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We introduce an optimal shaping problem based on Michell's wave resistance formula in order to find the form of a ship which has an immerged hull with minimal total resistance. The problem is to find a function u ∈ H 1 0 (D), even in the z-variable, and which minimizes the functional

with an area constraint on the set {(x, z) ∈ D : u(x, z) = 0} and with the volume constraint D u(x, z)dxdz = V ; D is a bounded open subset of R 2 , symmetric about the x-axis, and k is Michell's kernel. We prove that u is locally α-Hölder continuous on D for all 0 < α < 2/5, and locally Lipschitz continuous on D ⋆ = {(x, z) ∈ D : z = 0}. The main assumption is the nonnegativity of u. We also prove that the area constraint is "saturated". The results are first derived for a general kernel k ∈ L q (D ×D) with q ∈ (1, +∞]. A numerical simulation illustrates the theoretical result.

1. Introduction 1.1. Minimizing the water resistance for a fixed domain. Modelizing the resistance of water to the motion of a ship is a complex problem. A traditional approach [START_REF]Proceedings of the 8th International Towing Tank Conference[END_REF] is to express this resistance as the sum of two terms, namely the wave resistance and the viscous resistance (which corresponds itself to the sum of the frictional and eddy resistance).

Michell's thin-ship theory [START_REF] Havelock | The theory of wave resistance[END_REF][START_REF] Kostyukov | Theory of ship waves and wave resistance[END_REF][START_REF] Michell | The wave resistance of a ship[END_REF][START_REF] Michelsen | Wave resistance solution of Michell's integral for polynomial ship forms[END_REF][START_REF] Tuck | The wave resistance formula of J. H. Michell (1898) and its significance to recent research in ship hydrodynamics[END_REF] provides an explicit formula of the wave resistance for a given speed and for a hull expressed as a function, with its arguments in a region of the plane of symmetry (see Figure 1). This theoretical formula, which can be written in terms of an integral kernel (cf. (A.1)), shows a good agreement with experimental results [START_REF] Sh | Study of Michell's integral and influence of viscosity and ship hull form on wave resistance[END_REF][START_REF] Tuck | Drag on a ship and Michell's integral[END_REF], when it is applied to thin ships (cf. assumption (2.4)).

A first natural question is then to search the hull of a given volume which minimizes Michell's wave resistance for a given speed and a fixed domain of arguments. This problem was extensively studied by Krein and his collaborators starting in the 1950's (see [START_REF] Kostyukov | Theory of ship waves and wave resistance[END_REF][START_REF] Sizov ; Professor | The seminar on ship hydrodynamics[END_REF] and references therein). In particular, Krein proved that this problem is ill-posed, in the sense that it has no solution in the set of integrable functions.

In [START_REF] Krein | On the form of a ship of minimum total resistance[END_REF] (see also [START_REF] Sizov ; Professor | The seminar on ship hydrodynamics[END_REF]), Krein and Sizov proposed a simplified model for the viscous term, namely a term proportional to the Dirichlet energy of the function representing the hull. The Dirichlet energy was obtained as a linearization of the area functional (cf. (2.9)), a reasonable approximation for thin ships. Then, Krein and Sizov used the total resistance as a minimization criterion (i.e. the sum of Michell's wave resistance 1 and of their viscous resistance). By solving a linear integro-differential equation, they proved that the problem of finding a hull of minimal total resistance has a unique solution in the class of continuous functions. Thus, the viscous term can also be interpreted as a regularizing term.

In [START_REF] Dambrine | A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance[END_REF], the authors and Rousseaux studied a similar problem in a H 1 (Sobolev space) setting, and they obtained existence and uniqueness of an optimal form. Because the optimal form was seeked in a class of nonnegative functions, the problem was no longer linear, as in the previous case, but only convex. As pointed out in [START_REF] Sizov ; Professor | The seminar on ship hydrodynamics[END_REF], this additional constraint is essential in the modelization, because the function which represents the half-hull is nonnegative (cf. Section 2).

Then, for various approximations of Michell's kernel, which all belonged to L ∞ , the authors and Rousseaux showed the global W 2,p regularity of the optimal form, for all p < ∞; they also proved that the optimal function depends continuously on the speed of the ship. For the problem formulated with the true Michell wave resistance, the questions of regularity and continuous dependence on the speed were left open, essentially because it was not known to which L q space (if any) Michell's kernel belonged.

1.2. Optimal shaping approach. In the previous approach, the set of arguments, say ω, was fixed. In the existing litterature using Michell's formula, a typical choice for ω is the rectangle, because this allows easier computations for Wigley hulls [START_REF] Sh | Study of Michell's integral and influence of viscosity and ship hull form on wave resistance[END_REF][START_REF] Michelsen | Wave resistance solution of Michell's integral for polynomial ship forms[END_REF]. More technical choices for ω are based on classical ship forms (see, e.g., [START_REF] Hsiung | Optimal ship forms for minimum wave resistance[END_REF][START_REF] Lian-En | Optimal ship forms for minimal total resistance in shallow water[END_REF]). In this paper, we adopt a geometric shape optimization point of view (see, e.g., [START_REF] Allaire | Conception optimale de structures[END_REF][START_REF] Bucur | Variational methods in shape optimization problems[END_REF][START_REF] Henrot | Variation et optimisation de formes[END_REF]), i.e. we propose to consider also ω as an unknown of the optimization problem, so as to minimize even more the total resistance. We impose the area of ω in order to be consistent with the thin-ship assumptions when the volume of the hull tends to zero (see (2.12)). Some numerical simulations were presented in [START_REF] Dambrine | Optimization of ship hulls considered as slender bodies[END_REF]; here, we focus on the theoretical aspects (existence, regularity).

Due to the nature of the problem, the optimal set ω ⋆ should naturally be seeked in the lower half-plane, and the optimal function f ⋆ ω ⋆ corresponding to ω ⋆ should satisfy Neumann boundary conditions on the part of the boundary of ω ⋆ which intersects the x-axis, and Dirichlet boundary conditions otherwise. The x-axis corresponds here to the water/air interface, and the second variable z is the altitude. But, for the resolution of the problem, we use a symmetrization with respect to the x-axis, so that the symmetrized optimal set Ω ⋆ corresponding to ω ⋆ is seeked in the whole plane, and the optimal function u ⋆ Ω ⋆ corresponding to f ⋆ Ω ⋆ is even in the z-variable. This approach allows us to deal only with Dirichlet boundary conditions.

Our problem can be viewed as a geometric shape optimization problem for a modified Dirichlet functional. Following a standard approach for this problem (see, e.g. [START_REF] Aguilera | An optimization problem with volume constraint[END_REF][START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF][START_REF] Crouzeix | Variational approach of a magnetic shaping problem[END_REF]), we consider u ⋆ = u ⋆ Ω ⋆ as the unknown, rather than Ω ⋆ . The optimal set Ω ⋆ can be obtained as the superlevel set Ω u ⋆ = [u ⋆ > 0], at least in the class of quasi-open sets (see [START_REF] Henrot | Variation et optimisation de formes[END_REF] and Remark 3.2).

For the existence result of the optimal function u ⋆ , which is based on compactness, we need to introduce a symmetric and bounded domain D ⊂ R 2 , and we seek Ω u ⋆ in D (see Section 2.4 for details). We point out that if D is unbounded, then existence of Ω ⋆ may fail [START_REF] Dambrine | Shape optimization of ship hulls based on Michell's and Sretensky's formulas[END_REF]. Finally, since our results can possibly be applied to other kernels than Michell's kernel, we prove them first for a general kernel belonging to L q (q > 1). In this regard, it would be interesting to investigate the regularity of the kernels associated to Sretensky's wave resistance formulaes in confined fluids [START_REF] Sretensky | On the wave-making resistance of a ship moving along in a canal[END_REF][START_REF] Sretensky | Sur la détermination de la résistance ondulatoire d'un navire se déplaçant à la surface de l'eau d'une profondeur finie[END_REF] (see also [START_REF] Kostyukov | Theory of ship waves and wave resistance[END_REF]). 1.3. Main results. Once the theoretical framework is set, existence of an optimal and symmetric function u ⋆ is obtained by considering a minimizing sequence (Theorem 3.3). The nonnegativity of the "wave resistance" functional associated to the kernel is essential here (cf. (3.3)). We first prove the optimal regularity of u ⋆ in this abstract framework (Theorem 6.1). Namely, u ⋆ is locally α-Hölder continuous on D with exponent α = 2/q ′ if q < 2 and u ⋆ is locally Lipschitz continuous on D if q > 2. The main assumption is the nonnegativity of u ⋆ (see Remark 3.1).

Our proof is very similar to the case of the Dirichlet energy with a nonhomogeneity treated in [START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF][START_REF] Landais | A regularity result in a shape optimization problem with perimeter[END_REF]. It is based on the tools introduced by Alt and Caffarelli in their seminal paper [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF] (see also [START_REF] Aguilera | An optimization problem with volume constraint[END_REF][START_REF] Gustafsson | Existence and geometric properties of solutions of a free boundary problem in potential theory[END_REF]). The first step is to find an appropriate penalized version of the constrained problem (Theorem 5.2). Then, we adapt the standard method of Alt and Caffarelli, by taking into account the symmetry, namely, the test functions are even in the z-variable. This approach is fruitful because the local regularity of u ⋆ on D can be interpreted in terms of f ⋆ as a regularity up to the x-axis (where f ⋆ is the restriction of u ⋆ to the lower half plane). In contrast, we do not prove regularity of u ⋆ up to the boundary of D (but no regularity is required on the boundary of D).

In Theorem A.1, we establish the optimal regularity of Michell's kernel, namely L 5/4-ε . To the best of our knowledge, this result has not been previously published. By application of our regularity result, this implies that for Michell's kernel, the optimized function u ⋆ is locally α-Hölder continuous on D for all α ∈ (0, 2/5) (Theorem 7.1). By taking advantage of an improved regularity of Michell's kernel below the water/air interface, we also prove that u ⋆ is locally Lipschitz continuous on D ∩ (R × R ⋆ ) (Theorem 7.3), and that the area constraint is saturated (Theorem 7.4, based on analycity). We expect that these last two results are the main first step in proving the regularity of the optimal set Ω ⋆ itself (Remark 7.5). Theorems 7.1, 7.3 and 7.4 are our main results.

1.4. Outline of the paper. The paper is organized as follows. We first derive the model (Section 2). Then, we give the abstract version of the shape optimization problem and we solve it (Section 3). In Section 4, we give some conditions on the kernel which ensure that the area constraint is saturated or that the solution of the problem is nonnegative. The penalized version of the problem is introduced in Section 5, and the regularity of the optimal solution is proved in Section 6. The previous results are applied to Michell's kernel in Section 7. We conclude the paper by a numerical example of an optimized hull (Section 8). The regularity of Michell's kernel is studied in Appendix A, and some technical lemmas are given in Appendix B.

2. From Michell's formula to the abstract formulation 2.1. Michell's wave resistance formula.

Consider a ship moving with constant velocity on the surface of an unbounded fluid. A coordinated system fixed with respect to the ship is introduced. The origin is located midships in the center line plane, the xy-plane is the undisturbed water
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The projection ω of the hull onto the (x, z) plane surface, the positive x-axis is in the direction of motion and the z-axis is vertically upward.

It is assumed that the hull is symmetric with respect to the vertical xz-plane, and that the half-immerged hull surface can be represented by a continuous nonnegative function y = f (x, z) ≥ 0. In this representation, z ≤ 0 and the arguments (x, z) belong to a subset ω which is the orthogonal projection of the hull on the xz-plane. For the presentation of the model, it will be convenient to split up ω into three parts, namely its interior ω (an open subset of the lower (x, z) half-plane), in which f (x, z) > 0, its boundary Γ 0 at the free surface z = 0, and its boundary Γ -under the free surface, on which f (x, z) = 0 (see Figure 1).

It is assumed that the fluid is incompressible, inviscid and that the flow is irrotational. The motion has persisted long enough so that a steady state has been reached. Michell's theory [START_REF] Hsiung | Optimal ship forms for minimum wave resistance[END_REF][START_REF] Kostyukov | Theory of ship waves and wave resistance[END_REF][START_REF] Michell | The wave resistance of a ship[END_REF][START_REF] Michelsen | Wave resistance solution of Michell's integral for polynomial ship forms[END_REF] shows that the wave resistance can be computed by

R M ichell = 4ρg 2 πU 2 ∞ 1 (I 1 (λ) 2 + I 2 (λ) 2 ) λ 2 √ λ 2 -1 dλ, (2.1) 
with

I 1 (λ) = ω ∂f ∂x (x, z) exp λ 2 gz U 2 cos λgx U 2 dxdz, (2.2) 
I 2 (λ) = ω ∂f ∂x (x, z) exp λ 2 gz U 2 sin λgx U 2 dxdz. (2.3)
In this formula, U (in m•s -1 ) is the speed of the ship, ρ (in kg•m -3 ) is the (constant) density of the fluid, and g (in m • s -2 ) is the standard gravity. The integrals I 1 (λ) and I 2 (λ) are in m 2 , and R M ichell (in Newton) has the dimension of a force. The integration parameter λ has no dimension: it can be interpreted as λ = 1/ cos θ, where θ is the angle at which the wave energy is propagating [START_REF] Kostyukov | Theory of ship waves and wave resistance[END_REF].

In order to derive formula (2.1), Michell used a linear theory and made additional assumptions known as the "thin ship theory" (see [START_REF] Michelsen | Wave resistance solution of Michell's integral for polynomial ship forms[END_REF] for details). In particular, it is assumed that the angles made by the hull surface with the longitudinal plane of symmetry are small, i.e. ∂f ∂x ≪ 1 and ∂f ∂z ≪ 1 in ω.

(2.4) 2.2. The viscous resistance. Using a simplified approach (see, e.g., [START_REF]Proceedings of the 8th International Towing Tank Conference[END_REF]), the total resistance of water to the motion of the ship is given by

R total = R M ichell + R viscous , (2.5) 
where the viscous resistance reads

R viscous = 1 2 ρU 2 C F A . (2.6)
Here, C F is the viscous drag (or friction) dimensionless coefficient and A is the surface area of the ship's wetted hull. The coefficient C F is a positive constant, or, more generally, a positive function which depends continuously on U . For instance, the ITTC 1957 model-ship correlation line formula reads [START_REF]Proceedings of the 8th International Towing Tank Conference[END_REF] C

F = 0.075/[log 10 (Re) -2] 2 , (2.7) 
where Re = U L ref /ν vis is the Reynolds number (L ref is a reference length and ν vis is the kinematic viscosity of water).

When the graph of f represents the ship's (half-)hull, A is given by:

A = 2 ω 1 + |∇f (x, z)| 2 dxdz. (2.8) 
For a slender ship, |∇f | is uniformly small (see (2.4)), and the integral above can be approximated by performing a Taylor expansion of 1 + |∇f | 2 at first order:

A/2 = ω 1dxdz + 1 2 ω |∇f (x, z)| 2 dxdz + o(||∇f || 2 ∞ ) .
(2.9)

A good approximation of the viscous drag for small ∇f then reads:

R viscous = ρU 2 C F |ω| + 1 2 ω |∇f (x, z)| 2 dxdz , (2.10) 
where |ω| is the area of ω.

2.3.

Rough formulation of the optimization problem. Summing up, for a given f : ω → R + , the total resistance is given by (2.5), (2.1) and (2.10), and we denote it R total (f ) in order to stress its dependence on f . In [START_REF] Dambrine | A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance[END_REF], we considered the following optimization problem: for a given speed U , a given volume V of the hull, and a fixed set ω, find a nonnegative function f U,V ω which minimizes R total (f ) among (regular) nonnegative functions f : ω → R such that f = 0 on Γ -and ω f (x, z)dxdz = V /2. We proved that this problem is well-posed in an appropriate functional setting, i.e. there is a unique regular function f U,V ω which minimizes the total resistance. In [START_REF] Dambrine | A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance[END_REF], we actually assumed that ω was a rectangle, i.e. the length of the ship and its draft were given, but our results apply essentially in the same way for any open set ω whose boundary is regular enough. Thus, to every set ω, we can associate the minimal value of the total resistance, that is R total (f U,V ω ). In the previous approach, choosing ω to be a rectangle or any other shape may seem somewhat arbitrary. Moreover, we can hope to further decrease the total resistance of the ship by allowing more shapes for ω. In this paper, we are therefore interested in the following shape optimization problem, denoted (temporarily) (Q a,+ U,V ): for a given speed U , a given volume V of the hull, and a given area a, find a set ω ⋆ which minimizes R total (f U,V ω ) among admissible sets ω such that |ω| = a/2. The optimal ship hull is then given by f U,V ω ⋆ . From now on, we use a normalization. On multiplying R total (f ) by 4/(ρU 2 C F ), we obtain the following normalized total resistance,

R norm total (f ) = 4|ω| + 2 ω |∇f (x, z)| 2 dxdz + 16g 2 πC F U 4 ∞ 1 (I 1 (λ) 2 + I 2 (λ) 2 ) λ 2 √ λ 2 -1 dλ, (2.11) 
where I 1 and I 2 are defined by (2.2)-(2.3). For a fixed speed

U , problem (Q a,+ U,V ) is unchanged if R total (f ) is replaced by R norm total (f ).
This normalization is natural for the formulation of the abstract problem, where the wave resistance is seen as a perturbation of the Dirichlet energy (cf. (3.8)). It will also prove useful in order to understand how the problem depends on the speed U [START_REF] Dambrine | Shape optimization of ship hulls based on Michell's and Sretensky's formulas[END_REF].

We note that for a given domain ω, the total resistance R norm total (f ) is quadratic in f , up to the constant 4|ω|; the volume constraint ω f = V /2 is linear with respect to f . Thus, f U,V ω depends linearly on

V , i.e. f U,V ω = V f U,1
ω . As a consequence, using that |ω| = a/2 is fixed, a set ω ⋆ is a minimizer for problem (Q a,+ U,V ) if and only if it is a minimizer for problem (Q a,+ U,1 ): in other words, the optimal domain ω ⋆ , if it exists, does not depend on V . Moreover, if f U,1 ω ⋆ can be proved to be globally Lipschitz continuous on ω ⋆ , then

∇f U,V ω ⋆ L ∞ (ω ⋆ ) = V ∇f U,1 ω ⋆ L ∞ (ω ⋆ ) → 0 (2.12)
as V → 0, and we recover the thin ship assumptions (2.4) in the limit V → 0. This analysis raises two important questions, namely the existence of an optimal domain ω ⋆ which solves (Q a,+ U,V ), and the regularity of f U,V ω ⋆ .

Remark 2.1. Instead of problem (Q a,+ U,V ), where |ω| is constrained, one possibility would be to seek for ω ⋆ which minimizes R total (f U,V ω ) among all (regular) sets ω, for U and V given. However, this approach would not be satisfactory, for the following reason: if we omit the wave resistance term R M ichell in (2.5), and if we use the area formula (2.6), (2.8) for the viscous resistance, we end up with an isoperimetric problem formulated in nonparametric form (up to symmetry with respect to the x-axis and to the xz plane). The solution ω ⋆ of such a problem is a half disc, and the graph of f ⋆ = f U,V ω ⋆ is the graph of a half hemisphere, so |∇f ⋆ | → +∞ near the circular border of ω ⋆ . This contradicts the thin-ship assumptions (2.4); adding a wave resistance term based on Michell's formula does not seem appropriate in such a context, even if the viscous resistance is approximated by the Dirichlet energy (2.10).

Symmetrization and bounding box.

In view of the functional setting of the problem, we take advantage that the free surface z = 0 is horizontal, and we extend any function f : ω → R representing a hull to a function u : Ω → R even in the z-variable, where Ω is the union of ω and of its symmetric about the x-axis (see Figure 2). The normalized total resistance R norm total (f ) is expressed accordingly in terms of u (compare (2.11) and (7.1)). Since f = 0 on Γ -, u satisfies homogeneous Dirichlet boundary conditions on ∂Ω: this simplifies the formulation of the optimization problem.

Following a standard approach in optimal shaping, we seek for the optimal ship function u U,V Ω ⋆ (the even symmetric of f U,V ω ⋆ ); the optimal domain Ω ⋆ can then be recovered as a superlevel set (Remark 3.2). A crucial benefit of this approach is that we will also show the regularity up to the x-axis of the optimal function f U,V ω ⋆ . It would be natural to seek the symmetrized optimal domain Ω ⋆ in R 2 , but for the existence result, we need to introduce a "bounding box" D, namely a bounded subset of R 2 , symmetric about the x-axis. This bounding box D can possibly be chosen large, in order to mimic the situation in R 2 .

Formulation and resolution of the shape optimization problem

3.1. Functional setting. Let D be a nonempty open subset of R 2 . The space of distributions on D is the dual space of the space C ∞ c (D) of the infinitely differentiable functions with compact support in D, and the duality product will be denoted •, • . For p ≥ 1 and m a nonnegative integer, we denote W m,p (D) the (real-valued) Sobolev space of order m built on the L p (D) space [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. In particular, the space

W 1,2 (D) = H 1 (D) is equipped with the Hilbertian norm u 2 H 1 = D u 2 + D |∇u| 2 . We denote H 1 0 (D) the closure for the H 1 -norm of C ∞ c (D). Recall that H 1 0 (R 2 ) = H 1 (R 2 )
. In contrast, for D bounded, by the Poincaré inequality, the Hilbertian norm u 2

H 1 0 = D |∇u| 2 is equivalent to the H 1 -norm on H 1 0 (D). We denote (x, z) the cartesian coordinates in the plane R 2 . An open set D ⊂ R 2
is symmetric (about the x-axis) if for all (x, z) ∈ D, we have (x, -z) ∈ D. For a function u defined on a symmetric open set D, we will denote ǔ the function such that ǔ(x, z) = u(x, -z) for all (x, z) ∈ D.

From now on, and throughout the paper, D denotes a nonempty symmetric open bounded subset of R 2 . We make no regularity assumption on the boundary of D (see Remark 7.7). We work with the space

Ȟ = {u ∈ H 1 0 (D), ǔ = u a.e. in D}, which is a closed subspace of H 1 0 (D). For a function u ∈ Ȟ, we denote Ω u = {(x, z) ∈ D : u(x, z) = 0}.
Let |E| denote the Lebesgue measure of any measurable subset E of R 2 . Then, the value |Ω u | does not depend on the choice of the representation of u.

A distribution f on D is called symmetric if for all ϕ ∈ C ∞ c (D), f, φ = f, ϕ . We recall that the distributions of order 0 on D are the signed Radon measures over D [START_REF] Bony | Cours d'analyse -Théorie des distributions et analyse de Fourier[END_REF]. For a signed Radon measure µ, |µ| is the total variation of µ [START_REF] Giaquinta | Cartesian currents in the calculus of variations. I[END_REF]. For a subset E of R 2 , we will denote Ě the symmetric of E with respect to the x-axis, i.e. Ě = {(x, z) ∈ R 2 : (x, -z) ∈ E}; χ E will be the characteristic function of E. We denote by -E the average over the set E.

For (x, z) ∈ R 2 , the distance to a subset E of R 2 is d((x, z), E) = inf{|(x, z) -(x ′ , z ′ )| : (x ′ , z ′ ) ∈ E}, where | • | is the Euclidean norm in R 2 (or R). If E ⊂ D, E c denotes the complement of E in D.
The open ball of center (x 0 , z 0 ) ∈ R 2 and radius r > 0 will be denoted B((x 0 , z 0 ), r), and for (x 0 , z 0 ) = (0, 0), we will write B r instead of B((0, 0), r).

For a subset E of R 2 and α ∈ (0, 1), we denote

|v| α,E = sup ((x,z),(x ′ ,z ′ ))∈E×E |v(x, z) -v(z ′ , z ′ )| |(x, z) -(x ′ , z ′ )| α (3.1) the α-Hölder seminorm on E of a function v : E → R. Recall that v is locally α-Hölder continuous on D if |v| α,E is finite for every compact subset E of D.
As usual, C 0 (E) denotes the space of continuous functions on E. If E is compact, we denote C α (E) the space of α-Hölder continuous functions on E, i.e. the (Banach) space of all continuous functions on E such that v C 0 (E) + |v| α,E is finite. Similarly, v is locally Lipschitz continuous on D if |v| 1,E is finite for every compact subset E of D, where |v| 1,E is defined by the right-hand side of (3.1) with α = 1.

3.2.

Formulation of the optimization problem. We consider the following "normalized wave resistance" functional:

J wave (u) = D D k(x, z, x ′ , z ′ )u(x, z)u(x ′ , z ′ )dxdzdx ′ dz ′ , (3.2) 
where k : D × D → R belongs to L q (D × D) for some q ∈ (1, +∞] and satisfies

D D k(x, z, x ′ , z ′ )u(x, z)u(x ′ , z ′ )dxdzdx ′ dz ′ ≥ 0, (3.3) 
for all u ∈ C(D), and the following symmetry assumptions,

k(x, z, x ′ , z ′ ) = k(x ′ , z ′ , x, z) for a.e. (x, z, x ′ , z ′ ) ∈ D × D, (3.4) k(x, -z, x ′ , z ′ ) = k(x, z, x ′ , z ′ ) for a.e. (x, z, x ′ , z ′ ) ∈ D × D. (3.5) 
Let q ′ = q/(q -1) ∈ [1, +∞) denote the conjugate exponent of q. By Hölder's inequality,

D D |k(x, z, x ′ , z ′ )u(x, z)v(x ′ , z ′ )|dxdzdx ′ dz ′ ≤ k L q (D×D) u L q ′ (D) v L q ′ (D) , (3.6) for all u, v ∈ L q ′ (D). The Sobolev inclusion H 1 0 (D) ⊂ L q ′ (D) reads v L q ′ (D) ≤ C S v H 1 0 , (3.7) 
for all v ∈ H 1 0 (D), where C S = C S (D, q). Thus, J wave (u) is well-defined and finite for all u ∈ H 1 0 (D). It is easily seen that k is uniquely associated to J wave . More precisely, if k 1 is a function in L q 1 (D × D) for some q 1 > 1 which satisfies (3.2) for all u ∈ Ȟ, together with the symmetry assumptions (3.4) and (3.5), then k 1 = k.

The functional associated to the (normalized) total resistance is

J(u) = J 0 (u) + J wave (u), (3.8) 
where

J 0 (u) = D |∇u(x, z)| 2 dxdz. (3.9) 
Let V > 0 (the volume of the hull) and 0 < a < |D|. We define

C a V = {v ∈ Ȟ : D vdxdz = V, |Ω v | ≤ a},
and we consider the following problem:

(P a V ) Find u ∈ C a V such that J(u) ≤ J(v), ∀v ∈ C a V .
Remark 3.1. Since u represents a hull, it would be more natural to require u to be nonnegative, i.e. to consider a problem (P a,+ V ) obtained on replacing

C a V by the set C a,+ V = {u ∈ C a V : u ≥ 0 a.e. in D} in problem (P a V ).
The existence result (Theorem 3.3) and its proof also hold for problem (P a,+ V ). However, regularity for this problem is a question which needs to be investigated. In contrast, here we solve (P a V ) and we assume that the solution u is nonnegative, in order to prove its regularity (Theorem 6.1). We note that a nonnegative solution of (P a V ) is also a solution of (P a,+ V ), because C a,+ V ⊂ C a V . We managed to verify the nonnegativity assumption only in some specific cases (cf. Proposition 7.6), but numerical simulations suggest that it is a reasonable assumption for a large set of the parameters U , C F and a [START_REF] Dambrine | Optimization of ship hulls considered as slender bodies[END_REF].

Remark 3.2. Problem (P a V ) is related to the following shape optimization problem [START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF][START_REF] Henrot | Variation et optimisation de formes[END_REF]: find an open and symmetric set Ω ⋆ such that

(Q a V ) J(u Ω ⋆ ) = inf {J(u Ω ), Ω ⊂ D open and symmetric, |Ω| = a} , (3.10) 
where u Ω is uniquely defined by

J(u Ω ) = min J(v), v ∈ H 1 0 (Ω), v = v, Ω v = V . (3.11)
Existence of u Ω can be obtained as in the proof of Theorem 3.3, and uniqueness is a consequence of the strict convexity of J on the convex set of test functions v. Problem (Q a V ) may not have a solution Ω ⋆ in the family of open sets. However, the infimum is always reached in the family of quasi-open subsets of D. In some cases, we expect u Ω ⋆ to be at least continuous (cf. Theorem 6.1). Then, if moreover its support fills in Ω ⋆ (that is in the "saturated" case where Ω u Ω ⋆ = Ω ⋆ ), we obtain that Ω ⋆ is at least open. These statements are also valid if the functions v in (3.11) are required to be nonnegative (see previous remark).

Resolution of the optimization problem.

Theorem 3.3. Problem (P a V ) has a solution u such that J(u) < +∞. Proof. It is easy to build a function ū ∈ C ∞ c (D) which belongs to C a V . Consider now a minimizing sequence (u n ) for problem (P a V ). Since J wave (u n ) ≥ 0 and J(u n ) ≤ J(ū) < +∞, the sequence (u n ) is bounded in Ȟ. Up to a subsequence, (u n ) converges weakly in H 1 0 (D) to some u, which belongs to Ȟ. By Rellich's theorem, (u n ) converges to u strongly in L q ′ (D) and, up to a subsequence, a.e. in D. Thus, D u = V , and we have 1 Ωu ≤ lim inf n 1 Ωu n a.e. in D, so by Fatou's lemma,

|Ω u | = D 1 Ωu ≤ lim inf n D 1 Ωu n = lim inf n |Ω un | ≤ a.
This shows that u belongs to C a V . By lower semi-continuity of J 0 , we have

J 0 (u) ≤ lim inf n J 0 (u n ).
By (3.6), J wave is a continuous quadratic form on L q ′ (D), so J wave (u n ) tends to J wave (u). Therefore,

J 0 (u) + J wave (u) ≤ lim inf n J 0 (u n ) + J wave (u n ) ,
and so u is a solution of problem (P a V ). Remark 3.4. The set C a V is not convex, so that uniqueness of a solution to problem (P a V ) is a delicate question. Remark 3.5. The functional J is quadratic and the bijection v → V v maps the set C a 1 onto the set C a V , so that u a V is a solution of problem (P a V ) if and only if u a V = V u a 1 , where u a 1 is a solution of problem (P a 1 ). In other words, "the" solution u a V depends linearly on V .

First remarks

4.1. About the case J wave = 0. We denote u a,0 V a solution of problem (P a V ) when J = J 0 (in this case, the kernel k is 0); u a,0 V exists by Theorem 3.3. By the maximum principle, u a,0 V ≥ 0 in D (use Proposition 4.8) and |Ω u a,0 V | = a (use Proposition 4.5). By linearity (Remark 3.5),

u a,0 V 2 H 1 0 = J 0 (u a,0 V ) = V 2 J 0 (u a,0 1 ) = V 2 m, (4.1) 
where m = m(D, a) > 0.

If D contains a disc of area a centered on the x-axis, then by using standard (but difficult) results, it can be proved that Ω u a,0 V is a disc of area a centered on the x-axis, and so u a,0 V can be explicitly determined. This is interesting since J wave = 0 can be seen as a Γ-convergence limit of Michell's wave resistance when U → +∞ (see [START_REF] Dambrine | Shape optimization of ship hulls based on Michell's and Sretensky's formulas[END_REF]; see also Proposition A.3 when U → 0 + , in the situation of a submarine).

Let now J wave be defined by a kernel k ∈ L q (D × D) as in (3.2), and let u denote a solution of (P a V ) with J = J 0 + J wave . Then, by (3.6)-(3.7),

J(u) ≤ J(u a,0 V ) ≤ u a,0 V 2 H 1 0 + C 2 S k L q (D×D) u a,0 V 2 H 1 0 .
From (4.1), we deduce that

u 2 H 1 0 ≤ J(u) ≤ V 2 m(D, a)(1+C 2 S k L q (D×D) ) = V 2 C 0 (D, a, q, k L q (D×D) ). (4.2) 4.2. Saturation of the constraint |Ω u | ≤ a.
If u is a solution of problem (P a V ), then no regularity on the boundary of Ω u can be expected in general when |Ω u | < a. The condition |Ω u | = a itself may not be sufficient (see Proposition 4.3). For this purpose, we will study a stronger condition, sometimes called "the saturated case" [START_REF] Briancon | Regularity of optimal shapes for the Dirichlet's energy with volume constraint[END_REF].

In this regard, we define ȞV := {v ∈ Ȟ : D v = V }, an affine subspace of Ȟ. The following statement, which follows from the convexity of J, is standard.

Lemma 4.1. The functional J has a unique minimizer u ⋆ in ȞV , which is also the unique solution in ȞV of

-∆u ⋆ (x, z) + D k(x, z, x ′ , z ′ )u ⋆ (x ′ , z ′ )dx ′ dz ′ = C in D (4.3)
in the sense of distributions, for some constant C.

In particular, if there exists u ∈ C a V which satisfies (4.3) in D, then u is the unique solution of problem (P a V ). We say that the area constraint

|Ω u | ≤ a is saturated if The solution u ⋆ ∈ ȞV of (4.3) in D satisfies |Ω u ⋆ | > a. (4.4) 
The following proposition shows that condition (4.4) implies |Ω u | = a for any solution u of (P a V ). Proof. Since |Ω u | < a, we can consider perturbations of u in C ∞ c (D) with a small support. Using the symmetry of u and the volume constraint, we find that u satisfies (4.3). Details are classical and are left to the reader. The following counter-example shows that the condition (4.4) may not be satisfied, and that in this case, no regularity can be expected on the boundary of Ω u .

Proposition 4.3. For every symmetric open subset Ω of D such that 0 < |Ω| ≤ a, there exist a nonnegative function u ∈ C ∞ c (R 2 ) ∩ Ȟ with Ω u = Ω, and k ∈ C ∞ (R 2 ) which satisfies (3.3)-(3.5)
, such that u solves the Euler-Lagrange equation (4.3) associated to k on D. In particular, u is the unique solution of problem (P a V ).

Proof. Let Ω be a symmetric open subset of D. By a standard construction based on a partition of unity [START_REF] Bony | Cours d'analyse -Théorie des distributions et analyse de Fourier[END_REF], we can find

u ∈ C ∞ c (R 2 ) such that ǔ = u and u ≥ 0 in R 2 , with Ω u = Ω. In particular, u belongs to Ȟ. Choose C > D |∇u| 2 / D u , let θ = C D u - D |∇u| 2 dx -1 > 0, and define k(x, z, x ′ , z ′ ) = θ(∆u(x, z)+C)(∆u(x ′ , z ′ )+C). Then k belongs to C ∞ (R 2 )
and satisfies (3.3)-(3.5). We have

-∆u(x, z) + D k(x, z, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ = -∆u(x, z) + θ(∆u(x, z) + C) D (∆u(x ′ , z ′ ) + C)u(x ′ , z ′ )dx ′ dz ′ = -∆u(x, z) + θ(∆u(x, z) + C) - D |∇u| 2 + C D u = C,
for all (x, z) ∈ D. This proves the assertion.

In Propositions 4.5 and 4.6, we give some conditions which ensure that the saturation condition (4.4) is satisfied. The following Poincaré inequality will prove useful (see, for instance, [START_REF] Henrot | Variation et optimisation de formes[END_REF]). Proposition 4.4. There exists a constant

C P > 0 independent of D such that for all u ∈ H 1 0 (D) with |Ω u | ≤ a, we have u L 2 (D) ≤ C P a 1/2 ∇u L 2 (D) . (4.5) 
For the following result, we use that for k small enough in L ∞ -norm, a maximum principle applies. 

+ D k(x, z, x ′ , z ′ )Φ(x ′ , z ′ )dx ′ dz ′ = 1 in D, (4.6) 
which exists by application of the Lax-Milgram theorem. On multiplying (4.6) by Φ and integrating on D, we have

D |∇Φ| 2 + D D k(x, z, x ′ , z ′ )Φ(x, z)Φ(x ′ , z ′ )dxdzdx ′ dz ′ = D Φ > 0. ( 4.7) 
By linearity and by uniqueness, we have u ⋆ = V ( D Φ) -1 Φ. In particular, Ω Φ = Ω u ⋆ . From (4.6), by arguing as in the proof of Proposition 4.8, we deduce that

-∆Φ = f in D, with f ∈ L ∞ (D) and ess inf f ≥ 1 -C 2 P a 2 k L ∞ (D) > 0. By elliptic regularity, Φ ∈ W 2,p
loc (D) for all p > 1, so that Φ ∈ C 0 (D). The strong maximum principle [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] implies that Φ > 0 in D. The same holds for u ⋆ , which is proportional to Φ, but this contradicts |Ω u ⋆ | ≤ a < |D|. Proposition 4.6. Assume that D + := {(x, z) ∈ D : z > 0} is connected, and that the solution u ⋆ ∈ ȞV of (4.3) is real analytic in D + . Then condition (4.4) is satisfied.

Proof. Since u ⋆ ∈ ȞV , D + u ⋆ = V /2 > 0 so u ⋆ = 0 in D + . Moreover, u ⋆ is real analytic in D + and D + is connected, so |Ω u ⋆ ∩ D + | = |D + |, by Proposition 4.7. By symmetry, |Ω u ⋆ | = |D| > a.
For the reader's convenience, we give a simple proof of the following standard result.

Proposition 4.7. Let ω be an open and connected subset of R 2 . If u : ω → R is real analytic on ω, u = 0, then |{(x, z) ∈ ω : u(x, z) = 0}| = 0.

Proof. We can write ω = ∪ n∈N ω n with ω n = (α n , β n ) × (γ n , δ n ) ⊂ ω (α n < β n and γ n < δ n ). Let n ∈ N be fixed. Since u is a nonzero analytic function and ω is connected, u is nonzero on ω n [START_REF] Bourbaki | [END_REF]. In particular, there exists

z n ∈ (γ n , δ n ) such that x → u(x, z n ) is nonzero on (α n , β n ). Moreover, x → u(x, z n ) is
a real analytic function of one variable, so it has at most a countable set of roots, X n ⊂ (α n , β n ). Similarly, for every x ∈ (α n , β n ) \ X n , the real analytic function (of one variable) z → u(x, z) is nonzero, and it has at most a countable set of roots, Z n,x . By Fubini's theorem,

|{(x, z) ∈ ω n : u(x, z) = 0)}| = (αn,βn)\Xn (γn,δn)
1 Zn,x (z)dz dx = 0.

The set {(x, z) ∈ ω : u(x, z) = 0} is therefore a countable union of sets of measure 0: it has measure zero.

4.3.

Nonnegativity of the solution. By using the maximum principle, we can prove:

Proposition 4.8. Assume that k ∈ L ∞ (D ×D) with k L ∞ (D×D) ≤ (C P a) -2 .
Then any solution u of problem (P a V ) is nonnegative. Proof. Let u be a solution of (P a V ) and consider the space W = {v ∈ Ȟ such that v = 0 a.e. in D \ Ω u }, which is a closed subspace of Ȟ. By the Lax-Milgram theorem, the problem

D ∇Φ • ∇v + D D k(x, z, x ′ , z ′ )Φ(x, z)v(x ′ , z ′ )dxdzdx ′ dz ′ = D v ∀v ∈ W (4.8) has a unique solution Φ ∈ W . Now let v ∈ W and denote v t = u+t(v-(1/V )( D v)u). We have v t ∈ C a V , so J(u) ≤ J(v t )
. By letting t tend to 0, we find that

D ∇u • ∇v + D D k(x, z, x ′ , z ′ )u(x, z)v(x ′ , z ′ )dxdzdx ′ dz ′ = β D v (4.9) 
for all v ∈ W , for some β ∈ R independent of v. On choosing v = u in (4.9), we see that β > 0; moreover, by uniqueness of Φ, we have u = βΦ. Therefore, it is sufficient to show that Φ is nonnegative.

On choosing v = Φ in (4.8), and using the Poincaré inequality (4.5), we obtain

∇Φ 2 L 2 (D) ≤ D Φ ≤ |Ω u | 1/2 Φ L 2 (D) ≤ C P a ∇Φ L 2 (D) , that is ∇Φ L 2 (D) ≤ C P a. Thus, D k(•, •, x ′ , z ′ )Φ(x ′ , z ′ )dx ′ dz ′ L ∞ (D) ≤ k L ∞ (D×D) |Ω u | 1/2 Φ L 2 (D) ≤ k L ∞ (D×D) C 2 P a 2 .
Now, we choose v = Φ -in (4.8) and we use this L ∞ estimate. This yields

- D |∇Φ -| 2 = D Φ -- D D k(x, z, x ′ , z ′ )Φ(x ′ , z ′ )Φ -(x, z)dxdzdx ′ dz ′ ≥ D Φ -(1 -k L ∞ (D×D) C 2 P a 2 ).
If the smallness assumption on k L ∞ (D×D) is satisfied, then the right-hand side above is nonnegative, and this shows that Φ -= 0. The proof is complete.

Penalized version of the problem

In this section, we introduce a penalized version of (P a V ) and some immediate consequences. This is a first step for the proof of Hölder continuity. Our proof is adapted from [START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF].

Throughout Section 5, u denotes a (not necessarily nonnegative) solution of (P a V ). We first penalize the volume constraint.

Lemma 5.1. There exists λ 1 > 0 such that

∀v ∈ Ȟ such that |Ω v | ≤ a, J(u) ≤ J(v) + λ 1 D v -V .
(5.1)

Moreover, we can choose λ 1 = 3V C 0 (D, a, q, k L q (D×D) ) where C 0 is as in (4.2).

Proof. We introduce

J λ 1 (v) = J(v) + λ 1 D v -V and we consider the problem u λ 1 ∈ Ȟ, |Ω u λ 1 | ≤ a, and ∀v ∈ Ȟ such that |Ω v | ≤ a, J λ 1 (u λ 1 ) ≤ J λ 1 (v). (5.2)
We will show that for λ 1 large enough the solution of this problem satisfies D u λ 1 = V , so that we have,

J λ 1 (u λ 1 ) = J(u λ 1 ) ≤ J λ 1 (u) = J(u).
But, by the definition of u, we also have J(u) ≤ J(u λ 1 ), so that u satisfies (5.2). By arguing as in the proof of Theorem 3.3, we first note that problem (5.2) has a solution u λ 1 . We assume λ 1 > J(u)/V so that D u λ 1 > 0 otherwise

J λ 1 (u λ 1 ) ≥ λ 1 V > J(u) ≥ J λ 1 (u λ 1 ). Next, we write u λ 1 = sū λ 1 with s = ( D u λ 1 )/V ∈ R + so that ūλ 1 ∈ Ȟ with D ūλ 1 = V and |Ω ūλ 1 | ≤ a. We have s ≤ 1 otherwise J λ 1 (u λ 1 ) = J λ 1 (sū λ 1 ) ≥ s 2 J(ū λ 1 ) ≥ s 2 J(u) > J(u) = J λ 1 (u).
For s ∈ [0, 1] we have

J λ 1 (u λ 1 ) = J λ 1 (sū λ 1 ) = s 2 J(ū λ 1 ) + λ 1 V (1 -s) ≥ s 2 J(u) + λ 1 V (1 -s). Let g(s) = s 2 J(u) + λ 1 V (1 -s). Since g ′ (s) = 2sJ(u) -λ 1 V , for λ 1 > 2J(u)/V ,
we have g ′ (s) < 0 on [0, 1], so that g has a strict minimizer on [0, 1] at s = 1, with g(1) = J(u). This shows that u λ 1 = ūλ 1 and concludes the proof of the lemma.

Theorem 5.2. There exists λ 2 > 0 such that

∀v ∈ Ȟ, J(u) ≤ J(v) + λ 1 D v -V + λ 2 (|Ω v | -a) + , (5.3) 
where λ 1 is chosen as in Lemma 5.1, and λ 2 can be chosen as

λ 2 = V 2 C 1 (D, a, q, k L q (D×D) ).
Proof. We introduce

J λ 1 ,λ 2 (v) = J(v) + λ 1 D v -V + λ 2 (|Ω v | -a) + ,
where λ 2 will be determined below. We consider the problem

u λ 1 ,λ 2 ∈ Ȟ, and ∀v ∈ Ȟ, J λ 1 ,λ 2 (u λ 1 ,λ 2 ) ≤ J λ 1 ,λ 2 (v).
(5.4)

We will show that the solution of this problem satisfies |Ω u λ 1 ,λ 2 | ≤ a for λ 2 large enough, so that we have

J λ 1 ,λ 2 (u λ 1 ,λ 2 ) = J λ 1 (u λ 1 ,λ 2 ) ≤ J λ 1 ,λ 2 (u) = J λ 1 (u). By Lemma 5.1, J λ 1 (u) ≤ J λ 1 (u λ 1 ,λ 2 ). Therefore, J λ 1 (u) = J λ 1 (u λ 1 ,λ 2 )
, so that u by (5.4), u satisfies (5.3). By arguing as in the proof of Theorem 3.3, we first note that problem (5.4) has a solution u λ 1 ,λ 2 . Assume that |Ω u λ 1 ,λ 2 | > a. Then, for t > 0 small enough, the function

u t = (u λ 1 ,λ 2 -t) + -(u λ 1 ,λ 2 + t) - also satisfies |Ω u t | > a.
Therefore, we may write

J(u λ 1 ,λ 2 ) + λ 1 D u λ 1 ,λ 2 -V + λ 2 |Ω u λ 1 ,λ 2 | -a ≤ J(u t ) + λ 1 D u t -V + λ 2 (|Ω u t | -a) .
By writing

u t (x, z)u t (x ′ , z ′ ) -u λ 1 ,λ 2 (x, z)u λ 1 ,λ 2 (x ′ , z ′ ) = (u t (x, z) -u λ 1 ,λ 2 (x, z))u t (x ′ , z ′ ) +u λ 1 ,λ 2 (x, z)(u t (x ′ , z ′ ) -u λ 1 ,λ 2 (x ′ , z ′ )),
and using (3.6), it follows that

[0<|u λ 1 ,λ 2 |<t] |∇u λ 1 ,λ 2 | 2 + λ 2 |[0 < |u λ 1 ,λ 2 | < t]| ≤ tλ 1 |D| + 2t k L q (D×D) u λ 1 ,λ 2 L q ′ (D) |D| 1/q ′ . (5.5)
We have

D |∇u λ 1 ,λ 2 | 2 ≤ J λ 1 ,λ 2 (u λ 1 ,λ 2 ) ≤ J λ 1 ,λ 2 (u) = J(u),
so that, by the Sobolev imbedding H 1 0 (D) ⊂ L q ′ (D), u λ 1 ,λ 2 L q ′ (D) is bounded by a constant independent of λ 1 and λ 2 (see (4.2)). Using the coarea formula (see e.g. [START_REF] Evans | Measure theory and fine properties of functions[END_REF][START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF]), we may rewrite (5.5) as

t 0 ds [|u λ 1 ,λ 2 |=s] |∇u λ 1 ,λ 2 | + λ 2 |∇u λ 1 ,λ 2 | dH 1 ≤ V Kt,
where H 1 denotes the 1-Hausdorff measure and K = K(D, a, q, k L q (D×D) 

dH 1 ≤ V Kt.
Next, we plug the isoperimetric inequality [START_REF] Giaquinta | Cartesian currents in the calculus of variations. I[END_REF] [|u λ 1 ,λ 2 |=s]

dH 1 ≥ 2 √ π|[|u λ 1 ,λ 2 | > s]| 1/2 .
Dividing by t and letting t decrease to zero, we finally obtain

4 √ π λ 2 a 1/2 ≤ V K. Thus, "|Ω u λ 1 ,λ 2 | > a" is impossible when λ 2 > λ ⋆ 2 where 4 √ π λ ⋆ 2 a 1/2 = V K. We can choose for instance λ 2 = 2λ ⋆ 2 = V 2 C 1 (D, a, q, k L q (D×D)
). Theorem 5.2 has the two following consequences.

Lemma 5.3. For all ϕ ∈ C ∞ c (D) ∩ Ȟ, ∆u - D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ , ϕ ≤ λ 2 D |∇ϕ| 2 + D D k(x, z, x ′ , z ′ )ϕ(x, z)ϕ(x ′ , z ′ )dxdzdx ′ dz ′ 1/2 |Ω ϕ | 1/2 + λ 1 2 D ϕ . (5.6) 
Proof. We apply (5.3) with v = u + tϕ, t > 0. This gives

2 ∆u - D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ , ϕ ≤ t D |∇ϕ| 2 +t D D k(x, z, x ′ , z ′ )ϕ(x, z)ϕ(x ′ , z ′ )dxdzdx ′ dz ′ + λ 1 D ϕ + λ 2 t |Ω ϕ |.
Minimizing over t > 0 and changing ϕ into -ϕ yield (5.6).

The following result shows the regularity of u in the "interior" of Ω u .

Lemma 5.4. Let B be a ball included in D such that |B ∩ Ω c u | = 0. Then there exists a constant λ B with |λ

B | ≤ λ 1 /2 such that -∆u + D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ = λ B in B. Proof. Let ψ ∈ C ∞ c (B) and let ψ 0 ∈ C ∞ c (B) such that B ψ 0 = 1. We set ϕ = (ψ -ψ 0 B ψ) + ( ψ -ψ0 B ψ) 2 , so that ϕ ∈ C ∞ c (D) ∩ Ȟ and D ϕ = 0. We apply the definition of u in problem (P a V ) with v = u + tϕ, t = 0. Since |B ∩ Ω c u | = 0 and (by symmetry of Ω u ) | B ∩ Ω c u | = 0, we have |Ω v | ≤ |Ω u | ≤ a. Letting t → 0 + and t → 0 -, we obtain ∆u - D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ , ϕ = 0. Since the distribution ∆u -D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ is symmetric, we also have ∆u - D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ , (ψ -ψ)/2 = 0. Writing ψ = ϕ + (ψ -ψ)/2 + (ψ 0 + ψ0 ) D ψ/2, we obtain ∆u - D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ , ψ = -λ B B ψ, with λ B = -∆u + D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ , (ψ 0 + ψ0 )/2 .

Now, we apply the penalized version (5.1) with

v = u + t(ψ 0 + ψ0 )/2, t = 0. A computation similar to that of Lemma 5.3 yields |λ B | ≤ (λ 1 /2)| D ψ 0 | = λ 1 /2.

Hölder and Lipschitz continuity of the optimal solution

Theorem 6.1. Let u solve problem (P a V ) with k ∈ L q (D × D), q > 1, and assume that u is nonnegative.

1. If q ∈ (1, 2), then u is locally α-Hölder continuous on D with α = 2/q ′ . 2. If q = 2, then u is locally α-Hölder continuous on D for all α < 1. 3. If q > 2, then u is locally Lipschitz continuous on D.
The proof is based on the classical approach of Alt and Caffarelli [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF] (see also [START_REF] Aguilera | An optimization problem with volume constraint[END_REF][START_REF] Gustafsson | Existence and geometric properties of solutions of a free boundary problem in potential theory[END_REF] and [START_REF] Henrot | Shape optimization and spectral theory[END_REF]Chapter 3]). We mimic the case of the Dirichlet energy with a nonhomogeneity in [START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF][START_REF] Landais | A regularity result in a shape optimization problem with perimeter[END_REF], taking also into account the volume constraint, the quadratic wave resistance term and the symmetry about the x-axis.

Throughout Section 6, u denotes a nonnegative solution of (P a V ) for some kernel k ∈ L q (D × D), with q ∈ (1, +∞], and q ′ = q/(q -1) ∈ [1, +∞). Lemma 6.2. There exist a nonnegative and symmetric measure µ s and a constant

λ s with |λ s | ≤ λ 1 /2 such that ∆u -χ [u>0] D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ = µ s + λ s χ [u>0] in D, (6.1)
in the sense of distributions.

Proof. We define p n : R → R by

∀r ≤ 0, p n (r) = 0; ∀r ∈ [0, 1/n], p n (r) = nr; ∀r ≥ 1/n, p n (r) = 1,
and q n (r) = r 0 p n (s)ds. Let ψ ∈ C ∞ c (D) and define

ϕ n = ψp n (u) - D ψp n (u) p n (u) D p n (u) . Since p n (u) → χ [u>0] a.e. in D and 0 ≤ p n (u) ≤ χ [u>0] , we have p n (u) → χ [u>0] in L 1 (D)
. Thus, D p n (u) → |Ω u | > 0 so ϕ n is well-defined for n large enough, with D ϕ n = 0. We apply the definition of u with v = u + t(ϕ n + φn )/2 (note that

|Ω v | ≤ |Ω u | and D v = V ).
Dividing by t and letting t tend to 0 give

D p n (u)∇( ψ + ψ 2 )∇u + (ψ + ψ) 2 p ′ n (u)|∇u| 2 + D D k(x, z, x ′ , z ′ ) (ψ + ψ)(x, z) 2 p n (u(x, z))u(x ′ , z ′ )dxdzdx ′ dz ′ = α n D p n (u)ψ, with α n = 1 D p n (u) D p ′ n (u)|∇u| 2 + D D k(x, z, x ′ , z ′ )p n (u)u(x ′ , z ′ )dxdzdx ′ dz ′ .
Writing ψ = (ψ + ψ)/2 + (ψ -ψ)/2 and using the symmetry of u, this reads

-∆[q n (u)] + n|∇u| 2 χ [0<u<1/n] + p n (u) D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ = α n p n in D, in the sense of distributions. Denote f = D k(•, •, x ′ , z ′ )u(x ′ , z ′ )dx ′ dz ′ , so that f ∈ L q (D) (cf. (3.6)).
As n tends to ∞, q n (u) tends to u in L 2 (D), p n (u)f tends to f χ [u>0] in L q (D) and we will show that the sequence of real numbers (α n ) is bounded. This proves that, up to a subsequence, the sequence of nonnegative functions µ n = n|∇u| 2 χ [0<u<1/n] converges in the sense of distributions to a distribution µ s , and the sequence (

α n p n ) converges in L 1 (D) to -λ s χ [χ>0]
for some constant λ s . The distribution µ s is nonnegative, and so is a nonnegative Radon measure, and we have (6.1) as claimed.

It remains to prove that (α n ) is bounded. We apply the penalized version (5.1)

with v = u + tp n (u)/ D p n (u) (note that |Ω v | ≤ |Ω u |).
Dividing by t and letting t tend to 0 yield |α n | ≤ λ 1 /2, and the claim is proved.

From the preceding lemma, we have

-∆u ≤ |f | + |λ 1 |/2 with f = D k(•, •, x ′ , z ′ , )u(x ′ , z ′ )dx ′ dz ′ ∈ L q (D), (6.2) 
whence comes the following L ∞ estimate (see for instance [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.16]):

Lemma 6.3. The function u belongs to L ∞ (D), and

u L ∞ (D) ≤ V C(D, a, q, k L q (D×D) ). Proof. The L ∞ estimate reads u L ∞ (D) ≤ C(|D|, q) f L q (D) + λ 1 L q (D)
. Moreover, by (3.7),

f L q (D) ≤ k L q (D×D) C S u H 1 0 ≤ V k L q (D×D) C S C 1/2 0
, where C 0 is as in (4.2). On the other hand,

λ 1 L q (D) = |λ 1 ||D| 1/q = 3V C 0 |D| 1/q .
Lemma 6.4. There exists a constant C = C(D, a, q, k L q (D×D) , V ) such that for any ball B((x 0 , z 0 ), r) ⊂ D with r ≤ 1, |∆u|(B(x 0 , z 0 ), r/2)) ≤ Cr min{2/q ′ ,1} .

Proof. Let B((x 0 , z 0 ), r) ⊂ D with r ≤ 1 and consider ψ ∈ C ∞ c (B((x 0 , z 0 ), r)) such that ψ = 1 in B((x 0 , z 0 ), r/2), ψ = 0 out of B((x 0 , z 0 ), r),

0 ≤ ψ ≤ 1, ∇ψ L ∞ ≤ C 2 r .
We apply Lemma 5.3 with ϕ = (ψ + ψ)/2. We obtain

| ∆u -f, ϕ | ≤ λ 2 πC 2 2 + k L q (D×D) π 2/q ′ r 4/q ′ 1/2 √ 2πr + λ 1 2 πr 2 ≤ C 3 r, (6.3)
where f is defined by (6.2). Using (6.1), we note that

|∆u|(B((x 0 , z 0 ), r/2)) ≤ |∆u|, ψ ≤ µ s , ψ + λ 1 2 πr 2 + f L q (D) π 1/q ′ r 2/q ′ .
But, by (6.1), we have

µ s = (∆u-f )+ χ [u=0] f -λ s χ [u>0]
, and (∆u-f ) is symmetric so that ∆u -f, ψ = ∆u -f, ϕ . Thus, by (6.3),

µ s , ψ ≤ C 3 r + |λ 1 |πr 2 + f L q (D) π 1/q ′ r 2/q ′ ,
and the lemma is proved with

C = C 3 + 2|λ 1 |π + 2 f L q (D) π 1/q ′ . We can note that C depends linearly on V , i.e. C = V C ′ (D, a, q, k L q (D×D) ).
Integrating the result of the previous lemma, we find that Lemma 6.5. If r ≤ 1 and B((x 0 , z 0 ), 2r) ⊂ D, we have

r 0 s -1 B((x 0 ,z 0 ),s) d (|∆u|) ds ≤ Cr min{2/q ′ ,1} .
Using now Remark B.2, we can take the following representation of u:

∀(x, z) ∈ D, u(x, z) = lim r→0 - ∂B((x,z),r) u.
One verifies that according to this particular definition, we also have

∀(x, z) ∈ D, u(x, z) = lim r→0 - B((x,z),r) u.
In what follows, ∂Ω u will always denote the measure-theoretic boundary of Ω u , i.e,

∂Ω u = {(x, z) ∈ D : ∀r > 0, 0 < |B(x, r) ∩ Ω u | < |B(x, r)|}.
Moreover, let us define d((x, z)) = d((x, z), ∂Ω u ). The measure-theoretic interior of Ω u is denoted

Ω int u = {(x, z) ∈ D : ∃r > 0, B(x, r) ⊂ D, |B(x, r) ∩ Ω c u | = 0}. (6.4) Note that Ω int u is open.
First of all, we show that u is zero outside Ω int u . Lemma 6.6. Let us take (x 0 , z 0 ) ∈ D such that |B((x 0 , z 0 ), r) ∩ Ω c u | > 0 for all r > 0. Then u(x 0 , z 0 ) = 0.

Proof. Consider r > 0 such that B((x 0 , z 0 ), 4r) ⊂ D and (x 1 , z 1 ) ∈ B((x 0 , z 0 ), r) such that u(x 1 , z 1 ) = 0 (such a point exists because u = 0 almost everywhere outside Ω u ). Let p ∈ (1, 2) such that p ≤ q. From Lemma B.3 (ii), we have

u L ∞ (B(x 0 ,z 0 ),r) ≤ u L ∞ (B((x 1 ,z 1 ),2r) ≤ C (3r) 2/p ′ + - ∂B((x 1 ,z 1 ),3r) u .
is defined by (6.2) and |λ B((x 0 ,z 0 ),r 0 ) | ≤ λ 1 . Applying point (i) of Lemma B.3 and Lemma 6.7, we obtain

|u| α,B((x 0 ,z 0 ), r 0 4 ) ≤ C 1 + r -α 0 u L ∞ (B((x 0 ,z 0 ), r 0 2 )) ≤ C ′ δ , since u L ∞ (B((x 0 ,z 0 ), r 0 
2 )) ≤ C δ (3r 0 /2) α by Lemma 6.7. To conclude the proof of the Hölder continuity, take (x, z) and (x ′ , z ′ ) in D δ , and assume first that (x, z) or (x ′ , z ′ ) belong to (Ω int u ) c (cf (6.4)). Then Lemmas 6.6 and 6.7 show that

|u(x, z) -u(x ′ , z ′ )| ≤ C δ |(x, z) -(x ′ , z ′ )| α . Now suppose both (x, z) and (x ′ , z ′ ) belong to Ω int u . First suppose |(x, z) - (x ′ , z ′ )| < d(x, z)/4. By Lemma 6.8, |u(x, z) -u(x ′ , z ′ )| ≤ C ′ δ |(x, z) -(x ′ , z ′ )| α . If |(x, z) -(x ′ , z ′ )| < d(x ′ , z ′ )/4, the result is the same by symmetry. Now if |(x, z) -(x ′ , z ′ )| ≥ max{d(x, z), d(x ′ , z ′ )}/4, using Lemma 6.7, |u(x, z) -u(x ′ , z ′ )| ≤ 2 max{u(x, z), u(x ′ , z ′ )} ≤ 2C δ max{d(x, z) α , d(x ′ , z ′ ) α } ≤ 2C δ 4 α |(x, z) -(x ′ , z ′ )| α .
And so there exists C > 0 such that for any (x, z),

(x ′ , z ′ ) in D δ , |u(x, z) -u(x ′ , z ′ )| ≤ C|(x, z) -(x ′ , z ′ )| α .
The proof is complete in the case 1 < q < 2. The case q = 2 is an immediate consequence.

Proof of the Lipschitz continuity. The proof is similar to the proof of Hölder continuity. We use the same notations as previously, except that q > 2 and α = 1. Then Lemmas 6.7 and 6.8 are valid: use the same proof, except that Lemma B.3 is replaced by Lemma B.4. The conclusion follows.

7. Application to Michell's wave resistance 7.1. Existence of an optimal ship. In view of (2.11), the normalized wave resistance functional associated to Michell's formula reads

J wave (u) = 4ν 2 πC F (ν) ∞ 1 |S u (λ)| 2 λ 2 √ λ 2 -1 dλ, (7.1) 
with (cf. (2.2)-(2.3)) S u (λ) = D ∂u ∂x (x, z)e -iλνx e -λ 2 ν|z| dxdz. (7.2) 
Here, ν = g/U 2 is the Kelvin wave number (in m -1 ), and we assume that that C F is a positive and continuous function defined on (0, +∞) (C F has no dimension; it is typically a positive constant). The normalized total resistance is J(u) = J 0 (u) + J wave (u), cf. (3.9). We note that for a function u ∈ Ȟ, we may integrate by parts with respect to x, and we obtain S u (λ) = iλν D u(x, z)e -iλνx e -λ 2 ν|z| dxdz.

In Appendix A (Theorem A.1 and Corollary A.2), we show that Michell's wave resistance can be expressed in terms of a kernel k ν which belongs to L q (D ×D) for all 1 ≤ q < 5/4, and which satisfies (3.4)- (3.5). By (7.1), k ν also satisfies (3.3). Thus, by Theorem 3.3, problem (P a V ) has a solution u ∈ C a V such that J(u) < ∞. Note that every translated function u x 0 (x, z) = u(x -x 0 , z) is also a solution, for every real number x 0 such that u x 0 belongs to C a V . Indeed, Michell's functional J wave is invariant by translation along the x-axis (use (A.2)), and J 0 as well. 7.2. Regularity of the optimal ship. We recall that J wave is Michell's normalized wave resistance (7.1)-(7.2), which can be expressed in terms of a kernel k ν , as mentioned above, and we set J = J 0 + J wave . Putting together Theorems 3.3 and 6.1, we obtain: Theorem 7.1. Let u be a solution of problem (P a V ). If u is nonnegative, then u is locally α-Hölder continuous on D for all α ∈ (0, 2/5).

Remark 7.2. We do not know whether u is nonnegative in general. Numerical simulations indicate that this nonnegativity assumption is reasonable, at least for a large set of parameters ν and C F (ν) [START_REF] Dambrine | Optimization of ship hulls considered as slender bodies[END_REF]. However, the 1d-analysis of Krein and Sizov [START_REF] Sizov ; Professor | The seminar on ship hydrodynamics[END_REF] suggests that for some values of the parameters, u may attain some negative values.

Under the free surface, the regularity of the optimal ship is much better. Let Proof. We adapt the proof of Lipschitz continuity in the following way. For δ 1 > 0, we denote D δ 1 = {(x, z) ∈ D : |z| > δ 1 }. Then, using (A.4), we first note that the function f defined by (6.2) belongs to L ∞ (D δ 1 ) with

D ⋆ = {(x, z) ∈ D : z = 0} = D ∩ (R × R ⋆ ) (where R ⋆ = R \ {0}).
f L ∞ (D δ 1 ) ≤ 4ν 4 πC F (ν) I(νδ 1 ) u L 1 (D) .
Taking advantage that k ν belongs to L ∞ (D δ 1 × D δ 1 ), we see that Lemma 6.4 and its proof are valid with D replaced by D δ 1 and q ′ = 1. Namely, there exists a constant C such that for any ball B((

x 0 , z 0 ), r) ⊂ D δ 1 with r ≤ 1, |∆u|(B((x 0 , z 0 ), r/2)) ≤ Cr.
As a consequence, Lemma 6.5 is also valid with D replaced by D δ 1 and q ′ = 1. Lemma 6.6 is unchanged. Let δ ∈ (0, 1/3) and let

D δ 1 δ = {(x, z) ∈ D δ 1 : d((x, z), ∂D δ 1 ) ≥ 6δ} (where ∂D δ 1 ) = D δ 1 \ D δ 1 is the topological boundary of D δ 1 in R 2
). We set α = 1. Then Lemmas 6.7 and 6.8, as well as their proofs, are valid with D δ replaced by D δ 1 δ . From these Lemmas, we conclude as previously that u is Lipschitz continuous on

D δ 1 δ . Now, if K is a compact subset of D ⋆ , then K ⊂ D δ 1 for δ 1 > 0 small enough; since D δ 1 is open, K ⊂ D δ 1
δ for δ > 0 small enough. Thus, u is Lipschitz continuous on K, and the proof is complete.

Using analycity, we can also note:

Theorem 7.4. Let u solve problem (P a V ). If D + = {(x, z) ∈ D : z > 0} is connected, then the constraint |Ω u | ≤ a is saturated (cf. (4.4)), and so |Ω u | = a.
Proof. Let u ⋆ solve (4.3) in D. By Proposition A.4 and elliptic regularity (see, e.g., [START_REF] John | Plane waves and spherical means applied to partial differential equations[END_REF]), u ⋆ is real analytic in D + . We may therefore apply Proposition 4.6.

Remark 7.5. By analogy with the Dirichlet energy with a nonhomogeneity [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF][START_REF] Briancon | Regularity of optimal shapes for the Dirichlet's energy with volume constraint[END_REF][START_REF] Gustafsson | Existence and geometric properties of solutions of a free boundary problem in potential theory[END_REF], we expect that Theorems 7.3 and 7.4 are the main first step in proving the regularity of the optimal set Ω u itself. Namely, we believe that ∂Ω u , the boundary of Ω u relative to D, is Lipschitz in D ⋆ , and most likely analytic [START_REF] Kinderlehrer | Regularity in free boundary problems[END_REF] in D ⋆ . However, it is not clear what happens at the intersection of ∂Ω u with the x-axis, since Michell's kernel is only L 5/4-ε near the x-axis. There is no obvious hydrodynamic explanation to this technical limitation near the water/air interface.

We obtain a complete result when the bounding box D is away from the free surface.

Proposition 7.6. Assume that D ⊂ {(x, z) ∈ R 2 : |z| > δ} for some δ > 0, and that C F (ν) -1 has at most a polynomial growth as ν tends to +∞. Then for ν large enough, any solution u of problem (P a V ) is nonnegative, satisfies |Ω u | = a, and is locally Lipschitz continuous on D.

Proof. By Proposition A.3, for ν large enough, we have

k ν L ∞ (D×D) ≤ (C P a) -2 ,
so that u is nonnegative (Proposition 4.8) and satisfies |Ω u | = a (Proposition 4.5). Point 3 of Theorem 6.1 shows that u is locally Lipschitz continuons on D. Remark 7.7. We stress that for all the results in this section, we require no regularity on the boundary ∂D of the bounding box D. However, some regularity is needed to establish the equivalence between (P a V ) and the initial problem (Q a,+ U,V ) of Section 2.3, formulated in the lower half-plane.

More precisely, assume that D is a disc centered on the x-axis, or a rectangle with sides parallel to the axis, as in Figure 2 (right). Let D -= {(x, z) ∈ D : z < 0}, Γ -= ∂D ∩ {(x, z) : z < 0} and define the Hilbert space

H(D -) = {f ∈ H 1 (D -) : f = 0 on Γ -in the sense of traces}.
We use the normalized total resistance R norm total defined by (2.11) (with ω replaced by D -). For a fixed speed U , problem (Q a,+ U,V ) can be formulated rigorously as

(Q a U,V ) Find f ⋆ ∈ C a V such that R norm total (f ⋆ ) ≤ R norm total (f ), ∀f ∈ C a V , where C a V = {f ∈ H(D -) : D -f dxdz = V /2, |Ω f | ≤ a/2}
(we omit here the nonnegativity constraint on f , cf. Remark 3.1). For any f ∈ H(D -), let u = Lf denote the even symmetric of f , i.e.

u(x, z) = f (x, z) if z < 0 and u(x, z) = f (x, -z) if z > 0.
Thanks to the regularity of ∂D, the linear map f → Lf = u is an isomorphism from H(D -) onto Ȟ. Moreover, L is a bijection from C a V onto C a V , and for all f ∈ H(D -), R norm total (f ) = 4|D -| + J(Lf ), where J = J 0 + J wave and J wave is given by Michell's kernel (7.1). Thus, f ⋆ is a solution of (Q a U,V ) if and only if u ⋆ = Lf ⋆ is a solution of (P a V ). This equivalence holds for any bounded and symmetric open set D of R 2 which has a Lipschitz continuous boundary.

A numerical illustration

As an illustration, we present here the numerical results obtained by a gradient algorithm as described in [START_REF] Allaire | Conception optimale de structures[END_REF]Section 6.5]. We used the Freefem++ software [START_REF] Hecht | New development in freefem++[END_REF] for the algorithm and the Matlab c software for the visualization.

We work with the formulation (Q a,+ U,V ) of the problem (cf. Section 2.3), associated to the set functional R total : ω → R total (f U,V ω ). Starting from an initial domain (ω 0 ) in the lower half-plane, the algorithm computes a sequence of domains (ω k ) k∈N in the lower half-plane such that R total (ω k ) decreases at every step k. The sequence of domains (ω k ) is expected to converge to an optimal domain ω ⋆ . The bounding box is not taken into account in our algorithm, so we also expect ω ⋆ to be a minimizer among subsets of the lower half-plane.

At every step k, the domain ω k+1 is obtained from ω k by computing a displacement field, which requires (i) finding the optimal hull f k = f U,V ω k , (ii) solving a regularizing elliptic boundary value problem based on the shape derivative of the set functional R total at ω k , and (iii) computing a step size. In order to deal with the area constraint |ω| = a/2, a Lagrange multiplier is introduced. With this approach, the area constraint is satisfied only at convergence [START_REF] Allaire | Conception optimale de structures[END_REF].

For the space discretization of f k , we use continuous P 1 finite elements. A linear elliptic problem similar to (3.11) is solved on ω k and the nonnegativity of f U,V ω k is checked numerically. The displacement field is computed on the same mesh as f k , also with continuous P 1 finite elements. At every step k, a remeshing is performed.

We stress that the integrals I 1 and I 2 (see (2.2)-(2.3)) are computed exacly (up to computer accuracy), whereas the integral (2.1) involving the parameter λ is computed by truncating the interval [1, +∞] into [1, Λ] with Λ large, and by using a numerical integration [START_REF] Dambrine | A theoretical and numerical determination of optimal ship forms based on Michell's wave resistance[END_REF]. In particular, the kernel which is used for the numerical computation belongs to L ∞ (D × D): in this case, we have optimal regularity of the optimal shape (Theorem 6.1 with q > 2).

The parameters are ρ = 1000 kg•m -3 , g = 9.81 m•s -2 , U = 0.3 √ 4.4g ≈ 1.97 m•s -1

and C F = 0.01. The initial domain ω 0 is the half-ellipse Figure 3 shows the initial domain ω 0 and the domain ω 125 at convergence, together with the values of the optimal hulls f 0 and f 125 . The optimal hull f 125 (completed by symmetry) is represented in 3d on Figure 4.

ω 0 = {(x, z) ∈ R × R -: (x/
We check the convergence by seeing that R k = R total (ω k ) stays constant for k ≥ 60, up to a small error. Namely, we have R k ∈ [8.88, 9.05] for iterations k ∈ {60, 61, . . . , 423}. Thus, R k is constant for k ≥ 60 with a relative error less than 2%; this error can be attributed to the space discretization and to our remeshing strategy.

Let A k = |ω k | denote the area of ω k . Then we have A 0 ≈ 0.518, A 125 ≈ 0.714 and A k ∈ [0.711, 0.715] for iterations k ∈ {60, 61, . . . , 423}. Thus, the area constraint is satisfied at convergence with a relative error less than 0.6%.

We note that R 0 ≈ 48.6 and R 125 ≈ 8.94, so there is a big decrease of the total resistance. Moreover, the length of the optimal hull (2.2 m) is greater than the length of the initial hull (however, for a precise comparison, the change in the area should be taken into account). 7.3), by (formally) inverting the integrals, we see that Michell's normalized wave resistance can be written

J wave (u) = D×D k ν (x, z, x ′ , z ′ )u(x, z)u(x ′ , z ′ )dxdzdx ′ dz ′ (A.1)
where

k ν (x, z, x ′ , z ′ ) = 4ν 4 πC F (ν) K(ν(x -x ′ ), ν(|z| + |z ′ |)), (A.2) and K(X, Z) = ∞ 1 e -λ 2 Z cos(λX) λ 4 √ λ 2 -1 dλ. (A.3)
This formal computation will be made rigorous below (see Corollary A.2). This expression of Michell's resistance in terms of a kernel k ν is well-known [START_REF] Kostyukov | Theory of ship waves and wave resistance[END_REF], but to the best of our knowledge, the results in Appendix A are new. First notice that K is defined and continuous on R × (0, +∞) and

|K(X, Z)| ≤ I(Z) < +∞ (A.4)
for all (X, Z) ∈ R × (0, +∞), with Proof. It is sufficient to prove the assertion for a domain D of the form D l = (-l, l)× (-l, l) where l > 0 is arbitrary. Moreover, by the change of variable (x, z, x ′ , z ′ ) → (νx, νz, νx ′ , νz ′ ) in (A.1)-(A.2), it will suffice to consider the case ν = 1. We write

I(Z) = ∞ 1 e -Zλ 2 λ 4 √ λ 2 -1 dλ. (A.5)
K(X, Z) = I 1 (X, Z) + I 2 (X, Z) + I 3 (X, Z) + I 4 (X, Z), (A.6) with I 1 (X, Z) = 2 1 e -λ 2 Z cos(λX) λ 4 √ λ 2 -1 dλ, I 2 (X, Z) = ∞ 2 e -λ 2 Z cos(λX) λ 4 √ λ 2 -1 -λ 3 dλ, I 3 (X, Z) = - 2 0 e -λ 2 Z cos(λX)λ 3 dλ, I 4 (X, Z) = ∞ 0 e -λ 2 Z cos(λX)λ 3 dλ.
By Lebesgue's dominated convergence theorem, I 1 and I 3 are continuous on R 2 . We will prove that (x, z, x ′ , z

′ ) → I 2 (x -x ′ , |z| + |z ′ |) belongs to L 5/4 (D l × D l ) and that (x, z, x ′ , z ′ ) → I 4 (x -x ′ , |z| + |z ′ |) belongs to L q (D l × D l )
for all 1 ≤ q < 5/4, but does not belong to L 5/4 (D l × D l ). The theorem will then be proved. By the mean value theorem, there exists

C 1 > 0 such that 0 ≤ 1 √ 1 -u -1 ≤ C 1 u, ∀u ∈ [0, 1/4].
Thus, for all λ ≥ 2,

0 ≤ 1 1 -1/λ 2 -1 ≤ C 1 λ 2 ,
and so

0 ≤ λ 4 √ λ 2 -1 -λ 3 ≤ C 1 λ.
We obtain

|I 2 (X, Z)| ≤ C 1 ∞ 0 e -λ 2 Z λdλ.
Performing the change of variable µ = √ Zλ, we find

|I 2 (X, Z)| ≤ C 1 Z ∞ 0 e -µ 2 µdµ ≤ C ′ 1 Z . (A.7)
Next, we notice that for q > 1, the integral

l 0 l 0 (z + z ′ ) -q dzdz ′ is finite if and only if q < 2. Indeed, l 0 l 0 (z + z ′ ) -q dzdz = 1 q -1 l 0 [z 1-q -(z + l) 1-q ]dz (A.8) ≤ l 2-q (q -1)(2 -q) < ∞ (A.9)
if q < 2, whereas the integral on the right-hand side of (A.8) is +∞ if q ≥ 2.

In particular, for q = 5/4, the function (x, z, x ′ , z ′ ) → 1/(|z| + |z ′ |) belongs to L 5/4 (D l × D l ) since

D l ×D l 1 (|z| + |z ′ |) q dxdzdx ′ dz ′ = 16l 2 l 0 l 0 1 (z + z ′ ) q dzdz ′ < ∞. (A.10) By (A.7), the function (x, z, x ′ , z ′ ) → I 2 (x -x ′ , |z| + |z ′ |) belongs to L 5/4 (D l × D l ) as well.
Concerning the term I 4 , we first perform the change of variable µ = √ Zλ, so that

I 4 (X, Z) = 1 Z 2 J X √ Z , with J(t) = ∞ 0 e -µ 2 cos(tµ)µ 3 dµ. By Lebesgue's dominated convergence theorem, J is continuous on R; in particular, J is bounded on [-1, 1] by a constant C 2 .
Integration by parts yields

J(t) = - 1 t ∞ 0 sin(tµ)(3µ 2 -2µ 4 )e -µ 2 dµ, so that |J(t)| ≤ 1 |t| ∞ 0 (3µ 2 + 2µ 4 )e -µ 2 dµ = C 3 |t| ,
for all t = 0. Let now q > 1. On performing the linear change of variable X = x -x ′ , X ′ = x + x ′ , we find that

D l ×D l |I 4 (x -x ′ , |z| + |z ′ |)| q dxdzdx ′ dz ′ ≤ 2l l -l l -l 2l -2l |I 4 (X, |z| + |z ′ |)| q dXdzdz ′ = 8l l 0 l 0 2l -2l |I 4 (X, z + z ′ )| q dXdzdz ′ = 8l l 0 l 0 2l -2l 1 (z + z ′ ) 2q J X √ z + z ′ q dXdzdz ′ .
Integration with respect to X yields 2l -2l

J X √ z + z ′ dX ≤ |X|≤ √ z+z ′ J X √ z + z ′ dX + √ z+z ′ ≤|X|≤2l J X √ z + z ′ dX ≤ |X|≤ √ z+z ′ C q 2 dX + 2 √ z+z ′ ≤X≤2l C q 3 √ z + z ′ q X q dX ≤ 2C q 2 √ z + z ′ + 2C q 3 q -1 √ z + z ′ ≤ C 4 √ z + z ′ .
Thus,

D l ×D l |I 4 (x -x ′ , |z| + |z ′ |)| q dxdzdx ′ dz ′ ≤ 8lC 4 l 0 l 0 (z + z ′ ) 1/2-2q dzdz ′ .
The right-hand side is finite if and only if q < 5/4 (see (A.8)-(A.9)). This shows that I 4 belongs to L q (D l × D l ) for all 1 ≤ q < 5/4, as claimed.

To see the optimality of this statement, first note that J(0) > 0 and let t 0 > 0 such that J(t) ≥ J(0)/2 for all t ∈ [-t 0 , t 0 ]. The linear change of variable X = x-x ′ , X ′ = x+x ′ maps the square (-l, l)×(-l, l) onto a square with vertices (2l, 0), (0, 2l), (-2l, 0) and (0, -2l), which contains the square (-l, l) × (-l, l). Let q = 5/4. We have

D l ×D l |I 4 (x -x ′ , |z| + |z ′ |)| q dxdzdx ′ dz ′ ≥ 4l l 0 l 0 1 (z + z ′ ) 2q J X √ z + z ′ q dXdzdz ′ .
By choosing t 0 > 0 small enough so that t 0 √ 2l ≤ l, we also have

|X|≤l J X √ z + z ′ q dX ≥ |X|≤t 0 √ z+z ′ J X √ z + z ′ q dX ≥ J(0) 2 q (2t 0 √ z + z ′ ).
We obtain

D l ×D l |I 4 (x -x ′ , |z| + |z ′ |)| q dxdzdx ′ dz ′ ≥ 8lt 0 J(0) 2 q l 0 l 0 (z + z ′ ) 1/2-2q dzdz ′ .
The integral on the right-hand side is +∞ for q = 5/4 (see (A.8)). This concludes the proof.

As a consequence, we have:

Corollary A.2. For every q ′ > 5 and for all u ∈ L q ′ (D), the formulations for J wave (u) given by (7.1)-( 7.2) and (A.1)-(A.2)-(A.3) are equal (and finite).

Proof. Without loss of generality, we may assume that ν = 1 and D = D l = (-l, l) × (-l, l) with l > 0. Let q ′ > 5, u ∈ L q ′ (D l ) and q ∈ (1, 5/4) such that 1/q + 1/q ′ = 1. We use the form S u (λ) = iλT u (λ) with T u (λ) = D u(x, z)e -iλx e -λ 2 |z| dxdz (cf. (7.3)).

For any integer N ≥ 2, we have

N 1 |T u (λ)| 2 λ 4 √ λ 2 -1 dλ = D l ×D l K N (x -x ′ , |z| + |z ′ |)u(x, z)u(x ′ , z ′ )dxdzdx ′ dz ′ ,
(A.11) where

K N (X, Z) = N 1 e -λ 2 Z cos(λ(x -x ′ )) λ 4 √ λ 2 -1 dλ.
This is obtained by applying Fubini's theorem for the two variables λ ∈ (1, N ) and (x, z, x ′ , z ′ ) ∈ D l × D l . By the monotone convergence theorem, the left-hand side of (A.11) tends to where k ⋆ ∈ L q (D l × D l ) is independent of N (details are left to the reader). This implies that the right-hand side of (A.11) tends to

D l ×D l K(x -x ′ , |z| + |z ′ |)u(x, z)u(x ′ , z ′ )dxdzdx ′ dz ′
as N tends to +∞, by dominated convergence. where I : (0, +∞) → (0, +∞) is the continuous and decreasing function defined by (A.5). In particular, if C F (ν) -1 has at most a polynomial growth as ν tends to +∞, then k ν L ∞ (D×D) → 0 as ν → +∞.

Proof. Let (x, z, x ′ , z ′ ) ∈ D × D, and define X = ν(x -x ′ ), Z = ν(|z| + |z ′ |). Then Z ≥ 2νδ, so that for λ ≥ 1, we have e -λ 2 Z ≤ e -νδ e -λ 2 (Z-νδ) , and integration with respect to λ yields I(Z) ≤ e -νδ I(Z -νδ) ≤ e -νδ I(νδ). By (A. Putting together these two estimates yields (A.13).

The following property of k ν will also prove useful.

Proposition A.4. For every v ∈ L 1 (D), the function f v defined by

f v (x, z) = D k ν (x, z, x ′ , z ′ )v(x ′ , z ′ )dx ′ dz ′ is real analytic in R × R ⋆ .
Proof. Without loss of generality, we may assume ν = 1 and z > 0. Using cos(λ(xx ′ )) = ℜ(e iλ(x-x ′ ) ), we may write f v = (4/πC F (1))ℜ(f

1 v + f 2 v ) with f 1 v (x, z) = D 2 1 e -λ 2 z e iλx e -λ 2 |z ′ | e -iλx ′ λ 4 √ λ 2 -1 dλ v(x ′ , z ′ )dx ′ dz ′ f 2 v (x, z) = D +∞ 2 e -λ 2 z e iλx e -λ 2 |z ′ | e -iλx ′ λ 4 √ λ 2 -1 dλ v(x ′ , z ′ )dx ′ dz ′ .
It is sufficient to prove that f 1 v and f 2 v are real analytic on R × (0, +∞) (with values in C considered as a vector space over R). For this purpose, it is sufficient to show (see, e.g., [START_REF] Bourbaki | [END_REF]) that for i = 1 or 2, f i v is C ∞ on R × (0, +∞) and that for every compact subset K of R 2 , there are positive constants C K and M K such that for all l = (l 1 , l 2 ) ∈ N 2 and for all (x, z) ∈ K, .14) where |l| = l 1 + l 2 , as usual. The function f 1 v is clearly of class C ∞ on R×(0, +∞), and, for any l = (l 1 , l 2 ) ∈ N 2 ,

∂ l 1 +l 2 f i v ∂x l 1 ∂z l 2 (x, z) ≤ C K M |l| K |l|! (A
∂ l 1 +l 2 f 1 v ∂x l 1 ∂z l 2 (x, z) = D 2 1
(-λ 2 ) l 2 (iλ) l 1 e -λ 2 z e iλx e -λ 2 |z ′ | e -iλx ′ v(x ′ , z ′ )λ 4 √ λ 2 -1 dλ dx ′ dz.

(A.15) Thus, for (x, z) ∈ R × (0, +∞),

∂ l 1 +l 2 f 1 v ∂x l 1 ∂z l 2 (x, z) ≤ 2 l 1 +2l 2 +4 v L 1 (D) 2 1 dλ √ λ 2 -1 . Estimate (A.14) is satisfied with C K = 2 4 v L 1 (D) 2 
1 (λ 2 -1) -1/2 dλ and M K = 4. Let now δ ∈ (0, 1). Then f 2 v is clearly of class C ∞ on R × (δ, +∞); its partial derivatives are obtained on replacing the integral over [START_REF]Proceedings of the 8th International Towing Tank Conference[END_REF][START_REF] Aguilera | An optimization problem with volume constraint[END_REF] in (A.15) by an integral over (2, +∞). This yields

∂ l 1 +l 2 f 2 v ∂x l 1 ∂z l 2 (x, z) ≤ v L 1 (D) +∞ 2 λ l 1 +2l 2 +4 e -λ 2 z dλ √ λ 2 -1 .
Next, we use that (λ 2 -1) -1/2 ≤ C/λ on (2, +∞), for some constant C, and we perform the change of variable µ = λ 2 z in the integral. We obtain

∂ l 1 +l 2 f 2 v ∂x l 1 ∂z l 2 (x, z) ≤ C v L 1 (D)
2z l 1 /2+l 2 +2 Γ(l 1 /2 + l 2 + 2), where Γ is the Gamma function. Next, we use that Γ(l 1 /2 + l 2 + 2) ≤ Γ(l 1 + l 2 + 2) = (l 1 + l 2 + 2)(l 1 + l 2 )!.

We find that estimate (A.14) is valid on R × (δ, +∞) with, e.g., 

C K = C ′ v L 1 (D) /( 2δ 

B. Technical lemmas

The proof of the following lemma may be found in [START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF]. This remains valid for all U ∈ H 1 (B((x 0 , z 0 ), r 0 )) such that ∆U is a measure satisfying Remark B.2. The proof shows furthermore that the condition (B.1) implies the existence of the limit in (B.2) for any (x 0 , z 0 ) whence we can take some precise representation of U defined thanks to (B.2).

The following lemma is more or less classical (see, e.g. [START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). 

Figure 2 .

 2 Figure 2. Symmetrization z → -z and a possible bounding box

Proposition 4 . 2 .

 42 If u is a solution of problem (P a V ) such that |Ω u | < a, then u satisfies (4.3).

Proposition 4 . 5 .

 45 Assume that k ∈ L ∞ (D ×D) with k L ∞ (D×D) < (C P a) -2 . Then condition (4.4) is satisfied. Proof. Let u ⋆ ∈ ȞV solve (4.3) and assume by contradiction that |Ω u ⋆ | ≤ a. Let now Φ ∈ Ȟ be the unique solution of -∆Φ(x, z)

We have Theorem 7 . 3 .

 73 Let the assumptions of Theorem 7.1 be satisfied. Then u is locally Lipschitz continous on D ⋆ .

Figure 3 .

 3 Figure 3. Initial domain ω 0 (top), converged domain ω 125 (bottom) and color maps of the optimized hull function

Figure 4 .

 4 Figure 4. An optimal hull

∞ 1 |T u (λ)| 2 λ 4 √ λ 2 - 1
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 3 Assume that D ⊂ {(x, z) ∈ R 2 : |z| > δ} for some δ > 0. Then k ν (cf. (A.2)) belongs to L ∞ (D × D) and k ν L ∞ (D×D) ≤ 4ν 4 πC F (ν)e -νδ I(νδ), (A.13)
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Lemma B. 1 . 1 r 0 ds s - 1 B

 1101 Let B((x 0 , z 0 ), r 0 ) be an open ball and U ∈ C 2 (B((x 0 , z 0 ), r 0 )). Then, for all r ∈ (0, r 0 ),-∂B((x 0 ,z 0 ),r) U -U (x 0 , z 0 ) = (2π) -((x 0 ,z 0 ),s) d(∆u).

U

  (x 0 , z 0 ) = lim ρ→0 -∂B((x 0 ,z 0 ),ρ)

Lemma B. 3 .

 3 Let B((x 0 , z 0 ), r 0 ) be an open ball, r 0 ≤ 1, F ∈ L p (B((x 0 , z 0 ), r 0 )), p ∈ (1, 2), α = 2/p ′ . Then, there exists a constant C which depends only on p andF L p (B((x 0 ,z 0 ),r 0 )) such that, for r ∈ (0, r 0 ), (i) if ∆U = F on B((x 0 , z 0 ), r 0 ), then |U | α,B((x 0 ,z 0 ),r/2) ≤ C 1 + r -α U L ∞ (B((x 0 ,z 0 ),r)) , (B.3) (ii) if ∆U ≥ F and U ≥ 0 on B((x 0 , z 0 ), r 0 ), then U L ∞ (B((x 0 ,z 0 ),2r/3)) ≤ C r α + -∂B((x 0 ,z 0 ),r) U . (B.4)

  ). But the function t → t + λ 2 /t is bounded from below on (0, ∞) by 2

		√	λ 2 . It follows that
	t	
	2 λ 2	ds
	0	[|u λ 1 ,λ 2 |=s]

  These parameters can correspond to an experiment in a towing tank, but we note that a scaling invariance holds for our problem, allowing possible comparison with real world ships. Namely, if the lengths x, z and f are multiplied by a (dimensionless) parameter α (of order 100 typically), and if U is multiplied by √ α, then the normalized total resistance (2.11) is multiplied by α 2 , since each term in (2.11) is multiplied by α 2 .

	1.1) 2 + (z/0.3) 2 ≤ 1},
	where the lengths 1.1 and 0.3 are expressed in meters.
	Remark 8.1.
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But, thanks to Lemmas B.1 and 6.5, -∂B((x 1 ,z 1 ),3r) u = -∂B((x 1 ,z 1 ),3r) u -u(x 1 , z 1 ) ≤ Cr min{2/q ′ ,1} whence u L ∞ (B(x 0 ,z 0 ),r) ≤ Cr 2/p ′ . Finally, 0 ≤ u(x 0 , z 0 ) = lim r→0 -B((x 0 ,z 0 ),r) u ≤ lim inf r→0 u L ∞ (B(x 0 ,z 0 ),r) = 0.

Proof of the Hölder continuity. Let δ ∈ (0, 1 3 ). Let us call

(where ∂D = D \ D is the topological boundary of D in R 2 ). In the following, q ∈ (1, 2), α = 2/q ′ ∈ (0, 1), and f is defined by (6.2). Lemma 6.7. There exists C δ > 0 such that for any

Proof. Take (x 0 , z 0 ) ∈ D δ and denote r 0 = d(x 0 , z 0 ). If r 0 = 0, then (x 0 , z 0 ) belongs to ∂Ω u and so u(x 0 , z 0 ) = 0 by Lemma 6.6. Now suppose r 0 ≥ δ. Then, since u is bounded,

(such a point exists because Ω u is a closed subset of D). In Lemma 6.6, we saw that u(x 1 , z 1 ) = 0 so that, applying Lemmas B.1 and 6.5, we get

Applying point (ii) of Lemma B.3 with p = q and F = χ [u>0] f + λ s χ [u>0] ∈ L q (D) (cf. (6.1) and (6.2)), we get

and so u(x 0 , z 0 ) ≤ Cd(x 0 , z 0 ) α as claimed. Lemma 6.8. There exists C ′ δ such that for any

Proof. Let r 0 = d(x 0 , z 0 ). First suppose that |B((x 0 , z 0 ), r 0 ) ∩ Ω u | = 0. Thanks to Lemma 6.6, we know that u ≡ 0 in B((x 0 , z 0 ), r 0 ). In particular, |u| α,B((x 0 ,z 0 ), r 0 4 ) = 0. Now suppose that |B((x 0 , z 0 ), r 0 ) ∩ Ω c u | = 0 (this is the only other possibility since (x 0 , z 0 ) ∈ ∂Ω u ). We have -∆u = λ B((x 0 ,z 0 ),r 0 ) -f by Lemma 5.4, where f ∈ L q (D) Proof. Recall that for the solution of W ∈ H 1 0 (B 1 ), -∆W = G on B 1 , since p > 1, by elliptic regularity we have

We use the Sobolev imbedding W 2,p (B 1 ) ⊂ C α (B 1 ) [START_REF] Brezis | Analyse fonctionnelle[END_REF] and we apply this to the rescaled functions

We obtain

For (B.3), we notice that ∆(V -W ) = 0 on B 1 so that by Harnack's inequality [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF],

Together with (B.5), this inequality gives

.

Going back to U gives (B.3) by change of variable. For (B.4), we first notice that -∆(V -W ) ≤ 0, so that (V -W )(x, z) ≤ ∂B 1 P (x,z) (x ′ , z ′ )V (x ′ , z ′ )dσ(x ′ , z ′ ) where P x,z (•) denotes the Poisson kernel at (x, z). Using (B.5) again and V ≥ 0, we deduce that

The relation (B.4) follows by change of variable.

The following lemma is proved in [START_REF] Briançon | Lipschitz continuity of state functions in some optimal shaping[END_REF].

Lemma B.4. Let B((x 0 , z 0 ), r 0 ) be an open ball, r 0 ≤ 1, F ∈ L q (B((x 0 , z 0 ), r 0 )), q > 2. Then, there exists a constant C = C(q, F L q (B((x 0 ,z 0 ),r 0 )) ) such that, for r ∈ (0, r 0 ), (i) if ∆U = F on B((x 0 , z 0 ), r 0 ), then |U | 1,B((x 0 ,z 0 ),r/2) ≤ C 1 + r -1 U L ∞ (B((x 0 ,z 0 ),r)) ,

(ii) if ∆U ≥ F and U ≥ 0 on B((x 0 , z 0 ), r 0 ), then U L ∞ (B((x 0 ,z 0 ),2r/3)) ≤ C r + -∂B((x 0 ,z 0 ),r)

U .