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Hardware Performance of ELmD and ELmD(6,6)

Lilian Bossuet *, Nilanjan Datta , Cuauhtemoc Mancillas-Lépez * and Mridul Nandi
* Hubert Curien Laboratory UMR CNRS 5516 University of Lyon at Saint Etienne
f Indian Statistical Institute, Kolkata

Abstract—ELmD (Encrypt-Linear mix-Decrypt) is a block-
cipher based efficient authenticated encryption scheme, which
is nonce misuse resistant, fully pipeline implementable. ELmD is
a candidate for CAESAR competition and it has been selected
for the second round. In this document, we first consider two
versions of ELmDV2.0 - (i) ELmD: full 10-round AES encryption-
decryption, no intermediate tag, fixed tag size and (ii) ELmD(6,6):
6-round AES encryption-decryption, no intermediate tag, fixed
tag size. We provide the full specification for both the version and
present hardware implementation of the combined encryption-
decryption for both these versions. We discuss and compare the
hardware performance of these versions with other popular AE
schemes like COPA and OCB.

Keywords: Authenticated Encryption, Pipelining, Hardware Per-
formance.

I. INTRODUCTION

The common application of cryptography is to implement
a secure channel between two or more users and then
exchanging information over that channel. Once the users
have a shared key, either through the initial key set-up or
key-exchange, they use this key to authenticate and encrypt
the transmitted information using efficient symmetric-key
algorithms such as message authentication code Mac(-) and
(symmetric-key) encryption Enc(-). The encryption provides
privacy or confidentiality (hiding the sensitive data M, we
call it plaintext or message) resulting a ciphertext C, whereas
a message authentication code provides data-integrity
(authenticating the transmitted message M or the ciphertext
C) resulting a tag T'. An authenticated encryption or AE is an
integrated scheme which provides both privacy of plaintext
and authenticity or data integrity of message or ciphertext.

Now a days, cryptography community is putting a lot
of effort of designing different authenticated encryptions.
CAESAR]J2], a competition for Authenticated Encryption is
going on, in order to identify a portfolio of authenticated
ciphers that offer advantages over AES-GCM and are suitable
for widespread adoption. In the first round of CAESAR, 57 AE
schemes were submitted and 29 of them have been qualified
for the second round.

A. Hardware Implementation of Authenticated Encryption

In the literature there are many works about the hardware
implementations of authenticated encryption based on block
ciphers mainly standardized ones, GCM and CCM. As CCM
has a sequential component for authentication since it uses
CBC-MAC its implementation spectrum is not wide some
examples of its implementation on FPGAs are [12] and [5].

GCM offers many ways for parallel implementations as is
explored in [11] for FPGAs and [15] for ASIC.

For CAESAR submissions there are no much hardware
implementations yet, some of the available implementations
are ICEPOLE [13], SPRING [7] in [1] there are implementa-
tions results for Keyac, OCB, CLOC, PRIMATEs-GIBBON,
PAEQ, PRIMATEsHANUMAN, POET, PRIMATEs-APE and
AES-COPA. All the mentioned implementations are designed
in sequential fashion, in this work we present pipelined
implementations for ELmD and COPA. In general sequential
implementations are small in terms of area but not too much as
lightweight ones, also the throughput is better than lightweight
but not enough for high speed applications. So we are trying
to exploit the properties in this two modes to get a really fast
implementation, able to process huge amount of data trying to
keep the area reasonable.

B. Our Contribution

Here, we have considered ELmD, a CAESAR submission
qualified for the 2nd round of the CAESAR competition.
In this document, we first describe one of the 8 versions
that have been submitted in CAESAR - ELmD with full 10
round AES encryption-decryption, no intermediate tag, fixed
tag length (we call this version as ELmD) in section 2. Then
in section 3, we describe a fast variant of this version - ELmD
with 6 round AES encryption-decryption, no intermediate tag
and fixed tag length. In section 5, we provide combined
pipelined hardware implementation for both the versions and
show that ELmD has good pipelined hardware performance.
Moreover we compared the performance with COPA and make
an important observation that ELmD requires only half of the
area that COPA requires and yet offers higher throughput than
COPA. We also make a comparative study of the hardware
performance of ELmD with OCB-3, GCM, EME2 etc.

II. SPECIFICATION OF ELMD

ELmD is a block-cipher based authenticated encryption
takes an associated data D € {0,1}*, a messages M €
{0,1}*, a nonce N and generates a tagged-ciphertext C' €
{0,1}MI+has in two steps, as described below. We compute
L = Ek(0) and use it to generate masks, during the tagged
ciphertext generation. Here Ex is the block-cipher and instan-
tiated by full 10-round AES.

A. Initial Value Generation.

Suppose we have a nonce N and an associated data
D= (D[1], D[2], ---, D[d—1], D[d]). We set, W'[0] =0
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Fig. 1. Processing of Associated data in ELmD Authenticated Encryption :

For complete final data block

and D[0] = N. Now, the processing of the D[0], called the
initial block and D]..d] to generate the IV, is done as shown
below.

DD[i] = D[i|®3-2°-L fori=0tod
Zli] = Eg(DD[i]) fori=0tod

(Y'[i),W'[i+1)) = p(Z[i],W'[i]) fori=0tod
IV = Wid+1]

INCORPORATING INCOMPLETE FINAL BLOCK. If the final
associated data block (DI[d]) is incomplete, then we make it
complete by 10* masking: D[d] = D[d] || 10*. The generation
DDI0],---,DDJd — 1] is identical as above but we modify
generation of DD[d] as follows (to distinguish from complete
block associated data): DD[d] = D[d] ©3-7-2¢1. L.

EMPTY ASSOCIATED DATA. If associated data is empty, we
generate IV as follows: IV = Ex(D[0]® 3 - L).

B. Tagged Ciphertext Generation.

The tagged ciphertext is generated using the mes-
sage M and the IV, generated as described above us-
ing the nonce N and the associated data D. Suppose
M = (M1}, M[2], ---, M[l —1], M*[l]). If the final
message block (M*[l]) is incomplete, then we make it com-
plete by 10* masking: M*[I] = M*[l] || 10* .Now, the tagged
ciphertext C is generated using the following equations :

wio] = IV
M = e Mfi]e M*[]
Ml+1] = M][]

MM[i] = M[E]®2" L fori=1to (I+1)
X[i] = Ex(MM][i]) fori=1t (I+1)
(Y[i],W[i])) = p(X[i],W[i—1]) fori=1to (I+1)

CCOli] = EZ'(Y[]) fori=1tol

Cli] = CCl]®3*-271. L fori=1tol
COl+1] = EZ(Y[I+1]®1)

Cll+1 = CcCll+1]®3%-2". L

M)

Ml +1]

Fig. 2. ELmD Authenticated Encryption : For complete final message block

The algorithm returns
( CILAL (CU+ 1) iaqy) )-
INCORPORATING INCOMPLETE FINAL BLOCK. If the
final message block (M]l]) is incomplete, then we make
it complete by 10* masking: M[l]] = M]l] || 10*. The
generation MMI0],--- ,MM][l — 1] is identical as above
but we modify generation of MM|[l] and MM]J[l + 1] as
follows (to distinguish from complete block associated data):
MM][l] = M[l)®7-2'=2-L, MM [I+1] = M[I+1]®7-2'71-L.

tagged ciphertext C =

III. ELMD(6,6): A FASTER VARIANT OF ELMD.

ELmD(6,6) is a faster variant of ELmD where we
instantiate 6 round AES encryption as block-cipher encryption
Ex and 6 round AES decryption as block-cipher decryption
ERt.

From the structure of ELmD, we observe that, for some
applications, even much lesser rounds of AES encryption or
decryption is good enough to provide the desired security.
Particularly we need to resist the collision in the upper layer
encryption and want high randomness in the combined two
layer encryption. Now, as 6 round AES gives good differential
property (6-round AES is a good collision resistant hash) and
the total of 12 (= 6 + 6) rounds of AES in the combined
upper-lower layer provides the desired randomness, we
believe that choosing 6 rounds in both the layers will provide
the desired security. Hence, we opt for the round parameter 6
as one of our recommended choice. The masking value L is
defined as L = Ex(Ek(0)). The two block-cipher calls are
used to ensure the required randomness. In this context, we
also note that AES-6 has many key-recovery attacks but all
those attacks uses the property that the chosen plaintexts has
certain differential characteristic. Here these attacks are not
applicable due to the upper layer masking and the randomness



of L.

To encrypt multiple messages under same associated data,
one can have separate modules for AD processing and
message-ciphertext processing. To ensure that AD process-
ing module does not need any inverse, we define L to be
Ex(Ex(0)) (instead of something like E (E5" (0)+const) )
when 6-round of AES is used.

IV. HARDWARE IMPLEMENTATION

In this section we describe the implementation of ELmD
and compare it with COPA, EME2 (standardized for disk
encryption [3]) which are algorithms with similar structure
as ELmD and the standard for Authenticated Encryption with
Associated Data GCM.

A. Design Decisions

Our implementation was realized to exploit the main fea-
tures of ELmD. Below we list the design decisions:

1) Pipeline Implementation: ELmD is optimized for
pipelined implementations, so we present a pipelined
implementation of it. The size of data path is 128-
bit same as block size of AES. Our implementation is
suitable for bulk on-line authenticated encryption when
the amount of data is huge. Two versions of ELmD were
implemented one with ten rounds of AES in each layer
denoted as ELmD and other with only six rounds per
layer denoted as ELmD(6,6).

2) AES-cores: We use one AES-encryption core and one
AES-decryption core. These cores were implemented
in pipeline following the strategy in [8], it is an opti-
mization of AES implementation for modern families
of FPGAs with 6-inputs LUTs. Both encryption and
decryption cores have ten pipeline stages, one per round
as we are using 128-bit key. Only one key scheduling
was implemented and it is shared between both cores.
We add an additional pipeline stage for the multiplexer
and necessary operations at the input of AES cores, in
order to keep the frequency. So the initial latency for
these cores is 11 clock cycles when the numbers of
rounds is 10 and 7 clock cycles for 6 rounds.

3) Multiplications: ELmD needs many multiplications of
a 128-bit string by a small constant such as 2,3,7,
we implement dedicated multipliers for each of them.
This multipliers are really simples, just some shifts
(implement as wires) and some @’s. The field GF(2!28)
is defined using the irreducible polynomial P(z) =
22 2" 2 x4+ 1

B. Proposed Architecture

In the Figure 3 we show the proposed architecture for
ELmD. The main components are AES-Enc and AES-Dec
cores, they represent almost the 90% of the total area for
this design. Register L store the value L = FEg(0). All
the components represented using rectangle with round
corners contains dedicated multipliers, ones labeled as 27,

23 and 3% multiply their input by 7, by 3 and by 32
respectively. The two components z2° are used to generate
masking values such as L,2L,4L, ..., internally they have a
feedback to multiply each clock cycle the previous value by 2.

Block labeled with p computes the linear mixing function
and its inverse. Mux4 provides the input to the block x*L-1,
this generates mask values, the input can be 3L for associated,
L data for encryption and 3?L for decryption. Using mux3
and mux4 AES-Enc receives the input, mux3 selects between
associated data D; and message blocks M; to process them
or checksum to compute the tag 7. Muxl selects input of
AES-Enc between the masked value, masked value (mask
multiplied by 7) when the block is incomplete or 0!28
to compute L. Mux2 is in charge to provide the input to
AES-dec, it selects the output of p xored with 1 in the last
block cipher call which computes the tag, in others cases the
input of AES-Dec is the output of p. Mux5 is used to feed
the block z’L-2, the input can be 32L for encryption and L
for decryption.

Computation of the tag is in similar fashion as cipher text
generation, just mux2 selects the @ between the output of
p and 1. For verification the tag T is fed after cipher text,
then a checksum of the decrypted message is computed and
compared with the output AES-dec.

Block chksum computes and stores the plaintext checksum
while block checksumD do the same with the message de-
crypted. Verification is just a 128-bit comparator.

The Control Unit provides all the necessary control signals
to the components of the architecture, it is a finite state
machine that follows the corresponding algorithms for tagged
encryption and verified decryption.

ELmD(6,6): Its implementation is very similar to the archi-
tecture for ELmD the only different is that there is an addi-
tional input in Mux1 in order to compute L = Ex(Ex(0)),
this additional input represents a feedback of AES-Enc core.
In this case AES-Enc and AES-Dec cores contain only six
rounds.

C. Timing analysis

Using the notation in Specification of ELmD we represent
in the diagram of Figure 5 how the operations are computed
in the time for our architecture. First of all L is computed
as L = Eg(0™), this takes 11 clock cycles. Then the
processing of the associated data starts (Z;) and the block
cipher encryption layer for message (X;), using these values
function p is computed and fed to the block cipher decryption
layer and after 12 (11 from latency of the AES-dec core, 1 for
the masking) clock cycles we can get a valid ciphertext in the
output of the architecture. So the latency including the reset
is computed as

Latency =35+ d
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where d is the number of 128—bit block of associated data. :
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taken to output the first block of ciphertext. ‘ = I e I
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Fig. 4. Time diagram for ELmD. To get the real latency for C;, two
more clock cycles have to be added, one for the reset and other for final
synchronization given a total time of 35 + d + [ clock cycles. An additional
clock cycle is used to give the tag T.

ELmD(6,6): The time diagram for it is shown in Fig. 5,
in this case the latency for AES-enc and AES-dec is 7 clock
cycles. The computation of L takes 14 because it implies two
calls to AES-Enc. The latency to is 30+ d taking into account
the reset and synchronization of the output.

Before to analyze the results we give an overview of the
implementation of COPA and OCB3.

Implementation of COPA: We implemented COPA to
compare it with ELmD. We follow the same design decisions,
we use two AES-enc cores and two AES-dec cores. The rest
of the operations are like in ELmD mainly multiplications by

2+d 38+d 2Weadel+1

Clock cycles

Latency of AES-enc, 7 clock cycles

M] Latency of AES-dec, 7 clock cycles

Fig. 5. Time diagram for ELmD(6,6)

small constants. The architecture for COPA is shown in Figure
6.

Implementation of OCB: As for COPA we follow the
same design decisions. In the case of OCB3 masking val-
ues are computed in a different way, it needs to do some
precomputations of z°L values and store them, hence OCB3
uses additional RAM memories (Block memories in FPGAs).
Masking is generated using the number of trailing zeros so
and special module was designed to compute them. OCB3 is
optimized to save one block cipher call when a counter is used
as nonce but it needs some clock cycles for the set up process,
it is denoted as Setup, this process is execute only one time
for some messages (if only if the nonce is a counter). The
way to compute the initial value for masking is using a shift
register, this function depends of the first six bits of the nonce,
so the time taken by it is variable, we identify this function
as Stretch. For more details of OCB consult [10].
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D. Results and Comparisons

In the Table I we show the results obtained after place
and route using Xilinx ISE 13.4 and Virtex-6 (xc6v1x240t-
2-ff1759) as a target device. Each Virtex-6 slice contains four
6-input-LUTs and eight flip flops (Virtex-5 slices used in [4]
contain only four flip flops).

Our results show that the optimizations for area in ELmD
design really save physical resources in comparison with
COPA, basically the decision to use the second ECB layer
always in decryption mode. Due to the fact that the changes
between encryption and decryption algorithms of ELmD are
really minimum and the block ciphers are always instantiated
in the same mode, the first one is always encryption and the
second is always decryption. For COPA the changes between
encryption and decryption include also the block ciphers,
when COPA is instantiated in decryption mode both block
ciphers in the architecture have to be changed to decryption
mode. This fact implies that while ELmD needs only one
encryption core and one decryption core, COPA needs two of
each one. So the logic resources used byt ELmD represents
50.28 % of the used by COPA.

Also the initial latency is less in ELmD, COPA needs 1.74
times more clock cycles to process the associated data in
PMACI fashion since the computation of the last block needs
to wait for all the encryptions of previous blocks.

The critical path for both designs is defined by AES-dec
core which is significantly slower than AES-Enc core. About
the throughput is almost the same for both since when the
amount of data is huge the initial latency can be neglected,
the throughput for ELmD is 30.03 Gbs while for COPA is

29.55 Gbs. So the real advantage of ELmD is that it offers a
bit more throughput than COPA using half of the area.

In comparison with a similar implementation of GCM
implemented in Virtex 5 FPGA, the difference in area between
ELmD and GCM is almos 500 slices, GCM uses only one
block cipher core and one 128-bit Karatsuba Ofman multiplier.
In terms of area is much more expensive one AES-Dec core
than a multiplier [8], this justify the difference in area. The
speed for GCM is mainly defined by the critical path of
AES-Enc core that’s why GCM is faster than ELmD and
COPA. Throughput is better for GCM but the security offers
by ELmD and COPA is stronger than GCM security, ELmD
and COPA can be used in nonce-misuse scenario as well where
GCM is secure only in the nonce respecting mode. Finally the
degradation in performance (not much) of ELmD and COPA
in comparison with GCM can be compensated with the gains
in security, since ELmD and COPA can be used in nonce-
misuse scenario as well where GCM is secure only in the
nonce respecting mode.

Comparing with EME2 [9] the design is more similar
to COPA, they used the block cipher in the same mode
(encryption or decryption) in two ECB layers, so the area for
both are similar. The case of ELmD again the decision of
used the two ECB layer in different mode, represent a good
optimization against EME2. It is important to pointed out that
EME?2 needs intermediate storage, as large as the size of the
input message since the masking between the two ECB layers
depends of all the blocks in it. So EME2 can be implemented
using only one AES-enc core and one AES-dec, since in
EME2 both ECB layers are sequential in the sense that the
second can be started only when the fist one has been finished.
For ELmD and COPA it is possible to compute both ECB



TABLE I
PERFORMANCE OF ELMD AND COPA . AREA AND FREQUENCY FOR AES CORES ARE SHOWN IN THE BOTTOM PART. d IS THE NUMBERS OF 128-BIT
BLOCKS OF ASSOCIATED DATA.

Mode Area Frequency Lantency Throughput
Slices | LUTs | Flip Flops (MHz) clock cycles Gbps
ELmD 5225 16967 5578 234.64 35+d 30.03
COPA 10391 | 32845 8336 230.87 61+d 29.55
AES-GCM [4] 4770 - - 311 - 36.92
Virtex 5
ELmD(6,6) 3150 | 10783 4018 238.68 30+d 30.55
OCB3 5180 | 16879 5846 234.87 11 + d + Setup + Stretch 30.06
[ EME2[9] [ 10970 T 33350 ] 9931 [ 23056 ] - [ 2477 |
AES-10 pipelined | 2023 7301 2824 315.16 1 38.47
encryption
AES-10 pipelined | 2360 9020 2693 239.34 1 30.63
decryption
AES-6 pipelined 1635 4523 2329 315.16 1 38.47
encryption
AES-6 pipelined 1639 5353 2400 239.34 1 30.63
decryption

layers in a kind of pipeline using the output of the first as the
input of the second, this is a characteristic of on-line modes
of operation. We compared our implementations with EME2
only because the similarity of their structure but in fact the
objective of EME2 is to provide a length-preserving strong
pseudo random permutation suitable for disk encryption.

OCB3 uses almost the same amount of resources as ELmD,
because they need one AES-enc and one AES-dec core. OCB3
require four block rams to store the precomputed values of
x'L, in this case we store 31 values. ELmD(6,6) is much
more small in terms of area due to the reduction in the number
of AES rounds, so if security is comparable it would be a
better option. Also is important to remember that OCB3 is
secure only in the nonce respecting mode like GCM.

V. CONCLUSION AND FUTURE WORKS.

In this paper, we provide the hardware implementation of
ELmD and ELmD(6,6) and compare it’s performance with
other existing constructions, with similar structure. As future
work we can explore more range of parallelism for ELmD and
try to achieve the requirements for the Ethernet standard IEEE
802.3ba, this specify a throughput of 100 Gbps [14]. This
can be achieved using more AES-enc and AES-dec cores in
parallel, each of them process different parts of the message.
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