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QUANTITATIVE PESIN THEORY FOR ANOSOV DIFFEOMORPHISMS

AND FLOWS

SÉBASTIEN GOUËZEL AND LUCHEZAR STOYANOV

Abstract. Pesin sets are measurable sets along which the behavior of a matrix cocycle
above a measure preserving dynamical system is explicitly controlled. In uniformly hyper-
bolic dynamics, we study how often points return to Pesin sets under suitable conditions
on the cocycle: if it is locally constant, or if it admits invariant holonomies and is pinch-
ing and twisting, we show that the measure of points that do not return a linear number
of times to Pesin sets is exponentially small. We discuss applications to the exponential
mixing of contact Anosov flows, and counterexamples illustrating the necessity of suitable
conditions on the cocycle.

1. Introduction and main results

Uniformly hyperbolic dynamical systems are very well understood. An approach to study
more general systems is to see to what extent they resemble uniformly hyperbolic ones. A
very fruitful approach in this respect is the development of Pesin theory, that requires
hyperbolic features (no zero Lyapunov exponent) almost everywhere with respect to an
invariant measure, and constructs from these local stable and unstable manifolds, then
leading to results such as the ergodicity of the system under study.

A basic tool in Pesin theory is the notion of Pesin sets, made of points for which, along
their orbits, the Oseledets decomposition is well controlled in a quantitative way. Their
existence follows from general measure theory argument, but they are not really explicit.
Even in uniformly hyperbolic situations, Pesin sets are relevant objects as the control of
the Oseledets decomposition gives directions in which the dynamics is close to conformal.
In particular, the second author has shown in [Sto13b] that Pesin sets could be used, in
contact Anosov flows, to study the decay of correlations: he proved that, if points return
exponentially fast to Pesin sets, then the correlations decay exponentially fast.

Our goal in this article is to investigate this question, for Anosov diffeomorphisms and
flows. We do not have a complete answer, but our results indicate a dichotomy: if the
dynamics is not too far away from conformality (for instance in the case of the geodesic
flow on a 1/4-pinched compact manifold of negative curvature), points return exponentially
fast to Pesin sets for generic metrics (in a very strong sense), and possibly for all metrics.
On the other hand, far away from conformality, this should not be the case (we have a
counter-example in a related setting, but with weaker regularity).

Such statements are related to large deviations estimates for matrix cocycles, i.e., prod-
ucts of matrices governed by the dynamics (for Pesin theory, the cocycle is simply the
differential of the map). Indeed, we will show that such large deviations estimates make it
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possible to control the returns to Pesin sets, by quantifying carefully some arguments in the
proof of Oseledets theorem.

Let T : X → X be a measurable map on a space X, preserving an ergodic probability
measure µ. Consider a measurable bundle E over X, where each fiber is isomorphic to R

d

and endowed with a norm. A linear cocycle is a measurable map M on E, mapping the
fiber above x to the fiber above Tx in a linear way, through a matrix M(x). We say that
the cocycle is log-integrable if

∫

logmax(‖M(x)‖, ‖M(x)−1‖) dµ(x) < ∞. In this case, it
follows from Kingman’s theorem that one can define the Lyapunov exponents of the cocycle,
denoted by λ1 > λ2 > · · · > λd. They are the growth rate of vectors under iteration of the
cocycle, above µ-almost every point. The sum λ1+· · ·+λi is also the asymptotic exponential
growth rate of the norm of the i-th exterior power ΛiMn(x), for µ-almost every x.

The main condition to get exponential returns to Pesin sets is an exponential large devi-
ations condition.

Definition 1.1. Consider a transformation T preserving a probability measure µ, and a
family of functions un : X → R. Assume that, almost everywhere, un(x)/n converges to
a limit λ. We say that the family has exponential large deviations if, for any ε > 0, there
exists C > 0 such that, for all n > 0,

µ{x : |un(x)− nλ| > nε} 6 Ce−C−1n.

This general definition specializes to several situations that will be relevant in this paper:

Definition 1.2. Consider an integrable function u above an ergodic transformation (T, µ).
We say that u has exponential large deviations if its Birkhoff sums Snu have exponential
large deviations in the sense of Definition 1.1, i.e., for any ε > 0, there exists C > 0 such
that, for all n > 0,

µ{x : |Snu(x)− n

∫

u| > nε} 6 Ce−C−1n.

Definition 1.3. Consider a log-integrable linear cocycle M above a transformation (T, µ),
with Lyapunov exponents λ1 > · · · > λd. We say that M has exponential large deviations for
its top exponent if the family of functions un(x) = log‖Mn(x)‖ (which satisfies un(x)/n → λ1

almost everywhere) has exponential large deviations in the sense of Definition 1.1, i.e., for
any ε > 0, there exists C > 0 such that, for all n > 0,

µ{x : |log‖Mn(x)‖ − nλ1| > nε} 6 Ce−C−1n.

We say that M has exponential large deviations for all exponents if, for any i 6 d, the
functions log‖ΛiMn(x)‖ satisfy exponential large deviations in the sense of Definition 1.1,
i.e., for any ε > 0, there exists C > 0 such that, for all n > 0,

(1.1) µ{x : |log‖ΛiMn(x)‖ − n(λ1 + · · ·+ λi)| > nε} 6 Ce−C−1n.

We will explain in the next paragraph that many linear cocycles above subshifts of finite
type have exponential large deviations for all exponents, see Theorem 1.5 below. This builds
on techniques developed by Bonatti, Viana and Avila (see [BV04, AV07]). The main novelty
of our work is the proof that such large deviations imply exponential returns to Pesin sets, as
we explain in Paragraph 1.2. The last paragraph of this introduction discusses consequences
of these results.
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1.1. Sufficient conditions for large deviations for linear cocycles. In this paragraph,
we consider a (bilateral) transitive subshift of finite type T : Σ → Σ, together with a Gibbs
measure µ for a Hölder potential. Let E be a continuous R

d-bundle over Σ, endowed with
a continuous linear cocycle M on E over T . For instance, one may take E = Σ× R

d, then
M(x) is simply an invertible d × d matrix depending continuously on x. We describe in
Theorem 1.5 various conditions under which such a cocycle has exponential large deviations
for all exponents, in the sense of Definition 1.3. Through the usual coding process, similar
results follow for hyperbolic basic sets of diffeomorphisms, and in particular for Anosov or
Axiom A diffeomorphisms.

We show in Appendix A the existence of a continuous linear cocycle above a subshift of
finite type which does not have exponential large deviations for its top exponent. Hence,
additional assumptions are needed for this class of results (contrary to the case of Birkhoff
sums, where all Birkhoff sums of continuous functions over a transitive subshift of finite
type have exponential large deviations). These assumptions, as is usual in the study of
linear cocycles, are defined in terms of holonomies. In a geometric context, holonomies are
usually generated by connections. In the totally disconnected context of subshifts of finite
type, connections do not make sense, but the global notion of holonomy does.

The local stable set of x is the set W s
loc(x) = {y : yn = xn for all n > 0}. In the

same way, its local unstable set is W u
loc(x) = {y : yn = xn for all n 6 0}. By definition,

W s
loc(x) ∩W u

loc(x) = {x}.
An unstable holonomy is a family of isomorphisms Hu

x→y from E(x) to E(y), defined for
all x and y with y ∈ W u

loc(x). We require the compatibility conditions Hu
x→x = Id and

Hu
y→z ◦ Hu

x→y = Hu
x→z for any x, y and z on the same local unstable set. Moreover, we

require the continuity of (x, y) 7→ Hu
x→y (globally, i.e., not only along each leaf).

In the same way, one defines a stable holonomy as a family of maps Hs
x→y from E(x) to

E(y) when x and y belong to the same local stable set, with the same equivariance and
continuity requirements as above.

Definition 1.4. A linear cocycle admits invariant continuous holonomies if there exist
two stable and unstable continuous holonomies, denoted respectively by Hs and Hu, that are
equivariant with respect to the cocycle action. More precisely, for any x, for any y ∈ W s

loc(x),
and any v ∈ E(x), one should have

M(y)Hs
x→yv = Hs

Tx→TyM(x)v.

Similarly, for any x, for any y ∈ W u
loc(x), and any v ∈ E(x), one should have

M(y)−1Hu
x→yv = Hu

T−1x→T−1yM(x)−1v.

Stable holonomies give a canonical way to trivialize the bundle over local stable sets.
Thus, to trivialize the whole bundle, one may choose an arbitrary trivialization over an
arbitrary local unstable set, and then extend it to the whole space using the holonomies
along the local stable sets. In this trivialization, the cocycle is constant along local stable
sets, i.e., it only depends on future coordinates. Symmetrically, one can trivialize the bundle
first along a stable set, and then using unstable holonomies along the local unstable sets.
In this trivialization, the cocycle is constant along unstable sets, and depends only on past
coordinates. Note that these two trivializations do not coincide in general, unless the stable
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and unstable holonomies commute: In this case, the cocycle only depends on the coordinate
x0 in the resulting trivialization, i.e., it is locally constant. Conversely, a locally constant
cocycle admits the identity as stable and unstable invariant commuting holonomies.

We say that a linear cocycle is pinching and twisting in the sense of Avila-Viana [AV07] if
it has invariant continuous holonomies, and if there exist a periodic point p (of some period
k) and a point q which is asymptotic to p both in the past and in the future (i.e., q ∈ W u

loc(p)
and T iq ∈ W s

loc(p) for some i which is a multiple of k), such that

• All the eigenvalues of Mk(p) are real and different.
• Define a map Ψ : Hs

T iq→p ◦ M i(q) ◦ Hu
p→q from E(p) to itself. Then, for any sub-

spaces U and V of E(p) which are invariant under Mk(p) (i.e., which are union of
eigenspaces) with dimU + dimV = dimE, then Ψ(U) ∩ V = {0}. In other words,
the map Ψ puts the eigenspaces of Mk(p) in general position.

This condition ensures that the Lyapunov spectrum of any Gibbs measure is simple, by the
main result of [AV07]. In the space of fiber-bunched cocycles (which automatically admit
invariant continuous holonomies), this condition is open (this is clear) and dense (this is
harder as there might be pairs of complex conjugate eigenvalues at some periodic points,
which need more work to be destroyed, see [BV04, Proposition 9.1]).

Theorem 1.5. Let T be a transitive subshift of finite type on a space Σ, and µ a Gibbs
measure for a Hölder-continuous potential. Consider a continuous linear cocycle M on a
vector bundle E above T . Then M has exponential large deviations for all exponents in the
following situations:

(1) If all its Lyapunov exponents coincide.
(2) If there us a continuous decomposition of E as a direct sum of subbundles E =

E1 ⊕ · · · ⊕ Ek which is invariant under M , such that the restriction of M to each
Ei has exponential large deviations for all exponents.

(3) More generally, if there is an invariant continuous flag decomposition {0} = F0 ⊆
F1 ⊆ · · · ⊆ Fk = E, such that the cocycle induced by M on each Fi/Fi−1 has
exponential large deviations for all exponents.

(4) If the cocycle M is locally constant in some trivialization of the bundle E (this is
equivalent to the existence of invariant continuous holonomies which are commuting).

(5) If the cocycle M admits invariant continuous holonomies, and if it is pinching and
twisting in the sense of Avila-Viana.

(6) If the cocycle M admits invariant continuous holonomies, and the bundle is 2-
dimensional.

The first three points are easy, the interesting ones are the last ones. The various state-
ments can be combined to obtain other results. For instance, if each (a priori only measur-
able) Oseledets subspace is in fact continuous (for instance if the Oseledets decomposition is
dominated), then the cocycle has exponential large deviations for all exponents: this follows
from points (1) and (2) in the theorem. We expected that our techniques would show a
result containing (4–6): if a cocycle admits invariant continuous holonomies, then it should
have exponential large deviations for all exponents. However, there is a difficulty here, see
Remark 3.9. Points (1-3) are proved on Page 15, (4) on Page 21, (5) on Page 25 and (6) on
Page 25. The proofs of (4), (5) and (6) follow the same strategy, we will insist mainly on
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(4) and indicate more quickly the modifications for (5) and (6). These proofs are essentially
applications of the techniques in [BV04, AV07].

Remark 1.6. In Theorem 1.5, exponential large deviations are expressed in terms of matrix
norms: one should choose on each E(x) a norm, depending continuously on x, and then
‖Mn(x)‖ is the operator norm of Mn(x) between the two normed vector spaces E(x) and
E(T nx). The above statement does not depend on the choice of the norm (just as the value
of the Lyapunov exponents) as the ratio between two such norms is bounded from above
and from below by compactness. Hence, we may choose whatever norm we like most on E.
For definiteness, we use a Euclidean norm.

The above theorem shows that, in most usual topologies, generic linear cocycles have ex-
ponential large deviations for all exponents. Indeed, for generic cocycles in the C0 topology,
the Oseledets decomposition is dominated (see [Via14, Theorem 9.18]), hence (1) and (2) in
the theorem yield exponential large deviations. For generic cocycles in the Hölder topology
among fiber bunched cocycles (the most tractable Hölder cocycles), pinching and twisting
are generic, hence (5) also gives exponential large deviations.

1.2. Quantitative Pesin theory from large deviations for linear cocycles. Let T be
an invertible continuous map on a compact metric space X, preserving an ergodic probability
measure µ. Let M be a continuous cocycle above T , on the trivial bundle X × R

d. Denote
by λ1 > · · · > λd its Lyapunov exponents, and I = {i : λi < λi−1}. Then (λi)i∈I are
the distinct Lyapunov exponents. Denote by Ei the corresponding Oseledets subspace, its
dimension di is Card{j ∈ [1, d] : λj = λi}. The subspaces Ei(x) are well-defined on an
invariant subset X ′ of X with µ(X ′) = 1 and Ei(T (x)) = Ei(x) for all x ∈ X ′. Moreover
1
n log‖Mn(x)v‖ → λi as n → ±∞ for all v ∈ Ei(x) \ {0}. With this notation, the space
Ei(x) is repeated di times. The distinct Oseledets subspaces are (Ei(x))i∈I .

Let ε > 0. The basic ingredient in Pesin theory is the function

Aε(x) = sup
i∈I

A(i)
ε (x)

= sup
i∈I

sup
v∈Ei(x)\{0}

sup
m,n∈Z

‖Mn(x)v‖
‖Mm(x)v‖e

−(n−m)λie−(|n|+|m|)ε/2 ∈ [0,∞].
(1.2)

This function is slowly varying, i.e.,

e−εAε(x) 6 Aε(Tx) 6 eεAε(x),

as the formulas for x and Tx are the same except for a shift of 1 in n and m. Moreover, for
all k ∈ Z and all v ∈ Ei(x),

‖v‖Aε(x)e
−|k|ε 6

‖Mk(x)v‖
ekλi

6 ‖v‖Aε(x)e
|k|ε,

where one inequality follows by taking m = 0 and n = k in the definition of Aε, and the
other inequality by taking m = k and n = 0. The almost sure finiteness of Aε follows from
Oseledets theorem.

Pesin sets are sets of the form {x : Aε(x) 6 C}, for some constant C > 0. Our main
goal is to show that most points return exponentially often to some Pesin set. This is the
content of the following theorem.
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Theorem 1.7. Let T be a transitive subshift of finite type on a space Σ, and µ a Gibbs
measure for a Hölder-continuous potential. Consider a continuous linear cocycle M on the
trivial vector bundle Σ × R

d above T . Assume that M has exponential large deviations for
all exponents, both in positive and negative times.

Let ε > 0 and δ > 0. Then there exists C > 0 such that, for all n ∈ N,

µ{x : Card{j ∈ [0, n− 1] : Aε(T
jx) > C} > δn} 6 Ce−C−1n.

One difficulty in the proof of this theorem is that the function Aε is defined in terms of
the Lyapunov subspaces, which are only defined almost everywhere, in a non constructive
way. To get such controls, we will need to revisit the proof of Oseledets to get more
quantitative bounds, in Section 5.1, showing that an explicit control on the differences
(∣

∣log‖ΛiMn(x)‖ − n(λ1 + . . . + λi)
∣

∣

)

n∈Z
at some point x implies an explicit control on Aε(x)

in Theorem 5.1. Then, the number of returns to the Pesin sets is estimated using an abstract
result in subadditive ergodic theory, interesting in its own right, Theorem 4.1. These two
statements are finally combined in Section 6 to prove Theorem 1.7.

1.3. Applications. In this paragraph, we describe several systems to which our results on
large deviations and exponential returns to Pesin sets apply.

First, coding any Anosov or Axiom A diffeomorphism thanks to a Markov partition, then
the above theorems apply to such maps, provided the matrix cocycle has exponential large
deviations. Hence, one needs to check the conditions in Theorem 1.5.

The main class of cocycles admitting stable and unstable holonomies is the class of fiber
bunched cocycles, see [AV07, Definition A.5].

A ν-Hölder continuous cocycle M over a hyperbolic map T on a compact space is s-fiber
bunched if there exists θ ∈ (0, 1) such that d(Tx, Ty) 6 θd(x, y) and ‖M(x)‖‖M(y)−1‖θν <
1, for all x, y on a common local stable set (or more generally if this property holds for some
iterate of the map and the cocycle). This means that the expansion properties of the cocycle
are dominated by the contraction properties of the map T . This results in the fact that
Mn(y)−1Mn(x) converges exponentially fast when n → ∞, to a map which is a continuous
invariant stable holonomy, see [AV07, Proposition A.6]

In the same way, one defines u-fiber bunched cocycles. Finally, a cocycle is fiber-bunched
if it is both s and u-fiber bunched. For instance, if T and ν are fixed, then a cocycle which
is close enough to the identity in the Cν topology is fiber bunched. Our results apply to
such cocycles if they are pinching and twisting, which is an open and dense condition among
fiber bunched cocycles.

Our results also apply to generic cocycles in the C0 topology. Indeed, the Oseledets
decomposition is then dominated (see [Via14, Theorem 9.18]), hence (1) and (2) in the
theorem yield exponential large deviations, and from there one deduces exponential returns
to Pesin sets by Theorem 1.7.

The main application we have in mind is to flows. The second author proves in [Sto13b]
the following theorem:

Theorem 1.8 (Stoyanov [Sto13b]). Let gt be a contact Anosov flow on a compact manifold
X, with a Gibbs measure µX .
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Consider the first return map to a Markov section T , the corresponding invariant measure
µ, and the corresponding derivative cocycle M , from the tangent space of X at x to the
tangent space of X at Tx. Assume that (T,M,µ) has exponential returns to Pesin sets as
in the conclusion of Theorem 1.7.

Then the flow gt is exponentially mixing: there exists C > 0 such that, for any C1

functions u and v, for any t > 0,
∣

∣

∣

∣

∫

u · v ◦ gt dµX −
∫

udµX ·
∫

v dµX

∣

∣

∣

∣

6 C‖u‖C1‖v‖C1e−C−1t.

By a standard approximation argument, exponential mixing for Hölder continuous func-
tions follows.

This statement is the main motivation to study exponential returns to Pesin sets. We
deduce from Theorem 1.7 the following:

Theorem 1.9. Consider a contact Anosov flow with a Gibbs measure, for which the deriva-
tive cocycle has exponential large deviations for all exponents. Then the flow is exponentially
mixing.

To apply this theorem in concrete situations, we have to check whether the sufficient
conditions of Theorem 1.5 for exponential large deviations hold. The main requirement is
the existence of stable and unstable holonomies. Unfortunately, we only know their existence
when the foliation is smooth:

Lemma 1.10. Consider a contact Anosov flow for which the stable and unstable foliations
are C1. Then the derivative cocycle admits continuous invariant holonomies with respect to
the induced map on any Markov section.

Proof. It suffices to show that the flow admits continuous invariant holonomies along weak
unstable and weak stable manifolds, as they descend to the Markov section.

We construct the holonomy along weak unstable leaves, the holonomy along weak stable
leaves being similar. Consider two points x and y on a weak unstable leaf. Then the
holonomy of the weak unstable foliation gives a local C1 diffeomorphism between W s(x)
to W s(y), sending x to y. The derivative of this map is a canonical isomorphism between
Es(x) and Es(y), which is clearly equivariant under the dynamics. There is also a canonical
isomorphism between the flow directions at x and y. What remains to be done is to construct
an equivariant isomorphism between Eu(x) and Eu(y).

For this, we use the fact that the flow is a contact flow, i.e., there exists a smooth one-
form α, invariant under the flow, with kernel Es ⊕ Eu, whose derivative dα restricts to a
symplectic form on Es ⊕ Eu. We get a map ϕ from Es to (Eu)∗, mapping v to dα(v, ·).
This map is one-to-one: a vector v in its kernel satisfies dα(v,w) = 0 for all w ∈ Eu, and
also for all w ∈ Es as Es is Lagrangian. Hence, v is in the kernel of dα, which is reduced
to 0 as dα is a symplectic form. As Es and Eu have the same dimension, it follows that ϕ
is an isomorphism.

Consider now x and y on a weak unstable leaf. We have already constructed a canonical
isomorphism between Es(x) and Es(y). With the above identification, this gives a canonical
isomorphism between (Eu(x))∗ and (Eu(y))∗, and therefore between Eu(x) and Eu(y). This
identification is equivariant under the flow, as α is invariant. �



QUANTITATIVE PESIN THEORY FOR ANOSOV DIFFEOMORPHISMS AND FLOWS 8

For instance, for the geodesic flow on a compact Riemannian manifold with negative
curvature, the stable and unstable foliations are smooth if the manifold is 3-dimensional or
the curvature is strictly 1/4-pinched, i.e., the sectional curvature belongs everywhere to an
interval [−b2,−a2] with a2/b2 > 1/4, by [HP75]. Hence, we deduce the following corollary
from Theorem 1.5 (1), (6) and (5) respectively:

Corollary 1.11. Consider the geodesic flow gt on a compact riemannian manifold X with
negative curvature. Assume one of the following conditions:

(1) X is of dimension 3.
(2) X is of dimension 5 and the curvature is strictly 1/4 inched.
(3) X has any dimension, the curvature is strictly 1/4 pinched, and moreover the flow

is pinching and twisting.

Then the flow is exponentially mixing for any Gibbs measure.

However, these results were already proved by the second author, under weaker assump-
tions: exponential mixing holds if the curvature is (not necessarily strictly) 1/4-pinched, in
any dimension (without twisting and pinching). This follows from the articles [Sto11], in
which it is proved that a contact Anosov flow with Lipschitz holonomies and satisfying a
geometric condition is exponentially mixing for all Gibbs measure, and from [Sto13a] where
the aforementioned geometric condition is proved to be satisfied in a class of flows including
geodesic flows when the curvature is 1/4-pinched.

On the opposite side, the techniques of [Liv04] or [FT13] prove exponential mixing for
any contact Anosov flow, without any pinching condition, but for Lebesgue measure (or for
Gibbs measure whose potential is not too far away from the potential giving rise to Lebesgue
measure): they are never able to handle all Gibbs measure.

The hope was that Theorem 1.8 would be able to bridge the gap between these results
and the results of Dolgopyat, proving exponential mixing for all contact Anosov flows and
all Gibbs measures. However we still need geometric conditions on the manifold to be able
to proceed. The counterexample in the Appendix A shows that in general exponential large
deviations do not hold. Whether one can design similar counterexamples for nice systems,
e.g. contact Anosov flows, remains unknown at this stage. It is also unknown whether one
can prove a result similar to Theorem 1.9 without assuming exponential large deviations for
all exponents.

2. Preliminaries

2.1. Oseledets theorem. Let A be a linear transformation between two Euclidean spaces
of the same dimensions. We recall that, in suitable orthonormal bases at the beginning and
at the end, A can be put in diagonal form with entries s1 > · · · > sd > 0. The si are the
singular values of A. They are also the eigenvalues of the symmetric matrix

√
At ·A. The

largest one s1 is the norm of A, the smallest one sd is its smallest expansion. The singular
values of A−1 are 1/sd > · · · > 1/s1. For any i 6 d, denote by ΛiA the i-th exterior product
of A, given by

(ΛiA)(v1 ∧ v2 ∧ · · · ∧ vi) = Av1 ∧Av2 ∧ · · · ∧Avi.

Then
‖ΛiA‖ = s1 · · · si,
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as ΛiA is diagonal in the corresponding orthonormal bases.

Consider a transformation T of a space X, together with a finite dimensional real vector
bundle E above X: all the fibers are isomorphic to R

d for some d and the bundle is locally
trivial by definition. For instance, E may be the product bundle X×R

d, but general bundles
are also allowed. In our main case of interest, T will be a subshift of finite type. In this
case, any such continuous vector bundle is isomorphic to X ×R

d: by compactness, there is
some N > 0 such that the bundle is trivial on all cylinders [x−N , . . . , xN ]. As these (finitely
many) sets are open and closed, trivializations on these cylinders can be glued together to
form a global trivialization of the bundle. In the course of the proof, even if we start with
the trivial bundle, we will have to consider general bundles, but they will be reducible to
trivial bundles thanks to this procedure.

A cocycle is a map M associating to x ∈ X an invertible linear operator M(x) : E(x) →
E(Tx) (where E(x) denotes the fiber of the fiber bundle above x). When E = X×R

d, then
M(x) is simply a d×d matrix. The iterated cocycle is given by Mn(x) = M(T n−1x) · · ·M(x)
for n > 0, and by M−n(x) = M(T−nx)−1 · · ·M(T−1x). It maps E(x) to E(T nx) in all
cases. Be careful that, with this notation, M−1(x) 6= M(x)−1: the first notation indicates
the inverse of the cocycle, with the intrinsic time shift, going from E(x) to E(T−1x), while
the second one is the inverse of a linear operator, so it goes from E(Tx) to E(x). In general,
M−n(x) = Mn(T−nx)−1.

Assume now that T is invertible, that it preserves an ergodic probability measure, and
that the cocycle M is log-integrable. For any i 6 d, the quantity x 7→ log‖Λi(Mn(x))‖ is
a subadditive cocycle. Hence, by Kingman’s theorem, log‖Λi(Mn(x))‖/n converges almost
surely to a constant quantity that we may write as λ1 + · · ·+ λi, for some scalars λi. These
are called the Lyapunov exponents of the cocycle M with respect to the dynamics T and
the measure µ. Let I = {i : λi < λi−1} parameterize the distinct Lyapunov exponents, and
let di = Card{j : λj = λi} be the multiplicity of λi.

In this setting, the Oseledets theorem asserts that the λi are exactly the asymptotic
growth rates of vectors, at almost every point. Here is a precise version of this statement
(see for instance [Arn98, Theorem 3.4.11]).

Theorem 2.1 (Oseledets Theorem). Assume that the cocycle M is log-integrable. Then:

(1) For i ∈ I, define Ei(x) to be the set of nonzero vectors v ∈ E(x) such that, when
n → ±∞, then log‖Mn(x)v‖/n → λi, to which one adds the zero vector. For µ-
almost every x, this is a vector subspace of E(x), of dimension di. These subspaces
satisfy E(x) =

⊕

i∈I Ei(x). Moreover, M(x)Ei(x) = Ei(Tx).
(2) Almost surely, for any i ∈ I, one has log‖Mn(x)|Ei(x)‖/n → λi when n → ±∞, and

log‖Mn(x)−1
|Ei(x)

‖/n → −λi.

In other words, the decomposition of the space E(x) =
⊕

i∈I Ei(x) gives a block-diagonal
decomposition of the cocycle M , such that in each block the cocycle has an asymptotic
behavior given by enλi up to subexponential fluctuations.

The spaces Ei(x) can be constructed almost surely as follows. Let t
(n)
1 (x) > · · · >

t
(n)
d (x) be the singular values of Mn(x). They are the eigenvalues of the symmetric ma-

trix
√

Mn(x)t ·Mn(x), the corresponding eigenspaces being orthogonal. Write t
(n)
i (x) =
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enλ
(n)
i (x). Then λ

(n)
i (x) converges to λi for almost every x. In particular, for i ∈ I, one has

t
(n)
i−1(x) > t

(n)
i (x) for large enough n > 0. It follows that the direct sum of the eigenspaces

of
√

Mn(x)t ·Mn(x) for the eigenvalues t
(n)
i (x), . . . , t

(n)
i+di−1(x) is well defined. Denote it by

F
(n)
i (x). We will write F

(n)
>i for

⊕

j>i,j∈I F
(n)
j (x), and similarly for F

(n)
6i . In the same way,

we define similar quantities for n < 0.

Theorem 2.2. Fix i ∈ I. With these notations, F
(n)
i (x) converges almost surely when

n → ∞, to a vector subspace F
(∞)
i (x) ⊆ E(x). In the same way, F

(−n)
i converges almost

surely to a space F
(−∞)
i (x). Moreover, the direct sums F

(∞)
>i (x) and F

(−∞)
6i (x) are almost

surely transverse, and their intersection is Ei(x).

See [Arn98, Theorem 3.4.1 and Page 154]. One can reformulate the theorem as follows.

The subspaces F
(n)
>i (x) (which are decreasing with i, i.e., they form a flag) converge when

n → ∞ to the flag E>i(x). Note that F
(n)
>i (x) is only defined in terms of the positive times

of the dynamics, hence this is also the case of E>i(x): this is the set of vectors for which the
expansion in positive time is at most enλi , up to subexponential fluctuations (note that this
condition is clearly stable under addition, and therefore defines a vector subspace, contrary
to the condition that the expansion would be bounded below by enλi). In the same way,

F
(−n)
6i (x) converges when n → ∞ to E6i(x), which therefore only depends on the past of

the dynamics. On the other hand, Ei(x), being defined as the intersection of two spaces
depending on positive and negative times, depends on the whole dynamics and is therefore

more difficult to analyze. We emphasize that Ei(x) is in general different from F
(∞)
i (x) or

F
(−∞)
i (x).
In the above theorem, when we mention the convergence of subspaces, we are using the

natural topology on the Grassmann manifold of linear subspaces of some given dimension
p. It comes for instance from the following distance, that we will use later on:

(2.1) d(U, V ) = ‖πU→V ⊥‖ = max
u∈U,‖u‖=1

‖πV ⊥u‖,

where πU→V ⊥ is the orthogonal projection from U to the orthogonal V ⊥ of V . It is not
completely obvious that this formula indeed defines a distance. As d(U, V ) = ‖πV ⊥πU‖,
the triangular inequality follows from the following computation (in which we use that
orthogonal projections have norm at most 1):

d(U,W ) = ‖πW⊥πU‖ = ‖πW⊥(πV + πV ⊥)πU‖ 6 ‖πW⊥πV πU‖+ ‖πW⊥πV ⊥πU‖
6 ‖πW⊥πV ‖+ ‖πV ⊥πU‖ = d(V,W ) + d(U, V ).

For the symmetry, we note that d(U, V ) =
√

1− ‖πU→V ‖2min, where ‖M‖min denotes the

minimal expansion of a vector by a linear map M . This is also its smallest singular value.
As πV→U = πt

U→V , and a (square) matrix and its transpose have the same singular values,
it follows that ‖πU→V ‖min = ‖πV→U‖min, and therefore that d(U, V ) = d(V,U).

2.2. Oseledets decomposition and subbundles. The following lemma follows directly
from Oseledets theorem, by considering the Oseledets decomposition in each subbundle.
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Lemma 2.3. Consider a log-integrable cocycle M on a normed vector bundle E, over an
ergodic probability preserving dynamical system T . Assume that E splits as a direct sum
of invariant subbundles Ei. Then the Lyapunov spectrum of M on E is the union of the
Lyapunov spectra of M on each Ei, with multiplicities.

The same holds if M , instead of leaving each Ei invariant, is upper triangular. While
this is well known, we give a full proof as this is not as trivial as one might think.

Lemma 2.4. Consider a log-integrable cocycle M on a normed vector bundle E, over an
ergodic probability preserving dynamical system T . Assume that there is a measurable in-
variant flag decomposition {0} = F0(x) ⊆ F1(x) ⊆ · · · ⊆ Fk(x) = E(x). Then the Lyapunov
spectrum of M on E is the union of the Lyapunov spectra of M on each Fi/Fi−1, with
multiplicities.

Equivalently, considering Ei a complementary subspace to Fi−1 in Fi, then the matrix
representation of M in the decomposition E = E1 ⊕ · · · ⊕ Ek is upper triangular, and the
lemma asserts that the Lyapunov spectrum of M is the union of the Lyapunov spectra of
the diagonal blocks.

Proof. Passing to the natural extension if necessary, we can assume that T is invertible.
Let us first assume that k = 2, and that there is only one Lyapunov exponent λ in E1

and one Lyapunov exponent µ in E2, both with some multiplicity. In matrix form, M can

be written as
(

A1 B
0 A2

)

, where the growth rate of An
1 and An

2 are respectively given by eλn

and eµn. Then

(2.2) Mn(x) =

(

An
1 (x)

∑n
k=1A

n−k
1 (T kx)B(T k−1x)Ak−1

2 (x)
0 An

2 (x)

)

.

As M is a log-integrable cocycle, log‖M(T nx)‖/n tends almost surely to 0 by Birkhoff
theorem. Hence, the growth of ‖B(T nx)‖ is subexponential almost surely.

Assume first λ > µ. Define a function Φ(x) : E2(x) → E1(x) by

Φ(x) = −
∞
∑

k=0

Ak+1
1 (x)−1B(T kx)Ak

2(x).

The series converges almost surely as ‖Ak+1
1 (x)−1B(T kx)Ak

2(x)‖ 6 Ce(µ−λ)k+εk and µ−λ <
0. This series is designed so that A1(x)Φ(x)+B(x) = Φ(Tx)A2(x), i.e., so that the subspace

Ẽ2(x) = {(Φ(x)v, v) : v ∈ E2(x)} is invariant under M . We have obtained a decomposition

E = E1 ⊕ Ẽ2, on which the cocycle acts respectively like A1 and A2. Hence, the result
follows from Lemma 2.3.

Assume now λ < µ. Then one can solve again the equation A1(x)Φ(x) + B(x) =
Φ(Tx)A2(x), this time going towards the past, by the converging series

Φ(x) =

∞
∑

k=0

A−k
1 (x)−1B(T−kx)A−k−1

2 (x).

Then, one concludes as above.
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Finally, assume λ = µ. For any typical x, any n and any k 6 n, we have

‖An−k
1 (T kx)‖ = ‖An

1 (x)A
k
1(x)

−1‖ 6 ‖An
1 (x)‖‖Ak

1(x)
−1‖

6 Ceλn+εn/4 · e−λk+εk/4
6 Ceλ(n−k)+εn/2.

Hence, one deduces from the expression (2.2) of Mn(x) that its norm grows at most like
nenλ+nε almost surely. Hence, all its Lyapunov exponents are 6 λ. The same argument
applied to the inverse cocycle, for T−1, shows that all the Lyapunov exponents are also > λ,
concluding the proof in this case.

We turn to the general case. Subdividing further each Fi/Fi−1 into the sum of its Os-
eledets subspaces, we may assume that there is one single Lyapunov exponent in each
Fi/Fi−1. Then, we argue by induction over k. At step k, the induction assumption ensures
that the Lyapunov spectrum L2 of M in E/F1 is the union of the Lyapunov spectra in
the Fi/Fi−1 for i > 1. Denoting by L1 the Lyapunov spectrum in F1 (made of a single
eigenvalue λ with some multiplicity), we want to show that the whole Lyapunov spectrum
is L1 ∪ L2, with multiplicities. Using the Oseledets theorem in E/F1 and lifting the corre-
sponding bundles to E, we obtain subbundles G2, . . . , GI such that, in the decomposition
E = F1 ⊕ G2 ⊕ · · · ⊕ GI , the matrix M is block diagonal, except possibly for additional
blocks along the first line. Each block Gi in which the Lyapunov exponent is not λ can be
replaced by a block G̃i which is really invariant under the dynamics, as in the k = 2 case
above. We are left with F1 and possibly one single additional block, say Gi, with the same
exponent λ. The k = 2 case again shows that all the Lyapunov exponents in F1 ⊕ Gi are
equal to λ, concluding the proof. �

3. Exponential large deviations for norms of linear cocycles

3.1. Gibbs measures. In this section, we recall basic properties of Gibbs measures, as
explained for instance in [Bow75] and [PP90]. By Gibbs measure, we always mean in this
article Gibbs measure with respect to some Hölder continuous potential.

Let ϕ be a Hölder-continuous function, over a transitive subshift of finite type T : Σ → Σ.
The Gibbs measure associated to ϕ, denoted by µϕ, is the unique T -invariant probability
measure for which there exist two constants P (the pressure of ϕ) and C > 0 such that, for
any cylinder [a0, . . . , an−1], and for any point x in this cylinder,

(3.1) C−1
6

µϕ[a0, . . . , an−1]

eSnϕ(x)−nP
6 C.

The Gibbs measure only depends on ϕ up to the addition of a coboundary and a constant,
i.e., µϕ = µϕ+g−g◦T+c.

Here is an efficient way to construct the Gibbs measure. Any Hölder continuous function
is cohomologous to a Hölder continuous function which only depends on positive coordinates
of points in Σ. Without loss of generality, we can assume that this is the case of ϕ, and
also that P (ϕ) = 0. Denote by T+ : Σ+ → Σ+ the unilateral subshift corresponding to T .
Define the transfer operator Lϕ, acting on the space Cα of Hölder continuous functions on
Σ+ by

Lϕu(x+) =
∑

T+y+=x+

eϕ(y+)v(y+).
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Then one shows that this operator has a simple eigenvalue 1 at 1, finitely many eigenvalues
of modulus 1 different from 1 (they only exist if T is transitive but not mixing) and the rest
of its spectrum is contained in a disk of radius < 1. One deduces that, for any v ∈ Cα, then

in Cα one has 1
N

∑N−1
n=0 Ln

ϕu → µ+(v)v0, where v0 is a (positive) eigenfunction corresponding

to the eigenvalue 1, and µ+ is a linear form on Cα. One can normalize them by µ+(1) = 1.
By approximation, it follows that this convergence also holds in C0 for v ∈ C0. Moreover,
µ+ extends to a continuous linear form on C0, i.e., it is a probability measure.

Replacing ϕ with ϕ+log v0− log v0 ◦T+, one replaces the operator Lϕ (with eigenfunction
v0) with the operator Lϕ+log v0−log v0◦T+ , with eigenfunction 1. Hence, without loss of gener-
ality, we can assume that v0 = 1. With this normalization, one checks that the measure µ+

is T+-invariant. It is the Gibbs measure for T+, satisfying the property (3.1). Its natural
T -invariant extension µ to Σ is the Gibbs measure for T . We have for any v ∈ C0(Σ+)

(3.2)
1

N

N−1
∑

n=0

Lnv(x+) →
∫

v dµ+, uniformly in x+ ∈ Σ+.

It follows from the construction above that the jacobian of µ+ with respect to T+ is given

by J(x+) =
dT ∗µ+

µ+
(x) = e−ϕ(x+).

Consider the disintegration of µ with respect to the factor µ+: there exists a family of
measures µ−

x+
on W s

loc(x+) for x+ ∈ Σ+, such that µ =
∫

µ−
x+

dµ+(x+). Formally, we write

µ = µ+ ⊗ µ−
x+

, even though this is not a direct product. These measures can in fact be

defined for all x+ (instead of almost all x+) in a canonical way, they depend continuously
on x+, they belong to the same measure class when the first coordinate (x+)0 is fixed, and
moreover their respective Radon-Nikodym derivatives are continuous in all variables. See
for instance [AV07, Section A.2].

Geometrically, the picture is the following. Consider some point x+ ∈ Σ+. It has finitely
many preimages y1+, . . . , y

i
+ under T+. Then W s

loc(x+) =
⋃

i T (W
s
loc(y

i
+)), and

(3.3) µ−
x+

=
∑

i

1

J(yi+)
T∗µ

−
yi+

=
∑

i

eϕ(y
i
+)T∗µ

−
yi+
.

3.2. First easy bounds. In this paragraph, we prove (1-3) in Theorem 1.5.

Lemma 3.1. Let an(x) = a(n, x) be a subadditive cocycle which is bounded in absolute value
for any n. Then, for any N , there exists C > 0 with

a(n, x) 6 Sn(aN/N)(x) + C,

for any n ∈ N and any x ∈ Σ.

Proof. This is clear for n 6 2N as all those quantities are bounded. Consider now n > 2N ,
consider p such that n = Np + r with r ∈ [N, 2N ]. For any j ∈ [0, N − 1], one may write
n = j +Np+ r with r ∈ [0, 2N ]. Thus,

a(n, x) 6 a(j, x) +

p−1
∑

i=0

a(N,T iN+jx) + a(r, T pN+jx) 6 C +

p−1
∑

i=0

N(aN/N)(T iN+jx).
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Summing over j ∈ [0, N − 1], we get

Na(n, x) 6 NC +
N−1
∑

j=0

p−1
∑

i=0

N(aN/N)(T iN+jx) = NC +NSNp(aN/N)(x)

6 C ′ +NSn(aN/N)(x).

This proves the claim. �

Lemma 3.2. Let (T, µ) be a transitive subshift of finite type with a Gibbs measure, and
a(n, x) a subadditive cocycle above T such that a(n, ·) is continuous for all n. Let λ be the
almost sure limit of a(n, x)/n, assume λ > −∞. Then, for any ε > 0, there exists C > 0
such that, for all n > 0,

µ{x : a(n, x) > nλ+ nε} 6 Ce−C−1n.

Proof. By Kingman’s theorem, a(n, x)/n converges to λ almost everywhere and in L1. Thus,
one can take N such that

∫

aN/N dµ(x) 6 (λ+ε/2)N . From the previous lemma, we obtain
a constant C such that, for all n and x,

a(n, x) 6 Sn(aN/N)x+C.

Thus,

{x : a(n, x) > nλ+ nε} ⊆ {x : Sn(aN/N)x > n

∫

(aN/N) + nε/2− C}.

By the large deviations inequality for continuous functions1, this set has exponentially small
measure. This proves the lemma. �

Proposition 3.3. Let (T, µ) be a transitive subshift of finite type with a Gibbs measure, and
M a continuous cocycle above T with Lyapunov exponents λ1 > · · · > λd. For any ε > 0,
there exists C > 0 such that, for all n > 0 and all i 6 d,

µ{x : log‖ΛiMn(x)‖ > n(λ1 + · · ·+ λi) + nε} 6 Ce−C−1n.

Proof. Fix i 6 d. Then the result follows from the previous lemma applied to a(n, x) =
log‖ΛiMn(x)‖. �

This proposition shows one of the two directions in Theorem 1.5, without any assumption
on the cocycle. Hence, to prove this theorem, it will suffice to prove the corresponding lower
bound

(3.4) µ{x : log‖ΛiMn(x)‖ 6 n(λ1 + · · ·+ λi)− nε} 6 Ce−C−1n,

under the various possible assumptions of this theorem. As is usual with subadditive ergodic
theory, this lower bound is significantly harder than the upper bound. Indeed, the analogue
of Lemma 3.2 for the lower bound is false, see Proposition A.1 in Appendix A

We already have enough tools to prove the easy cases of Theorem 1.5.

1This holds for continuous functions in transitive subshifts of finite type, by reduction to the mixing
setting after taking a finite iterate of the map, and by reduction to Hölder continuous functions by uniform
approximation.
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Proof of Theorem 1.5 (1-3). First, we prove (1): assuming that λ1 = . . . = λd = λ, we have
to prove that

µ{x : log‖ΛiMn(x)‖ 6 niλ− nε} 6 Ce−C−1n,

Let si(x, n) be the i-th singular value of Mn(x). Then

‖ΛiMn(x)‖ = s1(x, n) · · · si(x, n) > sd(x, n)
i = ‖Mn(x)−1‖−i.

Hence, to conclude, it suffices to show that

µ{x : log‖Mn(x)−1‖ > −nλ+ nε} 6 Ce−C−1n.

This follows from Proposition 3.3 applied to the cocycle M̃ (x) = (M(x)−1)t, whose Lya-
punov exponents are all equal to −λ.

Let us now prove (3), for k = 2 as the general case then follows by induction over k.
Assume that E1 is an invariant continuous subbundle such that, on E1 and on E/E1, the
induced cocycle has exponential large deviations for all exponents. Denote by L1 and L2

the Lyapunov exponents of the cocycle on these two bundles, then the Lyapunov spectrum
on E is L1 ∪ L2 with multiplicity, by Lemma 2.4. Let E2 be the orthogonal complement
to E1. We want to show (3.4), for some i. In λ1, . . . , λi, some of these exponents, say a
number i1 of them, are the top exponents in L1. Denote their sum by Σ1. The remaining
i2 = i− i1 exponents are the top exponents in L2, and add up to a number Σ2.

In the decomposition E = E1⊕E2, the matrix M is block diagonal, of the form
(

M1 B
0 M2

)

.

One has ‖ΛiM(x)‖ > ‖Λi1M1(x)‖‖Λi2M2(x)‖: considering v1 and v2 that are maximally
expanded by Λi1M1(x) and Λi2M2(x), the expansion factor of ΛiM(x) along v1∧v2 is at least
‖Λi1M1(x)‖‖Λi2M2(x)‖ thanks to the orthogonality of E1 and E2, and the block-diagonal
form of M(x). Therefore,

{x : log‖ΛiMn(x)‖ 6 n(λ1 + · · ·+ λi)− nε}
⊆ {x : log‖Λi1Mn

1 (x)‖+ log‖Λi2Mn
2 (x)‖ 6 nΣ1 + nΣ2 − nε}

⊆ {x : log‖Λi1Mn
1 (x)‖ 6 nΣ1 − nε/2} ∪ {x : log‖Λi2Mn

2 (x)‖ 6 nΣ2 − nε/2}.
The last sets both have an exponentially small measure, as we are assuming that the induced
cocycles on E1 and E/E1 have exponential large deviations for all exponents. Hence, µ{x :
log‖ΛiMn(x)‖ 6 n(λ1+ · · ·+λi)−nε} is also exponentially small. This concludes the proof
of (3).

Finally, (2) follows from (3) by taking Fi = E1 ⊕ · · · ⊕ Ei. �

3.3. u-states. Consider a cocycle M admitting invariant continuous holonomies. We define
a fibered dynamics over the projective bundle P(E) by

TP(x, [v]) = (Tx, [M(x)v]).

Let πP(E)→Σ : P(E) → Σ be the first projection.
In general, TP admits many invariant measures which project under πP(E)→Σ to a given

Gibbs measure µ. For instance, if the Lyapunov spectrum of M is simple, denote by vi(x)
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the vector in E(x) corresponding to the i-th Lyapunov exponent, then µ⊗δ[vi(x)] is invariant
under TP. By this notation, we mean the measure such that, for any continuous function f ,

∫

f(x, v) d(µ ⊗ δ[vi(x)])(x, v) =

∫

f(x, [vi(x)]) dµ(x).

More generally, if mx is a family of measures on P(E(x)) depending measurably on x such
that M(x)∗mx = mTx, then the measure µ ⊗mx (defined as above) is invariant under TP.
Conversely, any TP-invariant measure that projects down to µ can be written in this form,
by Rokhlin’s disintegration theorem.

To understand the growth of the norm of the cocycle, we need to distinguish among those
measures the one that corresponds to the maximal expansion, i.e., µ ⊗ δ[v1]. This measure
can be obtained as follows, assuming that λ1 is simple. Start from a measure on P(E) that
is of the form µ ⊗ νx where the measures νx depend continuously on x and give zero mass
to all hyperplanes. Then

(T n
P )∗(µ⊗ νx) = µ⊗ (Mn(T−nx)∗νT−nx).

By Oseledets theorem, the matrix Mn(T−nx) acts as a contraction on P(E(T−nx)), sending
the complement of a neighborhood of some hyperplane to a small neighborhood of [v1(x)].
As νy gives a small mass to the neighborhood of the hyperplane (uniformly in y), it follows
that (Mn(T−nx)∗νT−nx) converges to δ[v1(x)]. Thus,

µ⊗ δ[v1] = lim(T n
P )∗(µ ⊗ νx).

There is a remarkable consequence of this construction. We can start from a family of mea-
sure νx which is invariant under the unstable holonomy Hu

x→y, i.e., such that (Hu
x→y)∗νx = νy.

Then the same is true of all the iterates (Mn(T−nx)∗νT−nx). In the limit n → ∞, it follows
that δ[v1] is also invariant under unstable holonomies. (There is something to justify here,
as it is not completely straightforward that the holonomy invariance is invariant under weak
convergence: The simplest way is to work with a one-sided subshift, and then lift things
trivially to the two-sided subshift, see [AV07, Section 4.1] for details). This remark leads us
to the following definition.

Definition 3.4. Consider a probability measure ν on P(E) which projects to µ under π. It
is called a u-state if, in the fiberwise decomposition ν = µ⊗νx, the measures νx are µ-almost
surely invariant under unstable holonomies. It is called an invariant u-state if, additionally,
it is invariant under the dynamics.

The invariant u-states can be described under an additional irreducibility assumption of
the cocycle, strong irreducibility.

Definition 3.5. We say that a cocycle M with invariant continuous holonomies over a
subshift of finite type is not strongly irreducible if there exist a dimension 0 < k < d =
dimE, an integer N > 0, and for each point x ∈ Σ a family of distinct k-dimensional
vector subspaces V1(x), . . . , VN (x) of E(x), depending continuously on x, with the following
properties:

• the family as a whole is invariant under M , i.e., for all x,

M(x){V1(x), . . . , VN (x)} = {V1(Tx), . . . , VN (Tx)}.
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• the family as a whole is invariant under the holonomies, i.e., for all x and all
y ∈ W u

loc(x) one has Hu
x→y{V1(x), . . . , VN (x)} = {V1(y), . . . , VN (y)}, and the same

holds for the stable holonomies.

Otherwise, we say that M is strongly irreducible.

In a locally constant cocycle, where holonomies commute (and can therefore be taken to
be the identity), then the holonomy invariance condition reduces to the condition that each
Vi is locally constant, i.e., it only depends on x0.

The following theorem is the main result of this paragraph. It essentially follows from
the arguments in [BV04, AV07].

Theorem 3.6. Consider a transitive subshift of finite type T with a Gibbs measure µ. Let
M be a locally constant cocycle on a bundle E over T , which is strongly irreducible and has
simple top Lyapunov exponent. Then the corresponding fibered map TP has a unique invari-
ant u-state, given by µ ⊗ δ[v1] where v1(x) is a nonzero vector spanning the 1-dimensional
Oseledets subspace for the top Lyapunov exponent at x.

Note that we are assuming that the cocycle is locally constant: This theorem is wrong if
the cocycle only has invariant continuous holonomies, see Remark 3.9 below.

The rest of this subsection is devoted to the proof of this theorem. We have already seen
that µ ⊗ δ[v1] is an invariant u-state, what needs to be shown is the uniqueness. Starting
from an arbitrary u-state ν, we have to prove that it is equal to µ⊗ δ[v1].

As the cocycle is locally constant, one can quotient by the stable direction, obtaining a
unilateral subshift T+ : Σ+ → Σ+ with a Gibbs measure µ+, a vector bundle E+ and a
cocycle M+. The measure ν+ = (πE→E+)∗ν is then invariant under the fibered dynamics
T+,P. It can be written as µ+⊗ν+x+

for some measurable family ν+x+
of probability measures

on P(E+(x+)).
The following lemma is [AV07, Proposition 4.4].

Lemma 3.7. Assume that ν is an invariant u-state. Then the family of measures ν+x+
, ini-

tially defined for µ+-almost every x+, extends to a (unique) family that depends continuously
in the weak topology on all x+ ∈ Σ+.

For completeness, we sketch the proof, leaving aside the technical details.

Proof. The measure ν+x+
is obtained by averaging all the conditional measures νx over all

points x which have the future x+, i.e., over the points (x−, x+), with respect to a conditional
measure dµ−

x+
(x−). If y+ is close to x+, one has y0 = x0, so the possible pasts of y+ are

the same as the possible pasts of x+. For any continuous function f on projective space, we
obtain
∫

f dν+x+
=

∫
(
∫

f dνx−,x+

)

dµ−
x+

(x−),

∫

f dν+y+ =

∫
(
∫

f dνx−,y+

)

dµ−
y+(x−).

When y+ is close to x+, the measures dµ−
x+

and dµ−
y+ are equivalent, with respective density

close to 1, as we explained in Paragraph 3.1. Moreover, by holonomy invariance of the
conditional measures of ν,

∫

f dνx−,y+ =

∫

f ◦Hu
(x−,x+)→(x−,y+) dνx−,x+.
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By continuity of the holonomies, the function f ◦ Hu
(x−,x+)→(x−,y+) is close to f if y+ is

close to x+. It follows that
∫

f dν+y+ is close to
∫

f dν+x+
, as desired. Details can be found

in [AV07, Section 4.2]. �

Henceforth, we write ν+x+
for the family of conditional measures, depending continuously

on x+. The next lemma is a version of [AV07, Proposition 5.1] in our setting.

Lemma 3.8. Assume that M is strongly irreducible in the sense of Definition 3.5. Let ν
be an invariant u-state, write ν+x+

for the continuous fiberwise decomposition of Lemma 3.7.

Then, for any x+, for any hyperplane L ⊂ P(E+(x+)), one has ν+x+
(L) = 0.

Proof. Assume by contradiction that ν+x+
gives positive mass to some hyperplane, for some

x+. We will then construct a family of subspaces as in Definition 3.5, contradicting the
strong irreducibility of the cocycle.

Let k be the minimal dimension of a subspace with positive mass at some point. Let γ0
be the maximal mass of such a k-dimensional subspace. By continuity of x+ 7→ ν+x+

and

compactness, there exist a point a+ and a k-dimensional subspace V with ν+a+(V ) = γ0
([AV07, Lemma 5.2])

Let V(x+) be the set of all k-dimensional subspaces V of E+(x+) with ν+x+
(V ) = γ0.

Two elements of V(x+) intersect in a subspace of dimension < k, which has measure 0
by minimality of k. Hence, γ0 CardV(x+) = ν+x+

(
⋃

V ∈V(x+) V ). As this is at most 1, the

cardinality of V(x+) is bounded from above, by 1/γ0.
Consider a point b+ where the cardinality N of V(b+) is maximal. For each V ∈ V(b+),

ν+b+(V ) is an average of ν+x+
(M(x+)

−1V ) over all preimages x+ of b+ under T+ (see [AV07,

Corollary 4.7]). By maximality, all the M(x+)
−1V also have mass γ0 for ν+x+

. Iterating

this process, one obtains for all points in T−n
+ {b+} at least N subspaces with measure γ0

(and in fact exactly N by maximality). The set
⋃

n T
−n
+ {b+} is dense. Hence, any x+ is a

limit of a sequence xn for which V(xn) is made of N subspaces V1(xn), . . . , VN (xn). Taking
subsequences, we can assume that each sequence Vi(xn) converges to a subspace Vi, which
belongs to V(y) by continuity of y+ 7→ ν+y+ . Moreover, one has Vi 6= Vj for i 6= j: otherwise,
the corresponding space would have measure at least 2γ0, contradicting the definition of γ0.
This shows that the cardinality of V(x+) is at least N , and therefore exactly N .

We have shown that the family V(x+) is made of exactly N subspaces everywhere, that
it depends continuously on x+ and that it is invariant under T+,P. We lift everything to the
bilateral subshift Σ, setting V(x) = V(πΣ→Σ+x). By construction, the family is invariant
under the dynamics TP. As Vi does not depend on the past of the points, it is invariant
under the stable holonomy (which is just the identity when one moves along stable sets,
thanks to our choice of trivialization of the bundle).

The family V(x) only depends on x+. We claim that, in fact, it only depends on x0,
i.e., it is also invariant under the unstable holonomy. Fix some x+, and some y+ with
y0 = x0. Then γ0 = ν+x+

(Vi(x+)) is an average of the quantities ν(x−,x+)(Vi(x+)) over all

possible pasts x− of x+. One deduces from this that ν(x−,x+)(Vi(x+)) = γ0 for almost every
such x−, see [AV07, Lemma 5.4]. As ν is invariant under unstable holonomy, we obtain
ν(x−,y+)(Vi(x+)) = γ0 for almost every x−. Integrating over x−, we get ν+y+(Vi(x+)) = γ0.

Hence, Vi(x+) ∈ V(y+). This shows that V(x+) = V(y+) if x0 = y0 (almost everywhere and
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then everywhere by continuity). Hence, V is locally constant. This shows that M is not
strongly irreducible. �

Let us explain how this proof fails if the cocycle are not locally constant, i.e., if the
holonomies do not commute. Let us argue in a trivialization were the stable holonomies
are the identity. The failure is at the end of the proof, when we show that the family V(x)
is invariant under unstable holonomy. We can indeed prove that ν(x−,x+)(Vi(x+)) = γ0 for
almost every x−. Then, it follows that ν(x−,y+)(H

u
(x−,x+)→(x−,y+)Vi(x+)) = γ0. The problem

is that the subspaces Hu
(x−,x+)→(x−,y+)Vi(x+) vary with x−, so one can not integrate this

equality with respect to x−, to obtain a subspace V with ν+y+(V ) = γ0.

Proof of Theorem 3.6. Let ν be a u-state, let µ⊗ νx be its fiberwise disintegration, and ν+x+

the conditional expectation of νx with respect to the future sigma-algebra. The martingale
convergence theorem shows that, almost surely,

(3.5) νx = limMn(T−nx)∗ν
+
(T−nx)+

,

see [AV07, Proposition 3.1].
Let ε > 0. We may find δ such that, for any x+ and any hyperplane L ⊆ E+(x+),

the δ-neighborhood of L in P(E+(x)) (for some fixed distance on projective space) satisfies
ν+x+

(Nδ(L)) 6 ε, thanks to Lemma 3.8 and continuity of the measures.

Let E1(x) = Rv1(x) be the top Oseledets subspace of M , and E2(x) be the sum of
the other subspaces. Let A be a compact subset of Σ with positive measure on which
the decomposition E(x) = E1(x) ⊕ E2(x) is continuous and on which the convergence in
Oseledets theorem is uniform. Fix x ∈ A. By Poincaré’s recurrence theorem, there exists
almost surely an arbitrarily large n such that T−nx ∈ A. In the decomposition E = E1⊕E2,
the cocycle Mn(T−nx) is block diagonal, with the first (one-dimensional) block dominating
exponentially the other one. Hence, it sends P(E(T−nx)) \Nδ(E2(T

−nx)) (whose ν+
(T−nx)+

-

measure is at least 1 − ε thanks to the choice of δ) to an ε-neighborhood of E1(x) if n is
large enough. Therefore, Mn(T−nx)∗ν

+
(T−nx)+

(Nε([v1(x)])) > 1− ε. Letting ε tend to 0, we

get νx([v1(x)]) = 1 thanks to (3.5). As the measure of A can be taken arbitrarily close to 1,
we finally get that νx is almost everywhere equal to δ[v1(x)]. �

Remark 3.9. Theorem 3.6 is wrong in general for cocycles which are not locally con-
stant. The difficulty is in Lemma 3.8: If the cocycle M merely admits invariant continuous
holonomies, there is no reason why the invariant family of subspaces V(x) we construct there
should be invariant under the unstable holonomy, even though νx is. Here is an example of
a strongly irreducible cocycle with simple Lyapunov exponents, over the full shift on two
symbols endowed with any Gibbs measure, which admits two u-states.

Let Σ be the full shift, let E = Σ × R
3 and let M be the constant cocycle given by the

matrix
(

3 0 0
0 2 0
0 0 1

)

. We introduce the holonomies

Hu
x→y =





1 0
∑

n>0 3
−n(yn − xn)

0 1
∑

n>0 2
−n(yn − xn)

0 0 1



 ,
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and

Hs
x→y =





1 0 0
0 1 0

∑

n60 3
n(yn − xn)

∑

n60 2
n(yn − xn) 1



 .

One checks easily that they are indeed holonomies, and that they are invariant under T .
Let ei denote the i-th vector of the canonical basis. As e1 and e2 are invariant under the
unstable holonomies, they give rise to two distinct u-states.

We claim that the cocycle is strongly irreducible. Indeed, consider a nonzero subbundle F
of E which is invariant under T and the holonomies, we will show that F = E. Considering
the Oseledets decomposition of F under the cocycle, it follows that F is spanned by some
subfamily (ei)i∈I . If 1 ∈ I or 2 ∈ I, then the invariance under stable holonomy implies that
3 ∈ I, since Hse1 and Hse2 have a nonzero component along e3. Hence, e3 ∈ F almost
everywhere. Then, using the invariance under unstable holonomy, we deduce that e1 ∈ F
and e2 ∈ F almost everywhere, as Hue3 has nonzero components along e1 and e2. Finally,
F = E.

3.4. The case of locally constant cocycles. In this paragraph, we prove Theorem 1.5 (4):
if a cocycle is locally constant above a transitive subshift of finite type, then it has expo-
nential large deviations for all exponents. The main step is the following result:

Theorem 3.10. Consider a continuous cocycle over a transitive subshift of finite type en-
dowed with a Gibbs measure, admitting invariant continuous holonomies. Assume that it
has a unique u-state. Then the cocycle has exponential large deviations for its top exponent.

Before proving this theorem, let us show by successive reductions how it implies Theo-
rem 1.5 (4).

Lemma 3.11. Consider a locally constant cocycle which is strongly irreducible and has
simple top Lyapunov exponent, above a subshift of finite type with a Gibbs measure. Then
it has exponential large deviations for its top exponent.

Proof. By Theorem 3.6, the cocycle admits a unique u-state. Hence, the result follows from
Theorem 3.10. �

Lemma 3.12. Consider a locally constant cocycle which has simple top Lyapunov exponent,
above a subshift of finite type with a Gibbs measure. Then it has exponential large deviations
for its top exponent.

Proof. We argue by induction on dimension of the fibers of the cocycle. Consider a cocycle
M on a bundle E over a subshift of finite type T , with simple top Lyapunov exponent. We
will show that it has exponential large deviations for its top exponent, assuming the same
results for all cocycles on fiber bundles with strictly smaller dimension. We will prove the
lower bound (3.4) (with i = 1) for M .

If the cocycle M is strongly irreducible, then the result follows from Lemma 3.11, so
assume that it is not. Consider a locally constant invariant family V1(x), . . . , VN (x) as in
Definition 3.5, such that N is minimal. Let V (x) be the span of V1(x), . . . , VN (x). It is also
locally constant and invariant under the cocycle and the holonomies.
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Assume first that the dimension of V is strictly smaller than that of E. Define a cocycle
MV as the restriction of M to V , and a cocycle ME/V as the cocycle induced by M on
the quotient bundle E/V . These two cocycles are locally constant. By definition of the
restriction norm and the quotient norm, one has

(3.6) ‖Mn(x)‖ > max(‖Mn
V (x)‖, ‖Mn

E/V (x)‖).
Moreover, by Lemma 2.4, one of the two cocycles has λ1 as a simple top Lyapunov exponent,
and these two cocycles are locally constant and have strictly smaller fiber dimension. By
our induction assumption, we deduce that

µ{x : log‖Mn
W (x)‖ 6 nλ1 − nε} 6 Ce−C−1n,

where W is either V or E/V . The same bound follows for M thanks to (3.6).

Assume now that the dimension of V is equal to that of E, i.e., V = E. Consider a
new dynamics T̃ , on Σ̃ = Σ × {1, . . . , N}, mapping (x, i) to (Tx, j) where j = j(x, i) is
the unique index such that M(x)Vi(x) = Vj(Tx). As M and all the Vk only depend on x0,

the function j only depends on i, x0 and x1. Hence, T̃ is a subshift of finite type. As we
chose N to be minimal, there is no invariant proper subfamily of V1, . . . , VN . Hence, T̃ is
a transitive subshift. Let also µ̃ be the product measure of µ and the uniform measure on
{1, . . . , N}, it is again a Gibbs measure for T̃ , therefore ergodic by transitivity.

Above Σ̃, we consider a new bundle Ẽ(x, i) = Vi(x), and the resulting cocycle M̃ which
is the restriction of M to Vi. On any E(x), one can find a basis made of vectors in the
subspaces Vi(x), by assumption. It follows that ‖Mn(x)‖ 6 Cmaxi‖Mn(x)|Vi(x)‖, for some

uniform constant C. Hence, the top Lyapunov exponent of M̃ is (at least, and therefore

exactly) λ1. Moreover, it is simple as the top Oseledets space for M̃ in Ẽ(x, i) is included
in the top Oseledets space for M in E(x), which is one-dimensional by assumption.

By our induction assumption, we obtain the bound (3.4) with i = 1 for the cocycle M̃ over

the subshift T̃ and the measure µ̃ (note that it is important there that we have formulated
the induction assumption for all subshifts of finite type, not only the original one). The

result follows for the original cocycle as ‖Mn(x)‖ > ‖M̃n(x, 1)‖ for all x. �

Lemma 3.13. Consider a locally constant cocycle, above a subshift of finite type with a
Gibbs measure. Then it has exponential large deviations for its top exponent.

Proof. Consider a locally constant cocycle M for which the multiplicity d of the top Lya-
punov exponent is > 1. Then the top Lyapunov exponent of ΛdM is simple, equal to dλ1.

Moreover, for any matrix A (with singular values s1 > s2 > . . . ), we have ‖A‖d = sd1 >

‖ΛdA‖ = s1 · · · sd. Thus,

{x : log‖Mn(x)‖ 6 nλ1(M) − nε} ⊆ {x : log‖ΛdMn(x)‖ 6 nλ1(Λ
dM)− ndε}.

The last set has an exponentially small measure by Lemma 3.12, as ΛdM has a simple top
Lyapunov exponent by construction, and is locally constant. The desired bound follows for
M . �

Proof of Theorem 1.5 (4). Proving exponential large deviations for the cocycle M and some
index i amounts to proving exponential large deviations for ΛiM and its top Lyapunov
exponent. Hence, the theorem follows from Lemma 3.13. �
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The rest of this paragraph is devoted to the proof of Theorem 3.10. The proof follows
the classical strategy of Guivarc’h Le Page for products of independent matrices (with the
uniqueness of the u-state replacing the uniqueness of the stationary measure), although the
technical details of the implementation are closer for instance to [Dol04, Proof of Theorem 1].

Henceforth, we fix a transitive subshift of finite type T : Σ → Σ with a Gibbs measure µ,
and a continuous cocycle M : E → E above T which admits a unique u-state denoted by
νu. Changing coordinates in E using the unstable holonomy, we can assume without loss of
generality that M(x) only depends on the past x− of x.

We denote by Σ− the set of pasts of points in Σ. The left shift T does not induce a map
on Σ− (it would be multivalued, since there would be a choice for the zeroth coordinate),
but the right shift T−1 does induce a map U on Σ−. This is a subshift of finite type, for
which the induced measure µ− = (πΣ→Σ−

)∗µ is invariant (and a Gibbs measure).
The measure µ has conditional expectations µ+

x−
above its factor µ−: it can be written

as µ = µ− ⊗ µ+
x−

. The family of measures µ+
x−

is canonically defined for all point x− ∈ Σ−,

and varies continuously with x−, as we explained in Paragraph 3.1 (for the opposite time
direction).

To any point (x, [v]) ∈ P(E), we associate a measure ν(x,[v]) on P(E) as follows. There
is a canonical lift to E of W u

loc(x−), going through v, given by {(x−, y+,Hu
(x−,x+)→(x−,y+)v}.

The measure µ+
x−

on W u
loc(x−) can be lifted to this set, giving rise after projectivization to

the measure ν(x,[v]). This measure is invariant under (projectivized) unstable holonomy, it

projects to µ+
x−

under the canonical projection P(E) → Σ, and it projects to δx−
under the

canonical projection P(E) → Σ−. By construction, for any x−, x+ and y+,

ν(x−,x+,[v]) = ν(x−,y+,[Hu
(x−,x+)→(y−,y+)

v]).

More generally, finite averages or even integrals of such measures are again Hu-invariant.

There is a natural Markov chain on Σ−, defined as follows. A point x− has several
preimages yi− under U . By the invariance of the measure µ−, the sum 1/J(yi−) is equal to
1, where J is the jacobian of U for µ−. Hence, one defines a Markov chain, by deciding to
jump from x− to yi− with probability 1/J(yii). The corresponding Markov operator is given
by

Lv(x−) =
∑

U(y−)=x−

1

J(y−)
v(y−).

This is simply the transfer operator of Paragraph 3.1 (for the map U instead of the map T ).
Replacing the potential ϕ which defines the Gibbs measure by a cohomologous potential,
we may write 1

J(y−) = eϕ(y).

Correspondingly, we define an operator M acting on measures on P(E), by

Mν = (TP)∗ν.

It maps ν(x,[v]) (supported on the lift V of W u
loc(x−) through [v]) to a measure supported

on TPV (which is a lift of the union of the unstable manifolds W u
loc(y−) for U(y−) = x−).

Choose on each of these submanifolds a point (y−, y+, [vy]) (where y+ is arbitrary, and [vy]
is the unique vector in TV above (y−, y+)). Then we have

(3.7) Mν(x,[v]) =
∑

eϕ(y−)ν(y−,y+,[vy]).
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This follows from the equation (3.3) for the evolution of the conditional measures under the
dynamics, and then the uniqueness of the Hu-invariant lift.

Proposition 3.14. Let f be a continuous function on P(E). Then, uniformly in x ∈ Σ
and v ∈ P(E), when N → ∞,

1

N

N−1
∑

n=0

∫

f dMnν(x,[v]) →
∫

f dνu,

where νu is the unique invariant u-state of M .

Proof. It suffices to show that any weak limit ν∞ of sequences of the form

νN =
1

N

N−1
∑

n=0

Mnν(xN ,[vN ])

(where xN and [vN ] may vary with N) is an invariant u-state.
The invariance of the limiting measure is clear from the Cesaro-averaging and the defi-

nition Mν = (TP)∗ν. The Hu invariance also follows from the construction. It remains to
show that ν∞ projects to µ on Σ or, equivalently, that it projects to µ− on Σ−.

The projection of νN on Σ− is the Cesaro average of
∑

Uny−=(xN )−
eS−nϕ(y−)δy− , i.e., the

position at time n of the Markov chain started from xN at time 0. For any continuous
function v on Σ−, we get

∫

v dπ∗νN = 1
N

∑N−1
n=0 Lnv((xN )−). By a classical property of

transfer operators (see (3.2)), this converges uniformly to
∫

v dµ−. This proves that the
only possible weak limit for π∗(νN ) is µ−. �

Fix once and for all ε > 0, for which we want to prove the inequality

(3.8) µ{x : log‖Mn(x)‖ 6 n(λ1 − ε)} 6 Ce−C−1n.

Lemma 3.15. Define a function g0 on P(E) by

g0([x], v) = log(λ1 − ε)− log(‖M(x)v‖/‖v‖),
where the last term in this formula does not depend on the choice of the lift v of [v]. Then
there exist N and α, β > 0 such that, for any x and v,

∫

eαSNg0 dν(x,[v]) 6 e−βN .

Proof. Define a function f0 on P(E) by

f0(x, [v]) = log(‖M(x)v‖/‖v‖).
The integral of f0 with respect to the unique invariant u-state νu measures the average
expansion of a vector in the maximally expanded Oseledets subspace, which is by definition
equal to the maximal Lyapunov exponent λ1. Hence, it is not difficult to check the following
formula, due to Furstenberg (see for instance [Via14, Proposition 6.5]):

∫

f0 dνu = log λ1.

It follows that
∫

g0 dνu = log(λ1 − ε)− log λ1 < 0.
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Fix some c0 > 0 such that
∫

g0 dνu < −c0. By Proposition 3.14, there exists an integer N
such that, for any x and v,

1

N

N−1
∑

n=0

∫

g0 dMnν(x,[v]) 6 −c0.

By definition of M, we get

∫

SNg0 dν(x,[v]) =
N−1
∑

n=0

∫

g0 dMnν(x,[v]) 6 −c0N.

Using the inequality et 6 1 + t+ t2e|t|, we obtain for any α ∈ (0, 1)
∫

eαSNg0 dν(x,[v]) 6 1 + α

∫

SNg0 dν(x,[v]) + α2

∫

(SNg0)
2e|SNg0| dν(x,[v]) 6 1− αc0N + α2C,

where C is a constant depending on N but not on α. (For the bound in the last term, note
that the function SNg0 is uniformly bounded, as a continuous function on a compact space.)
When α is small enough, the term α2C is negligible. Hence, we obtain for small enough α
and for β = αc0/2 the inequality

∫

eαSNg0 dν(x,[v]) 6 1− βN 6 e−βN . �

Lemma 3.16. There exists a constant C such that, for any n ∈ N and any x and v, one
has

∫

eαSng0 dν(x,[v]) 6 Ce−βn.

Proof. It suffices to prove the lemma for times of the form nN , as the general case only
results in an additional multiplicative constant.

Fix some n. Iterating (3.7), (T nN
P

)∗ν(x,[v]) is a finite linear combination of measures of
the form ν(xi,[vi]), with some coefficients ci > 0 adding up to 1. Then

∫

eαS(n+1)Ng0 dν(x,[v]) =
∑

i

ci

∫

eαSnN g0◦T
−nN
P · eαSNg0 dν(xi,[vi]).

In each of the integrals, the term eαSnN g0◦T−nN

is constant as g0 and M only depend on the
past of points in Σ. Hence, this integral is a constant multiple of

∫

eαSN g0 dν(xi,[vi]), which

is 6 e−βN by Lemma 3.15. We get
∫

eαS(n+1)Ng0 dν(x,[v]) 6 e−βN
∑

i

ci

∫

eαSnNg0◦T−nN

dν(xi,[vi]) = e−βN

∫

eαSnNg0 dν(x,[v]).

The conclusion then follows by induction on n. �

Proof of Theorem 3.10. Fix some vector v. Then the average
∫

ν(x,[v]) dµ(x) is a measure
on P(E) that projects to µ. If log‖Mn(y)‖ 6 nλ1(M) − nε, then for any vector w one has
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log(‖Mn(y)w‖/‖w‖) 6 n(λ1(M)− ε), i.e., Sng0(y,w) > 0. We obtain

µ{y : log‖Mn(y)‖ 6 nλ1(M)− nε} 6

∫

1(Sng0(y,w) > 0) dν(x,[v])(y,w) dµ(x)

6

∫
(
∫

eαSng0 dν(x,[v])

)

dµ(x).

By Lemma 3.16, the last integral is bounded by Ce−βn. The upper bound (3.8) follows. �

3.5. Proof of Theorem 1.5 (5). Consider a cocycle M admitting invariant continuous
holonomies, which is pinching and twisting in the sense of Avila-Viana. We want to show
that it admits exponential large deviations for all exponents.

[AV07] shows that there is a unique invariant u-state on P(E), corresponding to the
maximally expanded Oseledets subspace, see the first lines of Section 7 in [AV07]. Hence,
Theorem 3.10 applies and shows that M has exponential large deviations for its top expo-
nent.

To prove exponential large deviations for an exponent i, a natural strategy would be
to consider the cocycle ΛiM and prove that it has exponential large deviations for its top
Lyapunov exponent. However, there is no reason why ΛiM should be twisting and pinching.
What Avila and Viana prove in [AV07], however, is that M has a unique u-state on the
Grassmannian of i-dimensional subspaces. All the arguments in the proof of Theorem 3.10
go through if one replaces everywhere the space P(E) by the corresponding Grassmannian.
Then the Grassmannian version of Theorem 3.10 shows that M has exponential large devi-
ations for the exponent i. �

3.6. Proof of Theorem 1.5 (6). Consider a two dimensional cocycle M admitting con-
tinuous holonomies, we want to show that it satisfies exponential large deviations for all
exponents i. For i = 2, the norm ‖ΛiM(x)‖ is the absolute value of the determinant of
M(x). The desired estimate (1.1) involves an additive cocycle, the Birkhoff sums of the
continuous function log|detM(x)|. Hence, (1.1) follows from the large deviations estimate
for Birkhoff sums.

The only non-trivial case is i = 1, i.e., exponential large deviations for ‖Mn(x)‖. If M
admits a unique invariant u-state on P(E), then the result follows from Theorem 3.10, and
we are done. If the two Lyapunov exponents of M are equal, then the result follows from
Theorem 1.5 (1). The last case is when the Lyapunov exponents are distinct, but there are
two different invariant u-states. The non-uniqueness implies that something fails if we try
to follow the proof of Theorem 3.6. The only place in the proof of this theorem where we
used the fact that the cocycle is locally constant is in the proof of Lemma 3.8. Without
this assumption, the proof of this lemma constructs a family V(x) of subspaces (which are
necessarily one-dimensional), invariant under the dynamics and the stable holonomy, but
not necessarily under the unstable holonomy. In general, this prevents us from implementing
the induction argument of Lemma 3.12 as the induced cocycle on V and the quotient cocycle
do not admit invariant continuous holonomies any more. However, in the specific case of 2-
dimensional cocycles, the induced cocycles and the quotient cocycles are both 1-dimensional.
Therefore, they satisfy exponential large deviations thanks to Theorem 1.5 (1). Hence,
the argument in Lemma 3.12 goes through to prove that the original cocycle also satisfies
exponential large deviations. �
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4. Exponential returns to nice sets for subadditive cocycles

The main statement of this section is the following theorem. Note that the assumptions
of the theorem ensure that the function F below is finite almost everywhere, although it
can be infinite on points which are not typical for µ. We are trying to control how large it
will be along typical orbits, in a quantitative sense.

Theorem 4.1. Let T : X → X be a continuous map preserving an ergodic probability
measure µ on a compact space. Consider a subadditive cocycle u : N × X → R, such that
u(n, x)/n converges almost everywhere to 0, and u(n, ·) is continuous for all n. Let also
ε > 0. Define a function

F (x) = sup
n>0

|u(n, x)| − εn.

Assume that u has exponential large deviations, and that the Birkhoff sums of continuous
functions also have exponential large deviations.

Let δ > 0. Then there exists C > 0 such that, for any n > 0,

µ{x : Card{j ∈ [0, n − 1] : F (T jx) > C} > δn} 6 Ce−C−1n.

In the applications we have in mind, u will be of the form u(n, x) = log‖ΛiM (n)(x)‖ −
n(λ1 + · · · + λi), for some cocycle M with Lyapunov exponents λk. The points where
F (x) 6 C are the points where all the iterates of the cocycle are well controlled. Essentially,
they belong to some Pesin sets (see Proposition 5.1 below for a precise version of this
statement). Hence, the lemma will imply that most iterates of a point return often to Pesin
sets, if the matrix cocycle has exponential large deviations for all exponents.

The proof is most conveniently written in terms of superadditive cocycles. Note that, in
the lemma below, the definition of G resembles that of F in the theorem above, except for
the lack of absolute value. Hence, the following lemma applied to v(n, x) = −u(n, x) − nε
proves one of two inequalities in Theorem 4.1.

Lemma 4.2. Let T : X → X preserve an ergodic probability measure µ on a compact space.
Consider a superadditive cocycle v : N × X → R, such that v(n, x)/n converges almost
everywhere to −ε < 0, and v(n, ·) is continuous for all n. Define a function

G(x) = sup
n>0

v(n, x).

Assume that v satisfies exponential large deviations, and that the Birkhoff sums of continuous
functions also satisfy exponential large deviations.

Let δ > 0. Then there exists C > 0 such that, for any n > 0,

µ{x : Card{j ∈ [0, n − 1] : G(T jx) > C} > δn} 6 Ce−C−1n.

Proof. When N tends to +∞, the sequence vN/N tends almost surely to −ε. The conver-
gence also holds in L1 by Kingman’s theorem. Then vN/N + ε tends almost surely and in
L1 to 0. Then min(vN/N +ε, 0) tends almost surely and in L1 to 0. Thus, we can take once
and for all a large enough N so that

(4.1)

∫

min(vN/N + ε, 0) > −δε/10.

Let w = vN/N .
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By Lemma 3.1 applied to the subadditive cocycle −v, there exists a constant C0 > 0 such
that v(n, x) > Snw(x) − C0, for any x ∈ X and any n ∈ N. We will show that

µ{x : Card{j ∈ [0, n − 1] : G(T jx) > 2C0} > δn} 6 Ce−C−1n.

Assume first that x has an iterate where the cocycle is large along an extremely long
interval, i.e., x belongs to

Kn =

n−1
⋃

t=0

(T t)−1{y : ∃j > δn/2, v(j, y) > 0}.

As v has exponential large deviations and converges to a negative constant, the last set has
a measure which is exponentially small in n. As T is measure-preserving, it follows that
µ(Kn) is also exponentially small.

Consider now x /∈ Kn such that Card{j ∈ [0, n − 1] : G(T jx) > 2C0} > δn. Then

(4.2) Card{j ∈ [0, n − 1− δn/2] : G(T jx) > 2C0} > δn/2.

We define inductively a sequence of times tk as follows. We start from t0 = 0. If
G(T tkx) > 2C0 and tk 6 n − 1 − δn/2, then we say that tk belongs to the set U+ of
sum-increasing times. In this case, we can choose nk > 0 such that v(nk, T

tkx) > 2C0, by
definition of H. Then we let tk+1 = tk + nk. Otherwise, we say that tk belongs to the set
U− of sum-decreasing times, and we let tk+1 = tk + 1. We stop at the first tj where tj > n.

Let A+ =
⋃

tk∈U+ [tk, tk+1), and A− = [0, n−1]\A+. As x /∈ Kn, the lengths nk = tk+1−tk
when tk ∈ U+ are all bounded by δn/2. Hence, A+ is included in [0, n − 1]. Moreover, the
set of bad times, on the left of (4.2), is included in A+. Therefore, CardA+ > δn/2, and
CardA− 6 (1− δ/2)n.

We will also need to write the set A− as a union of intervals
⋃

[t′j , t
′
j+n′

j) over some index

set J , i.e., we group together the times in U− that are not separated by times in U+.
Using the decomposition of [0, n − 1] as A+ ∪ A−, the decomposition of these sets into

intervals, and the superadditivity of the cocycle, we obtain the inequality

v(n, x) >
∑

tk∈U+

v(nk, T
tkx) +

∑

j∈J

v(n′
j , T

t′jx) >
∑

tk∈U+

2C0 +
∑

j∈J

v(n′
j , T

t′jx),

where the last inequality follows from the definition of U+. Note that the right endpoint
of an interval in A− belongs to U+, except for the last interval. It follows that CardJ 6

CardU+ + 1 6 2CardU+. Hence, the above inequality implies

v(n, x) >
∑

j∈J

(C0 + v(n′
j , T

t′jx)).

Together with the definition of C0, this gives

v(n, x) >
∑

j∈J

Sn′

j
w(T t′jx) =

∑

k∈A−

w(T kx).



QUANTITATIVE PESIN THEORY FOR ANOSOV DIFFEOMORPHISMS AND FLOWS 28

Now, let us introduce ε:

v(n, x) >
∑

k∈A−

(w(T kx) + ε)− εCard(A−)

>
∑

k∈[0,n−1]

min(w(T kx) + ε, 0) − εCard(A−)

>
∑

k∈[0,n−1]

min(w(T kx) + ε, 0) − ε(1− δ/2)n,

where the last inequality holds as CardA− 6 (1− δ/2)n.
The continuous function x 7→ min(w(x) + ε, 0) has exponential large deviations and

integral > −δε/10 by (4.1). Hence, we have
∑

k∈[0,n−1]min(w(T kx) + ρ, 0) > −nδε/5 apart

from an exponentially small set. Apart from this set, we obtain

v(n, x) > −εn+ (δ/2 − δ/5)εn.

As v has exponential large deviations and asymptotic average −ε, it follows that this condi-
tion on x has exponentially small measure. �

Proof of Theorem 4.1. The function F is the maximum of the two functions

H(x) = sup
n>0

−u(n, x)− nε, I(x) = sup
n>0

u(n, x)− nε.

We should show that each of these functions satisfies the conclusion of the theorem. For H,
this follows from Lemma 4.2 applied to v(n, x) = −u(n, x)− nε.

For I, let us consider N > 0 such that uN/N has integral < ε/2. By Lemma 3.1, there
exists a constant C0 such that u(n, x) 6 Sn(uN/N) + C0 for all n. Let w = uN/N − ε.
Lemma 4.2 applied to the cocycle Snw shows that, for some constant C1 > 0,

µ{x : Card{j ∈ [0, n − 1] : sup
n

Snw(T
jx) > C1} > δn} 6 Ce−C−1n.

If u(n, x) − nε > C0 + C1, then Snw(x) > C1. Hence, the control on I follows from the
previous equation. �

5. A deterministic control on the Pesin function

An important difficulty to prove Theorem 1.7 is that the Pesin function Aε is defined in
terms of the Oseledets subspaces Ei(x), which vary only measurably with the point and for
which we have no good control. On the other hand, Theorem 4.1 provides exponentially
many returns for sets defined in terms of functions for which we have good controls, e.g.,
Birkhoff sums of continuous functions (by the large deviation principle) or norms of linear
cocycles (if one can prove exponential large deviations for them, using for instance Theo-
rem 1.5). Our goal in this section is to explain how controls on such quantities imply controls
on the Pesin function Aε. Then, Theorem 1.7 will essentially follow from Theorem 4.1. To
prove such a result, we need to revisit the proof of Oseledets theorem and replace almost
sure controls with more explicit bounds.

Consider an invertible map T : X → X preserving a probability measure µ, and a log-
integrable linear cocycle M above T on X × R

d. Let λ1 > · · · > λd be its Lyapunov
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exponents, let I = {i : λi < λi−1} be a set of indices for the distinct Lyapunov exponents,
let Ei be the Lyapunov subspaces.

Given ε > 0, define functions

B+
ε (x) = sup

i∈[1,d]
B(i)+

ε = sup
i∈[1,d]

sup
n>0

|log‖ΛiM (n)(x)‖ − n(λ1 + · · ·+ λi)| − nε,

B−
ε (x) = sup

i∈[1,d]
B(i)−

ε = sup
i∈[1,d]

sup
n60

|log‖ΛiM (n)(x)‖ − n(λd + · · ·+ λd−i+1)| − |n|ε

and

Bε(x) = max(B+
ε (x), B

−
ε (x)).(5.1)

These are the functions we can control using the tools of the previous sections.
The following proposition asserts that a control on Bε and a mild control on angles

implies a control on Aε′ for ε′ = 20dε. For i ∈ I, let us denote by F
(m)
>i (x) the maximally

contracted subspace of M (m)(x) of dimension d − i + 1, and by F
(−m)
<i (x) the maximally

contracted subspace of M (−m)(x) of dimension i, if these spaces are uniquely defined, as in
the statement of Theorem 2.2.

Theorem 5.1. Assume that ‖M(x)‖ and ‖M(x)−1‖ are bounded uniformly in x. Consider
ε ∈ (0,mini 6=j∈I |λi − λj |/(20d)) and ρ > 0 and C > 0. Then there exist m0 ∈ N and D > 0
with the following properties.

Consider a point x satisfying Bε(x) 6 C. Then its subspaces F
(n)
>i (x) and F

(−n)
6i (x) are

well defined for all n > m0, and converge to subspaces F
(∞)
>i (x) and F

(−∞)
6i (x).

Assume additionally that, for all i ∈ I, there exists m > m0 such that the angle between

F
(m)
>i (x) and F

(−m)
<i (x) is at least ρ. Then the Oseledets subspace Ei(x) = F

(∞)
>i (x)∩F (−∞)

6i (x)
is a well-defined di-dimensional space for all i ∈ I. Moreover, the function A20dε(x) (defined
in (1.2) in terms of these subspaces) satisfies A20dε(x) 6 D.

Note that there is no randomness involved in this statement, it is completely deterministic.
The condition on Bε controls separately what happens in the past and in the future.

Oseledets subspaces are defined by intersecting flags coming from the past and from the
future, as explained in Theorem 2.2. Therefore, it is not surprising that there should be an
additional angle requirement to make sure that these flag families are not too singular one
with respect to the other. Note that the angle requirement is expressed in terms of a fixed
time m. Hence, it will be easy to enforce in applications.

In this section, we prove Theorem 5.1. Once and for all, we fix T , M and µ satisfying
the assumptions of this theorem, and constants C > 0, ε ∈ (0,mini 6=j∈I |λi − λj|/(20d)) and
ρ > 0. Consider a point x satisfying Bε(x) 6 C. We want to show that, if m is suitably

large (depending only on C, ε and ρ), then the subspaces F
(m)
>i (x) and F

(−m)
<i (x) are well

defined, and moreover if the angle between them is at least ρ, then A20dε(x) is bounded by
a constant D only depending on C, ε and ρ.

We will use the notations introduced before Theorem 2.2. In particular, t
(n)
i (x) = enλ

(n)
i (x)

is the i-th singular value of Mn(x). We will essentially repeat the argument from the proof of
a technical lemma in [Rue79]. A more detailed exposition is given in Section 2.6.2 in [Sar09].
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Step 1: there exists N1 = N1(C, ε) such that, if n > N1, then |λ(n)
i (x)− λi| 6 3ε for all i.

In particular, thanks to the inequality ε < mini 6=j∈I |λi − λj |/(20d), there is a gap between

the eigenvalues λ
(n)
j (x) in different blocks {i, . . . , i + di − 1}. (Note that the 20d is much

larger than what we need here, 6 would be enough, but it will be important later on.) This

implies that the different subspaces (F
(n)
i (x))i∈I are well defined.

Proof. We have Bε(x) 6 C. Thanks to the equality log‖ΛiMn(x)‖ = n(λ
(n)
1 (x) + . . . +

λ
(n)
i (x)), and to the definition of B+

ε , this gives for all i

n
∣

∣

∣λ
(n)
1 (x) + . . .+ λ

(n)
i (x)− (λ1 + . . .+ λi)

∣

∣

∣ 6 εn+ C.

Subtracting these equations with indices i and i− 1, we get |λ(n)
i (x)− λi| 6 2ε+ 2C/n. If

n is large enough, this is bounded by 3ε as desired. �

From this point on, we will only consider values of n or m which are > N1, so that the

subspaces F
(n)
i (x) are well defined. We will write Π

(n)
i for the orthogonal projection on this

subspace, and Π
(n)
>i and Π

(n)
<i for the projections on

⊕

j∈I,j>iF
(n)
j (x) and

⊕

j∈I,j<iF
(n)
j (x)

respectively. They satisfy Π
(n)
>i +Π

(n)
<i = Id.

Step 2: there exists a constant K1 = K1(C, ε) such that, for all m > n > N1, all i > j in

I and all v ∈ F
(n)
>i (x), holds

‖Π(m)
6j v‖ 6 K‖v‖e−n(λj−λi−6(d−1)ε).

Proof. The proof is done in two steps.

First claim: there exists a constant K0 such that, for n > N1, v ∈ F
(n)
>i (x) and j < i,

‖Π(n+1)
j v‖ 6 K0‖v‖e−n(λj−λi−6ε).

Indeed, on the one hand, we have

‖Mn+1(x)v‖ = ‖M(T nx)·Mn(x)v‖ 6 (sup
y
‖M(y)‖)·‖Mn(x)v‖ 6 (sup

y
‖M(y)‖)en(λi+3ε)‖v‖,

thanks to the first step and the fact that v ∈ F
(n)
>i (x). On the other hand, as Mn+1(x)

respects the orthogonal decomposition into the spaces F
(n+1)
k (x), we have

‖Mn+1(x)v‖ > ‖Mn+1(x)Π
(n+1)
j v‖ > e(n+1)(λj−3ε)‖Π(n+1)

j v‖,
again thanks to the first step. Putting these two equations together gives the result.

Second claim: for all j < i in I, there exists a constant Ki,j such that, for all m > n > N1

and all v ∈ F
(n)
>i (x), we have

(5.2) ‖Π(m)
6j v‖ 6 Ki,je

−n(λj−λi−6(i−j)ε)‖v‖.
Once this equation is proved, then Step 2 follows by taking for K1 the maximum of the Ki,j

over j < i in I. To prove (5.2), we argue by decreasing induction over j < i, j ∈ I. Assume
thus that the result is already proved for all k ∈ I ∩ (j, i), let us prove it for j.
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Decomposing a vector v along its components on F
(m)
6j (x), on F

(m)
k (x) for k ∈ I ∩ (j, i)

and on F
(m)
>i (x), we get

(5.3) ‖Π(m+1)
6j v‖ 6 ‖Π(m+1)

6j Π
(m)
6j v‖+

∑

k∈I∩(j,i)

‖Π(m+1)
6j Π

(m)
k v‖+ ‖Π(m+1)

6j Π
(m)
>i v‖.

The first term is bounded by ‖Π(m)
6j v‖ as Π

(m+1)
6j is a projection. The second term is bounded

by K0e
−m(λj−λk−6ε)‖Π(m)

k v‖ thanks to the first claim applied to m and Π
(m)
k v ∈ F

(m)
>k (x).

The induction hypothesis asserts that ‖Π(m)
k v‖ 6 Kk,ie

−m(λk−λi−6(i−k)ε)‖v‖. Overall, we
get for the second term a bound which is at most

∑

k∈I∩(j,i)

K0Ki,ke
−m(λj−λi−6(i−k+1)ε)

6 K ′e−m(λj−λi−6(i−j)ε)‖v‖.

Finally, the third term in (5.3) is bounded by K0e
−m(λj−λi−6ε)‖Π(m)

>i v‖, by the first claim

applied to m and Π
(m)
>i v ∈ F

(m)
>i (x). This is bounded by K0e

−m(λj−λi−6ε)‖v‖ as Π
(m)
>i is a

projection.
All in all, we have proved that

‖Π(m+1)
6j v‖ 6 (K ′ +K0)e

−m(λj−λi−6(i−j)ε)‖v‖+ ‖Π(m)
6j v‖.

The estimate (5.2) then follows by induction over m, summing the geometric series starting
from n as λj − λi − 6(i− j)ε > 0 thanks to the choice of ε. �

The second step controls projections from F
(n)
i to F

(m)
j , for m > n, when i > j. The third

step controls projections in the other direction, thus giving a full control of the respective
projections of the spaces.

Step 3: for all m > n > N1, all i > j in I and all v ∈ F
(n)
6j , holds

‖Π(m)
>i v‖ 6 K1‖v‖e−n(λj−λi−6(d−1)ε).

Proof. Define a new matrix cocycle by M̃(x) = (M−1(x))t, from E∗(x) to E∗(Tx). In
coordinates (identifying E(x) and E∗(x) thanks to its Euclidean structure), it is given as
follows. Write Mn(x) as k1Ak2 where k1 and k2 are orthogonal matrices, and A is a diagonal

matrix with entries t
(n)
1 (x) = enλ1(n)(x), . . . , t

(n)
d (x) = enλd(n)(x). Then M̃n(x) = k1A

−1k2.
Hence, it has the same decomposition into singular spaces as Mn(x), the difference being
that the singular values of Mn(x) are replaced by their inverses.

The proof in Step 2 only used the fact that the logarithms of the singular values were
3ε-close to λi, and the norm of the cocycle is uniformly bounded. All these properties are
shared by M̃ . Hence, the conclusion of Step 2 also applies to M̃ , except that the inequality
between i and j have to be reversed as the ordering of singular values of M̃ is the opposite
of that of M . This is the desired conclusion. �

Overall, Steps 2 and 3 combined imply that the projection of a vector in F
(n)
i (x) on

(F
(m)
i (x))⊥ = F

(m)
<i (x) ⊕ F

(m)
>i (x) has a norm bounded by 2K1e

−δn, for δ = mink 6=ℓ∈I |λk −
λℓ|−6(d−1)ε > 0. Hence, in terms of the distance d on the Grassmannian of di-dimensional
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subspaces defined in (2.1), we have d(F
(n)
i (x), F

(m)
i (x)) 6 2K1e

−δn. It follows that F
(n)
i (x)

is a Cauchy sequence, converging to a subspace F
(∞)
i (x) as claimed in the statement of the

theorem.

Step 4: there exist N2 > N1 and a constant K2 such that, for all n > N2, all i in I and

all v ∈ F
(∞)
i with norm 1, holds

(5.4) K−1
2 en(λi−6dε)

6 ‖Mn(x)v‖ 6 K2e
n(λi+6dε).

Proof. Take a vector v ∈ F
(∞)
i (x). For j ∈ I, the norm of the projection π

F
(n)
j

(x)→F
(∞)
i

(x)
, as

the limit of the projections π
F

(n)
j (x)→F

(m)
i (x)

, is bounded by K1e
−n(|λi−λj |−6(d−1)ε) thanks to

Steps 2 and 3 (note that this bound is nontrivial only if j 6= i). Its transpose, the projection
π
F

(∞)
i (x)→F

(n)
j (x)

, has the same norm and therefore satisfies the same bound.

Writing vj = π
F

(∞
i (x)→F

(n)
j (x)

v, we have Mn(x)v =
∑

j∈I M
n(x)vj . We have

(5.5) ‖vj‖ 6 K1e
−n(|λi−λj |−6(d−1)ε).

As Mn(x) expands by at most enλj+3ε on F
(n)
i (x), thanks to Step 1, we obtain

‖Mn(x)vj‖ 6 K1e
−n(|λi−λj |−6(d−1)ε)enλj+3ε 6 K1e

n(λi+6dε).

Here, it is essential to have in Step 2 a control in terms of λj − λi, and not merely some
exponentially decaying term without a control on the exponent. This proves the upper
bound in (5.4).

For the lower bound, we write ‖Mn(x)v‖ > ‖Mn(x)vi‖ as all the vectors M (n)(x)vj
are orthogonal. This is bounded from below by en(λi−3ε)‖vi‖, by Step 1. To conclude, it
suffices to show that ‖vi‖ is bounded from below by a constant if n is large enough. As
‖vi‖ > ‖v‖−∑j 6=i‖vj‖, this follows from the fact that ‖vj‖ tends to 0 with n if j 6= i, thanks

to (5.5). �

We recall that we are trying to control the behavior of Mn(x) not on F
(∞)
i (x), but on

the Oseledets subspace Ei(x) = F
(∞)
>i (x)∩F

(∞)
6i (x). To this effect, there is in the statement

of Theorem 5.1 an additional angle assumption that we will use now. Let ρ > 0 be given
as in the statement of the theorem. There exists δ > 0 with the following property: if U
and V are two subspaces of complementary dimension making an angle at least ρ, then any
subspaces U ′ and V ′ with d(U,U ′) 6 δ and d(V, V ′) 6 δ make an angle at least ρ/2.

We fix once and for all m0 = m0(C, ε, δ) > N2 such that, for all i ∈ I and all m > m0, one

has d(F
(m)
>i (x), F

(∞)
>i (x)) 6 δ and d(F

(−m)
6i (x), F

(−∞)
6i (x)) 6 δ. Its existence follows from

the convergence asserted at the end of Step 3 (and from the same result for T−1).
Assume now (and until the end of the proof) that, for some m > m0, the angle between

F
(m)
>i (x) and F

(−m)
<i (x) is > ρ, as in the assumptions of the theorem. It follows then that the

angle between F
(∞)
>i (x) and F

(−∞)
<i (x) is at least ρ/2. As a consequence, the spaces F

(∞)
>i (x)

and F
(−∞)
6i (x) are transverse, and their intersection is a di-dimensional space Ei(x).
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Step 5: there exist constants K3 > 0 and N3 > N2 such that, for all n > N3, all i ∈ I
and all v ∈ Ei(x) with norm 1, holds

(5.6) K−1
3 en(λi−6dε)

6 ‖Mn(x)v‖ 6 K3e
n(λi+6dε).

Proof. We have v ∈ Ei(x) ⊆ F
(∞)
>i (x). Decomposing the vector v along its components

vj ∈ F
(∞)
j (x) with j ∈ I ∩ [i, d] and using the upper bound of (5.4) for each vj , the upper

bound in (5.6) readily follows.

For the lower bound, we note that Ei(x), being contained in F
(−∞)
6i (x), makes an angle

at least ρ/2 with F
(∞)
>i (x). This implies that the norm of the projection vi of v on F

(∞)
i (x)

is bounded from below, by a constant c0 > 0. Using both the upper and the lower bounds
of Step 4, we obtain

‖Mn(x)v‖ > ‖Mn(x)vi‖ −
∑

j∈I,j>i

‖Mn(x)vj‖ > c0K
−1
2 en(λi−6dε) −

∑

j∈I,j>i

K2e
n(λj+6dε).

The choice of ε ensures that, for j > i in I, one has λi − 6dε > λj +6dε. Hence, the sum in

this equation is asymptotically negligible, and we obtain a lower bound c0K
−1
2 en(λi−6dε)/2

if n is large enough. �

Step 6: there exists a constant K4 such that, for all n ∈ Z, all i ∈ I and all v ∈ Ei(x)
with norm 1, holds

(5.7) K−1
4 enλi−6dε|n|

6 ‖Mn(x)v‖ 6 K4e
nλi+6dε|n|.

Proof. Step 5 shows that this control holds uniformly over n > N3. The same argument
applied to the cocycle M−1 and the map T−1 gives the same control for n 6 −N3 (note
that the function Bε(x), which is bounded by C by assumption, controls both positive and
negative times). Finally, the control over n ∈ (−N3, N3) follows from the finiteness of this
interval, and the uniform boundedness of M and M−1. �

We can finally conclude the proof of Theorem 5.1. We want to bound the quantity
A20dε(x) defined in (1.2). Fix i ∈ I, v ∈ Ei(x) \ {0} and m,n ∈ Z. Then, using the upper
bound of (5.7) for ‖Mn(x)v‖ and the lower bound for ‖Mm(x)v‖, we get

‖Mn(x)v‖
‖Mm(x)v‖e

−(n−m)λie−(|n|+|m|)(20dε)/2

6 K4e
nλi+6dε|n| ·K4e

−mλi+6dε|m| · e−(n−m)λie−(|n|+|m|)(20dε)/2

= K2
4e

−(|n|+|m|)4dε
6 K2

4 .

Taking the supremum over i ∈ I, v ∈ Ei(x) \ {0} and m,n ∈ Z, this shows that A20dε(x) 6
K2

4 . This concludes the proof, for D = K2
4 . �

6. Exponential returns to Pesin sets

In this section, we prove Theorem 1.7. As in the assumptions of this theorem, let us
consider a transitive subshift of finite type T , with a Gibbs measure µ and a Hölder cocycle



QUANTITATIVE PESIN THEORY FOR ANOSOV DIFFEOMORPHISMS AND FLOWS 34

M which has exponential large deviations for all exponents. Let δ > 0. We wish to show
that, for some D > 0, the set

{x : Card{k ∈ [0, n − 1] : Aε(T
kx) > D} > δn}

has exponentially small measure. Reducing ε if necessary, we can assume ε < |λi − λj | for
all i 6= j ∈ I. Set ε′ = ε/(20d).

The angle between the Lyapunov subspaces is almost everywhere nonzero. In particular,

given i ∈ I, the angle between F
(∞)
>i (x) and F

(−∞)
<i (x) is positive almost everywhere. On a

set of measure > 1 − δ/2, it is bounded from below by a constant 2ρ > 0 for all i. These

subspaces are the almost sure limit of F
(m)
>i (x) and F

(−m)
<i (x), according to Theorem 2.2.

Hence, if m is large enough, say m > m1, the set

U = Um = {x ∈ X : ∀i ∈ I, F
(m)
>i (x) and F

(−m)
<i (x) are well defined

and ∠(F
(m)
>i (x), F

(−m)
<i (x)) > ρ}

has measure > 1− δ/2.

We will use the functions B
(i)±
ε′ defined before (5.1). For each i ∈ [1, d] and σ ∈ {+,−},

there exists a constant Ci,σ such that

{x : Card{k ∈ [0, n − 1] : B
(i)σ
ε′ (T kx) > Ci,σ} > δn/(4d)}

has exponentially small measure, by Theorem 4.1 and the assumption on exponential large
deviations for all exponents. (For σ = −, this theorem should be applied to T−1). Let

C ′ = maxCi,σ. As Bε′ is the maximum of the functions B
(i)σ
ε′ , it follows that

{x : Card{k ∈ [0, n − 1] : Bε′(T
kx) > C ′} > δn/2}

has exponentially small measure.
We apply Theorem 5.1 with ε = ε′ and C = C ′ and ρ, obtaining some integer m0 > 1

and some constant D with the properties described in Theorem 5.1. Let us fix until the end
of the proof m = max(m0,m1).

The set U = Um is open by continuity of Mm and M−m. In particular, it contains a set
V which is a finite union of cylinders, with µ(V ) > 1− δ/2. To conclude, it suffices to show
that

(6.1) {x : Card{k ∈ [0, n − 1] : T kx /∈ V } > δn/2}
has exponentially small measure. Indeed, assume this holds. Then, apart from an expo-
nentially small set, there are at most δn bad times k in [0, n − 1] for which T kx /∈ V or
Bε′(T

kx) > C ′. For the other good times, we have T kx ∈ V and Bε′(T
kx) 6 C ′. Then

Theorem 5.1 shows that Aε(T
kx) = A20dε′(T

kx) 6 D, as desired.
It remains to control (6.1). Let χV denote the characteristic function of V , it is a contin-

uous function. The set in (6.1) is

{x : SnχV (x) < (1− δ/2)n}.
As
∫

χV = µ(V ) > 1 − δ/2 by construction, the large deviation principle for continuous
functions shows that this set is indeed exponentially small. This concludes the proof of the
theorem. �
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Appendix A. Counterexamples to exponential large deviations

In this appendix, we give two counterexamples to exponential large deviations. The first
easy one, in Proposition A.1, is for Hölder-continuous subadditive cocycles. The second
harder one, in Theorem A.3, is in the more restrictive setting of norms of matrix cocycles
(only continuous, although one expects that the same kind of result should hold for Hölder
cocycles with small Hölder exponent).

Proposition A.1. Let (T, µ) be an invertible subshift with an invariant ergodic measure µ
which is not supported on a periodic orbit. Consider a positive sequence un tending to 0.
There exists a subadditive cocycle a(n, x) such that a(n, ·) is Hölder continuous for any n,
such that a(n, x)/n → 0 almost everywhere, and such that, for infinitely many values of n,

µ{x : a(n, x)/n 6 −1} > un.

The proof uses the following easy variant of Rokhlin’s lemma:

Lemma A.2. Let δ > 0 and m > 0. In a subshift in which the set of periodic points
has measure 0, there exists a subset R made of finitely many cylinders such that the sets
(T iR)06i<m are pairwise disjoint and cover a measure at least 1− δ.

Proof. We may find a set S such that its m first iterates are disjoint and cover a measure
> 1− δ/2, by Rokhlin’s lemma. Let S′ be a finite union of cylinders which approximates S
so well that µ(S′∆S) 6 ρ, for ρ = δ/(4m2). Let R = S′ \⋃0<i<m T i(S′). It is a finite union

of cylinder sets, and the sets T iR for i < m are disjoint. We have

S′ ∩ T i(S′) ⊆ (S′∆S) ∪ (S ∩ T iS) ∪ (T iS∆T iS′).

The middle set is empty, the other ones have measure at most ρ. Hence, the measure of
this set is at most 2ρ. Finally, µ(R) > µ(S′)− 2(m− 1)ρ > µ(S)− 2mρ. Hence.

µ

(

⋃

06i<m

T iR

)

= mµ(R) > mµ(S)− 2m2ρ = µ

(

⋃

06i<m

T iS

)

− 2m2ρ > 1− δ/2 − 2m2ρ.

The choice of ρ ensures that the last term is 1− δ, as claimed. �

Proof of Proposition A.1. We will construct a sequence ni → ∞ and a sequence of functions
fi for i > 1 with the following properties:

(1) Each fi is Hölder continuous (in fact, it will only depend on finitely many coordi-
nates).

(2) We have fi(x) 6 0 for all x, and
∫

fi = −2−i.
(3) We have µ{x : Sni

fi(x) 6 −2ni} > uni
.

Let also f0 = 1 and n0 = 0. Define then

a(n, x) =
∑

i : ni6n

Snfi(x).

As the (fi)i>1 are nonpositive, this is a subadditive cocycle. Moreover,
∫

a(n, x)/n =
∑

ni6n

∫

fi → 0. By Kingman’s theorem, it follows that a(n, x)/n tends to 0 almost surely.

Moreover, if Sni
fi(x) 6 −2ni, then by nonpositivity of all the fj except for j = 0,

a(ni, x) 6 Sni
f0(x) + Sni

fi(x) 6 ni − 2ni 6 −ni.
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Hence, the third point in the definition of fi ensures that a(ni, x) 6 −ni with probability
at least uni

, showing that a satisfies the conclusion of the proposition.
Let us now construct fi and ni as above. First, choose n = ni such that uni

6 2−i−3.
Then, let K = 2i+2ni. We use a corresponding Rokhlin tower: by Lemma A.2, there exists a
set R which is a finite union of cylinder sets such that R, . . . , TK−1R are disjoint, and their
union covers a proportion > 1/2 of the space. Then µ(R) ∈ (1/(2K), 1/K]. Define fi to be
equal to −ci on

⋃

k<K/2i+1 T kR and 0 elsewhere, where ci is chosen so that
∫

fi = −2−i. As

µ(
⋃

k<K/2i+1 T kR) = (K/2i+1)µ(R) 6 2−i−1, it satisfies ci > 2. For any x ∈ ⋃k<K/2i+2 T kR,

one has fi(T
kx) = −ci for k < K/2i+2 = ni, and therefore Sni

fi(x) = −cini 6 −2ni.

The probability of this event is µ
(

⋃

k<K/2i+2 T kR
)

= (K/2i+2)µ(R) > 2−i−3 > uni
, as

desired. �

We will now construct a continuous cocycle taking values in SL(2,R) without exponential
large deviations for its top exponent. Note that a generic continuous cocycle away from
uniform hyperbolicity has only zero Lyapunov exponents, by Bochi-Viana [BV05], so it has
exponential large deviations by Theorem 1.5 (1). Hence, our construction can not be done
using Baire arguments.

Theorem A.3. Let un be any positive sequence tending to 0. Consider the full shift on two
symbols with a fully supported invariant ergodic measure µ. Then there exists a continuous
SL(2,R)-valued cocycle M with a positive top Lyapunov λ+(M) such that, for infinitely
many values of n,

µ{x : log‖Mn(x)‖ 6 nλ+(M)/2} > un.

If un tends to zero slower than exponentially, for instance un = 1/n, then the cocycle M
does not have exponential large deviations.

Let Σ be the full shift over two symbols 0 and 1, with a given invariant ergodic measure
µ of full support (what we really need is that the support of µ contains a fixed point, or
more generally a periodic orbit, but µ is not supported on this orbit). In this section, we
will say that an object defined on Σ is locally constant if it only depends on (xn)|n|6N for
some N . Let x∗ ∈ Σ be the point with all coordinates equal to 1. We say that a cocycle
M taking values in SL(2,R) has property Pλ, for some λ > 0, if it satisfies the following
properties:

(1) The cocycle M is locally constant.
(2) Its largest Lyapunov exponent is > λ.
(3) Its Oseledets subspaces, initially defined µ-almost everywhere, are in fact locally

constant (and therefore continuous).
(4) One has M(x∗) = Id.

Define a cocycle M0 by M0(x) =
(

2 0
0 1/2

)

if x0 = 0, and M0(x) = Id if x0 = 1. Then its

Oseledets subspaces are R ⊕ {0} and {0} ⊕ R, and the corresponding Lyapunov exponents
are nonzero. Hence, M0 satisfies Pλ for some λ > 0.

The main lemma is the following:
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Lemma A.4. Let λ > 0 and ε > 0 and n0 > 0. Let M be a cocycle with the property Pλ.
Then there exist a time n > n0 and another cocycle M̃ , again having the property Pλ, with
the following properties:

(1) For all x, one has ‖M̃(x)−M(x)‖ 6 ε.

(2) There exists a set A with measure > un on which ‖M̃n(x)‖ < eλn/2.

Let us admit the lemma for the time being. We construct inductively a sequence of
cocycles Mi, all with the property Pλ, starting with M0 as above. Suppose that we have
already constructed times n1, . . . , ni−1, sets A1, . . . , Ai−1 with µ(Aj) > unj

, and the cocycle

Mi−1 such that, for each j < i, ‖Mnj

i−1(x)‖ < eλnj/2 for all x ∈ Aj . We wish to construct a
time ni > ni−1, a set Ai and a cocycle Mi that satisfies the same properties for all j 6 i.
Note that, if ε = εi is small enough, then any cocycle Mi with ‖Mi(x) −Mi−1(x)‖ 6 ε for
all x will satisfy the above properties for j < i, with the same sets Aj . Hence, it suffices to

apply Lemma A.4 to M = Mi−1, with a sufficiently small ε, to get Mi = M̃ .
We can require εi 6 1/2i. Then the sequence Mi converges uniformly, towards a limit-

ing continuous cocycle M(x). By semi-continuity of the Lyapunov exponents, λ+(M) >

lim supλ+(Mi) > λ. On the other hand, ‖Mnj(x)‖ 6 eλnj/2 for all x ∈ Aj, and this set has
measure at least unj

as claimed. This concludes the proof of Theorem A.3. �

It remains to prove Lemma A.4. The main tool to modify the cocycle is the following
lemma, due to Bochi.

Lemma A.5. Assume that the cocycle M satisfies Pλ. Let ε > 0. Then, for almost every
x, there exist k(x) ∈ N and matrices Q0, . . . , Qk−1 such that ‖Qi − M(T ix)‖ 6 ε for all
i < k, and the product Qk−1 · · ·Q0 sends Eu(x) to Es(T kx), and Es(x) to Eu(T kx) (where
Es and Eu are the stable and unstable Oseledets directions of the cocycle M).

Proof. The set A of points that satisfy the conclusion of the lemma is backwards invariant
under the dynamics: if Tx = y and the sequence of matrices Q0, . . . , Qk−1 works for y, then
the sequence of matrices Id, Q0, . . . , Qk−1 works for x, for k(x) = k(y) + 1. By ergodicity,
it suffices to show that A has positive measure. This follows from [Via14, Proposition 9.10],
as the cocycle M is not uniformly hyperbolic thanks to the condition M(x∗) = Id in P (4).
(In our case, there is a direct easy proof as the cocycle is the identity on a neighborhood
of the fixed point x∗, so it can be replaced by a small rotation in suitable coordinates, on
points whose orbit spends a long enough time close to x∗). �

Proof of Lemma A.4. The idea is to apply Lemma A.5 at some points, modifying the cocycle
along a piece of orbit of length k, and then again the same lemma n steps later (for some n
much larger than k), to put again Es in line with Es, and Eu in line with Eu. The norm of
the new cocycle will essentially not increase along these n steps thanks to the cancellations
between the stable and unstable directions, yielding the desired set A, while the Lyapunov
exponent will essentially not be changed if these n steps are negligible compared to the
whole dynamics. Making this precise requires the use of the Rokhlin tower provided by
Lemma A.2, and some care when choosing the constants.

The cocycle M and its Oseledets subspaces are constant on cylinders of length 2N + 1,
for some N , by assumption. Replacing the original subshift by a new subshift the symbols
of which correspond to 2N + 1-cylinders of the original subshift, we may assume without
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loss of generality that N = 0, i.e., the cocycle M(x) and the Oseledets subspaces Es(x) and
Eu(x) only depend on the coordinate x0 of x.

The minimal function k(x) provided by Lemma A.5 is measurable. Hence, it is bounded
on a set of arbitrarily large measure. We obtain an integer k > 0, a set X with µ(X) > 9/10,
and for each x ∈ X a sequence of matrices Q0(x), . . . , Qk−1(x) with

(A.1) ‖Qi(x)−M(T ix)‖ 6 ε

whose product Qk−1(x) · · ·Q0(x) maps Es(x) to Eu(T kx) and Eu(x) to Es(T kx).
Let λ+(M) > λ be the top Lyapunov exponent of M . Let δ > 0 be small enough so that

14δ < λ. For µ-almost every x, there exists a constant C(x) < ∞ such that, for all ℓ ∈ Z

C(x)−1e−δ|ℓ|
6

‖M ℓ(x)vu(x)‖
eλ+(M)ℓ

6 C(x)eδ|ℓ|, C(x)−1e−δ|ℓ|
6

‖M ℓ(x)vs(x)‖
e−λ+(M)ℓ

6 C(x)eδ|ℓ|,

where vu(x) and vs(x) are unit vectors in Eu(x) and Es(x). Shrinking X just a little bit,
we can assume that C(x) is bounded by a constant C0 on X, while retaining the estimate
µ(X) > 9/10.

As the Oseledets subspaces depend continuously on the point, by Pλ(3), the angle between
vu(x) and vs(x) is bounded from below. Hence, increasing C0 if necessary, we can ensure
that, for any matrix A and any x,

(A.2) ‖A‖ 6 C0max(‖Avu(x)‖, ‖Avs(x)‖).
Increasing C0 and shrinking X if necessary, we can also assume that, for any x ∈ X,
the global modification matrix at x given by Q̃(x) = Mk(x)−1Qk−1(x) · · ·Q0(x) (which
exchanges Eu(x) and Es(x)) expands all vectors by at most C0, and contracts them by at
most C−1

0 .

Let n > k be such that C0 6 eδn. Let m = Kn, where K > 6 will be chosen later,
independently of n. Applying Lemma A.2, we obtain a set R which is a finite union of
cylinders, whose first m iterates are disjoint and cover a measure > 9/10. Subdividing R
further if necessary, we may write it as a disjoint union of cylinders Rp of length 2r + 1,
centered around 0, for some r > m + k. Let Op =

⋃

i<m T iRp, these sets are disjoint. We
will make the modifications of the cocycle separately on each Op.

The point x∗ is in at most one Op. If it belongs to O1, say, then we remove R1 from R.
Increasing r if necessary, this removes an arbitrarily small measure from R, so the new R
will still satisfy the condition µ(

⋃

j<m T jR) > 9/10. This means that modifying the cocycle

on the sets Op will not change its value on x∗, so that the condition M(x∗) = Id in Pλ(4)
will still be satisfied by the modified cocycle.

We say that a set Op is modifiable if there exists an index ap ∈ [0,m − 3n) such that

T apRp intersects X ∩ T−nX. If Op is not modifiable, then the set Õp =
⋃

a<m−3n T
aRp

(whose measure is at least µ(Op)/2 as m− 3n > m/2) does not intersect X ∩T−nX. Hence,

the union of these Õp has measure at most 1 − µ(X ∩ T−nX) 6 2/10, the union of the
corresponding Op has measure at most 4/10, and the measure of the union of the modifiable
Op is at least 9/10 − 4/10 = 1/2.

Let Op be modifiable. Choose a point xp ∈ T apRp ∩ X ∩ T−nX. On Op, we define the

cocycle M̃ to be equal to Qi(xp) on T ap+iRp for 0 6 i < k, to Qi(T
nxp) on T ap+n+iRp for
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0 6 i < k, and to M elsewhere. The cocycle M is constant on each set T iRp (as M(x)
only depends on x0, and Rp is a cylinder of length 2r + 1 with r > m). Hence, it follows

from (A.1) that ‖M̃ (x)−M(x)‖ 6 ε everywhere. Moreover, it is clear from the construction

that M̃ is locally constant.
Let us show that the Lyapunov exponent of M̃ is > λ. Start from a point x which is not

in the modified locus
⋃

p

⋃

ap6i<ap+n+k T
iRp, we will estimate the expansion of M̃ ℓ(x)vu(x)

when ℓ tends to ∞. Except when T ℓx belongs to the modified locus, the vector M̃ ℓ(x)vu(x)

is a multiple of vu(T ℓx), and undergoes the same expansion under M or M̃ . The difference
is the influence of the modified locus: when one enters this locus, then one should apply the
modification operator Q̃(xp) which brings vu(xp) to vs(xp) (with an expansion at least C−1

0 ),
then the original cocycle Mn(xp) but on the vector vs(xp), then the modification operator

Q̃(T nxp) that brings back vs(T nxp) to vu(T nxp) (again with an expansion at least C−1
0 ).

Then, one follows again the dynamics of the cocycle M . During such a visit to the modified
locus, the expansion under M̃ is at least C−1

0 · C−1
0 e−λ+(M)n−δn · C−1

0 , while the expansion

under M is at most C0e
λ+(M)n+δn. Hence, the expansion loss for M̃ with respect to M is

at most C−4
0 e−2λ+(M)n−2δn > e−2λ+(M)n−6δn. Moreover, such a loss happens at most once

in every m steps, since a visit to Op has length m by construction. We get

λ+(M̃ ) > λ+(M)− (2λ+(M) + 6δ)n/m.

By assumption, λ+(M) > λ. If the ratio K = m/n is large enough, it follows that one also

has λ+(M̃) > λ.
The same argument shows that, towards the past, vu(x) is exponentially contracted.

Hence, vu(x) generates the Oseledets subspace Eu(x) for M̃ . This shows that, away from
the modified locus, the Oseledets subspace is locally constant. Using its equivariance under
M̃ and the fact that M̃ is locally constant, we deduce that the Oseledets subspace of M̃ is
locally constant everywhere.

We have proved that M̃ satisfies Pλ. It remains to show the existence of a set A with
measure > un on which ‖M̃n(x)‖ < enλ/2. We take for A the union of the sets T ap+iRp over
i ∈ [n/2−δn/λ+(M), n/2+δn/λ+(M)] and p such that Op is modifiable. In each modifiable
set, A takes a proportion (2δn/λ+(M))/m = 2δ/(Kλ+(M)). As the measure of modifiable
sets Op is at least 1/2, we get µ(A) > δ/(Kλ+(M)), a number which is independent of n.
In particular, if n is large enough, we get µ(A) > un as un tends to 0 with n.

Consider x ∈ A, let us show that ‖M̃n(x)‖ < enλ/2 to conclude the proof. Consider p
and i = n/2 + j with |j| 6 δn/λ+(M) such that x ∈ T ap+iRp. First, we estimate the norm

of M̃n(x)vs(x). This vector is obtained by iterating the original cocycle M during n − i

steps, then doing the modification Q̃(T nxp) that brings it to vu(T nxp), and then iterating
the original cocycle M during i steps. The first step results in an expansion by at most
C0e

−λ+(M)(n−i)+δ(n−i) (as T nxp ∈ X), the second one by an expansion at most C0, and the

third one by an expansion at most C0e
λ+(M)i+δi. In the end, we obtain

‖M̃n(x)vs(x)‖ 6 C3
0e

δne−λ+(M)(n−i)+λ+(M)i 6 C3
0e

δne2λ+(M)|j| 6 C3
0e

3δn.

In the same way, vu(x) is expanded by at most C0e
λ+(M)(n−i)+δ(n−i) during the first n − i

iterates, then by at most C0 by the modification Q̃(T nxp) that brings it to vs(T nxp), and
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then by at most C0e
−λ+(M)i+δi for the last i iterates. Hence,

‖M̃n(x)vu(x)‖ 6 C3
0e

δneλ+(M)(n−i)−λ+(M)i
6 C3

0e
3δn.

With (A.2), this gives

‖M̃n(x)‖ 6 C4
0e

3δn
6 e7δn < enλ/2,

thanks to the choice of δ. �
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