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ANISOTROPIC BOLTZMANN-GIBBS DYNAMICS OF STRONGLY
MAGNETIZED VLASOV-FOKKER-PLANCK EQUATIONS

MAXIME HERDA AND L.MIGUEL RODRIGUES

Abstract. We consider various sets of Vlasov-Fokker-Planck equations modeling the dynamics
of charged particles in a plasma under the effect of a strong magnetic field. For each of them
in a regime where the strength of the magnetic field is effectively stronger than that of colli-
sions we first formally derive asymptotically reduced models. In this regime, strong anisotropic
phenomena occur ; while equilibrium along magnetic field lines is asymptotically reached our
asymptotic models capture a non trivial dynamics in the perpendicular directions. We do check
that in any case the obtained asymptotic model defines a well-posed dynamical system and when
self consistent electric fields are neglected we provide a rigorous mathematical justification of
the formally derived systems. In this last step we provide a complete control on solutions by
developing anisotropic hypocoercive estimates.

Keywords: Maxwell-Boltzmann distribution; Gibbs equilibrium; plasma physics; disparate
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1. Introduction

In the present contribution, we are interested in understanding interactions between oscilla-
tions and dissipative mechanisms when the latter are not the dominant effects. We are essentially
motivated by the modeling of a strongly magnetized, weakly collisional three-dimensional plasma.

The dynamics of a plasma, a charged gas composed of ions and electrons evolving under self-
consistent and external electromagnetic interactions, can be accurately modeled by a system of
kinetic equations of Vlasov-type. However, in applications, these models are rarely numerically
simulated in their full complexity because of computer-time costs. Instead, some reduced models
are used in computational experiments. Even at a theoretical level these models are precious to
capture coherent dynamics emerging on large-time scales from short-scale oscillations or out of
dissipation. Therefore it is crucial to understand how they derive from modeling assumptions in
some asymptotic regimes. In tokamak physics [39], a usual reduction consists in approximating
the density of electrons by Maxwell distribution in velocity and the so-called Boltzmann-Gibbs
macroscopic density which reads

(1.1) nBGpt, xq “
1

Zptq
exp

ˆ

q φpt, xq

kBT ptq

˙

,

where t and x are respectively the time and space variables, q and kB stand for the elementary
charge and the Boltzmann constant, φ is the electric potential and T is a temperature. It depends
also on a normalizing density Z that could actually be taken to be 1 by a suitable normalization of
the electric potential. The approximation by Maxwellian distribution hinges directly on entropy
dissipation arguments whereas the derivation of the Boltzmann-Gibbs approximation stems from
the interplay between transport and collisions in an appropriate scaling. Depending on the
modeling of both phenomena one obtains different asymptotic descriptions reflecting more or
less complex dynamics for T . For instance, recently, in [2], Bardos, Golse, Nguyen and Sentis
formally derive (1.1) jointly with an evolution rule for T when starting from a magnetic-field-free
kinetic description of electrons and prove that the corresponding evolution obtained by coupling
with a full kinetic model for ions dynamics possesses global weak solutions. In any case the
asymptotic reduction hinges on essentially the same mechanisms driving large-time1 asymptotics
for similar models. On the latter the reader is referred to [6, 34].

In this paper, we are rather interested in a detailed analysis of the normalizing factor C :“ 1{Z
for strongly magnetized plasma. While, as already pointed out, in many applications in tokamak
physics the isotropic (1.1) is often used, namely C at pt, xq is Cptq, we claim that under the
influence of a strong three-dimensional magnetic field the relevant asymptotic form for the slaved
density (1.1) features a space dependent density Cpt, xKq where xK is the projection of x in the
plane orthogonal to magnetic field lines. In other words we claim that in a strongly magnetized
regime Boltzmann equidistribution of energy occur in velocity variables and spatially along the
magnetic field but not perpendicular to it. Therefore we shall call the resulting approximation
anisotropic Boltzmann-Gibbs approximation. Note that when C is space-dependent it cannot
be eliminated by a suitable convention change in the definition of the electric potential. Some
similar questions have already been investigated by formal asymptotics both in plasma physics
and applied mathematics communities. We point out the articles of Negulescu, Possaner and
their collaborators [9, 41] to the attention of the reader as both an instance of a formal analysis
similar to that developed here and a source of references to the relevant plasma physics literature.
Besides the formal derivation of a suitable anisotropic version of (1.1) and of the corresponding
spatio-temporal evolution for C, our goal is to provide various rigorous validations of our formal
analysis and a mathematical analysis of the reduced dynamics for C.

1.1. Our original kinetic model and its approximation. To keep the general picture as
simple as possible we restrict our attention to a uniform magnetic field, compact spatial domains
without boundaries and collisions with a thermal bath, which will yield a constant temperature

1Here in the sense of tÑ8.
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T in our anisotropic version of (1.1). Our initial object of study is the evolution of a distribution
function f ε : R` ˆ T3 ˆ R3 Ñ R`, pt, x, vq ÞÑ f εpt, x, vq depending on time t, space x and
velocity v (where T “ R{Z is a one-dimensional torus) according to a Vlasov–Fokker-Planck
equation (VFP)

(1.2) ε Btf
ε ` v ¨∇xf

ε ` σ Eε ¨∇vf
ε ´

1

ε
σ vK ¨∇vf

ε “
1

εα
divvpvfε `∇vf

εq,

where vK “ p0, 0, 1q ^ v — in coordinates pv1, v2, v3q
K “ p´v2, v1, 0q — stems from the Laplace

force induced by the external magnetic field, σ stands for the sign of the particle charge, Eε
is an electric field and α P R measures the collisions strength with respect to magnetic effects.
Note that as is implicit above, the vector p0, 0, 1q provides the direction of the magnetic field.
Depending on the situation, we shall consider various forms of prescription for the electric field
Eε : R` ˆ T3 Ñ R3. In any case it derives from an electric potential φε : R` ˆ T3 Ñ R,
Eε “ ´∇xφ

ε. The simplest situation corresponds to the case where the electric potential itself
is taken as a known applied electric potential. For obvious reasons we shall refer to the latter
case as the external field case or the linear case. In this case the electric potential is independent
of ε and we sometimes drop the superscript ε on it. Two other situations are considered in
the present paper. Indeed though we have so far mostly discussed motivations from asymptotic
reduction in the electronic dynamics we also investigate a similar question for the ions dynamics.
This results in two separated prescriptions of the electric field through modeling considerations
that are only briefly summarized hereafter but detailed in Section 2.1.

In the first nonlinear case, that we shall refer to as the electronic or the light species case, f ε
is the electron distribution function and phenomena are observed on ions characteristic scales.
Consistently we should set σ “ ´1 here but we shall mostly keep σ undetermined to offer
a treatment as unified as possible of all situations. In this first case the scaling parameter ε
represents the square root of the ratio me{mi of masses of electrons and ions. In the asymptotics
εÑ 0, particles are massless zero-inertia electrons and the corresponding dynamics is sometimes
called adiabatic evolution. Note that here the fact that magnetic effects are strongly perceived
by electrons arise from the strong separation in time scales induced by a small mass ratio. As
we have already stressed this limit plays a particular important role in the understanding of
plasma dynamics and accordingly has been investigated in many similar but distinct situations
[33, 1, 41, 9, 15, 17, 18, 5, 2]. In a non relativistic regime, the electric field satisfies the classical
Poisson equation

(1.3) ´δ2∆φε “ σpnε ´ nq,

where nε : R` ˆT3 Ñ R` is the macroscopic density of particles under consideration

nεpt, xq “

ż

R3

f εpt, x, vq d v

and n : R`ˆT3 Ñ R denotes the background time-dependent density of the other species with
opposite charges.

In the second nonlinear model, called the ionic or the heavy species case in the following, f ε
denotes the ion distribution function. Scaling parameter ε stands for a scaled Larmor radius
which directly measures the strength of the external magnetic field. In this regime, classi-
cal Boltzmann-Gibbs approximation for the macroscopic electron density leads to the so-called
Poisson-Boltzmann equation for the electric field

(1.4) ´δ2∆φε “ σ

ˆ

nε ´
1

ş

T3 eσφ
εpyq d y

eσφ
ε

˙

.
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In non-collisional settings the strong magnetic field limit εÑ 0 has also been thoroughly inves-
tigated by many authors [16, 28, 46, 25, 11, 12, 38, 43, 4, 24]. As in those pieces of work time
scale is chosen here to observe a non trivial averaged dynamics.

Concerning the strength of collisions, we focus on cases where |α| ă 1, α ă 0 corresponding
to a regime of evanescent collision frequency and α ą 0 to a strongly collisional regime. The
assumption α ą ´1 ensures that even in weakly collisional regimes collisions are strong enough
to lead on the large observation time scales we consider to a global equilibrium if magnetic effects
were discarded (see [6, 34] for a related analysis and Remark 2.3 for further comments) so that
the non-equilibrium features that we shall describe are indeed due to the presence of a strong
magnetic field. The condition α ă 1 enforces that magnetic effects are dominant. We refer the
reader to [33] for an extensive list of references concerning the borderline case α “ 1 that yields
a diffusive limit when εÑ 0 which provides an asymptotic model retaining some features of the
external magnetic field. We point out that in contrast with the case under study here, in the
borderline case the specific geometry of the magnetic field plays almost no role in the derivation
of an asymptotic model.

In Section 2.2 by arguing on formal grounds we provide a heuristic argument covering all cases
introduced hereinabove and in Section 4.2 we offer a rigorous justification in the linear case that
both suggest that, for any family pf εqεą0 of suitable solutions to (1.2) with a given initial datum
f0, taking the limit εÑ 0 yields a limiting distribution f and a limiting electric potential φ that
have reached an adiabatic regime along the magnetic field

(1.5) fpt, x, vq “ Npt, xKq
e´σφpt,xq

ş

T e
´σφpt,xK,y q d y

Mpvq

where x “ pxK, x q P T2 ˆT and M is a Maxwellian distribution

Mpvq “
1

p2πq3{2
e´

|v|2

2 .

In this asymptotic regime the dynamics is slaved to the evolution of a reduced macroscopic
distribution N : R` ˆT2 Ñ R` in the perpendicular direction, satisfying

(1.6) BtN ` divxKpN p∇xK
rφqKq “ 0

with initial condition

Np0, xKq “ N0pxKq “

ĳ

TˆR3

f0pxK, x , vq dx d v ,

where rφ : R` ˆT2 Ñ R is an x -averaged version of φ

(1.7) rφpt, xKq “ ´σ ln

ˆ
ż

T
e´σφpt,xK,x qdx

˙

,

and φ is either the initially prescribed electric field in the external field case, or is obtained by
solving (1.3) or (1.4) (dropping the superscript ε) with the anisotropic Boltzmann-Gibbs density

(1.8) npt, xq “ Npt, xKq
e´σφpt,xq

ş

T e
´σφpt,xK,y q d y

“ Npt, xKq e
´σpφpt,xq´rφpt,xKqq .

To ease comparison with the initial discussion we observe that (1.8) provides an anisotropic
version of (1.1) where C “ 1{Z would be given by

Cpt, xKq “ Npt, xKq{p

ż

T
e´σφpt,xK,y q d y q.
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The reader may rightfully wonder whether the reduced dynamics described above could in
disguise follow a set of purely two-dimensional local differential equations. The answer turns out
to be positive in the heavy-species case that actually follows

BtN ` divxKpN p∇xK
rφqKq “ 0 , ´δ2∆xK

rφ “ σ

˜

N ´
eσ

rφ

ş

T2 eσ
rφp¨,yKqdyK

¸

.

In the light-species case the presence of a three-dimensional background n prevents any fully
two-dimensional reduction from happening. However in the special case where actually n does
not depend on x the light-species case does reduce to a two-dimensional set of equations, the
classical guiding center model

BtN ` divxKpN ∇KxKφq “ 0 , ´δ2∆xKφ “ σpN ´ nq ,

that has been analytically derived by Golse and Saint-Raymond [28, 46] and Miot [38] as the large
magnetic field limit of the Vlasov-Poisson system with uniform magnetic fields. Interestingly
enough it is also consistent with formal arguments in the recent [16] by Degond and Filbet
that in a non-uniform large magnetic field regime obtain from the Vlasov-Poisson system a set
of equations for a limiting fpt, x, vq “ F pt, x, |vK|, v q which when specialized to a constant
magnetic field as considered here is

BtF `∇KxKφ ¨∇xKF ´ σ Bx ψ Bv F ` v Bx P ´ σ Bx φ Bv P “ 0

v Bx F ´ σBx φ Bv F “ 0 , ´∆xφ “ σ
´

p2πq

ż

R`ˆR
F p¨, ¨, p, v q p dp dv ´ n

¯

´∆xψ “ σ
´

p2πq

ż

R`ˆR
P p¨, ¨, p, v q p dp dv ´ n

¯

where P is thought as a multiplier associated with the constraint on F encoded by the first
equation of the second-line. A priori for collisionless plasmas nothing seems to force a Maxwellian
distribution in velocity but if one inserts a Maxwellian distribution fpt, x, vq “ npt, xqMpvq in the
asymptotic model formally derived by Degond and Filbet then the first equation of the second-
line of the system becomes (1.8) for some N and, afterwards, integrating in px , |vK|, v q the first
equation to eliminate pP,ψq reduces the two first lines of the system to (1.6)-(1.7)-(1.8)-(1.3).

1.2. Main analytical results. We now state our two sets of mathematical results, on one
hand existence results for nonlinear asymptotic models and on the other hand analytic proofs of
validity for the linear asymptotic model.

Roughly speaking, nonlinear asymptotic systems remotely look like transport equations for N
by a divergence-free vector-field obtained by applying to N a linear differential operator of order
´1. Yet in both cases the relation between N and rφ is far from being linear and in the light-
species case the system is not even truly two-dimensional so that it is not readily apparent that
those nonlinear asymptotic systems do enjoy existence and well-posedness results expected for
the foregoing class of equations. In Section 3 we prove that it is the case at least in subcritical2
regimes and our strategy does follow the above analogy. Indeed once sufficient control on the
construction of rφ has been obtained one may follow arguments used for similar equations such
as Vlasov-Poisson equations [26, 7, 45] or two-dimensional incompressible Euler equations in
vorticity formulation [37, 10, 36]. Consequently, the key part of the argument is a detailed
analysis of existence, uniqueness, continuous dependence and regularity results for solutions to
both elliptic equations (1.4)-(1.8) and (1.3)-(1.8) (as well as estimates on rφ in terms of φ) that
are for rφ as two-dimensional and linear as possible. From these we obtain the following results
for the full asymptotic systems.

2However we let open more technical issues such as existence of renormalized solutions and well-posedness in
critical spaces.
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Theorem 1.1 (Strong solutions).
Let p ą 2, δ ą 0 and n P CbpR`;W 1,ppT3qq with mean constant equal to one, n ě 0.
For any N in PW 1,ppT2q, N in ě 0,

ş

T2 N
in “ 1, there exists a unique maximal solution pN, Iq to

(1.6)-(1.7)-(1.3)-(1.8) (resp. (1.6)-(1.7)-(1.4)-(1.8)) in CpI;L1pT2qq X CwpI;W 1,ppT2qq starting
from N in at time 0. Moreover the maximal time of existence is uniformly bounded away from
zero on bounded sets of W 1,ppT2q.

In the former Theorem, Cw denotes the space of functions that are continuous for the weak
topology on the space of values and of course in the heavy-species case no n is actually needed.

Theorem 1.2 (Weak solutions). Let p ą 4{3, δ ą 0.
Let n P CpR;L6{5pT3qq X L8locpR;LppT3q X L3{2,1pT3qq with mean constant equal to one, n ě 0.
For any N in P LppT2q, N in ě 0,

ş

T2 N
in “ 1, there exists a global weak solution N to (1.6)-

(1.7)-(1.3)-(1.8) (resp. (1.6)-(1.7)-(1.4)-(1.8)) starting from N in at time 0.

The reader unfamiliar with Lorentz spaces as appearing in our last statement may replace
LppT3qXL3{2,1pT3q with LqpT3q for some q ą maxptp, 3{2uq to obtain a simpler weaker statement
or consult [35, Chapter 2].

Now we elaborate on the analogy mentioned in the paragraph preceding our statements to mo-
tivate critical thresholds appearing in our foregoing theorems. For strong solutions of transport
equations a natural threshold is obtained by requiring the Lipschitz property for the advection
field as it enables to transport regularity. Assuming that p∇xK

rφqK is indeed one-derivative more
regular than N this amounts here to W 2,ppT2q ãÑ W 1,8pT2q, hence p ą 2. Concerning weak
solutions, natural thresholds are obtained by requiring that all terms in the equations should
be well-defined as distributions and this is usually an issue only for nonlinear terms, hence here
only for Np∇xK

rφqK. Therefore we seek ∇xK
rφ P Lp

1

pT2q since N P LppT2q (where p¨q1 denotes
Lebesgue conjugation, hence 1{p ` 1{p1 “ 1). Assuming again that p∇xK

rφqK is indeed one-
derivative more regular than N this leads to enforce W 1,ppT2q ãÑ Lp

1

pT2q which yields p “ 4{3

as a critical exponent. Note that in our actual analysis we need to go from N to rφ through φ and
thus need to replace two-dimensional embeddings implicitly used above with suitable anisotropic
versions of three-dimensional embeddings to preserve two-dimensional-like scalings.

Though we do not explicitly state it here an inspection of our proofs also provides propagation
of regularity for strong solutions and weak-strong uniqueness. We do not elaborate here on the
crucial role of δ, that we consider as fixed in the present contribution, on lower bounds for
existence time of strong solutions but we refer the reader to [34] for a detailed discussion and a
thorough analysis of a non magnetized version of our original systems.

Second, in the external field case, we prove in Section 4 that formal arguments may indeed be
replaced with sound rigorous mathematical analysis. We provide such a justification for what is
often considered to be the weakest notion of solutions that are physically relevant, that is, for free
energy solutions of (1.2) in the sense of Bouchut and Dolbeault [6, 20]. More explicitly we consider
all L logL distributions with finite second moments in velocity or equivalently, distributions with
bounded mass, finite kinetic energy and finite entropy.

Theorem 1.3. Assume that φ PW 1,1
loc pR`;L8pT3qq and f0 is such that

f0 ě 0,

ĳ

T3ˆR3

`

1` |v|2 ` ln` f0

˘

f0 dxdv ă 8

(where p¨q` denotes positive part). Then there exists a unique f ε P CpR`;L1pT3 ˆR3qq solving
Equation (1.2) and starting from f0 at time 0. Moreover there exists N P L8pR`;L1pT2qq and
a positive sequence pεnq converging to zero such that when nÑ8

f εnpt, x, vq Ñ Npt, xKq
e´σφpt,xq

ş

T e
´σφpt,xK,y qdy

Mpvq weakly in L1
locpR`;L1pT3 ˆR3qq ,
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and N solves the transport equation (1.6)-(1.7).

Note that when φ is sufficiently regular to ensure uniqueness for the transport equation one
may actually replace convergence along the subsequence pεnq with full convergence as εÑ 0 by
the classical argument relying on compactness and uniqueness of limit points.

Finally, we want to obtain convergence rates in strong norms for asymptotic limits that are
expected to be compatible with strong convergence. Indeed one expects three kind of phenomena
to co-exist, dissipation by collisions leads to Maxwellian distribution in velocity, interaction
between transport and collisions yields anisotropic Boltzmann-Gibbs behavior of macroscopic
density for some N ε, strong oscillations induced by the magnetic field average N ε to some N
solving (1.6). By essence the last part does not lend itself to a strong convergence analysis. For
the other ones we develop a form of anisotropic hypocoercive estimates that provide a strong
form of control on norms involved in the limiting process. Note that even for the simplest part of
the convergence analysis leading to Maxwellian behavior one needs to assume some strong form
of localization of initial data to derive decay rates. Accordingly we assume our initial data to
lie in some weighted functional space. The justification of the Boltzmann-Gibbs approximation
also requires control on derivatives of the solutions but we assume no regularity on the initial
data and instead gain this regularity at later time from hypoelliptic properties of the dynamics.
At a technical level our proof proceeds by building a suitable dissipated functional that captures
both hypocoercivity observed on relevant commutators as in [49, 34] and hypoellipticity as in
[31, 32, 34]. For simplicity we assume φ to be time-independent here.

Theorem 1.4 (Convergence rates). Let φ PW 2,8pT3q.
Then there exists a positive constant C such that for any ε P p0, 1q and any initial data f0 P

L2pM´1pvq dx dvq, the strong solution f ε solving (1.2) and starting from f0 satisfies

}pt, x, vq ÞÑ f εpt, x, vq ´ nεpt, xqMpvq}L2pR`; L2pM´1pvqdxdvqq ď C }f0}L2pM´1pvqdxdvq ε
α`1
2

›

›

›

›

›

pt, xq ÞÑ nεpt, xq ´N εpt, xKq
e´σφpxq

ş

T e
´σφpxK,y q d y

›

›

›

›

›

L2pR`ˆT3q

ď C }f0}L2pM´1pvqdxdvq ε
1´|α|

2

where
nε “

ż

R3

f εp¨, ¨, vqdv and N ε “

ż

T
nεp¨, ¨, y qdy .

In particular, as εÑ 0 the distribution function f ε gets ε
1´|α|

2 -close to the anisotropic Maxwell-
Boltzmann density

pt, x, vq ÞÑ N εpt, xKq
e´σφpxq

ş

T e
´σφpxK,y q d y

e´
|v|2

2

p2πq3{2

in L2pR`; L2pM´1pvqdxdvqq.

A few comments on rates are in order. Rates in our statement are expected to be optimal.
Indeed the first rate is naturally associated with the fact that solutions to

ε Bt rf
ε “

1

εα
divvpv rf ε `∇v

rf εq

starting from rf0 P L2pM´1pvqdvq decay to a Maxwellian distribution at a rate e´t{ε
1`α in

L2pM´1pvqdvq. On the other hand the second one is closely connected to the convergence
of solutions to

ε Btf
ε ` v ¨∇xf

ε ` σ Eε ¨∇vf
ε “

1

εα
divvpvfε `∇vf

εq

starting from f0 P L
2pM´1pvq dx dvq such that ∇xf0,∇vf0, vf0 P L

2pM´1pvq dx dvq towards a
Maxwell-Boltzmann distribution at a rate e´κ0 t{ε1´|α| in L2pM´1pvqdxdvq for some κ0 ą 0. Note
that the latter rate is not monotone with respect to α. This reflects that collisions are not the
only mechanism involved in this convergence. For a thorough discussion we refer the reader to
[34] that analyzes nonlinear magnetic-field-free analogous questions.
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Structure of the paper. The structure of the paper follows the organization of our introduc-
tion. In Section 2 we provide motivations for our initial models and a formal derivation of reduced
equations. In Section 3 we analyze nonlinear reduced asymptotic models to prove Theorems 1.1
and 1.2. Then in Section 4 we prove Theorems 1.3 and 1.4 hence justify the linear reduced
model. At last in Section 5, we provide some further technical comments and perspectives on
our results.

2. Heuristic considerations

In the following we give modeling and heuristic justifications for both our starting and limiting
models. We explain in Section 2.1 how our initial physical models — Equation (1.2) completed
with some prescription of the electric field — arise precisely in the regime ε ! 1 from more
complete two-species systems. Then, in Section 2.2, starting from (1.2) we argue on formal
grounds to identify the asymptotic dynamics obeying (1.6)-(1.7)-(1.8).

2.1. Original physical variables. Though our goal is mostly to identify qualitative mecha-
nisms our choice of systems originates in concrete realistic plasma dynamics, from which they
are obtained by a combination of arguments — that we expound now — either of asymptotic
analysis type or made purely to lower technicalities to their bare minimum.

We begin our discussion by considering the full dynamics of a plasma containing electrons with
negative charge ´q and mass me and ions of mass mi and charge Zq, where q is the elementary
charge and Z is the atomic number of ions. In the following we take into account an external
unidirectional magnetic field of constant amplitude B̄, to be thought of as a confinement field for
a fusion device, but as is classical in this regime (and rigorously justified in some closely related
contexts, see for instance [14]) we neglect self-induced magnetic effects. To reduce technicalities in
the analysis we also idealize the mechanism of collisions between particles and describe collisions
as if they were occurring with a thermal bath with temperature θ and zero mean velocity. To our
opinion this is by far the less realistic of our simplifications and the only one that does not bear
principally on modeling considerations but we expect that the phenomena that we identify in our
simplified evolution do occur on a much wider range of models. In this direction we stress that
the formal asymptotic analysis carried out in Section 2.2 does not rely heavily on the specific
form of the full collision operator but only on the nature of its kernel, here Maxwellian equilibria
with zero mean velocity and fixed temperature.

Denoting respectively by fe and fi electron and ion distribution functions, the original equa-
tions, written in physical variables, are

(2.1)

$

’

’

’

&

’

’

’

%

Btfe ` v ¨∇xfe ´
q
me

`

´∇xφ´ B̄ vK
˘

¨∇vfe “ ν
peq
col ∇v ¨

´

vfe `
kBθ
me

∇vfe

¯

,

Btfi ` v ¨∇xfi `
Zq
mi

`

´∇xφ´ B̄ vK
˘

¨∇vfi “ ν
piq
col ∇v ¨

´

vfi `
kBθ
mi

∇vfi

¯

,

´ ε0 ∆xφ “ Zq ni ´ q ne,

where the macroscopic density of the species s P ti, eu is given by nspt, xq “
ş

R3 fspt, x, vq dv. The
parameter νpsqcol is the characteristic frequency of collisions with the thermal bath for the species
s P ti, eu, kB is the Boltzmann constant and ε0 is the dielectric constant. To ease comparisons of
respective sizes of parameters and allow corresponding asymptotic analysis we now aim at turning
(2.1) in dimensionless form. To do so, in the following, we denote by L the characteristic length
of the system, tobs the characteristic observation time and Vi, Ve the thermal velocity of ions
and electrons respectively. For any other physical quantity G, we denote by Ḡ the characteristic
value of G and G1 the dimensionless quantity associated to G so that G “ ḠG1. Accordingly, we
introduce

fspt, x, vq “
n̄s
V 3
s

f 1s

ˆ

t

tobs
,
x

L
,
v

Vs

˙

, nspt, xq “ n̄sn
1

ˆ

t

tobs
,
x

L

˙

,
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φpt, xq “ φ̄φ1
ˆ

t

tobs
,
x

L

˙

.

where s P ti, eu, and reformulate (2.1) in terms of f 1i , f
1
e, n1i, n

1
e and φ1.

Physical scales. We assume that the plasma is globally neutral and introduce the characteristic
number of electrons N defined by

Zn̄i “ n̄e “ N.

Moreover we consider a hot plasma [3] meaning that characteristic temperatures (or kinetic
energy) are equal to that of the thermal bath. It implies

miV
2
i “ meV

2
e “ kBθ.

Besides, the characteristic potential energy due to electric effects is assumed of same order than
that of kinetic effects which yields

φ̄ “
kBθ

q
.

Now we may introduce several physical time and space scales characterizing each of the electric,
magnetic and collision phenomena. Electrostatic constants are the Debye length and plasma time
respectively given by

λD “

d

ε0kBθ

q2N
, tpsqp “

λD
Vs
.

They measure the typical length of influence of an isolated particle and the period of electrostatic
waves in the plasma. Magnetic constants are cyclotron time and the Larmor radius defining the
period and radius of gyration of particles around magnetic field lines and reading respectively

tpsqc “
ms

qB̄ext
, r

psq
L “ Vst

psq
c .

Finally the mechanism of collisions is characterized by a typical time between two collisions
1{pν

psq
col q and the mean free path of a particle

ls “
Vs
νscol

.

We refer to the physics literature [27, 3, 39] for deeper insights and thorough comments on the
respective roles of each of the former quantities.

Dimensionless parameters. From now on we use ionic quantities as references and set

tobs “
1

ν
piq
col

τobs , L “ li.

This leads to the consideration of quotients

δ “
λD
L
, µ “

r
piq
L

L
, γ “

le
li
, λ “

me

mi
.

Since we focus on globally-neutral hot plasmas one may expect the ratio between mean free paths
γ to depend only on the mass ratio λ. Consistently we set for some real exponent α,

γ “ λα{2.

Incidently we point to the attention of the reader [15, Section 1.5] as an instance of a detailed
modeling analysis of the dependence of collision frequencies with respect to mass ratio λ for more
reallistic collisional operators and we note that the modeling arguments there suggests that α “ 0

9



would be the case of highest practical interest. Going on by dropping primes on dimensionless
quantities, we may express the dimensionless form of the equations as
(2.2)

$

’

’

’

’

’

&

’

’

’

’

’

%

1

τobs
Btfe `

1
?
λ
v ¨∇xfe `

1
?
λ

ˆ

∇xφ`
1

?
λµ

vK
˙

¨∇vfe “
1

λp1`αq{2
∇v ¨ pvfe `∇vfeq ,

1

τobs
Btfi ` v ¨∇xfi ` Z

ˆ

´∇xφ´
1

µ
vK

˙

¨∇vfi “ ∇v ¨ pvfi `∇vfiq ,

´ δ2 ∆xφ “ ni ´ ne,

We refer to [15, 1] for more details on similar computations. Since the changes required to deal
with the general case are of notational nature from now on we assume that the atomic number
of ions Z is equal to one. Note that the foregoing assumption, made here purely for expository
purposes, is consistent with the presence of light ions in tokamak plasmas [39].

In the situations we have in mind both λ and µ are small. In particular, the mass ratio λ is of
order 10´4 for a deuterium plasma. As a consequence typical time scales of ions and electrons
completely uncouple since, with our previous set of notation,

λ “

˜

t
peq
p

t
piq
p

¸2

“
t
peq
c

t
piq
c

.

The systems we consider in the core of the present paper are motivated by the asymptotic analysis
of the case where λ ! µ ! 1. We believe that this distinguished regime is of particular relevance
for applications. We stress however that it is far from covering the full range of pλ, µq ! 1 and
we do not intend here to justify a double limit in any case.

Ion dynamics interacting with massless electrons in the strong magnetic field limit. Neglecting
the fact that a strong magnetic field could slow down thermalization effects, one expects, as
it is usually assumed in tokamak physics applications, that the electronic zero-inertia regime
λ Ñ 0 brings the macroscopic density of electrons to a Boltzmann-Gibbs density provided that
the scaled observation time is at least of order one, τobs Á 1. See for instance Remark 2.3 for
some elements of justification. This yields

nept, xq “
eφpt,xq

ş

T3 eφpt,xqdx
.

This approximation being taken for granted, we are now interested in the limit µÑ 0, meaning
that the Larmor radius becomes infinitely small. We point out that the corresponding asymp-
totics has already been extensively studied in related contexts, notably for collisionless models
in [25, 28, 46, 38, 43, 4, 24].

In the present case, the small parameter of interest is thus

ε “ µ

and we recover (1.2)-(1.4), with σ “ 1, α “ 0 on the observation time scale τobs “ 1{µ. As
already mentioned the later choice reflects the fact that one needs to consider long-time dynamics
to observe a significant averaged evolution.

Electron dynamics in the massless limit. Though the former scenario may seem plausible our
intention is precisely to convince the reader that the above-mentioned Boltzmann-Gibbs ap-
proximation for ne fails when collisions are not the dominant mechanism leading the electron
dynamics. To do so, we focus on the kinetic description of electrons in the massless limit λÑ 0
when α ă 1.

In this context the small parameter of interest is

ε “
?
λ.
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Since the ion evolution equation does not depend explicitly on λ and the coupling of equations
is relatively weak we make the further simplification assumption that the macroscopic density
of ions ni is independent of λ and hence can be considered as frozen and given by a background
density n. This reflects the fact that without this simplification one would expect to recover in
the limit λÑ 0 the same asymptotic equation derived under the frozen ion density assumption
but coupled with the Vlasov-Fokker-Planck equation for the evolution of the "frozen" density n.
In slightly different related situations several papers dealing with the full coupling [33, 2] have
proved that it was indeed a sound expectation.

After the harmless notational simplification consisting in setting µ “ 1, we recover the model
(1.2)-(1.3), with σ “ ´1 when τobs “ 1.

Remark 2.1. Our analysis not only indicates that the classical isotropic Boltzmann-Gibbs ap-
proximation fails to capture the electron dynamics in the massless limit but also provides an
anisotropic replacement that may be coupled with the slow dynamics of ions. For completeness’
sake we draw now briefly some consequences for the ion dynamics. Our first claim is that the
dynamics of ions surrounded by massless electrons could be correctly described by

$

’

’

’

&

’

’

’

%

1

τobs
BtNe ` µ divxKpNe p∇xK

rφeq
Kq “ 0

1
τobs
Btfi ` v ¨∇xfi `

´

´∇xφ´
1
µv
K
¯

¨∇vfi “ ∇v ¨ pvfi `∇vfiq ,

´δ2 ∆xφ “ ni ´Ne
φ´rφe ,

where rφe is obtained from φ by the nonlinear averaging (1.7) with σ “ ´1. An analysis similar
to the one expounded here then shows that on time-scale τobs “ 1{µ the limit µ Ñ 8 leads
ni to an anisotropic Boltzmann-Gibbs regime where corresponding pNe, Niq satisfies a system of
coupled guiding-center equations

"

BtNs ` divxKpNs∇KxKφq “ 0, s “ e, i,
´δ2 ∆xKφ “ Ni ´Ne .

Incidentally note that consistently with classical gyrokinetic theory both species are advected by
the same electric drifts irrespective of the sign of their charges.

2.2. Formal derivation. Now we begin the derivation of (1.6)-(1.7)-(1.8) from (1.2). Here we
argue formally and in particular take for granted in this heuristic section that any sequence of
functions that is bounded in one norm actually converges in any norm required to take limits
and that rates of convergence may indeed be predicted by balancing orders in equations. It
goes without telling that conclusions thus derived must then be taken with care. In particular
even when formally derived results may be rigorously justified, in general the mathematical
validation may not proceed by proving each step of the crude path followed arguing heuristically.
Moreover especially in strongly oscillating asymptotics formal arguments may lead to misleading
conclusions. Indeed terms that may seem prominent may actually turn to be irrelevant because
of averaging effects, that is because for instance they are derivatives of small immaterial terms,
or in the converse direction terms that are small may have huge derivatives and thus could
yield strong effects. Besides, taking oscillating limits typically do no commute with nonlinear
operations. This being stated we begin our formal process leading to an identification of possible
asymptotic dynamics but try to use arguments as close as possible from those that we do justify
in the linear setting in Section 4.2.

To do so we pick a family of solutions pf εq and denote pφεq corresponding electric potentials
(whether they actually depend on ε or not). We may normalize potentials by requiring for any
t and ε

(2.3)
ż

T3

e´σ φ
εpt,yq dy “ 1 .
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This amounts to replacing the original φε with

φε ´ ln

ˆ
ż

T3

e´σ φ
εpt,yq dy

˙

,

a process that as expected does not modify any equation.
We stress that aiming at a unified in α derivation precludes any use of an asymptotic expansion

in powers of ε. Hence alternatively we rely directly on symmetries of the equations to sort out
different terms of the equation. Incidentally note that even in an α-by-α identification several
symmetry arguments would be needed to derive that some terms that are expected to sum to
zero actually vanish separately.

Free energy identities. To begin with, we introduce the time-dependent measure dµεt “Mεpt, x, vq dx dv
where the global Maxwellian is given by

(2.4) Mεpt, x, vq “ e´σ φ
εpt,xqMpvq

and Mpvq “ p2πq´3{2 e´|v|
2{2, so that, roughly speaking, transport terms and collision terms are

respectively skew-symmetric and symmetric with respect to dµεt . As a consequence, setting

hε “ f ε pMεq´1,

we obtain the following family of a priori estimates.

Lemma 2.2. Let f ε be a smooth and localized solution of the magnetized Vlasov-Fokker-Planck
equation (1.2) with smooth electric potential φε. Then for any smooth function H,

(2.5)

d
dt

¨

˚

˝

ĳ

T3ˆR3

Hphεq dµε

˛

‹

‚

`
1

εα`1

ĳ

T3ˆR3

H2phεq |∇vh
ε|2dµε

“ ´

ĳ

T3ˆR3

pH 1phεqhε ´HphεqqσBtφ
ε dµε .

In particular,

(2.6)
d
dt

¨

˚

˝

ĳ

T3ˆR3

f ε
ˆ

ln f ε `
|v|2

2
` σφε

˙

˛

‹

‚

`
1

εα`1

ĳ

T3ˆR3

1

hε
|∇vh

ε|2dµε “ ´
ż

T3

nε σBtφ
ε .

Proof. We omit the detailed computation leading to (2.5) as perfectly standard. Equation (2.6)
follows then from the choice Hphq “ h lnphq. �

Assuming moreover (1.3) or (1.4) one may rewrite (2.6) in a form related to the conservation
of some free energy. However since we shall make no use of such considerations we do not dwell
on those here.

Now we formally take limits in the free energy identities of the previous lemma. For the
limiting functions, we drop the superscript ε (e.g. f , φ, n, h, µ ...). Since α ą ´1, we get for all
time t ě 0

ż t

0

ĳ

T3ˆR3

1

hps, ¨, ¨q
|∇vhps, ¨, ¨q|

2dµs ds “ 0.

As a consequence h only depends on space and time variables which means that the limiting
distribution function is a local Maxwellian, namely f “ nM . By inserting this into equation (1.2)
and balancing terms we can surmise3 that

rf ε “
f ε ´ f

ε

3Unlike the rest of the formal analysis this expectation has no rigorous counterpart in our mathematical analysis.
It is highly dubious that it could be fulfilled.
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should possess a limit rf that satisfies for any pt, x, vq

v ¨∇xfpt, x, vq ´ σ∇xφpt, xq ¨∇vfpt, x, vq ´ σ v
K ¨∇v

rfpt, x, vq “ 0 .

Now comes the key observation that the image of vK ¨∇v consists of functions with zero average
with respect to the polar angle θ from cylinder coordinates p|vK|, θ, v q implicitly defined by
v “ p|vK| cospθq, |vK| sinpθq, v q. From this and the radial character of f with respect to velocity
variable stems

v Bx fpt, x, vq ´ σ Bx φpt, xqBv fpt, x, vq “ 0 .

Using once again that f is Maxwellian in velocity we conclude that indeed

fpt, x, vq “ Npt, xKq
e´σφpt,xq

ş

T e
´σφpt,xK,y q d y

e´
|v|2

2

p2πq3{2

where

Npt, xKq “

ĳ

TˆR3

fpt, x, vq dx dv .

Dynamics of velocity moments. The only task left is the identification of an equation for N .
To proceed we denote by N ε the integral of f ε with respect to px , vq and observe that a
corresponding integration of (1.2) leads to a certain form of conservation of charge

BtN
ε ` divxKpJ

ε
Kq “ 0

where

Jεpt, xq “
1

ε

ż

TˆR3

v fεpt, x, vq dx dv .

This suggests that JεK could possess a limit JK. To identify this limit we proceed as above. By
multiplying (1.2) by vK and integrating one derives

ε2 BtJ
ε
K ` divxK

ˆ
ż

TˆR3

vK b vK f
εp¨, ¨, x , vqdx dv

˙

` σ

ż

T
∇xKφ

εp¨, ¨, x qnεp¨, ¨, x qdx

“ ´σ pJεKq
K ´ ε1´α JεK

where K acts on vectors of R2 through pj1, j2qK “ p´j2, j1q. Taking limits brings

´σ pJKq
K “ divxK

ˆ
ż

TˆR3

vK b vK fp¨, ¨, x , vqdx dv
˙

` σ

ż

T
∇xKφp¨, ¨, x qnp¨, ¨, x qdx

which, by using the special form of f , may also be written as

´σ pJKq
K “ ∇xKN ´ N ∇xK

ˆ

ln

ˆ
ż

T
e´σφp¨,¨,x q dx

˙˙

.

Inserting this in the limit of the foregoing equation of conservation of charge achieves the deriva-
tion of (1.6) after noticing that p∇xKNq

K is divergence free.

Remark 2.3. To ease comparisons we briefly sketch how in a collision-dominated scenario a similar
formal analysis may be carried out. Therefore in the present remark we insert σ0 P t0, 1u in front
of the magnetic field term and allow σ0 “ 0 (non magnetized case) and α ą 1 (very strong
collisions). The condition α ą ´1 is sufficient to support the expectation that f ε converges to
some f “ nM . Then one turns to the analysis of moments

nε “

ż

R3

f εp¨, ¨, vqdv , jε “
1

ε

ż

R3

v fεp¨, ¨, vqdv

involved in the following version of conservation of charge

Btn
ε ` divxpjεq “ 0

13



and computes that

(2.7) ε2 Btj
ε ` divx

ˆ
ż

R3

v b v fε dv
˙

` σ∇xφ
ε nε “ ´σ σ0 pj

εqK ´ ε1´α jε .

If σ0 “ 0 and ´1 ă α ă 1 taking the limit εÑ 0 and inserting f “ nM yields

∇xn ` σn∇xφ “ 0

hence the classical Maxwell-Boltzmann approximation as for instance in [2]. If α “ 1 (no matter
what σ0 is) one rather obtains

∇xn ` σn∇xφ “ ´σ σ0 j
K ´ j

that may be solved for j and inserted in Btn` divxpjq “ 0 to derive a diffusive equation for n as
for instance in [33]. At last if α ą 1 (no matter what σ0 is) one derives j “ 0 hence Btn “ 0 thus
the formal analysis suggests convergence to a global equilibrium. In our case we have essentially
taken the limit of the third component of (2.7) to obtain Boltzmann-Gibbs behavior along the
magnetic field and we have integrated the two first components of (2.7) to derive the equation
for N .

3. Well-posedness of asymptotic models

In this part, we investigate the well-posedness of the nonlinear asymptotic models and ac-
cordingly, we prove Theorem 1.1 and Theorem 1.2. The asymptotic models for light and heavy
species only differ by their Poisson-Boltzmann equation, which is 3D and anisotropic in the for-
mer case and 2D and isotropic in the latter. In Section 3.1, we provide a detailed analysis of the
anisotropic equation and the proof of the theorems for the light species case, the challenge being
to prove 2D-like results on a model with some 3D features. In Section 3.2, we indicate how to
adapt the arguments to the simpler — already 2D — heavy species case.

3.1. Light particles. In the present subsection we analyze the asymptotic system obtained in
the electronic case so that, since it is consistent with modeling, for reading convenience we set
σ “ ´1. Therefore we study the well-posedness of the following system

(3.1)

$

’

&

’

%

BtN ` divxKpN ∇KxK rφq “ 0 ,

´ δ2∆xφ “ n´N eφ´
rφ , rφpt, xKq “ ln

ˆ
ż

T
eφpt,xK,x qdx

˙

.

We are thus trying to solve a conservation law corresponding to advection by a divergence-free
velocity field build from a "stream function" rφ obtained by averaging the solution to a second-
order elliptic equation. As already pointed out in the introduction once sufficient control on the
construction of rφ from N has been obtained one may follow arguments used for similar equations
such as Vlasov-Poisson equations [26, 7, 45] or two-dimensional incompressible Euler equations
in vorticity formulation [37, 10, 36].

Anisotropic Poisson-Boltzmann equation. Accordingly we first focus on the elliptic equation in-
volved in System 3.1. Since time variable is a simple parameter there, we temporarily omit to
mention time dependence along the following considerations. Moreover for concision’s sake we
do not repeat but always assume N ě 0, n ě 0,

ş

T3 n “
ş

T2 N “ 1.
Hence we study the following anisotropic Poisson-Boltzmann equation

(3.2) ´δ2∆xφpxK, x q “ npxK, x q ´NpxKq
eφpxK,x q

ş

T e
φpxK,y qdy

where N and n are nonnegative functions with integral equal to one. The key observation is that
Equation 3.2 is the Euler-Lagrange equation associated to the energy functional

(3.3) Jrψs “
1

2
δ2

ż

T3

|∇ψ|2 `
ż

T2

N ln

ˆ
ż

T
eψ dx

˙

dxK ´
ż

T3

nψ .
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Explicitly, at least for smooth pairs pφ, ψq,

(3.4)
d
dτ

ˇ

ˇ

ˇ

ˇ

τ“0

Jrφ` τψs “

ż

T3

ˆ

δ2∇φ ¨∇ψ ` N
eφ

ş

T e
φ dx

ψ ´ n ψ

˙

dx

We aim now at identifying an appropriate functional setting in which J is strictly convex and
coercive. From this shall stem existence and uniqueness for (3.2). Afterwards we focus on
corresponding regularity issues.

To do so we introduce

H0 “

"

h P D1pT3q | ∇h P L2pT3q and
ż

T3

h “ 0

*

.

The set H0 is a closed linear subspace of the Sobolev space H1pT3q and by Mazur’s theorem it
is also weakly closed. Moreover, by Sobolev embedding and Poincaré inequality H0 ãÑ L6pT3q.

Proposition 3.1. Assume N P L4{3pT2q and n P L6{5pT3q. Then
(i) J : H0 Ñ R is well defined, bounded on bounded sets and coercive;
(ii) J is strictly convex;
(iii) J is Gâteaux differentiable;
(iv) J is weakly lower semi-continuous.

Proof. Since H0 ãÑ L6pT3q, for some C
ż

T3

n|ψ|dx ď }n}L6{5pT3q }ψ}L6pT3q ď C }n}L6{5pT3q }ψ}H1pT3q.

Likewise since4 H0 ãÑ L2pT2;H1pTqq X L6pT3q ãÑ L4pT2;L8pTqq, a pointwise estimate on the
exponential function shows that

ż

N

ˇ

ˇ

ˇ

ˇ

ln

ˆ
ż

T
eψp¨,y qdy

˙ˇ

ˇ

ˇ

ˇ

ď }N}L4{3pT2q

›

›

›

›

ln

ˆ
ż

T
eψp¨,y qdy

˙›

›

›

›

L4pT2q

ď C }N}L4{3pT2q}ψ}L4pT2;L8pTqq

ď C 1 }N}L4{3pT2q}ψ}
3{4
L6pT3q

}ψ}
1{4
L2pT2;H1pTqq

ď C2 }N}L4{3pT2q}ψ}H1pT3q

for some C,C 1, C2. Combined with a Poincaré inequality this provides

(3.5)
ˇ

ˇ

ˇ

ˇ

Jrψs ´
1

2
δ2}∇ψ}2L2pTq3

ˇ

ˇ

ˇ

ˇ

ď Cp}N}L4{3pT2q ` }n}L6{5pT3qq}∇ψ}L2pT3q,

for some C, which proves the first claim.
Thanks to the Hölder inequality it holds, for θ P r0, 1s

ż

T
eθψ1`p1´θqψ2dx ď

ˆ
ż

T
eψ1dx

˙θ ˆż

T
eψ2dx

˙1´θ

.

Therefore the second term of the right-hand side of (3.3) is convex. The first is strictly convex
and the last is linear. This proves the second claim.

To prove differentiability, since the first and third term of J are respectively quadratic and
linear continuous, one may safely focus on the middle term of J . The latter differentiability

4The last embedding follows from Gagliardo-Nirenberg inequality

}ψpxK, ¨q}L8pTq ď C }ψpxK, ¨q}
3{4

L6pTq
}ψpxK, ¨q}

1{4

H1pTq

combined with one Hölder inequality. From now on we shall make use of similar anisotropic Sobolev embeddings
without further comment.
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follows from applying twice the Dominated Convergence Theorem. To do so, we note that when
pφ, ψq P pH0q

2 and pt, sq P R2, for almost any xK
ˇ

ˇ

ˇ
ln

ˆ
ż

T
epφ`tψqpxK,y qdy

˙

´ ln

ˆ
ż

T
epφ`sψqpxK,z qdz

˙

ˇ

ˇ

ˇ

“ ln

˜

ż

T
ept´sqψpxK,y q

epφ`sψqpxK,y qdy
ş

T e
pφ`sψqpxK,z qdz

¸

ď ln

˜

ż

T
e|t´s| }ψpxK,¨q}L8pTq

epφ`sψqpxK,y qdy
ş

T e
pφ`sψqpxK,z qdz

¸

ď |t´ s| }ψpxK, ¨q}L8pTq

where we have broken the symmetry by assuming that
ż

T
epφ`sψqpxK,z qdz ď

ż

T
epφ`tψqpxK,y qdy

and used monotonicity of ln and exp. From this follows the third claim.
The last claim follows for instance from convexity and local boundedness combined with

Mazur’s theorem. �

The foregoing proposition yields by classical arguments the following one.

Proposition 3.2 (Existence and uniqueness). For any N P L4{3pT2q and n P L6{5pT3q, Equa-
tion (3.2) possesses a unique weak solution φ P H0. Moreover there exists C such that for any
such pN,nq the solution φ satisfies

}φ}H1pT3q ď Cp}N}L4{3pT2q ` }n}L6{5pT3qq .

Besides there exists C such that for any pair pN,nq, pN 1, n1q of such couples respective solutions
φ and φ1 satisfy

}φ´ φ1}H1pT3q ď Cp}N ´N 1}L4{3pT2q ` }n´ n
1}L6{5pT3qq

Proof. Existence and uniqueness follows from Proposition 3.1 along the classical line of the direct
method of calculus of variations. Then the uniform bound stems directly from coercivity estimate
(3.5) and the fact that J takes the value 0 at the null function. At last, as we explain now, the
Lipschitz estimate follows from quantifying convexity and local boundedness. Temporarily, to
make it precise, we mark J with suffixes N,n. By using that φ and φ1 are critical points of,
respectively, JN,n and JN 1,n1 and that each of the three terms defining J is convex, one obtains

δ2 }∇pφ´ φ1q}2L2pT3q ď JN,npφ
1q ´ JN,npφq ` JN 1,n1pφq ´ JN 1,n1pφ

1q

“

ż

T2

pN ´N 1q ln

˜

ş

T e
φ1 dx

ş

T e
φ dx

¸

dxK ´
ż

T3

pn´ n1q pφ1 ´ φq dx

ď C 1p}N ´N 1}L4{3pT2q ` }n´ n
1}L6{5pT3qq }φ´ φ

1}H1pT3q

for some C 1, where we have used the pointwise bound

(3.6) ln

˜

ş

T e
φ1pxK,x q dx

ş

T e
φpxK,x q dx

¸

ď }pφ´ φ1qpxK, ¨q}L8pTq

and the embedding H0 ãÑ L4pT2;L8pTqq. From here a Poincaré inequality yields the result. �

Now we discuss regularity of solutions to Equation (3.2). In the next proposition we use
classical elliptic regularity properties — in Calderón-Zygmund form — and maximum principles
— as recalled in Appendix B — to obtain estimates of φ in higher order Sobolev spaces. We
refer the reader to [47, 48] or [29] on the classical Calderón-Zygmund regularity theory and to
[35, Chapter 2] for relevant basic properties of Lorentz spaces appearing in the following.
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Proposition 3.3 (Regularity). There exists C such that if N P L4{3pT2q and n P L3{2,1pT3q

then φ the unique solution to (3.2) satisfies

}eφ}L8pT3q `

›

›

›

›

1
ş

T e
φp¨,y qdy

›

›

›

›

L8pT2q

ď C e
C
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

¯

and if moreover N P L3{2,1pT2q

}φ}L8pT3q ď C

ˆ

}n}L3{2,1pT3q ` }N}L3{2,1pT2qe
C
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

¯˙

.

Moreover, for any 1 ă p ă 8, there exists C such that if N P L4{3pT2q X LppT2q and n P

L3{2,1pT3q X LppT3q then φ the unique solution to (3.2) satisfies

}φ}W 2,ppT3q ď C

ˆ

}n}LppT3q ` }N}LppT2qe
C
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

¯˙

.

Besides for any 1 ă p ă 8 and any 1 ď q ď 8 such that

3

2p
´ 1 ă

1

q
ď

1

p

there exists C such that with

1

r
“

#

1
3 `

1
p ´

2
3q if q ě 2

1
2 `

1
p ´

1
q if q ď 2

if N P LqpT2q X LrpT2q XW 1,ppT2q and n P LrpT3q XW 1,ppT3q then φ the unique solution to
(3.2) satisfies

}φ}W 3,ppT3q ď C

ˆ

}n}W 1,ppT3q ` }N}LqpT2q}n}LrpT3qe
C
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

¯˙

` C e
C
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

¯

`

}N}W 1,ppT2q ` }N}LqpT2q}N}LrpT2q

˘

.

To ease later use of estimates of }φ}W 3,ppT3q note that for instance the choice

1

q
“

1

2

ˆ

1

p
`

1

maxpt2, puq

˙

is always available and that in this case r ď q.

Proof. Bounds in L8 follow from repeated use of the maximum principle stated in Lemma B.1.
Indeed, first, since L3{2,1pT3q ãÑ L6{5pT3q and ´δ2∆φ ď n, the bound on eφ follows from
0 ď eφ ď eess supφ. In turn the bound on p

ş

T e
φpxK,y qdy q´1 stems from

0 ď
1

ş

T e
φpxK,y qdy

ď e´
ş

T φpxK,y qdy ď eess supp´
ş

T φpxK,y qdy q

and ´∆xKp´
ş

T φdx q “ N ´
ş

T np¨, y qdy combined with embeddings W 2,4{3pT2q ãÑ L8pT2q

and L3{2,1pT3q ãÑ L4{3pT2;L1pTqq. At last, using the equation, those two estimates yield then
estimates on φ itself both in L8pT3q and W 2,ppT3q respectively by maximum principle and
elliptic regularity.

The bound in W 3,ppT3q may then be obtained by differentiating once the equation. Indeed
differentiation yields

´δ2∆∇φ “ ∇n´
´

∇N `N∇φ´N∇rφ
¯

eφ´
rφ
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where we have introduced notation rφ defined through nonlinear averaging (1.7) for concision’s
sake. Moreover, by using Lemma 3.5 below to estimate rφ and Hölder inequalities, we obtain for
some C independent of N

}N∇φ}LppT3q ` }N∇rφ}LppT3q ď Ce
C
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

¯

}N}LqpT2q}∇φ}LspT2;LppTqq.

with 1{s “ 1{p´ 1{q. One achieves the proof of the claim through elliptic regularity and bounds
on }φ}W 2,rpT3q combined with embedding W 1,rpT3q ãÑ LspT2;LppTqq. Strictly speaking instead
of differentiating the equation and estimating as above terms thus appearing we should have
applied finite differences to the equation and estimated those finite differences. But here and
elsewhere we skip over those cumbersome details. This is particularly immaterial in our analysis
since there is no boundary to deal with. �

With the obtained regularity one may provide higher-order counter-parts to the Lipschitz
bound of Proposition 3.2.

Proposition 3.4 (Lipschitz dependence). For any 4{3 ď p ă 8, there exists C such that if
N P LppT2q, N 1 P LppT2q and n P L3{2,1pT3q then φ and φ1 the respective solutions to (3.2)
corresponding to pN,nq and pN 1, nq satisfy

}φ´ φ1}W 2,ppT3q ď C }N ´N 1}LppT2q p1` }N
1}LppT2qq

2e
C
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

`}N 1}
L4{3pT2q

¯

.

Proof. The power 2 in the above estimate reflects the fact that we provide a three-steps proof to
reach the full range of Lebesgue indices p. First observe that H1pT3q ãÑ LqpT2;L2pTqq for any
1 ď q ă 8. Using the equation, we get

´δ2∆pφ´ φ1q “ pN ´N 1qeφ´
rφ ` peφ ´ eφ

1

qN 1e´
rφ ` pe´

rφ ´ e´
rφ1qN 1eφ

1

where again we use notation from (1.7). By using Lemma 3.5 this enables us to prove that for
any 1 ď r ă 4{3 there exists Cr such that

}φ´ φ1}W 2,rpT3q ď Cr }N ´N
1}L4{3pT2q e

Cr
´

}n}
L3{2,1pT3q

`}N}
L4{3pT2q

`}N 1}
L4{3pT2q

¯

.

Using once again the equation and the embedding W 2,rppT3q ãÑ L8pT2;LppTqq for a suitable
1 ď rp ă 4{3, one deduces the result (with a bound depending linearly on }N 1}LppT2q) when
p ă 4.

One may then use this intermediate case to conclude the proof by using again the equation
and the embedding W 2,p0pT3q ãÑ L8pT3q for some 1 ď p0 ă 4 when p ě 4. �

Prior to turning back to Equation (3.1), we provide estimates converting bounds on a potential
φ into bounds on advection field rφ obtained through nonlinear averaging (1.7). That is the
content of the following lemma. It is of course necessary to deal with (3.1) and we have already
used it repeatedly in foregoing estimates on φ.

Lemma 3.5. (i). For any φ P H0, let rφ be defined by (1.7), then for any 1 ď p ď 8

}rφ}LppT2q ď }φ}LppT2;L8pTqq

and

}∇xK
rφ}LppT2q ď minpt}∇xKφ}LppT2;L8pTqq, }e

φ}L8pT3q}e
´rφ}L8pT2q}∇xKφ}LppT2;L1pTqquq .

Moreover there exists C such that for any φ, p and rφ as above,

}HessxK
rφ}LppT2q ď C }eφ}2L8pT3q}e

´rφ}2L8pT2q

´

}HessxKφ}LppT2;L1pTqq ` }∇xKφ}
2
L2ppT2;L2pTqq

¯

.
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(ii). For any φ, φ1 P H0, let rφ and rφ1 be defined by nonlinear averaging (1.7) respectively from φ
and φ1, then for any 1 ď p ď 8

}rφ´ rφ1}LppT2q ď minpt}φ´ φ1}LppT2;L8pTqq,

p}eφ}L8pT3q ` }e
φ1}L8pT3qqp}e

´rφ}L8pT2q ` }e
´rφ1}L8pT2qq}φ´ φ

1}LppT2;L1pTqquq

and

}∇xKp
rφ´ rφ1q}LppT2q

ď minpt}∇xKpφ´ φ
1q}LppT2;L8pTqq, }e

φ}L8pT3q}e
´rφ}L8pT2q}∇xKpφ´ φ

1q}LppT2;L1pTqquq

p̀}eφ}L8pT3q ` }e
φ1}L8pT3qqp}e

´rφ}L8pT2q ` }e
´rφ1}L8pT2qq}∇xKφ

1}LppT2;L1pTqq}φ´ φ
1}LppT2;L8pTqq .

To ease subsequent use of the lemma we stress that

‚ W 2,ppT3q ãÑW 1,2ppT2;L2pTqq provided that p ě 4{3;
‚ W 3,qpT3q ãÑ W 2,ppT2;L1pTqq XW 1,2ppT2;L2pTqq provided that 1{q ď 1{2 ` 1{p when
p ă 8 and that 1{q ă 1{2 when p “ 8;

‚ W 2,qpT3q ãÑ LppT2;L8pTqq X W 1,ppT2;L1pTqq provided that 1{q ď 1{2 ` 1{p when
p ă 8 and that 1{q ă 1{2 when p “ 8.

Proof. Since H1pT3q ãÑ L4pT2;L8pTqq, rφ is well-defined. Moreover, the first estimate follows
directly from a pointwise bound and the second from the triangle inequality for the LppT2q-norm.
Concerning the latter note that indeed

∇xK
rφpxKq “ e´

rφpxKq

ż

T
eφpxK,y q∇xKφpxK, y q dy .

Likewise

HessxKprφqpxKq “ e´
rφpxKq

ż

T
eφpxK,y q pHessxKpφq `∇xKφb∇xKφqpxK, y q dy

´ e´2rφpxKq

ĳ

TˆT

eφpxK,y q`φpxK,z q∇xKφpxK, y q b∇xKφpxK, z q dy dz .

implies the third inequality. This achieves the proof of (i).
Concerning the first inequality of (ii), the LppT2;L8pTqq estimate follows directly from (3.6).

To prove the second part of this first inequality we first observe that, breaking the symmetry as
in the proof of (3.6) by assuming rφ1pxKq ď rφpxKq, one obtains

|rφpxKq ´ rφ1pxKq| ď ln

ˆ

1` e´
rφpxKq

ż

T
ppφ´ φ1qeφ

1

qpxK, x q dx
˙

ď }eφ
1

}L8pT3q}e
´rφ}L8pT2q}pφ´ φ

1qpxK, ¨q}L1pTq

by using both p@z P R, ez ď 1`zezq and p@x P R˚`, lnpxq ď x´1q. Integrating a symmetrized
form of the foregoing inequality achieves the proof of the first inequality of (ii). The second one
follows almost readily from

∇xK
rφpxKq ´∇xK

rφ1pxKq “ e´
rφpxKq

ż

T
eφpxK,y q∇xKpφ´ φ

1qpxK, y q dy

` pe´
rφpxKq ´ e´

rφ1pxKqq

ż

T
eφpxK,y q∇xKφ

1pxK, y q dy

` e´
rφ1pxKq

ż

T
peφpxK,y q ´ eφ

1pxK,y qq∇xKφ
1pxK, y q dy .

�
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Existence of solutions.

Proof of Theorem 1.1 for light particles. The strong framework allows to work with Lipschitz
fields ∇Krφ and propagateW 1,ppT2q bounds. The other key observation is that it is also sufficient
to prove a Lipschitz bound in low-order norms. For instance, with constants depending only on
bounds on }N}L4{3pT2q, }N

1}L4{3pT2q and }n}L3{2,1pT3q

}p∇Krφ´∇Krφ1q ¨∇N 1}L4{3pT2q ď C}∇prφ´ rφ1q}L4pT2q}∇N 1}L2pT2q

ď C 1}φ´ φ1}W 2,4{3pT3q}∇N
1}L2pT2q

ď C2}N ´N 1}L4{3pT2q}∇N
1}L2pT2q

using Proposition 3.4 and Lemma 3.5 and sinceW 2,4{3pT3q ãÑW 1,4pT2;L1pTqqXL4pT2;L8pTqq.
This is sufficient to prove uniqueness (even of weak-strong type) and convergence of existence
schemes.

As it is fairly classical we only sketch the main steps of the proof. The uniqueness follows for
instance from the fact that if N and N 1 are two solutions starting with the same initial data
then on any compact interval I0 containing zero on which both N and N 1 are defined

BtpN ´N
1q `∇Krφ ¨∇pN ´N 1q “ ´p∇Krφ´∇Krφ1q ¨∇N 1

so that for any t P I0

}pN ´N 1qpt, ¨q}L4{3pT2q ď C

ˇ

ˇ

ˇ

ˇ

ż t

0
}Nps, ¨q ´N 1ps, ¨q}L4{3pT2qds

ˇ

ˇ

ˇ

ˇ

for some C depending on N and N 1. Then N “ N 1 follows from the Gronwall lemma. Existence
on an interval of controlled length may be proved by showing convergence of the scheme

BtNn`1 `∇Krφn ¨∇Nn`1 “ 0 , n ě 0 ,

where rφ´1 “ 0, with Nn`1p0, ¨q “ N in. On any interval of time I containing zero the divergence-
free structure of the vector field yields bounds on pNnq in L8pI;L8pT2qq, independent of I, by
}N in}L8pT2q. Then, on such an interval, by differentiating the equation and using Lemma 3.5
and Proposition 3.3 one obtains (with obvious modification when n “ 0) for any t P I

}∇xKNn`1}LppT2q ď }∇xKN
in}LppT2q `

ˇ

ˇ

ˇ

ˇ

ż t

0
}rφnps, ¨q}W 2,8pT2q}∇xKNn`1ps, ¨q}LppT2q ds

ˇ

ˇ

ˇ

ˇ

ď }∇xKN
in}LppT2q ` C

ˇ

ˇ

ˇ

ˇ

ż t

0
}Nnps, ¨q}

2
W 1,ppT2q}∇xKNn`1ps, ¨q}LppT2q ds

ˇ

ˇ

ˇ

ˇ

.

provided that 2 ă p ă 8 and for some C depending only on p, }N in}L8pT2q and }n}L8pI;W 1,ppT3qq.
Therefore, on a suitably short interval I one may also obtain uniform bounds of pNnq in
L8pI;W 1,ppT2qq where both the bound on pNnq and the smallness of I are only constrained
by the sizes of }N in}W 1,ppT2q and of }n}L8pI;W 1,ppT3qq. Now, by already expounded arguments,
on the same intervals one may prove convergence of pNnq in CpI;L4{3pT2qq to some N . One then
concludes the proof of the claimed existence by upgrading this convergence through interpola-
tion with uniform bounds from Proposition 3.3 and taking limits in the equation using Lipschitz
bounds on maps N ÞÑ φ and φ ÞÑ rφ from Proposition 3.4 and Lemma 3.5. At last one achieves
the proof by combining the strong uniqueness statement and existence on a controlled interval
with classical arguments leading to the existence of a maximal solution. �

Proof of Theorem 1.2 for light particles. While a suitable Lipschitz bound is the key step in prov-
ing Theorem 1.1, here the main issue is the stability of some approximate solutions pNεq and
their compactness in compatible norms. With this respect, one key observation is that in the
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Lipschitz bound of Proposition 3.2 one may replace the L4{3-norm with a W´1{2,2-norm. This
follows from

ˇ

ˇ

ˇ
ln

˜

ş

T e
φ1pxK,x q dx

ş

T e
φpxK,x q dx

¸

´ ln

˜

ş

T e
φ1px1

K
,x q dx

ş

T e
φpx1

K
,x q dx

¸

ˇ

ˇ

ˇ

ď
ˇ

ˇ}pφ´ φ1qpxK, ¨q}L8pTq ´ }pφ´ φ
1qpx1K, ¨q}L8pTq

ˇ

ˇ

and the embedding H0 ãÑW 1,2pT2;L2pTqqXL2pT2;W 1,2pTqq ãÑW 1{2,2pT2;L8pTqq that yield
›

›

›

›

›

ln

˜

ş

T e
φ1p¨,x q dx

ş

T e
φp¨,x q dx

¸›

›

›

›

›

W 1{2,2pT2q

ď C }φ´ φ1}H1pT3q

for some universal C.
To be more specific, let us discuss how to prove existence by a compactness argument on the

family of solutions pNηq to

BtNη `∇Krφη ¨∇Nη “ 0 , η ą 0 ,

starting from N in where rφη is obtained from Nη through

´δ2∆xφη “ n´Nη
eφη

ş

T e
φηp¨,¨,y qdy

, rφηpt, xKq “ ζη ˚ ln

ˆ
ż

T
eφηpt,xK,x qdx

˙

where pζηq is an approximation of unity. The existence of pNηq may be obtained by an argument
similar but much simpler than the one leading to Theorem 1.1 with the crucial modification that
one does not need to restrict the interval of existence to obtain needed bounds (which are of
course η-dependent).

Now, the divergence-free property of vector fields p∇Krφηq provide control of pNηq in L8pR;LppT2qq

uniformly in η. Then bounds inW 1,8
loc pR;W´1,qpT2qq with 1{q “ 2{p´1{2 if p ă 2, any 1 ď q ă 2

if p “ 2 and q “ p if p ą 2 may be derived directly from the equation in conservative form that
implies for any compact interval I and any t P I

}BtNηpt, ¨q}W´1,qpT2q ď }∇xK
rφηpt, ¨q}LrpT2q}Nηpt, ¨q}LppT2q ď C .

with 1{r “ 1{q´1{p for some constant C depending only on }N in}LppT2q, }n}L8pI;LppT3qXL3{2,1pT3qq

(and q if p “ 2). Therefore, compactness of pNηq in CpR`;W´1{2,2pT2qq may be obtained by
interpolation between boundedness in LppT2q and Lipschitz bounds in W´1,qpT2q with q as
above. The stability argument mentioned above translates this into convergence of prφηq in
CpR`;H1pT2qq. Then interpolation with uniform bounds respectively in LppT2q and W 2,ppT2q

provides convergence in norms sufficient to take limits in the equations. �

3.2. Heavy particles. Now, consistently with modeling considerations, for reading convenience
we analyze the heavy particle case setting σ “ 1. Thus we study the system

(3.7)

$

’

&

’

%

BtN ` divxKpN ∇KxK rφq “ 0 ,

´ δ2∆xφ “
Ne´φ

ş

T e
´φp¨,¨,y qdy

´
eφ

ş

T3 eφp¨,yqd y
, rφpt, xKq “ ´ ln

ˆ
ż

T
e´φpt,xK,x qdx

˙

.

As in the previous subsection we focus on the elliptic equation involved in System 3.7 and
while doing so we temporarily omit to mention time dependence and do not always repeat but
always assume N ě 0,

ş

T2 N “ 1.
Hence we study the following mixed Poisson-Boltzmann equation

(3.8) ´δ2∆xφpxK, x q “ NpxKq
e´φpxK,x q

ş

T e
´φpxK,y qdy

´
eφpxK,x q
ş

T3 eφpyqdy
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where N is a nonnegative function with integral equal to one. Our first observation is that
Equation 3.8 is the Euler-Lagrange equation associated with the energy functional

(3.9) Jrψs “
1

2
δ2

ż

T3

|∇ψ|2 ´
ż

T2

N ln

ˆ
ż

T
e´ψ dx

˙

dxK ` ln

ˆ
ż

T3

eψ
˙

.

Again we consider

H0 “

"

h P D1pT3q | ∇h P L2pT3q and
ż

T3

h “ 0

*

.

With minor modifications on the proof of Proposition 3.1, one obtains the following.

Proposition 3.6. Assume N P L4{3pT2q. Then
(i) J : H0 Ñ RY t`8u is well defined, bounded by below on bounded sets and coercive;
(ii) J is strictly convex;
(iii) J is Gâteaux differentiable at φ in the direction ψ ´ φ for any pφ, ψq P pH0q

2 such that
Jpφq ă `8 and Jpψq ă `8 ;

(iv) J is weakly lower semi-continuous.

Proposition 3.7 (Existence and uniqueness). For any N P L4{3pT2q, Equation (3.8) possesses
a unique weak solution φ P H0 such that

ş

T3 e
φ ă `8. Moreover there exists C such that for

any such N the solution φ satisfies

}φ}2H1pT3q ` ln

ˆ
ż

T3

eφ
˙

ď C }N}2L4{3pT2q
.

Besides there exists C such that for any pair N , N 1 of such functions respective solutions φ and
φ1 satisfy

}φ´ φ1}H1pT3q ď C }N ´N 1}L4{3pT2q

To tight more closely both propositions note that

J´1pRq “

"

h P D1pT3q | ∇h P L2pT3q ,

ż

T3

h “ 0 and
ż

T3

eφ ă `8

*

.

Likewise one may also derive qualitative properties of solutions by paralleling the light particle
case. However instead we retain only uniqueness from the foregoing propositions and as already
mentioned in the introduction we observe that φ is actually independent of its third argument
and may be obtained by solving

(3.10) ´δ2∆xKφpxKq “ NpxKq ´
eφpxKq

ş

T2 eφpyqdy
.

To justify this claim it is sufficient now to prove that (3.10) possesses a solution.
Equation (3.10) is a classical Poisson-Boltzmann equation. The equation itself and various

generalizations have been studied thoroughly elsewhere and the reader is referred to [5, 19, 8] as
entering gates to the extensive relevant literature. Here we merely apply slight variations on the
arguments of the light species case to obtain the following propositions. Generally speaking the
modified arguments turn to be actually simpler than the original ones. Implicitly they involve
the consideration of

JKrψs “
1

2
δ2

ż

T2

|∇ψ|2 dx´
ż

T2

N ψ ` ln

ˆ
ż

T2

eψ
˙

on

HK “

"

h P D1pT2q | ∇h P L2pT2q and
ż

T2

h “ 0

*

.
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Proposition 3.8 (Existence and uniqueness). For any5 N P H´1pT2q, Equation (3.10) possesses
a unique weak solution φ P HK such that

ş

T2 e
φ ă `8. Moreover there exists C such that for

any such N the solution φ satisfies

}φ}2H1pT2q ` ln

ˆ
ż

T2

eφ
˙

ď C }N}2H´1pT2q .

Besides there exists C such that for any pair N , N 1 of such functions respective solutions φ and
φ1 satisfy

}φ´ φ1}H1pT2q ď C }N ´N 1}H´1pT2q

Proposition 3.9 (Regularity). Let 1 ă p0 ď 8. There exists C such that if N P Lp0pT2q then
φ the unique solution to (3.10) satisfies

}φ}L8pT2q ď C
`

1` }N}Lp0 pT2q

˘

.

Moreover, for any 1 ă p ă 8, there exists C such that if N P Lp0pT2q X LppT2q then φ the
unique solution to (3.8) satisfies

}φ}W 2,ppT2q ď C
´

eC }N}Lp0 pT2q ` }N}LppT2q

¯

.

Besides for any 1 ă p ă 8 and any 1 ă q ă 8 such that 1
q ď

1
p `

1
2 there exists C such that with

if N P LqpT2q X Lp0pT2q XW 1,ppT2q then φ the unique solution to (3.8) satisfies

}φ}W 3,ppT3q ď C
´

}N}W 1,ppT2q `

´

}N}LqpT2q ` 1
¯

eC }N}Lp0 pT2q

¯

.

Proof. On one hand we first observe that ´δ2∆φ ď N so that Lemma B.4 and the coercivity
estimate of Proposition 3.8 provides the needed upper bound on φ. On the other hand we also
have ´δ2∆φ ě ´eφ. Now note that on any bounded Ω1 one may chose c0 P R to ensure that
´e}¨}

2`c0 ě ´δ2∆p} ¨ }2 ` c0q. With suitable Ω, Ω1 and c0 one may then apply Lemma B.5 to
u “ } ¨ }2 ` c0 ´ φ with K0 “ 0. Combined with the coercivity estimate of Proposition 3.7 this
yields the claimed upper bound on φ thus achieves the proof of the estimate on }φ}L8pRq.

From here the proof is achieved along the lines of the proof of the light species case. �

Proposition 3.10 (Lipschitz dependence). For any 1 ă p ă 8 and 1 ă p0 ď 8, there exists C
such that if N P LppT2qXLp0pT2q, N 1 P LppT2qXLp0pT2q then φ and φ1 the respective solutions
to (3.10) corresponding to N and N 1 satisfy

}φ´ φ1}W 2,ppT3q ď C
´

}N ´N 1}LppT2q ` }N}H´1pT2q

´

eC }N}Lp0 pT2q ` eC }N
1}Lp0 pT2q

¯¯

.

From here proofs of Theorems 1.1 and 1.2 in the ionic case follow arguments completely parallel
to those of the electronic case that we omit here.

4. Mathematical justification of the limiting process

In this section, we investigate the rigorous derivation of the asymptotic model (1.6)-(1.7) from
original equation (1.2) in a linear setting, that is when electric forces derive from an external
electric potential.

To do so, we provide in Subsection 4.1 an existence result and corresponding a priori estimates
yielding bounds on solutions uniform with respect to ε. In Subsection 4.2 we prove that those
bounds provide enough compactness on the ε-family of solutions to justify formal asymptotic
arguments. This leads to Theorem 1.3, the first main result of this section.

5At this level of regularity in the definition of JK the term involving N should be interpreted as a duality pairing.
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In the last subsection, we investigate further the asymptotic process yielding convergence of the
macroscopic density to a limiting anisotropic Boltzmann-Gibbs density. Specifically we provide
decay rates in terms of ε and the exponent α. To achieve this task, we use a different functional
setting that is more demanding on the localization of considered initial data but classical for
the Fokker-Planck operator. Our task is then achieved by designing an anisotropic hypocoercive
strategy based on a suitable global Lyapunov functional. This results in Theorem 1.4.

4.1. A priori estimates. We have already encountered in the formal derivation section, either
implicitly or explicitly, the two main a priori estimates at our disposal, conservation of mass

ĳ

T3ˆR3

f εpt, x, vq dxdv “
ĳ

T3ˆR3

f0px, vq dxdv

obtained by integrating (1.2) and free energy dissipation (2.6) obtained by setting Hphq “ h lnphq
in (2.5)

ĳ

T3ˆR3

f εpt, x, vq ln

ˆ

f εpt, x, vq

Mpt, x, vq

˙

dxdv ` 4 ε´p1`αq
ż t

0

ĳ

T3ˆR3

ˇ

ˇ

ˇ

ˇ

ˇ

∇v

d

f εps, x, vq

Mpvq

ˇ

ˇ

ˇ

ˇ

ˇ

2

Mpvq dxdv ds

“

ĳ

T3ˆR3

f0px, vq ln

ˆ

f0px, vq

Mp0, x, vq

˙

dxdv ´ σ

ż t

0

ĳ

T3ˆR3

Btφps, xq f
εps, x, vq dxdv ds

where M is the global Maxwellian defined in (2.4) that has integral equal to one by our normal-
ization6 (2.3) of φ. Note however that, as is customarily expected, our weak solutions will satisfy
only a relaxed form of the foregoing free energy dissipation equality.

To unfold controls provided by the above estimates we recall the following well-known lemma.

Lemma 4.1. There exists a constant C such that for any integrable f : T3ˆR3 Ñ R˚` and any
bounded φ : R` ˆT3 Ñ R
ĳ

T3ˆR3

pfpx, vq | lnpfpx, vqq| ` |v|2 fpx, vqqdxdv

ď C
´

p1` ln´p}f}L1pT3ˆR3qq ` }φ}L8pT3qq }f}L1pT3ˆR3q `

ĳ

T3ˆR3

fpx, vq ln

ˆ

fpx, vq

e´σ φpxqMpvq

˙

dxdv
¯

.

Proof. We start by expanding
ĳ

T3ˆR3

fpx, vq ln

ˆ

fpx, vq

e´σ φpxqMpvq

˙

dxdv

into
ĳ

T3ˆR3

p | lnpfpx, vqq| ` |v|2 ` σ φpxq ` 3
2 lnp2πq q fpx, vqdxdv ´ 2

ĳ

T3ˆR3

fpx, vq ln´ fpx, vqdxdv

where p¨q´ denotes negative part. Then we note that for any positive u, u0,

u ln´puq ď

#

u ln´pu0q if u ě u0

C
?
u0 if u ď u0

6Note that this differs from normalization in Section 3.
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where C “ maxwPR˚`
?
w ln´pwq. Applying the above to u “ fpx, vq, u0 “ C0e

´β |v|2 for each
fixed px, vq yields for any β ą 0, C0 ą 0
ĳ

T3ˆR3

fpx, vq ln´ fpx, vqdxdv ď C
a

C0

ĳ

T3ˆR3

e´β |v|
2{2dxdv`

ĳ

T3ˆR3

pβ|v|2`ln´pC0qqfpx, vqdxdv.

We conclude by choosing first some β P p0, 1{2q then optimizing in C0. �

Relying on the free energy dissipation one may then obtain the following existence result.

Proposition 4.2. Assume that φ PW 1,1
loc pR`;L8pT3qq and f0 is such that

f0 ě 0,

ĳ

T3ˆR3

`

1` |v|2 ` ln` f0

˘

f0 dxdv ă 8 .

Then there exists a unique f ε P CpR`, L1pT3 ˆR3qq solving Equation (1.2) and starting from
f0 at time 0. Moreover there exists C such that for any such pφ, f0q this solution additionally
satisfies for any t ě 0

(4.1)
ĳ

T3ˆR3

`

1` |v|2 ` |ln f εpt, x, vq|
˘

f εpt, x, vq dx dv ` 4 ε´p1`αq
ż t

0

ĳ

T3ˆR3

ˇ

ˇ

ˇ

ˇ

ˇ

∇v

c

f ε

M

ˇ

ˇ

ˇ

ˇ

ˇ

2

M

ď C
”

`

1` ln´p}f0}L1pT3ˆR3qq ` }φ}W 1,1pp0,tq;L8pT3qq

˘

}f0}L1pT3ˆR3q

`

ĳ

T3ˆR3

`

|v|2 ` ln` f0px, vq
˘

f0px, vq dxdv
ı

.

Bounds on free energy provide enough compactness to reduce the proof of the existence part
of the proposition to an existence proof for a dense subset of initial data. Moreover uniqueness
may also be obtained by proving an existence result for a dual equation starting from a suitably
large set of initial data. Besides one may choose the measure with respect to which identification
of L2-duals is performed in order to make this dual equation as simple as possible. Here one
may enforce that the dual equation has essentially the same structure as the original one ; see
Section 4.3 for details on involved symmetries. At last existence for data in adapted Sobolev
spaces — which is sufficient to complete the proof — follows from classical semigroup arguments
[42]. One may for instance use a spectral version of classical hypocoercive estimates to prove
that the equation generates a semigroup when φ ” 0 [42, Chapter 4] and recover the full case
by a fixed point argument or directly establish frozen-time spectral estimates to prove that the
equation generates an evolution system [42, Chapter 5]. We skip these truly classical details but
refer the reader to [30, Chapter 5] for a detailed analysis that is closely related to the last part
of the argument.

4.2. Weak compactness arguments. As already announced it turns out that in the linear
case the arguments that we have expounded along the formal derivation in Section 2.2 have fully
justified close counterparts. This is the line we follow to prove Theorem 1.3.

Proof of Theorem 1.3. Since pf εM´1p1`plnpf εM´1qq`qq is uniformly bounded in L1
locpR`;L1pT3ˆ

R3,Mpvq dx dvqq, de la Vallée-Poussin and Dunford-Pettis theorems imply that pf εq converges
weakly to some f in L1

locpR`;L1pT3 ˆR3qq along some subsequence. Moreover the bound on
the dissipation of free energy in (4.1) implies that

ż t

0

ĳ

T3ˆR3

ˇ

ˇ

ˇ

ˇ

ˇ

∇v

d

fps, x, vq

Mpvq

ˇ

ˇ

ˇ

ˇ

ˇ

2

Mpvq dxdv ds “ 0
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thus f is a local Maxwellian, f “ nM with n “
ş

R3 fp¨, ¨, vq dv. Besides tensorization with the
constant function equal to one onR3 shows that nε does converge weakly to n in L1

locpR`;L1pT3qq.
Bounds on the dissipation also shows that pε´αpv fε ` ∇vf

εqq converges strongly to zero in
L2pR`;L1pT3 ˆR3qq since

v fε `∇vf
ε “ 2

a

f ε ∇v

˜

c

f ε

M

¸

?
M

and the Cauchy-Schwarz inequality shows that the relevant norm is Opεp1´αq{2q as εÑ 0. This
key observation shows that for any smooth compactly-supported function ψ : R`ˆT3ˆR3 Ñ R
that is independent of the polar angle θ, or equivalently such that vK ¨∇vψ ” 0, taking the limit
εÑ 0 along the relevant subsequence yields

ż

R`ˆT3ˆR3

pv ¨∇xψpt, x, vq ´ σ∇xφpt, xq ¨∇vψpt, x, vqq fpt, x, vq dt dx dv “ 0

which, given that f is a local Maxwellian, is also
ż

R`ˆT3ˆR3

v ¨ p∇xψpt, x, vq ´ σ∇xφpt, xq ψpt, x, vqqnpt, xqMpvq dt dx dv “ 0

thus, by symmetries of ψ and M ,
ż

R`ˆT3ˆR3

v pBx ψpt, x, vq ´ σBx φpt, xq ψpt, x, vqqnpt, xqMpvq dt dx dv “ 0 .

Choosing a non zero smooth radial compactly-supported rψ : R3 Ñ R` and noticing that the
foregoing class of ψ functions includes pt, x, vq ÞÑ v rψpvqψpt, xq for any smooth compactly-
supported ψ : R` ˆ T3 Ñ R`, one derives that in distributional sense Bx n “ ´σ n Bx φ.
Hence n P L1

locpR` ˆT2;W 1,1pTqq and Bx peσ φ nq “ 0 thus

npt, xq “ Npt, xKq
e´σφpt,xq

ş

T e
´σφpt,xK,y q d y

, Npt, xKq “

ż

T
npt, xK, y qdy .

Now we prove that N satisfies the claimed equation. To do so we set

N εpt, xKq “

ż

T
nεpt, xK, y q dy

and observe that by using again a tensorization argument one gets that along the relevant
subsequence N ε converges weakly to N in L1

locpR`;L1pT2qq. As in Section 2.2 we also introduce

Jεpt, xKq “
1

ε

ż

TˆR3

v fεpt, xK, y , vq dy dv

and observe that BtN ε ` divxKpJεq “ 0. The same kind of integration shows that

σpJεqK ` divxK

ˆ
ż

TˆR3

vK b vK f
εp¨, ¨, x , vqdx dv

˙

` σ

ż

T
∇xKφp¨, ¨, x qn

εp¨, ¨, x qdx

converges weakly to zero. Moreover the last term of the foregoing expression converges weakly
to

σ

ż

T
∇xKφp¨, ¨, x qnp¨, ¨, x qdx “ ´N

∇xK

`ş

T e
´σ φp¨,¨,x qdx

˘

ş

T e
´σ φp¨,¨,x qdx

along the relevant subsequence. Finally we observe that
ż

TˆR3

vK b vK f
εp¨, ¨, x , vqdx dv “

ż

TˆR3

vK b pvK `∇vKq f
εp¨, ¨, x , vqdx dv ` N ε I
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and that
ż

TˆR3

vK b pvK `∇vKq f
εp¨, ¨, x , vqdx dv

“ 2

ż

TˆR3

vK
a

f εp¨, ¨, x , vq b∇vK

˜

c

f ε

M

¸

p¨, ¨, x , vq
a

Mpvqdx dv

is seen to converge to zero in L2pR`;L1pT2qq by using the Cauchy-Schwarz inequality combined
with bounds on second-order moments and dissipation of free energy. Therefore JεK converges
weakly to

σp∇xKNq
K ´ σN

ˆ

∇xK ln

ˆ
ż

T
e´σ φp¨,¨,x qdx

˙˙K

along the relevant subsequence. Inserting this in BtN ε ` divxKpJεq “ 0 achieves the proof. �

Remark 4.3. It may be instructive to compare the former proof with the arguments proving [33,
Lemma 4.1] as those would apply equally well here. They rely rather on a direct compactness
argument on nε and log-Sobolev and Cziszár-Kullback-Pinsker inequalities to control f ε´nεM .

Remark 4.4. Note that in the last step while we had not enough control on moments in velocities
to justify in this way the convergence of expressions involving terms quadratic in velocity we
were able to use cancellations and collisional dissipation to do so. This is a by now classical
trick that was crucial in similar studies of the diffusive regime α “ 1 ; see [44, Section 5] and
[33, Propositions 3.3 & 4.3]. However we could replace it with an argument involving evanescent
cut-off functions as in [46].

4.3. Anisotropic hypocoercive estimates. Now we provide convergence rates for some limits
involved in the derivation of our asymptotic model. To keep technicalities as low as possible we
assume here that φ does not depend on time t but only on x P T3. While it is likely that one
may also deal with time-dependent cases assuming sufficient control on time variations of φ this
would add unessential complications to already technical estimates.

Part of the asymptotic process involves oscillatory processes and some limits are in essence
weak limits that may only be expected to hold in spaces of negative regularity. We only focus
here on those that are expected, and proved here, to be strong limits. With this in mind the goal
of this section is merely to provide quantitative bounds, explicit with respect to ε and α, on the
distance between the distribution function f ε and an anisotropic Maxwell-Boltzmann density
expressed in terms of N ε. While one could track convergence rates of vanishing terms in the
foregoing convergence proof, this would lead to estimates in functional spaces of (highly) negative
regularity by lack of control on (spatial) gradients of the solution. Here instead we prove that
by assuming that initial data belongs to a stronger space, controlling in particular any number
of moments in velocity, we obtain natural convergence rates for

f εpt, x, vq ´ N εpt, xKq
e´σφpxq

ş

T e
´σφpxK,y q d y

e´
|v|2

2

p2πq3{2

in strong norms for some suitable N ε. Note that while convergence of f ε ´ nεM follows at
once from the dissipation of free energy, the next step relies on a subtler interplay between three
kind of terms : electric-and-free transport, magnetic transport and collisions. As we show in
Appendix A this interplay may be essentially elucidated by computing commutators of involved
terms and then encoded in a global functional of hypocoercive type.

To make the functional setting more precise, let us introduce hε “ f ε{M where once again

Mpx, vq “
1

p2πq3{2
e
´

ˆ

σφpxq` |v|
2

2

˙

,
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is our global Maxwellian. Associated initial data h0 “ f0{M is assumed to belong to H “ L2pµq

the Hilbert space H characterized by its L2-norm } ¨ } “ p
ş

| ¨ |2 dµq1{2 where µ is the probability
measure with density M. In the following we denote by x¨; ¨y the corresponding scalar product.

A direct computation shows that the distribution function f ε solves the linear Vlasov-Fokker-
Planck equation (1.2) with external electric potential φ if and only if hε satisfies

(4.2) ε Bth
ε ` v ¨∇xh

ε ´ σ∇xφ ¨∇vh
ε ´

σ

ε
vK ¨∇vh

ε “
1

εα
pv ¨∇vh

ε ´∆vh
εq .

In the absence of any magnetic field, the original version of the approach that we extend here
to serve our purposes would lead to a quantitative proof of convergence as ε Ñ 0 to the global
Maxwellian M, and in this case it would really follow from very classical hypocoercive estimates.
See [49, 40, 21, 34] for some instances of proofs of hypocoercive convergence to equilibrium
through global functionals. The presence of a strong magnetic field prevents return to equilibrium
in the perpendicular direction and our goal is to design functionals that capture this anisotropic
behavior. We detail this strategy along the proof of the following theorem, which is the main
result of this section.

Theorem 4.5. Suppose that φ PW 2,8pT3q.
Then for any h0 P H and any ε ą 0 there exists a unique global solution hε to (4.2) starting from
h0 at time zero such that hε P CpR`;Hq and ∇vh

ε P L2pR`;Hq.
Moreover there exists a constant Cφ ą 0, depending only on the norm of φ in W 2,8pT3q, such
that for any ε P p0, 1q, f ε “ hεM — solving (1.2) with initial data f0 “ h0M and associated to
the above solution hε — satisfies

(4.3) }f ε ´ nεM}L2pR`; L2pM´1pvqdxdvqq ď Cφ }h0} ε
α`1
2 ;

(4.4)
›

›

›

›

nε ´N ε e´σφ
ş

T e
´σφp¨,y q d y

›

›

›

›

L2pR`ˆT3q

ď Cφ }h0} ε
1´|α|

2

where

nε “

ż

R3

f εp¨, ¨, vqdv and N ε “

ż

T
nεp¨, ¨, y qdy .

In particular, since α P p´1, 1q, as ε Ñ 0 the distribution function f ε gets ε
1´|α|

2 -close to the
anisotropic Maxwell-Boltzmann density

pt, x, vq ÞÑ N εpt, xKq
e´σφpxq

ş

T e
´σφpxK,y q d y

e´
|v|2

2

p2πq3{2

in L2pR`; L2pM´1pvqdxdvqq.

Remark 4.6. Again we stress however that the last part of the asymptotic description — the
identification of an asymptotic dynamics for limits of N ε — proceeds from averaging mechanisms
and we do not expect to be able to capture it by similar dissipative arguments nor do we expect
the corresponding convergence to hold in strong norms.

Proof. We skip the proof of the existence and uniqueness part as fairly classical but we refer the
reader to [30, Chapter 5] for a detailed analysis of a nearly identical problem. The existence proof
also provides detailed justification for the rather formal computations that we perform below.
The reader may consult [13] for an instance of a similar detailed verification starting directly
from the approximation process proving existence.

The starting point is the L2-estimate obtained from (2.5) by choosing Hphq “ h2,

}hεpt, ¨, ¨q}2 ` 2ε´pα`1q

ż t

0
}∇vh

εps, ¨, ¨q}2 ds ď }hε0}
2.
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From this, (4.3) follows by Poincaré inequality for the Gaussian measure and boundedness of φ,
since

ż

R`ˆT3ˆR3

|f ε ´ nεM |2M´1 ď

ż

R`ˆT3ˆR3

ˇ

ˇ

ˇ

ˇ

f ε

M
´ nε

ˇ

ˇ

ˇ

ˇ

2

M

ď

ż

R`ˆT3ˆR3

ˇ

ˇ

ˇ

ˇ

∇v

ˆ

f ε

M

˙ˇ

ˇ

ˇ

ˇ

2

M

ď C

ż `8

0
}∇vh

εpt, ¨, ¨q}2 dt

for some C depending only on }φ}L8pT3q. In order to prove (4.4), we need to extend this strategy
that only yields dissipation of velocity derivatives so that it also provides estimates on an x -
derivative. To do so we exploit the hypocoercive structure and modify the L2 functional in a H1

functional whose dissipation contains new terms yielding suitable control on Bx pf εM´1q. To
state this in a concise way we define the ε and time dependent norm

}h}2ε,t “ }h}2 ` γ ,1 ε
p|α|´αq{2 min

`

t1, t
ε1`α

u
˘

}Bv h}
2

` γ ,2 ε
|α|`p|α|`αq{2 min

`

t1, t
ε1`α

u
˘3
}Bx h}

2 ` 2 γ ,3 ε
|α| min

`

t1, t
ε1`α

u
˘2
xBv h, Bx hy

` γK,1 ε
1´α min

`

t1, t
ε1`α

u
˘

}∇vKh}
2 ` γK,2 ε

2 min
`

t1, t
ε1`α

u
˘3
}∇xKh}

2

` 2 γK,3 ε
2´α min

`

t1, t
ε1`α

u
˘2
x∇vKh,∇xKhy

and the corresponding ε and time dependent (partial) dissipation

Dε,tphq “ ε´p1`αq}∇vh}
2 ` ε´1`p|α|´αq{2´α min

`

t1, t
ε1`α

u
˘

}∇vBv h}
2

` ε´1`|α|`p|α|´αq{2 min
`

t1, t
ε1`α

u
˘3
}∇vBx h}

2 ` ε|α|´1 min
`

t1, t
ε1`α

u
˘2
}Bx h}

2

` ε´2α min
`

t1, t
ε1`α

u
˘

}∇v∇vKh}
2 ` ε1´α min

`

t1, t
ε1`α

u
˘3
}∇v∇xKh}

2

` ε1´α min
`

t1, t
ε1`α

u
˘2
}∇xKh}

2 .

These quantities are related through the dissipation estimate contained in the following lemma.

Lemma 4.7. Let φ PW 2,8pT3q. There exist positive constants γK,i, γ ,i, i P t1, 2, 3u such that,
‚ uniformly in pt, εq P R` ˆ p0, 1q, the norm } ¨ }ε,t is equivalent to the square root of

} ¨ }2 ` εp|α|´αq{2 min
`

t1, t
ε1`α

u
˘

}Bv p¨q}
2 ` ε|α|`p|α|`αq{2 min

`

t1, t
ε1`α

u
˘3
}Bx p¨q}

2

` ε1´α min
`

t1, t
ε1`α

u
˘

}∇vKp¨q}
2 ` ε2 min

`

t1, t
ε1`α

u
˘3
}∇xKp¨q}

2 .

‚ there exists K ą 0 such that for any h0 P H the solution hε of (4.2) starting from h0

satisfies for any ε P p0, 1q and any t ě 0,

(4.5) }hεpt, ¨, ¨q}2ε,t `K

ż t

0
Dε,sph

εps, ¨, ¨qq ds ď }h0}
2.

The proof of this result is given in Appendix A. There in particular we explain in details how
different choices of power of t and ε arise as necessary constraints to satisfy expected inequalities
and how constants γ ,i and γK,i may then be tuned to close the argument. Nonetheless, we do
provide here some partial insights on the choice of the functional. Standard L2-based hypoco-
ercive strategy for the kinetic Fokker-Planck operator suggests to estimate H1 type functionals
with mixed derivative to unravel dissipation of space derivatives that was missing in the original
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L2 computation. Here, direct computations performed in Lemma A.2 show that

d
dt
xBv h

ε, Bx h
εy ` ε´1}Bx h

ε}2 “ σ ε´1 xp∇vh
ε ¨∇xqBx φ, Bv h

εy(4.6)

´ ε´p1`αq pxBv h
ε, Bx h

εy ` 2 x∇vBv h
ε,∇vBx h

εyq

d
dt
x∇vKh

ε,∇xKh
εy ` ε´1}∇xKh

ε}2(4.7)

“ ´ε´p1`αq
 

x∇vKh
ε,∇xKh

εy ` 2 x∇v∇vKh
ε,∇v∇xKh

εy
(

` σ ε´1 xp∇vh
ε ¨∇xq∇xKφ,∇vKh

εy ´ σ ε´2
@

∇KvKh
ε,∇xKh

ε
D

.

where good useful dissipation terms have been kept on left-hand sides and useless signless terms
have been left on the right. When putting everything in one global functional the goal is to
balance each bad term with some fraction of good dissipative terms. We stress that in (4.7) the
worst term to balance — the one of order ε´2 — is precisely the one due to the presence of a
strong magnetic field. It stems from non-commutation of ∇v and vK ¨∇v and forces the choice of
anisotropic weights in our functional. Finally, we note that the presence of time weights in our
functionals only reflects our choice to use hypoelliptic regularizing effects to start with L2 and not
H1 initial data but gain instantaneous H1 control on the solution. In particular our choice of the
powers of time involved in the above definitions follows directly from the hypoelliptic structure
of the operator at hand. For the kinetic Fokker-Planck the method essentially originates in work
of Hérau [31] ; see also [49, Appendix A.21] or [13].

We now use dissipative effects afforded by Lemma 4.7 to achieve the proof. The dissipation
of the energy functional in (4.5) provides a bound on the size of the perpendicular and parallel
space derivatives of hε in H. Indeed, by non-negativity of } ¨ }ε,t we get from the dissipation in
(4.5) that

}Bx h
ε}L2ppε1`α,`8q; Hq ď C }h0} ε

1´|α|
2 ,

}BxKh
ε}L2ppε1`α,`8q; Hq ď C }h0} ε

α´1
2

for some constant C depending only on }φ}W 2,8pT3q. To prove our claim only the first estimate
— on the parallel derivative — is needed. Nevertheless, let us stress that the second estimate is
essentially useless and in any case does not contradict the non-convergence to a global Maxwellian
in the perpendicular direction since α ă 1. To proceed we first observe that

eσφnε “

ż

R3

hεp¨, ¨, vqMpvq dv

hence by the Jensen inequality, for any t ě 0

}Bx pe
σφnεqpt, ¨q}L2pT3q ď

ˆ
ż

R3

}Bx h
εpt, ¨, vq}2L2pT3qMpvq dv

˙1{2

ď }eσφ}
1
2
L8 }Bx h

εpt, ¨, ¨q} .

Therefore introducing the intermediate quantity

rN ε “

ż

T
nεp¨, ¨, y q eσφp¨,y qdy ˆ

ż

T
e´σφp¨,y qdy

the classical Poincaré inequality on T yields
›

›

›

›

›

nε ´
rN εe´σφ

ş

T e
´σφp¨,y qdy

›

›

›

›

›

L2ppε1`α,`8qˆT3q

ď }e´σφ}L8

›

›

›

›

›

nεeσφ ´
rN ε

ş

T e
´σφp¨,y qdy

›

›

›

›

›

L2ppε1`α,`8qˆT3q

ď }e´σφ}L8}Bx pe
σφnεq}L2ppε1`α,`8qˆT3q

ď C}e´σφ}L8pT3q}e
σφ}

1
2
L8pT3q

}h0} ε
1´|α|

2 .
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This achieves the proof with rN ε instead of N ε when combined with
›

›

›

›

›

nε ´
rN εe´σφ

ş

T e
´σφp¨,y qdy

›

›

›

›

›

L2pp0,ε1`αqˆT3q

ď ε
1`α
2

›

›

›

›

›

nε ´
rN εe´σφ

ş

T e
´σφp¨,y qdy

›

›

›

›

›

L8pp0,ε1`αq;L2pT3qq

ď C 1ε
1`α
2 }h0} ď C 1ε

1´|α|
2 }h0}

for some C 1 depending only on }φ}W 2,8pT3q, where we have used

} rN ε}L8pR`;L2pT2qq ď }e
´σφ}L8pT3q}e

σφ}L8pT3q}n
ε}L8pR`;L2pT3qq

and

}nε}L8pR`;L2pT3qq ď }e
σφ}

1
2

L8pT3q
}hε}L8pR`;Hq ď }e

σφ}
1
2

L8pT3q
}h0} .

To conclude the proof we simply observe that

N ε ´ rN ε “

ż

T

˜

nεp¨, ¨, z q ´
rN ε e´σφp¨,z q

ş

T e
´σφp¨,y qdy

¸

dz

hence

}N ε ´ rN ε}L2pR`ˆT2q ď

›

›

›

›

›

nε ´
rN εe´σφ

ş

T e
´σφp¨,y qdy

›

›

›

›

›

L2pR`ˆT3q

.

�

5. Extensions and perspectives

We conclude the present contribution with some further technical comments.

Non-constant magnetic fields. Though for expository purposes we have restricted our presenta-
tion to constant magnetic fields there is one class of non-uniform magnetic fields to which our
analysis applies with little modifications : magnetic fields with constant direction but varying
amplitude b. Explicitly we may consider the kinetic equation

ε Btf
ε ` v ¨∇xf

ε ` σ Eε ¨∇vf
ε ´

1

ε
σ b vK ¨∇vf

ε “
1

εα
divvpvfε `∇vf

εq,

where7 b : R` ˆ T2 Ñ R`, pt, xKq ÞÑ bpt, xKq is smooth and bounded away from zero. Theo-
rems 1.1, 1.2, 1.3 and 1.4 still hold in this case provided (1.6) is replaced with

BtN ` divxKpN UKq “ 0 where UK “
1

b
p∇xK

rφqK ´
σ

b2
p∇xKbq

K .

However for larger classes of magnetic fields the question remains fully open and we expect
geometric features of the magnetic field under consideration to play a prominent role even at the
formal level. With this respect the reader may benefit from a look at the intricate effects already
appearing in linear collisionless models where electric fields are neglected [11, 12] and compare
them with [23, 4, 24].

7The fact that b does not depend on the parallel coordinate x is necessary to ensure a divergence-free magnetic
field consistently with Gauss’s law.
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Other collision operators. From an applicative point of view the main restriction to relax is
probably the form of our collision operatorsQpfq “ divvpvf`∇vfq. On this topic we first observe
that actually Theorem 1.3 does not rely heavily on detailed collision statistics and that this part
of our analysis extend to other kinetic collisional operators with one-dimensional kernels (when
considered as operators on functions of v only) such as the relaxation / linear BGK operator
Qpfq “ nM ´f . We do use strong controls on velocities afforded by the Fokker-Planck operator
in our proof of Theorem 1.3 but this may be replaced with more robust arguments involving
evanescent cut-off functions as in [46]. In contrast extending our hypocoercive estimates would
require a case-by-case analysis. Further work would be needed to extend any part of our analysis
to more realistic operators taking into account classical collisional invariants hence exhibiting
higher-dimensional kernels. In another direction we stress that implicitly we have only mentioned
cases where the presence of a strong magnetic fields affects collisions statistics in a scalar hence
isotropic way. Yet one should expect strong magnetic fields to impact scattering mechanisms
hence collision frequencies in an anisotropic way. Taking this into account might also introduce
anisotropic effects in the Maxwellian distribution in velocity. To the knowledge of the authors,
at least at the analytical level, this line of investigation is however widely open.

Validation of nonlinear reduced systems. Leaving aside modeling considerations the main analyt-
ical open question is the validation of nonlinear asymptotic models. In [33] nonlinear asymptotic
reductions have been treated successfully for the critical case α “ 1, corresponding to a diffusive
limit, but arguments there did not need to benefit from strongly averaging magnetic effects and
instead followed the strategy of the magnetic-field-free case treated in [22] by proving that in the
critical case magnetic contributions could also be suitably bounded by the free energy dissipation.
This in particular provides results that do not require any geometric property for the magnetic
fields. In contrast we expect that a refined analysis of cancellations would be needed to carry out
a nonlinear analysis in the case under consideration here. Moreover we stress that even in the
diffusive cases treated in [22, 33] for free energy solutions similar to those of Theorem 1.3 uniform
a priori bounds are too weak to apply compactness arguments at the level of weak solutions and
the analysis involves suitably tailored renormalized solutions. On the other side, the nonlinear
analysis of the recent [34] proving strong uniform bounds by hypocoercive arguments in the non
magnetized case seems to be deeply altered by the introduction of a dominant magnetic field. On
a yet another distinct direction one may want to test numerically nonlinear models against direct
simulations but since phenomena are genuinely three-dimensional and long this would involve
long-time computations in six dimensions, a daunting task.

Appendix A. Hypocoercivity : a technical lemma, Lemma 4.7

To motivate the actual choice of powers of ε we prove a slighted extended version of Lemma 4.7
for norms involving free powers of ε,

}h}2ε,t “ }h}2 ` γ ,1 ε
β ,1 min

`

t1, t
ε1`α

u
˘

}Bv h}
2

` γ ,2 ε
β ,2 min

`

t1, t
ε1`α

u
˘3
}Bx h}

2 ` 2 γ ,3 ε
β ,3 min

`

t1, t
ε1`α

u
˘2
xBv h, Bx hy

` γK,1 ε
βK,1 min

`

t1, t
ε1`α

u
˘

}∇vKh}
2 ` γK,2 ε

βK,2 min
`

t1, t
ε1`α

u
˘3
}∇xKh}

2

` 2 γK,3 ε
βK,3 min

`

t1, t
ε1`α

u
˘2
x∇vKh,∇xKhy
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and the corresponding ε and time dependent (partial) dissipation

Dε,tphq “ ε´p1`αq}∇vh}
2 ` ε´p1`αq`β ,1 min

`

t1, t
ε1`α

u
˘

}∇vBv h}
2

` ε´p1`αq`β ,2 min
`

t1, t
ε1`α

u
˘3
}∇vBx h}

2 ` ε´1`β ,3 min
`

t1, t
ε1`α

u
˘2
}Bx h}

2

` ε´p1`αq`βK,1 min
`

t1, t
ε1`α

u
˘

}∇v∇vKh}
2 ` ε´p1`αq`βK,2 min

`

t1, t
ε1`α

u
˘3
}∇v∇xKh}

2

` ε´1`βK,3 min
`

t1, t
ε1`α

u
˘2
}∇xKh}

2 .

We prove an extended version of Lemma 4.7 under

(A.1)
maxpt2´ α, pβK,1 ` βK,2q{2uq ď βK,3 ď minptα` 2βK,1, α` 2βK,2, βK,2 ´ αuq,

maxpt|α|, pβ ,1 ` β ,2q{2q ď β ,3 ď minptα` 2β ,1, α` 2β ,2, β ,2 ´ αuq.

The actual choice follows from minimization of β ,3 and βK,3 under this constraint that aims at
the best possible control on Bx hε and ∇xKh

ε through the dissipation. Indeed, (A.1) requires
β ,3 ě |α|. And the optimal choice β ,3 “ |α| enforces

β ,1 ` β ,2 ď 2|α|, β ,2 ´ α ě |α|, 2β ,1 ` α ě |α|, 2β ,2 ` α ě |α|

which uniquely determine β ,1 and β ,2 as β ,1 “ 0, β ,2 “ 2α when α ě 0 and β ,1 “ ´α,
β ,2 “ ´α otherwise. The optimal choice for βK,3 is βK,3 “ 2´ α that is available provided that
βK,1 ě 1´ α, βK,2 ě 2 and βK,1 ` βK,2 ď 4´ 2α. The latter inequalities do not determine βK,1
and βK,2 uniquely but the best choice is indeed βK,1 “ 1´ α, βK,2 “ 2.

Proposition A.1. Let φ PW 2,8pT3q. Under condition (A.1) there exist positive constants γK,i,
γ ,i, i P t1, 2, 3u such that,

‚ uniformly in pt, εq P R` ˆ p0, 1q, the norm } ¨ }ε,t is equivalent to the square root of

} ¨ }2 ` εβ ,1 min
`

t1, t
ε1`α

u
˘

}Bv p¨q}
2 ` εβ ,2 min

`

t1, t
ε1`α

u
˘3
}Bx p¨q}

2

` εβK,1 min
`

t1, t
ε1`α

u
˘

}∇vKp¨q}
2 ` εβK,2 min

`

t1, t
ε1`α

u
˘3
}∇xKp¨q}

2 .

‚ there exists K ą 0 such that for any h0 P H the solution hε of (4.2) starting from h0

satisfies (4.5) for any ε P p0, 1q and any t ě 0.

To emphasize the algebraic nature of the proof, as in [49] we introduce abstract notation for
operators

A “ ∇v , B “ v ¨∇x ´ σ∇xφ ¨∇v,

and their coordinate-wise adjoints in H,

A˚ “ pv ´∇vq , B˚ “ ´B.

Additionally, we evaluate (and define) the following commutators

C :“ rA,Bs “ ∇x , rB,Cs “ σHesspφq∇v , rAi, A
˚
j s “ δij , rA, vK ¨∇vs “ ´AK

where δij is the classical Kronecker symbol. Also, as a preliminary computation we observe,
using Einstein’s summation convention on repeated indices, that

}A˚ ¨Ah}2 “
@

A˚iAih,A
˚
jAjh

D

“ xAjA
˚
iAih,Ajhy

“ xδijAih,Ajhy ` xAjAih,AiAjhy

“ }Ah}2 ` }A2h}2,

where A2 denotes the matrix AbA. Finally we set

Lε “
1

εα`1
A˚ ¨A`

1

ε
B.
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to write (4.2) as

´

Bt ` Lε ´
σ

ε2
vK ¨∇v

¯

hε “ 0.

Lemma A.2. Let hε solves (4.2). Then equations (4.6) and (4.7) hold as well as

1

2

d
dt
}hε}2 `

1

ε1`α
}Ahε}2 “ 0,(A.2)

1

2

d
dt
}A#h

ε}2 `
1

ε1`α
p}A#h

ε}2 ` }A#Ah
ε}2q “ ´

1

ε
xC#h

ε, A#h
εy ,(A.3)

1

2

d
dt
}C#h

ε}2 `
1

ε1`α
}C#Ah

ε}2 “
σ

ε

@

pAhε ¨∇xq∇x#φ,C#h
ε
D

,(A.4)

where # stands either for K or .

Proof. As already pointed out, estimate (A.2) follows from (2.5) with Hphq “ h2. We prove
(A.3) by computing on one hand for any i

xAiLεh
ε, Aih

εy “
1

ε1`α
p}Aih

ε}2 ` }AiAh
ε}2q `

1

ε
xCih

ε, Aih
εy

and on the other hand

@

Aiv
K ¨∇vh

ε, Aih
ε
D

“ ´
@

pAKqih
ε, Aih

ε
D

which vanishes when either one sums over i “ 1, 2 or takes i “ 3. Equality (A.4) follows from
the fact that for any i

xCiLεh
ε, Cih

εy “
1

ε1`α
}CiAh

ε}2 ´
σ

ε
xpAhε ¨∇xqBxiφ,Cih

εy

and the fact that the vK ¨ ∇v commutes with space derivatives hence its contribution vanishes
by skew-symmetry. To derive (4.6) and (4.7) we first observe that for any i

A

CiLεh
ε , Aih

ε
E

` xAiLεh
ε, Cih

εy

“
1

ε1`α
xCih

ε, Aih
εy `

2

ε1`α
xACih

ε, AAih
εy ´

σ

ε
xpAhε ¨∇xqBxiφ,Aih

εy ` }Cih
ε}2

and conclude with for any i

@

Civ
K ¨∇vh

ε, Aih
ε
D

`
@

Aiv
K ¨∇vh

ε, Cih
ε
D

“ ´
@

pAKqih
ε, Cih

ε
D

.
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Proof of Proposition A.1. By using estimates (A.2), (A.4), (A.3), (4.7) and (4.6) in each direction
we infer that8, for any ε P p0, 1q, β P R6 and γ P pR˚`q6

1

2

d
dt

`

}hε}2ε,¨
˘

`
ÿ

#PtK, u

”

ε´1´α}A#h
ε}2 ` γ1# min

`

1, t
ε1`α

˘

εβ1#´1´αp}A#h
ε}2 ` }A#Ah

ε}2q

` γ2# min
`

1, t
ε1`α

˘3
εβ2#´1´α}C#Ah

ε}2 ` γ3# min
`

1, t
ε1`α

˘2
εβ3#´1}C#h

ε}2
ı

ď
ÿ

#PtK, u

”

γ1# min
`

1, t
ε1`α

˘

εβ1#´1}C#h
ε}}A#h

ε}

` γ2# min
`

1, t
ε1`α

˘3
}Hessφ}L8pT3qε

β2#´1}C#h
ε}}Ahε}

` γ3# min
`

1, t
ε1`α

˘2
}Hessφ}L8pT3qε

β3#´1}A#h
ε}}Ahε}

` γ3# min
`

1, t
ε1`α

˘2
εβ3#´1´α p}A#h

ε}}C#h
ε} ` 2}A#Ah

ε}}C#Ah
ε}q

ı

` γ3Kmin
`

1, t
ε1`α

˘2
εβK,3´2}AKh

ε}}CKh
ε}

` 1
2

ÿ

#PtK, u

”

γ1#ε
β1#´1´α}A#h

ε}2 ` 3γ2#ε
β2#´1´α min

`

1, t
ε1`α

˘2
}C#h

ε}2

` 4γ3#ε
β3#´1´α min

`

1, t
ε1`α

˘

}A#h
ε}}C#h

ε}

ı

where the last sum arises from differentiation of time factors in the definition of }hεpt, ¨, ¨q}ε,t. In
the former inequality, the right-hand side may be controlled by the dissipation on the left-hand
side using the following procedure. Young’s inequalities implies that for any pa, b, cq P R3 and
pKa,Kb,Kcq P pR

˚
`q

3 there exists K0 ą 0 such that for any positive N1, N2 and any ε P p0, 1q

´Ka ε
aN2

1 ´Kb ε
bN2

2 ` 2Kc ε
cN1N2 ď ´K0pε

aN2
1 ` ε

bN2
2 q,

provided that9

2c ě a` b and Kc ă KaKb .

It imposes the following conditions on β

minptα` 2β1# , α` 2β2# uq ě β3#

maxptα , ´α, pβ1# ` β2#q{2 uq ď β3#

+

Induced by Fokker-Planck

βK,3 ě 2´ α Induced by magnetic field

β1# ě 0

β2# ´ α ě β3#

α ď β3#

,

/

.

/

-

Due to regularization in time

By eliminating redundant conditions we obtain (A.1). It remains to find γs satisfying the remain-
ing constraints ”Kc ă KaKb”. To do so we seek γs as γi# “ ηci with η positive and sufficiently
small. Remaining conditions reduce then to

2c1 ą c3 ` 0, 2c2 ą c3 ` 0, c3 ą 0, 2c3 ą c3 ` 0, 2c3 ą c1 ` c2,

c3 ą 0, c1 ą 0, c2 ą c3, c3 ą 0

8We keep the variable t essentially implicit in the estimate for concision’s sake.
9One may relax conditions to

2c ą a` b or p2c “ a` b and Kc ă KaKbq

if one replaces ε P p0, 1q with ε P p0, ε0q for some sufficiently small ε0 depending on pa, b, cq and pKa,Kb,Kcq.
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and a smallness condition on η that we do not explicit here. To achieve the proof note that
the former condition on c s is satisfied with for instance c1 “ 1, c2 “ 2 and c3 “ 7{4. At last
we observe that those conditions are also sufficient to ensure by similar arguments the claimed
equivalence of norms. �

Appendix B. Maximum principle on the torus

For convenience we state and prove here maximum principles adapted to our purposes.

Lemma B.1 (Maximum principle on the torus, three-dimensional case). There exists a constant
C such that if u PW 1,1pT3q and ´∆u ď K0 with K0 P L

3{2,1pT3q then

ess sup
T3

u ď C p}u}W 1,1pT3q ` }K0}L3{2,1pT3qq .

We refer for instance to [35, Chapter 2] for relevant basic properties of Lorentz spaces appearing
in the statement of the former lemma.

The foregoing lemma is readily derived from the following one through the canonical identifi-
cation of functions on T3 and periodic functions on R3 by choosing Ω containing a fundamental
domain and Ω1 a suitably larger bounded domain.

Lemma B.2 (Maximum principle, three-dimensional case). Let Ω1 be an open subset of R3 and
Ω be a bounded open subset of Ω such that Ω Ă Ω1.
There exists a constant C such that if u PW 1,1pΩ1q and ´∆u ď K0 with K0 P L

3{2,1pΩ1q then

ess sup
Ω

u ď C p}u}W 1,1pΩ1q ` }K0}L3{2,1pΩ1qq .

Proof. It is sufficient to prove the estimate when u and K0 are smooth. From there a classical
approximation argument yields the full result by providing upper bounds at any Lebesgue point
of u.

For any 0 ď ε ă δ and x0 P R
3, we set

Ωε,δpx0q “ t y P R3 | ε ă }y ´ x0} ă δ u

and for any ε ą 0 and x0 P R
3, we denote

Sεpx0q “ t y P R3 | }y ´ x0} “ ε u .

We also consider G : R3 Ñ R, y ÞÑ }y}´1, which is a multiple of the Green function of the
Laplacian on R3.

First we choose R ą 0 such that for any x0 P Ω, Ω0,δpx0q Ă Ω1. Then, for any x0 P Ω, repeated
use of the Green formula provides for any 0 ă ε ă R

1

ε2

ż

Sεpx0q
u “

1

R2

ż

SRpx0q
u `

ˆ

1

ε
´

1

R

˙
ż

Ω0,εpx0q
p´∆uq `

ż

Ωε,Rpx0q

ˆ

Gp¨ ´ x0q ´
1

R

˙

p´∆uq

ď
1

R2

ż

SRpx0q
u `

ˆ

1

ε
´

1

R

˙
ż

Ω0,εpx0q
K0 `

ż

Ωε,Rpx0q

ˆ

Gp¨ ´ x0q ´
1

R

˙

K0

ď
1

R2
}u}L1pSRpx0qq `

1

ε
}K0}L1pΩ0,εpx0qq `

›

›

›

›

ˆ

Gp¨ ´ x0q ´
1

R

˙

K0

›

›

›

›

L1pΩ0,Rpx0qq

ď C 1}u}W 1,1pΩ1q ` C 1}K0}L3{2pΩ0,εpx0qq
` C 1}K0}L3{2,1pΩ1q

for some constant C 1 depending only on R (for instance through }G´R´1}L3,8pΩ0,Rp0qq). Taking
the limit εÑ 0 provides the estimate at x0. �

We shall also use the foregoing slight generalization.
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Lemma B.3 (Maximum principle, three-dimensional case, second version). Let Ω1 be an open
subset of R3 and Ω be a bounded open subset of Ω such that Ω Ă Ω1.
There exists a constant C such that if u P W 1,1pΩ1q and, for some K0 P L3{2,1pΩ1q, stands
χuě0p´∆uq ď K0 on Ω1 then

ess sup
Ω

u ď C p}u}W 1,1pΩ1q ` }K0}L3{2,1pΩ1qq .

Proof. Since u ď u` (where p¨q` denotes positive part) the proof is achieved by applying
Lemma B.2 to u` since ∇u` “ χuą0∇u and

´∆u` ď χuą0p´∆uq

as is classical and derived by inspecting the limit εÑ 0 of

p
a

ε2 ` u2 ´ εqχuě0 .

�

At last we observe that a slight variation on the proof of Lemma B.2 provides the following
two-dimensional versions of Lemmas B.1 and B.3.

Lemma B.4 (Maximum principle on the torus, two-dimensional case). For any 1 ă p ď 8 there
exists a constant C such that if u PW 1,1pT2q and ´∆u ď K0 with K0 P L

ppT2q then

ess sup
T2

u ď C p}u}W 1,1pT2q ` }K0}LppT2qq .

Lemma B.5 (Maximum principle, two-dimensional case, second version). Let 1 ă p ă 8, Ω1 be
an open subset of R2 and Ω be a bounded open subset of Ω such that Ω Ă Ω1.
There exists a constant C such that if u P W 1,1pΩ1q and χuě0p´∆uq ď K0 on with K0 P L

ppΩ1q
then

ess sup
Ω

u ď C p}u}W 1,1pΩ1q ` }K0}LppΩ1qq .
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