
HAL Id: hal-01382360
https://hal.science/hal-01382360v1

Submitted on 6 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonnegative CP decomposition of multiangle
hyperspectral data: a case study on CRISM

observations of martian icy surface
Miguel Angel Veganzones, Sylvain Douté, Jérémy E Cohen, Rodrigo Cabral

Farias, Jocelyn Chanussot, Pierre Comon

To cite this version:
Miguel Angel Veganzones, Sylvain Douté, Jérémy E Cohen, Rodrigo Cabral Farias, Jocelyn Chanussot,
et al.. Nonnegative CP decomposition of multiangle hyperspectral data: a case study on CRISM
observations of martian icy surface. WHISPERS 2016 - 8th Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing, Aug 2016, Los Angeles, CA, United States. �hal-
01382360�

https://hal.science/hal-01382360v1
https://hal.archives-ouvertes.fr


NONNEGATIVE CP DECOMPOSITION OF MULTIANGLE HYPERSPECTRAL DATA: A
CASE STUDY ON CRISM OBSERVATIONS OF MARTIAN ICY SURFACE
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ABSTRACT

The Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) sensor aboard the Mars Reconnaissance Orbiter takes
hyperspectral multi-angle acquisitions of Martian surface from the
top of the atmosphere (TOA) on visible and infrared wavelengths.
The Multiangle Approach for Retrieval of Surface Reflectance
from CRISM Observations (MARS-ReCO) defined an innovative
TOA radiance model and inversion scheme aimed at correcting for
aerosols effects taking advantage of the near-simultaneous multi-
angle CRISM observations. Here, we aim to provide validation evi-
dence of MARS-ReCO by unmixing the estimated multi-angle bidi-
rectional reflectance (BRF) from highly reflective and anisotropic
icy surfaces at high latitudes with grazing illumination, using a non-
negative CP decomposition. Obtained results are in accordance with
other complementary studies, which compose a collaboration effort
to validate MARS-ReCO through the cross-validation of different
techniques in the absence of ground truth.

Index Terms— CRISM mission, multi-angle hyperspectral,
MARS-ReCO, Canonical-Polyadic, nonnegative tensor decomposi-
tion.

1. INTRODUCTION

The Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) sensor aboard the Mars Reconnaissance Orbiter takes
hyperspectral acquisitions of Martian surface from the top of the
atmosphere (TOA) using 11 viewing angles in 437 spectral bands,
on visible and infrared wavelengths. The CRISM experiment is
an invaluable source of information related to the scattering of so-
lar light by surface materials and atmospheric aerosols. However,
the extraction of surface bidirectional reflectance (BRF) is espe-
cially challenging, due to the strong effects of aerosols in Martian
atmosphere. The Multiangle Approach for Retrieval of Surface
Reflectance from CRISM Observations (MARS-ReCO) [1, 2] de-
fined an innovative TOA radiance model and inversion scheme
aimed at correcting for aerosols effects taking advantage of the
near-simultaneous multi-angle CRISM observations. MARS-ReCO
retrieves the aerosol optical depth (AOD) and the BRF of surface
materials as a function of wavelength.

The validation of MARS-ReCO has been solely performed on
the base of controlled synthetic data [1] and by comparison with
in situ reflectance measurements by the Martian Exploration Rovers
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(MERs) [3]. This validation was restricted to moderately anisotropic
mineral surfaces. Here, we aim to provide supporting evidence by
performing a spectral unmixing (SU) analysis of MARS-ReCO BRF
estimates from CRISM multiangle observations of highly reflective
and anisotropic icy surfaces at high latitudes with grazing illumina-
tion. This is part of a collaboration effort to validate MARS-ReCO
through the cross-validation of different techniques in the absence of
ground truth [4].

Spectral unmixing (SU) is one of the most studied topics in
hyperspectral image analysis. The goal of SU techniques is to es-
timate the spectral signatures of the materials present in the im-
age (endmembers) and their spatial distributions (fractional abun-
dances). Usually, a linear mixing model (LMM) is considered:

X = ΦS> + E, (1)

where S ∈ RL×R
+ denotes the matrix of endmembers, each of the R

columns representing the spectral signature of a given macroscopic
material, Φ ∈ RN×R

+ denotes the matrix of fractional abundances
corresponding to each of the R endmembers; and E ∈ RN×L de-
notes additive noise.

In [5, 6] we proposed to exploit the hyperspectral multiangle
information by representing the hyperspectral multiangle acqui-
sitions as a nonnegative tensor, X ∈ RN×L×T

+ , with N pixels,
L wavelengths and T angles of acquisition. Tensor analysis [7]
(a.k.a. multiway or multiarray analysis) techniques, and specifically
the Canonical Polyadic (CP) model [8], sometimes coined Cande-
comp/Parafac [9], can be used to decompose the multiangle tensor,
X , into a multilinear combination of R nonnegative factor matrices
A, B and C, of size N ×R, L×R and T ×R, respectively:

Xijk =

R∑
r=1

AirBjrCkr, (2)

where the A, B and C factors are associated with estimations of
the fractional abundances, endmembers and angular anisotropies of
the materials in the scene. Thus, the nonnegative CP decomposition
can be understood as a multilinear spectral unmixing, exploiting the
additional angular information.

The rank of tensor X is defined as the minimal number R of
terms necessary for the equality above to hold exactly. A shorter ex-
pression can be employed to denote the decomposition in (2) using a
diagonal tensor of ones, I , of sizeR×R×R, i.e., (A⊗B ⊗C)I ,
where ⊗ is a tensor product. In practice, the data tensor is subject to
modeling errors or measurement noise, and it is convenient to find
its best rank-R approximation by minimizing an objective function



CRISM ID Ls1 Incidence Phase range AOD2

FRT144E9 320◦ 72◦ 35-128◦ 0.62

Table 1. Information of the CRISM observation used in the study
case.

Fig. 3. High-resolution gray scale image of the study case scene
taken by CRISM sensor at nadir angle.

of the form

Υ(A,B,C) = ‖X − (A⊗B ⊗C)I‖2, (3)

for some well chosen norm, instead of solving the exact CP decom-
position (2). It is known that tensors of order 3 or larger do not
always admit a best rank-R approximate, when R > 1, especially
in R or C. But fortunately, it has been shown in [10] that such ob-
stacle does no exist for nonnegative tensors, and that the problem is
well-posed in R+: best lower rank nonnegative approximates always
exist and are generically unique under mild conditions on R [11].

Here, we study the application of the nonnegative CP decom-
position method to unmix a multiangle BRF data cube extracted by
MARS-ReCO from a challenging area of interest in the outskirts of
the south permanent polar cap in Mars.

2. DATA AND METHODS
2.1. Data

The data set is a multi-angle CRISM acquisition in the outskirts of
the south permanent polar cap in Mars. The analysis here is re-
stricted to the visible channel (VIS) of the instrument (0.4−1.0µm).
The scene features regions of submiating icy CO2, revealing H2O
frost and defrosted terrains. The topography of the region is mod-
erate with maximum slopes of 10%. No ground truth is available
for this region. Table 1 gives information about the data set, and
Fig. 3 depicts a high-resolution gray scale image of the scene taken
at nadir. In order to facilitate the simultaneous processing of the
multiangle TOA reflectance factor of CRISM observation, the spec-
tra corresponding to the eleven view angles are rearranged in a com-
mon geographical grid of super-pixels. Each spatial bin is approxi-
mately 200 meters in size [2]. Super pixels are stacked in one way,
so that after preprocessing the resulting data is a third order tensor
with super pixels, wavelengths and angles as diversities.

2.2. Nonnegative CP decomposition

Given a nonnegative tensor, X ∈ RN×L×T
+ , its approximation by a

nonnegative CP decomposition is formulated as:

argmin ‖X − (A⊗B ⊗C)I‖2F
w.r.t. A,B,C

s.t. A � 0,B � 0,C � 0,
(4)

where ‖ · ‖F denotes the Frobenius norm, and inequality � applies
entry-wise. This problem is highly non-convex. The most com-
monly used method for nonnegative CP decomposition is alternat-
ing nonnegative least squares (ANLS) [12], where the cost function
is minimized in an alternating way for each factor (A, B or C) while
the others are fixed.

When the data tensor is large as in hyperspectral multiangle data,
where the number of pixels is usually larger than 106, the workhorse
techniques described briefly above can fail to handle all the data
within the memory of the computer, or can converge very slowly.
An approach to handle large tensor decomposition is through the use
of compression. The general idea is that the original tensor X can
be equivalently represented by a compressed version of it, X c, with
reduced dimensions Nc × Lc × Tc. The compressed tensor is then
decomposed by minimizing

Υ = ‖X c − (Ac ⊗Bc ⊗Cc)I‖2F
w.r.t. Ac,Bc,Cc,

(5)

where Ac, Bc, Cc are compressed versions of the original factor
matrices. Note that, after the compressed factors are obtained, a de-
compression operation must carried out to recover nonnegative fac-
tors in the original dimensions.

Authors in [13] provide two algorithms, a compressed conju-
gate gradient (CCG) and a Projected and Compressed Alternating
Least Squares (ProCo-ALS) to solve (5) when the compression is
done using an approximate High Order Singular Value Decomposi-
tion (HOSVD):

X ijk ≈
Nc,Lc,Tc∑

lmn

U ilV jmW kn [X c]ijk , (6)

or more compactly X ≈ (U ⊗ V ⊗W )X c, where U , V and W
are matrices with orthogonal unit-norm columns. These algorithms
solve the optimization problem defined in (5) enforcing the nonneg-
ativity of the factors in the unconstrained domain:

A ≈ UAc � 0, B ≈ V Bc � 0, C ≈WCc � 0. (7)

Here, we make use of a modified version of ProCo-ALS to include
the sum-to-one physical constraint on abundances, usually employed
in spectral unmixing:

A1R = 1N . (8)

The modified ProCo-ALS algorithm works by projecting A onto the
unitary simplex instead of projecting it onto the nonnegative orthant
using the solution to the waterfilling problem.

3. EXPERIMENTAL METHODOLOGY AND RESULTS

We run two sets of 20 Monte Carlo runs of the modified ProCo-ALS
CP decomposition over the Mars reflectance tensor representation,
using two tensor rank values, R = {3, 4}. Those superpixels of
the reflectance tensor for which there were missing values were re-
moved, so the number of tensor superpixels was N = 1633. The di-
mensions of the compressed tensor were set to Nc = 550, Lc = 50
and Tc = 11, so only the spatial way was slightly compressed in ap-
proximately a 1/3 ratio. For each ProCo-ALS run, we randomly ini-
tialized the factors A,B,C to nonnegative matrices, ensuring that
the spectral factor, B, is normalized and, that the spatial factor, A,
holds the sum-to-one constraint. Among the 20 runs, we kept the
one maximizing the volume of the simplex formed by the columns
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Fig. 1. Best run ontained by the modified ProCo-ALS with R = 3: (top) Spectral factor, B̂, (mid) Angle factor, Ĉ, and (bottom) Spatial
factor, Â.
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Fig. 2. Best run ontained by the modified ProCo-ALS with R = 4: (top) Spectral factor, B̂, (mid) Angle factor, Ĉ, and (bottom) Spatial
factor, Â.

of the spectral factor matrix, V (B) [14]:

V (B) =
1

R− 1!

∣∣∣∣det

(
1 . . . 1
b1 . . . bR

)∣∣∣∣ . (9)

Figs. 1 and 2 show the factors estimated by the best run according
to (9) for R = 3 and R = 4, respectively. The only significant
differences between the two solutions are: (i) the angle factors of
the first and second components have a low tail appearing at last
angle indices of the first component for R = 3, and at the first angle

indices of the second component for R = 4; (ii) the spatial factors
of the second and third components for rank R = 4 are shifted to
more extreme values w.r.t. those obtained for R = 3; and, (iii) the
additional component estimated for R = 4 seems to be an artefact
affecting a few superpixels in the nadir angle (T = 6).

The VIS range offers no distinct features to distinguish the ma-
terials present on the image, because of the relative flat behaviour
of the spectral factors. On the contrary, the angular factors give in-
formation that can be physically interpreted. The first two compo-



(a)

(b)

Fig. 4. Results of a k-mean clustering (k = 5) over the spatial factor
estimated by ProCo-ALS with (a)R = 3 and (b)R = 4. Figures de-
pict the clustering maps in transparent colors over a high resolution
grayscale image of the scene.

nents present high anisotropic behaviours. The first one displays a
strong backward scattering lobe (high values at low phase angles,
T = 1 . . . 5), associated with the presence of extended shadows
(sun low on the horizon) at the sub-pixel scale. The second one
has a marked forward-scattering scattering lobe (high values at high
phase angles, T = 8 . . . 11), linked with volume scattering within
the surface materials. Finally, the third component shows much less
anisotropic behaviour and, upon mixing, likely controls the overall
level of the BRF as a function of geometry, i.e. the intrinsic albedo.

Fig. 5 shows the results of a k-means clustering over the spa-
tial factors obtained by ProCo-ALS for a number of clusters k = 5.
The fourth component estimated by ProCo-ALS with R = 4 has
been discarded in the analysis. Results obtained by setting k = 5
present a high degree of internal coherence..According to Fig. 5, the
dark unit of the nadir image (top and middle-left strips) could be de-
composed into two clusters (red and green), while the brightest unit
of the nadir image consists in three distinguishable clusters (blue,
cyan and yellow). The latter three clusters share the high presence
of the third component where dominates highly reflective CO2 ice
but with a moderately anisotropic behaviour: smaller relative pro-
portions of the other two materials (with high anisotropies). The
difference among these segmented areas appears to be related to the
topography of the region and its relation to the shadowing effects.
The dark unit, composed of two distinct areas, presents a higher rel-
ative abundance of the second component (backward scattering) but
a varying abundance of the third component (moderate for the fourth
cluster (red) but high for the fifth (green). Also, the former cluster
presents a higher abundance of first component relative to the lat-
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Fig. 5. Results of a k-mean clustering (k = 5) over the spatial factor
estimated by ProCo-ALS with (a) R = 3 and (b) R = 4. Bar plots
show the centroids of the clusters in terms of the three components
estimated by ProCo-ALS (the fourth component for R = 4 has been
discarded in the analysis).

ter cluster. The green cluster corresponds to a mixture of dust and
minute amount of water ice (mostly defrosted terrains), while the
red cluster corresponds to compositional transition zones with a high
concentration of H2O frost. These results are in accordance with the
ones obtained from a temporal series of the studied area in [4].

As expected, the results of the unmixing algorithm for the spec-
tral way are hard to interpret since in the visible range, materials
expected to be found on the surface of Mars present no discrimina-
tive features. Moreover in our analysis, the recovered spectra are
almost collinear, suggesting the spectral diversity may not be nec-
essary. Further analysis will be carried out to try other low rank
unmixing methods like Nonnegative Matrix Factorization. Coupling
present results with an analysis of infrared data for which materials
should have distinguishable spectra should also prove interesting.

4. CONCLUSIONS

We have studied the unmixing of a multiangle BRF data cube ex-
tracted by MARS-ReCO from a challenging area of interest in the
outskirts of the south permanent polar cap in Mars, by means of
nonnegative CP decomposition. This work is part of a collaborative
effort to validate MARS-ReCO through the cross-validation of dif-
ferent techniques in absence of ground truth. Obtained results are in
accordance with other studies involved in the MARS-ReCO valida-
tion project, supporting the estimations of MARS-ReCO and the use
of nonnegative CP decompositions to unmix multiangle hyperspec-
tral data.
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