Non Linear Singular Drifts and Fractional Operators: when Besov meets Morrey and Campanato - Archive ouverte HAL
Article Dans Une Revue Potential Analysis Année : 2018

Non Linear Singular Drifts and Fractional Operators: when Besov meets Morrey and Campanato

Résumé

Within the global setting of singular drifts in Morrey-Campanato spaces presented in [6], we study now the Hölder regularity properties of the solutions of a transport-diffusion equation with nonlinear singular drifts that satisfy a Besov stability property. We will see how this Besov information is relevant and how it allows to improve previous results. Moreover, in some particular cases we show that as the nonlinear drift becomes more regular, in the sense of Morrey-Campanato spaces, the additional Besov stability property will be less useful.
Fichier principal
Vignette du fichier
Besov_Levy_V3.pdf (438.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01383228 , version 1 (18-10-2016)
hal-01383228 , version 2 (01-06-2017)

Identifiants

Citer

Diego Chamorro, Stéphane Menozzi. Non Linear Singular Drifts and Fractional Operators: when Besov meets Morrey and Campanato. Potential Analysis, 2018, 49 (1), pp.1-35. ⟨hal-01383228v2⟩
602 Consultations
320 Téléchargements

Altmetric

Partager

More