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Abstract

This paper is concerned with the delay-dependent stability of systems with time-varying delays. The novelty relies on the
use of the second-order Bessel-Legendre integral inequality which is less conservative than the Jensen and Wirtinger-based
inequalities. Unlike similar contributions, the features of this inequality are fully integrated into the construction of augmented
Lyapunov-Krasovskii functionals leading to novel stability criteria expressed in terms of linear matrix inequalities. The stability
condition is tested on some classical numerical examples illustrating the efficiency of the proposed method.
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1 Introduction

Over the last two decades, the delay-dependent sta-
bility analysis of systems with time-varying delays via
Lyapunov-Krasovskii functional (LKF) method has
received much attention (see e.g., [1], [10] and the ref-
erences therein). The crucial technical steps regarding
this method are related to both the selection of the
functional and the use of accurate bounding methods
to derive linear matrix inequalities (LMIs).
Among the bounding methods, the Jensen inequality [2]
has been widely adopted, although at the price of an
unavoidable conservatism. Recently, much attention
has been paid to reducing this conservatism. A recent
direction of research consists in deriving extended-like
Jensen inequalities, which encompasses Jensen inequal-
ity through the introduction of additional quadratic
terms. The first result in this direction led to the so-
called Wirtinger-based inequality developed in [6,9].
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Then, further extensions were derived by Zeng et al.
using a free-matrix-based integral inequality [11]. More
recently, generalized integral inequalities were devel-
oped in [7,8] based on Bessel inequality and Legendre
polynomials, which includes Jensen and Wirtinger-
based inequalities and also the recent inequalities based
on auxiliary functions-based inequality ([5],[12]) as par-
ticular cases. The main interest of such inequalities is
that the conservatism can be reduced arbitrarily. These
new inequalities have been mainly employed to the case
of constant discrete or distributed delays (see [8],[12]).
The first attempt to derive stability condition for time-
varying discrete delay was proposed in [5]. In this paper,
we pursue the method provided in [5] and derive more
accurate conditions.
In this paper, we develop novel stability criteria for lin-
ear systems with time-varying delays using the particu-
lar case of the second-order Bessel-Legendre inequality
(i.e. the Bessel-Legendre inequality from [8] with N = 2,
where N is the degree of Legendre polynomials) of the
integral inequalities proposed in [7,8], that recovers the
inequality provided in [5,12]. The main contributions
are as follows:

1. The features of the limited Bessel-Legendre inequal-
ity are fully integrated into the construction of the
LKFs.

2. Less conservative stability criteria are derived in
terms of LMIs although the computational complex-
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ity is higher.

Numerical examples taken from the literature illustrate
the efficiency of our results. In particular, the numeri-
cal results for the constant delay case coincide with the
ones achieved in [12] and are very close to the analytical
bounds of constant delays preserving the stability.
Throughout the paper, in addition to usual notations,
the set Sn+ denotes the set of symmetric positive definite
matrices. For any matrices A, B, diag(A,B) stands for
the matrix [A 0

0 B ]. Moreover, for any square matrix A,
we define He(A) = A+AT .

2 Problem formulations

2.1 System data

Consider a linear system with time-varying delays:{
ẋ(t) = Ax(t) +A1x(t− h(t)), t ≥ 0,

x(t) = φ(t), −h2 ≤ t ≤ 0,
(1)

where x(t) ∈ Rn is the state vector, A, A1 ∈ Rn×n are
constant matrices, and φ is the initial condition. The
time-varying delay h(t) is continuous and satisfies

0 ≤ h1 ≤ h(t) ≤ h2, h12
∆
= h2 − h1. (2)

There is no restriction on the derivative of the delay
function.

2.2 Limited Bessel-Legendre inequality

Let us first recall the inequality that will be the core
of the paper. It corresponds to the inequality recently
shown in [12], which is also a particular case of the Bessel-
Legendre inequality of [8]. The proof of this inequality
can be found in [12] or in [8].

Lemma 1 For a given matrixR ∈ Sn+, any differentiable
function x in [a, b]→ Rn, the inequality

∫ b
a
ẋT (u)Rẋ(u)du ≥ 1

b−aΩT diag(R, 3R, 5R)Ω (3)

holds, where

Ω =


x(b)− x(a)

x(b) + x(a)− 2
b−a

∫ b
a
x(u)du

x(b)− x(a)− 6
b−a

∫ b
a
δa,b(u)x(u)du

 ,
δa,b(u) = 2

(
u−a
b−a

)
− 1.

Remark 1 The inequality (3) encompasses the Wirtin-
ger-based inequality of [6] with the help of the third com-
ponent of the vector Ω. This improvement requires the

introduction of an extra signal
∫ b
a
δa,b(u)x(u)du in addi-

tion to
∫ b
a
x(u)du, x(b) and x(a).

2.3 Parameter-dependent matrix inequalities

The following lemma is for an alternative formulation of
the reciprocally convex combination inequality from [4].

Lemma 2 For any given matrix R ∈ Sn+, assume that

there exists a matrix X ∈ Rn×n such that
[
R X
XT R

]
� 0.

Then, the following inequality holds

[
1
αR 0

0 1
1−αR

]
�

[
R X

XT R

]
, ∀α ∈ (0, 1).

Alternatively, we present another lemma, which refers
to the classical bounding technique [3] .

Lemma 3 For any matrices R1 ∈ Sn+, R2 ∈ Sn+, Y1 ∈
R2n×n and Y2 ∈ R2n×n, the following inequality holds

[
1
αR1 0

0 1
1−αR2

]
� ΘM (α), ∀α ∈ (0, 1),

where

ΘM (α) = He
(
Y1

[
In 0n×n

]
+ Y2

[
0n×n In

])
−αY1R

−1
1 Y T1 − (1− α)Y2R

−1
2 Y T2 .

The notable difference between Lemmas 2 and 3 is that,
in Lemma 3, the lower bound depends explicitly on the
uncertain parameter α. This dependence on α eventu-
ally leads to a reduction of conservatism at the price of
additional decision variables.

3 Stability analysis of time-varying delay sys-
tems

In this section, based on Lemma 1 together with
Lemma 2 or 3, two novel stability criteria are provided
for system (1) with time-varying delays. For the sim-
plicity of presentation, we will use in this section the
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following notations:

ei = [0n×(i−1)n In 0n×(14−i)n], i = 1, . . . , 14,

G2 = [eT1 − eT2 eT1 + eT2 − 2eT5 eT1 − eT2 − 6eT6 ]T ,

G3 = [eT2 − eT3 eT2 + eT3 − 2eT7 eT2 − eT3 − 6eT8 ]T ,

G4 = [eT3 − eT4 eT3 + eT4 − 2eT9 eT3 − eT4 − 6eT10]T ,

Γ = [GT3 GT4 ]T , Σ = Ae1 +A1e3.

(4)
and

η0(t) = [xT (t) xT (t− h1) xT (t− h(t)) xT (t− h2)]T ,

η1(t) = 1
h1

[∫ 0

−h1
xTt (s)ds

∫ 0

−h1
δ1(s)xTt (s)ds

]T
,

η2(t) = 1
h(t)−h1

[∫ −h1

−h(t)
xTt (s)ds

∫ −h1

−h(t)
δ2(s)xTt (s)ds

]T
,

η3(t) = 1
h2−h(t)

[∫ −h(t)

−h2
xTt (s)ds

∫ −h(t)

−h2
δ3(s)xTt (s)ds

]T
,

η4(t) = (h(t)− h1)η2(t), η5(t) = (h2 − h(t))η3(t).

η6(t) =
[∫ −h1

−h2
xTt (s)ds h12

∫ −h1

−h2
δ4(s)xTt (s)ds

]T
,

(5)
and where the functions δi, for i = 1, . . . , 4, which refer
to the functions δa,b given in Lemma 1, are given by

δ1(s) = 2 s+h1

h1
− 1, δ2(s) = 2 s+h(t)

h(t)−h1
− 1,

δ3(s) = 2 s+h2

h2−h(t) − 1, δ4(s) = 2 s+h2

h12
− 1.

3.1 “Reciprocally convex”-based result

The following theorem on the asymptotic stability anal-
ysis of system (1) is derived from Lemmas 1 and 2.

Theorem 1 If there exist matrices P ∈ S5n
+ , S1, S2,

R1, R2 ∈ Sn+, N1, N2 ∈ R14n×2n, and a matrix X ∈
R3n×3n such that the LMIs

Ψ =

[
R̃2 X

XT R̃2

]
� 0, Φ(hi) = Φ0(hi)− ΓTΨΓ ≺ 0,

(6)

hold, for i = 1, 2, where, for any θ in R,

Φ0(θ) = He(GT1 (θ)PG0 +N1g1(θ) +N2g2(θ)) + Ŝ

+ΣT (h2
1R1 + h2

12R2)Σ−GT2 R̃1G2,

Ŝ = diag(S1,−S1 + S2, 0n×n,−S2, 010n×10n),

R̃i = diag(Ri, 3Ri, 5Ri), i = 1, 2,

G0 =[ΣT eT1 −eT2 eT1 +eT2 −2eT5 eT2 −eT4 ĜT0 ]T ,

Ĝ0 = h12(e2 + e4)− 2(e11 + e13),

G1(θ) = [eT1 h1e
T
5 h1e

T
6 eT11 + eT13 ĜT1 (θ)]T ,

Ĝ1(θ) = (h2 − θ)(e11 + e14) + (θ − h1)(e12 − e13),

(7)
and

g1(θ) =(θ−h1)

[
e7

e8

]
−

[
e11

e12

]
, g2(θ) =(h2−θ)

[
e9

e10

]
−

[
e13

e14

]
.

(8)
Then, system (1) is asymptotically stable for all time-
varying delays h(t) satisfying (2).

Proof: Consider a Lyapunov functional given by

V (xt, ẋt) = V1(xt) + V2(xt) + V3(xt, ẋt),

V1(xt) = x̃T (t)Px̃(t),

V2(xt) =
∫ t
t−h1

xT (s)S1x(s)ds+
∫ t−h1

t−h2
xT (s)S2x(s)ds,

V3(xt, ẋt) = h1

∫ 0

−h1

∫ t
t+θ

ẋT (s)R1ẋ(s)dsdθ

+h12

∫ −h1

−h2

∫ t
t+θ

ẋT (s)R2ẋ(s)dsdθ,

(9)
where

x̃(t) = col
{
x(t), h1η1(t), η6(t)

}
, (10)

Remark 2 While functionals V2 and V3 have been al-
ready considered in e.g., [4], [9], a first selection for V1

is a quadratic term only depending on the instantaneous
state vector x(t) (see e.g. [4] among many others). It
was shown in [9], that V1 needs to be augmented in or-
der to fully benefit from the Wirtinger-based inequality.

The extension consists of including
∫ 0

−h1
xt(s)ds and∫ −h1

−h2
xt(s)ds, which appear naturally in the Wirtinger-

based inequality. Since we are now considering an ex-
tented version of the Wirtinger-based inequality (i.e.
Bessel-Legendre), the term V1 in (9) also needs to in-

clude the two additional signals
∫ 0

−h1
δ1(s)xt(s)ds and∫ −h1

−h2
δ4(s)xt(s)ds issued from (3). This state augmen-

tation in V1 was not considered yet in the literature and
we will demonstrate, on examples, its necessity.

The objective of the next developments consists in find-
ing an upper bound of the derivative of V (xt, ẋt) along
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the trajectories of (1) using the augmented vector

ζ(t) = col
{
η0(t), η1(t), η2(t), η3(t), η4(t), η5(t)

}
,

where ηi(t), for i = 0, . . . , 5, are given in (5). For sim-
plicity, the time argument is omitted when there is no
possible confusion, meaning, more especially, that in
the sequel h, ζ stand for h(t) and ζ(t), respectively.
Differentiating V1(xt) along the trajectories of sys-

tem (1) yields d
dtV1(xt) = 2x̃T (t)P ˙̃x(t). We then need

to express x̃(t) and ˙̃x(t) using the augmented vector
ζ. On the one hand, it is easy to see that ẋ(t) = Σζ.
Moreover, simple calculations show that

h1η̇1(t) = [eT1 −eT2 eT1 +eT2 −2eT5 ]T ζ,

η̇6(t) = [eT2 −eT4 ĜT0 ]T ζ,

leading to ˙̃x(t) = G0ζ, where G0 is defined in (7).
On the other hand, finding an expression x̃(t) depending
on ζ is more dedicated. We first note that x(t) = e1ζ
and h1η1(t) = h1[eT5 eT6 ]T ζ. Let us consider the last
component of x̃(t), i.e., η6(t). To express it using the
extended state ζ, we first note that

η6(t)=

[ ∫ −h1

−h xt(s)ds

h12

∫ −h1

−h δ4(s)xt(s)ds

]
+

[ ∫ −h
−h2

xt(s)ds

h12

∫ −h
−h2

δ4(s)xt(s)ds

]
.

(11)
From this expression, we first note that the first n com-
ponents can be expressed as (e11 + e13)ζ. For the last
n components, we need to find two expressions of δ4(s),
which depend on δ2(s) and δ3(s), respectively. Some cal-
culations show

h12δ4(s) = (h− h1)δ2(s) + (h2 − h),

h12δ4(s) = (h2 − h)δ3(s)− (h− h1).
(12)

Reinjecting (12) into (11) leads to

h12

( ∫ −h1

−h δ4(s)xt(s)ds+
∫ −h
−h2

δ4(s)xt(s)ds
)

= (h− h1)
(∫ −h1

−h δ2(s)xt(s)ds−
∫ −h
−h2

xt(s)ds
)

+(h2 − h)
(∫ −h1

−h xt(s)ds+
∫ −h
−h2

δ3(s)xt(s)ds
)

= Ĝ1(h)ζ.

Hence, we obtain that η6(t) = [eT11 + eT13 ĜT1 (h)]ζ, and
x̃(t) = G1(h)ζ.

Moreover, from the definition of the augmented vector
ζ, one can see that the last four components can be seen
as linear combination of the other components of ζ, since
we have η4(t) = (h−h1)η2(t) and η5(t) = (h2−h)η3(t).
Therefore, using the matrices g1 and g2 defined in (8),

the following equality holds for any matrices N1, N2 in
R14n×2n

2ζT (N1g1(h) +N2g2(h)) ζ = 0.

Therefore, the derivative of V1(xt) is given by

d

dt
V1(xt) = ζTHe(GT1 (h)PG0+N1g1(h)+N2g2(h))ζ.

The differentiation of V2(xt) along the trajectories of (1)

leads to d
dtV2(xt) = ζT Ŝζ and using Lemmas 1 and 2 as

in [5], the derivative of V3(xt, ẋt) can be upper bounded

by ζT (ΣT (h2
1R1+h2

12R2)Σ−GT2 R̃1G2−ΓTΨΓ)ζ. Finally,
combining the previous expressions, we have

d
dtV (xt, ẋt) ≤ ζTΦ(h)ζ,

where Φ(h) is given in (7). Since Φ(h) is affine, and
consequently convex, with respect to h, the two LMIs
Φ(h1) ≺ 0 and Φ(h2) ≺ 0 imply Φ(h) ≺ 0 for all
h ∈ [h1, h2]. Therefore, LMIs (6) imply the asymptotic
stability of system (1) for any delay verifying (2).

3.2 A second stability result

The conditions of Theorem 1 are derived by virtue of
Lemmas 1 and 2. Alternatively, a similar analysis can
be performed by substituting Lemma 2 for Lemma 3,
leading to the next theorem.

Theorem 2 If there exist matrices P ∈ S5n
+ , S1, S2,

R1, R2 ∈ Sn+, and matrices N1, N2 ∈ R14n×2n, and two
matrices Y1, Y2 ∈ R14n×3n, such that the LMIs[

Φ0(hi)−He(Y2G3 + Y1G4) Yi

Y Ti −R̃2

]
≺ 0, (13)

hold for i = 1, 2, where matrices G3, G4 and Φ0, R̃2 are
given in (4) and (7), then system (1) is asymptotically
stable for any delay function h satisfying (2).

Proof: The proof follows the same lines of reasoning as
the proof of Theorem 1. The main modification is the
application of Lemma 2 replaced by Lemma 3, which
has been widely used in the literature and is therefore
omitted.

3.3 Comparison of Theorems 1 and 2

In this section, we provide a comparison of the conser-
vatism of the two previous theorems. The main idea is to
demonstrate that if the conditions of Theorem 1 are ver-
ified, then there also exists a solution to the conditions
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h1 0.0 0.4 0.7 1.0 2.0 3.0 h1 = h2 No. of variables

[4] 1.86 1.88 1.95 2.06 2.61 3.31 4.47 3.5n2 + 2.5n

[9] 2.11 2.17 2.23 2.31 2.79 3.49 6.05 10.5n2 + 3.5n

[5] 2.14 2.19 2.24 2.31 2.80 3.50 6.1641 21n2 + 6n

[11] 2.18 2.21 2.25 2.32 2.79 3.49 6.05 54.5n2 + 9.5n

Theorem 1 2.20 2.26 2.32 2.38 2.81 3.50 6.1664 79.5n2 + 4.5n

Theorem 2 2.26 2.29 2.34 2.40 2.83 3.50 6.1664 154.5n2 + 4.5n

Table 1
Example 1: admissible upper bound of h2 for different h1

of Theorem 2. Indeed, assuming that the conditions of
Theorem 1 and selecting, in Theorem 2,

Y T1 = R̃2G4 +XTG3, Y
T
2 = R̃2G3 +XG4,

we obtain

Φ0(h1)−He(Y2G3 + Y1G4) + Y1R̃
−1
2 Y T1

= Φ0(h1)− ΓT
(

Ψ +

[
R̃2 −XR̃−1

2 XT 0

0 0

])
Γ

≤ Φ0(h1)− ΓTΨΓ,

where Γ and Ψ are given in (4) and (6), respectively.
The latter inequality is guaranteed by application of the
Schur complement to (6). A similar analysis yields the
same result when h(t) = h2, which allows concluding the
comparison. Hence, the comparison reveals that Theo-
rem 2 always produces better (or at least the same) re-
sults than Theorem 1. As usual, the potential improve-
ment of Theorem 2 over Theorem 1 is at the price of
a notable increase of the number of decision variables,
showing again a tradeoff between the reduction of the
conservatism and the numerical complexity.

4 Illustrative Examples

Three numerical examples from the literature will illus-
trate the efficiency of the proposed conditions.

4.1 Example 1

Consider the following much-studied system (1) with

A =

[
−2.0 0.0

0.0 −0.9

]
, A1 =

[
−1.0 0.0

−1.0 −1.0

]
,

which is well-known for being asymptotically stable for
all constant delays lower than hmax = 6.1725. Table 1
shows that the maximum allowable delays h2 for several

h1 0.0 0.3 0.7 1.0 2.0

[9] 1.59 2.01 2.41 2.62 3.59

[5] 1.64 2.13 2.70 2.96 3.63

[11] 1.80 2.19 2.58 2.79 3.68

Theorem 1 2.04 2.47 2.87 3.11 3.77

Theorem 2 2.39 2.76 3.15 3.41 4.04

Table 2
Example 2: admissible upper bound of h2 for different h1

values of h1 obtained by Theorems 1 and 2 are less con-
servative than those obtained by various recent meth-
ods from the literature. Moreover, compared to Theo-
rem 1, Theorem 2 slightly improves the results at the
price of 75n2 additional decision variables. Furthermore,
by applying Theorems 1 and 2, we find that for any con-
stant delay in the interval [0, 6.1664] the system remains
asymptotically stable, which is consistent with the anal-
ysis provided in [8,12], which are based on the same in-
tegral inequality.

4.2 Example 2

Consider system (1) from [5] with

A =

[
0.0 1.0

−10.0 −1.0

]
, A1 =

[
0.0 0.1

0.1 0.2

]
.

Table 2 presents admissible upper bound of h2 for differ-
ent h1. We can see that Theorem 1 essentially improves
the results. Moreover, in this example, Theorem 2 re-
duces notably the conservatism compared with Theo-
rem 1, of course at the price of an increase of the number
of decision variables (see the last column of Table 1).

4.3 Example 3

Theorems 1 and 2 can be also applied to the stability
analysis of system (1) with interval delays, which may be
unstable for small delays (or without delays). Consider

5



h1 0.11 0.3 0.5 0.8 1.0 1.3

[11] 0.40 1.09 1.34 1.49 1.53 1.54

[9] 0.42 1.09 1.36 1.52 1.56 1.57

[5] 0.40 1.11 1.40 1.59 1.65 1.70

Theorem 1 0.50 1.23 1.46 1.63 1.68 1.70

Theorem 2 0.50 1.23 1.46 1.63 1.69 1.70

Table 3
Example 3: admissible upper bound of h2 for different h1

system (1) with

A =

[
0.0 1.0

−2.0 0.1

]
, A1 =

[
0.0 0.0

1.0 0.0

]
.

The frequency domain approach for constant delays
shows that this system is stable if the delay belongs to
the interval [0.100169, 1.7178] [2]. Table 3 shows again
that Theorems 1 and 2 are much less conservative than
the ones from the literature.
For the constant delay case, where h1 = h2, it was found
in [9] that the system remains stable for all constant
delays in the interval [0.100529, 1.5405]. The conditions
of [11] lead to an interval [0.100509, 1.5404]. The result
obtained by solving the conditions from Theorems 1 or
2 with h1 = h2 leads to stability of this system for all
constant delays in the interval [0.100169, 1.7122], which
is also consistent with the results of [12] and very close
to the analytical one.

5 Conclusions

Two novel stability criteria of systems with time-varying
delays have been presented in this paper. The construc-
tion of augmented LKFs and the derivation of the novel
stability criteria have fully considered the new features
of the second-order Bessel-Legendre integral inequality.
Further research aims at reducing the computational
complexity. Indeed we have shown that the reduction
of the conservatism is related to both the refinement of
the integral inequality and the state augmentation in
the LKF. However, the state augmentation leads, in the
time-varying delay case, to conditions that are polyno-
mial in h, and that cannot be easily treated, constituting
a direction for future research.

References

[1] E. Fridman. Introduction to Time-Delay Systems.
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