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Nomenclature 

a Half-width of the contact area (mm) 

b Crack length (µm) 

bCA Crack arrest length (µm) 

bØ Short-to-long crack transition length  (µm) 

bopt Optimal crack initiation length (µm) 

bp Propagation crack length (µm) 

D Crack nucleation damage 

E Young’s modulus (MPa)

K Stress Intensity Factor (SIF) (MPa.m1/2) 

Fatigue crack driving force parameter (MPa.m1/2) 

Ke Potential drop slope 

KI Mode I SIF (MPa.m1/2) 

KIC Critical SIF (MPa.m1/2) 

ΔK Nominal SIF (MPa.m1/2) 

ΔKØ Long-crack SIF range threshold (MPa.m1/2) 

ΔKth Crack arrest condition (MPa.m1/2) 

Amplitude of the second invariant of the stress tensor deviator 

ℓ Critical distance (µm) 

ℓopt Optimal critical distance (µm) 

N Number of cycles 

NCN Number of cycles to crack nucleation cycles 

NP Number of cycles to crack propagation cycles 

NT Total number of numerical cycles NT=NCN+NP  

P Normal force (N) 

pmax Maximum surface pressure (MPa) 

Q Tangential fretting force (N) 

Q* Linear tangential fretting force amplitude (N/mm) 

Q*CN Crack nucleation threshold (N/mm) 

qmax Maximum surface shear stress (MPa) 

R Cylinder radius (mm) 

RF Fatigue stress ratio (σF,min/σF,max)

RK SIF stress ratio (KImin/KImax) 
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RQ Fretting stress ratio (Qmin/Qmax=-Q*/+Q*) 

S Deviatoric part of  

V Potential  

W Fatigue sample thickness (mm) 

δ Fretting displacement (µm) 

ε Strain 

εp Plastic strain 

Δεp Plastic strain increment by cycle 

µ Coefficient of friction 

σ Stress (MPa) 

σ 11 Stress along x direction (MPa) 

σC Crossland equivalent stress (MPa.m1/2) 

σd Traction-compression fatigue limit (RF=-1) (MPa) 

σF Fatigue stress (MPa) 

σH,max Maximum hydrostatic stress (MPa) 

σy Cyclic yield stress (MPa) 

σy,0.2% Monotonic yield stress (MPa) 

σy,flat Cyclic yield stress of the flat material (MPa) 

d Torsion fatigue limit (RF=-1) (MPa) 

Stress tensor 

Subscripts and abbreviations 

CA Crack Arrest 

CEP Cyclic elastic-plastic 

E Elastic 

exp Experimental 

FF Fretting Fatigue 

max Maximum value 

mean Mean value 

MEP Monotonic elastic-plastic 

min Minimum value 

PD Potential Drop 

PF Plain Fretting 

th Theoretical 



3 

Abstract 

Both experimental and numerical approaches were developed to follow cracking damage in 

steel cylinder/plane fretting fatigue contact subjected to variable loading conditions. 

For the experimental approach, the potential drop technique was implemented on the 

fretting fatigue test device to observe on-line crack propagation. A calibration curve relating 

crack length and potential provided direct knowledge of cracking status.  

Numerically, total life was separated between crack nucleation and crack propagation. To 

formalize crack nucleation prediction, Crossland multiaxial fatigue behavior was applied at a 

critical distance to take into account the severe fretting fatigue gradients. The crack 

propagation rate was formalized using Kujawski’s fatigue crack driving force parameter,    ,

and coupling the Paris law of the material.  

Using this combined crack-nucleation/crack-propagation analysis, constant fretting fatigue 

conditions and variable fretting fatigue sequences were investigated. Good correlations 

were observed. 

Finally, the influence of different plastic laws was investigated. Both monotonic and cyclic 

approximations provided good correlation with experimental data, the cyclic description 

being closer.  

Key-words: cracking; fretting fatigue; variable loading; FEM; plasticity 
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1 Introduction 

Fretting is defined as a small-amplitude oscillatory movement between two surfaces in 

contact [1,2]. Fretting involves two sliding conditions depending on displacement amplitude: 

partial slip, which involves an inner stick zone, and larger-amplitude gross slip, inducing a full 

sliding response in the interface. The present study focused on the partial slip condition, 

which leads primarily to cracking damage [3,4]. 

Fretting cracking is often combined with cyclic bulk fatigue loading (Fig. 1a). Fretting fatigue 

loading can induce premature failure of the assembly. Fretting fatigue experiments aim to 

represent industrial condition, usually with variable loading. It is essential to be able to 

predict assembly lifetime, especially for variable loading applied for very large number of 

cycles, as experimental validation is often too expensive.  

Numerous methods have been adopted to predict the lifetime of components subjected to 

fretting fatigue cracking damage. Navarro et al. [5] showed that accurate prediction of 

lifetime under fretting fatigue requires considering both crack initiation life and crack 

propagation life. Depending on the loading amplitude, one stage may supplant the other, 

but this depends on so many parameters that it is easier to consider both phases directly. 

The more recent works by Vázquez et al., Hojjati-Talemi et al. and Shen et al. [6–8] are in

agreement, and estimated lifetime by decoupling the crack nucleation and crack propagation 

phases. 

Crack nucleation life is usually investigated by applying a multiaxial fatigue criterion [9]. 

Predictions were improved by considering the severe stress gradients imposed by contact 

loading, using non-local process volume stress averaging strategy [10,11] or equivalent 

critical distance [12]. Recently, other techniques using the theory of continuum damage 

mechanics [8,13,14] have been explored to predict fretting crack nucleation life. Once a 

crack is nucleated, depending on the loading amplitude, it will propagate or reach a crack 

arrest condition. The usual method, for crack propagation, employs a fracture mechanics 

approach [7,15,16]. Crack arrest prediction used Araujo et al.’s [17] short crack arrest

strategy; crack propagation was usually quantified using the Paris law.  

The objective of this study was to assess prediction of fretting fatigue endurance under 

variable loading conditions by this sequential crack-nucleation/crack-propagation approach, 

and how prediction is affected by the choice of the plastic law used to simulate the fretting 

fatigue contact. 

These two aspects were addressed by the following strategy. Extending a previous study 

[18], fretting fatigue endurance and crack-arrest conditions were investigated combining 

experiments and simulations on an uncoupled approach: 

(1) 

This fretting fatigue endurance was correlated with a crack-extension analysis so that: 

b=bø (N=NCN) +bp (Paris long-crack description) (2) 

so that 

 if b<bø   NCN: no crack nucleation;

 if b→bCA: crack arrest condition;

 if b→bfailure: failure condition
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with b crack length, bø short-to-long crack transition length, bp propagation crack length, bCA 

crack length at crack arrest, bfailure crack length at failure, NCN the number of cycles to crack 

nucleation and NP the number of cycles to crack propagation.  

In this study, a conventional finite elements (FE) approach was used to establish the elastic 

shakedown stress-field condition. 

Crack nucleation was defined using Crossland’s criterion, applied at a critical distance to take

into account the contact stress gradient effects. Special care was taken in defining the 

optimal critical distance, allowing minimum scatter in the crack nucleation prediction [18]. 

The crack nucleation law was calibrated from reserve analysis of plain fretting experiments, 

to establish optimal critical distance according to crack-nucleation life. 

For crack propagation, an uncoupled approach, using a weight function to estimate the 

stress intensity factor, was applied. Crack propagation rate was defined using Kujawski’s 
fatigue-crack driving-force parameter     and coupling the Paris law of the material. 

Predicted crack extensions were compared with experimental potential-drop 

measurements. 

All this analysis was developed with a representative cyclic elastic-plastic law. To evaluate 

how chosen given plastic law affects fretting fatigue prediction, a similar analysis was 

performed using a simpler elastic-plastic law determined by monotonic tensile test and, 

finally, basic elastic behavior. For all these constitutive laws, the corresponding fatigue data 

were extracted and the respective fretting fatigue endurance predictions were compared. 

Fig. 1: (a) Illustration of the fretting fatigue loading and severe stress gradient induced; (b) photo of the fretting 

fatigue test set-up at the LTDS laboratory; (c) implementation of potential-drop method on the fretting fatigue 

sample for online crack monitoring. 
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2 Variable loading fretting fatigue tests 

2.1 Fretting fatigue contact materials 

 

The study material was 32Cr1 industrial steel, with low cyclic yield stress (σy,flat). Its atomic 

composition is given in Table 1 [19]. The material was tested under fretting fatigue 

conditions using a cylinder/plane contact. The cylinder was in FM35 steel of R=4.6 mm 

radius, applied with a normal force P on the flat material. The cylinder material was selected 

with higher cyclic yield stress than the flat material (σy,cylinder=1.25xσy,flat), so was less likely to 

nucleate a crack. Hence, cracking was investigated on the plane specimen only. 

 
Table 1: % Atomic composition of 32Cr1 steel [19] 

C Cr Mn Si Cu Mo Ni Al P S 

0.32 0.347 0.743 0.201 0.046 0.016 0.047 0.013 0.007 0.002 

 

Normal force P was chosen high enough to generate plastic conditions in both plane and 

cylinder specimens, with pmax=3.2σy,flat (σy,flat being the cyclic yield stress of the flat material). 

Consequently, both plane and cylinder had to be described using elastic-plastic laws. For 

each material, tensile tests were performed to establish monotonic stress-strain behavior 

(Fig. 2a). Monotonic mechanical parameters E and σy,0.2%, derived from the monotonic 

behavior are given in Table 2. 

 
Table 2: Mechanical properties of cylinder and flat materials  

Material 
Poisson’s 

ratio 

Monotonic Parameters Cyclic Parameters 

E (GPa) σy,0.2% (MPa) E (GPa) σy (MPa) pprager=(σ-σy,flat)/dεp 

Flat 

(32C1) 
0.3 200 0.7 xσy,flat 195 σy,flat 11.7 

Cylinder 

(FM35) 
0.3 200 1.05 xσy,flat 205 1.25xσy,flat 24.8 

 

Then, dedicated strain-controlled cyclic tests were performed to identify a cyclic elastic-

plastic law. Deformation range was 0.2% to 1.5%, at a deformation rate of 5x10-3s-1, with 10 

cycles at each 0.1% deformation step. Fig. 2b shows stabilized stress-strain loop for 0.5% 

deformation in the flat material (32C1), and Fig. 2c shows the related accommodation of 

stress as a function of time. Cyclic plastic laws were identified from the stabilized stress-

strain loops as the objective was to model high cycle fretting fatigue tests with crack 

nucleation time being always greater than 3x104 cycles. All stress values were normalized by 

flat cyclic yield stress, σy,flat. 

 

Extreme values of stabilized stress strain loop were plotted as a function of the 

corresponding deformation level on Fig. 2a for the flat material (32C1). These points were 

compared to the stress evolution of the tensile test. Considerable cyclic softening took place. 

Similar cyclic softening was observed for the cylinder material (FM35). For strains greater 

than 1%, experimental points showed progressive softening caused by damage. These points 

were not taken into account for the identification of the elastic-plastic law.  
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Fig. 2: 32C1 constitutive steel of flat material, cyclic and monotonic elasti-plastic behaviors. (a) ( ) Stabilized 

cyclic conditions compared to monotonic tensile test. (b) Stabilized stress-strain loop for 0.5% deformation 

level; (c) stress softening until stabilization with the applied cycles at 0.5% deformation level.  
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Cyclic stress evolution as a function of strain of Fig. 2a was modelled by two successive 

straight lines in order to identify a Prager linear kinematic hardening law. The parameters 

obtained are given in Table 2. 
 

Fig. 3 compares the predicted stress-strain loops obtained with the linear kinematic 

hardening law for the flat material, versus the experimental loop at 0.5% strain. This linear 

description of hardening does not correlate perfectly with the experimental stress-strain 

loop. However, previous numerical analysis showed that a nonlinear kinematic law does not 

converge for small finite elements mesh size, as needed in fretting fatigue simulations. 

Linear description of hardening allows easier and faster modeling than nonlinear description 

while giving good lifetime predictions, as will be shown in this paper. 

 

 
Fig. 3: Flat material 32C1 (deformation level: ε=0.5%): comparison of experimental stress-strain loop ( ) and 

numerical stress strain loop ( ) simulated with the cyclic law with linear kinematic hardening. 
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a long test condition and low enough to guarantee test control stability. The fretting stress 

ratio was kept constant, at RQ =Q*min/Q*max=-Q*/+Q*= -1.  

Both constant and variable loading tests were carried out, with different fretting fatigue 

loading sequences, one after the other. In this study, only fretting and fatigue loading were 

changed from one block to another, while the normal force P was kept constant throughout 

the test. 

2.3  Examination of fretting scars for unbroken specimens 

 After 106 cycles, if the fatigue sample had not failed, cracking was investigated using a 

destructive method. First, the sample was cut in the middle and then imbedded in epoxy to 

be polished to a mirror-like surface state. Next, cracks were observed by optical microscope. 

The polishing and observation steps were repeated two more times, so that crack 

measurement was performed on 6 different planes. Crack analysis was restricted to the 

middle of flat specimens, as the chosen dimensions allowed plane strain conditions along 

the central axis of the fretting scar. Similar crack lengths were observed in all 6 planes, and 

the maximum projected crack length b was determined. Fig. 4 shows an example of a 

fretting scar and the measure of the projected crack length b. 

Fig. 4: Methodology for examining crack length in unbroken specimens. 
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(a) 

(b) 

(c) 

Fig. 5: (a) Calibration curve for a constant fretting fatigue loading (P, σF,mean/σy,flat=0.88, RF=0.85, Q*/P=0.30). (b)

Example of crack arrest condition as defined by the experimental crack arrest criterion based on the PD 

evolution slope. (c) Example of crack propagation condition as defined by the experimental crack arrest 

criterion based on the PD evolution slope. 
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Crack lengths were measured by the destructive method and plotted as a function of 

electrical potential (Fig. 5a). Potential values of each test were normalized by their 

respective initial value V0.  

Fig. 5a plots the calibration curve. Its evolution was complex, and was described by 2 

successive polynomial functions: 

For 1.01 < V/V0 < 1.14: b= 643212.(V/V0)3 - 2040300.(V/V0)2 + 2157715.(V/V0) - 760573 (3) 

For 1.14 > V/V0: b= 5487.(V/V0)3 - 30610.(V/V0)2 + 57230.(V/V0) - 33000 (4) 

Special care was taken to always position the probes at the same place, to limit scatter. 

However, the estimated crack length based on PD measurement depended on many 

variables, such as crack front shape, contact alignment and plasticity level [23]. Therefore, 

the fretting fatigue crack propagation rate estimated from inverse analysis of this calibration 

curve (i.e. b estimated from PD) should be taken with cautions, and crack extension analysis 

was based on the destructive method as far as possible.  

However, the PD method appears to be a useful and consistent method for online 

estimation of crack arrest conditions. A crack propagation criterion was established from the 

slope of the potential Ke as a function of fretting fatigue loading cycles [22]: Ke<10-9cycles-1

represents a crack arrest condition while, if Ke>10-9cycles-1, the crack is propagating.

Examples of the application of this criterion for a crack arrest and a crack propagation 

situation are shown in Fig. 5b and Fig. 5c, respectively. 

3 Predictive methodology for variable loading fretting 

fatigue tests 

3.1  Finite elements analysis 

Finite Elements Analysis (FEA) was carried out using Abaqus 6.10 software. A 2D plane strain 

model of the fretting fatigue test was generated (Fig. 6). Dimensions and boundary 

conditions matched the parameters of the physical experiment: i.e, the fretting fatigue 

sample was encased on the right while fatigue loading was applied on the left. The normal 

force was applied by pressing the cylinder pad on one side and the ball-bearing on the other 

side of the sample. No elements could rotate out of plane.  

The loading blocks were applied directly one after the other, in the simulation as in the 

experimental test, thus taking account of the loading history in the stress field of each 

successive block. 

Surface-to-surface discretization with small sliding was adopted for contact accommodation. 

The Lagrange multiplier was selected as the contact algorithm. The friction coefficient of the 

cylinder plane contact was determined experimentally, using the variable displacement 

technique described by Voisin et al. [24], µ=1.0. The contact between the ball-bearing and 

the fretting fatigue sample was considered frictionless.  

The model was meshed with CPE3-type linear triangular elements, except in the contact 

zone, where CPE4R-type linear quadrilateral elements were used; this zone was also meshed 

more densely than the other regions (from 10 µm near the contact to 50 µm deep in the 
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sample). Stress convergence in a similarly meshed model was investigated in a previous 

study [18], which showed that consistent crack nucleation predictions could be obtained if 

the stress analysis exclusively involved subsurface stress components, defined at the second 

node and further below the surface (in the present case, z≥20µm). The 10µm mesh size

chosen for the contact allowed better convergence, saved considerable computation time 

and was small enough compared to the critical distance that was used. A structured mesh is 

also necessary for accurate crack propagation prediction. 50µm quadrilateral elements were 

implemented in the volume, to achieve a good compromise between computational cost 

and crack propagation increment. 

Fig. 6: Finite elements model of the fretting fatigue test (rotated 90° to the right compared to the experimental 

test device). 

The normal force P was high enough to generate plasticity. The added fatigue loading 

enhanced plasticity. Consequently, cylinder and fatigue sample behaviors were well 

described by the cyclic elastic-plastic (CEP) laws introduced in section 2.1. Activated 

plasticity decreased after each cycle, due partly to material hardening but mostly to plastic 

accommodation of the contact geometry (Fig. 7). Numerical analysis showed that macro 

contact accommodation, which is accommodation of contact half-size, occurred quickly after 

around 10 loading cycles (Fig. 7a and d), with contact half-size increasing by 15%.  

Local stabilization of the material took much longer. It was quantified by assessing the most 

highly strained integration point (Fig. 7a). Two methods were applied: in terms of stress-

plastic strain loop evolution (Fig. 7b), shakedown corresponds to the time from which loops 

became closed and vertical; alternatively, in terms of increase in plasticity (Fig. 7c), 

shakedown corresponds to the beginning of the horizontal evolution. In the case studied in 

Fig. 7, material local accommodation was achieved after around 150 loading cycles. This 

accommodation time may vary with loading amplitude and the constitutive law. It should be 

noted that elements around the contact border reached elastic shakedown earlier.  

Comparison with the evolution of both, pmax, the maximum contact pressure, and qmax, the 

maximum surface shear, stresses, which stabilized after 10 numerical cycles (Fig. 7d), 

suggests that contact loadings were mainly driven by extension of the plastic contact area 

rather than by the material plastic response. 

Fatigue analysis to predict cracking in variable loading test sequences was therefore 

performed on the stable elastic shakedown state. All simulations ran for 100 numerical 

cycles for crack nucleation conditions and 200 cycles for crack propagation conditions, which 

was about 2h long. Computation time may seem long, but the model used a very fine mesh 
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and was still much quicker than experimental testing. Lifetime study was then performed, 

distinguishing crack nucleation life and crack propagation life. 

 

 
 

Fig. 7: Evolution of a fretting fatigue contact subjected to the loading P, Q*/P=0.3, σF,mean/σy,flat=0.88, RF=0.85 

for 200 numerical cycles to characterize elastic shakedown. (a) Diagram of the contact; (b) evolution of the 

stress-plastic strain loops of the most plastic strained element; (c) evolution of Δεp
 of the most plastic strained 

element compared to contact half-size evolution; (d) related evolution of pmax and qmax contact stresses. 
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with S the deviatoric part of  , σd the traction-compression fatigue limit (RF=-1) and d 

torsion fatigue limit (RF=-1). 

  

The α coefficient was established from alternating shear and tensile fatigue limits at 106 

cycles: σd=0.70xσy,flat and d=0.51 xσy,flat. A previous study showed very low fluctuation 

according to N, and thus the α coefficient was considered constant: α(N)=α=0.46±0.02. 
Cracking risk could then be estimated by comparing Crossland equivalent stress with the 

alternated torsion fatigue limit: when 

 

dC
             (9) 

 

there is a risk of cracking. 

 

3.2.2 Application of Crossland’s criterion to predict infinite fretting fatigue 

endurance 

Fig. 8a plots the subsurface distribution of Crossland equivalent stress related to the fretting 

fatigue crack nucleation condition: P, Q*/P=0.13, σF,mean/σy,flat=0.88, RF=0.85. It shows severe 

stress gradient at the hot spot (i.e., the top surface contact border in fretting fatigue), which 

comes from the fretting contact loading. Stress gradients lead to over-conservative 

estimation of cracking risk at the hot spot. This behavior is well known and usually taken into 

account by using non-local fatigue stress analyses such as mean volume, mean distance or 

critical distance analysis [20,26–28]. 

 

We focused on the critical distance method. Hence, instead of considering the surface hot-

spot stress at the surface trailing contact border, fatigue analysis was performed at a critical 

distance (ℓ) below the surface, vertical to the hot spot stress contact border (x=-a, z=ℓ)(Fig. 

8b). The question was: which critical length ℓ to consider? 
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(a) 

 

 
(b) 

 

Fig. 8: (a) Subsurface distribution of Crossland cracking risk. (P, Q*/P=0.13, σF,mean/σy,flat=0.88, RF=0.85). (b) 

Principle of the critical distance method. 

 

In a previous paper, we sought to optimize the critical distance strategy by clarifying the 

influence of crack length on crack nucleation prediction [18]. For a given fretting fatigue 

contact (R, P), there was shown to be an optimal (ℓopt-bopt) condition in which cracking risk 

prediction error was minimal, with ℓopt the optimal critical distance related to the optimal 

crack nucleation length bopt.  

Considering several patterns of crack nucleation threshold evolution related to various 

loadings, for each crack length from 0 µm to 100µm, the related critical distance was 

calculated by inverse analysis. Then, for each possible crack nucleation length b, the mean 

critical distance    and standard deviation       were plotted as a function of crack length in 

Fig. 9. 

 

The standard deviation showed a remarkable bell shape, with a clear minimum for b=60µm. 

This suggests that crack nucleation has to be calibrated with respect to a representative 

incipient crack length for which prediction error is minimal. If the chosen crack length is too 

small (i.e., b<60µm), it is probably not representative of a damaging crack, since such very 

small cracks may never propagate. By contrast, if the chosen crack length is too long (i.e., 

b>60µm), it is probably partly governed by crack propagation rather than pure crack 

nucleation. Hence, there is an optimal pairing of crack initiation length and critical distance 

(ℓopt-bopt) for which crack nucleation prediction is optimal (Fig. 9): ℓopt=25µm and bopt=60µm. 
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It is interesting to note that ℓopt=bø/2 with bø=50µm represents the transition from short-to-

long crack, which confirms Taylor’s theory [26]. Identifying this ℓopt-bopt couple is time

consuming, needing lots of experimental results; the following axiom was therefore 

considered: 

 ℓopt=bø/2, with bø the short-to-long crack transition as defined by the Kitagawa-

Takahashi diagram [29]; 

 bopt= bø.

Fig. 9: Identification of optimal (ℓopt-bopt) couple to predict crack nucleation, following the method of section

3.2.2 which is further developed in [18]. 

Following this strategy, a given fretting fatigue loading nucleates a crack if the equivalent 

Crossland stress located at a critical distance ℓopt=25µm under the hot spot is greater than or

equal to d (Equation 9). In addition, the nucleated crack length will be equal to bø.

It should be noted that, since the crack nucleation length corresponds to the short-to-long 

crack transition, propagation prediction is made easier by not having to consider the short 

crack propagation regime to predict fretting fatigue endurance. 

3.2.3 Predicting crack nucleation endurance 

Crack nucleation prediction as described above corresponds to infinite endurance. To predict 

crack nucleation endurance, the criterion must be adapted as a function of the number of 

cycles. A set of plain fretting experiments was performed, using the same contact 

configuration, to identify Q*CN(bopt,N), the tangential forces inducing a crack nucleation 

length of bopt for different test durations (Fig. 10a and b).  
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Fig. 10: Methodology used to identify crack nucleation endurance from reverse analysis of plain fretting 

cracking experiments. (a) Crack extension for different plain fretting test durations (b assessed using a 

destructive method; P, R=4.6mm, 12Hz;  : 2x10
4
cycles;  : 5x10

4
cycles;  : 1x10

5
cycles;  : 5x10

5
cycles;  :

1x10
6
cycles. (b) Evolution of tangential force nucleation endurance Q*CN(b=bø ;NCN,Q). (c) Identification of crack

nucleation endurance from reverse plain fretting analysis ( ): identification of NCN(bø) ( ) Eq. 11 and 

comparison with torsional fatigue experiments ( : broken, : safe). 
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From this analysis, crack nucleation endurance could be expressed using a power law 

formulation (Fig. 10b): 

NCN,Q=A1 P
Q

b1
(10)

with A1=6000, b1=-0.73 and Q =0.23 for ℓopt= bø /2=25µm and bopt= bø=50µm.

Then each crack nucleation condition Q*CN(bø,N) was simulated to extract the corresponding 

σC,CN(ℓopt,N), Crossland equivalent stress at the optimal critical distance (Fig. 10c). Again, a

power law could be formulated: 

N  (  )= (11) 

with ℓopt=bø/2, A2=8.5x10
3
 and b2=-0.7.

These data were compared to the alternative shear fatigue endurance data (Fig. 10c). 

Although the critical distance approach was calibrated using 106 cycles fatigue limits, 

correlation with the HCF shear endurance curve was very good, at least in the high-cycle 

fatigue domain (N>5.104 cycles).  

This implicitly supports applying the proposed (ℓopt-bopt) concept and reverse plain fretting

cracking analysis to calibrate crack nucleation rate under severe stress gradient conditions as 

in fretting fatigue contact. The endurance curve determined, fretting fatigue crack 

nucleation (related to b=bø) is predicted by solving the following relationship at the contact 

border (x=-a): 

(12) 

with                     fretting fatigue crack nucleation condition and  plain 

fretting crack nucleation condition from the endurance curve obtained by reverse analysis. 

Variable loading tests require a damage accumulation rule if the crack does not nucleate in 

the first block. The simple linear Miner model was chosen for its straightforwardness [30]. 

After each loading increment ΔN, damage increment ΔDi related to i, the loading condition,

was computed so that: 

=  N
NCNi

(13) 

with NCNi the crack nucleation endurance related to the fretting fatigue loading condition 

of block i 

N   = (14) 
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The linear Miner damage model states that that a crack of length bopt= bø nucleates when 

total damage D: 

                   (15) 

 

3.3 Crack propagation prediction 

Once a crack is nucleated, it may propagate. Crack nucleation length being equal to bø, with 

bø the short-to-long crack transition as defined by the Kitagawa-Takahashi model [29], crack 

propagation prediction was simplified by eliminating the short-crack propagation regime.  

An uncoupled approach was used to predict crack propagation. First, the contact stress state 

was obtained by finite elements modeling (FEM) combining the cyclic elastic-plastic law, 

then the normal stress along the expected crack path was determined at the contact border 

for the maximum and minimum loading conditions, as schematized in Fig. 11a.  

 

Then the mode I stress intensity factor (SIF) KI was calculated, using Bueckner weight 

function approach [31] (Fig. 11b):  

                               (16) 

 

with                                     (17)                         (18) 

A1=Aref, B1=27.9558Aref, C1=14.2870Aref, A2=0.4070Aref, B2=5.3504Aref et C2=113.9489Aref. 

 

The contribution of mode II was neglected: Fouvry et al. [32], followed by De Pannemaecker 

et al. [33], demonstrated that the KI value from a crack normal to the contact surface with a 

mode I formulation gives a value very close to the mixed mode I and II stress intensity factor 

of a kinked crack. Mode II affects crack propagation only for the first dozens of microns 

below the surface.  

It is important to note that the weight function strategy can result in a negative KImin value, 

which has no physical meaning (Fig. 11b). The minimum physical KI value is KI=0, as crack lips 

are closed under compressive stress and the material response is theoretically equivalent to 

that of an uncracked specimen [34]. Nevertheless, an important point to consider is that the 

complexity of the fretting contact zone involves large stress gradients, leading to variation in 

the stress ratio below the surface, which has to be taken into account. Following the strategy 

developed in [34,35], results were compiled versus the SIF ratio RK=KImin/KImax (Fig. 11c).  

 

To take account of variation in RK ratio as shown in Fig. 11c, equivalent stress or effective 

stress intensity factors were used to study crack propagation. In this paper, Kujawski’s 
fatigue crack driving force parameter was considered [36] (Fig. 11d): 

    =(ΔK+)0.5.KImax
0.5

           (19) 
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with ΔK+ = ΔK = KImax-KImin for RK>0 and ΔK+=KImax for RK≤0. Note that, with this description, 

both ΔK+ and     are always greater than or equal to zero. 

 

 
Fig. 11: (a) σ11,max and σ11,min evolutions as a function of depth extracted from stabilized elastic-plastic FE 

simulation at x=-a. (b) Related KImax and KImin evolutions estimated with weight functions from the FE stresses. 

(c) RK=Kmin/Kmax as a function of depth; (d) corresponding     paremeter in the depth of the sample. P, 

σF,mean/σy,flat=0.88, RF=0.85, Q*/P=0.30. 

 

The loading cycles related to the propagation stage were finally computed using Kujawski’s     fatigue-crack-driving force parameter, coupling the Paris law of the material:  

                                   (20) 

 

The Paris propagation law parameters were obtained from conventional 4-point bending 

tests; C=5.35x10-10 and m=3.26. 

Failure was related to KImax=KIC, with KIC critical stress intensity factor KIC=212MPa. 

Alternatively, if    (b) crosses the crack arrest condition ΔKth, then the crack stops 

propagating and crack arrest is reached if: 

                         (21) 
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The threshold crack arrest condition is defined using El Haddad’s continuous model [37]: 

                          (22) 

 

with bø=50µm the short to long crack transition and ΔKø=6.3 MPa.m1/2 the long crack 

threshold previously defined by reverse identification on plain fretting experiments [16]. 

 

3.4 Global predictive method 

 

The global process to estimate cracking under constant conditions or variable loading 

sequences was as follows: 

- Firstly, fretting fatigue loading was simulated by finite elements analysis. 

- Secondly, Crossland cracking risk σC(x=-a,z=ℓopt) was calculated at the end of each 

loading sequence. The corresponding crack nucleation endurance of each block NCNi 

was estimated using Eq. 11. 

- Thirdly,    (z) for each loading sequence was calculated from the stabilized stress at 

the contact border. 

- Finally, NCNi, KImax and     were entered in the predictive algoritm presented in Fig. 12, 

to estimate the cracking process. 

 

Other necessary inputs are bopt, which is equal to bø, and KIC and ΔKth. These material 

parameters may be estimated by reverse identification on a few plain fretting experiments 

[16]. 

The algorithm begins by estimating crack nucleation endurance using the linear Miner 

damage law. Two outcomes are possible: either no crack is nucleated at the maximum 

number of cycles allowed for the algorithm, or a crack is nucleated with crack length bø at 

NCN. If a crack is nucleated, propagation is predicted. If crack arrest is detected, the algorithm 

jumps directly to the next loading sequence. Three outcomes are then possible: either there 

is failure at NT with NT=NCN+NP, or there is crack arrest at end of test, or the crack is still 

propagating at the maximum number of cycles provided for in the algorithm.  

It should be noted that the evolution of b and N is recorded as the algorithm progresses, 

which allows theoretical cracking to be plotted as a function of the number of cycles. 

 

 



  

22 

 

 
 

Fig. 12: Lifetime estimation process. 
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4 Comparison between experiments and prediction 

4.1  Constant loading conditions 

Three individual fretting fatigue loadings, A, B and C, were considered (Table 3). Fig. 13 plots 

PD evolution for each loading applied individually to the fretting fatigue contact described in 

section 2.1. 

Table 3: Individual fretting fatigue loadings applied in the variable loading tests 

Loading Color code σF,mean/σy,flat RF Q*/P N 

A: Max 0.88 0.85 0.3 70000 

B: Mean 0.88 1 0.38 670000 

C: Min 0.99 0.85 0.15 1000000 

Fig. 13: PD evolution of each loading in Table 3. 

Using the calibration curve, estimated length extension is compared to prediction in Fig. 14. 

Theoretical modeling seemed consistent with the experimental results. Loading condition C, 

with the lowest fretting stress, showed a flat or even decreasing evolution of PD, suggesting 

no crack nucleation. Cross-section examination showed a very small crack length of 

bC=40µm, below the bø crack nucleation threshold. This result was predicted by the model, 

according to which, for fretting fatigue loading case C, the Crossland stress σC(ℓopt)/d=0.78

remains smaller than the d crack nucleation condition.

By contrast, loading case A, with the highest fatigue stress and medium fretting loading, 

nucleated quickly and then propagated until failure at NF(A)=1.7x106cycles. This evolution was

well predicted by the model, with bø crack nucleation predicted at NCN(A),th= 19 200 cycles 

and failure at NF(A),th= 1.01x106 cycles.
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(a) 

 
(b) 

 
Fig. 14: Comparison of crack length extension related to (a) fretting fatigue loading A, and (b) fretting fatigue 

loading B. 

 

Loading condition B, with the highest fretting stress and low fatigue stress (RF=1), induced 

crack nucleation due to contact stress, followed by crack arrest (Ke<10-9) due to constant 

bulk stress. A maximum crack length of bCA(B),exp=215µm was found after cross-section 

examination, and the crack arrest condition (i.e. beginning of plateau evolution) was 

estimated at NCA(B),th=1.2x106 cycles. This typical evolution was again well predicted by the 

model. Crack nucleation endurance was predicted at NCN(B),th=14 800 cycles, crack arrest at 

0.8x106cycles and crack arrest length at bCA,th(B)=650µm. The predicted crack extension was 

too conservative; however, this is consistent with the safety margin needed in industry. 

 

The first investigation of constant fretting fatigue conditions confirmed the reliability of the 

model in predicting no nucleation, crack nucleation followed by crack arrest, or failure. 
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Reasonably consistent estimates of crack length and fretting fatigue endurance were also 

obtained. The next step of analysis was to assess predictions for variable block loading 

sequences. 

4.2 Variable loading sequences 

The previous 3 loading sequences were mixed to study 3 different variable loading 

conditions, as schematized in Fig. 15, where fretting tangential force Q and fatigue stress σ 
sequences are superposed. The number of cycles associated with each loading was reduced 

so as to have a final test lasting a reasonable time (c.f. Table 3): NF=1.74x106cycles,

comprising NA=7x104cycles, NB=6.7x105cycles and NC=1x106cycles. These new numbers of

cycles were kept constant from one variable loading test to another. Each condition was 

performed experimentally and compared to predicted crack length extension. 

To evaluate loading evolution, the σC(ℓopt) stress parameter was computed. This stress

analysis suggested that the (B,A,C) loading sequence induced a decrease in the σC(ℓopt) stress

path, the (C,A,B) sequence a rising σC(ℓopt) response, and the (A,B,C) loading sequence a

mixed σC(ℓopt) evolution. Note that this stress description was based on a crack nucleation

stress description and did not consider the crack extension process, which is more complex 

to address. 

4.3 Decreasing σC(ℓopt) stress path evolution: (B,A,C) sequence

This case could be expected to produce the worst damage. It is widely agreed that 

decreasing loading, by fostering early crack nucleation, increases damage. Fig 15a plots the 

potential evolution of the decreasing load case. The crack nucleated at the first loading block 

and propagated until failure in block 3. A similar evolution was well predicted by the model. 

This result may seem surprising, as the C loading sequence produced only a small crack when 

applied individually, but may be explained by looking at the details of crack propagation 

provided by the algorithm. 

Fig. 15a shows that the first loading block, B, nucleated a crack after 3x104 fretting fatigue 

cycles, corresponding to 4% of the number in cycles of the block. Crack nucleation was 

expected from the individual behavior of loading B, even if the crack nucleation criterion 

overestimates crack nucleation life.  

Once the crack was nucleated, it continued propagating in the first block, as depicted in Fig. 

15a. Crack propagation from one loading block to the next was determined by considering   at the end of each loading block combined with the Paris law. Fig. 16a shows how the 

algorithm navigated from one     block evolution to another in the first, second and third 

blocks. At the end of the first block, the algorithm already predicted a crack of 500 µm. Then, 

when the second block was applied (loading A), the crack propagated greatly despite the 

short number of cycles. Hence, when the third sequence (loading C) was finally applied, the 

crack was long enough to be outside of the crack arrest zone of the loading (Fig. 15a). This 

means that an apparently harmless loading condition may propagate a crack and lead to 

failure if the initial cracking defect is large enough. The algorithm predicted failure at 

NT(th)=1 347 000 which was very close to the experimental lifetime of NF(exp)=1 520 000 

cycles. 
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The evolution of predicted crack length was also compared to the experimental evolution 

given by the PD measurements (Fig. 15a). The model seemed to overestimate crack 

propagation; however, it is difficult to draw any conclusion from this condition alone. 

 

 
Fig. 15: Experimental PD evolution compared with theoretical predicted cracking behavior as a function of 

number of cycles for (a) decreasing loading, (b) increasing loading case and (c) mixed loading case. NA=7x10
4
 

cycles, NB=6.7x10
5
cycles, NC=1x10

6
 cycles: i.e., NF=1.74.10

6
 cycles. For loadings, see Table 3. 

 

 
Fig. 16: Progression of the crack propagation algorithm for (a) decreasing loading, (b) increasing loading and (c) 

mixed loading. NA=7x10
4
 cycles, NB=6.7x10

5
cycles, NC=1x10

6
 cycles: i.e., NF=1.74.10

6
 cycles. For loadings, see 

Table 3. 
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4.4 Increasing σC(ℓopt) stress evolution: (C,A,B) sequence 

 

Fig. 15b plots experimental crack evolution according to the PD method and predicted crack 

propagation length according to the algorithm for the increasing loading case.  

Potential evolution showed that crack nucleation happened in the third block at NCN=1.4x106 

cycles. This was surprising, as crack nucleation seemed to happen during the second 

sequence according to potential-drop evolution (Fig. 15b). In addition, second-sequence 

loading (loading A) was high enough to produce crack nucleation even within a small number 

of cycles. In this case, strong plastic accommodation acquired during previous loadings led to 

a softening of stress during the second sequence, and the number of cycles was not enough 

to nucleate a crack. Accordingly, crack nucleation occurred at 49% of the last block, which is 

much longer than when block B was applied alone. Once again, plastic accommodation led 

to softening of the stress field.  

 

The potential slope Ke was still greater than 10
-9

 at end of test (that is, end of third loading 

sequence). Following the experimental crack arrest criterion detailed in section 2.4, this 

indicates that the crack was still propagating when the test stopped. Similar evolution was 

predicted by the crack propagation algorithm (Fig. 16b). Furthermore, the final theoretical 

crack length of bT(th)=230µm was very close to the final experimental crack length of 

bexp= 200µm. 

This again confirmed the reliability of the model in predicting both bø crack nucleation and 

crack extension: thus, for very complex stress states and variable RK conditions. 

 

Alternatively, the crack extension extrapolated from PD measurement was estimated around 

bPD= 197µm, which was really close to the reference bexp= 200µm provided by cross-section 

examination (Fig. 15b). PD strategy provided very good estimate of crack length for this 

loading case. 

 

4.5 Mixed σC(ℓopt) stress evolution: (A,B,C) sequence 

This case led to experimental crack arrest in block 3 (Fig. 15c); the same behavior was 

predicted by the model (Fig. 15c). Examination at end of test showed a crack length of 

bCA(exp)= 250µm. This result can be explained from the details of crack propagation provided 

by the algorithm (Fig. 16c). 

 

The model predicted crack nucleation after 37 000 cycles, which corresponds to 54% of the 

first block (A). The crack propagated during the remaining loading cycle of sequence A and 

during the second block, B, before reaching a crack arrest condition when loading sequence 

C was applied. This sequential evolution can be related to the evolution of    -z illustrated in 

Fig. 16c. 

Fig. 16c shows how the algorithm tried to reach the third block     as it crossed the crack 

arrest condition first. This explains why a crack arrest condition appeared at the beginning of 

the third block. This result is consistent with the experimental evolution of V/V0 and related 

bPD crack length, which displayed a plateau evolution just at the beginning of the last block, 

C. The final predicted crack arrest length was bCA(th)=325µm, which is 30% longer than that 

found on cross-section examination. 
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This confirms that the algorithm overestimates crack propagation. However, predicting 

greater crack length is a conservative approach. The lifetime algorithm seemed well adapted 

for predicting fretting fatigue lifetime, despite severe elastic-plastic conditions and variable 

loading.  

This sequential evolution of the predicted crack length was compared to the experimental 

evolution given by the PD measurements (Fig. 15c). Crack extension extrapolated from the 

PD method gave a final crack length of bCA(PD)= 170µm, which was about 30% shorter than 

the reference bCA(exp)=250µm provided by cross-section examination. However, destructive 

test examination measures maximum projected crack length, whereas the PD method 

measures mean projected crack length. Mean crack length was bCA(exp,mean)=210 µm; thus, 

error was reduced using the PD method, but PD crack length estimation must still be 

considered with caution, given the complexity of the electrical field path below the fretting 

interface. The predictive method, however, was calibrated on maximum crack lengths, so 

the differences in results may also be explained by these methodological differences.  

 

4.6 Synthesis 

 

The predictive algorithm provided good conservative results for all three loading sequences. 

It was effective in predicting both crack arrest and failure. The crack nucleation damage 

accumulation rule was also effective. Results could be improved by taking slip-zone wear 

into account [38], or by improving the elastic-plastic law: Fig. 3 clearly shows that a 

nonlinear rule would be more appropriate to simulate material behavior.  

However, despite its simplicity, this approach appeared to be appropriate and conservative 

in predicting very complex fretting fatigue loading. One interesting conclusion of this analysis 

is that the decreasing loading stress path, as illustrated by the evolution of σC(ℓopt) (i.e. B,A,C 

sequence), was the most detrimental and therefore conservative description, as was also the 

case for plain fatigue loading. Indeed, it was the only loading leading to failure. This result is 

very important because it suggests that a loading description based on crack nucleation 

stress is appropriate for describing fretting fatigue behavior even if it does not consider the 

crack extension process. 

However, this conclusion needs to be confirmed by more results. Only three loading 

sequences, with relatively similar fretting fatigue loadings, were studied here. Cases with 

high fatigue stress amplitude and very low fretting amplitude were not considered and may 

prove to promote strong crack extension that cannot be reduced to a single σC(ℓopt) stress 

variable. 

 

5 Influence of plastic law 

 

The preceding comparison with experimental results suggested that the proposed sequential 

model combining bø crack nucleation and a simple description of the crack propagation stage 

could reliably predict fretting fatigue, even for complex loading sequences. 

This requires the σCN(PF)(bø,N) crack-length endurance law, a basic Paris law, an estimated 

value of ΔKth threshold SIF value, and an estimated value of the coefficient of friction µ. All 

these values can be obtained using simple plain fretting and fatigue tests. 
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The most “expensive“ data required by the model are the material parameters required for 

the cyclic elastic-plastic law (CEP). Hence, there is crucial interest in quantifying how 

assuming simpler material behavior, such as a monotonic elastic-plastic law (MEP) or even a 

simple elastic assumption (E), would impact prediction of fretting fatigue endurance. 

 

 
 

(a) 

 

 
 

(b) 

 

Fig. 17: Comparison with each material law hypothesis; ( ) E, ( ) MEP and ( ) CEP, of (a) contact 

pressure profiles and (b) maximal hydrostatic stress at the contact border. Extractions on the FE simulation of 

(P, Q*/P=0.13, σF,mean/σy,flat=0.88, RF=0.85). 

 

Monotonic laws for both cylinder and plane were obtained from tensile tests (cf. Fig. 2a for 

the plane), and were implemented in FE simulations with isotropic hardening.  
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Compared to a fully elastic model, plasticity leads to significant plastic strain deformation in 

the contact region [16]. It significantly increases contact area, which tends to flatten and 

reduce the contact pressure profile (Fig. 17a) and consequently the maximum shear stress 

qmax, which was shown to be a controlling factor in the crack nucleation condition [39]. In 

accordance with the stress strain curves of Fig. 2a, the reference CEP law, previously used to 

establish the fretting fatigue crack model, gave more pronounced softening than the MEP 

law. 

It is interesting to note that ℓopt was almost constant at ℓopt≈bø/2 whatever the material law,

while bopt varied slightly (Fig. 18). This variation in bopt indicates that this value is to some 

degree dependent on the stress gradient in the contact, which softens with increasing 

plasticity (Fig. 17b).  

Fig. 18: ℓopt ( ) and bopt ( ) evolution with material law

However, despite the strong variation in stress gradient, bopt remained close to bø, so that it 

can be taken that bopt=bø and ℓopt=bø/2=25µm, whatever the material law. Fixing these two

variables, the parameters required to calibrate the model for each material behavior are 

shown in Table 5. 

Table 5: Parameters for crack nucleation endurance Eq. 11 (bø, ℓopt=bø/2)

A2 b2 σc,inf/d

E 2.5x104 -0.96 0.63 

MEP 9.5x103 -0.72 1 

CEP 8.5x103 -0.7 1 

The three variable loadings studied in section 4 were simulated again, using the E and MEP 

laws. Crack length results for mixed (A,B,C) and increasing loading (C,A,B) are plotted in Fig. 

19a, and lifetime results for decreasing loading (B,A,C) in Fig. 19b.  

The assumption of fully elastic material behavior greatly overestimated crack propagation, 

predicting failure in all loading cases, in contrast to the actual experimental findings: i.e., an 

elastic assumption provides over-conservative predictions. This was to be expected, as a 
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simple elastic law cannot reproduce the considerable plastic softening. Although elastic-law 

results were conservative, the error was too large for the description of fretting fatigue 

endurance to be of practical use. 

 

  
(a) 

  
(b) 

 

Fig. 19: (a) Predicted final crack length for case (A,B,C) and case (C,B,A) and (b) predicted lifetime for case 

(B,A,C) depending on the material law; simulations with following material laws ( ) E, ( ) MEP and ( ) CEP. 

 

The cyclic law gave the best results, but error using the monotonic law was acceptable and 

conservative. This behavior may be explained by comparing subsurface stress profiles (Fig. 

17b). Except in the first few microns below the surface, stress profiles were relatively similar. 

In addition, Fig. 17a shows that cyclic softening, compared to monotonic elastic-plastic law 

prediction, was not very great. From these results it can be concluded, while that the most 

accurate results are obtained using the most complete cyclic plastic law, a reasonably good 

estimate can be obtained using a simple monotonic law derived from simple tensile testing.  
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6 Conclusion 

Combined experimental-modeling analysis was carried out to investigate variable fretting 

fatigue loading cracking prediction. Three variable loading sequences under severe plastic 

conditions were performed, leading to various responses. Cracking prediction was 

undertaken by dissociating crack nucleation life and crack propagation. 

Crack nucleation was investigated using the Crossland criterion applied at a critical distance. 

The critical distance value was optimized to reduce prediction error: ℓopt=25µm. It was found

that ℓopt=0.5bø with bø short-to-long crack transition. This confirmed Taylor’s theory, but also

highlighted that this approach is satisfied if crack nucleation is defined for a bopt crack 

nucleation length. Slight variation in bopt with stress gradient was shown; but, overall, bopt 

could be considered equal to bø. Crack nucleation life was estimated by coupling this 

criterion with the Miner linear damage accumulation law.  

Crack propagation rate was investigated experimentally by using the PD method on the 

fatigue fretting test device. Cracking status (arrest or propagation), was monitored during 

tests. Crack propagation was estimated numerically using an uncoupled approach. Short 

crack propagation regime was omitted, as incipient crack length was bopt=bø. The contact 

stress state was obtained by finite elements modeling, the mode I stress intensity factor was 

calculated using a weight function approach, and finally Paris law was applied on the 

deduced effective stress intensity range along the crack.  

This approach was shown to be appropriate and conservative in predicting crack nucleation, 

arrest and extension for constant loading and for complex sequential fretting fatigue 

loading. In addition, the investigation confirmed that the decreasing σC(ℓopt) stress path was

the most detrimental and therefore conservative description, as was also the case for plain 

fatigue loadings, even if it does not consider the crack extension process. 

This strategy was adapted to assess elastic, monotonic elastic-plastic and cyclic elastic-plastic 

strategies. It was demonstrated that elastic simulation systematically led to over-

conservative prediction. Good predictions were achieved using simple monotonic plastic 

laws, despite the fact that they are not representative of the cyclic fretting fatigue loading. 

Only EP laws were able to reproduce the considerable softening that takes place because of 

plastic loading. Cyclic EP laws provided the best results, with very good prediction of crack 

nucleation life and crack propagation, while still maintaining safe conservative predictions. 

From these results it can be concluded that the most accurate results are obtained using the 

best material law available. However, a good first estimation can be made with monotonic 

laws obtained from simple tensile test.   
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