α|(x, z) − (x′, z′)|α.
And so there exists C > 0 such that for any (x, z), (x′, z′) in Dδ,

|u(x, z) − u(x′, z′)| ≤ C|(x, z)− (x′, z′)|α.
The proof is complete in the case 1 < q < 2. The case q = 2 is an immediate
consequence. �

Proof of the Lipschitz continuity. The proof is similar to the proof of Hölder con-
tinuity. We use the same notations as previously, except that q > 2 and α = 1.
Then Lemmas 6.7 and 6.8 are valid: use the same proof, except that Lemma B.3 is
replaced by Lemma B.4. The conclusion follows. �

7. Application to Michell’s wave resistance

7.1. Existence of an optimal ship. In view of (2.11), the normalized wave resis-
tance functional associated to Michell’s formula reads

Jwave(u) =
4ν2

πCF (ν)

∫ ∞

1
|Su(λ)|2

λ2√
λ2 − 1

dλ, (7.1)

with (cf. (2.2)-(2.3))

Su(λ) =

∫

D

∂u

∂x
(x, z)e−iλνxe−λ2ν|z|dxdz. (7.2)

Here, ν = g/U2 is the Kelvin wave number (in m−1), and we assume that that CF

is a positive and continuous function defined on (0,+∞) (CF has no dimension; it
is typically a positive constant). The normalized total resistance is J(u) = J0(u) +
Jwave(u), cf. (3.9).

We note that for a function u ∈ Ȟ, we may integrate by parts with respect to x,
and we obtain

Su(λ) = iλν

∫

D
u(x, z)e−iλνxe−λ2ν|z|dxdz. (7.3)
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In Appendix A (Theorem A.1 and Corollary A.2), we show that Michell’s wave
resistance can be expressed in terms of a kernel kν which belongs to Lq(D×D) for all
1 ≤ q < 5/4, and which satisfies (3.4)-(3.5). By (7.1), kν also satisfies (3.3). Thus,
by Theorem 3.3, problem (Pa

V ) has a solution u ∈ Ca
V such that J(u) <∞.

Note that every translated function ux0(x, z) = u(x − x0, z) is also a solution,
for every real number x0 such that ux0 belongs to Ca

V . Indeed, Michell’s functional
Jwave is invariant by translation along the x-axis (use (A.2)), and J0 as well.

7.2. Regularity of the optimal ship. We recall that Jwave is Michell’s normalized
wave resistance (7.1)-(7.2), which can be expressed in terms of a kernel kν , as men-
tioned above, and we set J = J0 + Jwave. Putting together Theorems 3.3 and 6.1,
we obtain:

Theorem 7.1. Let u be a solution of problem (Pa
V ). If u is nonnegative, then u is

locally α-Hölder continuous on D for all α ∈ (0, 2/5).

Remark 7.2. We do not know whether u is nonnegative in general. Numerical
simulations indicate that this nonnegativity assumption is reasonable, at least for
a large set of parameters ν and CF (ν) [13]. However, the 1d-analysis of Krein and
Sizov [34] suggests that for some values of the parameters, umay attain some negative
values.

Under the free surface, the regularity of the optimal ship is much better. Let
D⋆ = {(x, z) ∈ D : z 6= 0} = D ∩ (R× R

⋆) (where R
⋆ = R \ {0}). We have

Theorem 7.3. Let the assumptions of Theorem 7.1 be satisfied. Then u is locally
Lipschitz continous on D⋆.

Proof. We adapt the proof of Lipschitz continuity in the following way. For δ1 > 0,
we denote Dδ1 = {(x, z) ∈ D : |z| > δ1}. Then, using (A.4), we first note that the
function f defined by (6.2) belongs to L∞(Dδ1) with

‖f‖L∞(Dδ1 ) ≤
4ν4

πCF (ν)
I(νδ1)‖u‖L1(D).

Taking advantage that kν belongs to L∞(Dδ1 ×Dδ1), we see that Lemma 6.4 and its
proof are valid with D replaced by Dδ1 and q′ = 1. Namely, there exists a constant
C such that for any ball B((x0, z0), r) ⊂ Dδ1 with r ≤ 1,

|∆u|(B((x0, z0), r/2)) ≤ Cr.

As a consequence, Lemma 6.5 is also valid with D replaced by Dδ1 and q′ = 1.
Lemma 6.6 is unchanged. Let δ ∈ (0, 1/3) and let

Dδ1
δ = {(x, z) ∈ Dδ1 : d((x, z), ∂Dδ1) ≥ 6δ}

(where ∂Dδ1) = Dδ1 \Dδ1 is the topological boundary of Dδ1 in R
2). We set α = 1.

Then Lemmas 6.7 and 6.8, as well as their proofs, are valid with Dδ replaced by Dδ1
δ .

From these Lemmas, we conclude as previously that u is Lipschitz continuous on
Dδ1

δ . Now, if K is a compact subset of D⋆, then K ⊂ Dδ1 for δ1 > 0 small enough;

since Dδ1 is open, K ⊂ Dδ1
δ for δ > 0 small enough. Thus, u is Lipschitz continuous

on K, and the proof is complete. �

Using analycity, we can also note:
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Theorem 7.4. Let u solve problem (Pa
V ). If D+ = {(x, z) ∈ D : z > 0} is

connected, then the constraint |Ωu| ≤ a is saturated (cf. (4.4)), and so |Ωu| = a.

Proof. Let u⋆ solve (4.3) in D. By Proposition A.4 and elliptic regularity (see,
e.g., [26]), u⋆ is real analytic in D+. We may therefore apply Proposition 4.6. �

Remark 7.5. By analogy with the Dirichlet energy with a nonhomogeneity [4, 8, 20],
we expect that Theorems 7.3 and 7.4 are the main first step in proving the regularity
of the optimal set Ωu itself. Namely, we believe that ∂Ωu, the boundary of Ωu relative
to D, is Lipschitz in D⋆, and most likely analytic [27] in D⋆. However, it is not clear
what happens at the intersection of ∂Ωu with the x-axis, since Michell’s kernel is
only L5/4−ε near the x-axis. There is no obvious hydrodynamic explanation to this
technical limitation near the water/air interface.

We obtain a complete result when the bounding box D is away from the free
surface.

Proposition 7.6. Assume that D ⊂ {(x, z) ∈ R
2 : |z| > δ} for some δ > 0, and

that CF (ν)
−1 has at most a polynomial growth as ν tends to +∞. Then for ν large

enough, any solution u of problem (Pa
V ) is nonnegative, satisfies |Ωu| = a, and is

locally Lipschitz continuous on D.

Proof. By Proposition A.3, for ν large enough, we have

‖kν‖L∞(D×D) ≤ (CPa)
−2,

so that u is nonnegative (Proposition 4.8) and satisfies |Ωu| = a (Proposition 4.5).
Point 3 of Theorem 6.1 shows that u is locally Lipschitz continuons on D. �

Remark 7.7. We stress that for all the results in this section, we require no reg-
ularity on the boundary ∂D of the bounding box D. However, some regularity is
needed to establish the equivalence between (Pa

V ) and the initial problem (Qa,+
U,V ) of

Section 2.3, formulated in the lower half-plane.
More precisely, assume that D is a disc centered on the x-axis, or a rectangle with

sides parallel to the axis, as in Figure 2 (right). Let D− = {(x, z) ∈ D : z < 0},
Γ− = ∂D ∩ {(x, z) : z < 0} and define the Hilbert space

H(D−) = {f ∈ H1(D−) : f = 0 on Γ− in the sense of traces}.
We use the normalized total resistance Rnorm

total defined by (2.11) (with ω replaced by

D−). For a fixed speed U , problem (Qa,+
U,V ) can be formulated rigorously as

(Qa
U,V )

{

Find f⋆ ∈ Ca
V such that

Rnorm
total (f

⋆) ≤ Rnorm
total (f), ∀f ∈ Ca

V ,

where Ca
V = {f ∈ H(D−) :

∫

D− fdxdz = V/2, |Ωf | ≤ a/2} (we omit here the
nonnegativity constraint on f , cf. Remark 3.1). For any f ∈ H(D−), let u = Lf
denote the even symmetric of f , i.e.

u(x, z) = f(x, z) if z < 0 and u(x, z) = f(x,−z) if z > 0.

Thanks to the regularity of ∂D, the linear map f 7→ Lf = u is an isomorphism from
H(D−) onto Ȟ. Moreover, L is a bijection from Ca

V onto Ca
V , and for all f ∈ H(D−),

Rnorm
total (f) = 4|D−| + J(Lf), where J = J0 + Jwave and Jwave is given by Michell’s

kernel (7.1). Thus, f⋆ is a solution of (Qa
U,V ) if and only if u⋆ = Lf⋆ is a solution
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of (Pa
V ). This equivalence holds for any bounded and symmetric open set D of R2

which has a Lipschitz continuous boundary.

8. A numerical illustration

As an illustration, we present here the numerical results obtained by a gradient
algorithm as described in [3, Section 6.5]. We used the Freefem++ software [22] for
the algorithm and the Matlab c© software for the visualization.

We work with the formulation (Qa,+
U,V ) of the problem (cf. Section 2.3), associated

to the set functional Rtotal : ω 7→ Rtotal(f
U,V
ω ). Starting from an initial domain (ω0)

in the lower half-plane, the algorithm computes a sequence of domains (ωk)k∈N in
the lower half-plane such that Rtotal(ωk) decreases at every step k. The sequence of
domains (ωk) is expected to converge to an optimal domain ω⋆. The bounding box
is not taken into account in our algorithm, so we also expect ω⋆ to be a minimizer
among subsets of the lower half-plane.

At every step k, the domain ωk+1 is obtained from ωk by computing a displacement

field, which requires (i) finding the optimal hull fk = fU,Vωk , (ii) solving a regularizing
elliptic boundary value problem based on the shape derivative of the set functional
Rtotal at ωk, and (iii) computing a step size. In order to deal with the area con-
straint |ω| = a/2, a Lagrange multiplier is introduced. With this approach, the area
constraint is satisfied only at convergence [3].

For the space discretization of fk, we use continuous P 1 finite elements. A linear

elliptic problem similar to (3.11) is solved on ωk and the nonnegativity of fU,Vωk is
checked numerically. The displacement field is computed on the same mesh as fk,
also with continuous P 1 finite elements. At every step k, a remeshing is performed.

We stress that the integrals I1 and I2 (see (2.2)-(2.3)) are computed exacly (up
to computer accuracy), whereas the integral (2.1) involving the parameter λ is com-
puted by truncating the interval [1,+∞] into [1,Λ] with Λ large, and by using a
numerical integration [14]. In particular, the kernel which is used for the numerical
computation belongs to L∞(D ×D): in this case, we have optimal regularity of the
optimal shape (Theorem 6.1 with q > 2).

The parameters are ρ = 1000 kg·m−3, g = 9.81 m·s−2, U = 0.3
√
4.4g ≈ 1.97 m·s−1

and CF = 0.01. The initial domain ω0 is the half-ellipse

ω0 = {(x, z) ∈ R× R− : (x/1.1)2 + (z/0.3)2 ≤ 1},
where the lengths 1.1 and 0.3 are expressed in meters.

Remark 8.1. These parameters can correspond to an experiment in a towing tank,
but we note that a scaling invariance holds for our problem, allowing possible com-
parison with real world ships. Namely, if the lengths x, z and f are multiplied by
a (dimensionless) parameter α (of order 100 typically), and if U is multiplied by√
α, then the normalized total resistance (2.11) is multiplied by α2, since each term

in (2.11) is multiplied by α2.

Figure 3 shows the initial domain ω0 and the domain ω125 at convergence, together
with the values of the optimal hulls f0 and f125. The optimal hull f125 (completed
by symmetry) is represented in 3d on Figure 4.

We check the convergence by seeing that Rk = Rtotal(ωk) stays constant for
k ≥ 60, up to a small error. Namely, we have Rk ∈ [8.88, 9.05] for iterations
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k ∈ {60, 61, . . . , 423}. Thus, Rk is constant for k ≥ 60 with a relative error less
than 2%; this error can be attributed to the space discretization and to our remesh-
ing strategy.

Let Ak = |ωk| denote the area of ωk. Then we have A0 ≈ 0.518, A125 ≈ 0.714 and
Ak ∈ [0.711, 0.715] for iterations k ∈ {60, 61, . . . , 423}. Thus, the area constraint is
satisfied at convergence with a relative error less than 0.6%.

We note that R0 ≈ 48.6 and R125 ≈ 8.94, so there is a big decrease of the total
resistance. Moreover, the length of the optimal hull (2.2 m) is greater than the length
of the initial hull (however, for a precise comparison, the change in the area should
be taken into account).

Figure 3. Initial domain ω0 (top), converged domain ω125 (bottom)
and color maps of the optimized hull function

A. Michell’s wave resistance kernel

From (7.1) and (7.3), by (formally) inverting the integrals, we see that Michell’s
normalized wave resistance can be written

Jwave(u) =

∫

D×D
kν(x, z, x

′, z′)u(x, z)u(x′, z′)dxdzdx′dz′ (A.1)

where

kν(x, z, x
′, z′) =

4ν4

πCF (ν)
K(ν(x− x′), ν(|z|+ |z′|)), (A.2)

and

K(X,Z) =

∫ ∞

1
e−λ2Z cos(λX)

λ4√
λ2 − 1

dλ. (A.3)

This formal computation will be made rigorous below (see Corollary A.2). This
expression of Michell’s resistance in terms of a kernel kν is well-known [28], but to
the best of our knowledge, the results in Appendix A are new.

First notice that K is defined and continuous on R× (0,+∞) and

|K(X,Z)| ≤ I(Z) < +∞ (A.4)

for all (X,Z) ∈ R× (0,+∞), with

I(Z) =

∫ ∞

1
e−Zλ2 λ4√

λ2 − 1
dλ. (A.5)



26 JULIEN DAMBRINE AND MORGAN PIERRE

Figure 4. An optimal hull

In particular, kν is continuous on (R× R
⋆)2.

The following result is essential for the Hölder regularity of the optimal ship.

Theorem A.1. Michell’s normalized wave resistance kernel kν (A.2) belongs to
Lq(D ×D) for all 1 ≤ q < 5/4. Moreover, if D contains an open disc centered on

the x-axis, then kν does not belong to L5/4(D ×D).

Proof. It is sufficient to prove the assertion for a domain D of the form Dl = (−l, l)×
(−l, l) where l > 0 is arbitrary. Moreover, by the change of variable (x, z, x′, z′) →
(νx, νz, νx′, νz′) in (A.1)-(A.2), it will suffice to consider the case ν = 1. We write

K(X,Z) = I1(X,Z) + I2(X,Z) + I3(X,Z) + I4(X,Z), (A.6)

with

I1(X,Z) =

∫ 2

1
e−λ2Z cos(λX)

λ4√
λ2 − 1

dλ,

I2(X,Z) =

∫ ∞

2
e−λ2Z cos(λX)

(

λ4√
λ2 − 1

− λ3
)

dλ,

I3(X,Z) = −
∫ 2

0
e−λ2Z cos(λX)λ3dλ,

I4(X,Z) =

∫ ∞

0
e−λ2Z cos(λX)λ3dλ.

By Lebesgue’s dominated convergence theorem, I1 and I3 are continuous on R
2. We

will prove that (x, z, x′, z′) 7→ I2(x− x′, |z|+ |z′|) belongs to L5/4(Dl ×Dl) and that
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(x, z, x′, z′) 7→ I4(x − x′, |z| + |z′|) belongs to Lq(Dl ×Dl) for all 1 ≤ q < 5/4, but
does not belong to L5/4(Dl ×Dl). The theorem will then be proved.

By the mean value theorem, there exists C1 > 0 such that

0 ≤ 1√
1− u

− 1 ≤ C1u, ∀u ∈ [0, 1/4].

Thus, for all λ ≥ 2,

0 ≤ 1
√

1− 1/λ2
− 1 ≤ C1

λ2
,

and so

0 ≤ λ4√
λ2 − 1

− λ3 ≤ C1λ.

We obtain

|I2(X,Z)| ≤ C1

∫ ∞

0
e−λ2Zλdλ.

Performing the change of variable µ =
√
Zλ, we find

|I2(X,Z)| ≤
C1

Z

∫ ∞

0
e−µ2

µdµ ≤ C ′
1

Z
. (A.7)

Next, we notice that for q > 1, the integral
∫ l
0

∫ l
0(z + z′)−qdzdz′ is finite if and only

if q < 2. Indeed,
∫ l

0

∫ l

0
(z + z′)−qdzdz =

1

q − 1

∫ l

0
[z1−q − (z + l)1−q]dz (A.8)

≤ l2−q

(q − 1)(2 − q)
<∞ (A.9)

if q < 2, whereas the integral on the right-hand side of (A.8) is +∞ if q ≥ 2.
In particular, for q = 5/4, the function (x, z, x′, z′) 7→ 1/(|z| + |z′|) belongs to

L5/4(Dl ×Dl) since
∫

Dl×Dl

1

(|z| + |z′|)q dxdzdx
′dz′ = 16l2

∫ l

0

∫ l

0

1

(z + z′)q
dzdz′ <∞. (A.10)

By (A.7), the function (x, z, x′, z′) 7→ I2(x − x′, |z| + |z′|) belongs to L5/4(Dl ×Dl)
as well.

Concerning the term I4, we first perform the change of variable µ =
√
Zλ, so that

I4(X,Z) =
1

Z2
J

(

X√
Z

)

,

with J(t) =
∫∞
0 e−µ2

cos(tµ)µ3dµ. By Lebesgue’s dominated convergence theorem,
J is continuous on R; in particular, J is bounded on [−1, 1] by a constant C2.
Integration by parts yields

J(t) = −1

t

∫ ∞

0
sin(tµ)(3µ2 − 2µ4)e−µ2

dµ,

so that

|J(t)| ≤ 1

|t|

∫ ∞

0
(3µ2 + 2µ4)e−µ2

dµ =
C3

|t| ,
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for all t 6= 0. Let now q > 1. On performing the linear change of variable X = x−x′,
X ′ = x+ x′, we find that

∫

Dl×Dl

|I4(x− x′, |z| + |z′|)|qdxdzdx′dz′

≤ 2l

∫ l

−l

∫ l

−l

∫ 2l

−2l
|I4(X, |z| + |z′|)|qdXdzdz′

= 8l

∫ l

0

∫ l

0

∫ 2l

−2l
|I4(X, z + z′)|qdXdzdz′

= 8l

∫ l

0

∫ l

0

∫ 2l

−2l

1

(z + z′)2q

∣

∣

∣

∣

J

(

X√
z + z′

)
∣

∣

∣

∣

q

dXdzdz′.

Integration with respect to X yields
∫ 2l

−2l

∣

∣

∣

∣

J

(

X√
z + z′

)
∣

∣

∣

∣

dX ≤
∫

|X|≤
√
z+z′

∣

∣

∣

∣

J

(

X√
z + z′

)
∣

∣

∣

∣

dX

+

∫

√
z+z′≤|X|≤2l

∣

∣

∣

∣

J

(

X√
z + z′

)
∣

∣

∣

∣

dX

≤
∫

|X|≤
√
z+z′

Cq
2dX + 2

∫

√
z+z′≤X≤2l

Cq
3

√
z + z′

q

Xq
dX

≤ 2Cq
2

√
z + z′ +

2Cq
3

q − 1

√
z + z′

≤ C4

√
z + z′.

Thus,
∫

Dl×Dl

|I4(x− x′, |z|+ |z′|)|qdxdzdx′dz′ ≤ 8lC4

∫ l

0

∫ l

0
(z + z′)1/2−2qdzdz′.

The right-hand side is finite if and only if q < 5/4 (see (A.8)-(A.9)). This shows that
I4 belongs to Lq(Dl ×Dl) for all 1 ≤ q < 5/4, as claimed.

To see the optimality of this statement, first note that J(0) > 0 and let t0 > 0
such that J(t) ≥ J(0)/2 for all t ∈ [−t0, t0]. The linear change of variable X = x−x′,
X ′ = x+x′ maps the square (−l, l)×(−l, l) onto a square with vertices (2l, 0), (0, 2l),
(−2l, 0) and (0,−2l), which contains the square (−l, l) × (−l, l). Let q = 5/4. We
have

∫

Dl×Dl

|I4(x− x′, |z|+ |z′|)|qdxdzdx′dz′

≥ 4l

∫ l

0

∫ l

0

1

(z + z′)2q

∣

∣

∣

∣

J

(

X√
z + z′

)∣

∣

∣

∣

q

dXdzdz′.

By choosing t0 > 0 small enough so that t0
√
2l ≤ l, we also have

∫

|X|≤l

∣

∣

∣

∣

J

(

X√
z + z′

)
∣

∣

∣

∣

q

dX ≥
∫

|X|≤t0
√
z+z′

∣

∣

∣

∣

J

(

X√
z + z′

)
∣

∣

∣

∣

q

dX

≥
(

J(0)

2

)q

(2t0
√
z + z′).
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We obtain
∫

Dl×Dl

|I4(x− x′, |z|+ |z′|)|qdxdzdx′dz′ ≥ 8lt0

(

J(0)

2

)q ∫ l

0

∫ l

0
(z + z′)1/2−2qdzdz′.

The integral on the right-hand side is +∞ for q = 5/4 (see (A.8)). This concludes
the proof. �

As a consequence, we have:

Corollary A.2. For every q′ > 5 and for all u ∈ Lq′(D), the formulations for
Jwave(u) given by (7.1)-(7.2) and (A.1)-(A.2)-(A.3) are equal (and finite).

Proof. Without loss of generality, we may assume that ν = 1 and D = Dl = (−l, l)×
(−l, l) with l > 0. Let q′ > 5, u ∈ Lq′(Dl) and q ∈ (1, 5/4) such that 1/q + 1/q′ = 1.

We use the form Su(λ) = iλTu(λ) with Tu(λ) =
∫

D u(x, z)e
−iλxe−λ2|z|dxdz (cf. (7.3)).

For any integer N ≥ 2, we have
∫ N

1
|Tu(λ)|2

λ4√
λ2 − 1

dλ =

∫

Dl×Dl

KN (x− x′, |z| + |z′|)u(x, z)u(x′, z′)dxdzdx′dz′,

(A.11)
where

KN (X,Z) =

∫ N

1
e−λ2Z cos(λ(x− x′))

λ4√
λ2 − 1

dλ.

This is obtained by applying Fubini’s theorem for the two variables λ ∈ (1, N) and
(x, z, x′, z′) ∈ Dl × Dl. By the monotone convergence theorem, the left-hand side
of (A.11) tends to

∫ ∞

1
|Tu(λ)|2

λ4√
λ2 − 1

dλ

when N tends to +∞. The convergence of the right-hand side is more delicate. We
will apply Lebesgue’s dominated convergence theorem. We first note that KN (x −
x′, |z|+|z′|) tends everywhere in (Dl×Dl)∩(R×R

⋆)2 toK(x−x′, |z|+|z′|) (see (A.3)).
By arguing as in the proof of Theorem A.1, we can show that

|KN (x− x′, |z| + |z′|)| ≤ k⋆(x, z, x′, z′) in Dl ×Dl, (A.12)

where k⋆ ∈ Lq(Dl × Dl) is independent of N (details are left to the reader). This
implies that the right-hand side of (A.11) tends to

∫

Dl×Dl

K(x− x′, |z|+ |z′|)u(x, z)u(x′, z′)dxdzdx′dz′

as N tends to +∞, by dominated convergence. �

Proposition A.3. Assume that D ⊂ {(x, z) ∈ R
2 : |z| > δ} for some δ > 0. Then

kν (cf. (A.2)) belongs to L∞(D ×D) and

‖kν‖L∞(D×D) ≤
4ν4

πCF (ν)
e−νδI(νδ), (A.13)

where I : (0,+∞) → (0,+∞) is the continuous and decreasing function defined
by (A.5). In particular, if CF (ν)

−1 has at most a polynomial growth as ν tends to
+∞, then ‖kν‖L∞(D×D) → 0 as ν → +∞.
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Proof. Let (x, z, x′, z′) ∈ D ×D, and define X = ν(x − x′), Z = ν(|z| + |z′|). Then

Z ≥ 2νδ, so that for λ ≥ 1, we have e−λ2Z ≤ e−νδe−λ2(Z−νδ), and integration with
respect to λ yields

I(Z) ≤ e−νδI(Z − νδ) ≤ e−νδI(νδ).

By (A.2)-(A.3), we have

|kν(x, z, x′, z′)| =
4ν4

πCF (ν)
|K(X,Z)| ≤ 4ν4

πCF (ν)
I(Z).

Putting together these two estimates yields (A.13). �

The following property of kν will also prove useful.

Proposition A.4. For every v ∈ L1(D), the function fv defined by

fv(x, z) =

∫

D
kν(x, z, x

′, z′)v(x′, z′)dx′dz′

is real analytic in R× R
⋆.

Proof. Without loss of generality, we may assume ν = 1 and z > 0. Using cos(λ(x−
x′)) = ℜ(eiλ(x−x′)), we may write fv = (4/πCF (1))ℜ(f1v + f2v ) with

f1v (x, z) =

∫

D

(
∫ 2

1
e−λ2zeiλxe−λ2|z′|e−iλx′ λ4√

λ2 − 1
dλ

)

v(x′, z′)dx′dz′

f2v (x, z) =

∫

D

(
∫ +∞

2
e−λ2zeiλxe−λ2|z′|e−iλx′ λ4√

λ2 − 1
dλ

)

v(x′, z′)dx′dz′.

It is sufficient to prove that f1v and f2v are real analytic on R× (0,+∞) (with values
in C considered as a vector space over R). For this purpose, it is sufficient to show
(see, e.g., [6]) that for i = 1 or 2, f iv is C∞ on R × (0,+∞) and that for every
compact subset K of R2, there are positive constants CK and MK such that for all
l = (l1, l2) ∈ N

2 and for all (x, z) ∈ K,
∣

∣

∣

∣

∂l1+l2f iv
∂xl1∂zl2

(x, z)

∣

∣

∣

∣

≤ CKM
|l|
K |l|! (A.14)

where |l| = l1 + l2, as usual.
The function f1v is clearly of class C∞ on R×(0,+∞), and, for any l = (l1, l2) ∈ N

2,

∂l1+l2f1v
∂xl1∂zl2

(x, z) =

∫

D

(
∫ 2

1
(−λ2)l2(iλ)l1e−λ2zeiλxe−λ2|z′|e−iλx′ v(x′, z′)λ4√

λ2 − 1
dλ

)

dx′dz.

(A.15)
Thus, for (x, z) ∈ R× (0,+∞),

∣

∣

∣

∣

∂l1+l2f1v
∂xl1∂zl2

(x, z)

∣

∣

∣

∣

≤ 2l1+2l2+4‖v‖L1(D)

∫ 2

1

dλ√
λ2 − 1

.

Estimate (A.14) is satisfied with CK = 24‖v‖L1(D)

∫ 2
1 (λ

2 − 1)−1/2dλ and MK = 4.

Let now δ ∈ (0, 1). Then f2v is clearly of class C∞ on R × (δ,+∞); its partial
derivatives are obtained on replacing the integral over (1, 2) in (A.15) by an integral
over (2,+∞). This yields

∣

∣

∣

∣

∂l1+l2f2v
∂xl1∂zl2

(x, z)

∣

∣

∣

∣

≤ ‖v‖L1(D)

∫ +∞

2
λl1+2l2+4e−λ2z dλ√

λ2 − 1
.
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Next, we use that (λ2 − 1)−1/2 ≤ C/λ on (2,+∞), for some constant C, and we
perform the change of variable µ = λ2z in the integral. We obtain

∣

∣

∣

∣

∂l1+l2f2v
∂xl1∂zl2

(x, z)

∣

∣

∣

∣

≤
C‖v‖L1(D)

2zl1/2+l2+2
Γ(l1/2 + l2 + 2),

where Γ is the Gamma function. Next, we use that

Γ(l1/2 + l2 + 2) ≤ Γ(l1 + l2 + 2) = (l1 + l2 + 2)(l1 + l2)!.

We find that estimate (A.14) is valid on R× (δ,+∞) with, e.g.,

CK = C ′‖v‖L1(D)/(2δ
2), C ′ = C sup

k∈N
(k + 2)/2k, and MK = 2/δ.

�

B. Technical lemmas

The proof of the following lemma may be found in [9].

Lemma B.1. Let B((x0, z0), r0) be an open ball and U ∈ C2(B((x0, z0), r0)). Then,
for all r ∈ (0, r0),

−
∫

∂B((x0,z0),r)
U − U(x0, z0) = (2π)−1

∫ r

0
ds s−1

∫

B((x0,z0),s)
d(∆u).

This remains valid for all U ∈ H1(B((x0, z0), r0)) such that ∆U is a measure satis-
fying

∫ r

0
ds s−1

∫

B((x0,z0),s)
d|∆u| <∞, (B.1)

and such that

U(x0, z0) = lim
ρ→0

−
∫

∂B((x0,z0),ρ)
U. (B.2)

Remark B.2. The proof shows furthermore that the condition (B.1) implies the
existence of the limit in (B.2) for any (x0, z0) whence we can take some precise
representation of U defined thanks to (B.2).

The following lemma is more or less classical (see, e.g. [9, 17]).

Lemma B.3. Let B((x0, z0), r0) be an open ball, r0 ≤ 1, F ∈ Lp(B((x0, z0), r0)),
p ∈ (1, 2), α = 2/p′. Then, there exists a constant C which depends only on p and
‖F‖Lp(B((x0,z0),r0)) such that, for r ∈ (0, r0),

(i) if ∆U = F on B((x0, z0), r0), then

|U |α,B((x0,z0),r/2) ≤ C
[

1 + r−α‖U‖L∞(B((x0,z0),r))

]

, (B.3)

(ii) if ∆U ≥ F and U ≥ 0 on B((x0, z0), r0), then

‖U‖L∞(B((x0 ,z0),2r/3)) ≤ C

[

rα +−
∫

∂B((x0,z0),r)
U

]

. (B.4)
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Proof. Recall that for the solution of

W ∈ H1
0 (B1), −∆W = G on B1,

since p > 1, by elliptic regularity we have

‖W‖W 2,p(B1) ≤ C(p)‖G‖Lp(B1).

We use the Sobolev imbedding W 2,p(B1) ⊂ Cα(B1) [7] and we apply this to the
rescaled functions

∀ξ ∈ B1, V (ξ, ζ) = U((x0, z0) + r(ξ, ζ)), G(ξ, ζ) = r2F ((x0, z0) + r(ξ, ζ)).

We obtain

‖W‖L∞(B1) + |W |α,B1 ≤ C ′(p)r2−2/p‖F‖Lp(B((x0,z0),r0)). (B.5)

For (B.3), we notice that ∆(V −W ) = 0 on B1 so that by Harnack’s inequality [17],

|V −W |α,B1/2
≤ ‖∇(V −W )‖L∞(B1/2) ≤ C‖V ‖L∞(∂B1).

Together with (B.5), this inequality gives

|V |α,B1/2
≤ C(p, ‖F‖Lp(B((x0,z0),r0)))

[

rα + ‖V ‖L∞(∂B1)

]

.

Going back to U gives (B.3) by change of variable. For (B.4), we first notice that
−∆(V −W ) ≤ 0, so that (V −W )(x, z) ≤

∫

∂B1
P(x,z)(x

′, z′)V (x′, z′)dσ(x′, z′) where
Px,z(·) denotes the Poisson kernel at (x, z). Using (B.5) again and V ≥ 0, we deduce
that

‖V ‖L∞(B2/3) ≤ C(p, ‖F‖Lp(B((x0 ,z0),r0)))

[

rα +−
∫

∂B1

V (x, z)dσ(x, z)

]

.

The relation (B.4) follows by change of variable. �

The following lemma is proved in [9].

Lemma B.4. Let B((x0, z0), r0) be an open ball, r0 ≤ 1, F ∈ Lq(B((x0, z0), r0)),
q > 2. Then, there exists a constant C = C(q, ‖F‖Lq(B((x0,z0),r0))) such that, for
r ∈ (0, r0),

(i) if ∆U = F on B((x0, z0), r0), then

|U |1,B((x0,z0),r/2) ≤ C
[

1 + r−1‖U‖L∞(B((x0,z0),r))

]

,

(ii) if ∆U ≥ F and U ≥ 0 on B((x0, z0), r0), then

‖U‖L∞(B((x0,z0),2r/3)) ≤ C

[

r +−
∫

∂B((x0,z0),r)
U

]

.
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