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Abstract –We experimentally study gravity-capillary wave turbulence on the interface between
two immiscible fluids of close density with free upper surface. We locally measure the wave height
at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We
show that the inertial range of the capillary wave turbulence regime is significantly extended when
the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave
turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum
is found to increase. We explain most of these observations by the progressive decoupling between
waves propagating at the interface and the ones at the free surface, using the full dispersion
relation of gravity-capillary waves in a two-layer fluid of finite depths.

Introduction. – Stratified fluids are ubiquitous in
Nature such as in ocean or in atmosphere. The density
stratification is usually due to a temperature or salinity
gradient with the depth in oceans, or a temperature or
humidity gradient with altitude in the atmosphere. The
simplest stratified fluid consists in two superimposed ho-
mogeneous fluids, the fluid with higher density being be-
low the fluid with lower density. In this situation, waves
can propagate at the interface between the two fluid layers
but also at the free surface of the top one. Under certain
conditions, surface and interface waves interact together
[1, 2]. An astonishing manifestation of this phenomenon
is the dead-water effect first observed in 1904 on the sea
surface [3], and recently reproduced in experiments [4, 5].
Indeed, ships evolving on a calm sea can slow or even stop
sailing in a two-layer fluid due to the extra-drag gener-
ated by large interface waves. The coupling between the
surface and interface waves in a two-layer fluid also gener-
ates narrow nested V-shaped wakes observed behind ships
[6, 7], as well as the damping of ocean surface waves over
a layer of fluid mud [8]. Such a coupling is also involved
in Faraday instability of floating droplets on a liquid bath
[9, 10], or during the long-wave instabilities in ultra thin
two-layer liquid films (< 100 nm) in chemical physics [11].
In industrial applications like metal refining, such inter-

actions can also have an influence on the ripples created
during dewetting [12]. At last, the coupling between the
surface and interface waves of large amplitudes occur in
many physical and biological situations (involving or not
elasticity), and lead to numerous challenging studies in ap-
plied mathematics such as the predictions of new solitary
waves [13, 14].

When a set of stochastic waves, propagating on a free
surface, have large enough amplitudes, nonlinear inter-
actions between waves can generate a wave turbulence
regime. These nonlinear interactions transfer the wave en-
ergy from the large scales, where it is injected, to the small
scales where it is dissipated. This generic phenomenon
concerns various domains at different scales: Surface and
internal waves in oceans, elastic waves on plates, spin
waves in solids, magnetohydrodynamic waves in astro-
physical plasma (for reviews, see refs. [15–18]). Weak tur-
bulence theory was developed in the 60’s [19–21], and leads
to predictions on the wave turbulence regime in almost
all domains of physics involving waves [16, 17]. The past
decade has seen an important experimental effort to test
the validity domain of weak turbulence theory on different
wave systems (e.g. hydrodynamics, optics, hydro-elastic
or elastic waves) [22].

In this paper, we study gravity-capillary wave turbu-
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Fig. 1: Experimental setup. Free surface and interfacial waves
are generated by a wavemaker. Lower fluid: water (depth at
rest h1). Upper fluid: silicon oil (depth at rest h2). Dashed
lines: interface and free surface at rest. A laser vibrometer
locally measures the height of the interface, the water being
dyed with white paint. Inset: Typical evolution of the interfa-
cial wave height ηI(t) as a function of time. h2 = 0.9 cm.

lence on the interface of a two-layer fluid with free upper
surface. Waves propagate both at the interface and at the
free surface (either in phase or in antiphase), and this cou-
pling depends strongly on the upper fluid depth. When
this depth increases, we show that these two modes be-
come progressively uncoupled explaining thus most of the
observations on the wave turbulence spectra. When the
upper fluid is deep enough, the two modes are then fully
uncoupled, leading to the observation of a spectrum of
purely capillary interfacial wave turbulence on two decades
in frequency, fluids being of almost same density. The ar-
ticle is organized as follows. We will first describe the
experimental setup, then the experimental results and the
model, before comparing them to each other.

Experimental setup. – The experimental setup is
sketched in fig. 1. Two fluids are placed in a circular 22 cm
diameter plastic vessel. The lower fluid is water, and the
upper fluid is a silicon oil (10 cSt PDMS DC200). Their
depths at rest are respectively h1 and h2. h1 = 4.3 cm is
fixed whereas h2 is varied between 0 and 0.9 cm, thus 0 ≤
h2/h1 < 21%. Their kinematic viscosities are respectively
ν1 = 10−6 m2/s and ν2 = 10−5 m2/s. Their densities are
respectively ρ1 = 1000 kg/m3 and ρ2 = 935 kg/m3 leading
to a small Atwood number A = (ρ1−ρ2)/(ρ1+ρ2) = 0.033.
The surface tension values are respectively γw = 72 mN/m
for water/air, γS = 20 mN/m for silicon oil/air [23]. The
interfacial tension between water and silicon oil is γI =
25 mN/m [24].

An electromagnetic shaker (LDS V406/PA 100E) hori-
zontally vibrates a plexiglas blade that generates gravity-
capillary waves at the interface between both fluids and at
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Fig. 2: rms height of the interfacial waves as a function of
the upper fluid depth at rest, h2. Inset: Probability for the
interfacial waves to emerge from the free surface of the upper
fluid as a function of its depth, h2. σηs(h2 = 0) = 2.3 mm

the free surface. The immersed part of the blade is fixed to
2 cm regardless of h2. The shaker is driven with a random
forcing in amplitude and frequency between 0.1 Hz and 6
Hz. The rms amplitude and velocity of the blade is fixed
to respectively 5 mm and 5 cm/s, regardless of the exper-
iment presented here. A home made velocity sensor [25]
is fixed to the shaker axis to measure the instantaneous
blade velocity V (t).
A laser Doppler vibrometer (Polytec OFV506) placed

above the setup measures the vertical velocity of the in-
terface deformation at one point given by the position of
the vertical laser beam (see fig. 1). To wit, white dye
is added to the water bulk to make it slightly diffusing
(concentration around 1% in volume). The velocity is ex-
tracted from the interference between the incident beam
and the light back scattered by the diffusing fluid. After
temporal integration, one thus obtains the interface height
ηI(t). The laser Doppler vibrometer has an accuracy of or-
der of 10 µm. To avoid direct transmitted vibration from
the shaker to the vibrometer, the latter is mechanically
uncoupled from the shaker. Signals are then high-pass fil-
tered (> 0.5 Hz) to avoid possible residual low-frequency
vibrations. They are acquired for T = 5 minutes (or 30
minutes to converge statistics to compute the probabil-
ity density function (PDF) of the wave height). Note that
the white dye added to water certainly modifies its surface
tension γw and its viscosity but their orders of magnitudes
remain valid. We will thus use their above values in the
model below.

Experimental results. – A temporal recording of
the interfacial wave height ηI(t) is shown in the inset of
fig. 1. It displays an erratic behavior in response to the
stochastic forcing. As shown in fig. 2, the root-mean-
square (rms) value of the interface wave height σηI

≡
√

〈η2I (t)〉 is found to decrease strongly when the depth
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Fig. 3: Solid line: Probability density function of the rescaled
interfacial wave height, ηI/σηI . Dashed line: Gaussian with
zero mean and unit standard deviation. h2 = 4 mm. σηI =
1.32 mm. Inset: Frequency-power law exponents of the cap-
illary spectrum as a function of h2. Dashed line: Theoretical
value (−17/6) of the frequency-power law exponent of capillary
wave turbulence.

of the upper fluid, h2, is increased. Temporal average is
denoted by 〈·〉. The probability density function (PDF) of
the rescaled interface wave height, ηI/σηI

, is closed to a
Gaussian (see fig. 3), and is found independent of h2 (not
shown).

Assuming that the distribution of free surface wave
height, ηS , is also Gaussian, we infer that the PDF of
their height difference, ηI − ηS , is also close to a Gaussian

of standard deviation σdiff =
√

σ2
ηI

+ σ2
ηS
. We can then

easily compute the probability to have ηI − ηS larger than
h2, that quantifies the probability for the lower fluid to
emerge from the upper fluid layer. Since the prescribed
rms velocity of the blade is kept constant for all the ex-
periments, we assume σηS

(h2) to be constant regardless
of h2, and equal to its value measured for h2 = 0, i.e.
σηS

(h2) = 2.3 mm, both fluids being incompressible and
viscous effects negligible at large scales (see below). Those
probabilities are displayed in the inset of fig. 2, and show
that lower fluid rarely emerges from the upper fluid layer,
for most of our experiments. It is thus relevant to con-
sider a continuous upper fluid layer with no interfacial
crest emerging from the upper layer. Note that this is not
true for the smallest depth used, h2 = 2 mm since this
probability reaches 24%.

From the temporal recording of the interface wave
height, ηI(t) (see inset of fig. 1), one computes its
power spectrum density as the square modulus of the
Fourier transform of ηI(t) over a duration T : SηI

(f) ≡

|
∫ T

0
ηI(t)e

iωtdt|2/(2πT ), where ω = 2πf . Figure 4 shows
the power spectra of the interface wave height when the
upper fluid depth increases. For h2 = 0 mm (bottom
curve), the usual gravity-capillary wave turbulence spec-
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Fig. 4: (color online) Power spectrum density of the interface
wave height, SηI (f), for increasing upper fluid depths h2 = 0
(red), 4 (blue), 5 (green), 7 (magenta), 8 (black) and 9 mm
(cyan) (from bottom to top, shifted vertically for clarity). The
dashed (resp. dash-dotted) lines are the best power-law fits of
the capillary (resp. gravity) wave turbulence regime. Forcing
frequencies ≤ 6 Hz. Inset: Experimental crossover frequency
ft between gravity and capillary regimes as a function of h2

(symbols). Dashed line: theoretical crossover frequency fc+S

(see text). Solid line: frequency fun for which the interface
and free surface waves of the mode + become uncoupled (i.e.
ηI/ηS = 1/10 - see fig. 7).

trum is observed as previously found in several recent
studies [26–30]. Up to a cutoff frequency at ≈ 100 Hz,
related to dissipation, this spectrum is consistent with
two different power-law regimes for frequencies above ft ≈
20 Hz (capillary regime) and below ft (gravity regime) as
expected by the weak turbulence theory [16, 17] and al-
ready observed experimentally [26–30]. Note that the ex-
ponent of the capillary regime is slightly lower than its
predicted value −17/6 (inset of fig. 3). The crossover fre-
quency ft between gravity and capillary wave turbulent
regimes is linked to the capillary length lcw =

√

γw/ρ1g
[26]. When h2 is increased, the capillary regime is found
to hold down to lower and lower frequencies (see curves
from h2 = 4 to 7 mm in fig. 4), until no transition is
clearly visible before reaching the forcing frequencies (see
curves for h2 ≥ 8 mm). This crossover frequency ft is
found to decrease up to a factor 2.5 (from 20 to 8 Hz, see
inset of fig. 4) when h2 is increased. Moreover, the cut-off
frequency increases of a factor 7 (roughly from 100 to 700
Hz) when h2 is increased. This leads to a significative ex-
tension of the inertial range of the capillary spectrum by
more than one order of magnitude. A frequency power-law
spectrum is then clearly observed on almost two decades.
In the next part, we will explain the widening of the spec-
trum inertial range and the dependence of the crossover
frequency on the upper fluid depth.

Theoretical description. – To interprete our exper-
imental results, we consider gravity-capillary waves propa-
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Fig. 5: Sinusoidal gravity-capillary waves propagating at the
interface and at the free surface of two fluids of finite depths
(h1 and h2 at rest). The upper surface is free. Case of in-phase
deformations (mode +).

gating at both the interface and the free surface of two im-
miscible fluids of finite depths, the upper surface being free
(fig. 5). The lower fluid is assumed to never emerge from
the upper one. The dispersion relation of theses waves can
be found in textbooks [31,32] but only when the capillary
effects are neglected. To our knowledge, the theoretical
derivation of the dispersion relation taking into account
both the gravity and capillary effects for a two-layer fluid
of finite depths with free upper surface were obtained only
quite recently [1, 13], as well as the one taking also into
account the fluid viscosity effects [10]. In the following, we
will use the inviscid dispersion relation. The experimental
validity of this hypothesis will be checked a posteriori (see
below).
Let a sinusoidal wave propagate along the x-axis with

angular frequency ω and wave vector k at the interface
between both fluids, noticed 1 and 2, of finite depths
(fig. 5). Fluid 1 is limited at the bottom by a rigid wall
and fluid 2 is free at its surface. Experimentally, one has
6 ≤ kh1 ≤ 500 and 0.2 ≤ kh2 ≤ 103. Let ηI be the
wave height at the interface and ηS be the wave height at
the free surface. The system is assumed invariant along
the y-axis, and the flows incompressible and inviscid. The
interface at rest is located at z = 0. The corresponding
dispersion relation reads [1, 13]

aω4 + bω2 + c = 0 (1)

with






















a = ρ2 [ρ1 + ρ2 tanh(kh1) tanh(kh2)]
b = −ρ1(ρ2gk + γSk

3) tanh(kh2)+
ρ2

(

−ρ1gk − (γI + γS)k
3
)

tanh(kh1)
c =

[

γIγSk
6 + g (ρ2(γI − γS) + ρ1γS) k

4

−ρ2(ρ2 − ρ1)g
2k2

]

tanh(kh1) tanh(kh2)

(2)

Note that for h1 = h2 = ∞, Eqs. (1) and (2) are well
reduced to the usual gravity-capillary dispersion relation
between two infinite fluids with no free surface [32]

ω2(k) =
ρ1 − ρ2
ρ1 + ρ2

gk +
γIk

3

ρ1 + ρ2
. (3)
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Fig. 6: (color online) Theoretical dispersion relation ω/k vs. k
for gravity-capillary waves in a two-layer fluid of finite depths
from Eqs. (1) and (2). Red line: in-phase mode (mode +).
Blue line: anti-phase mode (mode −). h2 = 2 mm. Black
dashed line: Dispersion relation at the interface between the
two same fluids but for infinite depths (Eq. 3). Black dash-
dotted line: Dispersion relation at the free surface of a single
fluid (2) of infinite depth (Eq. 4 with h1 = ∞, replacing ρ1
and γI by ρ2 and γS respectively). Inset: Solid (resp. dashed)
line: Crossover frequencies between capillary and gravity wave
regimes at the interface (resp. at the free surface) for both
modes as a function of h2. Mode + (red). Mode − (blue).

For ρ2 = 0 and h2 = ∞, Eqs. (1) and (2) lead to the usual
gravity-capillary dispersion relation at the free surface of
single fluid of finite depth [31]

ω2(k) = tanh(kh1)

(

gk +
γIk

3

ρ1

)

. (4)

The dispersion relation in the general case, Eqs. (1) and

(2), have 4 solutions ω2(k) = −b±
√
b2−4ac
2a among which

only 2 are real, that are plotted in solid lines (blue and red)
in fig. 6. We will call these solutions “mode +” and “mode
−” according to the sign in the above expression of ω2(k).
Note that the mode + has a higher phase velocity than the
mode − (semilog-y plot in fig. 6). Figure 6 also shows that
even for a thin enough upper fluid layer (as small as 2 mm),
the wave dispersion relation is constituted of two branches
corresponding to the two propagating modes. This differs
strongly from the dispersion relation for interfacial waves
between two infinite fluids (see dashed line) or for surface
waves on the surface a single infinite fluid (see dash-dotted
line). The interfacial and free surface waves are indeed
not independent but are coupled to each other by those
two propagative modes. Both modes propagate at both
interface and free surface. The ratio between the wave
heights at the free surface (S) and the interface (I) reads [1]
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ηS
ηI

=
sinh(kh2)

ρ2
×

[

ρ2 coth(kh2) + ρ1 coth(kh1)

−
[(ρ1 − ρ2)g + γIk

2]k

ω2(k)

]

. (5)

If ηS/ηI > 0, the waves at the interface and the ones at
the free surface propagate in phase, corresponding to the
mode + (also called barotropic [9] or zigzag [10] mode) as
illustrated in Fig. 5. For ηS/ηI < 0, they propagate in an-
tiphase corresponding to the mode − (also called varicose
mode [10]).

The modulus of the wave height ratio |ηI/ηS| is plotted
in fig. 7 as a function of the wave frequency for differ-
ent depths h2, for both modes. We first note that the
surface wave height is higher than that of the interfacial
wave height for the mode +, regardless h2. On the other
hand, for the mode −, the interfacial wave height is higher
than that of the surface wave height, regardless h2. Sec-
ond, within our experimental frequency range (f ≥ 6 Hz)
and for small h2, wave heights at the interface and at
the free surface is found to be of the same order for both
modes, and are thus coupled (see insets of fig. 7). For large
h2, waves are uncoupled since the interface wave height is
much smaller (resp. much higher) than that of the surface
wave height for mode + (resp. mode −): waves can be
thus considered to propagate only at the free surface for
the mode + and only at the interface for the mode −. Note
that this decoupling is as strong as the wave frequency is
large. These features are shown in the insets of fig. 7 for
a fixed wave frequency.

Interpretation. – Let us introduce the typical cap-
illary lengths of the interface, lcI , and of the free sur-
face, lcS . The corresponding wavenumbers are kcI ≡
1/lcI =

√

(ρ1 − ρ2)g/γI and kcS ≡ 1/lcS =
√

ρ2g/γS
(λcI ≡ 2π/kcI ≃ 3.9 cm ; λcS ≡ 2π/kcS ≃ 0.9 cm). Using
the dispersion relation ω(k), those typical lengths corre-
spond to 2 frequencies per mode: fc−I , fc−S (mode −)
and fc+I , fc+S (mode +) as displayed in fig. 6 in the
phase velocity space (v ≡ ω/k ; k) for a fixed depth h2.
Those frequencies correspond to the crossover frequencies
between gravity and capillary wave regimes either at the
interface (I) or at the free surface (S) for both modes (+ or
−). The evolutions of these 4 frequencies with the upper
fluid depth, h2, are plotted in the inset of fig. 6. They are
almost independent of h2 within our experimental range
(h2 ≥ 2 mm) and only fc+S and fc−S lie within our ex-
perimental frequency range (f ≥ 6 Hz).

Let us now interpret the experimental evolution of the
crossover frequency ft between gravity and capillary wave
turbulence regimes when h2 is increased (see inset of
fig. 4). As explained above, for small depths h2, waves at
the interface and at the free surface are coupled for both
propagating modes + or −. The theoretical crossover fre-
quency fc+S at the free surface for the mode + is found
to well describe the data for small enough depths h2 (see
dashed line in the inset of fig. 4). When h2 is increased,
this is no longer the case. Indeed, as also explained above,
when h2 is increased, the waves propagating at the in-
terface and at the free surface becomes progressively un-
coupled for both modes: their relative heights |ηI/ηS| de-
creases strongly for the mode + or strongly increased for
mode − (see fig. 7). We arbitrary decide that waves be-
come uncoupled when |ηI/ηS | ≤ 1/10 in the mode +, that
is when the interface wave height becomes 10 times smaller
than the free surface wave height. Interfacial waves can
thus only propagate significantly on the other mode (mode
−). This criterion corresponds to the dashed line in fig. 7.
The intercepts of this dashed line and each solid line in
fig. 7, for each depth h2, thus give the frequencies fun for
which the interface and free surface waves of the mode +
become uncoupled. fun is then found to decrease with h2

in rough agreement with the experimental crossover fre-
quency ft at large h2 (see solid line in the inset of fig. 4).

To sum up, for small fluid depths h2, the interface waves
(that we measure) propagate on both modes and are cou-
pled with surface waves. The crossover frequency be-
tween the gravity and capillary wave turbulence regimes
observed on the spectrum, ft, is linked to the value of
fc+S the capillary length at the free surface of the in-
phase mode (mode +). The dependence of ft on h2 is
thus well described by fc+S(h2) until the interfacial and
surface waves decouple for large enough h2, that is for
fun < fc+S (see inset of fig. 4).

Time-scale separation. – Let us now consider the
typical time scales involved in our experiment. Weak tur-
bulence theory assumes a time-scale separation τl(f) ≪
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τnl(f) ≪ τd(f), between the linear propagation time, τl,
the nonlinear interaction time, τnl, and the dissipation
time, τd. The linear propagation time is τl = 1/ω(k).
The dissipative time scale is linked to the viscous surface
boundary layer, modeled by an inextensible infinitely thin

film on the free surface, reading τd = 2
√
2

k(ω)
√
νω

[32, 33].

The kinematic viscosity of the two-layer fluid is ν =
µ1 coth(kh1)+µ2 coth(kh2)
ρ1 coth(kh1)+ρ2 coth(kh2)

with µ1 (resp. µ2) the dynamic

viscosity of the fluid beneath (resp. above) the interface
[34]. We show in fig. 8 that the condition τl(f) ≪ τd(f) is
well satisfied in our experimental frequency range for both
modes. It thus validates a posteriori the use here of an in-
viscid dispersion relation. Finally, for wave turbulence to
take place, the typical time scale τnl of nonlinear wave in-
teractions has to satisfy τl(f) ≪ τnl(f) ≪ τd(f). For cap-
illary waves, τcnl ∝ k−3/4 [21, 35] while for gravity waves,
τgnl ∝ k−3/2 [35]. Since the prefactors of these laws are ex-
perimentally unknown, τcnl and τgnl are plotted in fig. 8 con-
sidering τcnl(fcut) = τd(fcut) at the cut-off frequency of the
experimental capillary power-law spectrum (fcut ≃ 200 Hz
for h2=4 mm - see fig. 4), and τgnl(ft) = τcnl(ft) at the ex-
perimental crossover frequency, ft. Figure 8 shows that
the time-scale separation is valid on the whole frequency
range of our experiment. We also verified that this is true
regardless our range of upper fluid depth h2.

Conclusion. – In this paper, we studied gravity-
capillary wave turbulence on the interface between two im-
miscible fluids with free upper surface. Waves propagate
both at the interface and at the free surface [either in phase
(mode +) or in antiphase (mode −)], and this coupling de-
pends strongly on the upper fluid depth. When this depth
is increased, these two modes become progressively uncou-
pled, and we show that this decoupling explains most of
the observations on the wave turbulence spectra. Indeed,

the crossover frequency between the gravity and capillary
wave turbulence regimes is experimentally found to de-
crease by more than a factor 2 when the upper fluid depth
is increased. At small depths, interfacial and surface waves
are coupled, and this crossover is linked to the value of the
capillary length at the free surface of the in-phase mode.
At large enough depth, they become uncoupled when the
interfacial wave heights of this mode become negligible
with respect to the surface wave heights. Interfacial waves
(that we measure) can thus only propagate significantly
on the other mode. The crossover frequency is then well
described by this decoupling criterion depending on the
upper fluid depth. Finally, when the upper fluid is deep
enough, the two modes are then fully uncoupled. This
leads to the observation of a spectrum of purely capillary
interfacial wave turbulence on two decades in frequency,
fluids being of almost same density. This frequency range
is comparable to what was previously observed at the in-
terface between two immiscible deep fluids of almost equal
densities with no upper free surface [36] or during micro-
gravity experiments with a single fluid [37]. At last, this
study may be useful to better understand nonlinear wave
dynamics within a two-layer fluid in presence of surface
and interfacial tensions such as oil spilling in oceanogra-
phy and gravity-capillary solitary waves. The reported
phenomenon is more general and should be shown up in
other wave turbulence systems involving the coupling be-
tween surface and interfacial waves.
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