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Abstract—Understanding brain mechanisms and its problem
solving techniques is the motivation of many emerging brain
inspired computation methods. In this paper, respecting deep
architecture of the brain and spiking model of biological neural
networks, we propose a spiking deep belief network to evaluate
ability of the deep spiking neural networks in face recognition
application on ORL dataset. To overcome the change of using
spiking neural networks in a deep learning algorithm, Siegert
model is utilized as an abstract neuron model. Although there
are state of the art classic machine learning algorithms for
face detection, this work is mainly focused on demonstrating
capabilities of brain inspired models in this era, which can be
serious candidate for future hardware oriented deep learning
implementations. Accordingly, the proposed model, because of
using leaky integrate-and-fire neuron model, is compatible to be
used in efficient neuromorphic platforms for accelerators and
hardware implementation.

I. INTRODUCTION

The brain inspired techniques provide a great opportunity to
imitate the brain computational capabilities to address different
types of machine learning problems. Face recognition as a
challenge in machine learning has been investigated perfectly
using artificial intelligence tools and specifically using Arti-
ficial Neural Networks (ANN) [1], [2]. Using deep learning
algorithms for training deep neural networks has improved
the ANN results in many aspects of machine learning. Using
deep learning and specifically Deep Belief Networks (DBN) in
object recognition tasks [3], [4], speech and voice recognition
[5]–[10] and image and medical images processing [11], [12]
have demonstrated promising achievements.

As a fact of fact, the brain not only uses deep and hier-
archical structures to represent abstract models of its sensory
inputs from environment to infer subjects, but also uses spikes
in coding and data interactions between pre- and post-synaptic
neurons in a deep architecture. Therefore, to have better
understanding of the efficiency of brain inspired computational
methods in face recognition applications, one needed to:

• Utilize a deep neural network,

• Use biological models of neurons as the building blocks
of the network,

• Use spike trains between neurons for sending and receiv-
ing data.

Biological neural models have been previously investigated
in literature [13]–[15] in terms of their suitability to be
implemented on different VLSI platforms. Considering this
aspect of bio-inspired neural networks and the advancements
in neuroscience on one hand and recent achievements in
nanotechnology on the other hand, has introduced a new field
of electronic and computer engineering called Neuromorhpic.
Nerumorphic engineering is related to a variety of subjects
ranging from sciences such as biology, physics, mathematics
to nano devices and computer engineering. The Neuromorphic
term was first proposed by Carver Mead [16], which explores
using VLSI for implementing neural systems. Therefore,
proposing a deep spiking neural network not only shows the
capability of brain like models in face recognition application,
also introduces a suitable framework for deep neural networks
to be implemented on Neuromorhpic platforms to have a spe-
cific Hardware Accelerator for face recognition application.

Considering the the efficiency of Deep Belief Networks
(DBN) [17] in various type of machine learning tasks such
as image processing [3], [4] and video [18], voice and speech
recognition [9], [10], [19], [20]. In this paper, we use a
DBN which is consisted of two stacked Restricted Boltzmann
Machines (RBM) [17]. The first RBM is trained in a com-
pletely unsupervised manner and the second one is used to
classify the input images. To evaluate the proposed method,
the Olivetti Research Laboratory (ORL) dataset [21] is used.
Although there are variety of advanced works using sate of
the art techniques of image processing with high level of
accuracy success rate of face recognition [22]–[26] ; as was
mentioned before, this work is not aiming to improve the result
of the current face recognition algorithms, but looking for a
way to evaluate deep belief networks capability in a spiking
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Fig. 1. Restricted Boltzmann Machine is a Restricted version of Boltzmann
Machine

framework, which can be implemented in hardware platform
using Neuromorhpic and nanotechnology approaches.

Rest of the paper is organized as follows. According to
the goal of this research, section II introduces the RBM as
the main building block of the deep architectures, where
we briefly talk about Contrastive Divergence (CD) as the
most efficient training algorithm for RBMs. In section III
the existing gap between machine learning domain and spike
coding is explained and we introduce the Siegert neuron
model to develop a spiking DBN. In the next, section IV, the
proposed DBN with Siegert units is trained and the simulations
results are presented. Using brain as a simulator for spiking
neural networks, in section V we developed a DBN structure
with Leaky Integrated-and-Fire (LIF) units and transferred the
trained network in section IV on it to evaluate the proposed
spiking deep belief network. Finally we conclude the paper
and talk about our ongoing and future projects.

II. RESTRICTED BOLTZMANN MACHINE AND
CONTRASTIVE DIVERGENCE

Restricted Boltzmann machines, as a model of artificial
neural networks, have been driven from Boltzmann machines.
RBM consists of binary stochastic units connected to each
other using bidirectional edges. It can represent a probabilis-
tic distribution to learn the basic features of an unknown
distribution using observed data, which is considered as the
training data. Generally, training in Boltzmann machine, as
fully Recurrent Neural Network (RNN), is involved with
a large number complex computations. Therefore, applying
some restrictions to the Boltzmann machine topology leads to
a less complex structure called Restricted Boltzmann Machine
(Figure 1).

From a structural point of view, RBM has one visible
and one hidden layer, where all the units in the visible and
hidden layers are symmetrically connected, but there is no
visible-visible or hidden-hidden connection. The structure of
the Boltzmann machine is related to the proposed structure
in 1982 by John Hopfield [27]. The Hopfield model is driven
from thermodynamic systems and can be quantified through
equilibrium energy. Each state of the Boltzmann machine can
be expressed as a value called energy of the state. Equation 1
presents the energy function of a given RBM as a restricted
type of Boltzmann machine.

E(V,H) = −
∑
i

∑
j

vihjwij −
∑
i

aivi −
∑
j

bjhj , (1)

where E is the total energy of the network, vi is the state
of visible ith unit, hj is the state of jth hidden unit, wij is
the weight between vi and hj , ai and bj are the biases. The
assigned probability to each configuration of the network states
are:

p(V,H) =
1

Z
e−E(V,H), (2)

where Z =
∑

V H eE(V,H) is the partition function. RBM, as
a generative model, tries to generate an internal representation
of its environment. Increasing the log-probability of the gen-
erating input data vector using equation 2 leads to contrastive
divergence [28] updating weight rules for RBM:

∆wij = η(< vihj >data − < vihj >model). (3)

In equation 3, < vihj >data represent the expectation un-
der the distribution specified by input data vector and <
vihj >model is the expectation under the distribution specified
by internal representation of the RBM model [?]. Also the
probability of hj using a given V as the input data vector, for
each j in hidden layer is 1 with probability p(hj = 1|V ):

p(hj = 1|V ) = σ(bj + Σiviwij), (4)

when σ(x) is the logistic sigmoid function and can be defined
as:

σ(x) =
1

1 + ex
(5)

In contrastive divergence using Gibbs updating chain (ini-
tiated with training data) and iteration sampling for a limited
time, the approximated value for < vihj >model can be
computed perfectly [28], [29]. A single step of Gibbs sampling
using H as a given hidden vector can be expressed as

p(vi = 1|H) = σ(ai + Σjhjwij). (6)

According to [29] only one step of contrastive divergence
(CD1), can provide an acceptable approximation of gradient
of the log probability of the training data and iterating the
process for k times provides a more precise value:

(∆wij)
k

= η(< vihj >
0 − < vihj >

k), (7)

when < vihj >
0 is equal to < vihj >data and < vihj >

k

means iterating Gibbs sampling for k times. Also the biased
will be updated using these equations:

(∆ai)
k

= η(vi
0 − vik), (8)

and
(∆bj)

k
= η(hj

0 − hjk). (9)

III. ARTIFICIAL NEURAL NETWORKS VERSUS SPIKING
NEURAL NETWORKS

Artificial Neural Networks as a tools of artificial intelligence
can demonstrate high level of accuracy in machine learning
problems and specifically in face recognition applications
[30], [31]. On the other side the brain inspired models and
specifically Spiking Neural Networks are very suitable to be
implemented in VLSI. Therefore, to have a biological model
of neural networks in hardware level SNN is applied. The SNN



Fig. 2. Siegert abstract neuron model [34]

can be trained using an unsupervised Hebbian-based learning
rules such as Spike-Timing Dependent Plasticity (STDP).
However respecting to the deep architecture of the brain to
have a deep SNN, we have to use efficient algorithms for
deep architectures.

Spiking model of neuron uses short pules (spikes) to coding
data [32]. Since the shape of spikes are generally the same,
then the rate and the time of spikes are the determinant param-
eters in data transferring in biological models. Comparing the
biological inspired model to machine learning algorithms, it
is obvious the time parameter has no role in machine learning
domain. Consequently there is a gap between ANN and SNN
that we have to overcome it if we want to use machine learning
algorithms (ANN) in SNN platforms.

In this paper, we use the Siegert neuron model that can
approximate the mean firing rate of Leaky Integrate-and-Fire
neurons with Poisson-process inputs. Siegert abstract model
using mathematical equations can estimate the input-output
rate transfer function of Leaky Integrate-and-Fire neurons.
Figure 2 shows the equation of the Siegert neuron [33],
[34]. SNNs use spike trains with randomly distribution of
spike times. To be able to use Siegert model in this paper,
we assume the spike trains are Poisson-process with specific
firing rates (λin). As it is depicted in Figure 2 the Siegert
model receives excitatory and inhibitory inputs where (λe)
is the excitatory and (λi) is the inhibitory rates of incoming
spike trains from pre-synaptic neurons. we and wi are the
corresponding synaptic weights. Due to more simplicity, we
did not categorize the neurons to excitatory and inhibitory
neurons. We assume λin as total input spike rates from pre-
synaptic neurons as well as w which indicating the both of
we and wi. By normalizing the valuse of pixels of the ORL
images, we can interfere density of each pixel as the spike
rate of corresponding pixel such that brighter pixel has higher
spike rate and darker one has less firing rate. LIF neuron
parameters can be set by adjusting the corresponding variables
in Siegert equation. Table I shows the given values for the
membrane time constant (τm), the resting potential (Vrest),
the reset potential (Vreset), the threshold potential (Vth) and
the absolute refractory time (tref ).

In following sections stacking the proposed RBM with
Siegert units, we developed a Deep Belief Network and after

TABLE I
LIF PARAMETERS

Parameter Description value
τm Membrane time constant 5sec
Vrest Resting potential 0
Vreset Reset potential 0
Vth Threshold potential 5mv
tref Absolute refractory time 2ms

Fig. 3. Stacking RBMs as the main building blocks of DBN [35]

training phase we transferred the weight matrix to a DBN with
LIF units in Brain simulator to evaluating the proposed model.
According to the equality between Siegert transfer function
and LIF transfer function, we can use the LIF neurons with
same parameters (Table I).

IV. DEVELOPING AND TRAINING DEEP BELIEF NETWORK
WITH SIEGERT UNITS

As was mentioned in the previous section, the RBMs with
Siegert units can be trained in machine learning domain. In
fact in this model the mean firing rate of input spike trains
will be used instead of spike trains.

The Deep Belief Networks (DBN) has been introduced in
[17] by professor Geoffrey Hinton as a stack of RBMs. In [17]
professor Hinton has proposed a greedy layer wised algorithm
to training the DBN by training the each RBM sequentially.
Figure 3 illustrate the stages of stacking RBMs. In this paper,
we used the ORL face dataset that is taken at the Olivetti
Research Laboratory in Cambridge, UK [21]. This dataset
originally contains 400 grey scale face images of 40 distinct
volunteers. Figure 4 shows some images of ORL dataset. In
this paper, we used a resized version of ORL that has been
proposed in [36]. The input images with 32*32 pixels are used
as input vectors with 1024 elements. According to [37] in each
step of RBM training process a mini-batch of training data
consisted of a small subset of all training data is used. The
propsed DBN architecture respecting to the size of training
vectors is depicted in Figure 5. The first RBM has 1024
(32*32) units in visible layer and 500 units in hidden layer.
This RBM is trained without any label (unsupervised learning)
to provide abstract features for the second one. After training
the first RBM, the second RBM using the extracted features
generated in previous step, is trained. In the recent RBM as
a classifier, we used the joint of 500 extracted values and 80



Fig. 4. Some sample images from ORL dataset
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Fig. 5. The proposed DBN with Siegert neurons for learning ORL

softmax units. The labels of ORL images have been converted
to softmax vectors such that for the first class of images the
two first bits are one and others are zero, for the next one the
two first bits are zero the next two bits are one and the others
are zero and so on.

We divided the ORL images into two subsets. The first one
is the training set and consisted of 8 images from 10 of each
class. These images are used to train the model and didn’t use
for testing. The second one is the test images containing 2 of
10 from each class. Because of the full connections between
each visible unit and each hidden unit, the dimensions of the
arriving connections at each hidden unit are the same as the
dimension of input images. Figure 6 shows the corresponding
weights of connections between all visible units and 100
randomly selected hidden units. The weight vectors has been
reshaped as 32*32 images. During the learning process the
hidden units have learned some specific features and learned to
be triggered only with some specific features. Visualizing these
weight vectors (Figure 6), displays the learned features by each
hidden unit and it is a perfect monitoring method to studying
the network learning process [37]. As we can see in Figure
7, the training process needed too many iteration to reach a
proper result. For this model which is implemented in Matlab
, after about 800 iterations the results are close to 90%. The
maximum value, 93.2%, is corresponded to iteration 1910th.
In this paper, we used the Free Energy function (equation
10). To find the predicted label, using Free Energy function,
each possible label has been tested to find the configuration

Fig. 6. Visualizing the learned features by hidden units
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Fig. 7. Accuracy of the proposed DBN with Siegert neurons in face
recognition on ORL dataset

with the lowest energy. The corresponding label to the recent
configuration is assumed as the predicted label [37].

F (V ) = −
∑
i

viai −
∑
j

log(1 + exj )

where

xj = bj +
∑
i

viwij

(10)

The accuracy of the model is depended on the learning
parameters [37], [38]. For eaxmple Figure 7 shows the results
when the mini-batch size is 4. The effect of changing the
model parameters using less iterations and using various mini-
batch sizes is depicted in Figure 8 . Obviously less iteration
and larger mini-batch size leads to less accuracy. Eventually if
one is interested in more precise accuracy, it can be possible
through adjusting the learning parameters and also the Siegert
neuron parameters (Table I).
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Fig. 8. Decreasing the number of epochs and increasing the mini-batch size
reduced the model accuracy

V. EVALUATING THE MODEL

Thanks to the equality between the Siegert neuron’s transfer
function and the LIF transfer function, without any adjust-
ments the trained weight matrix in the previous section can
be copied to a network with same topology consisted of LIF
neurons with same parameters (Tabel I). To develop such a
network with LIF neuron we used the Brain simulator. Brian
is a simulator for Spiking Neural Networks. This simulator is
written in the Python programming language. Because of using
development tools such as SciPy module, Python provides
very fast routines for mathematical operations and specifically
matrix operations [39]. We have developed a Deep Belief
Network in Brian simulator with same topology as the one
that has been implemented in Matlab. In this model since we
want to test the accuracy of the model in a more realistic
situation, the equation of LIF neuron (Equation 11) is applied
besides the described parameters in Table I.

τm
dv

dt
= −(v(t)− vrest) +RI(t) (11)

We know the spiking model uses spike trains instead of the
real numbers. In Section IV we have talked about the basis of
the assumption to use the normalized value of the pixels as
the related firing rate. Consequently in this section to test the
proposed spiking model, we have to convert the firing rate to
spike trains. In [40] we have discussed in details about this
approach for MNIST handwritten digits. In Brain simulator,
using PoissonGroup function, we can generate spike trains
with specified firing rates. Therefore the network can be tested
with spike trains corresponding to the density of pixels of the
test images. Having the trained weights matrix, despite of the
Matlab model, the labels are not used in the second RBM
for training but they are used as the outputs of the model for
classifying the input images [41]. Respecting to the generative
characteristic of DBNs, the model not only can reconstruct
input images as it is internal representation of the given image
(Figure 9), but also can generate the corresponding learned

Fig. 9. The upper row shows 10 of the training images and the lower one
illustrate the corresponding reconstructed images

Fig. 10. The upper row shows 10 of the test images and the lower one
illustrate the predicted images

labels as the predictions of the model. To evaluate the model
in a spiking framework after transferring the weights matrix,
the generated spike trains of test images are passed through the
entire of the network and comparing the predicted labels with
the original labels, we computed the model accuracy. Figure
10 shows predicted images respecting to the input test images.
In addition, as it was predictable, the results of the model with
LIF neurons have not changed considerably. However because
of the difference between floating number precision in Matlab
and Brian simulator reloading the weights matrix in Python
can cause a small decreasing in accuracy. The accuracy of the
model in Brian simulator reduced to 92.4%.

VI. CONCLUSION AND FUTURE WORKS

The ability of brain like computing motivated us to eval-
uate a model with biological structure in face recognition
application. Regarding the brain as a deep neural network,
we proposed a deep neural network with spiking neurons
to understand if the brain like models are suitable for face
recognition applications. The proposed model is different from
a traditional neural network. Indeed this model is a Spike-
Based deep model with biological inspired neurons (Leaky
Integrate-and-Fire neurons). Considering the results of Deep
Belief Networks in various tasks in Machine learning domain,
a DBN with two RBM has been developed in Matlab with
Siegert units. Then the trained weights matrix transferred to a
Spiking DBN with LIF neurons. The recent model is simulated
in the Brian simulator and the results shows the capability of
the Spiking Deep Belief Networks in a simple face recognition
application.

The accuracy of the model may improve using some pa-
rameters adjustment. Also utilizing some pre-processing such
as using Gabor and Wavelet filters for extracting features can
be useful. Therefore we are going to enhance the accuracy
of model using the mentioned methods. For future works, we
will take into account using other types of deep models such
as Deep Autoencoders or Convolutional Neural Networks.



To use the proposed model, we have to train the model in
one platform and using the trained weights in another one.
Indeed our model uses an offline training model. Using the
same platform for training and utilizing the model leads us
to an online model of training. Additionally for next future
work, we are looking for a way to perform the same work
in a single platform next to other different model of neurons
such as Izhikevich model.
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