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This paper is concerned with the delay-dependent stability of systems with time-varying delays. The novelty relies on the use of the second-order Bessel-Legendre integral inequality which is less conservative than the Jensen and Wirtinger-based inequalities. Unlike similar contributions, the features of this inequality are fully integrated into the construction of augmented Lyapunov-Krasovskii functionals leading to novel stability criteria expressed in terms of linear matrix inequalities. The stability condition is tested on some classical numerical examples illustrating the efficiency of the proposed method.

Introduction

Over the last two decades, the delay-dependent stability analysis of systems with time-varying delays via Lyapunov-Krasovskii functional (LKF) method has received much attention (see e.g., [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF], [START_REF] Xu | New insight into delay-dependent stability of time-delay systems[END_REF] and the references therein). The crucial technical steps regarding this method are related to both the selection of the functional and the use of accurate bounding methods to derive linear matrix inequalities (LMIs). Among the bounding methods, the Jensen inequality [START_REF] Gu | Stability of Time-Delay Systems[END_REF] has been widely adopted, although at the price of an unavoidable conservatism. Recently, much attention has been paid to reducing this conservatism. A recent direction of research consists in deriving extended-like Jensen inequalities, which encompasses Jensen inequality through the introduction of additional quadratic terms. The first result in this direction led to the socalled Wirtinger-based inequality developed in [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF][START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF].

Then, further extensions were derived by Zeng et al. using a free-matrix-based integral inequality [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with timevarying delay[END_REF]. More recently, generalized integral inequalities were developed in [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF][START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] based on Bessel inequality and Legendre polynomials, which includes Jensen and Wirtingerbased inequalities and also the recent inequalities based on auxiliary functions-based inequality ( [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF], [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF]) as particular cases. The main interest of such inequalities is that the conservatism can be reduced arbitrarily. These new inequalities have been mainly employed to the case of constant discrete or distributed delays (see [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF], [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF]). The first attempt to derive stability condition for timevarying discrete delay was proposed in [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF]. In this paper, we pursue the method provided in [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF] and derive more accurate conditions. In this paper, we develop novel stability criteria for linear systems with time-varying delays using the particular case of the second-order Bessel-Legendre inequality (i.e. the Bessel-Legendre inequality from [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] with N = 2, where N is the degree of Legendre polynomials) of the integral inequalities proposed in [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF][START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF], that recovers the inequality provided in [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF][START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF]. The main contributions are as follows:

1. The features of the limited Bessel-Legendre inequality are fully integrated into the construction of the LKFs. 2. Less conservative stability criteria are derived in terms of LMIs although the computational complex-Preprint submitted to Automatica ity is higher.

Numerical examples taken from the literature illustrate the efficiency of our results. In particular, the numerical results for the constant delay case coincide with the ones achieved in [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF] and are very close to the analytical bounds of constant delays preserving the stability. Throughout the paper, in addition to usual notations, the set S n + denotes the set of symmetric positive definite matrices. For any matrices A, B, diag(A, B) stands for the matrix [ A 0 0 B ]. Moreover, for any square matrix A, we define He(A) = A + A T .

2 Problem formulations 2.1 System data Consider a linear system with time-varying delays:

ẋ(t) = Ax(t) + A 1 x(t -h(t)), t ≥ 0, x(t) = φ(t), -h 2 ≤ t ≤ 0, (1) 
where x(t) ∈ R n is the state vector, A, A 1 ∈ R n×n are constant matrices, and φ is the initial condition. The time-varying delay h(t) is continuous and satisfies

0 ≤ h 1 ≤ h(t) ≤ h 2 , h 12 ∆ = h 2 -h 1 .
(

) 2 
There is no restriction on the derivative of the delay function.

Limited Bessel-Legendre inequality

Let us first recall the inequality that will be the core of the paper. It corresponds to the inequality recently shown in [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF], which is also a particular case of the Bessel-Legendre inequality of [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF]. The proof of this inequality can be found in [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF] or in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF].

Lemma 1 For a given matrix R ∈ S n + , any differentiable function x in [a, b] → R n , the inequality b a ẋT (u)R ẋ(u)du ≥ 1 b-a Ω T diag(R, 3R, 5R)Ω (3)
holds, where

Ω =     x(b) -x(a) x(b) + x(a) -2 b-a b a x(u)du x(b) -x(a) -6 b-a b a δ a,b (u)x(u)du     , δ a,b (u) = 2 u-a b-a -1.
Remark 1 The inequality (3) encompasses the Wirtinger-based inequality of [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF] with the help of the third component of the vector Ω. This improvement requires the introduction of an extra signal b a δ a,b (u)x(u)du in addition to b a x(u)du, x(b) and x(a).

Parameter-dependent matrix inequalities

The following lemma is for an alternative formulation of the reciprocally convex combination inequality from [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF].

Lemma 2 For any given matrix R ∈ S n + , assume that there exists a matrix

X ∈ R n×n such that R X X T R 0.
Then, the following inequality holds

1 α R 0 0 1 1-α R R X X T R , ∀α ∈ (0, 1).
Alternatively, we present another lemma, which refers to the classical bounding technique [START_REF] Moon | Delaydependent robust stabilization of uncertain state-delayed systems[END_REF] .

Lemma 3 For any matrices R 1 ∈ S n + , R 2 ∈ S n + , Y 1 ∈ R 2n×n and Y 2 ∈ R 2n×n , the following inequality holds 1 α R 1 0 0 1 1-α R 2 Θ M (α), ∀α ∈ (0, 1),
where

Θ M (α) = He Y 1 I n 0 n×n + Y 2 0 n×n I n -αY 1 R -1 1 Y T 1 -(1 -α)Y 2 R -1 2 Y T 2 .
The notable difference between Lemmas 2 and 3 is that, in Lemma 3, the lower bound depends explicitly on the uncertain parameter α. This dependence on α eventually leads to a reduction of conservatism at the price of additional decision variables.

following notations:

e i = [0 n×(i-1)n I n 0 n×(14-i)n ], i = 1, . . . , 14, G 2 = [e T 1 -e T 2 e T 1 + e T 2 -2e T 5 e T 1 -e T 2 -6e T 6 ] T , G 3 = [e T 2 -e T 3 e T 2 + e T 3 -2e T 7 e T 2 -e T 3 -6e T 8 ] T , G 4 = [e T 3 -e T 4 e T 3 + e T 4 -2e T 9 e T 3 -e T 4 -6e T 10 ] T , Γ = [G T 3 G T 4 ] T , Σ = Ae 1 + A 1 e 3 . (4) 
and

η 0 (t) = [x T (t) x T (t -h 1 ) x T (t -h(t)) x T (t -h 2 )] T , η 1 (t) = 1 h1 0 -h1 x T t (s)ds 0 -h1 δ 1 (s)x T t (s)ds T , η 2 (t) = 1 h(t)-h1 -h1 -h(t) x T t (s)ds -h1 -h(t) δ 2 (s)x T t (s)ds T , η 3 (t) = 1 h2-h(t) -h(t) -h2 x T t (s)ds -h(t) -h2 δ 3 (s)x T t (s)ds T , η 4 (t) = (h(t) -h 1 )η 2 (t), η 5 (t) = (h 2 -h(t))η 3 (t). η 6 (t) = -h1 -h2 x T t (s)ds h 12 -h1 -h2 δ 4 (s)x T t (s)ds T , (5) 
and where the functions δ i , for i = 1, . . . , 4, which refer to the functions δ a,b given in Lemma 1, are given by

δ 1 (s) = 2 s+h1 h1 -1, δ 2 (s) = 2 s+h(t) h(t)-h1 -1, δ 3 (s) = 2 s+h2 h2-h(t) -1, δ 4 (s) = 2 s+h2 h12 -1.

"Reciprocally convex"-based result

The following theorem on the asymptotic stability analysis of system (1) is derived from Lemmas 1 and 2.

Theorem 1 If there exist matrices

P ∈ S 5n + , S 1 , S 2 , R 1 , R 2 ∈ S n + , N 1 , N 2 ∈ R 14n×2n
, and a matrix X ∈ R 3n×3n such that the LMIs

Ψ = R2 X X T R2 0, Φ(h i ) = Φ 0 (h i ) -Γ T ΨΓ ≺ 0, (6) 
hold, for i = 1, 2, where, for any θ in R,

Φ 0 (θ) = He(G T 1 (θ)P G 0 + N 1 g 1 (θ) + N 2 g 2 (θ)) + Ŝ +Σ T (h 2 1 R 1 + h 2 12 R 2 )Σ -G T 2 R1 G 2 , Ŝ = diag(S 1 , -S 1 + S 2 , 0 n×n , -S 2 , 0 10n×10n ), Ri = diag(R i , 3R i , 5R i ), i = 1, 2, G 0 =[Σ T e T 1 -e T 2 e T 1 +e T 2 -2e T 5 e T 2 -e T 4
ĜT 0 ] T , Ĝ0 = h 12 (e 2 + e 4 ) -2(e 11 + e 13 ),

G 1 (θ) = [e T 1 h 1 e T 5 h 1 e T 6 e T 11 + e T 13 ĜT 1 (θ)] T , Ĝ1 (θ) = (h 2 -θ)(e 11 + e 14 ) + (θ -h 1
)(e 12 -e 13 ), [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF] and

g 1 (θ) =(θ-h 1 )
e .

(8) Then, system (1) is asymptotically stable for all timevarying delays h(t) satisfying (2).

Proof: Consider a Lyapunov functional given by

V (x t , ẋt ) = V 1 (x t ) + V 2 (x t ) + V 3 (x t , ẋt ), V 1 (x t ) = xT (t)P x(t), V 2 (x t ) = t t-h1 x T (s)S 1 x(s)ds + t-h1 t-h2 x T (s)S 2 x(s)ds, V 3 (x t , ẋt ) = h 1 0 -h1 t t+θ ẋT (s)R 1 ẋ(s)dsdθ +h 12 -h1 -h2 t t+θ ẋT (s)R 2 ẋ(s)dsdθ, (9) where x 
(t) = col x(t), h 1 η 1 (t), η 6 (t) , (10) 
Remark 2 While functionals V 2 and V 3 have been already considered in e.g., [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF], [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF], a first selection for V 1 is a quadratic term only depending on the instantaneous state vector x(t) (see e.g. [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] among many others). It was shown in [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF], that V 1 needs to be augmented in order to fully benefit from the Wirtinger-based inequality.

The extension consists of including 0 -h1 x t (s)ds and -h1

-h2 x t (s)ds, which appear naturally in the Wirtingerbased inequality. Since we are now considering an extented version of the Wirtinger-based inequality (i.e. Bessel-Legendre), the term V 1 in (9) also needs to include the two additional signals 0 -h1 δ 1 (s)x t (s)ds and -h1 -h2 δ 4 (s)x t (s)ds issued from (3). This state augmentation in V 1 was not considered yet in the literature and we will demonstrate, on examples, its necessity.

The objective of the next developments consists in finding an upper bound of the derivative of V (x t , ẋt ) along the trajectories of (1) using the augmented vector

ζ(t) = col η 0 (t), η 1 (t), η 2 (t), η 3 (t), η 4 (t), η 5 (t) ,
where η i (t), for i = 0, . . . , 5, are given in [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF]. For simplicity, the time argument is omitted when there is no possible confusion, meaning, more especially, that in the sequel h, ζ stand for h(t) and ζ(t), respectively. Differentiating V 1 (x t ) along the trajectories of system (1) yields d dt V 1 (x t ) = 2x T (t)P ẋ(t). We then need to express x(t) and ẋ(t) using the augmented vector ζ. On the one hand, it is easy to see that ẋ(t) = Σζ. Moreover, simple calculations show that

h 1 η1 (t) = [e T 1 -e T 2 e T 1 +e T 2 -2e T 5 ] T ζ, η6 (t) = [e T 2 -e T 4 ĜT 0 ] T ζ, leading to ẋ(t) = G 0 ζ
, where G 0 is defined in [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF].

On the other hand, finding an expression x(t) depending on ζ is more dedicated. We first note that x(t) = e 1 ζ and h 1 η

1 (t) = h 1 [e T 5 e T 6 ] T ζ.
Let us consider the last component of x(t), i.e., η 6 (t). To express it using the extended state ζ, we first note that

η 6 (t) = -h1 -h x t (s)ds h 12 -h1 -h δ 4 (s)x t (s)ds + -h -h2 x t (s)ds h 12 -h -h2 δ 4 (s)x t (s)ds . ( 11 
)
From this expression, we first note that the first n components can be expressed as (e 11 + e 13 )ζ. For the last n components, we need to find two expressions of δ 4 (s), which depend on δ 2 (s) and δ 3 (s), respectively. Some calculations show

h 12 δ 4 (s) = (h -h 1 )δ 2 (s) + (h 2 -h), h 12 δ 4 (s) = (h 2 -h)δ 3 (s) -(h -h 1 ). (12) 
Reinjecting ( 12) into (11) leads to

h 12 -h1 -h δ 4 (s)x t (s)ds + -h -h2 δ 4 (s)x t (s)ds = (h -h 1 ) -h1 -h δ 2 (s)x t (s)ds - -h -h2 x t (s)ds +(h 2 -h) -h1 -h x t (s)ds + -h -h2 δ 3 (s)x t (s)ds = Ĝ1 (h)ζ.
Hence, we obtain that η 6 (t) = [e T 11 + e T 13 ĜT 1 (h)]ζ, and

x(t) = G 1 (h)ζ.
Moreover, from the definition of the augmented vector ζ, one can see that the last four components can be seen as linear combination of the other components of ζ, since we have η 4 (t) = (h -h 1 )η 2 (t) and η 5 (t) = (h 2 -h)η 3 (t). Therefore, using the matrices g 1 and g 2 defined in (8), the following equality holds for any matrices

N 1 , N 2 in R 14n×2n 2ζ T (N 1 g 1 (h) + N 2 g 2 (h)) ζ = 0. Therefore, the derivative of V 1 (x t ) is given by d dt V 1 (x t ) = ζ T He(G T 1 (h)P G 0 +N 1 g 1 (h)+N 2 g 2 (h))ζ.
The differentiation of V 2 (x t ) along the trajectories of ( 1) leads to d dt V 2 (x t ) = ζ T Ŝζ and using Lemmas 1 and 2 as in [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF], the derivative of V 3 (x t , ẋt ) can be upper bounded by

ζ T (Σ T (h 2 1 R 1 +h 2 12 R 2 )Σ-G T 2 R1 G 2 -Γ T ΨΓ)ζ.
Finally, combining the previous expressions, we have

d dt V (x t , ẋt ) ≤ ζ T Φ(h)ζ,
where Φ(h) is given in [START_REF] Seuret | Complete quadratic Lyapunov functionals using Bessel-Legendre inequality[END_REF]. Since Φ(h) is affine, and consequently convex, with respect to h, the two LMIs Φ(h 1 ) ≺ 0 and Φ(h 2 ) ≺ 0 imply Φ(h) ≺ 0 for all h ∈ [h 1 , h 2 ]. Therefore, LMIs (6) imply the asymptotic stability of system (1) for any delay verifying (2).

A second stability result

The conditions of Theorem 1 are derived by virtue of Lemmas 1 and 2. Alternatively, a similar analysis can be performed by substituting Lemma 2 for Lemma 3, leading to the next theorem.

Theorem 2 If there exist matrices P ∈ S 5n + , S 1 , S 2 , R 1 , R 2 ∈ S n + , and matrices N 1 , N 2 ∈ R 14n×2n , and two matrices Y 1 , Y 2 ∈ R 14n×3n , such that the LMIs

Φ 0 (h i ) -He(Y 2 G 3 + Y 1 G 4 ) Y i Y T i -R2 ≺ 0, (13) 
hold for i = 1, 2, where matrices G 3 , G 4 and Φ 0 , R2 are given in ( 4) and (7), then system (1) is asymptotically stable for any delay function h satisfying (2).

Proof: The proof follows the same lines of reasoning as the proof of Theorem 1. The main modification is the application of Lemma 2 replaced by Lemma 3, which has been widely used in the literature and is therefore omitted.

Comparison of Theorems 1 and 2

In this section, we provide a comparison of the conservatism of the two previous theorems. The main idea is to demonstrate that if the conditions of Theorem 1 are verified, then there also exists a solution to the conditions of Theorem 2. Indeed, assuming that the conditions of Theorem 1 and selecting, in Theorem 2,

Y T 1 = R2 G 4 + X T G 3 , Y T 2 = R2 G 3 + XG 4 ,
we obtain

Φ 0 (h 1 ) -He(Y 2 G 3 + Y 1 G 4 ) + Y 1 R-1 2 Y T 1 = Φ 0 (h 1 ) -Γ T Ψ + R2 -X R-1 2 X T 0 0 0 Γ ≤ Φ 0 (h 1 ) -Γ T ΨΓ,
where Γ and Ψ are given in ( 4) and ( 6), respectively. The latter inequality is guaranteed by application of the Schur complement to [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF]. A similar analysis yields the same result when h(t) = h 2 , which allows concluding the comparison. Hence, the comparison reveals that Theorem 2 always produces better (or at least the same) results than Theorem 1. As usual, the potential improvement of Theorem 2 over Theorem 1 is at the price of a notable increase of the number of decision variables, showing again a tradeoff between the reduction of the conservatism and the numerical complexity.

Illustrative Examples

Three numerical examples from the literature will illustrate the efficiency of the proposed conditions.

Example 1

Consider the following much-studied system (1) with A = -2.0 0.0 0.0 -0.9 , A 1 = -1.0 0.0 -1.0 -1.0 , which is well-known for being asymptotically stable for all constant delays lower than h max = 6.1725. values of h 1 obtained by Theorems 1 and 2 are less conservative than those obtained by various recent methods from the literature. Moreover, compared to Theorem 1, Theorem 2 slightly improves the results at the price of 75n 2 additional decision variables. Furthermore, by applying Theorems 1 and 2, we find that for any constant delay in the interval [0, 6.1664] the system remains asymptotically stable, which is consistent with the analysis provided in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF][START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF], which are based on the same integral inequality.

Example 2

Consider system (1) from [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF] with

A = 0.0 1.0 -10.0 -1.0 , A 1 = 0.0 0.1 0.1 0.2 .
Table 2 presents admissible upper bound of h 2 for different h 1 . We can see that Theorem 1 essentially improves the results. Moreover, in this example, Theorem 2 reduces notably the conservatism compared with Theorem 1, of course at the price of an increase of the number of decision variables (see the last column of Table 1).

Example 3

Theorems 1 and 2 can be also applied to the stability analysis of system (1) with interval delays, which may be unstable for small delays (or without delays). Consider The frequency domain approach for constant delays shows that this system is stable if the delay belongs to the interval [0.100169, 1.7178] [START_REF] Gu | Stability of Time-Delay Systems[END_REF]. Table 3 shows again that Theorems 1 and 2 are much less conservative than the ones from the literature.

For the constant delay case, where h 1 = h 2 , it was found in [START_REF] Seuret | Stability of systems with fast-varying delay using improved wirtinger's inequality[END_REF] that the system remains stable for all constant delays in the interval [0.100529, 1.5405]. The conditions of [START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with timevarying delay[END_REF] lead to an interval [0.100509, 1.5404]. The result obtained by solving the conditions from Theorems 1 or 2 with h 1 = h 2 leads to stability of this system for all constant delays in the interval [0.100169, 1.7122], which is also consistent with the results of [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF] and very close to the analytical one.

Conclusions

Two novel stability criteria of systems with time-varying delays have been presented in this paper. The construction of augmented LKFs and the derivation of the novel stability criteria have fully considered the new features of the second-order Bessel-Legendre integral inequality.

Further research aims at reducing the computational complexity. Indeed we have shown that the reduction of the conservatism is related to both the refinement of the integral inequality and the state augmentation in the LKF. However, the state augmentation leads, in the time-varying delay case, to conditions that are polynomial in h, and that cannot be easily treated, constituting a direction for future research.

Table 1

 1 shows that the maximum allowable delays h 2 for several

	h 1	0.0	0.3	0.7	1.0	2.0
	[9]	1.59 2.01 2.41 2.62 3.59
	[5]	1.64 2.13 2.70 2.96 3.63
	[11]	1.80 2.19 2.58 2.79 3.68
	Theorem 1 2.04 2.47 2.87 3.11 3.77
	Theorem 2 2.39 2.76 3.15 3.41 4.04
	Table 2					
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Stability analysis of time-varying delay systemsIn this section, based on Lemma 1 together with Lemma 2 or 3, two novel stability criteria are provided for system (1) with time-varying delays. For the simplicity of presentation, we will use in this section the
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