
HAL Id: hal-01382953
https://hal.science/hal-01382953

Submitted on 19 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Oblivious Transfer and Generalization
Olivier Blazy, Céline Chevalier, Paul Germouty

To cite this version:
Olivier Blazy, Céline Chevalier, Paul Germouty. Adaptive Oblivious Transfer and Generalization. Ad-
vances in Cryptology – ASIACRYPT 2016 22nd International Conference on the Theory and Applica-
tion of Cryptology and Information Security, 2016, Hanoi, Vietnam. �10.1007/978-3-662-53890-6_8�.
�hal-01382953�

https://hal.science/hal-01382953
https://hal.archives-ouvertes.fr

Adaptive Oblivious Transfer and Generalization

Olivier Blazy1, Céline Chevalier2, and Paul Germouty1

1 Université de Limoges, XLim, France
2 Université Panthéon-Assas, Paris, France

Abstract. Oblivious Transfer (OT) protocols were introduced in the
seminal paper of Rabin, and allow a user to retrieve a given number of
lines (usually one) in a database, without revealing which ones to the
server. The server is ensured that only this given number of lines can
be accessed per interaction, and so the others are protected; while the
user is ensured that the server does not learn the numbers of the lines
required. This primitive has a huge interest in practice, for example in
secure multi-party computation, and directly echoes to Symmetrically
Private Information Retrieval (SPIR).
Recent Oblivious Transfer instantiations secure in the UC framework suf-
fer from a drastic fallback. After the first query, there is no improvement
on the global scheme complexity and so subsequent queries each have a
global complexity of O(|DB|) meaning that there is no gain compared
to running completely independent queries. In this paper, we propose a
new protocol solving this issue, and allowing to have subsequent queries
with a complexity of O(log(|DB|)), and prove the protocol security in
the UC framework with adaptive corruptions and reliable erasures.
As a second contribution, we show that the techniques we use for Obliv-
ious Transfer can be generalized to a new framework we call Oblivi-
ous Language-Based Envelope (OLBE). It is of practical interest since
it seems more and more unrealistic to consider a database with uncon-
trolled access in access control scenarii. Our approach generalizes Obliv-
ious Signature-Based Envelope, to handle more expressive credentials
and requests from the user. Naturally, OLBE encompasses both OT and
OSBE, but it also allows to achieve Oblivious Transfer with fine grain
access over each line. For example, a user can access a line if and only if
he possesses a certificate granting him access to such line.
We show how to generically and efficiently instantiate such primitive,
and prove them secure in the Universal Composability framework, with
adaptive corruptions assuming reliable erasures. We provide the new UC
ideal functionalities when needed, or we show that the existing ones fit
in our new framework.
The security of such designs allows to preserve both the secrecy of the
database values and the user credentials. This symmetry allows to view
our new approach as a generalization of the notion of Symmetrically PIR.

Keywords.Adaptive Oblivious Transfer, Oblivious Signature-Based En-
velope, UC Framework, Private Information Retrieval.

1 Introduction

Oblivious Transfer (OT) is a notion introduced by Rabin in [Rab81]. In its
classical 1-out-of-n version, it allows a user U to access a single line of a database
while interacting with the server S owning the database. The user should be
oblivious to the other line values, while the server should be oblivious to which
line was indeed received. Oblivious transfer has a fundamental role for achieving
secure multi-party computation: It is for example needed for every bit of input in
Yao’s protocol [Yao86] as well as for Oblivious RAM ([WHC+14] for instance),
for every AND gate in the Boolean circuit computing the function in [GMW87]
or for almost all known garbled circuits [BHR12].

Private Information Retrieval (PIR) schemes [CGKS95] allow a user to re-
trieve information from a database, while ensuring that the database does not
learn which data were retrieved. With the increasing need for user privacy, these
schemes are quite useful in practice, be they used for accessing records for email
repositories, collection of webpages, music... But while protecting the privacy of
the user, it is equally important that the user should not learn more information
than he is allowed to. This is called database privacy and the corresponding
protocol is called a Symmetrically Private Information Retrieval (SPIR), which
is employed in practice, for medical data or biometric information for instance.
This notion is closely related to Oblivious Transfer.

Due to their huge interest in practice, it is important to achieve low com-
munication on these Oblivious Transfer protocols. A usual drawback is that the
server usually has to send a message equivalent to the whole database each time
the user requests a line. If it is logical that an OT protocol requires a cost linear
in the size of the database for the first line queried, one may hope to amortize
the cost for further queries between the same server and the same user (or even
another user, if possible), reducing the efficiency gap between Private Informa-
tion Retrieval schemes and their stronger equivalent Oblivious Transfer schemes.
We thus deal in this paper with a more efficient way, which is to achieve Adap-
tive Oblivious Transfer, in which the user can adaptively ask several lines of the
database. In such schemes, the server only sends his database once at the be-
ginning of the protocol, and all the subsequent communication is in o(n), more
precisely logarithmic.

Smooth Projective Hash Functions (SPHF), used in conjunction with Com-
mitments have become the classical way to deal with such secret message trans-
fers. In a commitment scheme, the sender is going to commit to the line required
(i.e. to give the receiver an analogue of a sealed envelope containing his value i)
in such a way that he should not be able to open to a value different from the one
he committed to (binding property), and that the receiver cannot learn anything
about i (hiding property) before a potential opening phase. During the opening
phase, however, the committer would be asked to reveal i in such a way that the
receiver can verify it was indeed i that was contained in the envelope.

But, in our applications, there cannot be an opening phase, due to the obliv-
ious requirements on the protocols and the secrecy of the database line i sent.
The decommitment (opening phase) will thus be implicit, which means that the

2

committer does not really open its commitment, but rather convinces the receiver
that it actually committed to the value it pretended to. We achieve this prop-
erty thanks to Smooth Projective Hash Functions [CS02,GL03], which have been
widely used in such circumstances (see [ACP09,KV11,BBC+13b,ABB+13,BC15]
for instance). These hash functions are defined in such a way that their value
can be computed in two different ways if the input belongs to a particular sub-
set (the language), either using a private hashing key or a public projection key
along with a private witness ensuring that the input belongs to the language.
The hash value obtained is indistinguishable from random in case the input does
not belong to the language (smoothness) and in case the input does belong to
the language but no witness is known (pseudo-randomness).

In a nutshell, to ensure implicit decommitment, the sender will thus simply
mask the database line with this hash value computed using the private hashing
key. He will then send it along with the public projection key to the user, who
will be able to compute the same hash value thanks to the randomness of the
commitment of this line he sent in the first place (the randomness is the witness
of the membership of the commitment to the language of commitments of this
specific line). In order to ensure adaptive security in the universal composability
framework, the commitments used are usually required to be both extractable
(meaning that a simulator can recover the value i committed to thanks to a
trapdoor) and equivocable (meaning that a simulator can open a commitment to
a value i′ different from the value i it committed to thanks to a trapdoor).

In order to simplify these commitments, which can be quite technical, we
choose here to rely on words on more complex languages rather than on simple
line numbers. More precisely, the user will first compute an equivocable com-
mitment on the line number required, which will be his word w in the language.
This word will then be encrypted under a CCA encryption scheme, and the SPHF
will be constructed for this word (rather than for the line number), which will
be simpler. Furthermore, this abstraction consisting in encoding line numbers as
words in more complex languages will reveal useful in more general contexts, not
only Oblivious Transfer, the simplest of which being Oblivious Signature Based
Envelope.

Oblivious Signature-Based Envelope (OSBE) was introduced by Li, Du and
Boneh in [LDB03]. OSBE schemes consider the case where Alice (the receiver) is
a member of an organization and possesses a certificate produced by an authority
attesting she actually belongs to this organization. Bob (the sender) wants to
send a private message P to members of this organization. However due to the
sensitive nature of the organization, Alice does not want to give Bob neither her
certificate nor a proof she belongs to the organization. OSBE lets Bob send an
obfuscated version of this message P to Alice, in such a way that she will be
able to find P if and only if she is in the required organization. In the process,
Bob cannot decide whether Alice does really belong to the organization. We
even manage to construct a more general framework to capture many protocols
around trust negotiation, where the user receives a message if and only if he

3

possesses some credentials or specific accreditations. As a reference to OSBE,
we call this framework Oblivious Language-Based Envelope (OLBE).

Related Work. Since the original paper [Rab81], several instantiations and op-
timizations of OT protocols have appeared in the literature, including proposals
in the UC framework [NP01,CLOS02]. More recently, new instantiations have
been proposed, trying to reach round-optimality [HK07], or low communication
costs [PVW08]. Recent schemes like [ABB+13,BC15] manage to achieve round-
optimality while maintaining a small communication cost. Choi et al. [CKWZ13]
also propose a generic method and an efficient instantiation secure against adap-
tive corruptions in the CRS model with erasures, but it is only 1-out-of-2 and it
does not scale to 1-out-of-n OT, for n > 2. As far as adaptive versions of those
protocols are concerned, this problem was first studied by [NP97,GH07,KNP11],
and more recently UC secure instantiations were proposed, but unfortunately ei-
ther under the Random Oracle, or under not so classical assumptions such as
q-Hidden LRSW or later on q-SDH [GH08, JL09, RKP09, CDH12, GD14], but
without allowing adaptive corruptions.

Concerning automated trust negotiation, two frameworks have been pro-
posed to encompass the symmetric protocols (Password-based Authenticated
Key-Exchange, Secret Handshakes and Verfier-Based PAKE): The Credential
Authenticated Key Exchange [CCGS10], and Language-based Authenticated
Key Exchange (LAKE) [BBC+13a], in which two parties establish a common
session key if and only if they hold credentials that belong to specific (and possi-
bly independent) languages chosen by the other party. As for OSBE, the authors
in [BPV12] improved the security model initially proposed in [LDB03], showing
how to use Smooth Projective Hash Functions to do implicit proof of knowledge,
and proposed the first efficient instantiation of OSBE, under a standard hypoth-
esis. It fits, as well as Access Controlled Oblivious Transfer [CDN09,CDNZ11],
Priced Oblivious Transfer [AIR01, RKP09]) and Conditional Oblivious Trans-
fer [DOR99], into the generic notion of Conditional Disclosure of Secrets (see for
instance [AIR01,GIKM98,BGN05,LL07,Wee14, IW14,Att14,GKW15]).

Contributions. Our first contribution is to give the first adaptive Oblivious
Transfer protocol secure in the UC framework with adaptive corruptions under
classical assumptions (MDDH) and assuming reliable erasures. We show how to
instantiate the needed building blocks using classical assumptions, using or ex-
tending various basic primitives in order to fit the MDDH framework introduced
in [EHK+13]. In our scheme, the server first preprocesses its database in a time
linear in the length of the database and transfers it to the receiver. After that,
the receiver and the sender can run many instances of the protocol on the same
database as input and adaptively chosen inputs from the receiver, with a cost
sublinear in the database.

It is interesting to note that our resulting adaptive Oblivious Transfer scheme
has an amortized complexity in O(log |DB|), which is similar to current Private
Information Retrieval instantiations [KLL+15], that have weaker security pre-
requisites, and much better than current UC secure Oblivious Transfer under
classical assumptions (as they are in O(|DB|). Compared to existing versions

4

cited above (either proven in classical security models, or in the UC framework
but only with static corruptions and under non classical ssumptions), we man-
age to prove its security under classical assumptions, like SXDH, and allow UC
security with adaptive user corruptions.

As a side result, it is worth noting that we follow some ideas developed in the
construction explained in [GH07] around Blind Identity-Based Encryption and
provide techniques in order to transform IBE schemes into blind ones, applying
them to revisit the one given in [BKP14], in order to show how we can answer
blind user secret key-retrieval, which can be of independent interest.

As a second contribution, we propose our new notion, that we call Oblivious
Language-Based Envelope. We provide a security model by giving a UC ideal
functionality, and show that this notion supersedes the classical asymmetric au-
tomated trust negotiation schemes recalled above such as Oblivious Transfer
and Oblivious Signature-Based Envelope. We show how to choose the languages
in order to obtain from our framework all the corresponding ideal functionali-
ties, recovering the known ones (such as OT) and providing the new ones (such
as OSBE, to the best of our knowledge). We then give a generic construction
scheme fulfilling our ideal functionality, which directly gives generic construc-
tions for the specific cases (OT, OSBE). Finally, we show how to instantiate the
different simple building blocks in order to recover the classical efficient instan-
tiations of these schemes from our framework. In addition to the two cases most
studied (OT, OSBE), we also propose what we call Conditioned Oblivious Trans-
fer, which encompasses Access Controlled Oblivious Transfer, Priced Oblivious
Transfer and Conditional Oblivious Transfer, and in which the access to each
line of the database is hidden behind some possibly secret restriction, be it a
credential, a price, or an access policy. The advantage of the OLBE framework
on the notion of Conditional Disclosure of Secrets is to allow generic construc-
tions of a large subclass of schemes, as long as two participants are involved. It
can be easily applied to any language expressing some new access control policy.
Furthermore, those instantiations fit into a global security model, allowing to
uniformize (for the better) the security expectations for such schemes. In par-
ticular, we allow security in the UC framework with adaptive corruptions for
all our constructions (which was already known for some primitives cited above,
but not all), and manage to achieve this level of security while staying in the
standard model with standard hypothesis.

2 Definitions and Building Blocks

2.1 Notations for Classical Primitives

Throughout this paper, we use the notation K for the security parameter.

Digital Signature. A digital signature scheme S [DH76,GMR88] allows a signer
to produce a verifiable proof that he indeed produced a message. It is described
through four algorithms σ = (Setup,KeyGen,Sign,Verify). The formal definitions
are given in Appendix A of the additional content.

5

Encryption. An encryption scheme C is described through four algorithms
(Setup,KeyGen,Encrypt,Decrypt). The formal definitions are given in Appendix A
of the additional content.

Commitment and Chameleon Hash. Commitments allow a user to commit
to a value without revealing it, but without the possibility to later change his
mind. It is composed of four algorithms (Setup,KeyGen,Commit,Decommit). In-
formally, it is extractable if a simulator knowing a certain trapdoor can recover
the value committed to, and it is equivocable if a simulator, knowing another
trapdoor, can open the commitment to another value than the one it actually
committed to. This directly echoes to Chameleon Hashes, traditionally defined
by three algorithms CH = (KeyGen,CH,Coll). The formal definitions are given
in Appendix A of the additional content.

2.2 Identity-Based Encryption, Identity-based Key Encapsulation

Identity Based encryption was first introduced by Shamir in [Sha84] who was
expecting an encryption scheme where no public key will be needed for sending
a message to a precise user, defined by his identity. Thus any user wanting to
send a private message to a user only need this user’s identity and a master
public key. It took 17 years for the cryptographic community to find a way to
realize this idea. The first instantiation was proposed in [BF01] by Boneh and
Franklin. It can be described as an identity-based key encapsulation (IBKEM)
scheme IBKEM which consists of four algorithms IBKEM = (Gen,USKGen,Enc,
Dec). Every IBKEM can be transformed into an ID-based encryption scheme IBE
using a (one-time secure) symmetric cipher.

Definition 1 (Identity-based Key Encapsulation Scheme). An identity-
based key encapsulation scheme IBKEM consists of four PPT algorithms IBKEM =
(Gen,USKGen,Enc,Dec) with the following properties.
– Gen(K): returns the (master) public/secret key (mpk,msk). We assume that

mpk implicitly defines an identity space ID, a key space KS, and ciphertext
space CS.

– USKGen(msk, id): returns the user secret-key usk[id] for identity id ∈ ID.
– Enc(mpk, id): returns the symmetric key K ∈ KS together with a ciphertext

C ∈ CS with respect to identity id.
– Dec(usk[id], id,C): returns the decapsulated key K ∈ K or the reject symbol ⊥.

For perfect correctness we require that for all K ∈ N, all pairs (mpk,msk) gener-
ated by Gen(K), all identities id ∈ ID, all usk[id] generated by USKGen(msk, id)
and all (K,C) output by Enc(mpk, id): Pr[Dec(usk[id], id,C) = K] = 1.

The security requirements for an IBKEM we consider here are indistinguisha-
bility and anonymity against chosen plaintext and identity attacks (IND-ID-CPA
and ANON-ID-CPA). Instead of defining both security notions separately, we
define pseudorandom ciphertexts against chosen plaintext and identity attacks
(PR-ID-CPA) which means that challenge key and ciphertext are both pseudoran-
dom. Note that PR-ID-CPA trivially implies IND-ID-CPA and ANON-ID-CPA. We
define PR-ID-CPA-security of IBKEM formally via the games given in Figure 1.

6

Procedure Initialize:
(mpk,msk)

$← Gen(K)
Return mpk

Procedure USKGen(id):
QID ← QID ∪ {id}
Return usk[id]

$← USKGen(msk, id)

Procedure Enc(id∗): //one
query
(K∗,C∗)

$← Enc(mpk, id∗)

K∗
$← KS;C∗ $← CS

Return (K∗,C∗)

Procedure Finalize(β):
Return (id∗ 6∈ QID) ∧ β

Fig. 1. PR-ID-CPA-security: Security Games PR-ID-CPAreal and PR-ID-CPArand (boxed).

Definition 2 (PR-ID-CPA Security). An ID-based key encapsulation scheme
IBKEM is PR-ID-CPA-secure if for all PPT A , the following advantage is negli-
gible: Advpr-id-cpaIBKEM (A) := |Pr[PR-ID-CPAA

real ⇒ 1]− Pr[PR-ID-CPArand
A ⇒ 1]|.2.3 Smooth Projective Hashing and Languages

Smooth projective hash functions (SPHF) were introduced by Cramer and
Shoup in [CS02] for constructing encryption schemes. A projective hashing fam-
ily is a family of hash functions that can be evaluated in two ways: using the
(secret) hashing key, one can compute the function on every point in its domain,
whereas using the (public) projected key one can only compute the function on
a special subset of its domain. Such a family is deemed smooth if the value of
the hash function on any point outside the special subset is independent of the
projected key. The notion of SPHF has already found applications in various con-
texts in cryptography (e.g. [GL03,Kal05,ACP09]). A Smooth Projective Hash
Function over a language L ⊂ X, onto a set G, is defined by five algorithms
(Setup,HashKG,ProjKG,Hash,ProjHash):
– Setup(1K) where K is the security parameter, generates the global parameters

param of the scheme, and the description of an NP language L;
– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp from hk.
– Hash(hk, (L, param),W), outputs a hash value v ∈ G, thanks to hk and W .
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the

projection key hp and the witness w that W ∈ L.
In the following, we consider L as a hard-partitioned subset of X, i.e. it

is computationally hard to distinguish a random element in L from a random
element in X \ L. An SPHF should satisfy the following properties:
– Correctness: Let W ∈ L and w a witness of this membership. Then, for all

hashing keys hk and associated projection keys hp we have
Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W)


∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← G

}
.

7

This is formalized by: Advsmooth
SPHF (K) =

∑
V ∈G |Pr∆1

[v = V]− Pr∆0
[v = V]| is

negligible.
– Pseudo-Randomness: If W ∈ L, then without a witness of membership the

two previous distributions should remain computationally indistinguishable.
For any adversary A within reasonable time, this advantage is negligible:

AdvprSPHF,A(K) = |Pr
∆1

[A(L, param,W, hp, v) = 1]−Pr
∆0

[A(L, param,W, hp, v) = 1]|

Languages. The language L ⊂ X used in our definition should be a hard-
partitioned subset of X, i.e. it is computationally hard to distinguish a random
element in L from a random element not in L (see formal definition in [GL03,
AP06]). Furthermore, the language should fulfill the following properties:
– Publicly Verifiable: Given a word x in X, anyone should be able to decide in

polynomial time whether x ∈ L or not.
– Self-Randomizable: Given a word in the language, anyone should be able to

sample a new word in the language1, and the distribution of this resampling
should be indistinguishable from an honest distribution. This will be used
in order to prevent an adversary, or the authority in charge of distributing
the words, to learn which specific form of the word was used by the user.
In case we consider several languages (L1, . . . ,Ln), we also assume it is a

Trapdoor Collection of Languages: It is computationally hard to sample an ele-
ment in L1∩· · ·∩Ln, except if one possesses a trapdoor tk (without the knowledge
of the potential secret keys)2. For instance, if for all i, Li is the language of the
equivocable commitments on words in an inner language L̃i = {i} (as we will
consider for OT), the common trapdoor key can be the equivocation trapdoor.

Depending on the applications, we can assume a Keyed Language, which
means that it is set by a trusted authority, and that it is hard to sample fresh
elements from scratch in the language without the knowledge of a secret language
key skL. In this case, the authority is also in charge of giving a word in the
language to the receiver.

In case the language is keyed, we assume it is also a Trapdoor Language: We
assume the existence of a trapdoor tkL allowing a simulator to sample an element
in L (without the knowledge of the potential secret key skL). For instance, for
a language of valid Waters signatures of a message M (as we will consider for
OSBE), one can think of skL as being the signing key, whereas the trapdoor tkL
can be the discrete logarithm of h in basis g.3

1 It should be noted that this property is not incompatible with the potential secret
key of the language in case it is keyed (see below).

2 This implicitly means that the languages are compatible, in the sense that one can
indeed find a word belonging to all of them.

3 As another example, one may think of more expressive languages which may not rely
directly on generators fixed by the CRS. In this case, one can assume that the CRS
contains parameters for an encryption and an associated NIZK proof system. The
description of such a language is thus supplemented with an encryption of the lan-

8

2.4 Security Assumptions

Due to lack of space, instantiations of the primitives recalled above are given
in Appendix B of the additional content and we only give here the security
assumptions.

Security Assumption: Pairing groups and Matrix Diffie-Hellman As-
sumption. Let GGen be a probabilistic polynomial time (PPT) algorithm that
on input 1K returns a description G = (p,G1,G2,GT , e, g1, g2) of asymmetric
pairing groups where G1, G2, GT are cyclic groups of order p for a K-bit prime
p, g1 and g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an
efficiently computable (non-degenerated) bilinear map. Define gT := e(g1, g2),
which is a generator in GT .

We use implicit representation of group elements as introduced in [EHK+13].
For s ∈ {1, 2, T} and a ∈ Zp define [a]s = gas ∈ Gs as the implicit representation
of a in Gs. More generally, for a matrix A = (aij) ∈ Zn×mp we define [A]s as the
implicit representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganms

 ∈ Gn×ms

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈
Gs be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to compute
the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT it is
hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem).
Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently compute
[ax]s ∈ Gs. Further, given [a]1, [b]2 one can efficiently compute [ab]T using the
pairing e. For a, b ∈ Zkp define e([a]1, [b]2) := [a>b]T ∈ GT .

We recall the definition of the matrix Diffie-Hellman (MDDH) assumption
[EHK+13].
Definition 3 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z(k+1)×k

p of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A $← Dk form an
invertible matrix, we denote this matrix A, while the last line is denoted A.
The Dk-Matrix Diffie-Hellman problem is to distinguish the two distributions
([A], [Aw]) and ([A], [u]) where A $← Dk, w $← Zkp and u $← Zk+1

p .

Definition 4 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk
be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G $← GGen(1λ), A $← Dk,w $← Zkp,u
$← Zk+1

p .

guage trapdoor, and a non-interactive zero-knowledge proof that the encrypted value
is indeed a trapdoor for the said language. Using the knowledge of the decryption
key, the simulator is able to recover the trapdoor.

9

For each k ≥ 1, [EHK+13] specifies distributions Lk, Uk, . . . such that the
corresponding Dk-MDDH assumption is the k-Linear assumption, the k-uniform
and others. All assumptions are generically secure in bilinear groups and form a
hierarchy of increasingly weaker assumptions. The distributions are exemplified
for k = 2, where a1, . . . , a6

$← Zp.

L2 : A =

a1 0
0 a2

1 1

 U2 : A =

a1 a2

a3 a4

a5 a6

 .

It was also shown in [EHK+13] that Uk-MDDH is implied by all other Dk-MDDH
assumptions.

Lemma 5 (Random self reducibility [EHK+13]). For any matrix distri-
bution Dk, Dk-MDDH is random self-reducible. In particular, for any m ≥ 1,

AdvDk,GGen(D) + 1
q−1 ≥ AdvmDk,GGen(D

′)

where AdvmDk,GGen(D
′) := Pr[D′(G, [A], [AW]) ⇒ 1] − Pr[D′(G, [A], [U]) ⇒ 1],

with G ← GGen(1λ), A $← Dk,W $← Zk×mp ,U
$← Z(k+1)×m

p .

Remark: It should be noted that L1,L2 are respectively the SXDH and DLin
assumptions.

2.5 Security Models

UC Framework. The goal of the UC framework [Can01] is to ensure that UC-
secure protocols will continue to behave in the ideal way even if executed in a
concurrent way in arbitrary environments. It is a simulation-based model, rely-
ing on the indistinguishability between the real world and the ideal world. In the
ideal world, the security is provided by an ideal functionality F , capturing all
the properties required for the protocol and all the means of the adversary. In
order to prove that a protocol Π emulates F , one has to construct, for any poly-
nomial adversary A (which controls the communication between the players),
a simulator S such that no polynomial environment Z can distinguish between
the real world (with the real players interacting with themselves and A and
executing the protocol π) and the ideal world (with dummy players interacting
with S and F) with a significant advantage. The adversary can be either adap-
tive, i.e. allowed to corrupt users whenever it likes to, or static, i.e. required to
choose which users to corrupt prior to the execution of the session sid of the
protocol. After corrupting a player, A has complete access to the internal state
and private values of the player, takes its entire control, and plays on its behalf.

Simple UC Framework. Canetti, Cohen and Lindell formalized a simpler
variant in [CCL15], that we use here. This simplifies the description of the func-
tionalities for the following reasons (in a nutshell): All channels are automatically
assumed to be authenticated (as if we worked in the FAuth-hybrid model); There
is no need for public delayed outputs (waiting for the adversary before delivering
a message to a party), neither for an explicit description of the corruptins. We
refer the interested reader to [CCL15] for details.

10

3 UC-secure Adaptive Oblivious Transfer

As explained in the introduction, the classical OT constructions based on the
commitment/SPHF paradigm (among the latest in the UC framework, [CKWZ13,
ABB+13,BC15]) require the server to send an encryption of the complete database
for each line required by the user (thus O(n) each time). We here give a protocol
requiring O(log(n)) for each line (except the first one, still in O(n)), in the UC
framework with adaptive corruptions under classical assumptions (MDDH).

3.1 Definition and Security Model

Using implicit decommitment in the UC framework implies a very strong com-
mitment primitive (formalized as SPHF-friendly commitments in [ABB+13]),
which is both extractable and equivocable. Our idea is here to split these two
properties by using on the one hand an equivocable commitment and on the
other hand an (extractable) CCA encryption scheme by generalizing the way to
access a line in the database. Indeed, we suggest not to consider anymore the
line numbers as numbers in {1, . . . , n} but rather to “encode” them (the exact
encoding will depend on the protocol): For every line i, a word Wi in the lan-
guage Li will correspond to a representation of line i. This representation must
be publicly verifiable, in the sense that anyone can associate i to a word Wi.
We formalize this in the following definition of oblivious transfer4. In such a
protocol, a server S possesses a database of n lines (P1, . . . , Pn) ∈ ({0, 1}K)n.
A user U will be able to recover Pi (in an oblivious way) as soon as he owns
a word Wi ∈ Li. The languages (L1, . . . ,Ln) will be assumed to be a trapdoor
collection of languages, publicly verifiable and self-randomizable. As we con-
sider simulation-based security (in the UC framework), we allow a simulated
setup SetupT to be run instead of the classical setup Setup in order to allow
the simulator to possess some trapdoors. Those two setup algorithms should be
indistinguishable.

Definition 6 (Oblivious Transfer). An OT scheme is defined by five algo-
rithms (Setup,KeyGen,DBGen,Samp,Verify), along with an interactive protocol
Protocol〈S,U〉:
– Setup(1K), where K is the security parameter, generates the global parameters

param, among which the number n;
or SetupT(1K), where K is the security parameter, additionally allows the exis-

tence5 of a trapdoor tk for the collection of languages (L1, . . . ,Ln).
– KeyGen(param,K) generates, for all i ∈ {1, . . . , n}, the description of the

language Li (as well as the language key skLi if need be). If the parame-
ters param were defined by SetupT, this implicitly also defines the common
trapdoor tk for the collection of languages (L1, . . . ,Ln).

4 The adaptive version only implies that the database (P1, . . . , Pn) is sent only once
in the interaction, while the user can query several lines (i.e. several words), in an
adaptive way.

5 The specific trapdoor will depend on the languages and be computed in the KeyGen
algorithm.

11

The functionality FL
OT is parametrized by a security parameter K and a set of

languages (L1, . . . ,Ln) along with the corresponding public verification algorithms
(Verify1, . . . ,Verifyn). It interacts with an adversary S and a set of parties P1,. . . ,PN

via the following queries:
– Upon receiving an input (NewDataBase, sid, ssid,Pi,Pj, (P1, . . . , Pn)) from
party Pi, with Pi ∈ {0, 1}K for all i: record the tuple (sid, ssid,Pi,Pj ,
(P1, . . . , Pn)) and reveal (Send, sid, ssid,Pi,Pj) to the adversary S . Ignore fur-
ther NewDataBase-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj,Wi) from party Pj :
ignore the message if (sid, ssid,Pi,Pj , (P1, . . . , Pn)) is not recorded. Oth-
erwise, reveal (Receive, sid, ssid,Pi,Pj) to the adversary S and send
(Received, sid, ssid,Pi,Pj , P

′
i) to Pj where P ′i = Pi if Verifyi(Wi,Li) returns 1,

and P ′i = ⊥ otherwise.
(Non-Adaptive case: Ignore further Receive-message with the same ssid from Pj.)

Fig. 2. Ideal Functionality for (Adaptive) Oblivious Transfer FL
OT

– Samp(param) or Samp(param, (skLi)i∈{1,...,n}) generates a word Wi ∈ Li;
– Verifyi(Wi,Li) checks whether Wi is a valid word in the language Li. It

outputs 1 if the word is valid, 0 otherwise;
– Protocol〈S((L1, . . . ,Ln), (P1, . . . , Pn)),U((L1, . . . ,Ln),Wi)〉 between the server S

with the private database (P1, . . . , Pn) and corresponding languages (L1, . . . ,Ln),
and the user U with the same languages and the word Wi, proceeds as fol-
lows. If the algorithm Verifyi(Wi,Li) returns 1, then U receives Pi, otherwise
it does not. In any case, S does not learn anything.

The ideal functionality of an Oblivious Transfer (OT) protocol was given
in [Can01, CKWZ13, ABB+13], and an adaptive version in [GH08]. We here
combine them and rewrite it in simple UC and using our language formalism
(instead of directly giving a number line s to the functionality, the user will give
it a word Ws ∈ Ls). The resulting functionality FL

OT is given in Figure 2.

3.2 High Level Idea of the Construction

Our construction is inspired by [GH07], who propose a neat framework allowing
to achieve adaptive Oblivious Transfer in the simulation model. Their construc-
tion is quite simple: It requires a blind identity-based encryption, in other words,
an IBE scheme in which there is a way to query for a user key generation without
the authority (here the server) learning the targeted identity (here the line in
the database). Once such a Blind IBE is defined, one can conveniently obtain an
oblivious transfer protocol by asking the database to encrypt (once and for all)
each line for an identity (the i-th line being encrypted for the identity i), and
having the user do a blind user key generation query in order to recover the key
corresponding to the line he expects to learn.

This approach is round-optimal: After the database preparation, the first flow
is sent by the user as a commitment to the identity, and the second one is sent by

12

the server with the blinded expected information (here masked by an SPHF). But
several technicalities have arised because of the UC framework. For instance, we
had to commit to words in specific languages (so as to ensure extractability and
equivocability) as well as to fragment the IBE keys into bits in order to achieve
O(log n) in both flows. This allows us to achieve the first UC-secure adaptive
OT protocol allowing adaptive corruptions. More details follow.

3.3 Building Blocks: From an IBE to a Blind Fragmented IBE

Definition and Security Properties of a Blind IBE Scheme. Follow-
ing [BKP14], we recalled in Section 2.2 page 6 the definitions, notations and
security properties for an IBE scheme, seen as an identity-based key encapsula-
tion (IBKEM) scheme. We continue to follow the KEM formalism by adapting
the definition of a Blind IBE scheme given in [GH07] to this setting.

Definition 7 (Blind Identity-based Key Encapsulation Scheme). A blind
identity-based key encapsulation scheme BlindIBKEM consists of four PPT algo-
rithms (Gen,BlindUSKGen,Enc,Dec) with the following properties.
– Gen, Enc and Dec are defined as for a traditional IBKEM scheme.
– BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉) is an interactive protocol, in which an

honest user U with identity id ∈ ID obtains the corresponding user secret
key usk[id] from the master authority S or outputs an error message, while
S’s output is nothing or an error message (` is a label and ρ the randomness).

Defining the security of a BlindIBKEM requires two additional properties,
stated as follows (see [GH07, pages 6 and 7] for the formal security games):
1. Leak-free Secret Key Generation (called Leak-free Extract for Blind

IBE security in the original paper): A potentially malicious user cannot learn
anything by executing the BlindUSKGen protocol with an honest authority
which he could not have learned by executing the USKGen protocol with an
honest authority; Moreover, as in USKGen, the user must know the identity
for which he is extracting a key.

2. Selective-failure Blindness: A potentially malicious authority cannot learn
anything about the user’s choice of identity during the BlindUSKGen proto-
col; Moreover, the authority cannot cause the BlindUSKGen protocol to fail
in a manner dependent on the user’s choice.
For our applications, we only need a weakened property for blindness:6

3. Weak Blindness: A potentially malicious authority cannot learn anything
about the user’s choice of identity during the BlindUSKGen protocol.

6 Two things to note: First, Selective Failure would be considered as a Denial of Service
in the Oblivious Transfer setting. Then, we do not restrict ourselves to schemes where
the blindness adversary has access to the generated user keys, as reliable erasures in
the OT protocol provide us a way to forget them before being corrupted (otherwise
we would need to use a randomizable base IBE).

13

High-Level Idea of the Transformation. We now show how to obtain a
BlindIBKEM scheme from any IBKEM scheme. From a high-level point of view,
this transformation mixes two pre-existing approaches.

First, we are going to consider a reverse Naor transform [BF01, CFH+07]:
He drew a parallel between Identity-Based Encryption schemes and signature
schemes, by showing that a user secret key on an identity can be viewed as the
signature on this identity, the verification process therefore being a test that any
chosen valid ciphertext for the said identity can indeed be decrypted using the
signature scheme.

Then, we are going to use Fischlin [Fis06] round-optimal approach to blind
signatures, where the whole interaction is done in one pass: First, the user com-
mits to the message, then he recovers a signature linked to his commitment.
For sake of simplicity, instead of using a Non-Interactive Zero-Knowledge Proof
of Knowledge of a signature, we are going to follow the [BFPV10,BPV12] ap-
proach, where thanks to an additional term, the user can extract a signature on
the identity from a signature on the committed identity.

The main idea of the transformation of the IBKEM scheme in order to blind
a user key request is described in Figure 3.

������ Authority

busk[id]usk[id]

id

B
lin
dU

S
K
G
en
(m

sk
,C

;t
)

C
Commit(id; ρ)

Recover(busk[id], ρ)

User

1. A user commits to the targeted identity
id using some randomness ρ.

2. The authority possesses an algorithm
allowing it to generate keys for com-
mitted identities using its master secret
key msk, and some randomness t, in or-
der to obtain a blinded user secret key
busk[id].

3. The user using solely the randomness
used in the initial commitment is able
to recover the requested secret key from
the authority’s generated value.

Fig. 3. Generic Transformation of an IBE into a Blind IBE (naive approach)

Blinding a User Key Request via Implicit Decommitment. It now re-
mains to explain how one can fulfill the idea highlighted in Figure 3. The tech-
nique uses a smooth projective hash function (see Section 2.3), and is often called
“implicit decommitment” in recent works: the IBE secret key is sent hidden in
such a way that it can only be recovered if the user knows how to open the

14

initial commitment on the correct identity. We assume the existence of a labeled
CCA-encryption scheme E = (Setupcca,KeyGencca,Encrypt

`
cca,Decrypt

`
cca) com-

patible with an SPHF defined by (Setup,HashKG,ProjKG,Hash,ProjHash) onto
a set G. By “compatible”, we mean that the SPHF can be defined over a lan-
guage LC,id ⊂ X, where LC,id = {C | ∃ρ such that C = Encrypt`cca(id;ρ)}. In
the KeyGen algorithm, the description of the language Lid = {id} thus implic-
itly defines the language LC,id of CCA-encryptions of elements of Lid. We addi-
tionally use a key derivation function KDF to derive a pseudo-random bit-string
K ∈ {0, 1}K from a pseudo-random element v ∈ G. One can use the Leftover-
Hash Lemma [HILL99], with a random seed defined in param during the global
setup, to extract the entropy from v, then followed by a pseudo-random generator
to get a long enough bit-string. Many uses of the same seed in the Leftover-Hash
Lemma just lead to a security loss linear in the number of extractions. This gives
the following protocol for BlindUSKGen, described in Figure 4.

– The user computes an encryption of the expected identity id and keeps the ran-
domness ρ: C = Encrypt`cca(id;ρ)}.

– For every identity id′, the server computes usk[id′] along with a pair of
(secret, public) hash keys (hkid′ , hpid′) for a smooth projective hash func-
tion on the language LC,id′ : hkid′ = HashKG(`,LC,id′ , param) and hpid′ =
ProjKG(hkid′ , `, (LC,id′ , param)). He also compute the corresponding hash value
Hid′ = Hash(hkid′ , (LC,id′ , param), (`, C)). Finally, he sends (hpid′ , usk[id

′] ⊕
KDF(Hid′)) for every id′, where ⊕ is a compatible operation.

– Thanks to hpid, the user is able to compute the corresponding projected hash
value H ′id = ProjHash(hpid, (LC,id, param), (`, C),ρ). He then recovers usk[id] for the
initially committed identity id since Hid = H ′id.

Fig. 4. Summary of the Generic Construction of BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉)
for a blind IBE

Theorem 8. If IBKEM is a PR-ID-CPA-secure identity-based key encapsulation
scheme and E a labeled CCA-encryption scheme compatible with an SPHF, then
BlindIBKEM is leak free and weak blind.

Proof. First, BlindIBKEM satisfies leak-free secret key generation since it relies
on the CCA security on the encryption scheme, forbidding a user to open it
to another identity than the one initially encrypted. Furthermore, the pseudo-
randomness of the SPHF ensures that the blinded user key received for id is in-
distinguishable from random if he encrypted id′ 6= id. Finally, the weak blindness
also relies on the CCA security on the encryption scheme, since an encryption of
id is indistinguishable from a encryption of id′ 6= id. ut

Sparkling some efficiency. The previous approach allows to achieve our goal,
but it has a huge drawback: Since we assume an exponential identity space, it
requires an exponential number of answers from the authority. However, if we

15

focus on the special case of affine IBE with bitwise function7, a user key can be
described as the list (usk[0], usk[0, id0], . . . , usk[m− 1, idm−1]) if idi is the i-th bit
of the identity id. One can thus manage to be much more efficient by sending
each “bit” evaluation on the user secret key, hidden with a smooth projective
hash value on the language “the i-th bit of the identity is a 0 (or 1)”, which is
common to all identities. We can thus reduce the number of languages from the
number of identities (which is exponential) to the length of an identity (which is
polynomial). For security reasons, one cannot give directly the evaluation value,
but as we are considering the sum of the evaluations for each bit, we simply add
a Shamir-like secret sharing, by adding randomness that is going to cancel out
at the end.

– The user computes a bit-per-bit encryption of the expected identity id and keeps
the randomness ρ: C = Encrypt`cca(id;ρ)}.

– The server computes a fragmented version of all the keys usk[id′], i.e. all the values
usk[i, b] for i from 0 up to the lengthm of the keys and b ∈ {0, 1}. He also computes
a pair of (secret, public) hash keys (hki,b, hpi,b) for a smooth projective hash func-
tion on the language LC,i,b: “The i-th bit of value encrypted into C is b”, i.e. hki,b =
HashKG(`,LC,i,b, param) and hpi,b = ProjKG(hki,b, `, (LC,i,b, param)). He also com-
putes the corresponding hash value Hi,b = Hash(hki,b, (LC,i,b, param), (`, C)) and
chooses random values zi. Finally, he sends, for each (i, b), (hpi,b, busk[i, b]), where

busk[i, b] = usk[i, b]⊕ KDF(Hi,b)⊕ zi, together with Z = usk0 	
(⊕

i zi
)
, where ⊕

is a compatible operation and 	 its inverse.
– Thanks to the hpi,idi for the initially committed identity id, the user

is able to compute the corresponding projected hash value H ′i,idi =
ProjHash(hpi,idi , (LC,i,idi , param), (`, C),ρ), that should be equal to Hi,idi for all i.
From the values busk[i, idi], he then recovers usk[i, idi]⊕ zi. Finally, with the oper-
ation

(⊕
i(usk[i, idi]⊕ zi)

)
⊕ Z, he recovers the expected usk[id].

Fig. 5. Summary of the Generic Construction of BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉)
for a Blind affine IBE

Moving on, to be Compatible with the UC Framework. The previous
approach may work for a non-UC framework, or if one does not consider adaptive
corruptions. However, in this context, interactions should make sense for any
possible input chosen by the environment and learnt a posteriori in the simulation
during the corruption of an honest party. From the user side, this implies that
the last flow should contain enough recoverable information so that a simulator,
having sent a commitment to an incorrect identity, can extract the proper user
secret key corresponding to the correct identity recovered after the corruption.

7 They were defined in [BKP14]. Affine IBE derive their name from the fact that only
affine operations are done on the identity bits (no hashing, square rooting, inverting...
are allowed).

16

From the server side, this implies that the IBE scheme is defined such as one is
able to adapt the user secret keys in order to correspond to the new database
learnt a posteriori. Of course, not all schemes allow this property, but this will
be the case in the pairing scenario considered in our concrete instanciation.

To deal with corruptions of the user, recall that a simulated server (knowing
the secret key of the encryption scheme) is already able to extract the identity
committed to. But we now consider that, for all id, Lid is the language of the
equivocable commitments on words in the inner language L̃id = {id}. We assume
them to be a Trapdoor Collection of Languages, which means that it is compu-
tationally hard to sample an element in L1 ∩ · · · ∩ Ln, except for the simulator,
who possesses a trapdoor tk (the equivocation trapdoor) allowing it to sample an
element in the intersection of languages. This allows a simulated user (knowing
this trapdoor) not to really bind to any identity during the commitment phase.
The only difference with the algorithm described in Figure 5 is that the user
now encrypts this word word (which is an equivocable commitment on his iden-
tity id) rather than directly encrypting his identity id: C = Encrypt`cca(W ;ρ).
This technique is also explained as an application of our OLBE framework, in
Appendix F.2 page 49. We will directly prove this protocol during the proof of
the oblivious transfer scheme.

3.4 Generic Construction of Adaptive OT

We derive from here our generic construction of OT (depicted in Figure 6). We
additionally assume the existence of a Pseudo-Random Generator (PRG) F with
input size equal to the plaintext size, and output size equal to the size of the
messages in the database and an IND-CPA encryption scheme E = (Setupcpa,
KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at least equal to the secu-
rity parameter. First, the owner of the database generates the keys for such an
IBE scheme, and encrypts each line i of the database for the identity i. Then
when a user wants to request a given line, he runs the blind user key generation
algorithm and recovers the key for the expected given line. This leads to the
following security result, proven in Appendix D of the additional content.

Theorem 9. Assuming that BlindUSKGen is constructed as described above, the
adaptive Oblivious Transfer protocol described in Figure 6 UC-realizes the func-
tionality FL

OT presented in Figure 2 with adaptive corruptions assuming reliable
erasures.

3.5 Pairing-Based Instantiation

Affine Bit-Wise Blind IBE. In [BKP14], the authors propose a generic frame-
work to move from affine Message Authentication Code to IBE, and they propose
a tight instantiation of such a MAC, giving an affine bit-wise IBE, which seems
like a good candidate for our setting (making it blind and fragmented).

17

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Database Preparation:
1. Server runs Gen(K), to obtain mpk,msk.
2. For each line t, he computes (Dt,Kt) = Enc(mpk, t), and Lt = Kt ⊕DB(t).
3. He also computes usk[i, b] for all i = 1 . . . ,m and b = 0, 1 and erases msk.
4. Server generates a key pair (pk, sk)

$← KeyGencpa(paramcpa) for E , stores sk and
completely erases the random coins used by KeyGen.

5. He then publishes mpk, {(Dt, Lt)}t, pk.
Index query on s:
1. User chooses a random value S, computes R← F (S) and encrypts S under pk:

c
$← Encryptcpa(pk, S)

2. User computes C with the first flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) with
` = (sid, ssid,U ,S) (see Figure 5).

3. User stores the random ρs = {ρ∗} needed to open C to s, and completely erases
the rest, including the random coins used by Encryptcpa and sends (c, C) to the
Server

IBE input msk:
1. Server decrypts S ← Decryptcpa(sk, c) and computes R← F (S)
2. Server runs the second flow of BlindUSKGen(〈(S,msk)(U , s, `;ρ)〉) on C (see Fig-

ure 5).
3. Server erases every new value except (hpi,b)i,b, (busk[i, b])i,b, Z ⊕ R and sends

them over a secure channel.
Data recovery:
1. User then using, ρs recovers usk[s] from the values received from the server.
2. He can then recover the expected information with Dec(usk[s], s,Ds) ⊕ Ls and

erases everything else.

Fig. 6. Adaptive UC-Secure 1-out-of-n OT from a Fragmented Blind IBE

We are thus going to use the family of IBE described in the following picture
(Figure 7), which is their instantiation derived from a Naor-Reingold MAC8. In
the following, hi() are injective deterministic public functions mapping a bit to
a scalar in Zp.

A property that was not studied in this paper was the blind user key gener-
ation: How to generate and answer blind user secret key queries? We answer to
this question by proposing the k−MDDH-based variation presented in Figure 8.
To fit the global framework we are going to consider the equivocable language of
each chameleon hash of the identity bits (ai, bi,mi), and then a Cramer-Shoup
like encryption of b into d (more details in Section B.2). We denote this process
as Har in the following protocol, and by LHar,i,idi the language on identity bits.
We thus obtain the following security results.

8 For the reader familiar with the original result, we combine x,y into a bigger y to
lighten the notations, and compact the (x′i, y

′
i) values into a single y′ as this has no

impact on their construction.

18

Gen(K):

A
$← Dk,B = A

For i ∈ J0, `K : Y i
$← Zk+1

p ;Zi = Y
>
i ·A ∈ Zkp

y′
$← Zk+1

p ;z′ = y′
> ·A ∈ Zkq

mpk := (G, [A]1, ([Zi]1)i∈J0,`K, [z
′]1)

msk := (Y i)i∈J0,`K,y
′

Return (mpk,msk)

USKGen(msk, id):

s
$← Zkp, t = Bs

w = (Y 0

∑`
i=1 idiY i)t+ y

′ ∈ Zk+1
p

Return usk[id] := ([t]2, [w]2) ∈ Gk+k+1
2

Enc(mpk, id):

r
$← Zkp

c0 = Ar ∈ Zk+1
p

c1 = (Z0

∑`
i=0 hi(idi)Zi) · r ∈ Zp

K = z′ · r ∈ Zp.
Return [K]T and C = ([c0]1, [c1]1) ∈
Gk+1+1

1

Dec(usk[id], id,C):
Parse usk[id] = ([t]2, [w]2)
Parse C = ([c0]1, [c1]1)
K = e([c0]1, [w]2) · e([c1]1, [t]2)

−1

Return K ∈ GT

Fig. 7. A fragmentable affine IBKEM.

– First flow: U starts by computing
ρ

$← Z1+4×`
p ,

a,d = Har(id, `; ρ) ∈ Z`p × Z2×(k+3)`
p ,

Sends C = ([a]1, [d]2) to S
– Second Flow: S then proceeds
s

$← Zkp, t = Bs, f
$← Z`×k+1

p ,
For each i ∈ J1, dlogneK, b ∈ J0, 1K:

hki,b = HashKG(LHar,i,b,C)
hpi,b = ProjKG(hki,b,LHar,i,b,C)
Hi,b = Hash(hki,b,LHar,i,b,C)
ωi,b = (bY i)t+ f i +Hi,b

Then sets w0 = Y 0t+ y
′ −
∑`
i=1 f i ∈

Zk+1
p

Returns busk :=
([t]2, [w0]2, {[ωi,b]2}, {[hpi,b]2})
– BlindUSKGen3:
U then recovers his key
For each i ∈ J1, `K:
H ′i =

ProjHash(hpi,idi ,LHar,i,idi ,C, ρi)
wi = ωi,idi −H

′
i

w = w0 +
∑`
i=1wi

And then recovers usk[id] :=
[t]2, [w]2

Fig. 8. BlindUSKGen(〈(S,msk)(U , id, `;ρ)〉).

19

Theorem 10. This construction achieves both the weak Blindness, and the leak-
free secret key generation requirements under the k −MDDH assumption.

The first one is true under the indistinguishability of the generalized Cramer-
Shoup encryption recalled in section B.2 page 38, as the server learns nothing
about the line requested during the first flow. It should even be noted that
because of the inner chameleon hash, a simulator is able to use the trapdoor to
do a commitment to every possible words of the set of languages at once, and
so can adaptively decide which id he requested. The proof of the second result
is delayed to Appendix C page 39.

For sake of generality, any bit-wise affine IBE could work (like for example
Waters IBE [Wat05]), the additional price paid for tightness here is very small
and allows to have a better reduction in the proof, but it it not required by the
framework itself.

Adaptive UC-Secure Oblivious Transfer. We finally get our instantiation
by combining this k −MDDH-based blind IBE with a k −MDDH variant of El
Gamal for the CPA encryption needed. The requirement on the IBE blind user
secret key generation (being able to adapt the key if the line changes) is achieved
assuming that the server knows the discrete logarithms of the database lines. This
is quite easy to achieve by assuming that for all line s, DB(s) = [db(s)]1 where
db(s) is the real line (thus known). It implies a few more computation on the
user’s side in order to recover db(s) from DB(s), but this remains completely
feasible if the lines belong to a small space. For practical applications, one could
imagine to split all 256-bit lines into 8 pieces for a decent/constant trade-off in
favor of computational efficiency.

For k = 1, so under the classical SXDH assumption, the first flow requires
8 log |DB| elements in G1 for the CCA encryption part and log(|DB|+ 1) in G2

for the chameleon one, while the second flow would now require 1 + 4 log |DB|
elements in G1, 1+2 log |DB| for the fragmented masked key, and 2 log |DB| for
the projection keys.

4 Oblivious Language-Based Envelope

The previous construction opens new efficient applications to the already known
Oblivious-Transfer protocols. But what happens when someone wants some ad-
ditional access control by requesting extra properties, like if the user is only
allowed to ask two lines with the same parity bits, the user can only request
lines for whose number has been signed by an authority, or even finer control
provided through credentials?

In this section we propose to develop a new primitive, that we call Oblivi-
ous Language-Based Envelope (OLBE). The idea generalizes that of Oblivious
Transfer and OSBE, recalled right afterwards, for n messages (with n polynomial
in the security parameter K) to provide the best of both worlds.

20

4.1 Oblivious Signature-Based Envelope

We recall the definition and security requirements of an OSBE protocol given
in [LDB03,BPV12], in which a sender S wants to send a private message P ∈
{0, 1}K to a recipient R in possession of a valid certificate/signature on a public
message M (given by a certification authority).

Definition 11 (Oblivious Signature-Based Envelope). An OSBE scheme
is defined by four algorithms (Setup,KeyGen,Sign,Verify), and one interactive
protocol Protocol〈S,R〉:
– Setup(1K), where K is the security parameter, generates the global parameters

param;
– KeyGen(K) generates the keys (vk, sk) of the certification authority;
– Sign(sk,M) produces a signature σ on the input message M , under the sign-

ing key sk;
– Verify(vk,M, σ) checks whether σ is a valid signature on M , w.r.t. the public

key vk; it outputs 1 if the signature is valid, and 0 otherwise.
– Protocol〈S(vk,M, P),R(vk,M, σ)〉 between the sender S with the private

message P , and the recipient R with a certificate σ. If σ is a valid sig-
nature under vk on the common message M , then R receives P , otherwise
it receives nothing. In any case, S does not learn anything.

The authors of [BPV12] proposed some variations to the original definitions
from [LDB03], in order to prevent some interference by the authority. Following
them, an OSBE scheme should fulfill the following security properties. The formal
security games are given in [BPV12]. No UC functionality has already been given,
to the best of our knowledge.
– correct : the protocol actually allows R to learn P , whenever σ is a valid

signature on M under vk;
– semantically secure: the recipient learns nothing about S’s input P if it does

not use a valid signature σ on M under vk as input. More precisely, if S0

owns P0 and S1 owns P1, the recipient that does not use a valid signature
cannot distinguish an interaction with S0 from an interaction with S1 even if
he has eavesdropped on several interactions 〈S(vk,M, P),R(vk,M, σ)〉 with
valid signatures, and the same sender’s input P ;

– escrow-free (oblivious with respect to the authority): the authority (owner of
the signing key sk), playing as the sender or just eavesdropping, is unable to
distinguish whether R used a valid signature σ on M under vk as input.

– semantically secure w.r.t. the authority : after the interaction, the authority
(owner of the signing key sk) learns nothing about P from a passive access
to a challenge transcript.

4.2 Definition

In such a protocol, a sender S wants to send one or several private messages (up
to nmax ≤ n) among (P1, . . . , Pn) ∈ ({0, 1}`)n to a recipient R in possession of a
wordW = (Wi1 , . . . ,Winmax

) such that some of the wordsWij may belong to the

21

corresponding language Lij . More precisely, the receiver gets each Pij as soon
as Wij ∈ Lij with the requirement that he gets at most nmax messages. In such
a scheme, the languages (L1, . . . ,Ln) are assumed to be a trapdoor collection
of languages, publicly verifiable and self-randomizable (see Section 2.3 for the
definitions of the properties of the languages).

The collections of words can be a single certificate/signature on a messageM
(encompassing OSBE, with n = nmax = 1), a password, a credential, a line
number (encompassing 1-out-of-n oblivious transfer9, with nmax = 1), k line
numbers (encompassing k-out-of-n oblivious transfer, with nmax = k), etc. (see
Section F for detailed examples). Following the definitions for OSBE recalled
above and given in [LDB03,BPV12], we give the following definition for OLBE.
As we consider simulation-based security (in the UC framework), we allow a
simulated setup SetupT to be run instead of the classical setup Setup in order
to allow the simulator to possess some trapdoors. Those two setup algorithms
should be indistinguishable.

Definition 12 (Oblivious Language-Based Envelope). An OLBE scheme
is defined by four algorithms (Setup,KeyGen,Samp,Verify), and one interactive
protocol Protocol〈S,R〉:
– Setup(1K), where K is the security parameter, generates the global parameters

param, among which the numbers n and nmax;
or SetupT(1K), where K is the security parameter, additionally allows the exis-

tence10 of a trapdoor tk for the collection of languages (L1, . . . ,Ln).
– KeyGen(param,K) generates, for all i ∈ {1, . . . , n}, the description of the

language Li (as well as the language key skLi if need be). If the parame-
ters param were defined by SetupT, this implicitly also defines the common
trapdoor tk for the collection of languages (L1, . . . ,Ln).

– Samp(param, I) or Samp(param, I, (skLi)i∈I) such that I ⊂ {1, . . . , n} and
|I| = nmax, generates a list of words (Wi)i∈I such that Wi ∈ Li for all i ∈ I;

– Verifyi(Wi,Li) checks whether Wi is a valid word in the language Li. It
outputs 1 if the word is valid, 0 otherwise;

– Protocol〈S((L1, . . . ,Ln), (P1, . . . , Pn)),R((L1, . . . ,Ln), (Wi)i∈I)〉 between the
sender S with the private messages (P1, . . . , Pn) and corresponding lan-
guages (L1, . . . ,Ln), and the recipient R with the same languages and the
words (Wi)i∈I with I ⊂ {1, . . . , n} and |I| = nmax, proceeds as follows. For
all i ∈ I, if the algorithm Verifyi(Wi,Li) returns 1, then R receives Pi, oth-
erwise it does not. In any case, S does not learn anything.

9 Even if, as explained in the former section, we would rather consider equivocable
commitments of line numbers than directly line numbers, in order to get adaptive
UC security.

10 The specific trapdoor will depend on the languages and be computed in the KeyGen
algorithm.

22

4.3 Security Properties and Ideal Functionality

Since we aim at proving the security in the universal composability framework,
we now describe the corresponding ideal functionality (depicted in Figure 9).
However, in order to ease the comparison with an OSBE scheme, we first list the
security properties required, following [LDB03] and [BPV12]:
– correct : the protocol actually allowsR to learn (Pi)i∈I , whenever (Wi)i∈I are

valid words of the languages (Li)i∈I , where I ⊂ {1, . . . , n} and |I| = nmax;
– semantically secure (sem): the recipient learns nothing about the input Pi

of S if it does not use a word in Li. More precisely, if S0 owns Pi,0 and S1 owns
Pi,1, the recipient that does not use a word in Li cannot distinguish between
an interaction with S0 and an interaction with S1 even if the receiver has seen
several interactions 〈S((L1, . . . ,Ln), (P1, . . . , Pn)),R((L1, . . . ,Ln), (W ′j)j∈I)〉
with valid words W ′i ∈ Li, and the same sender’s input Pi;

– escrow free (oblivious with respect to the authority): the authority corre-
sponding to the language Li (owner of the language secret key skLi – if it
exists), playing as the sender or just eavesdropping, is unable to distinguish
whether R used a word Wi in the language Li or not. This requirement also
holds for anyone holding the trapdoor key tk.

– semantically secure w.r.t. the authority (sem∗): after the interaction, the
trusted authority (owner of the language secret keys if they exist) learns
nothing about the values (Pi)i∈I from the transcript of the execution. This
requirement also holds for anyone holding the trapdoor key tk.
Moreover, the Setups should be indistinguishable and it should be infeasible

to find a word belonging to two or more languages without the knowledge of tk.

The functionality FOLBE is parametrized by a security parameter K and a set of
languages (L1, . . . ,Ln) along with the corresponding public verification algorithms
(Verify1, . . . ,Verifyn). It interacts with an adversary S and a set of parties P1,. . . ,PN

via the following queries:
– Upon receiving an input (Send, sid, ssid,Pi,Pj, (P1, . . . , Pn)) from party

Pi, with Pi ∈ {0, 1}K for all i: record the tuple (sid, ssid,Pi,Pj , (P1, . . . , Pn)) and
reveal (Send, sid, ssid,Pi,Pj) to the adversary S . Ignore further Send-message with
the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj, (Wi)i∈I)
where I ⊂ {1, . . . , n} and |I| = nmax from party Pj : ig-
nore the message if (sid, ssid,Pi,Pj , (P1, . . . , Pn)) is not recorded. Oth-
erwise, reveal (Receive, sid, ssid,Pi,Pj) to the adversary S and send
(Received, sid, ssid,Pi,Pj , (P

′
i)i∈I) to Pj where P ′i = Pi if Verifyi(Wi,Li)

returns 1, and P ′i = ⊥ otherwise. Ignore further Received-message with the same
ssid from Pj .

Fig. 9. Ideal Functionality for Oblivious Language-Based Envelope FOLBE

The ideal functionality is parametrized by a set of languages (L1, . . . ,Ln).
Since we show in the following sections that one can see OSBE and OT as spe-

23

cial cases of OLBE, it is inspired from the oblivious transfer functionality given
in [Can01,CKWZ13,ABB+13] in order to provide a framework consistent with
works well-known in the literature. As for oblivious transfer (Figure 2), we adapt
them to the simple UC framework for simplicity (this enables us to get rid of
Sent and Received queries from the adversary since the delayed outputs are au-
tomatically considered in this simpler framework: We implicitly let the adversary
determine if it wants to acknowledge the fact that a message was indeed sent).
The first step for the sender (Send query) consists in telling the functionality he
is willing to take part in the protocol, giving as input his intended receiver and
the messages he is willing to send (up to nmax messages). For the receiver, the
first step (Receive query) consists in giving the functionality the name of the
player he intends to receive the messages from, as well as his words. If the word
does belong to the language, the receiver recovers the sent message, otherwise,
he only gets a special symbol ⊥.

4.4 Generic UC-Secure Instantiation of OLBE with Adaptive
Security

For the sake of clarity, we now concentrate on the specific case where nmax = 1.
This is the most classical case in practice, and suffices for both OSBE and 1-out-
of-n OT. In order to get a generic protocol in which nmax > 1, one simply has
to run nmax protocols in parallel. This modifies the algorithms Samp and Verify
as follows: Samp(param, {i}) or Samp(param, {i}, {skLi}) generates a word W =
Wi ∈ Li and Verifyj(W,Lj) checks whether W is a valid word in Lj .

Let us introduce our protocol OLBE: we will call R the receiver and S the
sender. If R is an honest receiver, then he knows a word W = Wi in one of
the languages Li. If S is an honest sender, then he wants to send up a mes-
sage among (P1, . . . , Pn) ∈ ({0, 1}K)n to R. We assume the languages Li to
be self-randomizable and publicly verifiable. We also assume the collection of
languages (L1, . . . ,Ln) possess a trapdoor, that the simulator is able to find
by programming the common reference string. As recalled in the previous sec-
tion, this trapdoor enables him to find a word lying in the intersection of the
n languages. This should be infeasible without the knowledge of the trapdoor.
Intuitively, this allows the simulator to commit to all languages at once, post-
poning the time when it needs to choose the exact language he wants to bind to.
On the opposite, if a user was granted the same possibilities, this would prevent
the simulator to extract the chosen language.

We assume the existence of a labeled CCA-encryption scheme E = (Setupcca,
KeyGencca,Encrypt

`
cca,Decrypt

`
cca) compatible with an SPHF onto a set G. In

the KeyGen algorithm, the description of the languages (L1, . . . ,Ln) thus im-
plicitly defines the languages (LC,1, . . . ,LC,n) of CCA-encryptions of elements
of (L1, . . . ,Ln). We additionally use a key derivation function KDF to derive a
pseudo-random bit-string K ∈ {0, 1}K from a pseudo-random element v ∈ G.
One can use the Leftover-Hash Lemma [HILL99], with a random seed defined
in param during the global setup, to extract the entropy from v, then followed
by a pseudo-random generator to get a long enough bit-string. Many uses of

24

the same seed in the Leftover-Hash Lemma just lead to a security loss linear in
the number of extractions. We also assume the existence of a Pseudo-Random
Generator (PRG) F with input size equal to the plaintext size, and output size
equal to the size of the messages in the database and an IND-CPA encryption
scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa) with plaintext size at
least equal to the security parameter.

We follow the ideas of the oblivious transfer constructions given in [ABB+13,
BC15], giving the protocol presented on Figure 10. For the sake of simplicity,
we only give the version for adaptive security, in which the sender generates a
public key pk and ciphertext c to create a somewhat secure channel (they would
not be used in the static version).

CRS: param $← Setup(1K), paramcca
$← Setupcca(1

K), paramcpa
$← Setupcpa(1

K).
Pre-flow:
1. Sender generates a key pair (pk, sk) $← KeyGencpa(paramcpa) for E , stores sk and

completely erases the random coins used by KeyGen.
2. Sender sends pk to User.
Flow From the Receiver R:
1. User chooses a random value J , computes R ← F (J) and encrypts J under pk:

c
$← Encryptcpa(pk, J).

2. User computes C $← Encrypt`cca(W ; r) with ` = (sid, ssid,R,S).
3. User completely erases J and the random coins used by Encryptcpa and sends C

and c to Sender. He also checks the validity of his words: the receiver only keeps
the random coins used by Encryptcca for the j such that Verifyj(W,Lj) = 1 (since
he knows they will be useless otherwise).

Flow From the Sender S:
1. Sender decrypts J ← Decryptcpa(sk, c) and then R← F (J).
2. For all j ∈ {1, . . . , n}, sender computes hkj = HashKG(`,LC,j , param), hpj =

ProjKG(hkj , `, (LC,j , param)), vj = Hash(hkj , (LC,j , param), (`, C)), Qj = Pj ⊕
KDF(vj)⊕R.

3. Sender erases everything except (Qj , hpj)j∈{1,...,n} and sends them over a secure
channel.

Message recovery:
Upon receiving (Qj , hpj)j∈{1,...,n}, R can recover Pi by computing Pi = Qi ⊕
ProjHash(hpi, (LC,i, param), (`, C), r)⊕R.

Fig. 10. UC-Secure OLBE for One Message (Secure Against Adaptive Corruptions)

Theorem 13. The oblivious language-based envelope scheme described in Fig-
ure 10 is UC-secure in the presence of adaptive adversaries, assuming reliable
erasures, an IND-CPA encryption scheme, and an IND-CCA encryption scheme
admitting an SPHF on the language of valid ciphertexts of elements of Li for all i,
as soon as the languages are self-randomizable, publicly-verifiable and admit a
common trapdoor. The proof is given in Appendix E of the additional content.

25

4.5 Oblivious Primitives Obtained by the Framework

Classical oblivious primitives such as Oblivious Transfer (both 1-out-of-n and k-
out-of-n) or Oblivious Signature-Based Envelope directly lie in this framework
and can be seen as examples of Oblivious Language-Based Envelope. We pro-
vide in Appendix F of the additional content details about how to describe the
languages and choose appropriate smooth projective hash functions to readily
achieve current instantiations of Oblivious Signature-Based Envelope or Obliv-
ious Transfer from our generic protocol. The framework also enables us to give
a new instantiation of Access Controlled Oblivious Transfer under classical as-
sumptions. In such a primitive, the user does not automatically gets the line he
asks for, but has to prove that he possesses one of the credential needed to access
this particular line.

For the sake of simplicity, all the instantiations given are pairing-based but
techniques explained in [BC15] could be used to rely on other families of as-
sumptions, like decisional quadratic residue or even LWE.

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and
David Pointcheval. SPHF-friendly non-interactive commitments. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269
of LNCS, pages 214–234. Springer, December 2013.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projec-
tive hashing for conditionally extractable commitments. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 671–689. Springer,
August 2009.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 119–135. Springer, May 2001.

[AP06] Michel Abdalla and David Pointcheval. A scalable password-based group
key exchange protocol in the standard model. In Xuejia Lai and Kefei
Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 332–347.
Springer, December 2006.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective secu-
rity: Framework, fully secure functional encryption for regular languages,
and more. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 557–577. Springer, May 2014.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. Efficient UC-secure authenticated key-exchange
for algebraic languages. In Kaoru Kurosawa and Goichiro Hanaoka, edi-
tors, PKC 2013, volume 7778 of LNCS, pages 272–291. Springer, Febru-
ary / March 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. New techniques for SPHFs and efficient one-
round PAKE protocols. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475. Springer,
August 2013.

26

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of uc-secure obliv-
ious transfer. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko,
and Michalis Polychronakis, editors, Applied Cryptography and Network Se-
curity - 13th International Conference, ACNS 2015, New York, NY, USA,
June 2-5, 2015, Revised Selected Papers, volume 9092 of Lecture Notes in
Computer Science, pages 65–86. Springer, 2015.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 213–229. Springer, August 2001.

[BFPV10] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien
Vergnaud. Signatures on randomizable ciphertexts. In Rosario Gennaro,
editor, Proceedings of PKC 2011, Lecture Notes in Computer Science.
Springer, 2010. Full version available from the web page of the authors.

[BG13] Stephanie Bayer and Jens Groth. Zero-knowledge argument for polyno-
mial evaluation with application to blacklists. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 646–663. Springer, May 2013.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas
on ciphertexts. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 325–341. Springer, February 2005.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 12, pages 784–796. ACM Press, October 2012.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (hierarchical) identity-based
encryption from affine message authentication. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 408–425. Springer, August 2014.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic
Number Theory Symposium (ANTS), volume 1423 of LNCS. Springer, 1998.
Invited paper.

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal
privacy-preserving protocols with smooth projective hash functions. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 94–111.
Springer, March 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

[CCGS10] Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Cre-
dential authenticated identification and key exchange. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 255–276. Springer, August
2010.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of uni-
versally composable security for standard multiparty computation. In
CRYPTO 2015, Part II, LNCS, pages 3–22. Springer, August 2015.

[CDH12] Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. Efficient
structure-preserving signature scheme from standard assumptions. In Ivan
Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS,
pages 76–94. Springer, September 2012.

[CDN09] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious trans-
fer with access control. In Ehab Al-Shaer, Somesh Jha, and Angelos D.

27

Keromytis, editors, ACM CCS 09, pages 131–140. ACM Press, November
2009.

[CDNZ11] Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M. Za-
verucha. Oblivious transfer with hidden access control policies. In Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 192–209. Springer, March 2011.

[CFH+07] Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui
Zhang. Formal security treatments for signatures from identity-based en-
cryption. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007,
volume 4784 of LNCS, pages 218–227. Springer, November 2007.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. In 36th FOCS, pages 41–50. IEEE Computer Society
Press, October 1995.

[CKP07] Ronald Cramer, Eike Kiltz, and Carles Padró. A note on secure compu-
tation of the Moore-Penrose pseudoinverse and its application to secure
linear algebra. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 613–630. Springer, August 2007.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Ef-
ficient, adaptively secure, and composable oblivious transfer with a single,
global CRS. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013,
volume 7778 of LNCS, pages 73–88. Springer, February / March 2013.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In 34th
ACM STOC, pages 494–503. ACM Press, May 2002.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25.
Springer, August 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer, April / May 2002.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[DOR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Conditional oblivious transfer and timed-release encryption.
In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
74–89. Springer, May 1999.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar.
An algebraic framework for Diffie-Hellman assumptions. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 129–147. Springer, August 2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, August 1984.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common
reference string model. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 60–77. Springer, August 2006.

[GD14] Vandana Guleria and Ratna Dutta. Lightweight universally composable
adaptive oblivious transfer. In ManHo Au, Barbara Carminati, and C.-
C.Jay Kuo, editors, Network and System Security, volume 8792 of Lecture

28

Notes in Computer Science, pages 285–298. Springer International Pub-
lishing, 2014.

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based encryp-
tion and simulatable oblivious transfer. In Kaoru Kurosawa, editor, ASI-
ACRYPT 2007, volume 4833 of LNCS, pages 265–282. Springer, December
2007.

[GH08] Matthew Green and Susan Hohenberger. Universally composable adaptive
oblivious transfer. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume
5350 of LNCS, pages 179–197. Springer, December 2008.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In 30th ACM STOC,
pages 151–160. ACM Press, May 1998.

[GKW15] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication com-
plexity of conditional disclosure of secrets and attribute-based encryption.
In CRYPTO 2015, Part II, LNCS, pages 485–502. Springer, August 2015.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based
authenticated key exchange. In Eli Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 524–543. Springer, May 2003. http://eprint.
iacr.org/2003/032.ps.gz.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, April 2008.

[Har11] Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-
Interactive Zero-Knowledge Proofs and Applications. PhD thesis, New York
University, 2011.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party com-
putation in two rounds. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 111–129. Springer, August 2007.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their appli-
cations. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, ICALP 2014, Part I, volume 8572 of LNCS, pages
650–662. Springer, July 2014.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom func-
tion with applications to adaptive OT and secure computation of set in-
tersection. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 577–594. Springer, March 2009.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 78–95. Springer, May 2005.

29

[KLL+15] Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, and
Qiang Tang. Optimal rate private information retrieval from homomorphic
encryption. PoPETs, 2015(2):222–243, 2015.

[KNP11] Kaoru Kurosawa, Ryo Nojima, and Le Trieu Phong. Generic fully simulat-
able adaptive oblivious transfer. In Javier Lopez and Gene Tsudik, editors,
ACNS 11, volume 6715 of LNCS, pages 274–291. Springer, June 2011.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-
based authenticated key exchange. In Yuval Ishai, editor, TCC 2011, vol-
ume 6597 of LNCS, pages 293–310. Springer, March 2011.

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based en-
velope. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd ACM
PODC, pages 182–189. ACM, July 2003.

[LL07] Sven Laur and Helger Lipmaa. A new protocol for conditional disclosure
of secrets and its applications. In Jonathan Katz and Moti Yung, editors,
ACNS 07, volume 4521 of LNCS, pages 207–225. Springer, June 2007.

[NP97] Moni Naor and Benny Pinkas. Visual authentication and identification. In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages
322–336. Springer, August 1997.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January
2001.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437.
ACM Press, May 1990.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 129–140. Springer, August 1992.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, August
2008.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Tech-
nical Report TR81, Harvard University, 1981.

[RKP09] Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally composable
adaptive priced oblivious transfer. In Hovav Shacham and Brent Waters,
editors, PAIRING 2009, volume 5671 of LNCS, pages 231–247. Springer,
August 2009.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Au-
gust 1992.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R.
Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS,
pages 47–53. Springer, August 1984.

[Sha07] Hovav Shacham. A cramer-shoup encryption scheme from the linear as-
sumption and from progressively weaker linear variants. Cryptology ePrint
Archive, Report 2007/074, 2007. http://eprint.iacr.org/2007/074.pdf.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random ora-
cles. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 114–127. Springer, May 2005.

30

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer,
February 2014.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and
Elaine Shi. SCORAM: Oblivious RAM for secure computation. In Gail-
Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 191–
202. ACM Press, November 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

31

Additional Content

32

A Classical Primitives

Digital Signature.
A digital signature scheme S [DH76,GMR88] allows a signer to produce a

verifiable proof that he indeed produced a message. It is de scribed through four
algorithms:

Definition 14 (Digital Signature Scheme). σ = (Setup,KeyGen,Sign,Verify):
– Setup(1K) where K is the security parameter, generates the global parameters

param of the scheme, for example the message space;
– KeyGen(param), outputs a pair of (sk, vk), where sk is the (secret) signing

key, and vk is the (public) verification key;
– Sign(sk,M ;µ), outputs a signature σ(M), on a messageM , under the signing

key sk, and some randomness µ;
– Verify(vk,M, σ) checks the validity of the signature σ with respect to the

message M and the verification key vk. And so outputs a bit.

In the following we will expect at least two properties for signatures:
– Correctness: For every pair (vk, sk) generated by KeyGen, for every message
M , and for all randomness µ, we have Verify(vk,M, Sign(sk,M ;µ)) = 1.

– Existential Unforgeability under Chosen
Message Attacks [GMR88] (EUF− CMA).
Even after querying n valid signatures on
chosen messages (Mi), an adversary should
not be able to output a valid signature on a
fresh message M . To formalize this notion,
we define a signing oracle OSign:
• OSign(vk,m): This oracle outputs a sig-

nature on m valid under the verification
key vk. The requested message is added
to the signed messages set SM.

ExpeufS,A(K)
1. param← Setup(1K)
2. (vk, sk)← KeyGen(param)
3. (m∗, σ∗)← A(vk,OSign(vk, ·))
4. b← Verify(vk,m∗, σ∗)
5. IF m∗ ∈ SM RETURN 0
6. ELSE RETURN b

The probability of success against this game is denoted by SucceufS,A(K) =

Pr[ExpeufS,A(K) = 1], SucceufS (K, t) = maxA≤t Succ
euf
S,A(K).

Encryption. An encryption scheme C is described through four algorithms
(Setup,KeyGen,Encrypt,Decrypt):
– Setup(1K), where K is the security parameter, generates the global parame-

ters param of the scheme;
– KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a

(private) decryption key dk;
– Encrypt(ek,M ; ρ) outputs a ciphertext C, on M , under the encryption key

pk, with the randomness ρ;
– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.
Such encryption scheme is required to have the following security properties:

33

– Correctness: For every pair of keys (ek, dk) generated by KeyGen, every mes-
sagesM , and every random ρ, we should have Decrypt(dk,Encrypt(ek,M ; ρ)) =
M .

– Indistinguishability under Adaptive Chosen Ciphertext Attack IND-CCA (
[NY90,RS92]):
• IND-CCA: An adversary should not be

able to efficiently guess which message
has been encrypted even if he chooses
the two original plaintexts, and ask
several decryption of ciphertexts dif-
ferent from challenge one.
The ODecrypt oracle outputs the de-
cryption of c under the challenge de-
cryption key dk. The input queries (c)
are added to the list CT of decrypted
ciphertexts.

Expind-cca−bE,A (K)

1. param← Setup(1K)
2. (pk, dk)← KeyGen(param)
3. (M0,M1)← A(FIND : pk,ODecrypt(·))
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·))
6. IF (c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

Commitment. Commitments allow a user to commit to a value without re-
vealing it, but without the possibility to later change his mind. It is composed
of these algorithms:
– SetupCom(1K) generates the system parameters, according to the security

parameter K.
– KeyGen(param) generates a commitment key ck, and possibly some verifica-

tion key vk.
– Commit(ck, vk,m; r) produces a commitment c on the input message m ∈M

using the random coins r $← R.
– Decommit(ck, c,m; r) opens the commitment c and reveals the message m.
Such a commitment scheme should be both hiding, which says that the com-

mit phase does not leak any information about m, and binding, which says
that the decommit phase should not be able to open to two different messages.
Additional features are also sometimes required, such as non-malleability, ex-
tractability, and/or equivocability. We may also include a label `, which is an
additional public information that has to be the same in both the commit and
the decommit phases.

A commitment scheme is said equivocable if it has a second setup SetupComT(1K)
that additionally outputs a trapdoor τ , and two algorithms

– SimCom`(τ) that takes as input the trapdoor τ and a label ` and outputs a
pair (C, eqk), where C is a commitment and eqk an equivocation key;

– OpenCom`(eqk, C, x) that takes as input a commitment C, a label `, a mes-
sage x, an equivocation key eqk, and outputs an opening data δ for C and `
on x.

such as the following properties are satisfied: trapdoor correctness (all simulated
commitments can be opened on any message), setup indistinguishability (one
cannot distinguish the CRS ρ generated by SetupCom from the one generated

34

by SetupComT) and simulation indistinguishability (one cannot distinguish a
real commitment (generated by Com) from a fake commitment (generated by
SCom), even with oracle access to fake commitments), denoting by SCom the
algorithm that takes as input the trapdoor τ , a label ` and a message x and
which outputs (C, δ)

$← SCom`(τ, x), computed as (C, eqk)
$← SimCom`(τ) and

δ ← OpenCom`(eqk, C, x).
A commitment scheme C is said extractable if it has a second setup SetupComT(1K)

that additionally outputs a trapdoor τ , and a new algorithm

– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and
a label `, and outputs the committed message x, or ⊥ if the commitment is
invalid.

such as the following properties are satisfied: trapdoor correctness (all commit-
ments honestly generated can be correctly extracted: for all `, x, if (C, δ)

$←
Com`(x) then ExtCom`(C, τ) = x), setup indistinguishability (as above) and
binding extractability (one cannot fool the extractor, i.e., produce a commit-
ment and a valid opening data to an input x while the commitment does not
extract to x).

Chameleon Hash. This directly echoes to Chameleon Hashes, traditionally
defined by three algorithms CH = (KeyGen,CH,Coll):
– KeyGen(K): Outputs the chameleon hash key ck and the trapdoor tk;
– CH(ck,m; r): Picks a random r, and outputs the chameleon hash a.
– Coll(ck,m, r,m′, tk): Takes as input the trapdoor tk, a start message and

randomness pair (m, r) and a target message m′ and outputs a target ran-
domness r′ such that CH(ck,m; r) = CH(ck,m′; r′).
The standard security notion for CH is collision resistance. Formally, CH is

(t, ε)− coll if for the adversary A running in time at most t we have:

Pr

[
(ck, tk)

$← KeyGen(K); ((m1, r1), (m2, r2))
$← A(ck)

∧ CH(ck,m1; r1) = CH(ck,m2; r2) ∧m1 6= m2

]
≤ ε.

However, any user in possession of the trapdoor tk is able to find a collision us-
ing Coll. Additionally, Chameleon Hash functions have the uniformity property,
which means the hash value leaks nothing about the message input. Formally,
for all pair of messages m1 and m2 and the randomly chosen r, the probabil-
ity distributions of the random variables CH(ck,m1, r) and CH(ck,m2, r) are
computationally indistinguishable.

We need here the hash value to be verifiable, so that we add two VKeyGen
and Valid algorithms (executed by the receiver).
– VKeyGen(ck): Outputs the chameleon designated verification key vk by ap-

pending it to ck and the trapdoor vtk. This trapdoor can be empty or public
if the chameleon hash is publicly verifiable.

– Valid(ck,m, a, d, vtk): Allows to check that the sender knows how to open a
Chameleon Hash a to a specific value m for the witness d. The verification
can be public if vtk is empty or public, or specific to the receiver otherwise.

35

B Building Blocks

B.1 Classical Building Blocks

Waters Signature To sign scalar message in the standard model, one can use
Waters Signatures [Wat05]. This signature scheme is defined by four algorithms:

Definition 15 (Waters Signature Scheme). S = (Setup,KeyGen,Sign,Verify):

– Setup(1K), where K is the security parameter, generates the global parameters
param of the scheme, and more specifically the bilinear group (p,G,GT , e, g),
an extra generator h, and generators (ui)J0,kK for the Waters function, where
k is a polynomial in K, F(m) = u0

∏
i∈J1,kK u

mi
i , where m = (m1, . . . ,mk) ∈

{0, 1}k.
– KeyGen(param) picks a random x

$← Zp and outputs the secret key sk = Y =
hx, and the verification key vk = X = gx;

– Sign(sk,m;µ) outputs a signature σ(m) = (Y F(m)µ, g−µ);
– Verify(vk,m, σ) checks the validity of σ, by checking if the following pairing

equation holds: e(g, σ1) · e(F(m), σ2) ?= e(X,h)

Theorem 16. This scheme is EUF− CMA under the CDH assumption.

Theorem 17. Waters Signature is randomizable if we define:

– Random(vk,F(m), σ = (σ1, σ2);µ′) outputs σ′ = (σ1 · F(m)µ
′
, σ2 · g−µ

′
).

Proof. We simply have:

σ = Sign(sk,F(m);µ) ⇒ Random(vk,F(m), σ;µ′) = Sign(sk,F(m);µ+µ′ mod p).

Due to the additive law in Zp, fresh signature distribution is indistinguishable
from randomized one. ut

CDH-based Chameleon Hash [BC15]

– KeyGen(K): Outputs the chameleon hash key ck = (g, h) and the trapdoor
tk = α, where gα = h;

– VKeyGen(ck): Appends f to ck and vtk = logg(f)
– CH(ck,m; r): Picks a random r ∈ Zp, and outputs the chameleon hash a =
hrgm. Sets d = fr.

– Coll(m, r,m′, tk): outputs r′ = r + (m−m′)/α.
– Valid(ck,m, a, d, vtk): One can check if a = hm · d1/vtk.

In a pairing environment, there is a trivial way to check this CH using a
pairing instead of knowing vtk.

This is a CDH variant of the Pedersen chameleon hash [Ped92].

ElGamal Encryption ElGamal encryption [ElG84] is defined by the following
four algorithms:

36

– Setup(1K): The scheme needs a multiplicative group (p,G, g),. The global
parameters param consist of these elements (p,G, g).

– KeyGen(param): Chooses one random scalar µ $← Zp, which define the secret
key dk = µ, and the public key ek = X = gµ.

– Encrypt(ek = X,M ;α): For a message M ∈ G and a random scalar α $← Zp,
computes the ciphertext as c =

(
c1 = XαM, c2 = gα

)
.

– Decrypt(dk = µ, c = (c1, c2)): One computes M = c1/(c
µ
2).

As shown by Boneh [Bon98], this scheme is IND-CPA under the hardness of DDH.

Cramer-Shoup Encryption The Cramer-Shoup encryption scheme [CS98] is
an IND-CCA version of the ElGamal Encryption. We present it here as a labeled
public-key encryption scheme, the classical version is done with ` = ∅.

– Setup(1K) generates a group G of order p, with a generator g
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and
sets, c = gx1

1 gx2
2 , d = gy11 gy22 , and h = gz1 . It also chooses a Collision-Resistant

hash function HK in a hash family H (or simply a Universal One-Way Hash
Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp,
the ciphertext is C = (`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is

computed afterwards with ξ = HK(`,u, e).
– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether
ux1+ξy1

1 · ux2+ξy2
2

?= v. If the equality holds, one computes M = e/(uz1) and
outputs M . Otherwise, one outputs ⊥.

The security of the scheme is proven under the DDH assumption and the fact
the hash function used is a Universal One-Way Hash Function. A generalization
of this encryption to the k −MDDH assumption can be found further below.

Smooth Projective Hash Functions on Cramer Shoup Encryption
One can now build a Hash Proof system on this CCA-2 scheme:

– HashKG(LM) : hk
$← Z4

p,

– ProjKG(hk, (LM , `, [C]2)) : Setting ht = (h, g1, g2, cd
θ), we have hp = hhk1ghk21 ghk32

(
cdθ
)hk4 ,

where θ = H(`, e)
– Hash(hk, (LM , `, [C]2)) : H ← (C1/M)hk1Chk22 C

hk3
3 C

hk4
4 ,

– ProjHash(hp, (LM , `, [C]2), r)H ′ ← hpr

B.2 k-MDDH Building Blocks

In this section we extend classical building blocks to the MDDH assumptions.
While most of them were at least implicitly defined before in [EHK+13], we feel
it may be useful to group them together for ease of reading.

Chameleon Hash We first extend the Pedersen commitment, to obtain a com-
patible verifiable Chameleon Hash functions:

37

– KeyGen(K): Outputs the chameleon hash key ck1 = F
$← Dk and the trap-

door tk = F ·F−1, it also generates G $← GLk and adds ck2 = [EG]2 to the
key ck and keeps the verification trap vtk = G−1

– CH(ck,m;ρ): Picks a random ρ ∈ Zk+1
p , and outputs the chameleon hash

[a]2 = [(ρ> | m)ck1]2. Sets d = ρ>ck2.
– Coll(m,ρ,m′, tk): outputs ρ′ = ρ+ (m−m′)tk.
– Valid(ck,m, [a]2, [d]2, vtk): The user outputs [d]2, so that one can check if
a = d>vtk +mF .

Correctness follows easily, finding a collision leads to directly to computing tk,
and soG from [E]2 and vtk. Such Pedersen Commitment was already used in the
master public key generation in [BKP14]. It also corresponds to the k −MDDH
version of the Haralambiev [Har11, Section 4.1.4] TC4 commitment scheme,
called TC4 which was revisited in recent works [ABB+13,BC15] as the basis for
a UC secure commitment.

k-MDDH Linear Encryption [EHK+13] provides a CPA encryption scheme:

– KeyGen(K): Picks E $← Dk, sets pk = [E]2, sk = (E ·E−1) to be the public
encryption key.

– Encrypt(ek,M, `;µ) If M ∈ G2, e = pkµ+

[
0
M

]
2

.

– Decrypt(dk, e, `) Outputs M = ske+ e.

2m labelled k-MDDH Multi Cramer Shoup Encryption We are going to
need a CCA-2 encryption, SPHF friendly, and proven under MDDH. Fortunately
for us, [EHK+13] also provides a compatible Universal2 Hash Proof system,
which thanks to [CS02] leads to the required scheme:

– KeyGen(K): PicksE $← Dk,u,v $← Zk+1
p , sets pk = ([E]2, [u

>E]2, [v
>E]2), sk =

(E ·E−1,u,v) to be the public encryption key, whereH is a random collision-
resistant hash function from H 11.

– Encrypt(ek,M, `;µ) IfM ∈ G2, C = (e = pk1µ+

[
0
M

]
2

, w = [(pk2+θpk3)µ]2.

where θ = H(`, e).
– Decrypt(dk, C, `) If [w]2

?= [(u> + θv>)e]2, then outputs M = ske+ e.

The above scheme can be extended naturally to encrypt matrices of group
elements D = (D1, . . . ,D2m) ∈ G2m

2 , by having 2m tuples of random scalars in
the secret key, and a global value θ for the encryption. Following the techniques
from [ABB+13], and the work from [EHK+13] this scheme is VIND-PO-CCA under
the MDDH assumption.

k-linear Smooth Projective Hash Function
One can now build a Hash Proof system on this CCA-2 scheme, by following

[EHK+13,BBC+13b]
11 Like Cramer-Shoup one could rely on an universal one-way hash function family

instead

38

– HashKG(LM) : hk
$← Zk+2

p ,

– ProjKG(hk, (LM , `, [C]2)) : Setting ht =
pk1

pk2 + θpk3
, we have [hp]2 =

[
hk>ht

]
2
,

where θ = H(`, e),
– Hash(hk, (LM , `, [C]2)) : [H]2 ←

[
hk>

(
C − (0 |M)>

)]
2
,

– ProjHash(hp, (LM , `, [C]2),µ)[H ′]2 ← [hpµ]2

The smoothness of such system is show by considering the determinant of

the matrix D =

[
ht>

C − (0 |M)>

]
As soon as C is not a valid encryption of M , this matrix has non zero

determinant. As the first lines leads to hk>ht the public projection key hp, and
the last to hk>(C − (0 | M)) the computed Hash value, we can deduce that
form the public views, the computed hash value is information theoretically
independent from the projection keys for words outside the language.

C Proof of the Security of Fragmented IBE

In this section, we briefly prove that the variation over the [BKP14] IBE, does
not weaken it’s security.

Theorem 18. The Blinded IBE achieves the leak-free secret key generation re-
quirements under the security of the initial IBE, the extractability of the MDDH
Cramer Shoup Encryption and the Smoothness of the SPHF on the bit commit-
ment.

Proof. Given an adversary A against the security of the blinded scheme, we are
going to build an adversary B against the security of the initial IBE.

From the challenge, B receives the parameter from an IBE scheme mpk, has
access to a user key generation oracle USKGenO, and for a given fresh id∗, a
tuple (K∗,C∗) whose consistency he need to decide.

In the initial game G0, B behaves normally, generating mpk,msk, and answer-
ing A blinded request honestly.

G1 In this game, B starts altering his answer. Using the extraction procedure on
the CCA commitment, B is able to recover the identity id queried by A. If
for a bit i, there is two valid openings, then A broke the collision resistance
property of the underlying chameleon hash (and so MDDH) and B aborts.
The Chameleon hash being Collision Resistant, this game is equivalent to
the previous one under k −MDDH.

G2 In this game, B starts altering his answer. Using the extraction procedure on
the CCA commitment, B is able to recover the identity id queried by A. Now,
for each bit, there is at least one dummy value ¯idi, and so B computes ran-
dom values ωi, ¯idi

$← Zk+1
p . Under the smoothness of the underlying smooth

projective hash function, this game is indistinguishable from the previous
one.

39

G3 Now B continues to extract the requested id, picks random f
$← Z`×k+1

p , and
sets w0 = usk[id] −

∑`
i=1 f i, then for i ∈ J1, nK, ωi,idi = f i + Hi,idi while

ωi, idi
$← Zk+1

p as before. If B, does not recover a valid identity, he simply
only sends dummy values.
This game is indistinguishable from the previous one, as this is just a rewrit-
ing of the vector f i. (Noting f̂ i the old one, we have f i = f̂ i − (idiY i)t
which follows the same distribution).

G4 B can now forget about msk, when receiving a BlindUSKGen request, B ex-
tracts the request identity, and if it is not ⊥ he forwards it to the USKGenO
oracle, and plugs the received usk[id] as before.

Now A can request a challenge from B, B forwards this request to the initial
non-blinded IBE challenge for a fresh id∗, and returns the challenge (K∗,C∗) to
A which leads to the conclusion. ut

D Proof of the Generic Construction of Adaptive
Oblivious Transfer

We prove the security of this protocol via a sequence of games, starting from the
real game, where the adversary A interacts with the real players, and ending
with the ideal game, where we have built a simulator S that makes the interface
between the ideal functionality F and the adversary A . Recall that we consider
adaptive corruptions.

We denote as S the server and U the user. The main idea is that, by assump-
tion, the simulator can always obtain the common trapdoor tk of the collection of
languages (L1, . . . ,Ln) and use it to commit to a word simultaneously belonging
to all the languages. In case of adaptive corruption, we face two cases: either the
word was not correct, in which case, following the real protocol, the user should
have erased his randomness, so that the simulator does not have anything to
reveal. Or the word was correct and should belong to a certain language Ls,
and the simulator can then adapt the word and randomness so that it seems
to belong to Ls (only). This enables us to avoid the use of commitments both
extractable and equivocable (which is the usual tool for adaptive corruptions).

Due to the construction of the protocol, we have to prove that the user
recovers the secret key usk[s] corresponding to the s-th line of the database in
an oblivious way, which means on the one hand that the user gains no information
on the other keys, and on the other hand that the server gains no information
on the key required by the user. Assuming this is the case (the proof follows),
the adaptive security of the global oblivious transfer relies on the security of the
underlying IBE scheme: The indistinguishability of the ciphertexts ensure that
the user only recovers the s-th line for which he knows the secret key usk[s].

Since the channels are authenticated, we know whether a flow was sent by
an honest player (and received without any alteration) or not.

Game G0: This is the real game.

40

Game G1: In this game, the simulator generates correctly every flow on
behalf of the honest players, as they would do themselves, knowing the database
(DB(1), . . . , DB(n)) and the word W sent by the environment to the server and
the user. In all the subsequent games, the players use the label ` = (sid, ssid,S,U).
In case of corruption, the simulator can give the internal data generated on behalf
of the honest users.

Game G2: In this game, we replace the setup algorithm Setup by SetupT,
allowing the existence of a trapdoor to find words in the intersection of the
collection of languages. We also allow the simulator to program SetupCCA in the
CRS, enabling it to learn the extraction trapdoor of the CCA encryption scheme.
The indistinguishability of the setups makes this game indistinguishable from the
former one for the environment. Corruptions are handled the same way.

Game G3: We first deal with honest servers S: he computes everything
honestly during the database preparation. When receiving a commitment C,
the simulator extracts the committed value W . By testing with the help of the
algorithm Verify, it recovers s such that W ∈ Ls. If it recovers s 6= t such that
W ∈ Ls ∩ Lt, then the adversary has broken the infeasibility of finding a word
in an intersection of languages without knowing the trapdoor and we abort the
game. Otherwise, instead of computing the keys Hi,b, for i = 1, . . . , ` and b = 0, 1

with the hash function, the simulator then chooses Hi,b
$← G when b is not equal

to the i-th bit of W .
With an hybrid proof, applying the smoothness for every honest sender, on

every index (i, b) such that b 6= Wi, since C is extracted to W ∈ Li, for any (i, b)
such that b 6= Wi, the hash value is indistinguishable from a random value.

In case of corruption, everything has been erased (except after the pre-flow,
where the simulator can reveal the keys (pk, sk) generated honestly). This game
is thus indistinguishable from the previous one under the smoothness.

Game G4: Still in this case, when receiving a commitment C, the simulator
extracts the committed valueW . By testing with the help of the algorithm Verify,
it recovers s such that W ∈ Ls. Instead of proceeding as the server would do
with (usk[i, b]), the simulator proceeds on (usk′[i, b]), with usk′[i, b] = 0 except
if b = Wi. Since the masks Hi,b, for b 6= Wi, are random, this game is perfectly
indistinguishable from the previous one.

Game G5: We now deal with honest users U : the simulator now uses the
trapdoor tk to find a word W ′ in the intersection of all languages.

With an hybrid proof, applying a security game in each session in which the
simulator does not know the trapdoor tk, one can show the indistinguishability
of the two games. In case of corruption of the receiver, one learns the already
known value W , thus s.

Game G6: We deal with the generation of R for honest servers S where
the users U are honests: if S and U are honest at least until S received the
second flow, the simulator sets R = F (S′) for both S and U , with S′ a random
value, instead of R = F (S).

41

With an hybrid proof, applying the IND-CPA property for each session, one
can show the indistinguishability of this game with the previous one.

Game G7: Still in the same case, the simulator sets R as a random value,
instead of R = F (S′).

With an hybrid proof, applying the PRF property for each session, one can
show the indistinguishability of this game with the previous one.

Game G8: We now deal with the generation of Hi,Wi
for honest servers

S with honest users U . Thanks to the additional random mask R, one can
send random (usk[i,Wi])i, and Hi,Wi

can be computed later (when U actually
receives its flow).

As above, but only if U has not been corrupted before receiving its flow,
the simulator chooses Hi,Wi

$← G. With an hybrid proof, applying the pseudo-
randomness, for every honest sender, the hash value is indistinguishable from
a random value, because the adversary does not know any decommitment in-
formation for C. If the player U involved in the pseudo-randomness game gets
corrupted (but the decommitment information is unknown) we are not in this
case, and we can thus abort it.

In case of corruption of S, everything has been erased (except after the pre-
flow, where the simulator can reveal the keys (pk, sk) generated honestly).

In case of corruption of the receiver U , and thus receiving the value D̃B(s),
the simulator computes K̃s such that K̃s ⊕ D̃B(s) = Ks ⊕ DB(s) and the
corresponding ũsk[W]. It chooses R (because it was a random value unknown to
the adversary and all the other Hi,b are independent random values too) such

that
(⊕

i busk[i,Wi]⊕H ′i,Wi

)
⊕ Z ⊕R = ũsk[W].

This game is thus indistinguishable from the previous one under the pseudo-
randomness.
Remark.We now explain how, in the pairing instanciation of our protocol, given
already sent valuesDs,Ks⊕DB(s), a simulator recovering from the environment
the value D̃B(s), can adaptively be able to change his memory so as to compute
a user key ũsk[W] such that Dec(ũsk[W],W,Ds) = DB(s) ⊕Ks ⊕ D̃B(s). This
is exactly where we use the restriction on the size of DB elements so that we
can manage to find a vector δs ∈ G2k+1

2 such that DB(s)⊕ D̃B(s) = e(Ds, δs).
Thus, this allows the server to update his memory into ũsk[W] = usk[W] · δs.

Game G9: Still in this case, the simulator proceeds on (usk[i, b]), with
usk[i, b] = 0 for all i, b. Since the masks Hi,b, Z⊕R, for any i, b, are independent
random values (the busk[i, b], for b 6= Wi are independent random values, and
R is independently random), this game is perfectly indistinguishable from the
previous one.

We remark that it is therefore no more necessary to know the index s given
by the ideal functionality to the honest receiver U , to simulate S (but it is still
necessary to simulate U).

42

Game G10: We do not use anymore the knowledge of s when simulating an
honest user U : the simulator generates a word W ′ in the intersection of the
languages and C $← Encrypt`cca(W ′;ρ), with ` = (sid, ssid,S,R), to send C during
the first phase of honest users. This does not change anything from the previous
game since the randomness needed to open to a word in another language is
never revealed.

When it thereafter receives (Send, sid, ssid,S,R, (hpi,b, busk[i, b])) from the
adversary, the simulator computes, for all lines t, usk[Wt] and recovers Kt and
finally DB(t), which provides the database (DB(1), . . . , DB(n)) submitted by
the sender. It uses them to send a Send-message to the ideal functionality.

Game G11: We can now make use of the functionality, which leads to the
following simulator:

– when receiving a Send-message from the ideal functionality, which means
that an honest server has sent a pre-flow and a database, the simulator
generates a key pair (pk, sk)

$← KeyGen(1K) and sends pk as pre-flow;
– after receiving a pre-flow pk (from an honest or a corrupted sender) and a

Receive-message from the ideal functionality, which means that an honest
receiver has sent a first flow, the simulator generates a word W ′ in the
intersection of languages, C $← Encrypt`cca(W ;ρ) with ` = (sid, ssid,R,S)

and c $← Encrypt(pk, S) where S is a random value;
– when receiving a commitment C and a ciphertext c, generated by the adver-

sary (from a corrupted receiver), the simulator extracts the committed value
W and recovers s (aborting in case of multiple values), and uses it to send a
Receive-message to the ideal functionality (and also decrypts the ciphertext
c as S, and computes R = F (S));

– when receiving (hpi,b, busk[i, b]) from the adversary, the simulator computes,
for all lines t, usk[Wt] and recovers Kt and finally DB(t), which provides
the database (DB(1), . . . , DB(n)) submitted by the sender. It uses them to
send a Send-message to the ideal functionality.

– when receiving a Received-message from the ideal functionality, together
with D̃B(s), on behalf of a corrupted receiver, from the extractedW leading
to s, instead of proceeding as the sender would do on (usk[i, b]), the simulator
proceeds on (usk′[i, b]), with usk′[i, b] = 0 except if b = Wi.

– when receiving a commitment C and a ciphertext c, generated by an honest
sender (i.e., by the simulator itself), the simulator proceeds as above on
(usk′[i, b]), with usk′[i, b] = 0 except if b = Wi, but it chooses R uniformly at
random instead of choosing it as R = F (S); in case of corruption afterward,
the simulator will adapt R such that

(⊕
i busk[i,Wi] ⊕H ′i,Wi

)
⊕ Z ⊕ R =

ũsk[W], where ũsk[W] leads to K̃s such that K̃s ⊕ D̃B(s) = Ks ⊕ DB(s),
where D̃B(s) is the message actually received by the receiver.

Any corruption either reveals s earlier, which allows a correct simulation
of the receiver, or reveals (DB(1), . . . , DB(n)) earlier, which allows a correct

43

simulation of the server. When the server has sent his flow, he has already erased
all his random coins.

However, there would have been an issue when the user is corrupted after
the server has sent is flow, but before the user receives it, since he has kept ρ:
this would enable the adversary to recover usk[W] from busk[i,Wi] and hpi,Wi

.
This is the goal of the ephemeral mask R that provides a secure channel.

E Proof of the Generic Construction of Oblivious
Language-Based Envelope

We prove the adaptive12 security of this protocol via a sequence of games, start-
ing from the real game, where the adversary A interacts with the real players,
and ending with the ideal game, where we have built a simulator S that makes
the interface between the ideal functionality F and the adversary A .

We denote as S the sender (i.e. the server) and R the receiver (i.e. the
user). The main idea is that, by assumption, the simulator can always obtain
the common trapdoor tk of the collection of languages (L1, . . . ,Ln) and use it
to commit to a word simultaneously belonging to all the languages. In case of
adaptive corruption, we face two cases: either the word was not correct, in which
case, following the real protocol, the user should have erased his randomness, so
that the simulator does not have anything to reveal. Or the word was correct
and should belong to a certain language Li, and the simulator can then adapt
the word and randomness so that it seems to belong to Li (only). This enables
us to avoid the use of commitments both extractable and equivocable (which is
the usual tool for adaptive corruptions).

We say that a flow is oracle-generated if it was sent by an honest player (or
the simulator) and received without any alteration by the adversary. It is said
non-oracle-generated otherwise.

Game G1: This is the real game.

Game G2: In this game, the simulator generates correctly every flow on
behalf of the honest players, as they would do themselves, knowing the inputs
(P1, . . . , Pn) and W sent by the environment to the sender and the receiver. In
all the subsequent games, the players use the label ` = (sid, ssid,S,R). In case of
corruption, the simulator can give the internal data generated on behalf of the
honest players.

Game G3: In this game, we replace the setup algorithm Setup by SetupT,
allowing the existence of a trapdoor to find words in the intersection of the
collection of languages. We also allow the simulator to program SetupCCA in the
CRS, enabling it to learn the extraction trapdoor of the CCA encryption scheme.
The indistinguishability of the setup makes this game indistinguishable from the
former one for the environment. Corruptions are handled the same way.
12 One can obtain the proof of the static version by removing the parts related to the

pre-flow and to the adaptive corruptions in the proof below.

44

Game G4: We first deal with oracle-generated flows from the senders S: when
receiving a commitment C, the simulator extracts the committed value W . By
testing with the help of the algorithm Verify, it recovers i such that W ∈ Li.
If it recovers i 6= j such that W ∈ Li ∩ Lj , then the adversary has broken the
infeasibility of finding a word in an intersection of languages without knowing
the trapdoor and we abort the game. Otherwise, instead of computing the key
vt, for t = 1, . . . , n with the hash function, the simulator then chooses vt

$← G
for t 6= i.

With an hybrid proof, applying the smoothness for every honest sender, on
every index t 6= i, since C is extracted to W ∈ Li, for any t 6= i, the hash value
is indistinguishable from a random value.

In case of corruption, everything has been erased (except after the pre-flow,
where the simulator can reveal the keys (pk, sk) generated honestly). This game
is thus indistinguishable from the previous one under the smoothness.

Game G5: Still in this case, when receiving a commitment C, the simulator
extracts the committed value W , giving it the number i. Instead of proceeding
as the sender would do on (P1, . . . , Pn), the simulator proceeds on (P ′1, . . . , P

′
n),

with P ′i = Pi, but P ′t = 0 for all t 6= i. Since the masks vt, for t 6= i, are random,
this game is perfectly indistinguishable from the previous one.

Game G6: We now deal with oracle-generated flows from the receivers R:
the simulator now uses the trapdoor tk to find a word W in the intersection of
all languages.

With an hybrid proof, applying a security game in each session in which the
simulator does not know the trapdoor tk, one can show the indistinguishability
of the two games. In case of corruption of the receiver, one learns the already
known value i.

Game G7: We deal with the generation of R for honest senders S on
oracle-generated queries (adaptive case only): if S and R are honest at
least until S received the second flow, the simulator sets R = F (J ′) for both S
and R, with J ′ a random value, instead of R = F (J).

With an hybrid proof, applying the IND-CPA property for each session, one
can show the indistinguishability of this game with the previous one.

Game G8: Still in the same case, the simulator sets R as a random value,
instead of R = F (J ′).

With an hybrid proof, applying the PRF property for each session, one can
show the indistinguishability of this game with the previous one.

Game G9: We now deal with the generation of vi for honest senders S
on oracle-generated queries:

– in the static case (the pre-flow is only needed to compute (vk, vtk), and thus
we assume R = 0) the simulator chooses vi

$← G (for t 6= i, the simulator
already chooses vt

$← G), where i is the index given by the ideal functionality
to the honest receiver R.

45

With an hybrid proof, applying the pseudo-randomness for every honest
sender, the hash value is indistinguishable from a random value, because the
adversary does not know any decommitment information for C;

– in the adaptive case, and thus with the additional random mask R, one can
send a random Pi, and vi can be computed later (when R actually receives
its flow).
As above, but only if R has not been corrupted before receiving its flow,
the simulator chooses vs

$← G. With an hybrid proof, applying the pseudo-
randomness, for every honest sender, the hash value is indistinguishable from
a random value, because the adversary does not know any decommitment
information for C. If the player R involved in the pseudo-randomness game
gets corrupted (but the decommitment information is unknown) we are not
in this case, and we can thus abort it.
In case of corruption of S, everything has been erased (except after the pre-
flow, where the simulator can reveal the keys (pk, sk) generated honestly).
In case of corruption of the receiver R, and thus receiving the value Pi,
the simulator chooses R (because it was a random value unknown to the
adversary and all the other vt are independent random values too) such that

R⊕ ProjHash(hpi, (Li, param), (`, C), ri)⊕ Pi = Qi.

This game is thus indistinguishable from the previous one under the pseudo-
randomness.

Game G10: Still in this case, the simulator proceeds on (P ′1, . . . , P
′
n), with

P ′t = 0 for all i. Since the masks vt ⊕ R, for any t = 1, . . . , n, are independent
random values (the vt, for t 6= i are independent random values, and vi is also
independently random in the static case, while R is independently random in the
adaptive case), this game is perfectly indistinguishable from the previous one.

We remark that it is therefore no more necessary to know the index i given
by the ideal functionality to the honest receiver R, to simulate S (but it is still
necessary to simulate R).

Game G11: We do not use anymore the knowledge of i when simulating an
honest receiver R: the simulator generates a word W in the intersection of
the languages and C

$← Encrypt`cca(W ; r), with ` = (sid, ssid,S,R), to send C
during the first phase of honest receivers. This does not change anything from
the previous game since the randomness needed to open to a word in another
language is never revealed.

When it thereafter receives (Send, sid, ssid,S,R, (Q1, hp1, . . . , Qn, hpn)) from
the adversary, the simulator computes, for i = 1, . . . , k, ri,

vi ← ProjHash(hpi, (Li, param), (`, C), ri)

and Pi = vi ⊕R⊕Qi. This provides the database submitted by the sender.

Game G12: We can now make use of the functionality, which leads to the
following simulator:

46

– when receiving a Send-message from the ideal functionality, which means
that an honest sender has sent a pre-flow, the simulator generates a key pair
(pk, sk)

$← KeyGen(1K) and sends pk as pre-flow;
– after receiving a pre-flow pk (from an honest or a corrupted sender) and a

Receive-message from the ideal functionality, which means that an honest
receiver has sent a first flow, the simulator generates a word W in the in-
tersection of languages, C $← Encrypt`cca(W ; r) with ` = (sid, ssid,R,S) and
c

$← Encrypt(pk, J) where R is a random value;
– when receiving a commitment C and a ciphertext c, generated by the adver-

sary (from a corrupted receiver), the simulator extracts the committed value
W and recovers i (aborting in case of multiple values), and uses it to send a
Receive-message to the ideal functionality (and also decrypts the ciphertext
c as J , and computes R = F (J));

– when receiving (Q1, hp1, . . . , Qn, hpn) from the adversary (a corrupted sender),
the simulator computes, for i = 1, . . . , n, ri,

vi ← ProjHash(hpi, (Li, param), (`, C), ri)

and Pi = vi ⊕ R ⊕ Qi. It uses them to send a Send-message to the ideal
functionality.

– when receiving a Received-message from the ideal functionality, together
with Pi, on behalf of a corrupted receiver, from the extracted W leading to
i, instead of proceeding as the sender would do on (P1, . . . , Pn), the simulator
proceeds on (P ′1, . . . , P

′
n), with P ′i = Pi, but P ′j = 0 for all j 6= i;

– when receiving a commitment C and a ciphertext c, generated by an honest
sender (i.e., by the simulator itself), the simulator proceeds as above on
(P ′1, . . . , P

′
n), with P ′j = 0 for all j, but it chooses R uniformly at random

instead of choosing it as R = F (J); in case of corruption afterward, the
simulator will adapt R such that R⊕ ProjHash(hpi, (Li, param), (`, C), ri)⊕
Qi = Pi, where Pi is the message actually received by the receiver.

Any corruption either reveals i earlier, which allows a correct simulation of
the receiver, or reveals (P1, . . . , Pn) earlier, which allows a correct simulation
of the sender. When the sender has sent his flow, he has already erased all his
random coins.

However, there would have been an issue when the receiver is corrupted after
the sender has sent is flow, but before the receiver receives it, since he has kept
ri: this would enable the adversary to recover Pi from Qi and hpi. This is the
goal of the ephemeral mask R that provides a secure channel.

F Oblivious Primitives Obtained by the Framework
The framework presented in Section 4 page 20 provides a generic way to achieve
asymmetric protocols around automated trust negotiation. In this section, we
show that the classical oblivious primitives directly lie in this framework and
can be seen as examples of Oblivious Language-Based Envelope. We in partic-
ular show how by tweaking the languages (and choosing appropriate smooth

47

projective hash functions), one can achieve current instantiations of Oblivious
Signature-Based Envelope or Oblivious Transfer. We also show how to give a
new instantiation of Access Controlled Oblivious Transfer under classical as-
sumptions.

For the specific instantiations, without loss of generality, we are going to
focus on elliptic cryptography, but as shown in the case of Oblivious Transfer
in [BC15], most building blocks behave the same way under other families of
assumptions. As we focus on elliptic curve instantiations, we are going to use
ElGamal encryption as the CPA encryption used for the pre-flow.

F.1 Oblivious Signature-Based Envelope

Ideal Functionality for Oblivious Signature-Based Envelope. In order
to obtain OSBE as a special case of OLBE, we assume n = nmax = 1 and we
consider the inner language L of valid signatures of a public message M under a
given public verification key vk. The corresponding private signing key sk is the
language secret key skL, and we assume the existence of a trapdoor key tkL which
allows to sample new signatures without the knowledge of skL13. Plugging these
values in the previous framework directly gives the ideal functionality FOSBE

in the Simple UC framework, presented in Figure 11, which has never been
explicitly given before, to the best of our knowledge.

The functionality FOSBE is parametrized by a security parameter K and a signature
scheme (Setup,KeyGen,Sign,Verify). It interacts with an adversary S and a set of
parties P1,. . . ,PN via the following queries:

– Upon receiving an input (Send, sid, ssid,Pi,Pj, P) from party Pi, with
P ∈ {0, 1}K: record the tuple (sid, ssid,Pi,Pj , P) and reveal (Send, sid, ssid,Pi,Pj)
to the adversary S . Ignore further Send-message with the same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj, σ) from
party Pj : ignore the message if (sid, ssid,Pi,Pj , P) is not recorded.
Otherwise, reveal (Receive, sid, ssid,Pi,Pj) to the adversary S and send
(Received, sid, ssid,Pi,Pj , P

′) to Pj where P ′ = P if Verify(vk, σ,M) returns 1,
and P ′ = ⊥ otherwise. Ignore further Receive-message with the same ssid
from Pj .

Fig. 11. Ideal Functionality for Oblivious Signature-Based Envelope FOSBE

Generic Construction and Pairing-Based Instantiation. We give in the
left part of Figure 12 the building blocks for OSBE, which directly give a generic
construction for OSBE by plugging them into our generic construction for OLBE
in Section 4.4.
13 Note that tkL may not directly lead to sk but possibly to an alternative signing

algorithm.

48

Generic OSBE Instantiation Proposal
Signature and inner language Waters Signature
sk, vk hx, gx

σ(m) = Sign(sk,m) hx(u0

∏
umii)s, gs

Lm = {σ | Verify(vk, σ,m) = 1} {σ | e(σ1, g
x) · e(σ2, F (m)) = e(h, gx)}

skL = sk hx

tkL = allows to compute a new signature logg h

Compatible CCA Encryption Linear Cramer Shoup Encryption
ek = ek (h, u, v, w, c1, d1, c2, d2)
C = Encrypt(ek, σ; ρ) hr+t · hxF (m)s, ur, vt, wr+t,

(c1d
θ
1)
r(c2d

θ
2)
t, gs

where θ = H(C1, C2, C3, C4)
SPHF SPHF

hk = HashKG(ek,Lm) α, β, λ, µ, ν
$← Zp

hp = ProjKG(hk, ek,Lm, C) hαuβwµ(c1d
θ
1)
ν , hαvλwµ(c2d

θ
2)
ν

H = Hash(hk, ek,Lm, C) e(C2, g)βe(C3, g)λe(C4, g)µe(C5, g)ν
(e(C1, g)/(e(h, gx)e(F (M), C6)))α

H ′ = ProjHash(hp, ek,Lm, ρ) e(hpr1 · hpt2, g)

Fig. 12. Setting the Language to instantiate an OSBE, SPHF is based on [BPV12]

Instantiating them withWaters’ signature scheme [Wat05] and Linear Cramer
Shoup encryption [CKP07,Sha07], it gives us a first pairing-based instantiation
for OSBE, depicted in the right part of Figure 12, secure in the UC framework
against adaptive corruptions (assuming reliable erasures).

Interestingly, this scheme ends up being very similar to the one presented
in [BPV12] and proven secure in the standard (not UC) security model, which
shows that their scheme remains indeed secure in the UC framework. What was
lacking in their paper was the existence (and knowledge) of the trapdoor tkL
which, as we can see in the generic proof for OLBE (Appendix E), allows the
simulator to be able to always send a valid signature in the first flow on behalf
of the receiver. This enables it to be prepared to face adaptive corruptions,
whatever input the environment gives it later on.

F.2 1-out-of-n Oblivious Transfer

Ideal Functionality for 1-out-of-n Oblivious Transfer. The ideal function-
ality of a 1-out-of-n Oblivious Transfer (OT) protocol, from [Can01,CKWZ13,
ABB+13], is depicted in Figure 13 (adapted to the Simple UC framework). As
explained in Section 3.1 page 11, one can easily see it as a special application of
our generic OLBE ideal functionality, considering n ≥ 2 and nmax = 1. Indeed,
the only change we have to make is not to consider anymore the line numbers as
simple numbers, but to “encode” them (the exact encoding will depend on the
protocol). For every line i, the language Li will correspond to a representation
of line i. Instead of directly giving s to the functionality, the receiver will give it
a word Ws ∈ Ls. This leads to the functionality given in Figure 2 page 12.

49

The functionality F(1,n)-OT is parametrized by a security parameter K. It interacts with
an adversary S and a set of parties P1,. . . ,PN via the following queries:
– Upon receiving an input (Send, sid, ssid,Pi,Pj, (m1, . . . ,mn)) from Pi,

with mk ∈ {0, 1}K: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mn)) and reveal
(Send, sid, ssid,Pi,Pj) to S . Ignore further Send-message with the same ssid
from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj, s) from Pj,
with s ∈ {1, . . . , n}: ignore the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn))
is not recorded; otherwise reveal (Receive, sid, ssid,Pi,Pj) to S , send
(Received, sid, ssid,Pi,Pj ,ms) to Pj and ignore further Receive-message
with the same ssid from Pj .

Fig. 13. Ideal Functionality for 1-out-of-n Oblivious Transfer F(1,n)-OT

Generic 1-out-of-n Oblivious Transfer Possible Instantiation [ABB+13]
Inner language Chameleon Hashed Numbers
Verifiable Chameleon Hash Keys (ck, tk, vtk) (g1, g

$← G2), α = logg g1,

c = Commitck,V(s) ∀i such that s =||logni=1 si:
ai = g

ri,si
1 gsi , ri = (ri,0, ri,1)

Ls = {c|Verify(vtk, c, s) = 1} {(a, r)|∀i, ai = g
ri,si
1 gsi}

skL = ⊥ ⊥
tkL = tk logg h

Compatible CCA Encryption Cramer Shoup Encryption
ek = ek h, u, v, c, d, f

$← G1

C = Encrypt(ek, c; ρ) ∀i, b, (hρi,b · hxfri,b , uρi,b , vsρ,b ,
(cdθ)sρ,b , ai)

where θ = H(C1, C2, C3)
SPHF SPHF

hks = HashKG(ek,Ls) αs, βs, µs, νs
$← Zp

hps = ProjKG(hks, ek,Ls, C) hαsuβsvµs(cdθ)νs , εs
$← Zp

H = Hash(hks, vtk, ek,Ls, C)
∏
i ((e(Ci,si,1/g

si , g1)/e(f, ai))
αs

Cβsi,si,2C
µs
i,si,3
Cνsi,si,4

)εis
H ′ = ProjHash(hps, ek,Ls, ρ) e(

∏
i hp

ρi,si ε
i
s , g1)

Fig. 14. Instantiating a 1-out-n Oblivious Transfer, SPHF is derived using the frame-
work from [BBC+13a]

Generic Construction and Pairing-Based Instantiation. From this small
change, we can give a generic construction which directly falls from our generic
construction for OLBE. We consider, for every line i, the inner language Li
of valid chameleon hashes of the line i ∈ {1, . . . , k} under the corresponding
chameleon hash key ck and the verification key vk, given by the authority (see
Section A page 35 for the definitions for chameleon hash). In this case, the
language is not keyed (anyone can sample a word in it), but it possesses a trap-
door tkL = tk which is the trapdoor of the chameleon hash. This trapdoor enables

50

the simulator to send a chameleon hash which can correspond to any line s which
is exactly what is required in our proof of generic OLBE (see Appendix E).

Indeed, as explained in Section 3, when dealing with 1-out-of-n Oblivious
Transfer, one usually considers a database with various lines, so the naive ap-
proach to fit in our framework would have been to consider a set of languages
being the set of numerals {{1}, . . . , {n}}, expecting the receiver to commit to
a word in one of these languages Li, so that he recovers the corresponding line
number i of the database. But a drawback with this approach is that in case of
an adaptive corruption of the receiver, one would need to be able to equivocate
the commitment to the word, which would require for instance a commitment at
least extractable and equivocable (and even SPHF-friendly, see [ABB+13]), and
not a simple CCA − 2 encryption as we propose in our generic construction of
OLBE. This is the reason why we propose to consider the set of languages com-
posed of valid representations of the corresponding integer, which allows more
freedom in the constructions. Each line is now indexed by a whole language
instead of a single number.

F.3 k-out-of-n Oblivious Transfer

Ideal Functionality for k-out-of-n Oblivious Transfer. From the generic
framework of OLBE and its adaptation to 1-out-of-nOblivious Transfer described
right above in the previous section, one easily gets the ideal functionality of a k-
out-of-n Oblivious Transfer (OT) protocol, by simply letting nmax = k ∈ J1;nK.
This leads to the ideal functionality depicted in Figure 15 (rewritten in Simple
UC).

The functionality F(k,n)-OT is parametrized by a security parameter K and a set of
languages (L1, . . . ,Ln) along with the corresponding public verification algorithms
(Verify1, . . . ,Verifyn). It interacts with an adversary S and a set of parties P1,. . . ,PN

via the following queries:

– Upon receiving an input (Send, sid, ssid,Pi,Pj, (P1, . . . , Pn)) from party
Pi, with Pi ∈ {0, 1}K: record the tuple (sid, ssid,Pi,Pj , (P1, . . . , Pn)) and reveal
(Send, sid, ssid,Pi,Pj) to the adversary S . Ignore further Send-message with the
same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid,Pi,Pj, (Wi)i∈I)
where I ⊂ {1, . . . , n} and |I| = k from party Pj: ignore
the message if (sid, ssid,Pi,Pj , (m1, . . . ,mn)) is not recorded. Oth-
erwise, reveal (Receive, sid, ssid,Pi,Pj) to the adversary S , send
(Received, sid, ssid,Pi,Pj , (P

′
i)i∈I) to Pj where P ′i = Pi if Verifyi(Wi,Li)

returns 1, and P ′i = ⊥ otherwise. Ignore further Receive-message with the same
ssid from Pj .

Fig. 15. Ideal Functionality for k-out-of-n Oblivious Transfer F(k,n)-OT

51

Generic Construction and Pairing-Based Instantiation. One can obtain
a generic construction by simply applying the 1-out-of-n OT generic construction
described above in parallel k times together with a NIZK made by the sender
proving that all sets of messages are the same. This also leads to a pairing-based
instantiation (while using Groth Sahai proof as NIZK for example [GS08]).

F.4 Conditioned Oblivious Transfer

Ideal Functionality for Conditioned Oblivious Transfer. Oblivious Trans-
fer protocols allow the user to query a line in a database without restriction: The
user automatically gets the line he asks for. While this has already found many
applications, one may consider a slightly more complicated problem in which
each line of the database has some additional access restriction (such as creden-
tials, accreditation level, . . .). For instance, lines numbers 2 to 10 of a database
may be only accessible to the members of an organisation, while line number 1
may be only accessible to the presidents of several associations.

This problem has already been studied in various forms: Priced Oblivious
Transfer (introduced in [AIR01]), which allows the user to access a given line if
he has enough cash to pay (so if his balance is greater than the line price); Con-
ditional Oblivious Transfer (formally introduced in [DOR99] but with few con-
ditions about user privacy); Access Control Oblivious Transfer [CDN09], which
aims at solving this issue for users with credentials.

Our framework allows to supersede all these primitives14: Thanks to our gen-
eralization of the Oblivious Transfer ideal functionality (using languages instead
of simple numbers for the lines requested), the ideal functionality remains the
same, since the languages already allow to add the credentials, signatures, prices,
etc., required by those specific forms of OT.

Generic Constructions and Pairing-Based Instantiations. Our frame-
work also provides a means to obtain tightly secure instantiations under classical
(non-interactive, non q-type) assumptions. The required line restrictions need to
be compatible with each other (if the word required for a line needs 2 elements
to be committed, while another line requires words that can only be committed
with 20 elements, there is no way to equivocate the first one to the second one,
except if we adapt the language for the first line to have dead commitment terms
so that all the lines require the same commitment size).

This could encompass a lot of different controls: For example, each line can
be protected by a different password; a line can require a signature (credential)
from a given authority on the line number, on the user identity, on a pseudonym;
one can imagine more complicated policies like a required hamming weight, a
scalar product, range, . . . or any combination of those.

Giving a specific instantiation for all those cases is out of the scope of this
article but for example, priced Oblivious Transfer requires to prove that the
14 Although some of them (like Priced Oblivious Transfer) may require additional ma-

chinery to (privately) keep track of each user’s balance over the course of many
transactions.

52

Generic 1-out-of-n Conditioned Oblivious Transfer
Inner language
Trapped Verifiable Commitment Keys (ck, tk)

c = CommitV(s)
Ls = {c|Verify(c, s) = 1 ∧ c ∈ {Access Requirement s}}
skL = {sks}
tkL = tkL

Compatible CCA Encryption
ek = ek
C = Encrypt(ek, c; ρ)

SPHF
hks = HashKG(ek,Ls)
hps = ProjKG(hks, ek,Ls, C)
H = Hash(hks, ek,Ls, C)
H ′ = ProjHash(hps, ek,Ls, ρ)

Fig. 16. Instantiating a 1-out-n Conditioned Oblivious Transfer

balance is greater than the line price15. The easiest way to do so would require
to use an SPHF proving that the balance does not belong to the range J0,priceK.
Both range proofs (adapting [BG13] with SPHF polynomial evaluations) and
proof of negativity of a statement are already part of the SPHF toolbox.

15 As already stated in Note 14, it also requires some additional machinery to (privately)
keep track of each user’s balance over the course of many transactions.

53

Table of Contents

Adaptive Oblivious Transfer and Generalization . 1
Olivier Blazy, Céline Chevalier, Paul Germouty
1 Introduction . 2
2 Definitions and Building Blocks . 5

2.1 Notations for Classical Primitives . 5
2.2 Identity-Based Encryption, Identity-based Key Encapsulation . . . 6
2.3 Smooth Projective Hashing and Languages 7
2.4 Security Assumptions . 9
2.5 Security Models . 10

3 UC-secure Adaptive Oblivious Transfer . 11
3.1 Definition and Security Model . 11
3.2 High Level Idea of the Construction . 12
3.3 Building Blocks: From an IBE to a Blind Fragmented IBE 13

Definition and Security Properties of a Blind IBE Scheme. 13
High-Level Idea of the Transformation. 14
Blinding a User Key Request via Implicit Decommitment. 14
Sparkling some efficiency. 15
Moving on, to be Compatible with the UC Framework. 16

3.4 Generic Construction of Adaptive OT . 17
3.5 Pairing-Based Instantiation . 17

4 Oblivious Language-Based Envelope . 20
4.1 Oblivious Signature-Based Envelope . 21
4.2 Definition . 21
4.3 Security Properties and Ideal Functionality 23
4.4 Generic UC-Secure Instantiation of OLBE with Adaptive Security 24
4.5 Oblivious Primitives Obtained by the Framework 26

Additional Content . 32
A Classical Primitives . 33
B Building Blocks . 36

B.1 Classical Building Blocks . 36
B.2 k-MDDH Building Blocks . 37

C Proof of the Security of Fragmented IBE . 39
D Proof of the Generic Construction of Adaptive Oblivious Transfer 40
E Proof of the Generic Construction of Oblivious Language-Based

Envelope . 44
F Oblivious Primitives Obtained by the Framework 47

F.1 Oblivious Signature-Based Envelope . 48
F.2 1-out-of-n Oblivious Transfer . 49
F.3 k-out-of-n Oblivious Transfer . 51
F.4 Conditioned Oblivious Transfer . 52

