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Criteria of convergence of a non ordinary random continued fractions on a symmetric cone

Abdelhamid Hassairi

Introduction

Besides the well known theory of real continued fractions and its applications, many multivariate versions have been introduced to bring answers to some needs which have arisen in different areas. The most important seem to be the ones defined on some matrix spaces. Since there is no single way to define a matrix inverse, there exist many ways to define continued fractions with matrix argument.

A first natural way is to assume invertibility and use the classical matrix inverse to define a ratio of matrices. A second way is based on the partial matrix inverse. Another way uses the generalized inverse considered to be more efficient in matrix continued fraction interpolation problems. For details about these different matrix continued fractions and their applications, we refer the reader to [START_REF] Zhaoa | Matrix-valued continued fractions[END_REF] and to the references within. It is worth pointing out that for the applications, the convergence of a matrix continued fraction is usually needed. However even if in many cases, a three term recurrence relation is available, because of the non-commutativity, it is difficult to derive applicable convergence criteria. The present work is motivated by probability problems concerning the characterization of some distributions on the cone of positive symmetric matrices or more generally on any symmetric cone such as the beta-hypergeometric distribution. The results will be given in the general setting of a Jordan algebra and its symmetric cone, however to make the paper accessible for a reader who is not familiar with the theory of Jordan algebra, we have emphasized on the case of symmetric matrices. Of course in these spaces, we can't use the multiplication by the inverse to define a ratio and we need to use a suitable division algorithm. We mention here that, for the proof of a characterization result concerning the Wishart distribution on a symmetric cone, Evelyne Bernadac [START_REF] Bernadac | Random continued fractions and inverse Gaussian distribution on a symmetric cone[END_REF] has used an ordinary continued fraction defined with a construction process based on the inversion without any use of multiplication or ratio. Assuming the independence of the random variables and some conditions on their distributions, she has given a criteria of convergence for the ordinary continued fraction. As a continuation of this work, we first use a notion of quotient based on a division algorithm to define in its more general form, a continued fraction K(x n /y n ) where (x n ) and (y n ) are two sequences of elements of the symmetric cone. The ordinary continued fraction considered in [START_REF] Bernadac | Random continued fractions and inverse Gaussian distribution on a symmetric cone[END_REF] corresponds to the case where x n = e, for all n, where e is the identity element of the algebra. We then show that, as in the classical matrix case (see [START_REF] Kacha | Convergence of matrix continued fractions[END_REF]), any non ordinary continued fraction is equivalent to an ordinary one. This result has a mathematical interest, but it has no implication on the convergence of the non ordinary random continued fraction. In fact, when the sequences in the non ordinary fraction are constituted of independent random variables, the corresponding ordinary continued fraction has not this property. Accordingly, the main part of the paper is devoted to establish a criteria of convergence for the non ordinary random continued fractions of the form K(x n /e), where (x n ) is a sequence of independent random variables valued in a symmetric cone. This kind of non ordinary random continued fractions with the ordinary ones arise in the characterization of many important distributions on symmetric matrices or more generally on any symmetric cone.

Symmetric cones

It is well known that any symmetric cone is associated to a Jordan algebra, so that in order to present our results in their most general form, it is necessary to review some facts concerning Jordan algebra and their symmetric cones. Our notations are the ones used in [START_REF] Faraut | Analysis on symmetric cones[END_REF] or in [START_REF] Hassairi | Riesz exponential families on symmetric cones[END_REF]. Let us recall that a Euclidean Jordan algebra is a Euclidean space V with scalar product < x, y > and a bilinear map

V × V -→ V, (x, y) -→ x.y
called Jordan product such that, for all x, y, z in V , i) x.y = y.x, ii) < x, y.z >=< x.y, z >, iii) there exists e in V such that e.x = x, iv) x.(x 2 .y) = x 2 .(x.y), where we used the abbreviation x 2 = x.x. A Euclidean Jordan algebra is said to be simple if it does not contain a nontrivial ideal. For the algebra of symmetric matrices, the Jordan product is defined by x.y = 1 2 (xy + yx) where xy is the ordinary product of the matrices x and y and the scalar product is defined by < x, y >= trace(xy). Now, to each Euclidean simple Jordan algebra V , we attach the set of Jordan squares Ω = {x 2 ; x ∈ V }.

Its interior is denoted Ω.

In general, Ω is a symmetric cone, i.e., a convex cone which is i) self dual, i.e., Ω = {x ∈ V ; < x, y > > 0 ∀y ∈ Ω \ {0}}.

ii) homogeneous, i.e., the group G(Ω) of linear automorphisms of Ω acts transitively on Ω. Observe that when V is the algebra of symmetric matrices, Ω (resp. Ω) denotes the cone of symmetric positive definite (resp. nonnegative) matrices. By analogy with the case where V = R and Ω =]0, ∞[, for x and y in the cone Ω, we write 0 < x < y if y -x ∈ Ω. With this, one can talk about an increasing or decreasing sequence in Ω. Given a Euclidean simple Jordan algebra V , we denote by G the connected component of the identity in G(Ω). If V is the space of (r, r)-symmetric matrices and GL(R r ) is the group of invertible matrices, The elements of G(Ω) are the maps g : V -→ V such that there exists a in GL(R r ) with

g(x) = axa * ,
where a * is the transpose of a. For two automorphisms g 1 and g 2 in G, we write g 1 g 2 the composition of g 1 and g 2 , and for g 1 , ..., g n in G, we write n i=1

g i = g 1 ...g n .
Throughout, we will also use the following notations for (x, y, z) ∈ V : L(x)y = xy P (x)y = 2x(xy) -x 2 y (quadratic representation)

x y = L(xy) + [L(x), L(y)] = L(xy) + L(x)L(y) -L(y)L(x).

An element c of V is said to be idempotent if c 2 = c. It is a primitive idempotent if furthermore c = 0 and is not the sum t + u of two non-null idempotents t and u such that t.u = 0.

A Jordan frame is a set {c 1 , ..., c r } of primitive idempotents such that r i=1 c i = e and c i .c j = δ ij c i , for 1 ≤ i, j ≤ r. The size r of such a frame is a constant called the rank of V . For any element x of a Euclidean simple Jordan algebra, there exist a Jordan frame (c i ) 1≤i≤r and (λ 1 , ..., λ r ) in R r such that x = r i=1 λ i c i . The real numbers λ 1 , λ 2 , ..., λ r depend only on x. They are called the eigenvalues of x and this decomposition is called its spectral decomposition. The trace and the determinant of x are then respectively defined by tr(x) = r i=1

λ i and ∆(x) = r i=1 λ i .
If c is a primitive idempotent of V , the only possible eigenvalues of L(c) are 0, 1 2 and 1. The corresponding eigenspaces are respectively denoted by V (c, 0), E(V, 1 2 ) and V (c, 1) and the decomposition

V = V (c, 0) ⊕ V (c, 1 2 ) ⊕ V (c, 1)
is called the Peirce decomposition of V with respect to c. Suppose now that (c i ) 1≤i≤r is a Jordan frame in V and for 1 ≤ i, j ≤ r, let

V ij = V (c i , 1) = Rc i if i = j V (c i , 1 2 ) ∩ V (c j , 1 2 ) if ieqj.
Then (See [START_REF] Faraut | Analysis on symmetric cones[END_REF] Th.IV.2.1) we have V = ⊕ i≤j V ij and the dimension of V ij is, for i = j, a constant d called the Jordan constant. It is related to the dimension n and the rank r of V by the relation n = r + r(r -1) d 2 . When V is the algebra of symmetric matrices, d = 1. If c is an idempotent and if z is an element of V (c, 1 2 ),

τ c (z) = exp(2z c)
is called a Frobenius transformation. It is an element of the group G.

Given a Jordan frame (c i ) 1≤i≤r , the subgroup of

G T =    τ c 1 (z (1) ) • • • τ c r-1 (z (r-1) )P r i=1 a i c i , a i > 0, z (j) ∈ r k=j+1 V jk   
is called the triangular group corresponding to the Jordan frame (c i ) 1≤i≤r .

It is an important result (see [START_REF] Faraut | Analysis on symmetric cones[END_REF], p.113) that for an element y in the symmetric cone Ω there exists a unique element in the triangular group T such that y = t(e).

To define a notion of "quotient" in the symmetric cone Ω, we usually introduce a division algorithm which is a measurable map g from Ω into G such that, for all y ∈ Ω, g(y)(y) = e. With the algorithm g, the "quotient" of an element x by y is defined as g(y)(x). The most usuel division algorithms are the one corresponding to the quadratic representation and the one corresponding to the Cholesky decomposition. In fact, one can define the quotient of x by y as P (y -1 2 )x. On the other hand, given that for each y in Ω, there exists a unique t in the triangular group T such that y = t(e), we define the multiplication of x by y as

π(y)(x) = t(x),
and the map y → t -1 from Ω into G realizes a division algorithm so that the "quotient" of x by y is defined as

π -1 (y)(x) = t -1 (x).
We also set

π * (y)(x) = t * (x) and π * -1 (y)(x) = t * -1 (x).
The definition of π(y) and π * (y) may be extended to y ∈ -Ω, by setting π(-y) = -π(y) and π * (-y) = -π * (y).

Consider the set

Str(V ) = {g ∈ GL(V ) ; P (g(x)) = gP (x)g * }.
It is shown in [START_REF] Faraut | Analysis on symmetric cones[END_REF] page 150 that G(Ω) is a subgroup of Str(V ). Hence we have in particular that for t in the triangular group T ,

P (t(e)) = tP (e)t * = tt * . (1) 
If y = t(e), then

P (y) = π(y)π * (y). ( 2 
)
When Ω is the cone of positive definite symmetric matrices, the Cholesky decomposition of an element y of Ω, consists in writing y in a unique manner as y = tt * , where t is a lower triangular matrix with strictly positive diagonal, and we have

π(y)(x) = txt * π -1 (y)(x) = t -1 xt * -1 , and P (y)(x) = yxy,
where the last product is the ordinary product of matrices.

In this case, ( 2) is easily established.

Continued fraction in a symmetric cone

We use the division algorithm defined by the Cholesky decomposition. Let (x n ) n≥1 and (y n ) n≥0 be two sequences in Ω. The continued fraction denoted

K(x n /y n ) or y 0 + x 1 y 1 , x 2 y 2 , ...
is an expression whose the nth convergent

R n = y 0 + x 1 y 1 , ..., x n y n
is defined in the following recursive way.

x 1 y 1 = π * -1 (x 1 )y 1 -1 = π(x 1 ) y -1 1 x 1 y 1 , ..., x n+1 y n+1 = π * -1 (x 1 ) y 1 + x 2 y 2 , ..., x n+1 y n+1 -1 = π(x 1 ) y 1 + x 2 y 2 , ..., x n+1 y n+1 -1
.

Note that to get R n+1 from R n , we replace y n by y n + π * -1 (x n+1 )y n+1 -1 .

When x n = e, for all n, we say that the continued fraction K(e/y n ) is an ordinary continued fraction. Its kth convergent is given by

R k = y 0 + y 1 + y 2 + y 3 + ... + (y k ) -1 -1 ... -1 -1 . (3) 
As mentioned in the introduction, the construction process of this continued fraction uses only the inversion without any use of the product or of the division algorithm.

Next, we show that any continued fraction K(x n /y n ) is equivalent to an ordinary continued fraction K(e/a n ).

Proposition 3.1 The continued fraction denoted K(x n /y n ) is equivalent to the continued fraction K(e/a n ) where

a 0 = y 0 a 2k = π(x 1 )π * -1 (x 2 )...π(x 2k-1 )π * -1 (x 2k )y 2k (4) 
a 2k+1 = π * -1 (x 1 )π(x 2 )...π(x 2k )π * -1 (x 2k+1 )y 2k+1 . (5) 
Proof. The proof is performed by induction. We will use the fact that

π -1 (u)v -1 = (π * (u)v) -1 or equivalently π * (u)v -1 = (π -1 (u)v) -1 (6) Since x 1 y 1 = π * -1 (x 1 )y 1 -1 ,
and

x 1 y 1 , x 2 y 2 = π * -1 (x 1 ) y 1 + x 2 y 2 -1 = π * -1 (x 1 ) y 1 + π * -1 (x 2 ) y 2 -1 -1 = π * -1 (x 1 )y 1 + π * -1 (x 1 ) π * -1 (x 2 ) y 2 -1 -1 = π * -1 (x 1 )y 1 + π(x 1 )π * -1 (x 2 ) y 2 -1 -1 .
We have that

a 0 = y 0 a 1 = π * -1 (x 1 )y 1 a 2 = π(x 1 )π * -1 (x 2 ) y 2 .
Therefore ( 5) is true for k = 0 and ( 4) is true for k = 1. Suppose that

R 2k = a 0 + a 1 + a 2 + a 3 + ... + (a 2k ) -1 -1 ... -1 -1
.

with the a i , 0 ≤ i ≤ 2k, defined by ( 5) and ( 4). In particular

a 2k = π(x 1 )π * -1 (x 2 )...π(x 2k-1 )π * -1 (x 2k )y 2k .
To get R 2k+1 from R 2k , we replace in a 2k , y 2k by y 2k + π * -1 (x 2k+1 )y 2k+1 -1 , that is we replace a 2k by

a 2k + π(x 1 )π * -1 (x 2 )...π(x 2k-1 )π * -1 (x 2k ) π * -1 (x 2k+1 )y 2k+1 -1 -1
.

Using (6), this can be written

a 2k + π * -1 (x 1 )π(x 2 )...π * -1 (x 2k-1 )π(x 2k )π * -1 (x 2k+1 )y 2k+1 -1 -1
.

Hence

R 2k+1 = a 0 +   a 1 + a 2 + a 3 + ... + a 2k + (a 2k+1 ) -1 -1 -1 ... -1   -1
.

with a 2k+1 = π * -1 (x 1 )π(x 2 )...π * -1 (x 2k-1 )π(x 2k )π * -1 (x 2k+1 )y 2k+1 .
A similar reasoning is used for R 2k+2 .

Convergence of a non ordinary continued fraction

In this section, we suppose that (x n ) n≥1 and (y n ) n≥0 are sequences of independent random variables defined on the same probability space and valued in the cone Ω. As we have mentioned, a criteria of convergence for the ordinary random continued fraction K(e/y n ) has been given in [START_REF] Bernadac | Random continued fractions and inverse Gaussian distribution on a symmetric cone[END_REF]. In what follows, we give a criteria of convergence for the non ordinary random continued fraction K(x n /e). For the sake of simplicity, x 1 e , x 2 e , ..., x k e will be written [x 1 , x 2 , ..., x k ] which is the notation usually used for the ordinary continued fraction given in (4). This should not cause any confusion, the continued fractions are completely different, the results and their proofs are completely different although there are some similarities. The continued fraction [x 1 , x 2 , ..., x k ] which we will study in what follows is then defined by

[x 1 ] = x 1 and [x 1 , x 2 , ..., x k ] = π(x 1 )(e + [x 2 , ..., x k ]) -1 . ( 7 
)
We first prove the following result:

Proposition 4.1 Let (x n ) n≥1 be a sequence in Ω. Then for k ≥ 1, (-1) k+1 ([x 1 , x 2 , ..., x k ] -[x 1 , x 2 , ..., x k+1 ]) is in Ω.
Proof. The proof uses induction on k.

The property is true for k = 1, in fact

[x 1 ] -[x 1 , x 2 ] = x 1 -π(x 1 ) (e + x 2 ) -1 = π(x 1 ) e -(e + x 2 ) -1 = π(x 1 ) (e + x 2 -e)(e + x 2 ) -1 ,
which is in (-1) 2 Ω. Suppose that the property is true for k.

Then [x 1 , ..., x k+1 ] -[x 1 , ..., x x+2 ] = π(x 1 ) (e + [x 2 , ..., x k+1 ]) -1 -π(x 1 ) (e + [x 2 , ..., x k+2 ]) -1 = π(x 1 ) (e + [x 2 , ..., x k+1 ]) -1 -(e + [x 2 , ..., x k+2 ]) -1
Using the induction hypothesis, we have that

[x 2 , ..., x k+1 ] -[x 2 , ..., x k+2 ] ∈ (-1) k+1 Ω,
so that (e + [x 2 , ..., x k+1 ]) -(e + [x 2 , ..., x k+2 ]) ∈ (-1) k+1 Ω.

To finish the proof, we use the fact that for all x and y in Ω,

(x -y ∈ Ω) ⇔ x -1 -y -1 ∈ -Ω .

Now, Denoting

w k = (-1) k+1 ([x 1 , x 2 , ..., x k ] -[x 1 , x 2 , ..., x k+1 ]) , (8) 
it is easy to see that

[x 1 , x 2 , ..., x n ] = x 1 + n-1 k=1 (-1) k w k . (9) 
Thus the continued fraction [x 

F k (x 1 , ..., x k+2 ) = [x 1 , ..., x k ] -1 -[x 1 , ..., x k+1 ] -1 -1 + [x 1 , ..., x k+1 ] -1 -[x 1 , ..., x k+2 ] -1 -1 . ( 10 
)
Then we have

F 1 = π(x 1 )π * -1 (x 2 )π * -1 (x 3 )(e), (11) 
F 2 (x 1 , x 2 , x 3 , x 4 ) = -π(x 1 )π * -1 (x 2 )π * -1 (x 3 ) P (e + π * (x 3 )(e)) π * -1 (x 4 )(e), ( 12 
)
and for all k ≥ 3,

F k (x 1 , ..., x k+2 ) = (-1) k+1 π(x 1 ) k-1 i=2 π * -1 (x i )P (e + [x i+1 , ..., x k ]) π * -1 (x k )π * -1 (x k+1 )P (u k ) π * -1 (x k+2 )(e), (13) 
where

u k = u k (x 1 , ..., x k+1 ) = e + π * (x k+1 )   e + k-3 i=0 (-1) i+1   i j=0 π * (x k-j )P (e + [x k-j , ..., x k ]) -1   (e + [x k-i , ..., x k ])   (14) Proof. F 1 = F 1 (x 1 , x 2 , x 3 ) = [x 1 ] -1 -[x 1 , x 2 ] -1 -1 + [x 1 , x 2 ] -1 -[x 1 , x 2 , x 3 ] -1 -1 = π * -1 (x 1 )(e) -π * -1 (x 1 )(e + x 2 ) -1 + π * -1 (x 1 )(e + x 2 ) -π * -1 (x 1 ) e + π * -1 (x 2 )(e + x 3 ) -1 -1 = -π * -1 (x 1 )(x 2 ) -1 + π * -1 (x 1 )(x 2 ) -π * -1 (x 1 )π(x 2 ) (e + x 3 ) -1 -1 = -π(x 1 )π * -1 (x 2 )(e) + π(x 1 )π * -1 (x 2 ) e -(e + x 3 ) -1 -1 = π(x 1 )π * -1 (x 2 ) e -(e + x 3 ) -1 -1 -e = π(x 1 )π * -1 (x 2 )π * -1 (x 3 )(e)
Now to calculate

F 2 = = F 2 (x 1 , x 2 , x 3 , x 4 ) = [x 1 , x 2 ] -1 -[x 1 , x 2 , x 3 ] -1 -1 + [x 1 , x 2 , x 3 ] -1 -[x 1 , x 2 , x 3 , x 3 ] -1 -1 , we write [x 1 , x 2 ] = [X 1 ] with X 1 = π(x 1 ) (e + x 2 ) -1 ,
and we write

[x 1 , x 2 , x 3 ] = [X 1 , X 2 ] with X 2 = -π * (e + x 2 ) -1 π(x 2 ) x 3 (e + x 3 ) -1 , finally, we write [x 1 , x 2 , x 3 , x 4 ] = [X 1 , X 2 , X 3 ] , with X 3 = π -1 (e + π * (x 3 )(e)) (x 4 ).
Thus using (11), we have

F 2 (x 1 , x 2 , x 3 , x 4 ) = F 1 (X 1 , X 2 , X 3 ) = π(X 1 )π * -1 (X 2 )π * -1 (X 3 )(e).
Replacing, we get

F 2 (x 1 , x 2 , x 3 , x 4 ) = -π(x 1 )π (e + x 2 ) -1 π -1 (e + x 2 ) -1 π * -1 (x 2 )
π * -1 (x 3 ) π (e + π * (x 3 )(e)) π * (e + π * (x 3 )(e)) π * -1 (x 4 )(e).

Given that

π (e + π * (x 3 )(e)) π * (e + π * (x 3 )(e)) = P (e + π * (x 3 )(e)) , we obtain

F 2 (x 1 , x 2 , x 3 , x 4 ) = -π(x 1 )π * -1 (x 2 )π * -1 (x 3 ) P (e + π * (x 3 )(e)) π * -1 (x 4 )(e).
Therefore ( 13) is true for k = 2. Suppose that it true for k. Then with the same reasoning, we have that

F k+1 = F k+1 (x 1 , ..., x k-1 , x k , x k+1 , x k+2 , x k+3 ) = F k (x 1 , ..., x k-1 , X k , X k+1 , X k+2 ), with X k = π(x k ) (e + x k+1 ) -1 , X k+1 = -π * (e + x k+1 ) -1 π(x k+1 ) x k+2 (e + x k+2 ) -1 ,
and

X k+2 = π -1 (e + π * (x k+2 )(e)) (x k+3 ). Inserting this in F k (x 1 , ..., x k-1 , X k , X k+1 , X k+2 ) as defined in (13), we have in particular that [x i+1 , ..., x k-1 , X k ] is nothing but [x i+1 , ..., x k , x k+1 ]. We also have π * -1 (X k )π * -1 (X k+1 ) = -π * -1 (x k )π * -1 (e + x k+1 ) -1 π -1 (e + x k+1 ) -1 π * -1 (x k+1 )π * -1 (x k+2 ) π (e + π * (x k+2 )(e)) = -π * -1 (x k )P (e + x k+1 ) π * -1 (x k+1 )π * -1 (x k+2 ) π (e + π * (x k+2 )(e)) ,
and that π * -1 (X k+2 )(e) = π * (e + π * (x k+2 )(e)) π * -1 (x k+3 )(e)

Thus

F k+1 = F k+1 (x 1 , ..., x k-1 , x k , x k+1 , x k+2 , x k+3 ) = F k (x 1 , ..., x k-1 , X k , X k+1 , X k+2 ) = (-1) k+1 π(x 1 ) k i=2 π * -1 (x i )P (e + [x i+1 , ..., x k+1 ]) π * -1 (x k+1 )π * -1 (x k+2 ) π (e + π * (x k+2 )(e)) P (u k (x 1 , ..., x k-1 , X k , X k+1 )) π * (e + π * (x k+2 )(e)) π * -1 (x k+3 )(e).
Denoting

g = π (e + π * (x k+2 )(e)) P (u k (x 1 , ..., x k-1 , X k , X k+1 )) π * (e + π * (x k+2 )(e)) ,
It remains to verify that

g = P (u k+1 (x 1 , ..., x k-1 , x k , x k+1 , x k+2 )) .
In fact,

u k (x 1 , ..., x k-1 , X k , X k+1 ) = e -π -1 (e + π * (x k+2 )(e)) π * (x k+2 ) π * (x k+1 )π (e + x k+1 ) -1 e -π * (e + x k+1 ) -1 π * (x k )P (e + [x k , x k+1 ]) -1 (e + [x k , x k+1 ]) + k-3 i=1 (-1) i+1 π * (e + x k+1 ) -1 π * (x k ) P (e + [x k , x k+1 ]) -1   i j=1 π * (x k-j )P (e + [x k-j , ..., x k+1 ]) -1   (e + [x k-i , ..., x k+1 ])   .
Using the fact that π(y)P (x)π * (y) = P (π(y)x), and π * (x -1 )(x) = e we obtain that

g = P e + π * (x k+2 )(e) -π * (x k+2 ) π * (x k+1 )π (e + x k+1 ) -1 e -π * (e + x k+1 ) -1 π * (x k )P (e + [x k , x k+1 ]) -1 (e + [x k , x k+1 ]) + k-3 i=1 (-1) i+1 π * (e + x k+1 ) -1 π * (x k ) P (e + [x k , x k+1 ]) -1   i j=1 π * (x k-j )P (e + [x k-j , ..., x k+1 ]) -1   (e + [x k-i , ..., x k+1 ]))   = P e + π * (x k+2 )(e) -π * (x k+2 ) π * (x k+1 )P (e + x k+1 ) -1 ((e + x k+1 )) +π * (x k+2 ) π * (x k+1 )P (e + x k+1 ) -1 π * (x k )P (e + [x k , x k+1 ]) -1 (e + [x k , x k+1 ]) + k-3 i=1 (-1) i+2 π * (x k+2 ) π * (x k+1 )P (e + x k+1 ) -1 π * (x k ) P (e + [x k , x k+1 ]) -1   i j=1 π * (x k-j )P (e + [x k-j , ..., x k+1 ]) -1   (e + [x k-i , ..., x k+1 ]))   .
Setting i ′ = i + 1 and j ′ = j + 1, with some standard calculation, this is noting but P (u k+1 (x 1 , ..., x k-1 , x k , x k+1 , x k+2 )).

We now coin a useful lemma.

Lemme 4.4 For all x 1 , ..., x k in Ω, the vector

H = e+ k-3 i=0 (-1) i+1   i j=0 π * (x k-j )P (e + [x k-j , ..., x k ]) -1   (e + [x k-i , ..., x k ]) is in Ω. Denoting for 1 ≤ i ≤ k -3, A i =   i j=0 π * (x k-j )P (e + [x k-j , ..., x k ]) -1   (e + [x k-i , ..., x k ]) ,
we have that

H = e -π * (x k )P (e + x k ) -1 (e + x k ) + 1≤i≤k-3, i odd (A i -A i+1 ), with A k-2 = 0. Now e -π * (x k )P (e + x k ) -1 (e + x k ) = e -π * (x k ) (e + x k ) -1 = e -π -1 (x k ) (e + x k ) -1 = e -π -1 (x k )(e) + e -1 ∈ Ω.
On the other hand, we have for i odd,

A i -A i+1 =   i j=0 π * (x k-j )P (e + [x k-j , ..., x k ]) -1   (e + [x k-i , ..., x k ]) -π * (x k-(i+1) ) e + x k-(i+1) , ..., x k -1 =   i j=0 π * (x k-j )P (e + [x k-j , ..., x k ]) -1   (e + [x k-i , ..., x k ]) -π * (x k-(i+1) ) e + π(x k-(i+1) ) (e + [x k-i , ..., x k ]) -1 -1 =   i j=0 π * (x k-j )P (e + [x k-j , ..., x k ]) -1   (e + [x k-i , ..., x k ]) - π -1 (x k-(i+1) )(e) + (e + [x k-i , ..., x k ]) -1 -1 , which is clearly in Ω. Thus H is in Ω. ! Theorem 4.5
The sequence (w k ) defined in ( 8) is decreasing.

Proof. Form the definition, we have that

[e, x 1 , x 2 , ..., x k ] = π(e) (e + [x 1 , x 2 , ..., x k ]) -1 , so that [e, x 1 , x 2 , ..., x k ] -1 = e + [x 1 , x 2 , ..., x k ] .
Hence

w -1 k = (-1) k+1 ([x 1 , x 2 , ..., x k ] -[x 1 , x 2 , ..., x k+1 ]) -1 = (-1) k+1 [e, x 1 , x 2 , ..., x k ] -1 -[e, x 1 , x 2 , ..., x k+1 ] -1 -1 w -1 k -w -1 k+1 = (-1) k+1 [e, x 1 , x 2 , ..., x k ] -1 -[e, x 1 , x 2 , ..., x k+1 ] -1 -1 -(-1) k+2 [e, x 1 , x 2 , ..., x k+1 ] -1 -[e, x 1 , x 2 , ..., x k+2 ] -1 -1 = (-1) k+1 [e, x 1 , x 2 , ..., x k ] -1 -[e, x 1 , x 2 , ..., x k+1 ] -1 -1 + [e, x 1 , x 2 , ..., x k+1 ] -1 -[e, x 1 , x 2 , ..., x k+2 ] -1 -1 = (-1) k+2 F k+1 (e, x 1 , ..., x k+2 ) = (-1) k+1 (-1) k+2 k-1 i=1 π * -1 (x i )P (e + [x i+1 , ..., x k ]) π * -1 (x k )π * -1 (x k+1 )P (u k+1 (e, x 1 , ..., x k+1 )) π * -1 (x k+2 )(e) Therefore w -1 k -w -1 k+1 = - k-1 i=1 π * -1 (x i )P (e + [x i+1 , ..., x k ]) π * -1 (x k )π * -1 (x k+1 ) P (u k+1 (e, x 1 , ..., x k+1 )) π * -1 (x k+2 )(e). (15) 
As for all v in the cone Ω, the automorphisms π(v), and P (v) are in the group G, they conserve Ω, we deduce that

w -1 k -w -1 k+1 ∈ -Ω,
which is equivalent to

w k -w k+1 ∈ Ω.
Hence the sequence (w k ) is decreasing.

Next, we give an other important intermediary result. Using the notation above, for a sequence (x n ) in the cone Ω, we define the following element of G:

Q k = k-1 i=1
π * -1 (x i )P (e + [x i+1 , ..., x k ]) π * -1 (x k )π * -1 (x k+1 )P (u k+1 (e, x 1 , ..., x k+1 ))

(16) Note that according to (15), we have

w -1 k+1 -w -1 k = Q k (x -1 k+2 ). ( 17 
)
Proposition 4.6 Let y be an element of Ω. Then for all k ≥ 2,

Q * k (y) ≥ π -1 (x 1 )(y)
Proof. We have that

Q * k = P (u k+1 (e, x 1 , ..., x k+1 )) π -1 (x k+1 )π -1 (x k ) k-1 i=1 P (e + [x k+1-i , ..., x k ]) π -1 (x k-i )
Using the fact that P (x) = π(x)π * (x), we obtain that Q * k is equal to the composition of the following elements of G:

π * (e + [x 2 , ..., x k ]) π -1 (x 1 ), (18) 
then the automorphisms

π * (e + [x k+1-i , ..., x k ]) π -1 (x k-i )π (e + [x k-i , ..., x k ]) , (19) 
for i = 1, ..., k -2, then π -1 (x k )π (e + [x k ]) , (20) 
and P (u k+1 (e, x 1 , ..., x k+1 )) π -1 (x k+1 ).

For the terms in (19), we have

π * (e + [x k+1-i , ..., x k ]) π -1 (x k-i )π (e + [x k-i , ..., x k ]) = π * (e + [x k+1-i , ..., x k ]) π -1 (x k-i )π e + π(x k-i ) (e + [x k+1-i , ..., x k ]) -1 = π * (e + [x k+1-i , ..., x k ]) π π -1 (x k-i )(e) + (e + [x k+1-i , ..., x k ]) -1 = π e + π * (e + [x k+1-i , ..., x k ]) π -1 (x k-i )(e) ,
where in the last equality, we have used the fact that π * (x)(x -1 ) = e.

Concerning the term in (20), we have

π -1 (x k )π (e + [x k ]) = π π -1 (x k ) (e + [x k ]) = π e + π -1 (x k ) (e) .
Finally, for (21), according to the definition of u k see ( 14), and to Lemma 4.4, we have that u k+1 (e, x 1 , ..., x k+1 ) can be written in the form

u k+1 (e, x 1 , ..., x k+1 ) = e + π * (x k+1 )(e + v),
where v is an element of Ω. Thus

P (u k+1 (e, x 1 , ..., x k+1 )) π -1 (x k+1 ) = P (e + π * (x k+1 )(e + v)) π -1 (x k+1 ) = π (e + π * (x k+1 )(e + v)) π * (e + π * (x k+1 )(e + v)) π -1 (x k+1 ) = π (e + π * (x k+1 )(e + v)) π * π * -1 (x k+1 ) (e + π * (x k+1 )(e + v)) = π (e + π * (x k+1 )(e + v))
π * e + π * -1 (x k+1 )(e) + v .

Having done this, we see that to get Q * k (y), we first apply π -1 (x 1 ) to y, then we apply automorphisms which are of the form π(e + z) or π * (e + z) or P (e + z), with z ∈ Ω. Using the fact that for all z and y in Ω, we have that π(e + z)(y) -y ∈ Ω, π * (e + z)(y) -y ∈ Ω and P (e + z)(y) -y ∈ Ω, in other word, π(e + z)(y) > y, π * (e + z)(y) > y and P (e + z)(y) > y, we conclude that, given y in Ω, we have that for all k ≥ 2,

Q * k (y) > π -1 (x 1 )(y).
Corollary 4.7 For all y in Ω, there exists a positive random variable C such that for all k,

Q * k (y) > C Proof. As Q * k (y) > π -1 (x 1 )(y), then (Q * k (y)) 2 > (π -1 (x 1 )(y)) 2 . In fact (Q * k (y)) 2 -(π -1 (x 1 )(y)) 2 = (Q * k (y) -π -1 (x 1 )(y))(Q * k (y) + π -1 (x 1 )(y)) ∈ Ω.
Therefore tr((Q * k (y)) 2 ) > tr((π -1 (x 1 )(y)) 2 ), which means that Q * k (y) > π -1 (x 1 )(y) . Thus it suffices to take C = π -1 (x 1 )(y) . Besides the general facts that we have established above, for the proof of the main result of the paper concerning the convergence of a random non ordinary continued fraction, we need the following probability result which also appears in [START_REF] Bernadac | Random continued fractions and inverse Gaussian distribution on a symmetric cone[END_REF]. We give it with a slightly different proof.

Proposition 4.8 Let (A k ) k≥1 be an increasing sequence of σ-fields, and let A k be in A k , for k ≥ 1. Suppose that there exit K > 1, 0 < k 0 < K, and a random variable α which is A k 0 -measurable and valued in (0, 1) such that for all k ≥ K,

E 1 A k+1 |A k ≤ α. Then P   k≥K A k   = 0 Proof. Let us show by induction on p ≥ 1 that E 1 A K ...1 A K+p |A k 0 ≤ α p a.s. For p = 1, E 1 A K 1 A K+1 |A k 0 = E 1 A K 1 A K+1 |A K |A k 0 = E 1 A K 1 A K+1 |A K |A k 0 ≤ αE (1 A K |A k 0 ) a.s.
≤ α a.s..

Now suppose that

E 1 A K ...1 A K+p |A k 0 ≤ α p a.s.. Then E 1 A K ...1 A K+p+1 |A k 0 = E 1 A K ...1 A K+p+1 |A K+p |A k 0 = E 1 A K ...1 A K+p 1 A K+p+1 |A K+p |A k 0 ≤ αE 1 A K ...1 A K+p |A k 0 a.s.
≤ αα p = α p+1 a.s..

Having shown that

E 1 A K ...1 A K+p |A k 0 ≤ α p a.s.,
we just need to take the expectation and let p → ∞ to get the result.

We are now in position to state and prove the main result of the paper.

Theorem 4.9 Let (x k ) k≥1 be a sequence of independent random variables in the cone Ω with distributions absolutely continuous with respect to the Lebesgue measure and such that for all k, the complementary in Ω of the support of x -1 k is bounded. Suppose that there exists p ≥ 1, such that for all i ≥ 1,

L(x i ) = L(x i+p ).
Then the continued fraction [x 1 , ..., x k ] is almost surely convergent.

Proof. With the results what we have established above, we need only to show that under these assumptions, the sequence (w k ) defined in (8) converges almost surely to 0, or equivalently that for all y in Ω, the sequence ( w -1 k , y ) k≥1 diverges almost surely. in order to do so, we will show that Given that w -1 k+1 -w -1 k = Q k (x -1 k+2 ), with Q k defined in (16) we have

A k+1 = Q k (x -1 k+2 ), y ≤ ε = x -1 k+2 , Q * k (y) ≤ ε = x -1 k+2 , Q * k (y) Q * k (y) ≤ ε Q * k (y)
.

Let S be the unit sphere in V , and define for a random variable z, h z (a) = sup θ∈S P (| z, θ | ≤ a) , then we have that

E 1 A k+1 |A k = P x -1 k+2 , Q * k (y) Q * k (y) ≤ ε Q * k (y) |A k ≤ h x -1 k+2 ε Q * k (y) , because Q * k (y) is A 2 -measurable ≤ h x -1 k+2 ε C . Denoting α = max h x -1 1 ε C , ..., h x -1 p ε C
, then according to the assumptions on the distributions of the x i and on the support of x -1 i , we have that α < 1, and that E 1 A k+1 |A k ≤ α.

Therefore using Proposition 4.8 with k 0 = 2, we deduce that

P   k≥n A k   ,
which is the desired result.

Application Consider the beta distribution of the second kind β

p,q on Ω given by β (2) p,q (dx) = (B Ω (p, q)) -1 (∆(x)) p-r+1 2 (∆(e + x)) -(p+q) 1 Ω (x)dx, where B Ω (p, q) is the multivariate beta function defined by B Ω (p, q) = Γ Ω (p)Γ Ω (q) Γ Ω (p + q) , with Γ Ω (p) = (2π) Let (W n ) n≥1 and (W ′ n ) n≥1 be two independent sequences of independent random variables with respective distributions β Then we have that • (x n ) n≥1 is a sequence of independent random variables in the cone Ω with distributions absolutely continuous with respect to the Lebesgue measure.

• For all k, the support of x -1 k is Ω, its complementary in Ω is bounded. • For all i ≥ 1, L(x i ) = L(x i+2 ). According to Theorem 4.9, the continued fraction [x 1 , ..., x k ] is almost surely convergent. As the convergence of a continued fraction doesn't depend on the initial vector, we deduce that the continued fraction [e, x 1 , ..., x k ] is also almost surely convergent. This result is used in a forthcoming paper concerning the matrix beta-hypergeometric distribution. References
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 2 b,a ′ , and consider the random continued fraction [x 1 , ..., x k ] as defined in (7) such that x 2n+1 = W n+1 for n ≥ 0 and x 2n = W ′ n for n ≥ 1.
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