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Impact of Noise Correlation on Multimodality
Saloua Chlaily, Pierre-Olivier Amblard, Olivier Michel and Christian Jutten

Gipsa-Lab, CNRS, Université Grenoble Alpes, France

Abstract—In this paper, we consider the problem of estimating
an unknown random scalar observed by two modalities. We study
two scenarios using mutual information and mean square error.
In the first scenario, we consider that the noise correlation is
known and examine its impact on the information content of two
modalities. In the second scenario we quantify the information
loss when the considered value of the noise correlation is wrong.
It is shown that the noise correlation usually enhances the
estimation accuracy and increases information. However, the
performance declines if the noise correlation is misdefined, and
the two modalities may jointly convey less information than one
single modality.

I. INTRODUCTION

Recently, in various domains, different sensors i.e. modali-
ties are used simultaneously to observe several aspects of the
phenomenon studied, hopefully ensuring a better understand-
ing: this concept is called Multimodality. Multimodality ex-
ploits the links between modalities, to enable their interaction
and therefore reveal more information about the phenomenon
than using a unique modality. However, the expected improve-
ment is not always observed. That is because multimodality
introduces new challenges: different resolutions, sizes, missing
data, inconsistency, to name a few, and noise. Noise is one of
the challenges rarely addressed since most studies ignore it
or consider independent noises [1]. However, the correlation
between noises, if it exists, represent an important link that
must be considered for ensuring better performance.

The use of different modalities is important in many appli-
cations where phenomena are extremely complex (e.g. neu-
roimaging, human-computer interface, remote sensing, etc).
Furthermore, the benefit of using different modalities is very
application dependent. Important challenges in multimodal
signal processing are not only to process jointly several
modalities, but also to a priori quantify the benefits (if any)
of multimodal integration. The work presented here is a small
step in this direction. To draw conclusions independently of
the applications, we consider a model which is simple to
analyze, easy to interpret, but that yet provides interesting
conclusions about the effect of interaction between modalities
onto inference tasks.

The model involves only two modalities and a few pa-
rameters. Considering each modality as a communication
channel, we address the following questions in terms of mutual
information and of minimum mean square error (MMSE).

1) Under which conditions, a single modality carry more
information than two modalities?
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2) What is the importance of noise correlation on inference
accuracy?

3) What is the effect of misdefining the links between
noises on the information content of modalities and
inference accuracy?

The model considered in this work, was studied in [2]
in terms of Fisher information, while still under the exact
model assumption. The paper is organized as follows. The
proposed model and main notations are presented in Section
II. In Section III, we recall some notions of information theory.
The impact of the links between modalities on the information
content is presented in Section IV. In Section V we investigate
the effect of misdefining the links between modalities. Finally,
the conclusions and perspectives are drawn in Section VI.

II. NOTATIONS AND MODEL

Let X1 and X2 be two noisy observations of a random scalar
parameter S. For simplicity, we ignore the sensor response:{

X1 = S +B1

X2 = S +B2

, (1)

where S and the noises B1 and B2 are assumed to be jointly
Gaussian, with zero means and variances σ2, σ2

1 , and σ2
2 ,

respectively. S is independent of the noises. We denote by
ρ = E[B1B2]

σ1σ2
the noise correlation coefficient, and by Ri = σ2

σ2
i

the signal to noise ratio (SNR) of modality Xi. We assume
without loss of generality that R1 ≥ R2, unless otherwise
stated.

III. UNCERTAINTY OF EXACT AND WRONG MODELS

In this section, we introduce the differential entropy (DE)
and the mutual information (MI) [3], which we will use in the
next sections for studying the model (1).

The DE quantifies the uncertainty of a continuous random
variable, i.e. the information that would be obtained by ob-
serving this variable. Let X be a continuous random variable
with a probability density function (pdf) fX , the DE of X
denoted by H(X) is given by:

H(X) =

∫
fX(x) log

1

fX(x)
dx. (2)

Eq. (2) assumes that the pdf fX is known. In fact, if we do not
know the exact probability of X , and assume a wrong pdf f̂X
instead of fX , the measure of Shannon information is function
of f̂X , while the average is over the exact probability:

Hf̂X |fX (X) =

∫
fX(x) log

1

f̂X(x)
dx. (3)



The notation Hf̂X |fX (X) denotes the expected uncertainty
of the random variable X when we believe that its pdf is
f̂X while it is fX . In coding theory, for discrete variables,
Hf̂X |fX (X) is the number of bits needed to code an event
when its probability density function is wrongly estimated. If
we write Hf̂X |fX as a function of H , we find:

Hf̂X |fX (X) = H(X) +DKL

(
fX(X)||f̂X(X)

)
, (4)

where DKL

(
fX(X)||f̂X(X)

)
=
∫
fX(x) log fX(x)

f̂X(x)
dx is the

Kullback-Leibler (KL) divergence between the densities fX
and f̂X . Since DKL is always nonnegative and is zero iff
f̂X = fX [3], (4) leads to the following interpretation: when
we assume f̂X 6= fX , the uncertainty of X increases and
the error Hf̂X |fX −H is given by the KL divergence between
exact and wrong densities. Clearly, the error on the uncertainty
increases with the KL divergence i.e with the pdf mismatch.

Let Y and Z be two random variables linked to a third X .
Observing Y and Z reduces the uncertainty of X . The amount
of information that Y and Z reveal jointly about X is given
by the MI:

I
(
X; (Y,Z)

)
= H(X)−H(X | Y,Z)

= DKL

(
fXY Z(x, y, z)||fX(x)fY Z(y, z)

)
,(5)

where H(X | Y,Z) = −EfXY Z
log fX|Y Z(x | y, z) is the

conditional DE that quantifies the remaining uncertainty of X
given (Y,Z). fX|Y Z(x | y, z) is the conditional pdf of the
random vector X given (Y,Z). fXY Z(x, y, z) and fY Z(y, z)
are the joint densities for (X,Y, Z) and (Y,Z) respectively.
If we consider a wrong conditional pdf for (Y, Z) given X ,
f̂Y Z|X(y, z | x), the amount of information revealed jointly
by Y and Z about X would be wrongly evaluated as:

If̂Y Z|X |fY Z|X

(
X; (Y, Z)

)
(6)

= H(X)−Hf̂Y Z|X |fY Z|X
(X | Y,Z)

= I
(
X; (Y,Z)

)
−DKL

(
fX|Y Z(x | y, z)||f̂X|Y Z(x | y, z)

)
where:

f̂X|Y Z(x | y, z) =
f̂Y Z|X(y, z | x)fX(x)

f̂Y Z(y, z)

and f̂Y Z(y, z) =
∫
f̂Y Z|X(y, z | x)fX(x)dx.

Clearly (6) shows that the MI decreases when we assume a
wrong model, due to the property of DKL, and the equality
If̂Y Z|X |fY Z|X

= I holds iff f̂Y Z|X = fY Z|X . Note that
If̂Y Z|X |fY Z|X

(
X; (Y,Z)

)
is not a mutual information, in the

sense that it has not the properties of MI. In fact, MI is a KL
divergence (nonnegative), while If̂Y Z|X |fY Z|X

is a difference
of KL divergences and it can be negative (cf. Section V).

IV. EXACT MODEL

In this section we assume that the link between noises is
perfectly known, i.e the exact value of the noise correlation
coefficient ρ is known. The modalities in (1) can be considered

Perfect Channel
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+

+
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Fig. 1. Modalities as two communication channels

as two noisy communication channels (Fig. 1), where S is the
input and X1, X2 are the outputs.

Using the Gaussian assumption (Section II), the information
carried by the unique modality Xi (i = 1, 2) about S is

I(S;Xi) =
1

2
log (1 +Ri) . (7)

Following the assumption R1 ≥ R2 i.e. X1 is more
reliable than X2, X1 provides more information about S, i.e.
I(S;X1) ≥ I(S;X2). If the modalities are considered jointly,
i.e by exploiting their link ρ, the information they provide
about S is given by (5), and in the Gaussian case it is given
by:

I
(
S ; (X1, X2)

)
=

1

2
log

(
(1 +R1)(1 +R2)− (

√
R1R2 + ρ)2

1− ρ2

)
. (8)

Eq. (8) depends on the SNRs and on the parameter ρ which
summarizes the relation between the two modalities. Thus, in
the following we add ρ as a subscript to distinguish between
the MI for different values of ρ. The notation Iρ

(
S; (X1, X2)

)
denotes the MI between S and the couple of modalities
(X1, X2) when the noise correlation coefficient is ρ. In
Figure 2, we draw Iρ

(
S; (X1, X2)

)
(plain), I0

(
S; (X1, X2)

)
(dashed) and I(S,X1) (dotted) as a functions of ρ for equal
and different SNRs (Fig. 2a and 2b, respectively), while the
interpretations are presented in the following subsections.

From an estimation theory perspective, the optimal MMSE
estimator [4] of S as a function of X1 and X2 is:

Ŝρ(X1, X2) =
(R1 −

√
R1R2ρ)X1 + (R2 −

√
R1R2ρ)X2

(1 +R1)(1 +R2)− (
√
R1R2 + ρ)2

.

(9)
Fig. 3 shows the mean square errors (MSE) of estimations

using only one modality, E
[(
S − Ŝ(X1)

)2]
(dotted), and

the two modalities E
[(
S − Ŝρ(X1, X2)

)2]
(plain) vs. the

noise correlation coefficient ρ. The interpretations are given
in the following subsections while the additional dashed line,
E
[(
S − Ŝ0|ρ(X1, X2)

)2]
is discussed in Section V.
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Fig. 2. The mutual information Iρ
(
S; (X1, X2)

)
(plain), I0

(
S; (X1, X2)

)
(dashed) and I(S;X1) (dotted) as a functions of ρ (known)

A. One or two modalities
First we would like to know when it is advantageous

to combine two modalities. In this purpose, we compare
the information brought jointly by the modalities with the
information conveyed by a single modality:

Iρ
(
S; (X1, X2)

)
− I(S;Xi) = Iρ(S;Xj | Xi), i 6= j (10)

where Iρ(S;Xj | Xi) = H(S | Xj) − H(S | Xi, Xj) is
the conditional MI that quantifies the additional information
carried by Xj given Xi. The conditional MI is always non-
negative, and it equals zero when no further information can
be retrieved from the new modality Xj .

For model (1), from equations (7) and (8), the conditional
MI writes:

Iρ(S ; Xi | Xj)

=
1

2
log

(
(1 +R1)(1 +R2)− (

√
R1R2 + ρ)2

(1− ρ2)(1 +Rj)

)
.(11)

Iρ(S;X1 | X2) 6= 0 since X1 provides more information than
X2 about S (R1 > R2). On the contrary, the conditional MI
Iρ(S;X2 | X1) can vanish for ρ =

√
R2

R1
, which means that

X2 does not provide any new information about S, i.e. X2

is totally redundant given X1. We observe in Fig. 2b that
the MI related to X1 (dotted) is tangent to the MI related to
two modalities (plain) for ρ =

√
R2

R1
, where the latter attains

its minimum. In this case the optimal estimator of S upon
X1 and X2, Ŝρ(X1, X2), equals the optimal estimator based
only on X1, Ŝ(X1) and the MMSE is maximum (Fig. 3b).
Therefore, when ρ =

√
R2

R1
it is sufficient to use the modality

X1 alone. Otherwise, under the exact model assumption it is
always beneficial to consider two modalities. Note that, for
equal SNRs, i.e. R1 = R2, at ρ = 1, the two modalities are
completely redundant since X1 = X2 (Fig. 2a and 3a).

B. Independent or correlated noises

In the previous subsection, we show that usually the MI
related to two modalities is larger than the MI related to
a unique modality. In this subsection, we wonder if the
existence of links (correlation ρ) always guarantee higher
MI. To this end, we compare the amount of information
carried by both modalities when the link between noises exists
(ρ 6= 0), Iρ

(
S; (X1, X2)

)
and when this link is inexistent

(ρ = 0), I0
(
S; (X1, X2)

)
. Following the Gaussian assumption,

independence is equivalent to ρ = 0. Note that modalities with
independent noises are not totally independent but condition-
ally independent given S. Using (10), we can write:

Iρ
(
S; (X1, X2)

)
− I0

(
S; (X1, X2)

)
= Iρ(S;X2 | X1)− I0(S;X2 | X1).(12)

Eq (12) shows that modalities with independent noises out-
perform the ones with correlated noises when Iρ(S;X2 |
X1) < I0(S;X2 | X1). In Fig. 2b we can see that this
occurs if ρ ∈

]
0, ρ0 = 2

√
R1R2

R1+R2

[
, for which the noise cor-

relation induces redundancy. When R2 tends towards R1, the
modalities become more redundant and ρ0 tends towards 1
(Fig. 2a). Conversely, when R2 is negligible w.r.t R1, ρ0
tends to 0. Beyond this interval i.e ρ ∈ [−1, 0] ∪ [ρ0, 1],
Iρ(S;X2 | X1) ≥ I0(S;X2 | X1) since redundancy is
exploited to enhance the estimation accuracy. In fact, the noise
is reduced by summing the two modalities with proper scaling.
In particular, Iρ is infinite for ρ = 1(R1 6= R2) and ρ = −1
(Fig. 2b), since the noise is completely cancelled and S can be
perfectly recovered (MMSE = 0, Fig. 3b) using respectively
the optimal estimators (9):

Ŝ1(X1, X2) =

√
R1X1 −

√
R2X2√

R1 −
√
R2

. (13)
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Fig. 3. Variation of the MSE as a function of ρ

Ŝ−1(X1, X2) =

√
R1X1 +

√
R2X2√

R1 +
√
R2

. (14)

Notice that, for R1 = R2, the estimator (13) does not hold,
because the two modalities are completely redundant (Fig. 2a).
By contrast, for negatively-correlated noises, i.e ρ ∈ [−1, 0[,
we always manage to reduce the noise whatever the values of
the signal to noise ratios R1 and R2. Accordingly, we always
get better results than the independent and positively correlated
cases (Fig. 2b). Thus, to get the most out of the modalities,
the noise correlation has to be negative. Otherwise, the noises
have to be strongly correlated, i.e ρ ∈]ρ0, 1], with different
SNRs so that ρ0 → 0.

We can observe in figures 2 and 3 that the results of MI and
MSE, although giving different points of view, are consistent
which is not surprising since the gradient of the MI is directly
related to the MSE [5] in Gaussian channels.

V. WRONG MODEL

In this section we study the loss of information when we
wrongly define the noise correlation coefficient. We consider
that ρ is unknown and denote by ρ̂ the assumed noise
correlation coefficient. To quantify the loss in information, we
compare the information brought by the modalities considering
the exact ρ, Iρ

(
S; (X1, X2)

)
, with the “information” brought

by the modalities about S when ρ̂ is used instead of ρ,
Iρ̂|ρ
(
S; (X1, X2)

)
(remember it is not a MI cf. SectionIII).

A. ρ̂ = 0

Before investigating the loss for ρ̂ in general, let us consider
the case where ρ̂ = 0. In this particular case the modalities
are assumed to have independent noises while the noises are
actually correlated. In the literature, the noises between data
sets are commonly assumed to be independent for computation
simplicity. If the noises are actually correlated the error

induced by this assumption is given by (6). Using jointly
Gaussian distributions, it follows:

Iρ
(
S; (X1, X2)

)
− I0|ρ

(
S; (X1, X2)

)
= ρ

√
R1R2

1 +R1 +R2

+
1

2
log

(1 +R1)(1 +R2)− (
√
R1R2 + ρ)2

(1− ρ2)(1 +R1 +R2)
. (15)

For convenience, we denote this loss by ∆I(ρ, 0). The loss
equals zero iff ρ = 0. Eq. (15) shows that the loss becomes
infinite for ρ = 1(R1 6= R2) and ρ = −1. This is because S
is not perfectly recovered with a wrong value ρ̂ = 0, while
it is with the exact one. In fact, for infinite MI an exact
quantification of the loss is given by the MSE. The MSE of
estimating S using jointly X1 and X2 when the noises are
assumed independent, is

E

[(
S− Ŝ0|ρ(X1, X2)

)2]
= σ2 1

1 +R1 +R2
+ 2σ2ρ

√
R1R2

(1 +R1 +R2)2
. (16)

The error (16) is a linear function of ρ, and is tangent
at ρ = 0 to the MSE of estimation using both modalities
and exact noise correlation (Fig.3). Moreover, the error (16)
intersects the MSE of estimation based uniquely of X1 for
ρ = ρ1, where ρ1 = 1+R1+R2

2(1+R2)

√
R1

R2
. Thus in the range [ρ1, 1],

X1 holds more information than does jointly X1 and X2 with
the assumption of noises independence. Therefore, in this case
using two modalities will give worse results for estimating
S than using X1 alone. Notice that if R2 � R1, ρ1 tends
towards zero. Furthermore, ρ1 is never negative, which means
that ignoring a negative correlation induces loss, but always
insure more information than does the best (with the highest



SNR) single modality. Finally, note that I0|ρ
(
S; (X1, X2)

)
never reaches I(S;X2): it means that the MI of the joint
observation, with wrong assumption ρ̂ = 0, is always better
than using the worse single modality.

B. ρ̂ ∈ [−1, 1]

In the general case, considering model (1) and assuming
that ρ̂ 6= ρ induces the following loss of information:

∆I(ρ, ρ̂) (17)

=
1

2
log

(1− ρ̂2)
(
(1 +R1)(1 +R2)− (

√
R1R2 + ρ)2

)
(1− ρ2)

(
(1 +R1)(1 +R2)− (

√
R1R2 + ρ̂)2

)
+(ρ− ρ̂)

(
√
R1ρ̂−

√
R2)(
√
R2ρ̂−

√
R1)

(1− ρ̂2)
(
(1 +R1)(1 +R2)− (

√
R1R2 + ρ̂)2

) .
The loss in (17) depends on the SNRs and the exact and

wrong noise correlation coefficients, ρ and ρ̂ respectively.
Since, from (6), ∆I(ρ, ρ̂) is the KL divergence between the
exact and wrong densities for S given (X1, X2), it is always
positive and equals zero iff ρ̂ = ρ. ∆I(ρ, ρ̂) increases with
|ρ−ρ̂|, since the mismatch between the exact and wrong densi-
ties for S given (X1, X2) increases with the difference |ρ− ρ̂|.
Eq. (17) shows that ∆I(ρ, ρ̂)→ +∞ for ρ = 1(R1 6= R2) and
ρ = −1, since the signal S can be perfectly recovered consid-
ering the exact noise correlation (Iρ

(
S; (X1, X2)

)
→ +∞).

Also, ∆I(ρ, ρ̂) → +∞ for ρ̂ = 1(R1 6= R2) and ρ̂ = −1, as
we wrongly assume that the target signal could be perfectly
recovered (Iρ̂|ρ

(
S; (X1, X2)

)
→ −∞). In the case of infinite

information loss, an exact quantification of the loss is given
by the MSE. The MSE of estimating S upon X1 and X2,
considering the wrong noise correlation coefficient ρ̂ is:

E

[(
S − Ŝρ̂|ρ(X1, X2)

)2]
(18)

= σ2 1− ρ̂2

(1 +R1)(1 +R2)− (
√
R1R2 + ρ̂)2

+ 2σ2(ρ− ρ̂)
(
√
R1ρ̂−

√
R2)(
√
R2ρ̂−

√
R1)(

(1 +R1)(1 +R2)− (
√
R1R2 + ρ̂)2

)2 .
To investigate when the loss of information due to assuming

ρ̂ drops the information below that of one single modality, we
compare Iρ̂|ρ

(
S; (X1, X2)

)
with I(S;Xi):

Iρ̂|ρ
(
S; (X1, X2)

)
− I(S;Xi)

= Iρ (S;Xj | Xi)−∆I(ρ, ρ̂). (19)

Eq. (19) shows that, Iρ̂|ρ
(
S; (X1, X2)

)
= I(S;Xi) when

the loss of information induced by considering ρ̂ 6= ρ cancels
the additional information conveyed by Xj . For model (1), the
equality Iρ̂|ρ

(
S; (X1, X2)

)
= I(S;X1) holds in two cases:

1) If ρ̂ =
√

R2

R1
,∀ρ

With this assumption, we consider that the modality X2 is
redundant w.r.t X1 and ignore all the additional information
given by X2. In fact the optimal estimator of S using jointly
X1 and X2 considering ρ̂, Ŝρ̂|ρ(X1, X2) equals the optimal
estimator of S using X1 alone, Ŝ(X1). This case can not
occur for the second modality, according to the assumption
R1 ≥ R2.

2) If ρ = ρ1 and ρ̂ 6=
√

R2

R1

where ρ1 = ρ̂ +
(
√
R1ρ̂−

√
R2)((1+R1)(1+R2)−(

√
R1R2+ρ̂)

2)
2(1+R1)(

√
R2ρ̂−

√
R1)

.
Unlike the first case, the optimal estimators using X1 alone
and using jointly X1 and X2 considering ρ̂ are different i.e.
Ŝρ̂|ρ(X1, X2) 6= Ŝ(X1). However, they have the same MSE
i.e. E

[(
S − Ŝρ̂|ρ(X1, X2)

)2]
= E

[(
S − Ŝ(X1)

)2]
. Which

means that, X1 alone and (X1, X2) jointly considering ρ̂
communicate the same amount of information but different
piece of information.

Finally, it is beneficial to use the best single modality X1

alone if ρ < ρ1 and
√

R2

R1
< ρ̂ or if ρ > ρ1 and

√
R2

R1
>

ρ̂ (since Iρ̂|ρ < I(S;X1)). Furthermore, note that even the
worse single modality X2 can convey more information than
does jointly X1 and X2 considering ρ̂, for ρ > ρ2. where:

ρ2 = ρ̂+
(
√
R2ρ̂−

√
R1)((1+R1)(1+R2)−(

√
R1R2+ρ̂)

2)
2(1+R2)(

√
R1ρ̂−

√
R2)

.

VI. CONCLUSION

In this paper, we raised the question of how the links
between modalities can improve or decrease the estimation ac-
curacy and information content. We considered a simple model
and investigated the role of noise correlation which represents
the link between two modalities. Our results suggests that the
noise correlation usually increases information and boosts the
performance. Moreover, negative noise correlation is the key to
always get the most out of both modalities. However, under the
assumption of a wrong noise correlation it may be beneficial
to consider a single modality than two modalities. Future
research should consider other characteristics of multimodality
and more complex models.
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