
HAL Id: hal-01382645
https://hal.science/hal-01382645v1

Submitted on 17 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical Approach for Deriving a Reproducible LU
factorization on GPUs

Roman S Iakymchuk, Stef S Graillat, David Defour, Enrique S Quintana-Ortí

To cite this version:
Roman S Iakymchuk, Stef S Graillat, David Defour, Enrique S Quintana-Ortí. Hierarchical Approach
for Deriving a Reproducible LU factorization on GPUs. The Numerical Reproducibility at Exascale
(NRE16) workshop held as part of the Supercomputing Conference (SC16), Nov 2016, Salt Lake City,
UT, United States. �hal-01382645�

https://hal.science/hal-01382645v1
https://hal.archives-ouvertes.fr


Hierarchical Approach for Deriving a
Reproducible LU factorization on GPUs

Roman Iakymchuk1, Stef Graillat2, David Defour3, Enrique S. Quintana-Ort́ı4

1 KTH Royal Institute of Technology, Stockholm, Sweden,
riakymch@kth.se,

2 Sorbonne Universités, UPMC Univ Paris 06, Paris, France,
stef.graillat@lip6.fr,

3 Université de Perpignan, Perpignan, France,
david.defour@univ-perp.fr,

4 Universidad Jaime I, Castellón, Spain,
quintana@uji.es

Abstract. We propose a reproducible variant of the unblocked LU factorization
for graphics processor units (GPUs). For this purpose, we provide Level-1/2
BLAS kernels that deliver correctly-rounded and reproducible results for the dot
(inner) product, vector scaling, and the matrix-vector product. In addition, we
draw a strategy to enhance the accuracy of the triangular solve via inexpensive
iterative refinement. Following a bottom-up approach, we finally construct a
reproducible implementation of the LU factorization for GPUs, which can easily
accommodate partial pivoting for stability and be eventually integrated into a
(blocked) high performance and stable algorithm for the LU factorization.

Key words: LU factorization, BLAS, reproducibility, accuracy, long accumu-
lator, error-free transformation, GPUs.

The solution of a linear system of equations is often at the core of many scientific ap-
plications. Usually, this process relies upon the LU factorization, which is also the most
compute-intensive part of it. Although there exist implementations of this factorization
that deliver high performance on a variety of processor architectures, their reproducibil-
ity1 and, even more, accuracy2 cannot be guaranteed. This problem is mainly due to
the non-associativity of floating-point operations, combined the concurrent thread-level
execution of independent operations on conventional multicore processors or the non-
determinism of warp scheduling on graphics processing units (GPUs).

In this work, we address the problem of reproducibility of the LU factorization on
GPUs due to cancellations and rounding errors associated with floating-point arith-
metic. Instead of developing a GPU implementation of the LU factorization from
scratch, we benefit from the hierarchical and modular structure of linear algebra li-
braries, and start by developing and augmenting reproducible algorithmic variants for
the BLAS (Basic Linear Algebra Subprograms) kernels that serve as building blocks in
the LU factorization. In addition, we enhance the accuracy (in case of non-correctly-
rounded results) of these underlying BLAS routines.

We consider the left-looking algorithmic variant of the unblocked LU factorization
(also know as jik or jki variant [5]), which is especially appealing for fault tolerance,

1 We define reproducibility as the ability to obtain a bit-wise identical floating-point results
from multiple runs of the code on the same input data.

2 By accuracy, we mean the relative error between the exact result and the computed result.

riakymch@kth.se
stef.graillat@lip6.fr
david.defour@univ-perp.fr
quintana@uji.es


2 Roman Iakymchuk, Stef Graillat, David Defour, Enrique S. Quintana-Ort́ı

out-of-core computing, and the solution of linear systems when the coefficient matrix
does not fit into the GPU memory. This specific variant can be formulated in terms
of the Level-1 and Level-2 BLAS kernels for the dot product (dot), vector scaling
(scal), matrix-vector product (gemv), and triangular system solve (trsv). We prevent
cancellations and rounding errors in these kernels by applying the following techniques:

– We leverage a long accumulator and error-free transformations (EFT) designed for
the exact, i.e. reproducible and correctly-rounded, parallel reduction (exsum) [1] in
order to derive an exact dot. For this purpose, we extend the multi-level parallel
reduction algorithm and apply the traditional EFT, called TwoProduct [4], to the
multiplication of two floating-point numbers.

– By its nature, scal is both reproducible and correctly-rounded. However, in the
considered unblocked LU factorization, scal multiplies a vector by an inverse of a
diagonal element, which causes two rounding-off errors. For that reason, we provide
an extension to scal (invscal) that performs the division directly, which ensures
the exact results.

– We develop an accurate and reproducible algorithm for gemv by combining together
a high performance GPU implementation of this operation with the exact dot.

– To improve the parallel performance of trsv, we use a blocked variant that relies
upon small trsv involving the diagonal blocks and rectangular gemv with the off-
diagonal blocks. This approach leads to a reproducible, but not yet correctly-rounded,
triangular solve (extrsv) [3]. We tackle the accuracy problem by applying a few
iterations of inexpensive iterative refinement.

In addition, we integrate partial pivoting [2] into the left-looking variant of the un-
blocked LU factorization which, as part of future work, will allow us to employ this
unblocked LU factorization as a building block in the development of high performance
blocked algorithms.

In summary, following the bottom-up approach, we construct a reproducible al-
gorithmic variant of the unblocked LU factorization, presenting strong evidence that
reproducible higher-level linear algebra operations can be constructed following a hier-
archical bottom-up approach.

References

1. Sylvain Collange, David Defour, Stef Graillat, and Roman Iakymchuk. Numerical re-
producibility for the parallel reduction on multi- and many-core architectures. Parallel
Computing, 49:83–97, 2015.

2. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, 3rd edition, 1996.

3. Roman Iakymchuk, Sylvain Collange, David Defour, and Stef Graillat. Reproducible tri-
angular solvers for high-performance computing. In Proceedings of the 12th International
Conference on Information Technology: New Generations (ITNG 2015), Special track on:
Wavelets and Validated Numerics, April 13-15, 2015, Las Vegas, Nevada, USA, pages 353–
358, February 2015. HAL: hal-01116588v2.

4. Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput, 26, 2005.

5. James M. Ortega. The ijk forms of factorization methods I. Vector computers. Parallel
Computing, 7:135–147, 1988.


