
HAL Id: hal-01382952
https://hal.science/hal-01382952

Submitted on 19 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structure-Preserving Smooth Projective Hashing
Olivier Blazy, Céline Chevalier

To cite this version:
Olivier Blazy, Céline Chevalier. Structure-Preserving Smooth Projective Hashing. 22nd Annual In-
ternational Conference on the Theory and Applications of Cryptology and Information Security (ASI-
ACRYPT 2016), Feb 2016, Hanoi, Vietnam. �hal-01382952�

https://hal.science/hal-01382952
https://hal.archives-ouvertes.fr

Structure-Preserving Smooth Projective Hashing

Olivier Blazy1 and Céline Chevalier2

1 Université de Limoges, XLim, France
2 Université Panthéon-Assas, Paris, France

Abstract. Smooth projective hashing has proven to be an extremely
useful primitive, in particular when used in conjunction with commit-
ments to provide implicit decommitment. This has lead to applications
proven secure in the UC framework, even in presence of an adversary
which can do adaptive corruptions, like for example Password Authenti-
cated Key Exchange (PAKE), and 1-out-of-m Oblivious Transfer (OT).
However such solutions still lack in efficiency, since they heavily scale on
the underlying message length.
Structure-preserving cryptography aims at providing elegant and efficient
schemes based on classical assumptions and standard group operations
on group elements. Recent trend focuses on constructions of structure-
preserving signatures, which require message, signature and verification
keys to lie in the base group, while the verification equations only consist
of pairing-product equations. Classical constructions of Smooth Projec-
tive Hash Function suffer from the same limitation as classical signatures:
at least one part of the computation (messages for signature, witnesses
for SPHF) is a scalar.
In this work, we introduce and instantiate the concept of Structure-
Preserving Smooth Projective Hash Function, and give as applications
more efficient instantiations for one-round PAKE and three-round OT,
and information retrieval thanks to Anonymous Credentials, all UC-
secure against adaptive adversaries.
Keywords. Smooth Projective Hash Functions, Structure Preserving,
Oblivious Transfer, Password Authenticated Key Exchange, UC Frame-
work, Credentials.

1 Introduction

Smooth Projective Hash Functions (SPHF) were introduced by Cramer and
Shoup [CS02] as a means to design chosen-ciphertext-secure public-key encryp-
tion schemes. These hash functions are defined such as their value can be com-
puted in two different ways if the input belongs to a particular subset (the
language), either using a private hashing key or a public projection key along
with a private witness ensuring that the input belongs to the language.

In addition to providing a more intuitive abstraction for their original public-
key encryption scheme in [CS98], the notion of SPHF also enables new efficient
instantiations of their scheme under different complexity assumptions such as
DLin, or more generally k −MDDH. Due to its usefulness, the notion of SPHF

was later extended to several interactive contexts. One of the most classical
applications is to combine them with commitments in order to provide implicit
decommitments.

Commitment schemes have become a central tool used in cryptographic pro-
tocols. These two-party primitives (between a committer and a receiver) are
divided into two phases. First, in the commit phase, the committer gives the
receiver an analogue of a sealed envelope containing a value m, while later in
the opening phase, the committer reveals m in such a way that the receiver can
verify whether it was indeed m that was contained in the envelope. In many
applications, for example password-based authenticated key-exchange, in which
the committed value is a password, one wants the opening to be implicit, which
means that the committer does not really open its commitment, but rather con-
vinces the receiver that it actually committed to the value it pretended to.

An additional difficulty arises when one wants to prove the protocols in the
universal composability framework proposed in [Can01]. Skipping the details,
when the protocol uses commitments, this usually forces those commitments to
be simultaneously extractable (meaning that a simulator can recover the commit-
ted value m thanks to a trapdoor) and equivocable (meaning that a simulator
can open a commitment to a value m′ different from the committed value m
thanks to a trapdoor), which is quite a difficult goal to achieve.

Using SPHF with commitments to achieve an implicit decommitment, the
language is usually defined on group elements, with projection keys being group
elements, and witnesses being scalars. While in several applications, this has
already lead to efficient constructions, the fact that witnesses have to be scalars
(and in particular in case of commitments, the randomness used to commit) leads
to drastic restrictions when trying to build protocols secure against adaptive
corruptions in the UC framework.

This is the classical paradigm of protocol design, where generic primitives
used in a modular approach lead to a simple design but quite inefficient con-
structions, while when trying to move to ad-hoc constructions, the conceptual
simplicity is lost and even though efficiency might be gained, a proper security
proof gets trickier. Following the same kind of reasoning, [AFG+10] introduced
the concept of structure-preserving signatures in order to take the best of both
worlds. There has been an ongoing series of work surrounding this notion, for
instance [AGHO11,ACD+12,ADK+13,AGOT14a,AGOT14b]. This has shown
that structure-preserving cryptography indeed provides the tools needed to have
simultaneously simple and efficient protocols.

1.1 Related Work

Smooth Projective Hash Functions (SPHF) were introduced by Cramer and
Shoup [CS02] and have been widely used since then, for instance for password-
authenticated key exchange (PAKE) [GL03,ACP09,KV09,KV11,BBC+13b], or
oblivious transfer (OT) [Kal05,CKWZ13,ABB+13], and a classification was in-
troduced separating SPHF into three main kinds, KV-SPHF,CS-SPHF,GL-SPHF

2

depending on how the projection keys are generated and when, the former al-
lowing one-round protocols, while the latter have more efficient communication
costs (see Section 2.2).

Password-Authenticated Key Exchange (PAKE) protocols were proposed
in 1992 by Bellovin and Merritt [BM92] where authentication is done using
a simple password, possibly drawn from a small entropy space subject to ex-
haustive search. Since then, many schemes have been proposed and studied.
SPHF have been extensively used, starting with the work of Gennaro and Lin-
dell [GL03] which generalized an earlier construction by Katz, Ostrovsky, and
Yung [KOY01], and followed by several other works [CHK+05, ACP09]. More
recently, a variant of SPHF proposed by Katz and Vaikuntanathan even allowed
the construction of one-round PAKE schemes [KV11,BBC+13b]. The most effi-
cient PAKE scheme so far (using completely different techniques) is the recent
Asiacrypt paper [JR14].

The first ideal functionality for PAKE protocols in the UC framework [Can01,
CK02] was proposed by Canetti et al. [CHK+05], who showed how a simple vari-
ant of the Gennaro-Lindell methodology [GL03] could lead to a secure protocol.
Though quite efficient, their protocol was not known to be secure against adap-
tive adversaries, that are capable of corrupting players at any time, and learn
their internal states. The first ones to propose an adaptively secure PAKE in
the UC framework were Barak et al. [BCL+05] using general techniques from
multi-party computation. Though conceptually simple, their solution results in
quite inefficient schemes.

Recent adaptively secure PAKE were proposed by Abdalla et al. [ACP09,
ABB+13], following the Gennaro-Lindell methodology with variation of the Canetti-
Fischlin commitment [CF01]. However their communication size is growing in
the size of the passwords, which is leaking information about an upper-bound
on the password used in each exchange.

Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way
to allow a receiver to get exactly one out of k messages sent by another party, the
sender. In these schemes, the receiver should be oblivious to the other values,
and the sender should be oblivious to which value was received. Since then,
several instantiations and optimizations of such protocols have appeared in the
literature, including proposals in the UC framework [NP01,CLOS02].

More recently, new instantiations have been proposed, trying to reach round-
optimality [HK07], or low communication costs [PVW08]. The 1-out-of-2 OT
scheme by Choi et al. [CKWZ13] based on the DDH assumption seems to be
the most efficient one among those that are secure against adaptive corruptions
in the CRS model with erasures. But it does not scale to 1-out-of-m OT, for
m > 2. [ABB+13,BC15] proposed a generic construction of 1-out-of-m OT secure
against adaptive corruptions in the CRS model, however the commitment was
still growing in the logarithm of the database length. While this is not so much
a security issue for OT as this length is supposed to be fixed at the start of the
protocol, this is however a weak spot for the efficiency of the final construction.

3

1.2 Our contributions

Similarly to structure-preserving signatures requiring the message, the signature,
and the public keys to be group elements, we propose in this paper the notion
of structure-preserving Smooth Projective Hash Functions (SP-SPHF), where
both words, witnesses and projection keys are group elements, and hash and
projective hash computations are doable with simple pairing-product equations
in the context of bilinear groups.

We show how to transform every previously known pairing-less construction
of SPHF to fit this methodology, and then propose several applications in which
storing a group element as a witness allows to avoid the drastic restrictions that
arise when building protocols secure against adaptive corruptions in the UC
framework with a scalar as witness. Asking the witness to be a group element
enables us to gain more freedom in the simulation (the discrete logarithm of
this element and / or real extraction from a commitment). For instance, the
simulator can always commit honestly to a random message, since it only needs
to modify its witness in the equivocation phase. Furthermore, it allows to avoid
bit-per-bit construction.

As an example, we show that the UC-commitment from [FLM11] (while not
fitting with the methodology of traditional SPHF from [ABB+13]), is compatible
with SP-SPHF and can be used to build UC protocols. As a side contribution,
we first generalize this commitment from DLin to the k − MDDH assumption
from [EHK+13]. The combination of this commitment and the associated SP-
SPHF then enables us to give three interesting applications.

Adaptively secure 1-out-of-m Oblivious Transfer. First, we provide a con-
struction of a three-round UC-secure 1-out-of-m OT. Assuming reliable erasures
and a single global CRS, we show in Section 5 that our instantiation is UC-
secure against adaptive adversaries. Besides having a lesser number of rounds
than most recent existing OT schemes with similar security levels, our resulting
protocol also has a better communication complexity than the best known so-
lutions so far [CKWZ13,ABB+13] (see Table 1 for a comparison). For ease of
readability, we emphasize in this table the SXDH communication cost1, which is
simply k −MDDH for k = 1. Our protocol is “nearly optimal” in the sense that
it is still linear in the number of lines m, but the constant in front of m is 1.

Table 1. Comparison with existing UC-secure OT schemes

Flow Communication Complexity Assumption 1-out-of

[CKWZ13] 4 26 G + 7 Zp DDH 2
[ABB+13] 3 (m+ 8 logm)×G1 + logm×G2 + 1× Zp SXDH m
This paper 3 (k + 3 +m)×G1 + (k + 1)×G2 + 1× Zp k −MDDH m
This paper 3 (m+ 4)×G1 + 2×G2 + 1× Zp SXDH m

1 Our OT and PAKE protocols are described in k−MDDH but one directly obtains the
SXDH versions by simply letting k = 1 in the commitment presented in Section 4.2.

4

One-round adaptively secure PAKE. Then, we provide an instantiation of
a one-round UC-secure PAKE under any k − MDDH assumption. Once again,
we show in Section 6 that the UC-security holds against adaptive adversaries,
assuming reliable erasures and a single global CRS. Contrarily to most existing
one-round adaptively secure PAKE, we show that our scheme enjoys a much
better communication complexity while not leaking information about the length
of the password used (see Table 2 for a comparison, in particular for the SXDH
version). Only [JR14] achieves a slightly better complexity as ours, but only for
SXDH, while ours easily extends to k−MDDH. Furthermore, our construction is
an extension to SP-SPHF of well-known classical constructions based on SPHF,
which makes it simpler to understand. We omit [BC15] from the following table,
as its contribution is to widen the construction to non-pairing based hypotheses.

Anonymous Credential-Based Message Transmission. Typical credential
use involves three main parties. Users need to interact with some authorities to
obtain their credentials (assumed to be a set of attributes validated / signed),
and then prove to a server that a subpart of their attributes verifies an expect
policy. We present a constant-size, round-optimal protocol that allow to use a
Credential to retrieve a message without revealing the Anonymous Credentials
in a UC secure way, by simply building on the technique proposed earlier in the
paper.

Table 2. Comparison with existing UC-secure PAKE schemes where |password| = m

Adaptive One-round Communication complexity Assumption

[ACP09] yes no 2× (2m+ 22mK)×G + OTS DDH
[KV11] no yes ≈ 2× 70×G DLIN
[BBC+13b] no yes 2× 6×G1 + 2× 5×G2 SXDH
[ABB+13] yes yes 2× 10m×G1 + 2×m×G2 SXDH
[JR14] yes yes 4×G1 + 4×G2 SXDH
this paper yes yes 2× (k + 3 + k × (k + 3))×G1 k −MDDH

+2× (k + 1)×G2

this paper yes yes 2× 8×G1 + 2× 2×G2 SXDH

2 Definitions

2.1 Notations

If x ∈ Sn, then |x| denotes the length n of the vector, and by default vectors are
assumed to be column vectors. Further, x $← S denotes the process of sampling
an element x from the set S uniformly at random.

5

2.2 Primitives

Encryption. An encryption scheme C is described through four algorithms
(Setup,KeyGen,Encrypt,Decrypt). The formal definitions are given in Appendix A.1.

Commitments. We refer the reader to [ABB+13] for formal definitions and
results but we give here an informal overview to help the unfamiliar reader with
the following. A non-interactive labelled commitment scheme C is defined by
three algorithms:
– SetupCom(1K) takes as input the security parameter K and outputs the global

parameters, passed through the CRS ρ to all other algorithms;
– Com`(x) takes as input a label ` and a message x, and outputs a pair (C, δ),

where C is the commitment of x for the label `, and δ is the correspond-
ing opening data (a.k.a. decommitment information). This is a probabilistic
algorithm.

– VerCom`(C, x, δ) takes as input a commitment C, a label `, a message x, and
the opening data δ and outputs 1 (true) if δ is a valid opening data for C, x
and `. It always outputs 0 (false) on x = ⊥.
The basic properties required for commitments are correctness (for all cor-

rectly generated CRS ρ, all commitments and opening data honestly generated
pass the verification VerCom test), the hiding property (the commitment does
not leak any information about the committed value) and the binding property
(no adversary can open a commitment in two different ways). More complex
properties (equivocability and extractability) are required by the UC framework
and described in Appendix A.2 for lack of space.

Smooth Projective Hash Functions Smooth projective hash functions (SPHF)
were introduced by Cramer and Shoup [CS02] for constructing encryption schemes.
A projective hashing family is a family of hash functions that can be evalu-
ated in two ways: using the (secret) hashing key, one can compute the func-
tion on every point in its domain, whereas using the (public) projected key one
can only compute the function on a special subset of its domain. Such a fam-
ily is deemed smooth if the value of the hash function on any point outside
the special subset is independent of the projected key. The notion of SPHF
has already found numerous applications in various contexts in cryptography
(e.g. [GL03,Kal05,ACP09,BPV12]).

Definition 1 (Smooth Projective Hashing System). A Smooth Projective
Hash Function over a language L ⊂ X, is defined by five algorithms (Setup,
HashKG,ProjKG,Hash,ProjHash):
– Setup(1K) generates the global parameters param of the scheme, and the de-

scription of an NP language L
– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp, thanks to the hash-

ing key hk,
– Hash(hk, (L, param),W), outputs a hash value v, thanks to the hashing key

hk, and W ,

6

– ProjHash(hp, (L, param),W,w), outputs the hash value v′, thanks to hp and
the witness w that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X, i.e. it
is computationally hard to distinguish a random element in L from a random
element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following prop-
erties:
– Correctness: Let W ∈ L and w a witness of this membership. Then, for all

hashing keys hk and associated projection keys hp we have Hash(hk, (L, param),W) =
ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W) ∈ G


∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← G

}
.

A third property called Pseudo-Randomness, is implied by the Smoothness
on Hard Subset membership languages. If W ∈ L, then without a witness of
membership the two previous distributions should remain computationally indis-
tinguishable: for any adversary A within reasonable time the following advantage
is negligible

AdvprSPHF,A(K) = |Pr∆1
[A(L, param,W, hp, v) = 1]− Pr∆0

[A(L, param,W, hp, v) = 1]|
In [BBC+13b], the authors introduced a new notation for SPHF: for a lan-

guage L, there exist a function Γ and a family of functions Θ, such that u ∈ L, if
and only if, Θ(u) is a linear combination λ of the rows of Γ (u). We furthermore
require that a user, who knows a witness of the membership u ∈ L, can effi-
ciently compute the linear combination λ. The SPHF can now then be described
as:
– HashKG(L, param), outputs a hashing key hk = α for the language L,
– ProjKG(hk, (L, param),u), derives the projection key hp = γ(u),
– Hash(hk, (L, param),u), outputs a hash value H = Θ(u)�α,
– ProjHash(hp, (L, param),u,λ), outputs the hash value H ′ = λ� γ(u).
In the special case where hp = γ(u) = γ, we speak about KV-SPHF when the

projection key can be given before seeing the word u, and of CS-SPHF, when
the projection key while independent of the word is given after seeing it. (In
reference to [KV11,CS02] where those kinds of SPHF were first use). We give
in Section 3.3 an exemple of KV-SPHF for Cramer-Shoup encryption, both in
classical and new notations.

We will need a third property for our one-round PAKE protocol. This prop-
erty, called strong pseudo-randomness in [BBC+13b], is recalled in Appendix A.3
for lack of space.

7

2.3 Building Blocks

Decisional Diffie-Hellman (DDH) The Decisional Diffie-Hellman hypothesis
says that in a multiplicative group (p,G, g) when we are given (gλ, gµ, gψ) for
unknown random λ, µ, ψ

$← Zp, it is hard to decide whether ψ = λ+ µ.

Pairing groups. Let GGen be a probabilistic polynomial time (PPT) algorithm
that on input 1K returns a description G = (p,G1,G2,GT , e, g1, g2) of asymmetric
pairing groups where G1, G2, GT are cyclic groups of order p for a K-bit prime
p, g1 and g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an
efficiently computable (non-degenerated) bilinear map. Define gT := e(g1, g2),
which is a generator in GT .

Matricial Notations. If A ∈ Z(k+1)×n
p is a matrix, then A ∈ Zk×np denotes the

upper matrix of A and A ∈ Z1×n
p denotes the last row of A. We use classical

notations from [GS08] for operations on vectors (. for the dot product and �
for the product component-wise). Concatenation of matrices having the same
number of lines will be denoted by A||B (where a||b + c should be implicitly
parsed as a||(b+ c)).

We use implicit representation of group elements as introduced in [EHK+13].
For s ∈ {1, 2, T} and a ∈ Zp define [a]s = gas ∈ Gs as the implicit representation
of a in Gs (we use [a] = ga ∈ G if we consider a unique group). More generally,
for a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit representation of
A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganm

s

 ∈ Gn×ms

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈
Gs be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to compute
the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT it is
hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem).
Obviously, given [a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently compute
[ax]s ∈ Gs. Further, given [a]1, [b]2 one can efficiently compute [ab]T using the
pairing e. For a, b ∈ Zkp define e([a]1, [b]2) := [a>b]T ∈ GT .

If a ∈ Zp, we define the (k + 1)-vector: ιs(a) := (1s, . . . , 1s, [a]s) (this notion
can be implicitly extended to vectors a ∈ Znp), and the k + 1 by k + 1 matrix

ιT (a) :=

1 . . . 1
...
. . . 1

1 1 a

.

Assumptions. We recall the definition of the matrix Diffie-Hellman (MDDH)
assumption [EHK+13].

Definition 2 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z(k+1)×k

p of full rank k in polynomial time.

8

Without loss of generality, we assume the first k rows of A $← Dk form an in-
vertible matrix. The Dk-Matrix Diffie-Hellman problem is to distinguish the two
distributions ([A], [Aw]) and ([A], [u]) where A $← Dk, w $← Zkp and u $← Zk+1

p .

Definition 3 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk
be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries D,

AdvDk,GGen(D) := |Pr[D(G, [A]s, [Aw]s) = 1]− Pr[D(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G $← GGen(1λ), A $← Dk,w $← Zkp,u
$← Zk+1

p .

For each k ≥ 1, [EHK+13] specifies distributions Lk, Uk, . . . such that the
corresponding Dk-MDDH assumption is the k-Linear assumption, the k-uniform
and others. All assumptions are generically secure in bilinear groups and form a
hierarchy of increasingly weaker assumptions. The distributions are exemplified
for k = 2, where a1, . . . , a6

$← Zp.

L2 : A =

a1 0
0 a2
1 1

 U2 : A =

a1 a2a3 a4
a5 a6

 .

It was also shown in [EHK+13] that Uk-MDDH is implied by all other Dk-MDDH
assumptions. In the following, we write k −MDDH for Dk −MDDH.

Lemma 4 (Random self reducibility [EHK+13]). For any matrix distri-
bution Dk, Dk-MDDH is random self-reducible. In particular, for any m ≥ 1,

AdvDk,GGen(D) + 1
q−1 ≥ AdvmDk,GGen(D

′)

where AdvmDk,GGen(D
′) := Pr[D′(G, [A], [AW]) ⇒ 1] − Pr[D′(G, [A], [U]) ⇒ 1],

with G ← GGen(1λ), A $← Dk,W $← Zk×mp ,U
$← Z(k+1)×m

p .

Remark: It should be noted that L1,L2 are respectively the SXDH and DLin
assumptions that we recall below for completeness.

Definition 5 (Decisional Linear (DLin [BBS04])). The Decisional Linear
hypothesis says that in a multiplicative group (p,G, g) when we are given (gλ, gµ, gαλ,

gβµ, gψ) for unknown random α, β, λ, µ
$← Zp, it is hard to decide whether

ψ = α+ β.

Definition 6 (Symmetric External Diffie Hellman (SXDH [ACHdM05])).
This variant of DDH, used mostly in bilinear groups in which no computationally
efficient homomorphism exists from G2 in G1 or G1 to G2, states that DDH is
hard in both G1 and G2.

Labelled Cramer-Shoup Encryption. We present here the well-known en-
cryption schemes based on DDH, and we show in Section 4 how to extend it
to Dk−MDDH. We focus on Cramer-Shoup [CS98] in all the following of the pa-
per, but one easily obtains the same results on El Gamal IND-CPA scheme [ElG84]

9

by simply omitting the corresponding parts. We are going to rely on the IND-CCA
property to be able to decrypt queries in the simulation.
Vanilla Cramer-Shoup Encryption. The Cramer-Shoup encryption scheme
is an IND-CCA version of the ElGamal Encryption. We present it here as a labeled
public-key encryption scheme, the classical version is done with ` = ∅.
– Setup(1K) generates a group G of order p, with a generator g
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and
sets, c = gx1

1 gx2
2 , d = gy11 g

y2
2 , and h = gz1 . It also chooses a Collision-Resistant

hash function HK in a hash family H (or simply a Universal One-Way Hash
Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp,
the ciphertext is C = (`,u = (gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is

computed afterwards with ξ = HK(`,u, e).
– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether
ux1+ξy1
1 · ux2+ξy2

2
?= v. If the equality holds, one computes M = e/(uz1) and

outputs M . Otherwise, one outputs ⊥.
The security of the scheme is proven under the DDH assumption and the fact

the hash function used is a Universal One-Way Hash Function.
In following work [CS02] they refined the proof, explaining that the scheme

can be viewed as a 2-Universal Hash Proof on the language of valid Diffie Hellman
tuple.

Vanilla Cramer-Shoup Encryption with Matricial Notations.
– Setup(1K) generates a group G of order p, with a generator g, with an un-

derlying matrix assumption D1 using a base matrix [A] ∈ G2×1;
– KeyGen(param) generates dk = t1, t2, z

$← Z2
p (with t1 = (x1, x2), t2 =

(y1, y2) and z = (z, 1)), and sets c = t1A, d = t2A, h = zA. It also chooses a
hash function HK in a collision-resistant hash familyH (or simply a Universal
One-Way Hash Function). The encryption key is ek = ([A], [c], [d], [h],HK).

– Encrypt(`, ek, [m]; r), for a messageM = [m] ∈ G and random scalar r $← Zp,
the ciphertext is C = (`,u = [Ar]), e = [hr +m], v = [(c + d � ξ)r], where
v is computed afterwards with ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether v is
consistant with t1, t2.
If it is, one computes M = [e − (uz)] and outputs M . Otherwise, one out-
puts ⊥.

Groth-Sahai Proof System.Groth and Sahai [GS08] proposed non-interactive
zero-knowledge proofs of satisfiability of certain equations over bilinear groups,
called pairing product equations. Using as witness group elements (and scalars)
which satisfy the equation, the prover starts with making commitments on them.
To prove satisfiability of an equation (which is the statement of the proof), a
Groth-Sahai proof uses these commitments and shows that the committed values
satisfy the equation. The proof consists again of group elements and is verified
by a pairing equation derived from the statement.

10

We refer to [GS08] for details of the Groth-Sahai proof system, and to
[EHK+13] for the compatibility with the k-MDDH assumptions. More details
can be found in Appendix B of the additional content. We are going to give a
rough idea of the technique for SXDH.

To prove that committed variables satisfy a set of relations, the Groth-Sahai
techniques require one commitment per variable and one proof element (made
of a constant number of group elements) per relation. Such proofs are available
for pairing-product relations and for multi-exponentiation equations.

When based on the SXDH assumption, the commitment key is of the form
u1 = (u1,1, u1,2) ,u2 = (u2,1, u2,2) ∈ G 2

1 and v1 = (v1,1, v1,2) ,v2 = (v2,1, v2,2) ∈
G 2

2 . We write

u =

(
u1

u2

)
=

(
u1,1 u1,2
u2,1 u2,2

)
and v =

(
v1

v2

)
=

(
v1,1 v1,2
v2,1 v2,2

)
.

The Setup algorithm initializes the parameters as follows: u1 = (g1, u) with
u = gλ1 and u2 = u1

µ with λ, µ $← Z∗p, which means that u is a Diffie-Hellman
tuple in G1, since u1 = (g1, g

λ
1) and u2 = (gµ1 , g

λµ
1). The TSetup algorithm will

use instead u2 = u1
µ � (1, g1)

−1: u1 = (g1, g
λ
1) and u2 = (gµ1 , g

λµ−1
1). And it is

the same in G2 for v. Depending on the definition of u2, v2, this commitment can
be either perfectly hiding or perfectly binding. The two parameter initializations
are indistinguishable under the SXDH assumption.

To commit to X ∈ G1, one chooses randomness s1, s2 ∈ Zp and sets C(X) =
(1, X)�us11 �us22 = (1, X)� (us11,1, u

s1
1,2)� (us22,1, u

s2
2,2) = (us11,1 ·u

s2
2,1, X ·u

s1
1,2 ·u

s2
2,2).

Similarly, one can commit to element in G2 and scalars in Zp. The committed
group elements can be extracted if u2 is linearly dependant of u1 by knowing
the discrete logarithm x1 between u1,1 and u2,2: c2/(cx1

1) = X.
In the following we are going to focus on proof of linear multi-scalar expo-

nentiation in G1, that is to say we are going to prove equations of the form∏
iA

yi
i = A where Ai are public elements in G1 and yi are going to be scalars

committed into G2.

2.4 Protocols

UC Framework. The goal of this simulation-based model [Can01] is to ensure
that UC-secure protocols will continue to behave in the ideal way even if executed
in a concurrent way in arbitrary environments. Due to lack of space, a short
introduction to the UC framework is given in Appendix C of the additional
content.

Oblivious Transfer and Password-Authenticated Key-Exchange. The
security properties for these two protocols are given in terms of ideal function-
alities in Appendix C of the additional content.

11

3 Structure-Preserving Smooth Projective Hashing
3.1 Definition

In this section, we are now going to narrow the classical definition of Smooth
Projective Hash Functions to what we are going to name Structure-Preserving
Smooth Projective Hash Functions, in which both words, witnesses and projec-
tion keys are group elements.

Since witnesses now become group elements, this allows a full compatibility
with Groth and Sahai methodology [GS08], such that for instance possessing a
Non-Interactive Zero-Knowledge Proof of Knowledge can become new witnesses
of our SP-SPHF, leading to interesting applications, as described later on.

As we are in the context of Structure Preserving cryptography, we assume
the existence of a (prime order) bilinear group (p,G1,G2, g1, g2,GT , e), and con-
sider Languages (sets of elements) L defined over this group. The hash space is
usually GT , the projection key space a group Gm1 ×Gn2 and the witness space a
group Gn1 ×Gm2 .

Definition 7 (Structure-Preserving Smooth Projective Hash Functions).
A Structure-Preserving Smooth Projective Hash Function over a language

L ⊂ X onto a set H, is defined by 4 algorithms (HashKG,ProjKG,Hash,ProjHash):
– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W), derives the projection key hp thanks to the hash-

ing key hk.
– Hash(hk, (L, param),W), outputs a hash value H ∈ H, thanks to the hashing

key hk, and W
– ProjHash(hp, (L, param),W,w), outputs the value H ′ ∈ H, thanks to hp and

the witness w that W ∈ L.

3.2 Properties

Properties are then inherited by those of classical Smooth Projective Hash Func-
tions.

– Correctness: On honest computations with (W,w) compatible with L, we
have ProjHash(hp, (L, param),W,w) = Hash(hk, (L, param),W).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

∆0 =

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W),
v = Hash(hk, (L, param),W) ∈ GT


∆1 =

{
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W), v
$← GT

}
.

This is formalized by

Advsmooth
SPHF (K) =

∑
V ∈G

∣∣∣∣Pr∆1

[v = V]− Pr
∆0

[v = V]

∣∣∣∣ is negligible.

12

As usual, a derivative property called Pseudo-Randomnness, says the pre-
vious distribution are computationally indistinguishable from words in the lan-
guage while the witnesses remain unknown. This is implied by the Smoothness
on Hard Subset membership languages.

3.3 Retro-compatibility

Constructing SP-SPHF is not that hard of a task. A first naive approach allows
to transform every pairing-less SPHF into a SP-SPHF in a bilinear setting. It
should be noted that while the resulting Hash/ProjHash values live in the target
group, nearly all use cases encourage to use a proper hash function on them be-
fore computing anything using their value, hence the communication cost would
remain the same. (Only applications where one of the party has to provide an
additional proof that the ProjHash was honestly computed might be lost, but
besides proof of negativity from [BCV15], this never arises.)

To this goal, simply given a new generator f ∈ G2, and a scalar witness vector
λ, one generates the new witness vector Λ = [f�λ]2. Words and projection keys
belong to G1, and hash values to GT . Any SPHF can thus be transformed into
an SP-SPHF in the following way:

SPHF SP-SPHF
Word u [λ� Γ (u)]1 [λ� Γ (u)]1
Witness w λ Λ = [f � λ]2
hk α α
hp = [γ(u)]1 [Γ (u)�α]1 [Γ (u)�α]1
Hash(hk,u) [Θ(u)�α]1 [f �Θ(u)�α]T
ProjHash(hp,u, w) [λ� γ(u)]1 [Λ� γ(u)]T

– Correctness is inherited for words in L as this reduces to computing the
same values but in GT .

– Smoothness: For words outside the language, the projection keys, remain-
ing unchanged, do not reveal new information, so that the smoothness will
remain preserved.

– Pseudo-Randomness: Without any witness, words inside the language are
indistinguishable from words outside the language (under the subgroup de-
cision assumption), hence the hash values remain pseudo-random.
It should be noted that in case this does not weaken the subgroup decision

assumption (k-MDDH in the following) linked to the original language, one can
set G1 = G2.

We give in Figure 1 two examples of regular Smooth Projective Hash Func-
tions on Diffie-Hellman and Cramer Shoup encryption ofM , where α = H(u, e),
and their counterparts with SP-SPHF. El Gamal being a simplification of Cramer
Shoup, we skip the description of the associated SP-SPHF. We also give in Fig-
ure 2 the matricial version of Cramer Shoup encryption, in which we denote by
C ′ the Cramer-Shoup encryption C of M in which we removed M .

13

SPHF SP-SPHF
DH hr, gr hr, gr

Witness w r gr2
hk λ, µ λ, µ

hp hλgµ hλgµ

Hash(hk,u) (hr)λ(gr)µ e((hr)λ(gr)µ, g2)
ProjHash(hp,u, w) hpr e(hp, gr2)

CS(M;r) hrM, fr, gr, (cdα)r hrM, fr, gr, (cdα)r

Witness w r gr2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η

hp hλ1fµgνcη, hλ2dν hλ1fµgνcη, hλ2dν

Hash(hk,u) (hr)λ1+αλ2(fr)µ(gr)ν((cdα)r)µ e((hr)λ1+αλ2(fr)µ(gr)ν((cdα)r)µ, g2)
ProjHash(hp,u, w) (hp1hp

α
2)
r e(hp1hp

α
2 , g

r
2)

Fig. 1. Example of conversion of classical SPHF into SP-SPHF

3.4 Possible Applications

Nearly Constant 1-out-of-m Oblivious Transfer Using FLM. Recent
pairing-based constructions [CKWZ13,ABB+13] of Oblivious Transfer use SPHF
to mask each line of a database with the hash value of as SPHF on the language
corresponding to the first flow being a commitment of the said line.

Sadly, those constructions require special UC commitment on scalars, with
equivocation and extraction capacities, leading to very inefficient constructions.
In 2011, [FLM11] proposed a UC commitment, whose decommitment operation
is done via group elements. In section 5, we are going to show how to combine the
existing constructions with this efficient commitment using SP-SPHF, in order to
obtain a very efficient round-optimal where there is no longer a growing overhead
due to the commitment. As a side result, we show how to generalize the FLM
commitment to any MDDH assumption.

Round-Optimal Password Authenticated Key Exchange with Adap-
tive Corruptions. Recent developments around SPHF-based PAKE have either
lead to Round-Optimal PAKE in the BPR model [BPR00], or with static corrup-
tions [KV11,BBC+13b]. In order to achieve round-optimality, [ABB+13] needs
to do a bit-per-bit commitment of the password, inducing a communication cost
proportional to the maximum password length.

In the following, we show how to take advantage of the SP-SPHF constructed
on the FLM commitment to propose a One-Round PAKE UC secure against
adaptive adversaries, providing a constant communication cost.

Using a ZKPK as a witness, Anonymous Credentials. Previous applica-
tions allow more efficient instantiations of protocols already using scalar-based
SPHF. However, one can imagine additional scenarios, where a scalar based ap-
proach may not be possible, due to the inherent nature of the witness used.

14

SPHF SP-SPHF
CS(M;r) [hr +M,Ar, (c+ dα)r] [hr +M,Ar, (c+ dα)r]1

B :


h
f
g
c


Br +


0
0
0
d

αr +


M
0
0
0




Br +

0
0
0
d

αr +


M
0
0
0




1

Witness w r [r]2
hk λ1, λ2, µ, ν, η λ1, λ2, µ, ν, η

hp

(λ1 µ ν η
)
B +

(
λ2 0 0 η

)
h
0
0
d



(λ1 µ ν η

)
B +

(
λ2 0 0 η

)
h
0
0
d




1

Hash(hk,u)
[(
λ1 + αλ2 µ ν η

)
(C′)

] [(
λ1 + αλ2 µ ν η

)
(C′)

]
T

ProjHash(hp,u, w) [(hp1 + αhp2)r] [(hp1 + αhp2)r]2

Fig. 2. Example of conversion of SPHF into SP-SPHF (matricial notations)

For example, one should consider a strong authentication scenario, in which
each user possesses an identifier delivered by an authority, and a certification on
a commitment to this identifier, together with a proof of knowledge that this
commitment is indeed a commitment to this identifier. (Such scenario can be
transposed to the delivery of a Social Security Number, where a standalone SSN
may not be that useful, but a SSN officially linked to someone is a sensitive
information that should be hidden.) In this scenario, a user who wants to access
his record on a government service where he is already registered, should give
the certificate, and then would use an implicit proof that this corresponds to his
identifier. With our technique, the server would neither learn the certificate in
the clear nor the user identifier (if he did not possess it earlier), and the user
would be able to authenticate only if his certificate is indeed on his committed
identifier.

In our scenario, we could even add an additional step, such that Alice does
not interact directly with Bob but can instead use a pawn named Carol. She
could send to Carol a commitment to the signature on her identity, prove in a
black box way that it is a valid signature on an identity, and let Carol do the
interaction on her behalf. For example, to allow a medical practitioner to access
some subpart of her medical record concerning on ongoing treatment, in this
case, Carol would need to anonymously prove to the server that she is indeed a
registered medical practitioner, and that Alice has given her access to her data.

15

4 Encryption and Commitment Schemes Based on
k-MDDH

4.1 k −MDDH Cramer-Shoup Encryption

In this paper, we supersede the previous constructions with a k −MDDH based
one:
– Setup(1K) generates a group G of order p, with an underlying matrix as-

sumption using a base matrix [A] ∈ Gk+1×k;
– KeyGen(param) generates dk = t1, t2, z

$← Zk+1
p , and sets, c = t1∈Zkp,d =

t2A ∈ Zkp,h = zA ∈ Zkp. It also chooses a hash function HK in a collision-
resistant hash family H (or simply a Universal One-Way Hash Function).
The encryption key is ek = ([c], [d], [h], [A],HK).

– Encrypt(`, ek, [m]; r), for a message M = [m] ∈ G and random scalars r $←
Zkp, the ciphertext is C = (u = [Ar]), e = [hr+m], v = (c+d�ξ)r]1, where
v is computed afterwards with ξ = HK(`,u, e).

– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether v is
consistent with t1, t2.
If it is, one computes M = [e − (uz)] and outputs M . Otherwise, one out-
puts ⊥.

Theorem 8. The k −MDDH Cramer-Shoup Encryption is IND-CCA 2 under
k −MDDH assumption and the collision resistance (universal one-wayness) of
the Hash Family.

Proof. To sketch the proof of the theorem, one should remember that the original
proof articulate around three main cases noting `,u, e, v the challenge query, and
`′,u, e′, v′ the current decryption query:
– (`,u, e) = (`′,u′, e′) but v 6= v′. This will fail as v is computed to be the

correct checksum, hence we can directly reject the decryption query.
– (`,u, e) 6= (`′,u′, e′) but ξ = ξ′, this is a collision on the Hash Function.
– (`,u, e, v) 6= (`,u, e, v) and ξ 6= ξ′. This is the argument revolving around

the 2-Universality of the Hash Proof system defined by c,d. c,d gives 2k
equations in 2k + 2 variables, hence answering decryption queries always in
the same span can give at most 1 more equation leaving at least 1 degree of
freedom in the system. ut

Structure-Preserving Smooth Projective Hash Function

For ease of readability we are going to set B =

h
A
c

 and D =


0

...
d


,

and write C ′ = [Br + ξDr]1 the ciphertext without the message M .

– HashKG(L, param), Λ $← Zk+2
p , λ $← Zp, and sets hk1 = Λ, hk2 =

 λ
0

Λk+2

;

16

– ProjKG(hk, (L, param),W), hp1 = hk>1 B, hp2 = hk>2

h0
d

;

– Hash(hk, (L, param),W), outputs a hash value H = [(hk1 + ξhk2)
>C ′]T ;

– ProjHash(hp, (L, param),W,w), outputs the value H ′ = [(hp1 + ξhp2)r]T .
The Smoothness comes inherently from the fact that we have 2k+2 unknowns

in hk while hp gives at most 2k equations. hence an adversary has a negligible
chance to find the real values.

4.2 A Universally Composable Commitment with Adaptive
Security Based on MDDH

We first show how to simply generalize FLM’s commitment from DLin to k-
MDDH.

FLM’s Commitment on DLin. At Asiacrypt 2011, Fischlin, Libert and Man-
ulis presented a universally composable commitment [FLM11] with adaptive se-
curity based on the Decision Linear assumption [BBS04]. We show here how
to generalize their scheme to the Matrix Decisional Diffie-Hellman assump-
tion from [EHK+13] and recalled in Section 2. We first start by recalling their
original scheme. Note that sid denotes the session identifier and cid the com-
mitment identifier and that the combination (sid, cid) is globally unique, as
in [HMQ04,FLM11].
– CRS Generation: SetupCom(1K) chooses a bilinear group (p,G,GT) of

order p > 2K, a generator g of G, and sets g1 = gα1 and g2 = gα2 with
random α1, α2 ∈ Z∗p. It defines the vectors g1 = (g1, 1, g), g2 = (1, g2, g)

and g3 = g1
ξ1g2

ξ2 with random ξ1, ξ2 ∈ Z∗p, which form a Groth-Sahai
CRS g = (g1,g2,g3) for the perfect soundness setting. It then chooses a
collision-resistant hash function H : {0, 1}∗ → Zp and generates a public
key pk = (X1, . . . , X6) for the linear Cramer-Shoup encryption scheme. The
CRS consists of crs = (K,G,GT , g,g, H, pk).

– Commitment algorithm: Com(crs,M, sid, cid, Pi, Pj): to commit to mes-
sage M ∈ G for party Pj , party Pi parses crs as (K,G,GT , g,g, H, pk) and
conducts the following steps:
• It chooses random exponents r, s in Zp and computes a linear Cramer-

Shoup encryption ψCS = (U1, U2, U3, U4, U5) of M ∈ G under the label
` = Pi‖sid‖cid and the public key pk.

• It generates a NIZK proof πval−enc that ψCS = (U1, U2, U3, U4, U5) is in-
deed a valid encryption ofM ∈ G. This requires to commit to exponents
r, s and prove that these exponents satisfy the multi-exponentiation
equations U1 = g1

r, U2 = g2
s, U3 = gr+s, U4/M = X5

rX6
s and

U5 = (X1X3
α)r · (X2X4

α)s.
• Pi erases (r, s) after the generation of πval−enc but retains the DM =
πval−enc.

The commitment is ψCS .

17

– Verification algorithm: VerCom(crs,M,DM , sid, cid, Pi, Pj): checks the proof
πval−enc and ignores the opening if the verification fails.

– Opening algorithm: OpenCom(crs,M,DM , sid, cid, Pi, Pj): reveals M and
DM = πval−enc to Pj .
The extraction algorithm uses the Cramer-Shoup decryption algorithm, while

the equivocation uses the simulator of the NIZK. It is shown in [ABB+13]
that the IND-CCA security notion for C and the computational soundness of π
make it strongly-binding-extractable, the IND-CCA security notion and the zero-
knowledge property of the NIZK provide the strong-simulation-indistinguishabi-
lity.

Moving to k-MDDH: We now show how to extend the previous commitment
to the k−MDDH assumption. Compared to the original version of the commit-
ment, we split the proof πval−enc into its two parts: the NIZK proof denoted here
as [Π]1 is still revealed during the opening algorithm, while the Groth-Sahai
commitment [R]2 of the randomness r of the Cramer-Shoup encryption is sent
during the commitment phase. Furthermore, since the hash value in the Cramer
Shoup encryption is used to link the commitment with the session, we include
this value [R]2 to the label, in order to ensure that this extra commitment in-
formation given with the ciphertext is the original one. We refer the reader to
the original security proof in [FLM11, Theorem 1], which remains exactly the
same, since this additional commitment provides no information (either compu-
tationally or perfectly, depending on the CRS), and since the commitment [R]2
is not modified in the equivocation step (only the value [Π]1 is changed).
– CRS Generation: algorithm SetupCom(1K) chooses a bilinear asymmetric

group (p,G1,G2,GT , e, g1, g2) of order p > 2K, and a set of generators [A]1
corresponding to the underlying matrix assumption.
As explained in [EHK+13], following their notations, one can define a Groth-
Sahai CRS by picking w $← Zk+1

p , and setting [U]2 = [B||Bw]2 for a binding
CRS, and [B||Bw+ (0||z)>]2 otherwise, where [B]2 is an k−MDDH basis,
and w, z are the elements defining the challenge vector.
For the Cramer Shoup like CCA-2 encryption, one additionally picks t1, t2, z

$←
Zk+1
p , and a Universal One-Way Hash Function H and sets [h]1 = [z ·A]1,

[c]1 = [t1A]1, [d]1 = [t2A]1.
The CRS consists of crs = (K, p,G1,G2,GT , [A]1 ∈ Gk×k+1

1 , [U]2, [h]1 ∈
Gk1 , [c]1 ∈ Gk1 , [d]1 ∈ Gk1 ,H).

– Commitment algorithm: Com(crs,M, sid, cid, Pi, Pj): to commit to mes-
sage M ∈ G for party Pj , party Pi conducts the following steps:
• It chooses random exponents r in Zkp and commits to r in [R]2 with

randomness ρ $← Zk×k+1
p , setting [R]2 = [Uρ+ ι2(r)]2 ∈ Gk×k+1

2 . It also
computes a Cramer-Shoup encryption ψCS = [C]1 of M ∈ G1 under the
label ` = Pi‖sid‖cid and the public key pk:

[C]1 = [Ar||hr +M ||(c+ d�H(`||C1||C2||R))r]1 = [C1||C2||C3]1

For simplicity we write `′ = `||[C1]1||[C2]1||[R]2.

18

• It generates a NIZK proof DM = [Π]1 that ψCS is indeed a valid en-
cryption of M ∈ G1 for the committed r in [R]2. This requires to prove
that these exponents satisfy the multi-exponentiation equations:
[C1]1 = [Ar]1, [C2 −M]1 = [hr]1, [C3 = (c+ d�H(`′))r]1

The associated proof is then [Π]1 = [ρ>(A||h||c+ d�H(`′))]1.
• Pi erases r after the generation of [R]2 and [Π]1 but retains DM = [Π]1.

The commitment is ([C]1, [R]2).
– Verification algorithm: VerCom(crs,M,DM , sid, cid, Pi, Pj): checks the con-

sistency of the proof πval−enc with respect to [C]1 and [R]2. and ignores the
opening if the verification fails.

– Opening algorithm: OpenCom(crs,M,DM , sid, cid, Pi, Pj): reveals M and
DM = [Π]1 to Pj .
One can easily see that [C3]1 is the projective hash computation of a 2-

universal hash proof on the language “[C1]1 in the span of A”, with [C2]1 being
an additional term that uses the same witness to mask the committed message,
so that [C]1 is a proper generalization of the Cramer Shoup CCA-2 encryption.
Details on the k −MDDH Groth-Sahai proofs are given in Appendix B.

It is thus easy to see that this commitment is indeed a generalization of the
FLM non-interactive UC commitment with adaptive corruption under reliable
erasures (in which we switched the CRS, the Cramer-Shoup encryption and the
Groth Sahai proof in the k −MDDH setting).

4.3 A Structure-Preserving Smooth Projective Hash Function
Associated with this Commitment

Structure-Preserving Smooth Projective Hash Function. We now want
to supersede the verification equation of the commitment by a smooth projective
hash function providing implicit decommitment, simply using the proof as a
witness. We consider the language of the valid encryptions ofM using a random r
which is committed into [R]2:
LM = {[C]1 | ∃r∃ρ such that [R]2 = [Uρ+ ι2(r)]2

and [C]1 = [Ar||hr +M ||(c+ d�H(`||C1||C2||R))r]1}

The verifier picks a random hk = α
$← Zk+3×k+1

p and sets hp = [α�U]2.
On one side, the verifier then computes:
Hash(hk, ([C]1, [R]2)) = [α� ((C1||C2 −M ||C3)− (A||h||c+ d�H(`′)) ·R)]T

While the prover computes ProjHash(hp,Π) = [Π · hp]T .
– Correctness: comes directly from the previous equations.
– Smoothness: on a binding CRS, [U]2’s last column is in the span of the k

first (which are simply [B]2), hence as hk ∈ Zk+1
p , the k equations given in

hp are not enough to determine its value and so it is still perfectly hidden
from an information theoretic point of view.

– Pseudo-Randomness: Under the MDDH assumption, the subset membership
decision is a hard problem, as the generalized Cramer Shoup is IND-CCA-2,
and [R]2 is an IND-CPA commitment to r.

19

Theorem 9. Under the k−MDDH assumption, the above SP-SPHF is strongly
pseudo-random on a perfectly hiding CRS.

For sake of compactness, the proof is postponed to Appendix D of the addi-
tional content.

Efficiency. The rough size of a projection key is k×(k+3) (number of elements
in each proof times number of proofs). It should be noted, that for a CS-SPHF
(in the case of the oblivious transfer), instead of repeating the projection key
k + 3 times (in order to verify each component of the Cramer Shoup), one can
generate a value ε $← Zp, an hp for a single equation, and say that for the other
component, one simply uses hpε

i

, as the trick explained in [ABB+13].

5 Application: Nearly Optimal Size 1-out-of-m Oblivious
Transfer

Our oblivious transfer scheme builds upon that presented by Abdalla et al. at
Asiacrypt 2013 [ABB+13]. In their scheme, the authors use a SPHF-friendly
commitment (which is a notion stronger than a UC commitment) along with
its associated SPHF in a now classical way to implicitly open the commitment.
They claim that the commitment presented in [FLM11] cannot be used in such an
application, since it is not “robust”, which is a security notion meaning that one
cannot produce a commitment and a label that extracts to x′ (possibly x′ = ⊥)
such that there exists a valid opening data to a different input x, even with
oracle access to the extraction oracle (ExtCom) and to fake commitments (using
SCom). Indeed, because of the perfectly-hiding setting of Groth-Sahai proofs,
for any ciphertext C and for any message x, there exists a proof Π that makes
the verification of C on x. However, we show in this section that in spite of this
result, such a commitment can indeed be used in a relatively close construction
of oblivious transfer scheme. To this aim, we use our construction of structure-
preserving SPHF on FLM’s commitment, simply using the decommitment value
(a Groth-Sahai proof) as the witness, presented in Section 4.3.

It should be noted that the commitment used in [ACP09,ABB+13] has the
major drawback of leaking the bit-length of the committed message. While in
application to Oblivious Transfer this is not a major problem, for PAKE this
is a way more sensitive issue, as we show in the next section. Moreover, using
FLM’s commitment is conceptually simpler, since the equivocation only needs
to modify the witness, allowing the user to compute honestly its message in the
commitment phase, whereas in the original commitments, a specific flow had to
be sent during the commitment phase (with a different computation and more
witnesses for the SPHF, than in the honest computation of the commitment).

5.1 A Universally Composable Oblivious Transfer with Adaptive
Security Based on MDDH

We denote by DB the database of the server containing t = 2m lines, and j
the line requested by the user in an oblivious way. We assume the existence of

20

a Pseudo-Random Generator (PRG) F with input size equal to the plaintext
size, and output size equal to the size of the messages in the database and a
IND-CPA encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa)
with plaintext size at least equal to the security parameter. The commitment
used is the variant of [FLM11] described above. It is denoted as Com` in the
description of the scheme, with ` being a label. Note that sid denotes the session
identifier, ssid the subsession identifier and cid the commitment identifier and
that the combination (sid, cid) is globally unique, as in [HMQ04,FLM11].

We present our construction, in Figure 3, following the global framework
presented in [ABB+13], for an easier efficiency comparison (we achieve nearly
optimality in the sense that it is linear in the number of lines of the database,
but with a constant equal to 1 only).

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Pre-flow:
1. Server generates a key pair (pk, sk)

$← KeyGencpa(paramcpa) for E , stores sk and
completely erases the random coins used by KeyGen

2. Server sends pk to User
Index query on j:
1. User chooses a random value J , computes S ← F (J) and encrypts J under pk:

c
$← Encryptcpa(pk, J)

2. User computes ([C]1, [R]2, [Π]1)
$← Com`(crs, j, sid, cid, Pi, Pj) with ` =

(sid, ssid, Pi, Pj)
3. User stores [Π]1 and completely erases J and the random coins used by Com

and Encryptcpa and sends [C]1, [R]2 and c to Server
Database input (n1, . . . , nt):
1. Server decrypts J ← Decryptcpa(sk, c) and computes S ← F (J)

2. For s = 1, . . . , t: Server computes hks
$← HashKG(Ls), hps ← ProjKG(hks,Ls),

Ks ← Hash(hks, (Ls, (`, [C]1, [R]2))), and Ns ← S ⊕Ks ⊕ ns
3. Server erases everything except (hps, Ns)s=1,...,t and sends them over a secure

channel
Data recovery:
Upon receiving (hps, Ns)s=1,...,t, User computes
Kj ← ProjHash(hpj , (Lj , `, [C]1, [R]2), [Π]1) and gets nj ← S ⊕Kj ⊕Nj .

Fig. 3. UC-Secure 1-out-of-t OT from an SPHF-Friendly Commitment (for Adaptive
Security)

Theorem 10. The oblivious transfer scheme described in Figure 3 is UC-secure
in the presence of adaptive adversaries, assuming reliable erasures and authen-
ticated channels.

The proof is given in Appendix E of the additional content for completeness.

21

6 Application: Adaptive and Length-Independent
One-Round PAKE

Password-authenticated key exchange (PAKE) protocols allow two players to
agree on a shared high entropy secret key, that depends on their own pass-
words only. Katz and Vaikuntanathan recently came up with the first concrete
one-round PAKE protocols [KV09], where the two players just have to send
simultaneous flows to each other. Following their idea, [BBC+13b] proposed a
round-optimal PAKE protocol UC secure against passive corruptions. On the
other hand, [ACP09] proposed the first protocol UC secure against adaptive
corruptions, and [ABB+13] built upon both [KV09] and [ACP09], to propose
the first one-round protocol UC secure against adaptive corruptions. Unfortu-
nately, both of them share a drawback, which is that they use a commitment
growing linearly with the length of a password. Besides being an efficiency prob-
lem, it is over all a security issue in the UC framework. Indeed, the simulator
somehow has to “guess” the length of the password of the player it simulates,
otherwise it is unable to equivocate the commitment (since the commitment re-
veals the length of the password it commits to). Since such a guess is impossible,
the apparently only solution to get rid of this limitation seems to give the users
an upper-bound on the length of their passwords and to ask them to compute
commitments of this length, which leads to costly computations.

In this section, we are now going to present a constant-size, round-optimal,
PAKE UC secure against adaptive corruptions. It builds upon the protocol pro-
posed in [ABB+13], using the same techniques as in the former section to avoid
the apparent impossibility to use FLM’s commitment.

CRS: crs $← SetupCom(1K).
Protocol execution by Pi with pwi:
1. Pi generates hki $← HashKG(Lpwi

), hpi ← ProjKG(hki,Lpwi
)

and erases any random coins used for the generation
2. Pi computes ([Ci]1, [Ri]2, [Πi]1) = Com`i(crs, pwi, sid, cid, Pi, Pj) with

`i = (sid, Pi, Pj , hpi)
3. Pi stores [Πi]1, completely erases random coins used by Com

and sends hpi, [Ci]1, [Ri]2 to Pj

Key computation: Upon receiving hpj , [Cj]1, [Rj]2 from Pj
1. Pi computes H ′i ← ProjHash(hpj , (Lpwi

, `i, [Ci]1, [Ri]2), [Πi]1))
and Hj ← Hash(hki, (Lpwi

, `j , [Cj]1, [Rj]2)) with `j = (sid, Pj , Pi, hpj)
2. Pi computes ski = H ′i ·Hj and erases everything else, except pwi.

Fig. 4. UC-Secure PAKE from the revisited FLM Commitment

It should be noted that we need the classical requirement for extraction
capabilities (see for example [Lin11,BCPV13] for a detailed explanation), i.e. a
password pw is assumed to be a bit-string of length bounded by log p − 2, and

22

then one can use a bijective embedding function G mapping {0, 1}|p|−2 in G1.
For the sake of simplicity, we continue to write pwi in the high level description,
but it should be interpreted as a commitment to G(pwi).

The language Lpwi
is then the language of valid Cramer Shoup encryptions

of the embedded password G(pwi), consistent with the randomness committed
in the second part, and the rest of the label.

Theorem 11. The Password Authenticated Key Exchange scheme described in
Figure 4 is UC-secure in the presence of adaptive adversaries, assuming reliable
erasures and authenticated channels.

The proof is given in Appendix F of the additional content for completeness.

7 Application: Anonymous Credential-Based Message
Transmission

Anonymous Credential protocols [Cha86,Dam90,CL01] allow to combine secu-
rity and privacy. Typical credential use involves three main parties. Users need
to interact with some authorities to obtain their credentials (assumed to be a
set of attributes validated / signed), and then prove to a server that a subpart
of their attributes verifies an expect policy.

In this section, we give another go to Anonymous Credential, this time
to allow message recovery. This is is between Anonymous Credential but also
Conditional Oblivious Transfer [Rab81] and Oblivious Signature-Based Enve-
lope [LDB03].

We present a constant-size, round-optimal protocol that allow to use a Cre-
dential to retrieve a message without revealing the Anonymous Credentials in a
UC secure way, by simply building on the commitment proposed earlier in the
paper.

7.1 Anonymous Credential System

In a Attribute-Based Credential system, we assume that different organization
issue credentials to users. A user i possesses a set of credential Credi of the form
{Credi,j , vkj} where organization j assesses that the user verifies some property.
(The DMV will assess that the user is indeed capable of driving, the university
that she has a bachelor in Computer Science, while Squirrel Airways that she
reached the gold membership, all those authorities don’t communicate with each
other).

A Server might have an access Policy P requiring some elements (For example
being a female, with a bachelor, and capable of driving).

– Setup(1K): A probabilistic algorithm that gets a security parameter K, an
upper bound t for the size of attribute sets and returns the public parameters
param

23

– OKeyGen(param): Generates a pair of signing keys skj , vkj for each organi-
zation.

– UKeyGen(param): Generates a pair of keys ski, vki for each use.
– CredObtain(〈Ui, ski〉, 〈Oj , skj〉) Interactive process that allows a user i to ob-

tain some credentials from organization j by providing his public key vkj
and a proof that it belongs to him.

– CredUse(〈Ui,Credi, ski〉, 〈S, P,M〉) Interactive process that allows a user i to
access a message guarded by the server S under some policy P by using the
already obtained credentials.

An attribute-based anonymous credential system is called secure if it is cor-
rect, unforgeable and anonymous.

7.2 Construction

CRS generation:
crs

$← SetupCom(1K), paramcpa
$← Setupcpa(1

K).

Pre-flow:
1. Server generates a key pair (pk, sk)

$← KeyGencpa(paramcpa) for E , stores sk and
completely erases the random coins used by KeyGen

2. Server sends pk to User
Credential Use by user i:
1. User chooses a random value J , computes S ← F (J) and encrypts J under pk:

c
$← Encryptcpa(pk, J)

2. User computes ([C]1, [R]2, [Π]1)
$← Com`(crs,Credi, sid, cid, Pi, Pj) with ` =

(sid, ssid, Pi, Pj)
3. User stores [Π]1 and completely erases J and the random coins used by Com

and Encryptcpa and sends [C]1, [R]2 and c to Server
Database input M with policy P :
1. Server decrypts J ← Decryptcpa(sk, c) and computes S ← F (J)

2. Server computes hkP
$← HashKG(LP), hpP ← ProjKG(hkP ,LP), KP ←

Hash(hkP , (LP , (`, [C]1, [R]2))), and NP ← S ⊕KP ⊕M
3. Server erases everything except (hpP , NP) and sends them over a secure channel
Data recovery:
Upon receiving (hpP , NP), User computes
K ← ProjHash(hpP , (LP , `, [C]1, [R]2), [Π]1) and gets M ← S ⊕K ⊕NP .

Fig. 5. UC-Secure Anonymous Credential from an SPSPHF-Friendly Commitment (for
Adaptive Security)

Smooth Projective Hash Functions have been shown to handle complex lan-
guages [ACP09,BBC+13a], those properties can naturally be extended to Struc-
ture Preserving Smooth Projective Hash Function, allowing credentials to be
expressive as disjunction / conjunction of sets of credentials, range proofs, or

24

even composition (having a credential from authority A signed by authority B
for example).

What is really new with the Structure Preserving part is that now a user can
request to have a credential on a witness by requiring a Structure-Preserving
signature on it, while before scalars either required to give too much information
to the server B or prevented chaining as most signatures requires some sort of
Hashing (BLS requires an explicit Hash, while signature à la Waters requires to
handle a bit per bit version of the message hindering drastically the efficiency of
the protocol). This allows more possibilities in both the Credential Generation
step and the policy required for accessing messages, while maintaining an efficient
construction.

Theorem 12. The Anonymous Credential Protocol described in Figure 5 is UC-
secure in the presence of adaptive adversaries, assuming reliable erasures and
authenticated channels.

The ideal functionality and a sketch of the proof are given in Appendix G of
the additional content for completeness.

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and
David Pointcheval. SPHF-friendly non-interactive commitments. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269
of LNCS, pages 214–234. Springer, December 2013.

[ACD+12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo
Nishimaki, and Miyako Ohkubo. Constant-size structure-preserving sig-
natures: Generic constructions and simple assumptions. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
4–24. Springer, December 2012.

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno
de Medeiros. Practical group signatures without random oracles. Cryp-
tology ePrint Archive, Report 2005/385, 2005. http://eprint.iacr.org/
2005/385.

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projec-
tive hashing for conditionally extractable commitments. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 671–689. Springer,
August 2009.

[ADK+13] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and
Miyako Ohkubo. Tagged one-time signatures: Tight security and optimal
tag size. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013,
volume 7778 of LNCS, pages 312–331. Springer, February / March 2013.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 209–236. Springer, August 2010.

[AGHO11] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Optimal structure-preserving signatures in asymmetric bilinear groups. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
649–666. Springer, August 2011.

25

[AGOT14a] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi.
Structure-preserving signatures from type II pairings. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 390–407. Springer, August 2014.

[AGOT14b] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Uni-
fied, minimal and selectively randomizable structure-preserving signatures.
In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 688–
712. Springer, February 2014.

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. Efficient UC-secure authenticated key-exchange
for algebraic languages. In Kaoru Kurosawa and Goichiro Hanaoka, edi-
tors, PKC 2013, volume 7778 of LNCS, pages 272–291. Springer, Febru-
ary / March 2013.

[BBC+13b] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval,
and Damien Vergnaud. New techniques for SPHFs and efficient one-
round PAKE protocols. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475. Springer,
August 2013.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
41–55. Springer, August 2004.

[BC15] Olivier Blazy and Céline Chevalier. Generic construction of uc-secure
oblivious transfer. Cryptology ePrint Archive, Report 2015/560, 2015.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin.
Secure computation without authentication. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 361–377. Springer, August
2005.

[BCPV13] Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
Analysis and improvement of Lindell’s UC-secure commitment schemes.
In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and
Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages
534–551. Springer, June 2013.

[BCV15] Olivier Blazy, Céline Chevalier, and Damien Vergnaud. Non-interactive
zero-knowledge proofs of non-membership. Cryptology ePrint Archive,
Report 2015/072, 2015. http://eprint.iacr.org/.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks. In 1992 IEEE
Symposium on Security and Privacy, pages 72–84. IEEE Computer Society
Press, May 1992.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
key exchange secure against dictionary attacks. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, May
2000.

[BPV12] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal
privacy-preserving protocols with smooth projective hash functions. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 94–111.
Springer, March 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

26

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40.
Springer, August 2001.

[Cha86] David Chaum. Showing credentials without identification: Signatures
transferred between unconditionally unlinkable pseudonyms. In Franz
Pichler, editor, EUROCRYPT’85, volume 219 of LNCS, pages 241–244.
Springer, April 1986.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
404–421. Springer, May 2005.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of
key exchange and secure channels. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 337–351. Springer, April / May
2002.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou.
Efficient, adaptively secure, and composable oblivious transfer with a
single, global CRS. In Kaoru Kurosawa and Goichiro Hanaoka, edi-
tors, PKC 2013, volume 7778 of LNCS, pages 73–88. Springer, Febru-
ary / March 2013.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 93–118. Springer, May 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In 34th
ACM STOC, pages 494–503. ACM Press, May 2002.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25.
Springer, August 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer, April / May 2002.

[Dam90] Ivan Damgård. Payment systems and credential mechanisms with prov-
able security against abuse by individuals. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 328–335. Springer, August 1990.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Vil-
lar. An algebraic framework for Diffie-Hellman assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 129–147. Springer, August 2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, August 1984.

[FLM11] Marc Fischlin, Benoît Libert, and Mark Manulis. Non-interactive and re-
usable universally composable string commitments with adaptive security.
In Dong Hoon Lee and XiaoyunWang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 468–485. Springer, December 2011.

27

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based au-
thenticated key exchange. In Eli Biham, editor, EUROCRYPT 2003, vol-
ume 2656 of LNCS, pages 524–543. Springer, May 2003. http://eprint.
iacr.org/2003/032.ps.gz.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, April 2008.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party com-
putation in two rounds. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 111–129. Springer, August 2007.

[HMQ04] Dennis Hofheinz and Jörn Müller-Quade. Universally composable com-
mitments using random oracles. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 58–76. Springer, February 2004.

[JR14] Charanjit S. Jutla and Arnab Roy. Dual-system simulation-soundness
with applications to uc-pake and more. Cryptology ePrint Archive, Report
2014/805, 2014.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 78–95. Springer, May 2005.

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-
authenticated key exchange using human-memorable passwords. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 475–
494. Springer, May 2001.

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing
and password-based authenticated key exchange from lattices. In Mitsuru
Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 636–652.
Springer, December 2009.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-
based authenticated key exchange. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 293–310. Springer, March 2011.

[LDB03] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based
envelope. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd
ACM PODC, pages 182–189. ACM, July 2003.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments
based on the DDH assumption. In Kenneth G. Paterson, editor, EU-
ROCRYPT 2011, volume 6632 of LNCS, pages 446–466. Springer, May
2011.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, 12th SODA, pages 448–457. ACM-SIAM, January
2001.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437.
ACM Press, May 1990.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, August
2008.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. Tech-
nical Report TR81, Harvard University, 1981.

28

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Au-
gust 1992.

A Commitments and Smooth Projective Hash Functions

A.1 Encryption

An encryption scheme C is described through four algorithms (Setup,KeyGen,Encrypt,Decrypt):
– Setup(1K), where K is the security parameter, generates the global parame-

ters param of the scheme;
– KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a

(private) decryption key dk;
– Encrypt(ek,M ; ρ) outputs a ciphertext C, on M , under the encryption key

pk, with the randomness ρ;
– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.
Such encryption scheme is required to have the following security properties:

– Correctness: For every pair of keys (ek, dk) generated by KeyGen, every mes-
sagesM , and every random ρ, we should have Decrypt(dk,Encrypt(ek,M ; ρ)) =
M .

– Indistinguishability under Adaptive Chosen Ciphertext Attack IND-CCA (
[NY90,RS92]):
• IND-CCA: An adversary should not be

able to efficiently guess which message
has been encrypted even if he chooses
the two original plaintexts, and ask
several decryption of ciphertexts dif-
ferent from challenge one.
The ODecrypt oracle outputs the de-
cryption of c under the challenge de-
cryption key dk. The input queries (c)
are added to the list CT of decrypted
ciphertexts.

Expind-cca−bE,A (K)

1. param← Setup(1K)
2. (pk, dk)← KeyGen(param)
3. (M0,M1)← A(FIND : pk,ODecrypt(·))
4. c∗ ← Encrypt(ek,Mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·))
6. IF (c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

A.2 Commitments

A commitment scheme is said equivocable if it has a second setup SetupComT(1K)
that additionally outputs a trapdoor τ , and two algorithms
– SimCom`(τ) takes as input the trapdoor τ and a label ` and outputs a pair

(C, eqk), where C is a commitment and eqk an equivocation key;
– OpenCom`(eqk, C, x) takes as input a commitment C, a label `, a message
x, an equivocation key eqk, and outputs an opening data δ for C and ` on x.

such as the following properties are satisfied: trapdoor correctness (all simulated
commitments can be opened on any message), setup indistinguishability (one

29

cannot distinguish the CRS ρ generated by SetupCom from the one generated
by SetupComT) and simulation indistinguishability (one cannot distinguish a
real commitment (generated by Com) from a fake commitment (generated by
SCom), even with oracle access to fake commitments), denoting by SCom the
algorithm that takes as input the trapdoor τ , a label ` and a message x and
which outputs (C, δ)

$← SCom`(τ, x), computed as (C, eqk)
$← SimCom`(τ) and

δ ← OpenCom`(eqk, C, x).
A commitment scheme C is said extractable if it has a second setup SetupComT(1K)

that additionally outputs a trapdoor τ , and a new algorithm
– ExtCom`(τ, C) which takes as input the trapdoor τ , a commitment C, and

a label `, and outputs the committed message x, or ⊥ if the commitment is
invalid.

such as the following properties are satisfied: trapdoor correctness (all commit-
ments honestly generated can be correctly extracted: for all `, x, if (C, δ)

$←
Com`(x) then ExtCom`(C, τ) = x), setup indistinguishability (as above) and
binding extractability (one cannot fool the extractor, i.e., produce a commit-
ment and a valid opening data to an input x while the commitment does not
extract to x).

A commitment scheme is said extractable and equivocable if the indistinguish-
able setup algorithm outputs a common trapdoor that allows both equivocability
and extractability, and the following properties are satisfied: strong simulation
indistinguishability (one cannot distinguish a real commitment (generated by
Com) from a fake commitment (generated by SCom), even with oracle access
to the extraction oracle (ExtCom) and to fake commitments (using SCom)) and
strong binding extractability (one cannot fool the extractor, i.e., produce a com-
mitment and a valid opening data (not given by SCom) to an input x while the
commitment does not extract to x, even with oracle access to the extraction
oracle (ExtCom) and to fake commitments (using SCom)).

A.3 Smooth Projective Hash Functions Used With Commitments

The strong pseudo-randomness property, from [BBC+13b], is defined by the ex-
periment Expc-s-ps-randA (K) depicted in Figure 6. It is a strong version of the
pseudo-randomness where the adversary is also given the hash value of a com-
mitment of its choice (obviously not generated by SCom or SimCom though,
hence the test with Λ which also contains (C, `, x)). This property only makes
sense when the projection key does not depend on the word C to be hashed. It
thus applies to KV-SPHF, and CS-SPHF only.

30

Expc-s-ps-rand-bA (K)

(ρ, τ)
$← SetupComT(1K)

(`, x, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(ρ); C $← SimCom`(τ)

hk
$← HashKG(Lx); hp← ProjKG(hk, Lx,⊥)

If (b = 0) H ← Hash(hk, Lx, (`, C))

Else H
$← Π

(`′, C′, state)
$← ASCom·(τ,·),ExtCom·(τ,·)(state, C, hp, H)

If ((`′, ?, C′) ∈ Λ) THEN H ′ ←⊥
Else H ′ ← Hash(hk, Lx, (`

′, C′)

Return ASCom·(τ,·),ExtCom·(τ,·)(H ′)

Fig. 6. Strong Pseudo-Randomness

31

Additional Content

32

B Groth Sahai Methodology
Groth and Sahai [GS08] have introduced a methodology to build Non-Interactive
ZK / Witness Indistinguishable proofs of satisfiability of pairing-product like
equations. The three types of equations handled by such proofs are the following:
A pairing-product equation over variables X = (X1, . . . ,Xm) ∈ Gm1 and Y =

(Y1, . . . ,Yn) ∈ Gn2 is of the form

〈A,Y〉 · 〈X ,B〉 · 〈X , ΓY〉 = tT , (1)

defined by constants A ∈ Gn
1 , B ∈ Gm

2 , Γ = (γi,j)1≤i≤m
1≤j≤n

∈ Zm×n
p and

tT ∈ GT .
A multi-scalar multiplication equation over variables y ∈ Zn

p and X ∈ Gm
1 is

of the form
〈y,A〉 · 〈b,X 〉 · 〈y, ΓX 〉 = T, (2)

defined by the constants A ∈ Gn
1 , b ∈ Zm

p , Γ ∈ Zm×n
p and T ∈ G1.

A multi-scalar multiplication equation in group G2 is defined analogously.
A quadratic equation in Zp over variables x ∈ Zm

p and y ∈ Zn
p is of the form

〈a,y 〉+ 〈x, b 〉+ 〈x, Γy 〉 = t, (3)

defined by the constants a ∈ Zn
p , b ∈ Zm

p , Γ ∈ Zm×n
p and t ∈ Zp.

Groth and Sahai have detailed generic construction of the proofs π and spe-
cific instantiations under different security assumptions. We will focus on Linear
Equations in the following, as they are those needed in the rest of the paper,
that is to say equations with variables in only one of the two groups.

B.1 SXDH Instantiation

In order to generate a proof of such relations, the methodology invites us to
commit to the witness vectors X with randomness R, and to Y with S with two
double ElGamal commitments scheme, one in G1 and one in G2 with respective
commitment keys u ∈ G2×2

1 and v ∈ G2×2
2 . As both need to be semantically

secure, we will work under the SXDH assumption.

We will note ι1(g1)=(11, g1), ι2(g2)=(12, g2), ιT (tT) :=

(
1T 1T
1T tT

)
and focus

on product pairing equations.
Assuming elements were committed in G2 following the way explained in 2,

following [GS08] notations, we then have access to algorithms:
– Prove((Yj), (u,v), E; (Sj), T ∈ Z2×2

p) outputs a proof π, together with d ∈
G2×n

2 commitments to the witnesses with randomness S ∈ Z2×n. The proof
is composed of two elements in G1 : π = S>A

– Verify(d, ck, E, π) checks if:
(
ι1(A) • d

)
= ιT (tT)�

(
ι1(π) • v

)
There is also an algorithm that allows anyone to randomize the proof, even

without the knowledge of the witnesses.
The Soundness and the Witness Indistinguishability of such a proof directly

come from the security of the commitment, and the extra randomness T .
Intuitively the proof is here to compensate some part introduced by the ran-

doms in the verification equation: S>A will cancel the randomness in
(
ι1(A) • d

)
.

33

B.2 k −MDDH Instantiation

[EHK+13] defined a generalization of the Groth and Sahai framework for Zero-
Knowledge proof to fit with the Matrix Assumption.

Given an underlying matrix [B]s, one generate a binding CRS, by computing
an additional vector in the span of [B]s:[Bw]s, and a hiding one, if there is some
perturbation to this column. We name the commitment matrix [U] which is the
concatenation of the matrix B and this extra column.

We define the k + 1 vector: ιs(X) := (1, . . . , 1,X), and the k + 1 by k + 1

matrix ιT (tT) :=

1 . . . 1
...
. . . 1

1 1 tT

. This allows us to extend the previous commitment

to their equivalent under k −MDDH.
To commit to an element M, one computes [R]s with randomness ρ $← Zk+1

p ,
setting [R]2 = [Uρ+ ιs(M)]s ∈ Gk+1

2 .
As before, there exist Prove,Verify algorithms allowing to generate a com-

patible, randomizable, Zero-Knowledge proof that the committed value fulfills
some pairing equation.

C Ideal Functionalities

C.1 UC Framework

The goal of the UC framework is to ensure that UC-secure protocols will continue
to behave in the ideal way even if executed in a concurrent way in arbitrary
environments. It is a simulation-based model, relying on the indistinguishability
between the real world and the ideal world. In the ideal world, the security
is provided by an ideal functionality F , capturing all the properties required
for the protocol and all the means of the adversary. In order to prove that a
protocol Π emulates F , one has to construct, for any polynomial adversary A
(which controls the communication between the players), a simulator S such
that no polynomial environment Z (the distinguisher) can distinguish between
the real world (with the real players interacting with themselves and A and
executing the protocol π) and the ideal world (with dummy players interacting
with S and F) with a significant advantage. The adversary can be either adaptive,
i.e. allowed to corrupt users whenever it likes to, or static, i.e. required to choose
which users to corrupt prior to the execution of the session sid of the protocol.
After corrupting a player, A has complete access to the internal state and private
values of the player, takes its entire control, and plays on its behalf.

C.2 UC-Secure Oblivious Transfer

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in
Figure 7. It is inspired from [CKWZ13].

34

The functionality F(1,k)-OT is parameterized by a security parameter K. It interacts
with an adversary S and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving an input (Send, sid, ssid, Pi, Pj, (m1, . . . ,mk)) from party
Pi, with mi ∈ {0, 1}K: record the tuple (sid, ssid, Pi, Pj , (m1, . . . ,mk)) and reveal
(Send, sid, ssid, Pi, Pj) to the adversary S. Ignore further Send-message with the
same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj, s) from party Pj,
with s ∈ {1, . . . , k}: record the tuple (sid, ssid, Pi, Pj , s), and reveal
(Receive, sid, ssid, Pi, Pj) to the adversary S. Ignore further Receive-message with
the same ssid from Pj .

– Upon receiving a message (Sent, sid, ssid, Pi, Pj) from the adversary S:
ignore the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s) is not
recorded; otherwise send (Sent, sid, ssid, Pi, Pj) to Pi and ignore further Sent-
message with the same ssid from the adversary.

– Upon receiving a message (Received, sid, ssid, Pi, Pj) from the adver-
sary S: ignore the message if (sid, ssid, Pi, Pj , (m1, . . . ,mk)) or (sid, ssid, Pi, Pj , s)
is not recorded; otherwise send (Received, sid, ssid, Pi, Pj ,ms) to Pj and ignore
further Received-message with the same ssid from the adversary.

Fig. 7. Ideal Functionality for 1-out-of-k Oblivious Transfer F(1,k)-OT

C.3 UC-Secure Password-Authenticated Key Exchange

We present the PAKE ideal functionality FpwKE on Figure 8. It was described
in [CHK+05].

The main idea behind this functionality is as follows: If neither party is
corrupted and the adversary does not attempt any password guess, then the two
players both end up with either the same uniformly-distributed session key if the
passwords are the same, or uniformly-distributed independent session keys if the
passwords are distinct. In addition, the adversary does not know whether this is a
success or not. However, if one party is corrupted, or if the adversary successfully
guessed the player’s password (the session is then marked as compromised), the
adversary is granted the right to fully determine its session key. There is in
fact nothing lost by allowing it to determine the key. In case of wrong guess (the
session is then marked as interrupted), the two players are given independently-
chosen random keys. A session that is nor compromised nor interrupted is
called fresh, which is its initial status.

Finally notice that the functionality is not in charge of providing the pass-
word(s) to the participants. The passwords are chosen by the environment which
then hands them to the parties as inputs. This guarantees security even in the
case where two honest players execute the protocol with two different passwords:
This models, for instance, the case where a user mistypes its password. It also im-
plies that the security is preserved for all password distributions (not necessarily
the uniform one) and in all situations where the password, are related passwords,
are used in different protocols. Also note that allowing the environment to choose
the passwords guarantees forward secrecy.

35

The functionality FpwKE is parameterized by a security parameter k. It interacts with
an adversary S and a set of parties P1,. . . ,Pn via the following queries:
– Upon receiving a query (NewSession, sid, ssid, Pi, Pj, pw) from party Pi:

Send (NewSession, sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or
if this is the second NewSession query and there is a record (sid, ssid, Pj , Pi, pw

′),
then record (sid, ssid, Pi, Pj , pw) and mark this record fresh.

– Upon receiving a query (TestPwd, sid, ssid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′,
mark the record compromised and reply to S with “correct guess”. If pw 6= pw′,
mark the record interrupted and reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, ssid, Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , pw), and this is the first NewKey
query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then out-

put (sid, ssid, sk) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ = pw,
and a key sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then
output (sid, ssid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length K and send (sid, ssid, sk′)
to Pi.

Either way, mark the record (sid, ssid, Pi, Pj , pw) as completed.

Fig. 8. Ideal Functionality for PAKE FpwKE

In case of corruption, the adversary learns the password of the corrupted
player, after the NewKey-query, it additionally learns the session key.

D Proof of the Strong Pseudo-Randomness

Proof. To prove the strong pseudo-randomness, we use the following sequence
of games:

Game G0: This game is the experiment Expc-s-ps-rand-0A .
Game G1: In this game, we replace (C,R, eqk)

$← SimCom`(τ) by C,R, $←
Com`(M ′′) for some arbitrary M ′′ 6= M . This game is indistinguishable
thanks to strong simulation indistinguishability (Commitments and fake
commitments are the same, only their decommitment witnesses differs but
they are indistinguishably distributed).

Game G2: In this game, we replace the CRS, by a perfectly binding one.
(There are no more equivocation used, only real commitments). Under k −
MDDH, this is indistinguishable from the previous one.

Game G3: In this game, before computingH ′, we computeM ′ ← ExtCom`′(τ, C ′)
and we abort if the decryption is not unique. In other words, if C ′ is not
perfectly binding, we abort. However as we now have a perfectly hiding CRS,
this never happen. This game is indistinguishable from the previous one.

Game G4: In this game, if M ′ 6=M , we replace H ′ by a random value.

36

This game is indistinguishable from the previous one thanks to the smooth-
ness of the SPHF, the fact that M ′ 6=M and C ′ is perfectly binding (oth-
erwise, we would have aborted), so that (`′,C ′,R′) /∈ LM , and thanks to the
fact thatH could have been computed as follows:Π ← OpenCom`(eqk,C,R,M)
and H ← ProjHash(hp, LM , (`,C,R), Π).

Game G5: In this game, when M ′ 6=M , we replace H by a random value.
This game is indistinguishable from the previous one thanks to the smooth-
ness of the SPHF, and the fact that C is a real commitment of M ′′ 6= M
and so that (`,C,R) /∈ LM .
Notice that we could not have done this if M ′ =M , since, in this case, we
still need to use hk to compute the hash value H ′ of C ′. We are handling
this (tricky) case in the following game.

Game G6: In this game, we replace H by a random value, in the case M ′ =
M . So now H will be completely random, in all cases (since it was already
the case when M ′ 6=M).
Finally, we write [r′]2, the vector extracted from R′. There are two cases:
1. If [C ′1]T = [A · r′]T In this case, since C ′ extracts to M , this means

that (`′,C ′,R′) ∈ LM , and its hash value H ′ could be computed know-
ing only hp and r′. Therefore, the hash value H of C looks random by
smoothness.

2. Else C ′1 is not in the correct span, the rows of the matrix Γ in Equation
and the two vectors Θ(C) and Θ(C ′) are linearly independent. Then,
even given access to the hash value H ′ of C ′ and the projection key hp,
the hash value H of C looks perfectly random.

The following games are just undoing the modifications we have done, but
keeping H picked at random

Game G7: In this game, if M ′ 6= M , we compute H ′ as originally (as the
hash value of C ′).
This game is indistinguishable from the previous one thanks to the smooth-
ness of the SPHF.

Game G8: In this game, we do not extract M ′ from C ′ nor abort when C ′ is
not perfectly binding.

Game G9: In this game, we now move back to the perfectly hiding CRS. Under
k −MDDH this game is indistinguishable from the previous one.

Game G10: In this game, we now compute C as originally using SimCom. This
game is indistinguishable thanks to strong simulation indistinguishability.
We remark that this game is exactly the experiment Expc-s-ps-rand-1A .

ut

E Proof of the Oblivious Transfer Scheme

To prove theorem 10, we exhibit a sequence of games. The sequence starts from
the real game, where the adversary A interacts with real players and ends with
the ideal game, where we have built a simulator S that makes the interface
between the ideal functionality F and the adversary A.

37

Compared to the protocol presented in [ABB+13], the difficulty here arises
from the fact that the commitment from [FLM11] needs the CRS to be hiding in
order to be equivocable and that such a CRS forbids the use of smoothness for the
SPHF. Instead of being able to replace all the commitment queries by simulated
(fake) commitments from the beginning of the proof, one has to only allow the
extraction trapdoors (for the Cramer-Shoup encryption inside the commitment,
and for the CPA encryption of J) and to deal carefully with the properties of the
SPHF before being able, at the end of the proof, to turn the CRS into a hiding
one and simulate the commitments. More details follow (the description of the
simulator can be found in the last game).

Game G0: This is the real game.
Game G1: In this game, the simulator generates correctly every flow from the

honest players, as they would do themselves, knowing the inputs (n1, . . . , nt)
and j sent by the environment to the server and the user. In all the sub-
sequent games, the players use the label ` = (sid, ssid, Pi, Pj). In case of
corruption, the simulator can give the internal data generated on behalf of
the honest players.

Game G2: In this game, we just replace the setup algorithms so that the simu-
lator knows the trapdoor for extracting both the Cramer-Shoup encryption,
and the Encryptcpa encryption. Note that we do not change anything more
in the setup, implying the CRS remains a CRS for a perfectly-sound Groth-
Sahai setting. Corruptions are handled the same way.

Game G3: We first deal with honest servers: when receiving a commitment
([C]1, [R]2), the simulator extracts the committed value j from [C]1. Instead
of computing the key Ks, for s = 1, . . . , t with the hash function, it chooses
Ks

$← G for s 6= j.
Since [C]1 is extracted to j, then, with an hybrid proof applying the smooth-
ness for every honest server, on every index s 6= j, the hash value Ks is
indistinguishable from a random value for s 6= j.
In case of corruption, everything has been erased. This game is thus in-
distinguishable from the previous one under the smoothness of the smooth
projective hash function.

Game G4: We continue to deal with honest servers: when receiving a com-
mitment ([C]1, [R]2), the simulator extracts the committed value j from [C]1.
Instead of proceeding as the server would do on (n1, . . . , nt), the simulator
proceeds on (n′1, . . . , n

′
t), with n′j = nj , but n′s = 0 for all s 6= j. Since

the masks Kt, for t 6= s, are random from the previous game, this game is
perfectly indistinguishable from the previous one.

Game G5: We continue to deal with honest servers and more precisely with
the computation of S. If the user and the server are still honest until the
server has received an honestly-generated ([C]1, [R]2, c) from the honest user,
the simulator does not extract J and compute S ← F (J), but directly sets
S ← (J ′), with J ′ a random value, for both players.
With an hybrid proof, applying the IND-CPA property for each session, one
can show the indistinguishability of this game with the previous one.

38

Game G6: We continue to deal with honest servers and more precisely with
the case described in the previous game. In this case, the simulator now
directly sets S as a random value, instead of setting S ← F (J ′).
With an hybrid proof, applying the PRF property for each session, one can
show the indistinguishability of this game with the previous one.

Game G7: We continue to deal with honest servers and now describe how
the simulator generates Kj , in case the user and the server are still honest
until the server has received an honestly-generated ([C]1, [R]2, c) from the
honest user. In this case, thanks to the additional random mask S, the
simulator can send a random Nj on behalf of the server, and postpone the
computation of Kj at the time the user actually receives this value.
Since the adversary does not know any decommitment information [Π]1
for the commitment ([C]1, [R]2) (thanks to the IND-CCA properties of the
Cramer-Shoup and Groth-Sahai encryptions), this hash value Kj is indis-
tinguishable from a random value, applying the pseudo-randomness for ev-
ery honest server. If the server involved in the pseudo-randomness gets cor-
rupted, we are out of this case and can thus abort it.
In case of corruption of the server, everything has been erased. In case of
corruption of the user, the simulator receives the good value nj and is able to
choose R (which is a random value unknown to the adversary, and because
all the other Kt are independent random values too) such that

R⊕ ProjHash(hpj , (Lj , `, [C]1, [R]2))⊕Nj = nj .

This game is thus indistinguishable from the previous one under the pseudo-
randomness.

Game G8: We continue to deal with the same case. On behalf of an honest
server, the simulator proceeds with the database (n′1, . . . , n

′
s), with n′s = 0

for all s even s = j. Since the masks Ks ⊕ S, for any s = 1, . . . , t, are all
independent random values (this comes from the fact that the Kt, for t 6= s,
are independent random values, and S is independently random), this game
is perfectly indistinguishable from the previous one.
We remark that it is therefore no more necessary to know the index j given
by the ideal functionality to the honest user in order to correctly simulate
the server. But note that the knowledge of this index is still necessary to
simulate the user (in particular in case of corruption). We show in the next
games how to get rid of this knowledge.

Game G9: In this game, we completely replace the setup algorithms so that
not only the simulator knows the trapdoor for extracting both the Cramer-
Shoup encryption, and the Encryptcpa encryption, but the CRS also becomes
a CRS for a witness indistinguishable Groth-Sahai setting. This game is
indistinguishable from the former one under the k-MDDH assumption.

Game G10: In this game, we deal with honest users, assuming that the sim-
ulator still knows the index j which has to be committed to by the honest
users and still computes the commitment ([C]1, [R]2) honestly. However, in
case of corruption, it computes the proof [Π]1 using the simulation trapdoor

39

rather than the real witnesses. This game is indistinguishable from the for-
mer one since, in the witness-indistinguishable setting, simulated proofs are
distributed as real proofs.

Game G11: In this game, we still deal with honest users, by without using
anymore the knowledge of j when simulating. On behalf of an honest user,
the simulator chooses an index j′ at random, and computes honestly the
commitments ([C]1, [R2]) to this value j′. In case of corruption, it computes
the proof [Π]1 corresponding to the real j it has just learnt using the simula-
tion trapdoor as in the former game. Since the proofs are already simulated,
this is indistinguishable from the former game thanks to the semantic secu-
rity of the Cramer-Shoup encryption. The argument uses an hybrid proof
and is the same as [CF01, Theorem 8] or [FLM11, Theorem 1].
When it finally receives the values (hps, Ns) from the adversarial server, the
simulator computes, for s = 1, . . . , t, [Πs]1 corresponding to a commitment
of s, Ks ← ProjHash(hps, (Ls, `, [C]1, [R]2), [Πs]1) and gets ns ← S ⊕Ks ⊕
Ns, giving it the database submitted by the server.
The only problem would arise if an adversarial user committed to j and
was able to open its commitment to j′ by computing the correct [Πj′]1.
But since the commitment is universally composable, there is a neglibible
probability for it to be able to compute this witness. Thus, the security again
relies on the pseudo-randomness, making this game indistinguishable from
the previous one.

Game G12: We can now make use of the functionality, which leads to the fol-
lowing simulator:
– when receiving a Send-message from the ideal functionality, which means

that an honest server has sent a pre-flow, the simulator generates a key
pair (pk, sk) $← KeyGen(1K) and sends pk as pre-flow;

– after receiving a pre-flow pk (from an honest or a corrupted server) and a
Receive-message from the ideal functionality, which means that an hon-
est user has sent an index query, the simulator generates ([C]1, [R]2, [Π]1)

$←
Com(crs, j′, sid, cid, Pi, Pj) for a random index j′ and c $← Encrypt(pk, S),
for a random value S, and sends [C]1, [R]2 and c during the index query
phase on behalf of the honest user;

– when receiving a commitment [C]1, [R]2 and a ciphertext c, generated
by the adversary (from a corrupted user), the simulator extracts the
committed value j, and uses it to send a Receive-message to the ideal
functionality. It also decrypts the ciphertext c as J , and computes S =
F (J);

– when receiving (hp1, N1, . . . , hpt, Nt) from the adversary (a corrupted
server), the simulator computes, for i = 1, . . . , t, [Πs]1 corresponding to
a commitment of s, Ks ← ProjHash(hps, (Ls, `, [C]1, [R]2), [Πs]1) and
gets ns ← S ⊕Ks ⊕Ns, giving it the database submitted by the server.
It uses these values to send a Send-message to the ideal functionality.

– when receiving a Received-message from the ideal functionality, together
with nj , on behalf of a corrupted user, from the extracted j, instead of

40

proceeding as the server would do on (n1, . . . , nt), the simulator proceeds
on (n′1, . . . , n

′
t), with n′j = nj , but n′s = 0 for all s 6= t;

– when receiving a commitment [C]1, [R]2 and a ciphertext c, generated
by an honest user (i.e., by the simulator itself), the simulator pro-
ceeds as above on (n′1, . . . , n

′
t), with n′s = 0 for all s, but it chooses

S uniformly at random instead of choosing it as S = F (J); in case
of corruption afterwards, the simulator will adapt S such that S ⊕
ProjHash(hpj , `, (Lj , [C]1, [R]2), [Π]1) ⊕ Nj = nj , where nj is the mes-
sage actually received by the user.

Any corruption either reveals j earlier, which allows a correct simulation of
the user, or reveals (n1, . . . , nt) earlier, which allows a correct simulation of
the server. When the server has sent his flow, he has already erased all his
random coins.
However, there would have been an issue when the user is corrupted after
the server has sent is flow, but before the user receives it, since he has kept
Π1: this would enable the adversary to recover nj from Nj and hpj . This is
the goal of the ephemeral mask S that provides a secure channel.

F Proof of the PAKE Scheme

To prove theorem 11, we exhibit a sequence of games. The sequence starts from
the real game, where the adversary A interacts with real players and ends with
the ideal game, where we have built a simulator S that makes the interface
between the ideal functionality Fpake and the adversary A. For simplicity, in
the proof we are going to use pw loosely to designate an encoding G(pw). A
decryption can lead to two cases, either a valid encoding G(pw) which can then
be reverted to a password pw, or an invalid one. In this last case, the simulator
assumes the password pw to be ⊥.

For the sake of simplicity, since the protocol is fully symmetric in Pi and Pj ,
we describe the simulation for player Pi in order to simplify the notations.

We say that a flow is oracle-generated if the tuple (hpi, [Ci]1, [Ri]2) was sent
by an honest player Pi (or the simulator) and received without any alteration
by the adversary. It is said non-oracle-generated otherwise.

Game G0: This is the real game.
Game G1: First, in this game, the simulator generates correctly every flow

from the honest players, as they would do themselves, knowing the inputs
pwi and pwj sent by the environment to the players. In case of corruption,
the simulator can give the internal data generated on behalf of the honest
players.
In the following, Step 1. is always generated honestly by the simulator, since
the hashing and projection keys do not depend on any private value.

Game G2: In this game, we just replace the setup algorithms so that the
simulator knows the trapdoor for extracting the Cramer-Shoup encryption.
Note that we do not change anything more in the setup, implying the CRS

41

remains a CRS for a perfectly-sound Groth-Sahai setting. Corruptions are
handled the same way.

Game G3: In this game, we deal with the case where Pi receives a flow
oracle-generated from Pj, and they have identical passwords. When
Pi receives an oracle-generated flow from Pj , the simulator checks whether
the two passwords sent by the environment for Pi and Pj are identical.
If so, S computes both hash values using Hash and not ProjHash. More
precisely, it computes H ′i = Hash(hkj , (Lpwj

, `i, [Ci]1, [Ri]2))) (with `i =
(sid, Pi, Pj , hpi)). If the passwords are distinct, it does not change anything.
Recall that it is able to do so since it generated the hashing keys on their
behalf.
Thanks to the correctness of the SPHF, this game is indistinguishable from
the former one.

Game G4: In the next two games, we deal with the case where Pi receives
a flow oracle-generated from Pj, but Pj has been corrupted, and
they have distinct passwords. In this case, S has received the password
pwj of Pj at the corruption time of Pj (pwj was anyway already known),
and knows the corresponding opening data [Πj]1, which it computed hon-
estly on behalf of Pj (since it still knows pwj). If this password is the same,
it does not change anything. If the passwords are distinct, then S com-
putes H ′i as before, but chooses Hj at random: this means that we replace
Hash(hki, (Lpwi

, `j , [Cj]1, [Rj]2)) by a random value, while [Cj]1, [Rj]2 have
been simulated by Com with an opening value [Πj]1 for pwj 6= pwi.
Using an hybrid proof, this game is indistinguishable from the former one
using the smoothness of the SPHF.

Game G5: We conclude for this case: if the passwords are distinct, Pi chooses
a random key.
Since this is a simple syntactical change from the former game, this game is
perfectly indistinguishable from it.

Game G6: In the next two games, we deal with the case where Pi receives
a flow oracle-generated from Pj, and Pj is still honest, and they
have distinct passwords. The simulator checks whether the two pass-
words sent by the environment for Pi and Pj are distinct. If so, S replaces
Hash(hkj , (Lpwj

, `i, [Ci]1, [Ri]2)) by a random value, the first time it is com-
puted (and uses the same random value the second time it is computed by
the partner, and thus only if this is the same password).
In case the player on which we made the modification is later corrupted, this
is out of this case, and thus we abort this hybrid game and go to the next
one. Using an hybrid proof, this game is indistinguishable from the former
one using the pseudo-randomness.

Game G7: We conclude for this case: S sends a random key to Pi.
Since this is a simple syntactical change from the former game, this game is
perfectly indistinguishable from it.

Game G8: In the next two games, we deal with the case where Pi receives
a non-oracle-generated flow (hpj , [Cj]1, [Rj]2). Since this pair is fresh,
either [Cj]1, [Rj]2 is new or hpj (and thus the label) is new. Since [Rj]2 is

42

used in the label of the Cramer-Shoup encryption [Cj]1, either both of them
are new or not. In both cases, S can extract the committed value pw′j on
behalf of Pj .
If this password is the same than that of Pi (which the simulator can easily
check, still having access to the private values sent by the environment), S
still computes both Hj and H ′i as before.
Otherwise (or if the extraction fails), the S computes H ′i as before, but
chooses Hj at random:
Under the smoothness, with an hybrid proof, one can show the indistin-
guishability of the two games.

Game G9: Finally, when Pi receives a non-oracle-generated flow (hpj , [Cj]1, [Rj]2)
that extracts to a different password than that of Pi (or for which extraction
fails), then S sets the session key of Pi as random.
Since this is a simple syntactical change from the former game, this game is
perfectly indistinguishable from it.

Game G10: In this game, we completely replace the setup algorithms so that
not only the simulator knows the trapdoor for extracting the Cramer-Shoup
encryption, but the CRS also becomes a CRS for a witness indistinguishable
Groth-Sahai setting. This game is indistinguishable from the former one
under the k-MDDH assumption.

Game G11: In this game, we still use the knowledge of pwi to compute [C]1, [R]2
but in case of corruption, it computes the proof [Π]1 using the simula-
tion trapdoor rather than the real witnesses. This game is indistinguishable
from the former one since, in the witness-indistinguishable setting, simulated
proofs are distributed as real proofs.

Game G12: We do not use anymore the knowledge of pwi when sim-
ulating an honest player Pi. On behalf of an honest user, the simulator
chooses a password pw′i at random, and computes honestly the commitments
([C]1, [R2]) to this value pw′i. In case of corruption, it computes the proof
[Π]1 corresponding to the real pwi it has just learnt using the simulation
trapdoor as in the former game. Since the proofs are already simulated, this
is indistinguishable from the former game thanks to the semantic security
of the Cramer-Shoup encryption. The argument uses an hybrid proof and is
the same as [CF01, Theorem 8] or [FLM11, Theorem 1].
The only problem would arise if an adversarial user committed to pw′i and
was able to open its commitment to pw′′i by computing the correct [Π]1.
But since the commitment is universally composable, there is a negligible
probability for it to be able to compute this witness. Thus, the security
again relies on the pseudo-randomness, making this game indistinguishable
from the previous one.
The private values of Pi are thus not used anymore in Step 1. and Step 2.
The simulator only needs them to choose how to set the session key of the
players. In the ideal game, this will be replaced by a NewKey-query that will
automatically deal with equality or difference of the passwords, or TestPwd-
query for non-oracle-generated-flows.

43

Game G13: This is the ideal game. Now, the simulator does not know the
private values of the honest players anymore, but can make use of the ideal
functionality. We showed in Game G12 that the knowledge of the private
values is not needed anymore by the simulator, provided it can ask queries
to the ideal functionality:

Initialization: When initialized with security parameter K, the simulator
first runs the commitment setup algorithm obtaining a witness indistin-
guishable crs in which it knows the trapdoors for the extraction of the
Cramer-Shoup encryption and the simulation of the Groth-Sahai proofs.
It initializes the real-world adversary A, giving it crs as common refer-
ence string.

Session Initialization: When receiving a message (NewSession, sid, ssid, Pi, Pj)
from FpwKE , S executes the protocol on behalf of Pi as follows:

1. S generates honestly hki
$← HashKG(L) and hpi ← ProjKG(hki,L);

2. S computes ([Ci]1, [Ri]2, [Πi]1)Com
`i(crs, pwi, sid, cid, Pi, Pj) with `i =

(sid, Pi, Pj , hpi);
3. S sends hpi, [Ci]1, [Ri]2 to Pj .

If Pi gets corrupted, S recovers the password pwi and computes the
corresponding proof [Πi]1, which it is able to give to the adversary.

Key Computation: When receiving a flow (hpj , [Cj]1, [Rj]2):

– if the flow (hpj , [Cj]1, [Rj]2) is non-oracle-generated, S extracts the
password pw′j (or sets it as a dummy value in case of failure of ex-
traction). S then asks for a TestPwd-query to the functionality to
check whether pw′j is the password of Pi. If this password is cor-
rect, S sets pwi = pw′j , computes the corresponding proof [Πi]1,
as well as Hj and H ′i, and then ski, that is passed to the NewKey-
query (compromised case). If the password is incorrect, S asks the
NewKey-query with a random key (interrupted case).

– if the flow (hpj , [Cj]1, [Rj]2) is oracle-generated but the associated
Pj has been corrupted, then S has recovered its password pwj and
has been able to compute the corresponding proof [Πj]1. It can thus
compute skj , that is passed to the NewKey-query (corrupted case).

– if the flow (hpj , [Cj]1, [Rj]2) is oracle-generated and the associated
Pj is still uncorrupted, S asks the NewKey-query with a random key
(normal case).

One can remark that the NewKey-queries will send back the same kinds of
session keys to the environment as in Game G12: if a player is corrupted,
the really computed key is sent back, in case of impersonation attempt,
the TestPwd-query will address the appropriate situation (correct or in-
correct guess), and if the two players are honest, the NewKey-query also
addresses the appropriate situation (same or different passwords).

44

G Sketch of Proof for Anonymous Credential-Based
Message Transmission

G.1 Ideal Functionality

The ideal functionality for Anonymous Credential-Based Message Transmission
is given in Figure 9. The server S agrees to send a message M to the user, as
soon as his credentials Cred comply with the policy P .

The functionality FAC is parametrized by a security parameter K. It interacts with an
adversary S and a set of parties P1,. . . ,PN via the following queries:

– Upon receiving an input (Send, sid, ssid, Pi, Pj,M, P) from party
Pi, with M ∈ {0, 1}K: record the tuple (sid, ssid, Pi, Pj ,M, P) and reveal
(Send, sid, ssid, Pi, Pj , P) to the adversary S. Ignore further Send-message with the
same ssid from Pi.

– Upon receiving an input (Receive, sid, ssid, Pi, Pj,Cred) from
party Pj : ignore the message if (sid, ssid, Pi, Pj ,M, P) is not recorded.
Otherwise, reveal (Receive, sid, ssid, Pi, Pj) to the adversary S and send
(Received, sid, ssid, Pi, Pj ,M ′) to Pj where M ′ = M if the credentials comply
with the policy P , and M ′ = ⊥ otherwise. Ignore further Receive-message with
the same ssid from Pj .

Fig. 9. Ideal Functionality for Anonymous Credential-Based Message Transmis-
sion FAC

G.2 Idea of the Proof

We sketch the proof by giving the simulator S such that no polynomial environ-
ment Z can distinguish between the real world (with the real players interacting
with themselves and A and executing the protocol π) and the ideal world (with
dummy players interacting with S and F) with a significant advantage. Recall
that the adversary is adaptive, which means that it can corrupt any player at
any time during the execution of the protocol.

The main idea is that we use an extractable and equivocable commitment,
which allows the simulator (while simulating the user) to be able to open it
to any credential. This will be useful in case of adaptive corruptions. Indeed,
in this case, if the credentials were correct, the simulator can adapt them and
the randomness so that they seem to belong to the adequate language. From the
server’s side, the extractability of the commitment enables the simulator to know
whether it has to send the correct message (obtained from the functionality in
case the user is corrupted) or not.

This leads to the following simulator:

– when the simulator receives a Send-message from the ideal functionality, it
knows than an honest sender has sent a pre-flow. It thus generates a key pair
(pk, sk)

$← KeyGen(1K) and sends pk as a pre-flow.

45

– when the simulator receives a Receive-message from the ideal functionality,
it knows than an honest user has sent a pre-flow. It also has received a pre-
flow pk (from an honest or a corrupted sender). It then generates an equivo-
cable commitment ([C]1, [R]2, [Π]1)

$← Com`(crs,Credi, sid, cid, Pi, Pj) with
` = (sid, ssid, Pi, Pj) and a ciphertext c $← Encryptcpa(pk, J) where S is a
random value.

– when it simulates an honest server who receives these values ([C]1, [R]2, [Π]1)
and c from a corrupted user, it decrypts the ciphertext c as J , and computes
S = F (J). Next, it extracts the committed values (Credi), which it uses to
send a Receive-message to the ideal functionality.

– when it simulates an honest user receiving (hpP , NP) from a corrupted server,
it computes K ← ProjHash(hpP , (LP , `, [C]1, [R]2), [Π]1) and gets M ←
S ⊕K ⊕NP . It uses this value in a Send query to the ideal functionality.

– when it simulates an honest server and receives a Received-message from
the ideal functionality, giving it M sent to the corrupted user, it proceeds
with this value M .

– when it simulates an honest server facing an honest user (the simulator
itself), on the behalf of which it generated the commitment ([C]1, [R]2, [Π]1)
and the ciphertext c, it uses M = 0 and chooses S at random (instead of
computing it honestly with F (J)). This value S will be adapted during the
simulation in case of corruption afterwards (which gives it the message M
received by the user in case his credentials comply with the policy), so that
M = S ⊕K ⊕NP .

46

