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Large-scale feature selection with Gaussian mixture
models for the classification of high dimensional

remote sensing images
Adrien Lagrange Student, IEEE, Mathieu Fauvel Senior, IEEE and Manuel Grizonnet

Abstract—A large scale feature selection wrapper is discussed
for the classification of high dimensional remote sensing. An
efficient implementation is proposed based on intrinsic properties
of Gaussian mixtures models and block matrix. The criterion
function is split into two parts : one that is updated to test each
feature and one that needs to be updated only once per feature
selection. This split saved a lot of computation for each test. The
algorithm is implemented in C++ and integrated into the Orfeo
Toolbox. It has been compared to other classification algorithms
on two high dimension remote sensing images. Results show that
the approach provides good classification accuracies with low
computation time.

I. INTRODUCTION

W ITH the increasing number of remote sensing missions,
the quantity of available Earth observation data for a

given landscape becomes larger and larger. Satellite missions
produce a huge amount of data on a regular (daily) basis. From
2018, the EnMAP (Environmental Mapping and Analysis
Program) satellites managed by the German space agency will
produce images with 244 spectral bands, a spatial resolution
of 30x30m per pixel and with a frequency of revisit of 4 days
[1]. The Hyperspectral Infrared Imager (HyspIRI) of NASA
will also deliver images with 212 spectral bands. Additionally
to hyperspectral data, the amount of available hypertemporal
data increases a lot. For instance, the European satellites
Sentinel-2 were launched recently and 2 Terabytes of data will
be released every day [2]. The Landsat open archive (http:
//landsat.usgs.gov/products data at no charge.php) has also
released thousands of images. Such high volume of Earth
observation data provides accurate information of land state
and functions, and helps to improve the understanding of the
planet [3]. However, processing such data is more and more
challenging because of statistical and computational issues.

In the spectral or temporal domain, a pixel is represented
by a vector for which each component corresponds to a
spectral/temporal measurement. The size of the vector is there-
fore the number of spectral or temporal measurements. For
hyperspectral images, this number is typically about several
hundreds while for the Sentinel-2 multitemporal images, the
number of spectro-temporal measurement for a given year is
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approximately one thousand. When working in high dimen-
sional spaces, statistical methods made for low or moderate
dimensional spaces do not adapt well. For instance, the rate
of convergence of the statistical estimation decreases when
the dimension grows while jointly the number of parameters
to estimate increases, making the estimation of the model
parameters very difficult [4]. Consequently, with a limited
training set, beyond a certain limit, the classification accuracy
actually decreases as the number of features increases [5]. For
the purpose of classification, these problems are related to the
curse of dimensionality [4]. This is a major drawback in many
remote sensing applications since it is difficult to collect a
large and accurate ground-truth. An intensive work has been
performed in the remote sensing community to build accurate
classifiers for high dimensional images. Bayesian models [6],
feature extraction and feature reduction techniques [6], [7],
random forest [8], neural networks [9] and kernel methods [10]
have been investigated for the classification of such images.

The volume of the data is increasing dramatically with
respect to the number of measurement per pixel. The data
volume of an hyperspectral image is typically several hundreds
of Gigabytes per acquisition (≈ 300km2). Multitemporal data
are now available freely from internet stream (see for instance
the Copernicus data hub https://cophub.copernicus.eu/). This
very large volume of data requires specific computing infras-
tructure. High performance computing is actually investigated
by the remote sensing community [11], [12]. Main issues are
related to the use of parallel approaches (multi-core, GPU,
clusters) to improve the processing time, and to the use of
streaming techniques when data does not fit in memory. One
popular open source software solution is the Orfeo Tool-
box, developed by the French Space Agency (CNES) [13].
Streaming and parallel computing are conveniently proposed
to users/developers through several “ready to use” modules.

A method to reduce both statistical and computational
issues is to perform a reduction of the dimension. In fact,
with the curse of dimensionality comes the blessing of the
dimensionality [14]: high dimensional data spaces exhibit
interesting properties for classification purpose. In particular,
it is possible to get a parsimonious representation of the
data while maintaining or increasing the classification accu-
racy [15]. For instance, in land-cover classification, given a
set of spatial, temporal and spectral features, it is possible to
extract those which are the most discriminant for the purpose
of classification [16]. In hyperspectral data, from the hundreds
of available spectral channels, it is possible to reduce the
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number of channels to make the processing more efficient
in terms of statistical complexity and computational load. In
short, by reducing the dimension, better classification results
are expected with a reduced computational load.

There are two main strategies to reduce dimension [17,
Chapter 1]: feature extraction and feature selection. Feature
extraction means reformulate and summarize the information
by creating new features in combining the existing ones,
it is sometimes referred to as feature construction. Linear
combination of the initial features can be extracted using
Principal Component Analysis (PCA) [15] or Independent
Component Analysis [18]. Supervised extraction method has
also been investigated such as Fischer discriminant analysis
and decision boundary feature extraction [6]. To the contrary,
feature selection extracts a subset of existing features identified
as the most relevant by a given criterion. This subset has the
additional advantage to be much more understandable for the
end-user than those constructed by a (non-)linear combination.

Feature selection/extraction algorithms can be divided into
three classes. The first class is called filter methods. They
select features independently of the classifier. Features are
ranked according to some statistical measures, e.g., correlation
or independence. For example, PCA is a typical unsupervised
filter method. Bruzzone et al. [19] develop a supervised
filter method based on Jeffries-Matusita distance to maximize
the separability of class distribution. Correlation between
bands has been explored for feature selection in hyperspectral
data [20]. In general, these methods are fast and do not
depend on any classifier. But they do not take into account
the properties of the chosen classifier and do not optimize
directly the classification accuracy.

The second class are known as wrapper methods. They
search for the best subset of variables for a given learn-
ing model. Since exhaustive searches are too expensive in
terms of processing time, several sub-optimal search strategies
have been designed, mainly iterative forward or backward
search [21], [22] or a combination of both [23]. The advantage
of such methods compared to filter methods is that they are
dedicated to a particular model and to a particular learning
problem. On the other hand, as they require the training of
multiple models to test various set of variables, they are more
time consuming.

The third class corresponds to the embedded methods. They
do not separate the feature selection process from the learning
algorithm and allow interactions between the two processes. A
popular embedded method is the Random Forest. Embedded
methods also exist for other models, e.g. SVM [24]–[26].

Despite a large diversity of methods, feature selection
algorithms usually do not scale well with the number of pixels
to be processed [27]. The training computational load is too
important to compensate the reduced prediction computational
load. Hence, feature selection is not widely used in operational
situations. However, methods based on Gaussian Mixture
Models (GMM) have several interesting properties that make
them suitable for feature selection in the context of large
amount of data. By taking advantage of their intrinsic prop-
erties, it is possible to increase the computational efficiency
with respect to standard implementation.

The contribution of this paper is a extension of the forward
feature selection method proposed in [27]. A smart imple-
mentation of the feature selection update rules are presented
in order to perform efficiently on large amount of data. The
rules use on linear algebra on block matrices applied to the
covariance matrix of the conditional class density function.
Furthermore, a floating version of the algorithm is proposed
and evaluated. Several correctness of fit criteria are proposed
to handle unbalanced training sets, extending the conventional
overall accuracy measure. Finally, the developed algorithm is
made available to the scientific community as a remote module
of the Orfeo Toolbox [13].

The remaining of the article is organized as follows. Sec-
tion II presents GMM classifiers and problems related to high-
dimensional feature spaces. The feature selection methods are
detailed in Section III. Then, an efficient implementation is
presented in Section IV. Experimental results on two real high
dimensional datasets are given Section VI. Conclusion and
perspectives conclude the paper in Section VII.

II. GAUSSIAN MIXTURE MODELS IN HIGH DIMENSIONAL
SPACES

The following notations are used in the remaining. S =
{xi, yi}ni=1 denotes the training set where xi ∈ Rd is the
vector of features of the ith sample, d the number of spec-
tral/temporal features, yi = 1, ..., C the associated label, C the
total number of classes, n the number of samples and nc the
number of samples of class c.

A. Gaussian Mixture Models
For mixture models, it is assumed that a given sample x

is the realization of a random vector which distribution is
a mixture (convex combination) of several class conditioned
distributions [28]:

p(x) =

C∑
c=1

πcfc(x|θ) (1)

where πc is the prior, i.e., the proportion of class c and fc a
parametric density function controlled by θ.

Among the possible parametric models, the Gaussian one is
the most used [14]. It assumes that each fc is, conditionally
to c, a Gaussian distribution of parameters µc and Σc:

fc(x|µc,Σc) =

1

(2π)
d
2 |Σc|

1
2

exp

(
−1

2
(x− µc)

tΣ−1c (x− µc)

)
. (2)

It is referred to as Gaussian mixture model (GMM). In a
supervised learning framework, the class parameters µc, Σc

and the prior πc are usually estimated through the conventional
unbiased empirical estimators:

π̂c =
nc
n
, (3)

µ̂c =
1

nc

∑
{i|yi=c}

xi, (4)

Σ̂c =
1

(nc − 1)

∑
{i|yi=c}

(xi − µc)(xi − µc)
t. (5)
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Fig. 1. Number of parameters ηc per class in function of dimension d:
ηc = d(d+ 3)/2 + 1.

To predict the class of a new unseen sample, the maximum a
posteriori rule is used:

x belongs to c⇔ c = argmax
c∈C

p(c)p(x|c).

Under the GMM, and identifying p(c) as πc and p(x|c) as
fc(x|θ) and by taking the log, the decision function is obtained

Qc(x) = 2 log (p(c)p(x|c))
= −(x− µc)

tΣ−1c (x− µc)

− log(|Σc|) + 2 log(πc)− d log(2π). (6)

B. Curse of dimensionality in GMM

The computation of eq. (6) requires the inversion of the
covariance matrix and the computation of the logarithm of the
determinant. The estimation of these terms suffers from the
curse of dimensionality [14]. In practice, the number of param-
eters ηc to estimate for each class increases quadratically with
respect to the number of features, as illustrated in Figure 1.
Hence, if the number of observation nc is small compared to
the number of parameters ηc, the estimated covariance matrix
is badly conditioned and thus the computation of its inverse
and its determinant would be unstable. The worst situation is
nc < ηc which leads to a singular covariance matrix. Unfor-
tunately, this situation happens regularly in remote sensing.
For instance in hyperspectral image classification, very few
labeled samples are usually available because of the difficulty
and the cost to collect ground-truth.

There are two major solutions to this problem. The first
option is to stabilize the inversion of the covariance matri-
ces. Some methods investigate the use of constraints on the
direct problem. Reynolds et al. [29] proposed to use diagonal
covariance matrices. It is also possible to force the diagonal
element to be higher than a given value by maximizing the
GMM likelihood [30]. Celeux and Govaert [31] suggest to
use equality constraints between coefficients of the covariance
matrix in a parsimonious cluster-based GMM framework.
Other papers propose to work on the inverse problem. A
classical method is to use a regularization method as the well-
known ridge regularization [32]. A ridge regularization aims to
stabilize the inversion by replacing the covariance matrix Σc

by Σc+ τI where τ is a positive parameter and I the identity

matrix. Jensen et al. [33] propose a different approach using
a sparsity approximation to inverse the covariance matrix.

The second option is to reduce the dimension. Feature
extraction/selection methods have been developed in order to
reduce the dimension with various approaches described in
Section I. In this study, this latter option is explored and a
feature selection method named sequential forward features
selection is presented.

III. SEQUENTIAL FORWARD FEATURES SELECTION

The feature selection method proposed in this work is a
wrapper method associated to GMM models. Two elements
are needed to set up a wrapper method:

1) A function that ranks the features according to some
good classification or class separability criterion,

2) A search strategy to optimize the function.
Section III-A describes the various criteria used in this work

and two search strategies are discussed in III-B.

A. Criterion function

The criterion evaluates how a given model built with a
subset of features performs for the classification task. It can
be an estimation of the correct classification or a measure of
separability/similarity between class distributions. The former
are in general more demanding in terms of processing time
than the later.

1) Measures of correct classification: A measure of correct
classification is based on an error matrix M , or confusion
matrix [34, Chapter 4]. The confusion matrix allows the
computation of several global and per-class indices related to
the classification accuracy [34]. Three global criteria were used
in this work:
• The overall accuracy (OA) is the rate of the number of

samples with the correct predicted label over the total
number of samples [34]. This metric is easy to interpret
but is biased in the case of unbalanced classes.

• The Cohen’s kappa (K) is a statistic which measures the
probability of agreement between predictions and ground-
truth [34].

• The mean F1 score (F1mean) is the average of the F1
score for each class and the F1 score is the harmonic
mean of the precision (number of True Positive over
True Positive plus False Positive) and the recall (number
of True Positive over True Positive plus False Nega-
tive) [35].

High values of theses indices correspond to an accurate
classification.

These indices are estimated from the training set by a ncv-
cross-validation (ncv-CV) [36]. To compute the ncv-CV, a
subset is removed from S and the GMM is learned with the
remaining training samples. A test error is computed with
the removed training samples used as validation samples. The
process is iterated ncv times and the estimated classification
rate is computed as the mean test error over the ncv subsets
of S.
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2) Similarity between distributions: The similarity between
two distributions can be quantified using divergence mea-
sures [37]. Contrary to measures of correct classification, di-
vergences are computed directly on the trained model, with no
need of cross-validation estimation. Two particular divergences
are used in this work: the Kullback-Leibler divergence and the
Jeffries-Matusita distance. The advantage of these divergences
is that they have an explicit expression in the case of Gaussian
models. The simplification allows to get rid of any integration
calculations which is a major problem when dealing with high-
dimensional data.

The Kullback-Leibler divergence (KL divergence) measures
the amount of information lost when the first distribution is
approximated by the second one [38]. It can be explicitly
computed in the case of Gaussian distributions:

KLcc′ =
1

2

{
Tr(Σ−1c Σc′)

+ (µc − µc′)
tΣ−1c (µc − µc′)− d+ log

(
|Σc|
|Σc′ |

)}
, (7)

where Tr is the trace operator and d the dimension of the
distribution.

The KL divergence is not symmetric, i.e., KLcc′ 6= KLc′c.
A symmetrical version is used to compute the criterion func-
tion:

SKLcc′ = KLcc′ +KLc′c

=
1

2

{
Tr(Σ−1c Σc′ + Σ−1c′ Σc)

+ (µc − µc′)
t(Σ−1c + Σ−1c′ )(µc − µc′)− 2d

}
.

(8)

The extension to the multiclass problem is done by taking
the weighted mean of the KL divergences computed on all
pair of classes [19]:

CSKL =

C∑
c=1

C∑
c′=c+1

πcπc′SKLcc′ . (9)

The Bhattacharyya distance is defined in the case of Gaus-
sian model as

Bcc′ =
1

8
(µc − µc′)

t

(
Σc + Σc′

2

)−1
(µc − µc′)

+
1

2
log

(
|Σc + Σc′ |√
|Σc||Σc′ |

)
. (10)

The Jeffries-Matusita distance is a measure based on the
Bhattacharyya distance. It saturates when the separability
between the two distributions increases [39]. The JM distance
is defined as

JM cc′ =
√
2{1− exp(−Bcc′)}. (11)

Similar to the KL divergence, a weighted mean of the
distance between two classes is computed to aggregate the
measures in a single value:

CJM =

C∑
c=1

C∑
c′=c+1

πcπc′JM cc′ . (12)

TABLE I
SUMMARY OF THE DIFFERENT CRITERION FUNCTIONS.

Criterion Type Complexity

Overall accuracy Accuracy High
Cohen’s kappa Accuracy High
F1 mean Accuracy High

Kullback-Leibler divergences Divergence Low
Jeffries-Matusita distance Divergence Low

Table I summarizes the presented criterion functions and
their characteristics. In the following J denotes one criterion
from Table I.

B. Selection method

Two sequential search algorithms have been implemented
in this work [17]: the sequential forward selection and the
sequential floating forward. The later one is an extension of
the former. Both select features iteratively.

1) Sequential forward features selection: The Sequential
Forward Selection (SFS) starts with an empty set of selected
features. At each step, the feature associated to the highest
criterion function J is added to the set. This feature is
definitively added to the pool of selected features and the
algorithm stops when a given number of variables maxVarNb
has been reached. The Algorithm 1 presents the process in
details.

Algorithm 1 Sequential forward features selection
Require: Ω, J,maxVarNb
1: Ω = ∅
2: F = {all variables fi}
3: while card(Ω) < maxV arNb do
4: for all fi ∈ F do
5: Ri = J({Ω + fi})
6: end for
7: j = arg maxiRi

8: Ω = {Ω + fj}
9: F = F \ fj

10: end while
11: return Ω

2) Sequential floating forward feature selection: The Se-
quential Floating Forward Selection (SFFS) [23] is based on
two algorithms: the SFS described above and the Sequential
Backward Selection (SBS). The SBS is the backward equiva-
lent of SFS. The difference is that it starts with every features
in the pool of selected features and tries at each step to remove
the less significant one in term of the given criterion function.

The SFFS works as the SFS but between each step of the
SFS algorithm, a backward selection is operated to identify the
less important feature. If the criterion value is higher than the
best value ever obtained with a set of same size, the identified
feature is picked out. The SBS step is repeated while removing
the less important feature leads to an increase of the criterion
value. Then SFS is called again. The algorithm stops when a
given number of features maxVarNb has been selected. The
Algorithm 2 provides details about the process.

This SFFS algorithm evaluates more solutions than the SFS
algorithm. The results are expected to be better but the trade-



TRANSACTIONS ON COMPUTATIONAL IMAGING, SPECIAL ISSUE ON COMPUTATIONAL IMAGING FOR EARTH SCIENCES, SEPTEMBER 2016 5

off is an increased computational time which is dependent on
the complexity of the dataset.

Algorithm 2 Sequential floating forward features selection
Require: J,maxVarNb

1: Ω =

maxV arNb︷ ︸︸ ︷
(∅, ..., ∅)

2: F = {all variables fi}
3: k = 0
4: while k < maxVarNb do
5: for all fi ∈ F do
6: Ri = J({Ωk + fi})
7: end for
8: j = arg maxiRi

9: k = k + 1
10: if Rj ≥ J(Ωk) then
11: Ωk = {Ωk−1 + fj}
12: flag = 1
13: while k > 2 and flag = 1 do
14: for all fi ∈ Ωk do
15: Ri = J({Ωk \ fi})
16: end for
17: j = arg maxiRi

18: if Rj > J(Ωk−1) then
19: Ωk−1 = {Ωk \ fj}
20: k = k − 1
21: else
22: flag = 0
23: end if
24: end while
25: end if
26: end while
27: return ΩmaxVarNb

IV. EFFICIENT IMPLEMENTATION

The most demanding part of the algorithm is the evaluation
of the criterion for all the remaining variables (see lines 5-7
in Algorithm 1). Calculations are based on linear algebra, and
the numerical complexity is on average O(d3). Furthermore,
for the accuracy-type criterion the complexity is augmented
by the cross-validation procedure.

An efficient implementation of the criterion optimization is
detailed in the following. It is based on the symmetry property
of the covariance matrix and block inverse formula [40]. It is
shown that the criterion can be split into two parts: one that
needs to be computed for each tested variable, and one that
needs to be computed only once per selection step. For the
cross-validation part, updates rules are given to derive sub-
models without the necessity to learn a GMM models for each
fold.

A. Statistical update rules

1) Update for cross validation: Based on [27], a method
to accelerate the ncv-fold cross-validation process in the case
of criterion functions based on correct classification measures
was implemented. The idea is to estimate the GMM with the
whole training set once and then, instead of training models
on (ncv − 1) folds, parameters of the complete model are
used to derive those of sub-models, thus reducing the whole
complexity.

Proposition 1 (Mean update for cross-validation).

µ̂nc−νc
c =

ncµ̂
nc
c − νcµ̂

νc
c

nc − νc

Proposition 2 (Covariance matrix update cross-validation).

Σ̂
nc−νc
c =

1

nc − νc − 1

{
(nc − 1)Σ̂

nc

c − (νc − 1)Σ̂
νc
c

− ncνc
(nc − νc)

(µ̂νcc − µ̂nc
c )(µ̂νcc − µ̂nc

c )t
}

where nc is the number of samples of class c, νc is the number
of samples of class c removed from the initial set, exponents
on Σc and µc denotes the set of samples used to compute
them.

2) Criterion function computation: At iteration k, depend-
ing on the criterion, three terms have to be computed: the
inverse of the covariance matrix, the logarithm of the deter-
minant of the covariance matrix and the quadratic term in
eq. (6). However, all these terms have already been computed
for iteration (k− 1). By using the positive definiteness of the
the covariance matrix and block formulae [41, Chapter 9.2],
it is possible to factorize these terms at iteration k.

In the remaining of the paper, Σ(k−1)
c denotes the covari-

ance matrix of the (k−1)th iteration, i.e., the covariance matrix
of the selected features and Σ(k)

c denotes a covariance matrix
at the kth iteration, i.e., the covariance matrix augmented
by the feature xk. Then, since Σ(k)

c is a positive definite
symmetric matrix, the covariance matrix can be written as

Σ(k)
c =

[
Σ(k−1)
c uc

utc σ
(k)
c

]
, (13)

where σ(k)
c is the variance of xc, uc is the kth column of the

matrix without the diagonal element, i.e., uc(i) = Σ(k)
c (i, k)

with i ∈ [1, k − 1]. Using block matrix inverse formulae, the
inverse of the covariance matrix is given by the following
proposition.

Proposition 3 (Forward update rule for the inverse of the
covariance matrix).

(Σ(k)
c )−1 =

[
Ac vc
vtc

1
αc

]
(14)

where Ac = (Σ(k−1)
c )−1 + 1

αc
(Σ(k−1)

c )−1ucu
t
c(Σ

(k−1)
c )−1,

vc = − 1
αc

(Σ(k−1)
c )−1uc and αc = σ

(k)
c − utc(Σ

(k−1)
c )−1uc.

This update formulae is used to obtain all the (Σ(k)
c )−1

corresponding to all the possible augmented set of a given
selection iteration. Similar update formulae can be written for
the backward step.

Using eq. (13) and (14), it is possible to deduce the
following propositions (proof are given in Appendix A).

Proposition 4 (Update rule for the quadratical term).

(x(k))t(Σ(k)
c )−1x(k) =(x(k−1))t(Σ(k−1)

c )−1x(k−1)︸ ︷︷ ︸
computed once per selection step

+ αc(
[

vtc
1
αc

]
x(k))2︸ ︷︷ ︸

computed for each augmented set

. (15)

Proposition 5 (Update rule for logdet).

log
(
|Σ(k)

c |
)
= log

(
|Σ(k−1)

c |
)

︸ ︷︷ ︸
computed once

per selection step

+ logαc︸ ︷︷ ︸
computed for

each augmented set

. (16)
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From these update rules, it is now possible to split each
criterion into two parts: one computed once per selection step
and one computed for each augmented set.

Proposition 6 (Decision function (6)).

Qc(x) =− (x(k−1) − µ(k−1)
c )t(Σ(k−1)

c )−1(x(k−1) − µ(k−1)
c )︸ ︷︷ ︸

computed once per selection step

− log
(
|Σ(k−1)

c |
)
+ 2 log(πc) + k log(2π)︸ ︷︷ ︸

computed once per selection step

− αc
([

vtc
1
αc

]
(x(k) − µ(k)

c )
)2
− logαc︸ ︷︷ ︸

computed for each augmented set

.

(17)

Proposition 7 (Kullback-Leibler divergence (8)).

SKLcc′ =
1

2

{
Tr
(
(Σ(k)

c )−1Σ
(k)
c′ + (Σ

(k)
c′ )
−1Σ(k)

c

)
︸ ︷︷ ︸

computed for each augmented set

+ α(
[

vtc
1
αc

]
(µ(k)

c − µ
(k)
c′ ))

2︸ ︷︷ ︸
computed for each augmented set

+ α(
[

vtc′
1
αc′

]
(µ(k)

c − µ
(k)
c′ ))

2 − 2k︸ ︷︷ ︸
computed for each augmented set

+ (µ(k−1)
c − µ

(k−1)
c′ )t(Σ(k−1)

c )−1(µ(k−1)
c − µ

(k−1)
c′ )︸ ︷︷ ︸

computed once per selection step

+ (µ(k−1)
c − µ

(k−1)
c′ )t(Σ

(k−1)
c′ )−1(µ(k−1)

c − µ
(k−1)
c′ )︸ ︷︷ ︸

computed once per selection step

}
,

(18)

with (Σ(k)
c )−1 computed with Proposition 3.

Proposition 8 (Jeffries-Matusita distance (11)).

Bcc′ =
1

4
(µ(k−1)

c − µ
(k−1)
c′ )t(Σ̃

(k−1)
)−1(µ(k−1)

c − µ
(k−1)
c′ )︸ ︷︷ ︸

computed once per selection step

+
1

2
log

 |Σ̃
(k−1)

|√
|Σ(k−1)

c ||Σ(k−1)
c′ |


︸ ︷︷ ︸

computed once per selection step

+
1

4
α̃(
[

ṽt 1
α̃

]
(µ(k)

c − µ
(k)
c′ ))

2 +
1

2
log

(
α̃

√
αcαc′

)
︸ ︷︷ ︸

computed for each augmented set

,

(19)

where Σ̃ = Σc + Σc′ and α̃ and ṽ are defined as αc and vc
but using Σ̃ instead of Σc.

The Algorithm 3 illustrates the optimization of the Algo-
rithm 2 using these formulae.

B. Numerical issues

For each iteration k, after the selection of optimal features
w.r.t the selected criterion, the inverses of the covariance
matrices and their log-determinant needs to be computed.

Algorithm 3 Sequential floating forward features selection
with updates
Require: J,maxVarNb

1: Ω =

maxV arNb︷ ︸︸ ︷
(∅, ..., ∅)

2: F = {all variables fi}
3: k = 0
4: while k < maxVarNb do
5: for all c ∈ {1, ..., C} do
6: Diagonalize Σ

(k−1)
c = PcΛcPt

c
7: for all λc(i) do λc(i) = max(EPS FLT, λc(i))
8: Precompute (Σ(k−1)

c )−1, (x(k−1) −
µ(k−1)

c )t(Σ(k−1)
c )−1(x(k−1) − µ(k−1)

c ) and log
(
|Σ(k−1)

c |
)

using Propositions (3), (4) and (5)
9: end for

10: for all fi ∈ F do
11: for all c ∈ {1, ..., C} do
12: Compute update constant αc

13: αc = max(EPS FLT, αc)
14: end for
15: Ri = J({Ωk + fi}) using Equations (17), (18) or (19)
16: end for
17: j = arg maxiRi

18: k = k + 1
19: if Rj ≥ J(Ωk) then
20: Ωk = {Ωk−1 + fj}
21: flag = 1
22: while k > 2 and flag = 1 do
23: for all c ∈ {1, ..., C} do
24: Diagonalize Σ

(k−1)
c = PcΛcPt

c
25: for all λc(i) do λc(i) = max(EPS FLT, λc(i))
26: Precompute (Σ(k−1)

c )−1, (x(k−1) −
µ(k−1)

c )t(Σ(k−1)
c )−1(x(k−1)−µ(k−1)

c ) and log
(
|Σ(k−1)

c |
)

using Propositions (3), (4) and (5)
27: end for
28: for all fi ∈ Ωk do
29: for all c ∈ {1, ..., C} do
30: Compute update constant αc

31: αc = max(EPS FLT, αc)
32: end for
33: Ri = J({Ωk \ fi}) using Equations (17), (18) or (19)
34: end for
35: j = arg maxiRi

36: if Rj > J(Ωk−1) then
37: Ωk−1 = {Ωk \ fj}
38: k = k − 1
39: else
40: flag = 0
41: end if
42: end while
43: end if
44: end while
45: return ΩmaxVarNb

However, the lack of training samples or the highly correlated
features may induce a badly-conditioned matrix with very
small, or even negative, eigenvalues. Such values will degrade
drastically the estimation of the inverse and of the log-
determinant, and so the numerical stability.

To deal with this limitation, the choice has been made
to perform an eigenvalues decomposition of the covariance
matrix Σ(k)

c :

Σ(k)
c = P(k)

c Λ(k)
c (P(k)

c )t (20)

where Λ(k)
c and P

(k)
c are the diagonal matrix of eigenval-

ues of the covariance matrix and the orthonormal matrix of
corresponding eigenvectors, respectively. To prevent numerical
instability, non strictly positive eigenvalues are thresholded to
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otbcli_TrainGMMSelectionApp -io.il hyper.tif \
-io.vd reference.shp \
-gmm.varnb 20 -gmm.method forward -gmm.crit jm\
-gmm.best 1 -gmm.seed 0\
-io.out model.txt

otbcli_PredictGMMApp -in hyper.tif \
-model model.txt -modeltype selection\
-out ThematicMap.tif

Fig. 2. OTB Module: The feature selection is done on the image hyper.tif
using the training set from reference.shp. The feature selection algorithm is
the forward search used with the Jeffries-Matusita criterion, 20 features are
extracted and the corresponding GMM model is saved in model.txt. Then the
whole image is classified using the model and the results is saved in the
geotiff ThematicMap.tif.

a fixed value EPS FLT . In our implementation, EPS FLT is
set to the floating machine precision.

Then, the inverse of the covariance matrix can be computed
as

(Σ(k)
c )−1 = P(k)

c (Λ̃
(k)

c )−1(P(k)
c )t (21)

and the log-determinant as

log
(
|Σ(k)

c |
)
=

d∑
i=1

log(λ̃(k)c (i)), (22)

where the ˜ indicated thresholded values and λc(i) the ith
eigenvalue.

Same reasoning applied to the term α in the update rules:
it is also thresholded to EPS FLT. Algorithm 3 details when
computational stability is enforced (lines 7, 13, 25 and 31).

C. Implementation

The proposed method has been implemented in C++ through
the Orfeo Toolbox (OTB) [13]. The Orfeo Toolbox is an open-
source library for remote sensing image processing, developed
by the French Space Agency (CNES). The feature selection
algorithm can be installed as a remote module, the source code
is freely available1.

Following OTB framework, two applications are available.
The first, called otbcli_TrainGMMSelectionApp, per-
forms a feature selection algorithm (SFS or SFFS) with
the one criterion given from Table I. The second, called
otbcli_PredictGMMApp, generates the thematic maps
according to the learn model. The only technical limitation
that the training set must fit in the RAM of the computer.
The classification step is streamed and there is no limitation
in term of image size. The Figure 2 shows a code excerpt to
run the application.

V. DATASETS

Numerical experiments have been conducted on two dif-
ferent datasets. The first one, called Aisa, is an airborne
hyperspectral dataset and the second, called Potsdam, is an
very high resolution multispectral airborne image.

1https://www.orfeo-toolbox.org/external-projects/

(a)

(b)
Fig. 3. Aisa dataset: (a) colored composition of the image (R: 634nm, G:
519nm, B: 477nm), (b) ground-truth.

TABLE II
INFORMATION CLASSES FOR THE AISA DATASET.

Class Number of samples

Winter wheat 136,524
Sunflower 61,517
Green fallow last year treatment 30,197
Alfalfa 17,626
Maize 18,278
Millet 7,199
Broadleaved forest 10,746
Meadow 23,283
Winter barley 2,799
Reed 4,222
Water course 4,773
Rape 26,566
Green fallow with shrub 9,272
Green fallow last year treated 3,426
Pasture 2,107
Oat 3,436

A. Aisa dataset

The Aisa dataset has been acquired by the AISA Eagle
sensor during a flight campaign over Heves, Hungary. It
contains 252 bands ranging from 395 to 975 nm. 16 classes
have been defined for a total of 361,971 referenced pixels,
Table II presents the number of pixel per class. The Figure 3
shows a colored composition of the image and the ground-
truth.

B. Potsdam dataset

This second dataset is built from a dataset of remote
sensing images distributed by the International Society for
Photogrammetry and Remote Sensing (ISPRS)2. The dataset

2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.
html

https://www.orfeo-toolbox.org/external-projects/
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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(a) (b) (c)
Fig. 4. From top to bottom, true color composition, ground-truth and
normalized DSM of: (a) tile 5 11, (b) tile 5 12 and (c) tile 3 10.

TABLE III
INFORMATION CLASSES FOR THE THREE TILES OF THE POSTDAM

DATASET.

Number of samples per tile

Class 5 11 5 12 3 10

Clutter 1,078,611 812,038 1,890,467
Trees 4,493,295 2,132,368 8,780,245
Cars 900,076 1,101,541 434,615
Buildings 13,469,575 17,501,421 5,128,149
Low vegetation 4,718,219 3,210,596 11,428,326
Impervious surfaces 11,340,224 11,242,036 8,338,198

is composed of aerial images of the urban area of Potsdam.
The area is divided into 38 patches of 6000×6000 pixels with
a resolution of 5cm by pixel and 4 channels are available:
Red, Blue, Green and Infrared (RGBIR). A Digital Surface
Model with the same resolution is also provided and a so-
called normalized DSM representing the height above ground.
The ground-truth for 24 tiles are provided with 6 classes: Low
vegetation, High vegetation, Impervious surfaces, Buildings,
Cars, Clutter. Three tiles have been used in this work, they
are displayed in Figure 4. Table III summarizes the number
of samples of each class.

In order to increase the dimensionality of the data,
Conventionally, the following features are extracted using

the RGBIR images in order to increase the classification
accuracy, similarly to [26]:

• Fifteen Radiometric indexes: NDVI, TNDVI, RVI, SAVI,
TSAVI, MSAVI, MSAVI2, GEMI, IPVI, NDWI2, NDTI,
RI, CI, BI, BI2 [42].

• Morphological profile build on each band with a disk
of radius 5, 9, 13, 17, 21, 25, 29, 33, 37 and 41 (80
features) [43];

• Attribute profile build on each band with area as attribute
and 1000, 2000, 5000, 10000 and 15000 as thresholds (40
features) [44].

• Attribute profile build on each band with diagonal of
bounding box as attribute and 100, 200, 500, 1000 and
20000 as thresholds (40 features) [44].

• Textural features for each channel with neighborhood
of 19x19 pixels: mean, standard deviation, range and
entropy (16 features) [42].

The normalized DSM and the raw RGBIR image are added
to these 191 features and then stacked to create a new image
with 196 bands. The resulting data cube is therefore high-
dimensional.

VI. EXPERIMENTAL RESULTS

A. Method

The aim of the experiments is to compare the proposed
method to standard classifiers used in operational land map
production [45]. A non-optimized previous version of the
method has been already compared to other selection methods
in [27]. Hence, the primary objective is to assess the opera-
tional efficiency and it is compared to other OTB classifiers
used operationally through their command line applications3.

The following classifiers are tested:
• A k-nearest-neighbors classifier (KNN) with OTB default

parameters (32 as number of neighbors).
• A Random Forest classifier with parameters optimized by

grid search (200 trees, 40 as max depth, 50 as size of the
randomly selected subset of features at each tree node)

• A GMM classifier with ridge regularization (GMM ridge)
with regularization constant optimized by grid search.

The GMM classifier is part of the external module described
in Section IV-C.

All these classifiers are compared with 3 configurations of
the proposed GMM classifier:
• One with forward selection and JM distance as criterion

(GMM SFS JM);
• One with forward selection and Cohen’s kappa as crite-

rion (GMM SFS kappa);
• One with floating forward selection and JM distance as

criterion (GMM SFFS JM).
Other configurations have been investigated and performs
either equally or lower in terms of classification accuracy [46].
For the sake of clarity, only the three aforementioned con-
figurations are discussed here and the results for all other
configurations is available in the supplementary material.

The training set has been created with an equal number of
samples for each class and additionally a spatial stratification
has been performed, i.e., each training sample belongs to a
spatial polygon that does not intersect spatially with any spatial
polygons used for the validation. Several size of training set
have been tested. For the Aisa dataset, experiments have been
conducted using 250, 500 and 1000 samples by class and for
the Potsdam dataset, 1000 and 50000 samples by class.

3http://otbcb.readthedocs.io/en/latest/OTB-Applications.html

http://otbcb.readthedocs.io/en/latest/OTB-Applications.html
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Fig. 5. Criterion evolution (kappa) in function of the number of selected
variables for first trial with Aisa dataset with 500 samples by class. Red
vertical line is the retained number of variables and black vertical line is the
maximum of the criterion.

For SFS and SFFS selection, the number of variables
to select is set to 30 for the Aisa dataset and 60 for the
Potsdam dataset. After the selection procedure, the optimal
number of extracted variables is selected as follow. Rather
than selecting the number of variables corresponding to the
highest value of the criterion, the number of retained variables
is set when the criterion stops to increase significantly. It
is found by computing the discrete derivative of the criteria
between two iterations and normalizing it by its maximum
value. The number of selected features corresponds to the last
iteration before the value drops below 10−3 for all datasets.
See Figure 5 for an example.

The classification rate is presented using Cohen’s kappa but
scores computed with overall accuracy and mean of f1-score
are available in supplementary material. Processing time has
been evaluated on a desktop computer with 8Gb of RAM and
Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz × 4 processors.

B. Aisa dataset

When creating training and validation sets, special care is
taken to assure that training samples are picked out from
distinct areas than test samples. The polygons of the reference
are split in smaller polygons and then 50% of the polygons
are taken randomly for training and the remaining 50% for
validation. An example of training and validation set is shown
in Figure 6. From the training polygons, a given number
of samples were selected to build the training set, while
all the pixels from the validation polygons were used for
the validation. Moreover 20 random trials were run with a
different training set (different polygons). Table IV presents
the results of the experiment with mean and standard deviation
of the Kappa coefficient over the 20 trials and Table V the
corresponding processing time. Bold values corresponds to
best results. In Table IV, when several bold scores appears
for the same experiment, it means that the scores has been
assessed as equivalent with a Wilcoxon rank-sum test [47].
Additionally, Figure 7 summarizes the mean of the number
of selected variables for each variation of the GMM classifier
with selection.

(a)

(b)
Fig. 6. Aisa dataset: (a) training polygons of first trial, (b) test polygons of
first trial.

TABLE IV
AVERAGE CLASSIFICATION ACCURACY 20 TRIALS (STANDARD DEVIATION

IN PARENTHESIS).

Cohen’s kappa

# samples by class 250 500 1000

GMM SFS kappa 0.678 (0.029) 0.687 (0.029) 0.699 (0.028)
GMM SFS JM 0.685 (0.030) 0.689 (0.030) 0.701 (0.029)
GMM SFFS JM 0.685 (0.030) 0.689 (0.030) 0.701 (0.029)
GMM ridge 0.611 (0.040) 0.620 (0.036) 0.642 (0.034)
KNN 0.551 (0.035) 0.563 (0.033) 0.574 (0.030)
Random Forest 0.645 (0.026) 0.673 (0.023) 0.693 (0.023)

The results show that, on this dataset, GMM classifiers
with feature selection get the best classification rate. Among
the three variations of the selection algorithm, none appears
to perform better than the others. Using kappa or Jeffries-
Matusita distance as criterion is equal and using SFFS does
not give any advantage.

The difference with the second best classifier, Random
Forest, appears to be significant when using 250 and 500
samples. Random Forest has similar performance in term of
classification rate with 1000 samples and one could expect to
get a better classification rate with RF if more samples were
available. The GMM classifier with ridge regularization and
the KNN classifier are both outperformed.

In term of computational time, the GMM classifiers are
as expected very fast for classification and also for training,
except when the criterion function is a classification rate. In
this case, using JM distance as criterion and SFS as search
strategy is the best choice in term of time efficiency. The
good performance in time can be explained by the dimension
reduction. Actually, the decision rule corresponding to Equa-
tion (6) has a complexity in d3 where d is the dimension. Thus,
reducing d induces a reduction of the classification time.
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TABLE V
MEAN PROCESSING TIME FOR TRAINING AND CLASSIFICATION FOR RESULTS IN TABLE IV.

Training time (s) Classification time (s) # of selected features

# samples by class 250 500 1000 250 500 1000 250 500 1000

GMM SFS kappa 257 496 955 5.2 5.2 5.5 11.95 12 12.05
GMM SFS JM 8.6 8.9 9.1 5.7 5.7 5.9 11.95 12 12.05
GMM SFFS JM 8.8 9.0 9.3 5.0 5.0 5.4 21.45 24.35 27.05
GMM ridge 71.7 105 167 530 530 530 all all all
KNN 8.9 19.6 59.7 387 639 887 all all all
Random Forest 24.5 49.3 105 33.0 41.7 45.9 all all all

250 500 1000
10

15

20

25

Number of training samples per class

n̄
s

SFS kappa
SFS JM
SFFS JM

Fig. 7. Mean number n̄s of selected features for the different variation of
selection methods for Aisa data set. The original number of features is 252.

The processing times of the three standard classifiers suffer
from the increase of training samples. For the GMM classifier
with ridge, the selection of regularization parameter is more
costly with more samples because of the classification rate
estimation needed. For the KNN classifier, the model stores
all the training samples and the prediction implies to compute
the distance to all the training samples which explains the
increase of the processing time and additionally of the size
of the model file. Finally, for the Random Forest classifier,
the trees tends to be deeper in order to capture the additional
information available with more samples and that explains the
increase of the processing time.

C. Potsdam dataset

For the Potsdam dataset, training samples were selected
from one tile (5 11) and validation samples were all the pixel
of tile 5 12 or 3 10. Table VI and Table VII present the results
in terms of classification accuracy and processing time. Bold
values corresponds to best results. In Table VI, when several
bold scores appears for the same experiment, it means that
the scores has been assessed as equivalent with a Wilcoxon
rank-sum test [47].

With this second dataset, the Random Forest classifier and
the GMM classifier with kappa as selection criterion perform
the best in terms of classification accuracy. When using 1000
samples per class, no significant difference of classification
rate has been observed on test set. But, with 50,000 samples
per class, the Random Forest classifier becomes significantly
better in terms of classification accuracy.

The Postdam classes are more difficult to discriminate,
since Gaussianity assumption does not hold. For instance,
a building can be made of various materials, resulting in
heterogeneous distribution. Hence, GMM with ridge regu-
larization performs baldy. Random Forest classifier is more
adapted to this problem and reached the best classification
accuracy. However, it can be note that letting the algorithm be
driven by a classification quality criterion such as the Kappa
coefficient helps in improving the classification accuracy. The
KNN classifier is again outperformed.

From the tables VI and Table VII, the number of extracted
variables shows that JM criterion identifies less relevant sam-
ples than with the kappa criterion. Moreover, the selection
method with criterion kappa manages to get good performance
with only 6.7% of the initial variables with 1000 samples and
15% with 50,000 samples.

In term of processing time, results are similar than with
the Aisa dataset. GMM classifiers with selection are very fast
for prediction. For example, the GMM classifier with kappa as
criterion for the selection is 63% faster than the Random Forest
classifier for prediction with 1000 samples and 83% faster with
50,000 samples. However, the training time is increased with
respect to random forest.

VII. CONCLUSION AND PERSPECTIVES

An algorithm for the classification of high dimensional
Earth observation images has been proposed. The algorithm
is based on Gaussian mixture model and a forward feature
selection strategy to reduce the dimension of the data to be
processed. From experimental results, this strategy has shown
to be robust the curse of dimensionality. As a side effect,
the volume of data is reduced and the final classification
processing time is reduced.

To cope with the large volume of data during the learning
step, updates rules from the forward search have been split
into two parts in order to save computation. One part is only
computed once per iteration, and the other part needs to be
computed for each tested features. Several criteria have been
included, three based on classification accuracy and two based
on divergence measures.

Experiments have been conducted on two real high di-
mensional data set, and the results have been compared to
standards classifiers. Results show that the proposed approach
performs, in most cases, at least as best as classifiers (Random
Forest) and even outperforms all of them in term of classifi-
cation time.
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TABLE VI
KAPPA COEFFICIENT AND PROCESSING TIME FOR 1,000 SAMPLES BY CLASS AND AVERAGED OVER 5 TRIALS (STANDARD DEVIATION IN PARENTHESIS).

PROCESSING TIMES ARE GIVEN IN SECOND.

5 11 (train) 5 12 (test) 3 10 (test) Train. Time Classif. time # of selected features

GMM SFS kappa 0.694 (0.002) 0.669 (0.005) 0.533 (0.008) 400 310 13.2
GMM SFS JM 0.624 (0.028) 0.631 (0.034) 0.461 (0.027) 2 310 11
GMM SFFS JM 0.624 (0.028) 0.631 (0.034) 0.461 (0.027) 2.6 310 11
GMM ridge 0.632 (0.007) 0.592 (0.010) 0.433 (0.008) 10 2000 all
KNN 0.637 (0.005) 0.607 (0.005) 0.478 (0.002) 0.7 9500 all
Random Forest 0.729 (0.004) 0.673 (0.005) 0.529 (0.009) 20 840 all

TABLE VII
KAPPA COEFFICIENT AND PROCESSING TIME FOR 50,000 SAMPLES BY CLASS AND AVERAGED OVER 5 TRIALS (STANDARD DEVIATION IN

PARENTHESIS). PROCESSING TIMES ARE GIVEN IN SECOND. NB: THE TEST HAS NOT BEEN CONDUCT WITH KNN BECAUSE OF A TOO LONG PROCESSING
TIME FOR CLASSIFICATION.

5 11 (train) 5 12 (test) 3 10 (test) Train. Time Classif. time # of selected features

GMM SFS kappa 0.713 (0.001) 0.684 (0.001) 0.531 (0.005) 20000 340 29
GMM SFS JM 0.560 (0.111) 0.576 (0.104) 0.435 (0.085) 6 330 10
GMM SFFS JM 0.560 (0.111) 0.576 (0.104) 0.435 (0.085) 6.6 340 10
GMM ridge 0.641 (0.015) 0.611 (0.026) 0.440 (0.015) 460 2000 all
KNN / / / / / /
Random Forest 0.851 (0.001) 0.715 (0.001) 0.573 (0.002) 2000 2000 all

The resulting code is available as a remote module of the
Orfeo ToolBox on GitHub and makes it possible to process
large high dimensional images efficiently. The C++ code is
freely available for download: https://www.orfeo-toolbox.org/
external-projects/.

Perspectives of this work concern the selection of continu-
ous interval of features rather than a single feature [48], [49].
It will be of highest interest for continuous features, such as
temporal feature or spectral feature.

APPENDIX A
PROOF OF UPDATE RULES

Proof of proposition (4).

(x(k))t(Σ(k)
c )−1x(k)

=
[
(x(k−1))t xk

] [ Ac vc
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1
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] [
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]
=
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Proof of proposition (5). From eq. (13) and standard results
for the determinant of block matrix [40, Chapter 9] we have

https://www.orfeo-toolbox.org/external-projects/
https://www.orfeo-toolbox.org/external-projects/
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immediately:

log
(
|Σ(k)

c |
)
= log

(
|Σ(k−1)

c |
)
log
(
σ(k)
c − utc(Σ

(k−1)
c )−1uc

)
= log

(
|Σ(k−1)

c |
)
log (αc)
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