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Preface

This monograph is dedicated to the presentation of the gradient discretisation
method (GDM) and to some of its applications. It is intended for masters
students, researchers and experts in the field of the numerical analysis of
partial differential equations.

The GDM is a framework which contains classical and recent discretisation
schemes for diffusion problems of different kinds: linear or non-linear, steady-
state or time-dependent. The schemes may be conforming or non-conforming,
low or high order, and may be built on very general meshes.

In this monograph, the core properties that are required to prove the conver-
gence of a GDM are stressed, and the analysis of the method is performed
on a series of elliptic and parabolic problems. As a result, for these models,
any scheme entering the GDM framework is known to converge. A key feature
of this monograph is the presentation of techniques and results which enable
a complete convergence analysis of the GDM on fully non-linear, and some-
times degenerate, models. The scope of some of these techniques and results
goes beyond the GDM, and makes them potentially applicable to numerical
schemes not (yet) known to fit into this framework.

Appropriate tools are also provided to easily check whether a given scheme
satisfies the core properties of a GDM. Using these tools, it is shown that a
number of methods are GDMs; some of these methods are classical, such as the
conforming finite elements, the non-conforming finite elements, and the mixed
finite elements. Others are more recent, such as the discontinuous Galerkin
methods, the hybrid mimetic mixed or nodal mimetic finite differences meth-
ods, some discrete duality finite volume schemes, and some multi-point flux
approximation schemes.

Marseille, Melbourne, Paris
the authors, 2017
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Introduction

The purpose of this book is the study of the gradient discretisation method
(GDM), which includes a large family of conforming or non-conforming numer-
ical methods for elliptic and parabolic partial differential equations (PDEs). A
gradient discretisation method is based on the choice of a set of discrete spaces
and operators, referred to as a “gradient discretisation” (GD). Replacing, in
the weak formulation of a diffusion problem, the continuous space and opera-
tors by the discrete elements provided by a particular GD yields a numerical
scheme called a “gradient scheme”.

Considering here the case of homogeneous Dirichlet boundary conditions, the
stationary linear and non-linear diffusion problems under study can be written
under the form:

—div a(z,u,Vu) = f in £,
0

where

e (2 is an open bounded connected subset of R?, d € N*, with boundary
0N =0\ 0,
e a is a function from R% x R x R? to R%.

The function a may be a general anisotropic heterogeneous linear operator,
that is a(x, s, &) = A(x)€, which yields a linear diffusion problem. Non-linear
problems with a solution-dependent diffusion matrix can be considered by
setting a(x, s, &) = A(x, s)€. Another possible choice for a is a Leray—Lions
operator such as the p-Laplacian a(z, s,&) = |€|P~2€ with p > 1, which yields
a non-linear diffusion problem involving the gradient in the non-linearity, in-
stead of just the function.

Standard diffusion evolution problems of the form

ou —diva(z,u,Vu) = f in 2 x(0,7T),
ﬂ(ao) = Uini in Qa
u= 0 on 912 x (0,T),
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are treated, as well as degenerate evolution problems, such as the following:

B — A¢(w) = f in £2x(0,7),
6(ﬂ(,0)) = B(uini) in £2,
C@=0 on 002 x (0,T),

where the functions ¢ and 8 are assumed to be Lipschitz-continuous and non-
decreasing. This latter model includes both the Stefan problem, modelling a
melting material, and the Richards problem, modelling a two phase flow in a
porous medium under the assumption that the pressure of one of the phases
is given.

The above problems arise in various frameworks, such as underground engi-
neering (oil recovery, hydrology, nuclear waste disposals, etc.) and image pro-
cessing. In the case of underground engineering, numerical simulations have to
be performed on meshes adapted to the geological layers; complex geometries
such as faults, vanishing layers, inclined wells must therefore be accounted for,
along with highly heterogeneous permeability fields. Locally non-conforming
refined meshes are thus often used. Furthermore, the problems to be solved
can involve a coupled set of equations of various types (including coupling
by convection—reaction terms, changes of phase, or algebraic equations mod-
elling a chemical reaction). A large number of discretisation methods have
been developed in the past 30 years to deal with these problems, for which
conventional methods such as conforming finite elements are not well adapted.
One of the first schemes in this direction is probably the nine point finite vol-
ume scheme [106] developed at Institut Frangais du Pétrole; this scheme is con-
servative and features consistent fluxes, but is unfortunately non-symmetric.
A “diamond scheme” using a reconstructed gradient on diamond-shaped cells
was proved to converge [55] under restrictive conditions on the mesh. A num-
ber of so-called “multi point flux approximation” (MPFA) schemes were also
developed, and some of them were shown to be convergent, again under re-
strictive conditions on the mesh [1, 2, 3, 4, 5, 6, 8, 9]. Most of these schemes
are non-symmetric.

The seeds of the GDM as presented here originated when trying to find a finite
volume scheme with consistent fluxes for anisotropic problems on so-called
A-admissible meshes, i.e., meshes for which there exists a set of points — one
point per cell — such that the lines joining the points of two neighbouring cells
are orthogonal to the interface between these cells; examples of A-admissible
meshes include triangles, rectangles, and Voronoi cells — see [92, chapter 3].
Denoting by K a cell of a A-admissible mesh, by Fx the set of its edges, and
by |o|, T, and nk ,, respectively, the measure, centre of mass and outward
unit normal to o € Fk, a discrete gradient was constructed [93, 94] by noting
that for any vector v € R?, one has |K|v = Y 7 |o|v -1k, (Ts — TK),
where x g is any point of the triangle K. This can also be written as the
matrix identity
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S Jol@s — @ )nk, = [K]Id. (0.1)
cEFK

Stabilising this gradient by using it together with the two-point flux approx-
imation of [116] for an isotropic part of the diffusion matrix led to a consis-
tent and stable scheme (this idea is used in Section 13.4 to construct a GD
on A-admissible meshes, see Definition 13.40). However, the A-admissibility
property for the meshes was too restrictive to handle the variety of meshes
used in industry for the numerical simulation of flows in heterogeneous and
anisotropic porous media. A large gap was filled in the direction of general
polyhedral meshes thanks to the idea of transposing the formula (0.1), leading
to

Z lo|nk.o(To —xx)’ = |K|Id.

o FK

Indeed, this new matrix identity (proved in Lemma B.3) is the key to the
construction of a consistent gradient on general polytopal meshes as intro-
duced in [95] and developed in [97]; it is also a main tool of the “polytopal
toolbox” that is used in the present book to analyse the GDM, see Chapter
7. This idea was simultaneously and independently used by the teams at the
origin of the mimetic family of schemes [131, 37, 36, 130, 35, 129] to construct
the normal fluxes at each face of the mesh by solving a local linear system
(for the method in [130], the invertibility of the local system is conditional
to some mesh properties). Inspired by the finite volume ideas, other meth-
ods were devised and studied simultaneously. Among them, let us mention
the discrete duality finite volume (DDFV) schemes introduced by Hermeline
[118, 119, 120, 121, 122, 123], and studied in the linear case [65], and in differ-
ent non-linear cases, see e.g. [29, 15, 14, 13, 45]. The DDFV scheme constructs
a discrete gradient by using two meshes (in 2D) and writing a finite volume on
each mesh. We refer to [70] for an introduction and review of all these finite
volume schemes.

The profusion of new methods for anisotropic problems and distorted meshes
led to the organisation of a benchmark whose results were presented at the
FVCA conference of 2008 in Aussois [117]. It was clear that some methods, in
particular the SUSHI scheme and the mixed-hybrid mimetic finite difference
methods produced extremely similar outputs. This triggered a closer analysis
which showed that these methods are in fact algebraically equivalent [76].
One disadvantage of these schemes is the use of interface unknowns in the
construction of the discrete gradient, which is quite costly; their elimination
is possible, as in the SUCCES scheme [97], but leads to wide stencils. This
motivated the construction of a vertex approximated gradient (VAG); the
resulting scheme was proved to be convergent [100] by identifying general
abstract properties which, when satisfied by a scheme, ensure its convergence.
These properties are called the “core properties” of GDs in this book, and
were later shown to yield the right tools for the study of a larger variety of
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problems, including non-linear models [77]. The general theory of GDMs was
then set up [78].

We show in this book that several of the above mentioned recent methods as
well as a number of classical methods are GDMs, in particular:

1. the conforming finite element methods, including mass lumped versions,

2. the non-conforming finite element methods, again including mass lumped
versions,

3. the mixed finite element methods and in particular the Raviart—Thomas
ones,

4. the symmetric interior penalty Galerkin version of the discontinuous
Galerkin (DG) method,

5. the multi-point flux approximation (MPFA) schemes and the discrete du-
ality finite volume (DDFV) schemes on particular grids,

6. the hybrid mimetic mixed (HMM) family of schemes, which includes the
hybrid mimetic finite difference schemes, the SUSHI scheme and the mixed
finite volume scheme,

7. the nodal mimetic finite difference scheme.

This already long list is not exhaustive. For example, research is ongoing to
include recent high order methods in the GDM framework meshes, such as
high order mimetic finite difference (MFD) methods [128], virtual element
methods (VEM) [22, 39] and hybrid high order (HHO) methods [63]. It is
shown in [60] that the HHO method and the non-conforming versions of MFD
and VEM are gradient discretisation methods. Future work will certainly lead
to view other low or high order numerical methods as GDMs.

Recent research on numerical schemes for elliptic and parabolic problems has
led to other unification frameworks, like the Compatible Discrete Operator
schemes [27, 28, 41]. Contrary to the GDM, this framework relies on a specific
choice of unknowns on a mesh.

Organisation of the book.

Part I is an introduction to the GDM and its usage for elliptic equations.
Chapter 1 describes the basic concepts underlying this method.

The GDM is then formally introduced for elliptic PDEs with Dirichlet bound-
ary conditions in Chapter 2. For linear equations, error estimates are obtained.
For non-linear equations (including a Leray—Lions type model with a non-local
dependency of the operator), convergence is obtained by compactness tech-
niques.

The case of Neumann, Fourier and mixed Dirichlet/Neumann boundary con-
ditions is covered in Chapter 3.

Part II is devoted to the study of the GDM for linear and non-linear parabolic
problems.

Chapter 4 covers the definitions and main compactness results that are used
to analyse the GDM for non-linear parabolic problems.
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Chapter 5 deals with the linear and quasi-linear parabolic heat equations,
with a non-conservative parabolic problem comin g from image processing,
and finally with a transient Leray—Lions type problem.

Chapter 6 covers the study of the GDM applied to degenerate parabolic prob-
lems, including the Stefan and Richards problems.

In Part III, examples of schemes that fit into the GDM framework are pre-
sented.

Some discrete analysis tools are first introduced in Chapter 7; these are used
later to establish that particular gradient discretisations satisfy the required
properties for the convergence analysis of Parts I and II to hold.

Chapters 8 to 14 then list some important examples of GDMs. It is shown
that the standard finite element method, the non-conforming P, finite element
method, the mixed finite element method and the discontinuous Galerkin
method (in its symmetric interior penalty version) are GDMs. We then anal-
yse, in the framework of GDM, some particular finite volume methods (multi-
point flux approximation), the hybrid mimetic mixed family, and the nodal
mimetic finite difference method.

An appendix gathers four chapters of useful tools for the analysis in the other
parts of the book.

Chapter A provides an abstract setting covering a variety of boundary condi-
tions. The generic properties proved in this chapter are used in Chapter 3 for
Neumann, Fourier and mixed boundary conditions. They could also be used
in the case of Dirichlet boundary conditions in Chapter 2, but detailed direct
proofs were written in this initial chapter for pedagogical reasons.

The two next chapters are concerned with discrete functional analysis, a
mathematical setting for the convergence analysis of numerical schemes. Chap-
ter B establishes some discrete functional analysis tools for space discretisa-
tions based on polytopal meshes. These results are the discrete adaptations
of the standard Sobolev and Rellich embedding theorems, with also consid-
erations on discrete traces. Chapter C presents compactness results for time-
dependent functions with abstract co-domains, including a discrete Aubin—
Simon theorem and a discontinuous Ascoli-Arzela theorem. It is worth notic-
ing that the discrete functional analysis for space- and/or time-dependent
functions developed in Appendices B and C is potentially applicable outside
the GDM, to schemes which are not necessarily written in the form of gradi-
ent schemes; this is also the case for the convergence analysis tools for fully
non-linear and degenerate models developed in Section 2.1.5 and Chapters 5
and 6.

In Chapter D, classical notations and results are gathered for the reader’s
convenience. Finally, in Chapter E, some numerical examples are proposed in
order to illustrate the theoretical notions and schemes presented in the book.

User guide:
This book is written assuming that the reader is familiar with Sobolev spaces
and weak formulations of elliptic and parabolic partial differential equations
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(PDEs). We refer to [34] for an introduction on this topic. The reader should
also have some notions of numerical analysis, in particular of the discretisa-
tion of elliptic and parabolic PDEs — for example the knowledge of one of
the aforementioned methods, such as the conforming P; finite elements on
triangles.

Parts of this book are of easy access, others require more work. We recommend
that students or newcomers to the field follow the discovery track below, while
more advanced or expert researchers can follow the eponymous tracks.

e Discovery track: Read Chapter 1. Then read Section 2.1.1 in Chapter
2, focusing more on the definitions and their explanations than on the
proofs of the lemmas. Then read Sections 2.1.2 and 2.1.4, and the case of
non-conforming finite elements in Chapter 9, referring when needed to the
definitions and statements of Chapter 7. Appendix D presents some no-
tations and classical results used throughout the book; initially skimming
through this appendix and then coming back for specific details might
prove beneficial.

e Advanced track: In addition to the preceding track, read Chapter 5,
referring when needed to the definitions and results of Chapter 4. Consider
the case of mass-lumped conforming finite elements in Chapter 8, referring
to the definitions and statements of Chapter 7.

e Expert track: Welcome to the whole book.

Remark 0.1 (Shaded remarks)

Shaded remarks such as the present one contain notions, comments or results that
can be somewhat technical or very specific. In a first reading, these remarks can be
skipped.



Part 1

Elliptic problems






1

Motivation and basic ideas

Throughout this book, {2 — the physical domain over which PDEs are con-
sidered — is a connected open bounded subset of R? d € N* is the space
dimension, and p € (1,+00) denotes a regularity index of the sought solu-
tion. For linear and quasi-linear problems, we take p = 2. In some abstract
theorems, p might be allowed to take the value 1.

1.1 Some well-known approximations of linear elliptic
problems

Let us consider the following simple elliptic problem:

—Au=f in {2,
{ =0 on 012, (1.1)

where f € L?(£2). The weak formulation of (1.1) is:

Find w € H}(£2) such that, for all v € H}(2),

/Vﬂ(:c)-Vv(a:)dm:/ f(@)v(x)de. (1.2)
fo) Q

1.1.1 Galerkin methods

A classical family of numerical methods to approximate this problem is given
by conforming Galerkin methods. Their main idea is to seek the approximate
solution in an approximation space which is a finite dimensional subspace V},
of H}(£2). This is for example the case for the well-known P finite element
method, in which a partition of {2 into simplices (e.g. triangles in dimension
d = 2) is chosen and the approximation space V}, is made of the piecewise
linear functions on this partition, which are continuous over {2 and have a
zero value on 0f2. In such a case, the index h denotes the mesh size, see e.g.
[49] for more on finite element approximations.
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Once a finite dimensional subspace Vj, of Hg (£2) has been chosen, the Galerkin
approximation of (1.2) is

Find uj € V}, such that, for all v, € Vp,

/ Vup(@) - Vou(@)dz = / F(@)on(a)da. (1.3)
Q Q

It is then easy to establish an error bound between the weak solution u to
(1.1) and the approximate solution uy. Using a generic v = vy, € V}, C HE(£2)
as a test function in (1.2) and subtracting (1.3) we see that

/Q V(u — up)(x) - Vop(x)de = 0. (1.4)

Taking v, = wp — up, where wy, is any function in Vj, and writing v, =
wp — U+ U — up, gives

[ V- w)@) - V- w)@)de = [ V- w)e) - V@ - w)@)de.
Q Q
Using the Cauchy—Schwarz inequality (that is, (D.5) with p = p’ = 2) in the
right-hand side and recalling that ”‘PHiI(}(Q) = [ |Vo(x)[?de, it is inferred
that )

17 = wnllps (o) < 10— unllga o) 18— wnll g1 o) -

Finally, since this estimate is valid for any wy, € V4,

1~ unllpgy gy < min [leon — | gy - (1.5)

min

wrEVR
This result, which may be generalised to other problems than (1.1), is known
as Céa’s lemma [50, Theorem 2.4.1].

Assume that a family of subspaces (V},)ns0 is “ultimately dense” in Hg (£2) as
h — 0, i.e., for all ¢ € H}(92),

wr:leir‘}h lwn — ‘P”Hé(()) —0as h— 0.

Then Estimate (1.5) shows that uj, — @ in HZ(£2) as h — 0.

The beauty of this analysis lies in its simplicity. It is however limited to meth-
ods for which the approximation space V}, is included in the space in which
the continuous solution lives. These methods are referred to as “conforming”.
Numerous numerical schemes for elliptic equations are “non-conforming” in
the sense that the provided approximate solutions do not belong to Hg (£2).
This happens for instance in the case of the non-conforming IP; finite element,
which yields a piecewise affine approximation that is not necessarily contin-
uous across the edges, and in the case of cell-centred finite volume schemes,
which yield a piecewise constant approximation.
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1.1.2 Non-conforming P; finite elements

Another well known method is the non-conforming finite element method, a
simple version of which is given here — see Chapter 9 for a more detailed and
general presentation. Let M be a conforming triangular mesh of 2 C R?, that
is, a mesh made of triangles and such that no edge of any triangle contains
a vertex other than its two endpoints. Let F be the finite set of the edges of
the mesh, Foyt be the set of all ¢ € F such that o C 942, and Fing = F \ Fext
be the set of interior edges. For any o € F, @, is the centre of mass of o.
The approximation space V}, of the non-conforming P finite element method
is the set of piecewise affine functions on the triangles of the mesh such that,
for all 0 € Fiyt between two cells K and L, denoting by d~y the measure on o,

/ (un) ey (@) = / (wn) Ly (@) (1.6)

g

and, for all o € Feyy, if K is the cell whose o is an edge,

/ (un) ey () = 0. (L.7)

A part of such a function is depicted in Figure 1.1. The space V}, is spanned
by the basis (ps)ocr,,, Where @, is the piecewise affine function such that
0o (Ts) = 1 and @, (T,) = 0 for all o’ € F\ {o}. The space V}, is clearly

Fig. 1.1. Non-conforming P; finite element.

not a subspace of Hg(£2); however, the restriction to any cell of a function
of V}, is piecewise affine, so its gradient is well defined and constant in each
cell. For K € M, let Vi, be the constant value of the gradient of the
function ¢,, 0 € F, on K (note that Vxy, = 0 if o is not an edge of K).
It is remarkable that (1.3) still makes sense if the gradient operator V in this
formula is replaced by the “broken” gradient operator V , defined by
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For any uy = Z UsPg € Vi,

o€ Fint (18)
VK e M Ve € K, Vpyup(x) = Z U VKOs

0E€Fint

(in other words, the gradients are computed without taking into account the
jumps along the edges). Then the following norm is defined on H}(£2) + Vj,:

Vu € HY(2) + Vi, Junlli = 3 / IVun () 2da.
KeM

Let us check that [-||, is indeed a norm. It is clearly a semi-norm and, if
llunll,, = 0 then wuy, is constant in each cell K. Since u, € Hi(§2) + Vi, by
(1.6) (also valid for functions in Hg(£2)) (up)x = (up)r whenever K and L
are neighbouring cells. Working from neighbour to neighbour, uy, is then seen
to be constant over the connected domain 2; the relation (1.7) written for
one boundary edge finally shows that u, = 0 in (2.

Let ap, : (HE(£2) + Vi)? — R be the bilinear form defined by

Y(up,vn) € (H3(2) +Vi)?, an(un,vp) Z / Vup(x) - Vop(x)dx
KeM

The approximate problem to Problem (1.1) is defined by
Find up € Vj, such that, Yoy, € Vi, ap(up,vp) = / f(@)vp(x)de.  (1.9)
o)
There exists one and only one solution to (1.9), and it satisfies the following
error estimate [50, Theorem 4.2.2], based on the second Strang Lemma (see
[134] and [135, Section 4.2]): for some C > 0, depending only on the regularity
of M but not on h,

([ = unll,

an (U, wp) — /Q f(@)wp(z)dz

<C 1nf ||u —vpll, + sup (1.10)
vh €V wr€VR\{0} [wnlly,
This estimate can be written as
1@ = wnll, < C(Saa(m) + Wn(VE)), (1.11)
where Sy() is defined, for any ¢ € H}(£2), by
Smlp) = inf [l —vnlln, (1.12)

vp €V

and Wy, (¢) is defined, for any sufficiently regular function ¢ : £2 — R%, by
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| (¢l@) - Vaaun(@) + dive(@)un(@)ia
Wam(p) = sup

(1.13)
wn€Vi\{0} llwn |5

To relate W, (V@) in (1.11) with the last term in (1.10), notice simply that
div(Vu) = Au = —f. Under regularity assumptions on the mesh, the quan-
tities Sy(p) and Waq(e) tend to zero as the size of the mesh tends to zero
(49, 85].

1.1.3 Two-point flux approximation finite volumes on Cartesian
meshes

A second example of non-conforming scheme is given by the “two-point flux
approximation” (TPFA) finite volume scheme [92]. The TPFA scheme is
widely used in petroleum engineering: constant values are considered in con-
trol volumes over which a discrete mass balance of the various components
is established. The particular case of the TPFA scheme for Cartesian grids
is considered here and denoted by TPFA-CG. Let M be a rectangular mesh
of a rectangle 2 C R2. In addition to the notations K, ¢ and &, defined in
Section 1.1.2, we introduce the following (see Figure 1.2):

e for each K € M, x is the intersection of the bisectors of the edges of K
(since K is a rectangle, xx is also the centre of mass of K) and Fi is the
set of edges of K,

e V is the set of vertices of the mesh and, for K € M, Vg is the set of
vertices of K,

o for each K € M and each s € Vg, Vi s is the rectangle defined by Z,, s,
T, and xx, where o and o’ are the edges of K touching s,

e ug (resp. u,) represents an approximate value of the unknown u at xx

(resp. Ty ).

The idea of finite volume schemes consists in finding approximate values F
of the exact fluxes — [ Vu-ng ,dy(x) (ng o is the normal to o outward K),
and in writing the following discrete flux balance in each cell

WGM,Zsz/ﬂmm (1.14)
oceFK K
and the flux conservativity across each interior edge:

Vo € Fint common face of K and L, Fg , + Fr o = 0. (1.15)

Relation (1.14) simply mimicks the Stokes formula applied to the continuous
problem (1.1):

- Y [ Vi) nxotie) = [ f@)a.

oE€FK VY
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Ug! S
o
L
VK ,S g
UK
'/ug
Tx T, T
K —
]

Ngo

Fig. 1.2. Notation for a rectangular mesh.

The TPFA-CG finite volume scheme consists in substituting, in the previous
equations,

Uy — UK
Frp=—|o|—2—"—. 1.16
K o] dist(Z,, Tx) (1.16)
The boundary condition is imposed by setting
u, = 0if o C 092 (1.17)

There is no clear way to see the TPFA-CG scheme method as a non-
conforming finite element method. However, it can be recast into a variational
form. Consider a family ((vi)kem, (Vs)oer) such that v, = 0 if o C 9£2.
Multiplying (1.14) by vk and summing over K € M yields

Z Z UKFK,U = Z UKAf(w)dw (1.18)

KeMoeFk KeM

Notice then that

YD vkFre= ), Y (vx —ve)Fro (1.19)

KeMoeFgk KeMoeFgk

Indeed, if o C 912, then (vg — vo)Fr,» = vk Fk  and, if o is the common
face between two control volumes K and L, then v, is multiplied in (1.19) by
Fk - + Fi.», which vanishes thanks to (1.15). Thus, using (1.19) into (1.18)
and invoking (1.16) leads to

Lv — v ) (Uy —ug) = v x)dx
K%g;}( sty a7~ V) e —ur) K;A K/Kf< )dz. (1.20)

Conversely, assuming the boundary conditions (1.17) and the expression (1.16)
for the fluxes, Relations (1.14) and (1.15) can be deduced from (1.20) with
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appropriate choices of the family ((vi) ke, (Vo )oer) (namely, selecting only
one value equal to 1 and all the other values equal to 0). Moreover, Relation
(1.20) can be expressed in terms of reconstructed functions and gradients,
using the discrete values defined on K and o.

e Define Xp o as the space of real families up = ((ux)Kkem, (Us)ser) sa-
tisfying the boundary conditions (1.17).

o For up € Xp o, let IIpup be the piecewise constant function equal to ug
on the cell K.

e If K € M and s € Vk is such that o and ¢’ are the edges of K sharing
the vertex s, reconstruct a gradient by setting

Uy — UK Ug! — UK

V T e !,
KaUD = i@, wr) 0 1 dist( ) Mo

EJ’, TK
Denote then by Vpup the piecewise constant function equal to Vg sup
on Vi s, for any cell K and any vertex s € Vg

The following properties arise, for (up,vp) € X22),05

> o [ f@ie= [ j@)imoup()ds,

KeM

and, using the orthogonality of nk , and nk , when o and ¢’ are two edges
of K sharing a vertex s,

Z Z L(vg —vg)(ue —ug) = | Vpup(x)- - Vpup(x)de.

2 L Wil i) .
As a result, (1.20) can be recast in the form of a discrete variational problem:

Find up € Xp o such that, for all vp € Xp,

/ Vopup(z) - Vpup(x)de :/ f(x) Ipvp(x)da. (1.21)
« £2

The study of the TPFA-CG scheme was performed in [92] using finite volume
techniques, and the following results were obtained: if the size of the mesh
tends to 0 while the ratio height/width of each cell remains bounded above
and below, then ITpup converges to u in L2(£2) and an error estimate holds,
which depends on the regularity of w.

Remark 1.1 (TPFA on unstructured meshes)

The TPFA scheme can also be analysed on unstructured meshes, provided an
orthogonality condition holds (see [92, Definition 9.1]). However, in the unstructured
case, it does not seem in general possible to write the scheme under the form (1.21),
and the TPFA scheme is not known to be a GDM as described in this book (but it
can be included in an asymmetric version of the GDM [74]).
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One case, though, where the TPFA scheme can be written as (1.21) is that of “super-
admissible” meshes, that is, when the point &k in each cell K is the intersection of
the orthogonal bisectors of the faces of K. Rectangular and acute triangular meshes
are examples of super-admissible meshes. In this case, the HMM method described
in Chapter 13 contains the TPFA scheme, see Section 13.3.

Now, could the TPFA-CG scheme be studied using the non-conforming tech-
niques of Section 1.1.27 There are unfortunately a series of objections to this
approach:

1. Comparing the right-hand sides of (1.9) and (1.21), the natural space V}
would be
Vi = {HDUD L Up € XD,O}~

However, this space “forgets” about the edge unknowns (v, )sex of vp €
Xp,0, and there is therefore no way to compute Vpup solely from Ilpvp.
2. Partially as a consequence of the previous item, there does not seem to
exist any bilinear form ay,, defined on V},+ H}(£2), which would be equal to
Jo Voup(x) - Vpup(z)de for (up,vp) € V2, and to [, Va(z) - Vo(z)de
for (u,v) € H}(£2)2.
3. The same problem arises for the definition of the norm || - ||5.

Although the technique from non-conforming finite elements schemes cannot
be directly used on the TPFA-CG scheme, there is however a way of merging
these two kinds of schemes into on common framework, which also covers
conforming finite element methods. The next section presents an introduction
to this framework.

1.2 Towards the gradient discretisation method

What does it take to design a unified convergence analysis framework covering
the preceding three examples, as well as other conforming and non-conforming
methods?

A numerical method obviously starts from selecting a finite number of discrete
unknowns describing the finite dimensional space in which the approximate
solution is sought. This finite dimensional space was called Xp ¢ in the pre-
vious section (“D” for “discretisation”, and the 0 to indicate that, in some
way, this space accounts for the homogeneous Dirichlet boundary condition in
(1.1)). The two linear operators ITp and Vp, which respectively reconstruct,
from the discrete unknowns, a function on {2 and its “gradient”, are such that

Ip:Xpo— L*(2) and Vp:Xpo— L3(02)%

All the schemes presented in the previous section can be written as
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Find up € Xp o such that, for all vp € Xp o,

/ Vpup(x) - Vpup(z)de :/ f (@) pvp(x)de (1.22)
« 2

for suitable choices of (Xp o, Ip, Vp). Indeed,

e For conforming P; finite elements, each vp € Xp o is a vector of values at
the vertices of the mesh, ITpvp € C(2) is the piecewise linear function on
the mesh that takes these values at the vertices, and Vpvp = V(IIpvp).

e For non-conforming IP; elements, each vp € Xp is a vector of values at
the centres of mass of the edges, IIpvp is the piecewise linear function on
the mesh which takes these values at these centres of mass, and Vpup =
V m(IIpvp) is the broken gradient defined in (1.8).

e The space and operators for the TPFA-CG scheme have already been
given under the form (Xp o, IIp, Vp) in Section 1.1.3.

The question now is to understand which properties the triplet (Xp o, IIp, Vp)
must satisfy to enable some error estimates between the solution @ to (1.2)
and the solution up to (1.22) (assuming for the time being that it exists). The
main issue is that, contrary to Problem (1.2) and its conforming discretisa-
tion (1.3), Problem (1.2) and its general discretisation (1.22) do not appear
to have any common test functions. Hence, no equation equivalent to (1.4)
seems attainable. There is however a way to write an approximate version
of this relation in the same spirit as in the analysis of the non-conforming
finite element method. Contrary to the non-conforming finite element where
the broken gradient is computed from the approximate function wup, in the
general GDM framework, the approximate function IIpu does not always al-
low the computation of Vpu (indeed, ITpu does not necessarily involve all
the components of the discrete unknown vector u). For instance, in the simple
case of the Laplace operator (1.1), the left hand side of the numerical scheme
involves only Vpu while the right-hand-side involves only IIpu. The operators
Vp and IIp are not deduced from one another, but they are not completely
independent: a compatibility condition between the operators IIp and Vp is
enforced through a so-called limit-conformity relation, see (1.28)-(P3) below.
As already mentioned, this is mandatory for the TPFA-CG scheme to be part
of this framework.

By noticing that (1.2) implies that —Au = f in the sense of distributions, we
get from (1.22) that, for any vp € Xp g,

/ Vpup(x) - Vpup(z)de :/ —Au(x) Ipvp(x)de. (1.23)
7} 7

If IIpvp were a classical regular function, the Stokes formula would allow
us to replace the integrand in the right-hand side with Vu(zx) - V(IIpvp)(x).
Except in some particular cases, the discrete operators IIp, Vp of a numerical
scheme do not satisfy an exact discrete Stokes formula, only an approximate
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one. We measure the resulting defect of conformity of the method, in the spirit
of (1.13), by a function Wp(¢) such that, for any sufficiently regular function
p: 2 =R

/Q (o(@) - Vovp() + dive(@) Tpvp(x))dz

Wp(p) = sup
vp€Xp,0\{0} IVoup||2(0)a

(1.24)

Here, we assume that |[Vpupl|p2ge # 0 if vp # 0, which is somewhat
natural given the homogeneous boundary conditions. The quantity Wp () is
expected to be small if the discretisation is “fine enough” (e.g., the underlying
mesh size is small). Then, considering ¢ = V@ in (1.24) and using (1.23) to
compute [, div(p)(z)Ipvp(x)de = [, Au(x)Ipvp(x)de, an approximate
version of (1.4) is obtained:

/Q (Vi) - Vou(@)) - Voup(@)dz < [[Vpvpll sy Wo(VE).

Take now a generic wp € Xp o, apply this estimate to vp = wp — up, and
write Vu — Vpup = Vu — Vpwp + Vpwp — Vpup to find

/Q(prp(m)fVDuD(a:)) . (VD’LUD(.’I}) — VD’U,D(ZC))d:B
< / (prp(:c) — Vﬂ(a})) . (VD’LUD(.’B) — VDUD(:B))d.’B
2

Using the Cauchy—Schwarz inequality on the first term in the right-hand side,
we infer

IVpwp — VD,U/'D”LQ(Q)L{ < |Vpwp — VEHL2(Q)¢1 + Wp(Va). (1.25)

Define the “best interpolation error” (in the spirit of (1.12)) by

Sp(w) := min (||HDwD =l 20 + IVDwp — Vﬂ”w(md)

wp€Xp,o

and pick wp that realises this minimum. Since

IVpup — Vil 2gya < [[Voup — Vowp|lp2(g)e + [Vowp — V| 12

< |IVoup = Vowp| 2(g)a + S (a),
Equation (1.25) gives

IVpup — VHHLQ(Q)d < 2Sp(w) + Wp(Va). (1.26)
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The question is now to check how I[Ipup approximates u. Assume the following
discrete Poincaré inequality:

There exists C'p > 0 such that, Yop € Xp,
[ Ipvp|120) < Cp VDDl 12(0a -
Then, with the same wp selected above,
[ Ipup =l 12y < [ Ipup — Hpwpl| 2y + [[HIpwp — Ul| 12
< Cp |[Vpup — Vpwp||12(0ya + Sp (1)
Estimate (1.25) then shows that
||HDUD — H”LQ(Q) < (CD + 1)Sp(ﬂ) + CDWD(Vﬂ) (127)

Equations (1.26) and (1.27) are error estimates between u and IIpup and
between Vu and Vpup.
In particular, if a sequence (Xp,, o, Ip,,, VD, )men is selected such that

(P1) (Cp,,)men is bounded,
(P2) Sp, (@) = 0 as m — oo, (1.28)
(P3) Wp, (Vi) — 0 as m — oo,

then (1.26) and (1.27) show that, as m — oo, IIp, up
that vaqu — Vu in LQ(Q)d.

Properties (P1)-(P3) are thus the core properties that (Xp o, IIp, Vp) must
satisfy to provide a proper approximation of (1.1) under the form (1.22).

— w in L*(£2) and

m

e Property (P1) is related to some coercivity property of this triplet, since
this uniform Poincaré inequality is also what ensures an estimate of the
form [[Vpup||p2(n) < C | fllp2(n) if up is a solution to (1.22).

e Property (P2) states that IIp and Vp are consistent reconstructions of
functions and their gradient; it enables the approximation of u and its
gradient by using elements in Xp .

e Asalready discussed, Wp measures the error in the discrete Stokes formula
and (P3) therefore relates to the limit-conformity of (IIp, Vp), stating
that these two operators should, in the limit, satisfy the exact Stokes for-
mula (as in the conforming case). Note that, in fact, the limit-conformity
property (P3) implies the coercivity property (P1) (see e.g. Lemma 2.6
below).

1.3 Generalisation to non-linear problems

Non-linear equations are ubiquitous in real-world modelling, and a framework
for the convergence analysis of numerical schemes should be able to handle
such equations. Consider here the following example of a non-linear problem:
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(o-azgng,

with the same notations as in Section 1.1, and where the function 8: R — R
is continuous, sf(s) > 0 and |B(s)| < C(1 + |s|) for all s € R, where C' does
not depend on s. The weak formulation of (1.29) is:

Find u € H}(£2) such that, for all v € H(£2),

_ _ 1.30

/ (B(u(a))o(@) + V(@) - Vo(z))de = / F(@)o(@)da. (1.30)
0 Q

It can be shown that there exists at least one solution to (1.30). Using, say, the

conforming Py finite element method and denoting by V}, the space of contin-

uous piecewise linear functions on a triangular mesh of {2, an approximation

of (1.30) is

Find uy € V}, such that, for all v, € V3,

1.31
/ (B(un(@))vn (@) + Vun (@) - Vor(z))dz = / f@on(@)de. 13V
Q 0
Although this approximate problem has at least one solution, its analysis
presents three major difficulties. A first difficulty lies in the computation,
using the expansion up, =3, eV, Us'Ps’s of the integral

/Qﬂ< Z us/gos/(m)> vs(x)dx (1.32)

8'€Vint

related to a given interior vertex s of the mesh; due to the non-linearity of 3,
the integrand may not be a piecewise polynomial and thus exact quadrature
rules may not exist for this integral term. A second difficulty is to define an
algorithm to approximate the solution of the non-linear system of equations
(1.31). A third diffulty is to prove that the numerical method converges to
the solution of the initial problem.

A classical answer to the first issue is to use the so-called “mass-lumping”
method. This method consists in replacing, in (1.31) with v, = g, the term
(1.32) with wsf(us) where ws is some weight to be defined. The GDM frame-
work provides a natural way of analysing the stability and convergence of
this mass-lumped scheme, with weights defined as the measure of some “dual
cells” denoted by K, (see Figure 1.3). The set of discrete unknowns Xp g is,
as for the conforming P; method, the space of vectors with one component
per interior vertex of the mesh. For u € Xp ¢, the reconstructed function II'pu
and gradient Vpu are defined by

IIpu = E uslg,  (piecewise constant reconstruction),

8EVine . , (1.33)
Vpu = Z usVps (as for conforming P finite elements),

8E€Vint
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Fig. 1.3. Definition of K

where 1k, is the characteristic function of K. Then the scheme (1.31) is
replaced with

Find u € Xp o such that, for all v € Xp g,

/Q (B(ITpu(@)) [Tpv(x) + Vpu(a) - Vpu(z))de (1.34)
:/ f(x)IIpv(x)de.
(]

Since IIpu and IIpv are piecewise constant, all integral terms here are very
easy to compute, which facilitates the implementation of the scheme. Another
major interest of dealing with these piecewise constant reconstructions I1p is
that they satisfy

B(ITpu) = Mp(B(u) = > Blus)lk,.

SEVint

This property is sometimes crucial to obtain a priori estimates (see Section
6.3).

If (Xp,,0,IIp,,, VD, )men is a sequence of spaces and operators associated
as above with mass-lumped P; finite elements on regular meshes whose size
tends to zero, one can show that properties (P1), (P2) and (P3) hold. Then,
only using these properties, it is possible to prove that:

1. The scheme (1.34) has at least one solution, denoted by u,, € Xp,, o,

2. Up to a subsequence, as m — 0o, IIp, u,, converges weakly in L%(£2) to
some function u € Hy(£2), Vp, u, converges weakly in L?(2)? to Vu,
and B(Ilp,, u,,) converges weakly in L2(§2) to some function 3.
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It is however not possible in general to deduce from Properties (P1)—(P3) that
B = B(u). An additional compactness property of the sequence (Xp,, o, IIp,,
Vb, )men is required to establish this equality, and thus complete the con-
vergence analysis of the scheme. This property reads:

(P4)  For any u,, € Xp,, o such that (Vp,, tm)men is bounded in L2(£2)4,
(IIp,, wm)men is relatively compact in L2({2).
(1.35)
This property can be established for spaces and operators coming from the
mass-lumped P finite element method.

The discrete elements (Xp o, IIp, Vp) and Properties (P1), (P2), (P3), (P4)
are at the core of the definition and properties of the gradient discretisation
method (GDM) (with (P3) implying (P1) and (P4) also implying (P1)). A
piecewise constant reconstruction ITp, as in (1.33), is a fifth property that is
instrumental for some non-linear problems.



2

Dirichlet boundary conditions

The gradient discretisation method (GDM) is a design and analysis framework
for numerical schemes for elliptic and parabolic partial differential equations.
As suggested by its name, the GDM relies on a gradient discretisation (GD),
denoted by D, which contains at least the three following discrete entities:

e a discrete space of unknowns Xp, which is a finite dimensional space
of discrete unknowns — e.g., the values at the nodes of a mesh (as in the
conforming P; finite element method), at particular point in the mesh
cells (as in the TPFA-CG scheme), or at particular points on the mesh
faces (as in the non-conforming Py finite element method),

e a function reconstruction operator IIp, which creates from an element
of Xp a function defined a.e. on the physical domain (2.

e a gradient reconstruction operator Vp, which builds a “discrete gra-
dient” (vector-valued function) defined a.e. on 2 from the discrete un-
knowns.

The idea of the GDM is to construct a scheme by replacing, in the weak
formulation of the problem to be solved, the continuous space and operators
by discrete ones coming from a GD. The scheme thus obtained is called a
gradient scheme (GS).

The convergence analysis of the GDM depends, of course, on the nature of
the PDE to be solved. The definition of the GD, on the other hand, depends
to a large extent only on the boundary conditions (but a common abstract
framework can be designed to cover various boundary conditions (BC), see Ap-
pendix A). The present chapter deals with Dirichlet boundary conditions, and
is split in two sections. Section 2.1 covers homogeneous Dirichlet boundary
conditions, and Section 2.2 considers non-homogeneous Dirichlet boundary
conditions. In each section, the concept of gradient discretisation is defined,
along with a list of the properties of the spaces and mappings that are im-
portant for the convergence analysis of the GDM. The corresponding GSs
for linear and some non-linear elliptic PDEs are then described, and their
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convergence analysis is performed. Error estimates are provided in the linear
case. In the non-linear case, the convergence is proved thanks to compactness
arguments.

The GDM for boundary conditions other than Dirichlet BCs is detailed in
Chapter 3, and Part II analyses the GDM for linear, non-linear and degenerate
parabolic problems.

In this chapter, we let p € (1, +00) be given.

2.1 Homogeneous Dirichlet boundary conditions

This section is devoted to the notion and the various required properties of a
gradient discretisation for homogeneous Dirichlet boundary conditions. Then,
the corresponding gradient schemes for linear and non-linear elliptic PDEs
are presented and their convergence is analysed.

2.1.1 Gradient discretisations

Definition 2.1 (GD, homogeneous Dirichlet BCs). A gradient discreti-
sation D for homogeneous Dirichlet conditions is defined by D = (Xp o, IIp, VD),
where:

1. the set of discrete unknowns Xp o is a finite dimensional real vector space,

2. the function reconstruction IIp : Xp o — LP(£2) is a linear mapping that
reconstructs, from an element of Xp o, a function over {2,

3. the gradient reconstruction Vp : Xpgo — LP(Q)d s a linear mapping
which reconstructs, from an element of Xp o, a “gradient” (vector-valued
function) over (2,

4. the gradient reconstruction is such that || - ||p == ||V - ||Lr(@)e s a norm
on XD’().

The following sections present gradient schemes for several problems, starting
from such a gradient discretisation. In order to show the convergence of the
scheme, we use some properties of consistency and stability. As in the finite
element method framework, stability is obtained through some uniform coer-
civity of the discrete operator which relies on a discrete Poincaré inequality.

Definition 2.2 (Coercivity, Dirichlet BCs)

If D is a gradient discretisation in the sense of Definition 2.1, define
Cp as the norm of the linear mapping Ilp:

Hpvlze(a)

Cp= max
vEX D 0\{0} lvllp

(2.1)
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A sequence (D, )men of gradient discretisations in the sense of Defini-
tion 2.1 is coercive if there exists Cp € Ry such that Cp,, < Cp for
all m € N.

Remark 2.3 (Discrete Poincaré inequality). Equation (2.1) yields the discrete
Poincaré inequality [|IIpv|;, ) < Cp [Vvl| (g for all v € Xp .

The consistency properties that we need indicate how a regular function (and
its gradient) are more or less well approximated by some function and gradient
which are reconstructed from the space Xp . The function Sp which we
introduce hereafter is often called “interpolation error” in the framework of
finite elements.

Definition 2.4 (GD-consistency, homogeneous Dirichlet BCs)

If D is a gradient discretisation in the sense of Definition 2.1, define
Sp : WyP(2) — [0, +00) by

Vo € WyP(02),
. (2.2)
Sp(p) = min (110 = ¢l Lo ey + V00 = Vel oay ) -

vEXD,0

A sequence (D, )men of gradient discretisations in the sense of Defini-
tion 2.1 is GD-consistent, or consistent for short, if

Vo € WyP(9), lim Sp,,(¢) =0. (2.3)

Note that the definition (2.2) of Sp(y¢) makes sense; indeed, since the LP({2)
and LP(2)% norms are strictly convex and since |[Vp - || zs(gye is a norm on

Xp,o, for each ¢ € Wg’p(Q) there is a unique Ipy € Xp realizing the
minimum in Sp(y), that is, such that

Sp(p) = [[Iplpy — 90||Lp(n) +||Vplpy — V‘PHLP(Q)d :

Hence the interpolant Ipy can be defined as

Ing = argmin (| Tpv = ¢l o) + V00 = Vel 1o o) -
vEXD o
Note that Ip, even though uniquely defined, is not necessarily a linear map.
In the case p = 2, a linear interpolant Ig) Wy ?(02)(= HY(2)) = Xpo can
be defined by setting

(2) . 2 2 1/2
18 = argmin (I1Tov = ¢ll}a(0) + Vo0 = Vel o) -

veEXD,0
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This interpolant will be used to establish error estimates for linear parabolic
equations: see the proof of Theorem 5.3, which also contains a proof of the
linearity of Ig ) and of its approximation properties.

The next important notion of the GDM framework is the limit-conformity of
the gradient and divergence operators. A well-known property of the gradient
operator in H} is the so-called grad-div duality; the Stokes formula gives:

/Q(Vu -+ u divep)de = 0, Vu € Hy(2),Vep € Haiy(£2), (2.4)

where Hgi, (2) = {p € L%(2)? : dive € L?(2)}. The Stokes formula is
still valid at the discrete level when using a conforming method such as the
linear IP; finite element. However, when dealing with non-conforming meth-
ods, this property is no longer exact at the discrete level. The concept of
limit-conformity states that the discrete gradient and divergence operator
satisfy this property asymptotically. Since non-linear problems are also con-
sidered in this book, adequate functional spaces need to be introduced. For
any ¢ € (1,+00), let us define the space W% (£2) of functions in (L9(£2))? with
divergence in L9(£2):

WL, (2) = {p € LYR)" : divep € L(2)}. (2.5)

We recall that the space W, *(£2) is commonly denoted by HE(£2) and that
W2 (£2) = Haiy(£2) (see notations for Sobolev spaces in Section D.1.2).

Definition 2.5 (Limit-conformity, Dirichlet BCs)

If D is a gradient discretisation in the sense of Definition 2.1, let p’ =
527 and define Wp: W (£2) — [0, +00) by

Vo € WE(2),

/ (Vpu(z) - p(x) + Ipu(x)dive(z)) de
Wp(p) = sup =

u€Xp,0\{0} ||U’HD

(2.6)

A sequence (D, )men of gradient discretisations is limit-conforming
if

Vo e Wi (£2), lim Wp, () =0. (2.7)

m—r o0

It is clear from its definition that the quantity Wp measures how well the
reconstructed function and gradient satisfy the divergence (Stokes) formula
(2.4). If the method is conforming in the sense that ITp(Xpo) C Wy ()
and Vpu = V(IIpu) for all u € Xp o, then Wp = 0. In general, Wp measures
the defect of conformity of the method, and must vanish in the limit — hence
the name “limit-conformity” for the above property.
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The following lemma shows that the coercivity is actually a consequence of
the limit-conformity.

Lemma 2.6 (Limit-conformity implies coercivity, Dirichlet BCs).
Any sequence of gradient discretisations that is limit-conforming in the sense
of Definition 2.5 is also coercive in the sense of Definition 2.2.

Proof. Let (Dy,)men be a limit-conforming sequence of GDs, and define

II
E— { DY o LP(2) :meN,ve XD,,UO\{O}}'

[vllp,,

Proving the coercivity of (D,,)men consists in/proving that F is bounded
in LP(£2). Let ¢ € (LP(£2))'. There is f € LP (£2) such that, for all w €
LP(Q), lw) = [, f(@)w(x)dz. Let ¢ € WPE,(£2) be such that divp = f
(for example, take ¢ = —|Va|[P~2Va where 7 is the solution in Wy"*(£2) of
—div(|Vu[P=2Vu) = f). For 2z € E, take m € N and v € Xp,, ¢\{0} such that

” = Ip,, v

= and write
lollp,,

|€(=

/ Ip v(x) f(x)dx
I?)

1
)=
vllp,,

1

/Q (IIp,,v(x)dive(x) + Vp, v(x) - p(x)) de

= lvlp,,

1
o / Voo, v(x) - p(x)dx
||vaU||Lp(Q)d 0

< Wp,.(¢) + el L (o) - (2.8)

In the last line, Holder’s inequality (D.5) was used. Since (D, )men is limit-
conforming, (Wp, (¢))men converges to 0, and is therefore bounded. Estimate
(2.8) thus shows that {£(z) : z € E} is bounded by some constant depending
on £. Since this is valid for any £ € (L”(§2))’, the Banach—Steinhaus theorem
[34, Theorem 2.2] (sometimes called “Uniform Boundedness Principle”) en-
ables us to conclude that F is bounded in L?(2). L]

The following equivalent condition for the limit-conformity property facilitates
the proof of the regularity of a possible limit (Lemma 2.15 below).

Lemma 2.7 (On limit-conformity, Dirichlet BCs). Let D be a gradient
discretisation in the sense of Definition 2.1. Set p' = ﬁ and define Wp:
WL (2) x Xpo — [0,+00) by

W(ep,u) € WEL(12) x Xpoo,

Wn (e, 1) = /{ (Vou(@) - p(e) + Mou(a)dive(@)) dz.

(2.9)
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A sequence (Dp,)men of gradient discretisations in the sense of Definition 2.1
is limit-conforming if and only if, for any sequence u,, € Xp,, o such that
(|, e is bounded,

Vo € WP (), lim Wp,, (@, tn) = 0. (2.10)
Proof. Let us remark that

W (e,
Wolg)= sup /2L#0)
wexmovor o

The proof that (2.7) implies (2.10) is then straightforward, since |WD(<,0, u)| <
lu]loWpn (). Let us prove the converse by way of contradiction. If (2.7) does
not hold then there exists ¢ € I/V(fi;((z), € > 0 and a subsequence of (D, )men,
still denoted by (D, )men, such that Wp,_ (¢) > ¢ for all m € N. We can then
find um, € Xp,, 0 \ {0} such that

— 1
Wo (@, )| = 5elwmllo,

Considering the bounded sequence (wn,/||um||D,, )men, We get a contradiction
with (2.10). ]

Dealing with generic non-linearity often requires additional compactness prop-
erties on the scheme.

Definition 2.8 (Compactness, Dirichlet BCs)

A sequence (D,,)men of gradient discretisations in the sense of Def-
inition 2.1 is compact if, for any sequence u,, € Xp,, o such that
(|lum||D,, )men is bounded, the sequence (IIp, um)men is relatively
compact in LP(2).

Remark 2.9 (Compactly embedded sequence). Let (D, )men be a sequence of
gradient discretisations in the sense of Definition 2.1, and define the space
Xm =IIp,, (Xp,, o) with norm

|wlx, =min{|[ullp :ué€ Xp,, osuch that IIp, u=w}.

Then the sequence (D.,)men is compact in the sense of Definition 2.8 if and
only if the sequence (X, )men is compactly embedded in LP({2) in the sense
of Definition C.4.

Compactness is stronger than coercivity, as stated in the following lemma; in
fact, coercivity is required in linear problems, whereas compactness is not (see
Corollary 2.31 and Remark 2.32).
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Lemma 2.10 (Compactness implies coercivity, Dirichlet BCs). Any
sequence of gradient discretisations that is compact in the sense of Definition
2.8 is also coercive in the sense of Definition 2.2.

Proof. Let (D,;)men be a compact sequence of GDs, and assume that it is
not coercive. Then there exists a subsequence of (D,,)men (denoted in the
same way) such that, for all m € N, there exists u,, € Xp,, o\ {0} with

i [ I, wml| e (o)

m=oo|um|p,,

= +o00.

Setting vy, = Um/||tm||D,,, this gives limy, o [ IIp,, Vm || Lr(0) = +00. But
lvm|lD,, = 1 and the compactness of the sequence of discretisations therefore
implies that the sequence (IIp, U )men is relatively compact in LP(§2). This

gives a contradiction. [

Remark 2.11 (Existence of GD-consistent, limit-conforming and compact se-
quence of GDs). Part I1I provides examples of GD-consistent, limit-conforming
and compact sequence of GDs. Simple ones are for instance the Galerkin
gradient discretisations (see Section 8.1), which only use the existence of a
countable dense family of elements in W, "*(2).

Let us turn to a property that we shall often require on the function recon-
struction I1p. Indeed, it is very often handy to obtain piecewise constant
functions as approximate functions, the reason being that piecewise constant
functions commute with any non-linearity. This is a key argument for non-
linear degenerate parabolic problems.

Definition 2.12 (Piecewise constant reconstruction)

Let D = (Xp,0,IIp, Vp) be a gradient discretisation in the sense of
Definition 2.1. The operator IIp : Xp o — LP(£2) is a piecewise con-
stant reconstruction if there exists a basis (e;);ep of Xp o and a family
of disjoint subsets (§2;);cp of £2 such that ITpu =}, pu;lg, for all
U= ZieB uze; € Xp,o, where 1, is the characteristic function of (2;.
In other words, IIpu is the piecewise constant function equal to u; on
£2;, for all i € B.

The set B is usually the natural set of (geometrical entities attached to the)
discrete unknowns of the scheme. Moreover, ||IIp - || 1»(0) is not requested to
be a norm on Xp . Indeed, all unknowns are involved in the definition of
the reconstructed gradients, but in several examples some unknowns are not
used to reconstruct the functions itself. Hence some of the subsets {2; may be
empty, which prevents ||IIp - || 1» () from being a norm.
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Remark 2.13. If IIp is a piecewise constant reconstruction and g : R — R we
have
g(ITpu(z)) = pg(u)(x) for ae. x € 2, Yu e Xp)

where, for u = Y7, puie;, we set g(u) = >, pg(u)ie; € Xp o with g(u); =
g(u;). We also have

Ipu(z)Ipv(z) = Ip(uwv)(x) for a.e. € 2, Yu,v € Xpy,

where uv € Xp g is defined by (uv); = u,;v; for all i € B.

Note that these definitions of g(u) or uv depend on the choice of the discrete
unknowns B in Xp . We should therefore denote g (u) or (uv)? to emphasise
the dependency on B but, in practice, we will remove this superscript B as
the discrete unknowns are usually canonically chosen and fixed throughout
the whole study of a gradient scheme.

Remark 2.14 (Independence of the notions of GD-consistency, limit-conformity and
compactness)

Lemmata 2.6 and 2.10 show that the coercivity property is a consequence of the
limit-conformity or of the compactness property. This raises the questions of further
links between the properties of gradient discretisations. The following examples show
that no such general link exists between the limit-conformity, the compactness and
the GD-consistency.

e Limit-conforming and compact, but not GD-consistent. Let E be a finite-
dimensional subspace of W,*?(£2), and consider the sequence (D )men of GDs
defined, for all m € N, by: Xp,, 0 = FE, IIp,,u = u and Vp,,u = Vu. Functions
in E satisfy the Stokes formula, so Wp,, (@) = 0 for all m. Since E is finite di-
mensional, the compactness of (D, )men is trivial. However, no function outside
E can be approximated by elements of Xp,, 0, 80 limp,— 00 S, (¢) #0if o & E
and (D )men is not consistent.

o GD-consistent and limit-conforming, but not compact. Consider 2 = (0,1), m €
N*, h = 1/(2m), and the IP; finite element basis (¢;)i=1,...,2m—1 associated with
the nodes (ih)i=1,...2m—1. Let Xp,, 0 = {u = (Wi)i=1,...2m—1}, @ = 3oy uitpi,
Vo, u=1, and IIp,,u(x) = u(z) + ' (z) — @' (z + e(z)), with

. _ e(x)=h if z € (2kh, (2k + 1)h),
Vk=0,...,m 1’{5(@:—;1 it z € ((2k + 1)h, (2K + 2)h).
To see that (Dm)men is limit-conforming, write, for ¢ € VVdZ?L(Q),

/0 I, u(e) (@)de = / A (@) dw + / & (@) (2) — ' (& + e(2)))dee,

and notice that the second term tends to 0 by continuity in means of ¥’ in
L”/((O7 1)). The standard interpolation of a regular function ¢, defined by u; =
@(ih), gives an element of W, ?((0,1)) that converges in this space to ; this
shows the GD-consistency. Considering the sequence (u"™)m,en defined by uj}, =
0and uzj; = hforallk =0,...,m—1, we obtain a sequence such that |[u™5
is constant, but IIp,, u™ — u™ oscillates between 2 and —2 with @™ uniformly
converging to 0, showing that (D, )men is not compact.
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e GD-consistent and compact, but not limit-conforming. Consider m € N*, h =
1/m, and the Py finite element basis (y;)i=1,..,m associated with the nodes
(ih)izl ,,,,, m-Set Xp, 0= {u = (ui)¢:1 ,,,,, m}, IIp,,u= Zzn:l u;p; and Vop,, u =
(IIp,,u)’. Note that only the left Dirichlet boundary condition is satisfied. The
sequence (Dim)men is GD-consistent and compact, but not limit-conforming in
Wy ((0,1)), since fol (IIpu(z)¢' (z) + Vou(z)p(x))dz = o(1)un.

The convergence analysis of sequences of approximate solutions to a partial
differential equation (PDE) usually starts by finding a priori estimates on
the solutions to the schemes. In the GDM framework, this means proving that
|up||p remains bounded. Lemma 2.15 below states that, if such a bound holds,
we can find a weak limit to the reconstructed functions and their gradients.
Combined if necessary with the compactness of the gradient discretisations,
this opens the way to the last stage of the convergence analysis, which consists
in showing that this limit is a solution to the PDE.

Lemma 2.15 (Regularity of the limit, homogeneous Dirichlet BCs).

Let (Dyn)men be a limit-conforming sequence of gradient discretisations, in
the sense of Definition 2.5. Let u,, € Xp,, o be such that (||um||D,, )men is
bounded. Then there exist a subsequence of (D, Um )men, denoted in the same
way, and u € Wy (£2) such that IIp, u, converges weakly in LP(£2) to u and
Vp,, Uy converges weakly in LP(£2)% to Vu.

m

Proof. Owing to Lemma 2.6, (D,,)men is coercive and thus the sequence
(IIp,, um)men is bounded in LP({2). Therefore, there exists a subsequence
of (D, Um)men, denoted in the same way, and there exist u € LP({2) and
v € LP(02)? such that IIp,, u,, converges weakly in LP(£2) to u and Vop, tum
converges weakly in LP(2)¢ to v. Extend IIp, tm, u, Vp, um and v by 0
outside §2; the previous convergence results hold respectively in LP(R) and
LP(R%)4. Using the limit-conformity of (Dy,)men and the bound on [[u, |5 ,
passing to the limit in (2.10) gives

Vi € W2 (RY), / (0(@) - (@) + u(x)dive(e)) da = 0.
Rd
Being valid for any ¢ € C2°(R9)4, this relation proves both that v = Vu and
that u € W, *(02). "

Let us now present some equivalent or sufficient conditions for the GD-
consistency, limit-conformity and compactness of a sequence of gradient dis-
cretisations.

Lemma 2.16 (Equivalent condition for GD-consistency, homogene-
ous Dirichlet BCs). A sequence (Dy,)men of gradient discretisations is
GD-consistent in the sense of Definition 2.4 if and only if there exists a dense
subset W, in W *(2) such that
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Vi € W, lim Sp, () =0. (2.11)
m—00

Proof. Let us assume that (2.112 holds and let us prove (2.3) (the converse
is straightforward, take W, = W,?(£2)). Let o € W) *(£2) and € > 0. Take
1 € Wy such that [j¢ — ’(/JHWOLP(Q) < e. For v € Xp, the triangle inequality
yields

[HIpv = @l ooy + [IVDU = V| 1o ()
< 100 ~ gy + 1900 = Vbl
10 = Dllzoin + IV = Tl oy

Hence, Sp,, (¢) < Sp,, () +||¢ — z/1||W01,p(Q) < Sp,, (¥)+e, we get from (2.11)
that limsup,,_,.. Sp,, (¢) < €. The proof is then completed by letting ¢ — 0.

m

Lemma 2.17 (Equivalent condition for limit-conformity, Dirichlet
BCs). Let (Dy)men be a sequence of gradient discretisations. Then (Dy,)men
18 limit-conforming in the sense of Definition 2.5 if and only if it is coercive
in the sense of Definition 2.2, and there exists a dense subset W, in W (£2)
(endowed with the norm H(‘DHV‘G’?L(Q) = el (e + 1divep] o (o)) such that

Vap € Wy, lim Wop,, () = 0. (2.12)
m—0o0

Remark 2.18. If £2 is locally star-shaped, then W,, = C°(R%)? is dense in

VVdIi’;(_Q) (this can be established by following the technique in the proof of
[136, Theorem 1.1] or [75, Lemma A.1]) and can therefore be used in Lemma
2.17.

We recall that {2 is locally star-shaped if, for any x € 02, there is a neigh-
bourhood O, of x such that O,z N {2 is star-shaped with respect to some y,
(i.e. for all z € Ox N 2, [Ys, 2] C Oz N 2). In particular, polytopal open sets
as in Section 7.1.1 are locally star-shaped.

Proof. Let us first assume that (D,,)men is limit-conforming. Lemma 2.6
shows that (Dy,)men is coercive, and (2.12) is implied by (2.7). Reciprocally,
let us assume that (D,,)men is coercive (that is, there is Cp € R, such

that Cp,, < Cp) and that (2.12) holds. To prove (2.7), let ¢ € WZ (£2),
e > 0 and take ¥ € W,, such that ||¢ — dJ”W”/(Q) < ¢e. This means that
div

e =l ()0 < € and ||dive — divep| (o) < e. We have
Wo,. () < Wp,,(¥) + |l =l (o) + Cp lldive — divep|| )
< Wp,, (%) + (14 Cp)e.

Using (2.12) we deduce that limsup,,_,.. Wp,, (¢) < (1+ Cp)e and the proof
is completed by letting ¢ — 0. ]
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Remark 2.19 (Condition (2.12) alone does not imply limit-conformity)

Without the coercivity property, (2.12) alone is not sufficient to ensure the limit-
conformity. This is illustrated by the following example, a modification of one of the
examples in Remark 2.14.

Let 2 = (0,1) and take m € N*, h = 1/(2m), and (p;)i=1,...,
nite element basis associated with the nodes (ih)i=1,...2m—1. Let Xp,, 0 = {u =
(wi)i=1,....2m—1 ,u; € R}, u = sz_l wipi, Vo, u = u', and Ip, u(z) =

=1

u(z) + \}E(ﬂ'(w) —u(x+¢e(x))) for all z € (0,1), with

. e(x) =h if z € (2kh, (2k + 1)h),
Vk*o"“’m_l’{s(x) — _h ifa € ((2k + 1)h, (2K + 2)h).
Then, on one hand, (D )men is GD-consistent (consider the natural IP; interpolation
of functions belonging to Wy = C2([0,1]) N W, *(£2), and apply Lemma 2.16) and,
on the other hand, it satisfies (2.12) with W, = C*([0, 1]). Indeed, if 1> € C?([0, 1])
and v € Xp,, 0 then

/OIHDW“(QEW(%W +f Vo, (@) x)d

- / ) ()dz + / @ () (x)dz + / a’(w)#(w%w)—«p'<m+e<w>>>dm.

Since @ € W,P(R2), the first two integrals in the right-hand side cancel out.
Moreover, —=[¢'(z) — ¢'(z + e(z))| < VA[¢"|| oo and thus Wp,, (¥) <

\/EH(/J"”L(X,(Q) — 0 as m — 0.
The sequence (D, )men is however not coercive and thus, by Lemma 2.6, not limit-
conforming. To see this, define u™ € Xp,, 0 by us;, = 0 and w3y, ; = h for all

k=0,...,m—1 We have ||Vp, u™| ;o =1 for all m € N. However, |IIp,, u™ —

™| = 2/v/h — oo and |[a™| — 0, which shows that (ITp,, u™)men is not bounded
in LP(§2) and thus that the coercivity property is not satisfied by (Dm)men.

Remark 2.20 (Abstract setting for GDs)

In Appendix A, an abstract setting allows the simultaneous analysis of all boundary
conditions in the GDM; abstract spaces and operators are introduced (see Section
A.1.1), enabling to recover some of the definitions and results given above, namely:
Definitions 2.2, 2.4, 2.5 and 2.8 (of GDs and of their coercivity, consistency, limit-
conformity and compactness) and Lemmas 2.6, 2.7, 2.10, 2.15, 2.16 and 2.17. How-
ever, for the sake of legibility, the theory of GDs for homogeneous Dirichlet boundary
conditions is fully developed here without reference to this abstract setting.

Lemma 2.21 (Equivalent condition for compactness, Dirichlet BCs).
Let D be a gradient discretisation in the sense of Definition 2.1 and let
Tp : R* - Rt be defined by

[Tpv(- + &) — Hpv| prwe)

VEeRY, T =  max , 2.13
¢ (&) = max oo (213)




28 2 Dirichlet boundary conditions

where IIpv has been extended by 0 outside (2.
The sequence (Dy)men is compact in the sense of Definition 2.8 if and only
if

lim sup Tp,, (§) =0.

[€]—0 meN
Proof.
This lemma is a consequence of Kolmogorov’s compactness theorem in Lebes-
gue spaces.

Step 1: we prove that the compactness of (D,,)men in the sense of Definition
2.8 is equivalent to the relative compactness in L?({2) of the set A = UenAm,
where

Ay, =Ip,, ({ve€ Xp,, 0, ullp, = 1}).

Indeed, any sequence in A is either contained in a finite union of A,,, which
means that it remains bounded in a finite dimensional space, or has a sub-
sequence which can be written IIp, ., Uy r) for some increasing sequence

(m(k))ren C N and some U, ;) € Xp,, 0 With ||um(k)||Dm<k> = 1. Hence,

m (k)
the compactness of (D;,)men gives the relative compactness of A in LP((2).

Moreover, any sequence u,, € Xp,, o such that [u,|p is bounded can be
written u,, = Apty, with (Ay,)men bounded and |[uy, ||, = 1. We have then
Ip, U = AU, for some v, € A and the relative compactness of A in LP({2)

m

therefore shows that (D, )men is compact in the sense of Definition 2.8.

Step 2: a statement of Kolmogorov’s theorem.

Let w € LP(R?) be the extension of w € LP(£2) by 0 outside §2. A classical
statement of Kolmogorov’s compactness theorem is: A is relatively compact
in LP(£2) if and only if it is bounded in L?(§2) and if

7a(£) = sp [|W(- + &) = Ol gay = 0 a5 [€] = 0.
w

But 74 is sub-additive. Indeed, for all £, ¢’ € R? we have

|o(-+&+€) — W 1o (ray

< w(-+€+8&) =0+ &)l Loay + 10(- + &) = Dl Lo (2o

— (- + &) — @l gy + 1T+ &) = @l gy
and therefore 74 (& +§&') < 7a(§) 4+ 74(§’). Hence, if limg|0 74(§) = 0, then
T4 is finite on a neighbourhood of 0 in R? and its sub-additivity shows that
it is in fact finite on R%,

Now, taking & € R? such that |&y| > diam(£2), for all w € A, we see that
w(-+ &) and w have disjoint supports and therefore

1/p
i) = ([ 15t + &l dos [ (5@ de) =2l
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The finiteness of 74(&y) then ensures that A is bounded in LP({2). Kol-
mogorov’s theorem can therefore be re-stated as: A is relatively compact in
LP($2) if and only if limg| 0 74(§) = 0.

Step 3: conclusion.

We have
v
A= Ip, |{ v € Xp,.0\ {0}
o el

IT S _II v
& (nvnpm,) Lot <|v||pm>

(the functions being extended by 0 outside {2), we deduce sup,,cy Tp,, (§) =
74(&). The conclusion then follows from Steps 1 and 2. L]

and thus, since

Tp,, (&) =

max
vEXD,, ,0\{0}

Lr(R4)

When used to establish error estimates in the GDM framework, the con-
sistency measure Sp is applied to the solution of the PDE, and the limit-
conformity measure Wp is applied to some function of this solution’s gradient.
Oftentimes, specific regularity properties are known on this solution, and Sp
and Wp are thus of particular interest on subspaces Wy and W, of VVO1 P(902)
and I/Vd’i’:,(.Q)7 respectively. Then W, is continuously embedded in W, P (£2),
which means that ||-[|y1.,(o) < Cs ||-[ly, and thus, for ¢ € W,

5(9) < 1100 = ¢l 10 0y + V00 = Vepll oy
< 2[@llwraga) < 20 llglly, -

Similarly, W, is continuously embedded in VVd’l)/V(Q), so that H~||Wp/(m <
div

Cu ||l and, for ¢ € W,,, using Hélder’s inequality (D.5) and the definition
(2.1) of Cp,

1
Wp(p) = sup 7/(divcp(w)ﬂpv(w)+<p(w)~va(a:))d:c
veXp 0\{0} ||VDUHLP(Q)d n
1
< sup o ((Cp +1) || Vpol 1, Il pr
R 0y Tl (2 F DIV2 s ol o)

IN

(Cp +1)Cu llellw, -
These considerations justify the following notion of space size of a GD.

Definition 2.22 (Space size of a GD with respect to continuously
embedded spaces). Let W (resp. W, ) be a Banach space continuously
embedded in Wy P (2) (resp. T/Vd]i;(ﬂ)) Let D be a gradient discretisation in the
sense of Definition 2.1, and let sp(Ws) > 0 and wp(W,,) > 0 be respectively
defined by
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W — sup d 520) W
— (R
wp(Wy,) = p{|¥’| i p € Ww\{O}} (2.15)

The space size of D with respect to Wy and W, is then defined by
hp(Ws; Wy,) = max(sp(Ws), wp(Wy,)). (2.16)

Remark 2.23. Under the hypotheses of Definition 2.22, if WS (resp. Ww) is
a Banach space continuously embedded in Wy (resp. W,,) with [|-[|;, <

Cs |-, and [y, < Cuw g, then

hp(We; Woy) < max(Cy, Cop)hp (Wa; Woy).

Remark 2.24 (Link between hp(Ws; Wy,) and the mesh size for mesh-based gradient
discretisations)

For the mesh-based examples of GDs given in Part III, the following results are
established (here, haq is the mesh size defined by (7.6)):

e There exists C' > 0 depending only on regularity factors of the mesh such that
ho (W™ (2) "Wy P (2); WHe(2)") < Chu.

e In the case p > d/2, there exists C' > 0 depending only on regularity factors of
the mesh such that

ho (W22 (2) N WEP(2); WH (2)%) < Cha.

e For some particular GDs of higher order (see Chapters 8, 9, 10 and 11), there
exists C' > 0 depending only on regularity factors of the mesh such that, for
some k > 2,

ho(CH () N Wi (2); CH@)Y) < CHis.

Lemma 2.25 (Necessary and sufficient conditions for consistency
and limit-conformity, homogeneous Dirichlet BCs). Let W, be a Ba-
nach space compactly and densely embedded in Wol’p(ﬂ), and let Wy, be a
Banach space continuously and densely embedded in VVdZi’;(Q), such that W,
1s compactly embedded in LT’/(Q)d.

Assume that (Dp,)men 8 a compact sequence of gradient discretisations in the
sense of Definition 2.8. Then (Dy,)men is GD-consistent and limit-conforming
if and only if hp,, (Ws; Wy,) — 0 as m — oo, where hp_,(Wy; W.,) is defined
by (2.16).
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Remark 2.26 (Classical Ws and W, satisfy the hypotheses of the lemma,)
The hypotheses on W5 and W, in Lemma 2.25 hold in the cases in Remark 2.24,
for which, respectively,

o Wy =W2*(Q)NWyP(2) and W, = WH>(2)?,

o W, = W2P(2) N Wy P(2) and W, = Wh?' (2)¢,

o W, =CF(2)NnWyP(R) and W, = C*(2)%.
In all these examples, {2 is a polytopal open set, so the Rellich compactness embed-
dings apply.

Proof. Let us first consider a GD-consistent sequence (Dy,)men and let us
prove, by way of contradiction, that sp,_ (W) defined by (2.14) tends to 0
as m — o0o. Assume therefore that there exists C' > 0 and a subsequence of
(Dim)men, again denoted by (D, )men, such that for all m € N, we can find
om € Wi\ {0} satisfying Sp,, (¢m) > C'llpmllyy, - Hence, for all v € Xp, o,

| Ip,,v— SDmHLp(Q) +Vp,,v— VSﬁmHLP(Q)d =>C ||S0mHWS .

Divide this relation by [¢m|ly, and set @ = om/|lomlly, and w =
v/ lmly,- The vector v being any vector in Xp, o, w is also free to be
any vector in this space. Hence, for all w € Xp g,

[Ip,, w — ‘Zm”LP(Q) +IVp,,w— VSEWHLP(Q)‘! > C.

Since ||Pm|ly,, = 1, the compact embedding of W; in WyP(£2) gives the
existence of a subsequence of (Dy,, ©m)men, again denoted by (D, ©m )men,
such that @, — ¢ in WHP(§2) for some ¢ € Wol’p(ﬂ). The triangle inequality
then yields, for all w € Xp,, o,

|p,,w — 77[}||Lp(9) +IVp,,w— vd)HLp(_Q)d
> C = ([l = bmllpsa) + IV = Vomll o)) (2.17)

which implies
5D, (¥) =2 C = ([ = Gmll o) + VY = VOmll o(a)a)-

This shows that liminf,, o Sp,, (¥) > C, which is a contradiction with the
GD-consistency of (Dy,)men that gives Sp, (1) — 0 as m — oo.

We now take a limit-conforming sequence (D,,)men and prove, still by con-
tradiction, that wp,, (W,,) defined by (2.15) tends to 0 as m — oo. Assume
that there exists C' > 0 and a subsequence of (D,,)men, again denoted by
(Din)men, such that, for all m € N, we can find ¢, € W,, \ {0} satisfying

Wo(em) > Cllemllw, - Setting @ = @m/ [[¢mllw, » we then have
Wp(pm) > C. (2.18)
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Since ||@mllyy,, =1 and W, is compactly embedded in Lpl(Q)d, there exists
Y € W, such that, up to a subsequence denoted the same way, @, — ¥
strongly in L? ()¢ and divg,, — divep weakly in L” (£2). Relation (2.18)
gives vy, € Xp,, 0 \ {0} such that

.~ - C
[ @@ (@)1, 00(@) + B0(@) - Y, 0m(@)de = 5 [T0,0m e
(P

The rescaling 0, = vm/ [|[VD,,Vmll 1n (o) then enables us to write

C

/Q (VG (@) T, () + G () - Vo, T (@) > . (2.19)

Since |[Uy]|p, = 1, Lemma 2.15 and the compactness hypothesis on (D, )men
give a subsequence of (D, Ym, Um )men, again denoted by (D, @ms Vm )meN,
such that IIp v, — v strongly in LP(£2) and Vp, U, — Vv weakly in

m

LP(£2)?, for some v € VVO1 P(§2). Using the weak-strong convergence property
(Lemma D.8) and Stokes’ formula between functions in W, ?(£2) and W2 _(£2),
we infer

lim (divep, () Ip,, Um () + @m(x) - Vo, Un(x))de

m— o0 0
= / (divep(x)v(z) + ¢ (x) - Vo(x))de = 0.
2]
This is a contradiction with (2.19), and the proof that hp , (Ws; W) — 0 as

m — oo is complete.

Finally, if we assume that hp, (Ws;W,) — 0 as m — oo, then the GD-
consistency and limit-conformity follow directly from Lemmas 2.16 and 2.17.
m

2.1.2 Gradient schemes for linear problems

In this section, linear problems are considered, so that p = 2 is chosen in all
the definitions of Section 2.1.1. We consider the following problem:

—div(AVa) = f + div(F) in £2, (2.20a)

with boundary conditions
u =0 on 012, (2.20Db)

under the following assumptions:

e (2 is an open bounded connected subset of R? (d € N*), (2.21a)

e /1 is a measurable function from {2 to the set of d x d
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symmetric matrices and there exists A\, A > 0 such that,
for a.e. € 2, A(x) has eigenvalues in [\, \], (2.21b)
o fEL*(N), Fe L) (2.21c)
The assumptions on f and F' include both the case of a right hand side of
(2.20a) in L%(§2) (taking F = 0) and the case of a right hand side in H~1(2),
since H1(2) = {dive : v € L?(22)?}. Note also that the symmetry as-
sumption on A(x) is not mandatory to study the convergence of the GDM for

(2.20a), but it is commonly satisfied in applications. Under these hypotheses,
the weak solution of (2.20) is the unique function @ satisfying:

ue H)(2), Yv e H} (2

/ Alz)Vu(z) - Vo(z dw—/ flx dw-/ﬂp(@.w@)dw (2.22)

Let us now introduce an approximation of Problem (2.22) by the GDM.

Definition 2.27 (GS, homogeneous Dirichlet BCs).
If D= (Xp,0, Ip,Vp) is a GD in the sense of Definition 2.1, then the related
gradient scheme for Problem (2.22) is defined by

Find u € Xp, such that for any v € Xp o,
/ A(x)Vpu(x) - Vpu(z)de =
2

/f VIpv(x da:—/F -Vpu(z)de. (2.23)

Let (f(i))i:17_”7N be a basis of the space Xp o; the scheme (2.23) is equivalent
to solving the linear square system AU = B, where

N
u = Z Ujﬁ(j)7
=1
Ajj = / A(x)VpeWD (x) - Vpe (z)de, (2.24)
12

(@) e ()da — / F(z) - Vot® (z)dz
2 2

The following theorem was first proved in [100] in the case F' = 0. It provides
an upper bound for the approximation error of Problem (2.22) in terms of
the measures of GD-consistency and conformity defect, in the spirit of the
second Strang lemma [134]. This theorem also shows the optimality of this
upper bound as, up to a multiplicative constant, it is also a lower bound of
the approximation error.
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Theorem 2.28 (Error estimate, homogeneous Dirichlet BCs). Under
Assumptions (2.21), let w € H(£2) be the solution of Problem (2.22) (which
implies that in the distribution sense —div(AVU + F) = f € L?(f2) and
therefore ANU+ F € Hgiy((2)). Let D be a GD in the sense of Definition 2.1.
Then there exists one and only one up € Xp o solution to the GS (2.23); this
solution satisfies the following inequalities:

1 _
||Vﬂ - VDUD||L2(Q)d S X [WD(AVE + F) + ()\ + A)SD(E)} s (225)
1 —
Iz — HD’LLD||L2(_Q) < 3 [CDWD(AVE +F)+ (CpA+ A)SD(E)] , (2.26)

where C'p, Sp and Wp are respectively the norm of the reconstruction operator
IIp, the GD-consistency defect and the conformity defect, defined by (2.1)-
(2.6).

Moreover, the following inequalities hold

WD(AVE"FF) SXHV@— VDUDHL?(Q)d; (2.27)
SD(E) < ||ﬂ — HDUDHLZ(_Q) + HVE - VDUDHL2(Q)¢17 (228)

which show the existence of C1 > 0 and Cy > 0, only depending on X and )\,
such that

Cy [Sp(w) + Wp(AVu + F))
< Hﬂ - HD’ILDHLz(Q) + ||VE - VDUDHL?(Q)d
< Cy(1+Cp)[Sp(u) + Wp(AVu + F)]. (2.29)

Remark 2.29 (Error estimate with respect to the space size of the GD). Under
the hypotheses of Theorem 2.28, assume moreover that the coefficients of A
are Lipschitz-continuous, that F € H'(§2)¢ and that u € H?(2)NHZ(£2) (this
regularity on @ follows from the assumptions on A and F if d < 3 and (2 is
convex or has a regular boundary). Let hp := hp(H2(£2) N H}(2); HY(2)%)
be the space size of the GD, given by Definition 2.22. Then Theorem 2.28
gives the existence of Cs, depending only on Cp > Cp, A and ), such that

HU — H’DUDHLZ(Q) + ||Vﬂ — VDU'DHLZ(Q)d
< C3([AVE + F| g1 gya + Ul g2 ()b (2.30)

For all the mesh-based GDs presented in this book, this latter inequality
provides an O(h ) error estimate, where ha is the maximum of the diameters
of the mesh cells. - -

Assume now that, for some k € N*, A € C*(2)™ F € C*(2)? and u €
CHL(2) N H§(2). Let hp := hp(CFT(2) N H(£2); C*(£2)?). Then, by

Theorem 2.28, there exists C}y, depending only on Cp > Cp, A and A, such
that
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Hﬂ — H’DUDHLZ(Q) + ||Vﬂ — V’DU’DHLQ(Q)d
< Cu([[AVU + Fl| cr(zya + Ul grsr ) )ho e (2:31)

Some GDs described in Part I1II are of higher order. This is the case of the Py,
conforming method of Chapter 8, the P, non-conforming methods of Chapter
9, the RTj; mixed methods of Chapter 10, and the Py discontinuous Galerkin
methods of Chapter 11. For these methods, it is shown that there exists some
C > 0 depending only on the regularity factors of the mesh, such that hp <
Ch% 4, in which case (2.31) yields an O(h% ) error estimate.

Other higher order methods are known to be GDMs, see for example the
recent work [60] concerning non-conforming virtual element methods [20, 39],
non-conforming mimetic finite differences [128], and hybrid high order schemes
[63].

Remark 2.30 (Super-convergence)

As noticed in Remark 2.29 above, the L? estimate in Theorem 2.28 only provides
an O(ha) rate of convergence for low-order schemes. It is well known that several
of these schemes, e.g., conforming and non-conforming P; finite elements, enjoy a
higher rate of convergence in L? norm [85, 33, 31]. This phenomenon is known
as super-convergence. Thanks to the GDM framework, it is possible to establish
an improved L? estimate that provides such super-convergence results for various
schemes, including some for which super-convergence was previously not proved
[81].

Proof of Theorem 2.28.

Let us first prove that, if (2.25) holds for any solution up € Xp ¢ to Scheme
(2.23), then the solution to Scheme (2.23) exists and is unique. Indeed, let
us prove that, assuming (2.25), the matrix denoted by A of the linear system
(2.24) is non-singular. This will be completed if we prove AU = 0 implies
U = 0. Thus, we consider the particular case where f = 0 and F' = 0 which
gives a zero right-hand side. In this case the solution @ of (2.22) is equal a.e.
to zero. Then from (2.25), we get that any solution to the scheme satisfies
lup|lp = 0. Since ||-||p is a norm on Xp o this leads to up = 0. Therefore
(2.24) (as well as (2.23)) has a unique solution for any right-hand side f and F'.
Let us now prove that any solution up € Xp to Scheme (2.23) satisfies
(2.25) and (2.26). As noticed in the statement of the theorem, we can take
p = AVU+ F € Hg;v(£2) in the definition (2.6) of Wp. We then obtain, for a
given v € Xp g,

/Q Vou(@) - (A(@)Va@) + F(@)) + Tov(@)div(AVE + F)(z)dz
< [lvllp Wp(AVu + F),

which leads, since f = —div(AVu + F) a.e., to
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/Q Vou(z) - (A(x)Vu(x) + F(x)) — Hpv(x) f(x)dx
< |vllp Wp(AVE + F). (2.32)

Since up is a solution to (2.23), we get

< |jvllp Wp(AVT + F).  (2.33)

/Q AVpo(@) - (Va(@) — Vpup(a))ds

Define

Ipu = arg}r(nin ([[HIpw — 0 22y + |Vow — V|| 12(g)a) (2.34)
wWEXD,0

and notice that, by definition (2.2) of Sp,
[IpIpu — | 12 o) + [VoIpU — V| 12 g)a = Sp (). (2.35)

Recalling the definition of [|-||, in Definition 2.1, by (2.33) we get

’ /Q A(x)Vpo(x) - (Vplpu(z) — Vpup(x))dx

< ||VDU||L2(Q)d Wp(AVu + F)

+ A(x)Vpo(x) - (Vplptu(x) — Vu(x))de

9]
< IVDll gays (W (AT + F) + X |V IpT = V| 2

(2.36)

Choosing v = Ipu — up yields
AHVD(IDE — uD)HL?(Q)d < WD(AVU + F) + XSD(H) (237)
and (2.25) follows by writing

||VE—VD’ILD HLZ(Q)d

<|IVu - VDIDﬂHLz(Q)d + Vo (Ipu — UD)”LZ(Q)d (2.38)

< SD(E) + % (WD(AVE+ F) +XSD(E)) .

Using (2.1) and (2.37), we get
A ||HDI'DE — H’DUDHLZ(Q) < CD(WD(AVE + F) + XSD(E)), (239)

which yields (2.26) by using, as in (2.38), a triangle inequality and the estimate
o HDIDﬂHL2(Q)d < Sp(@).
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Let us now turn to the proof of (2.27). From (2.23), we get for any v €
Xp,0\ {0},

/ flx)Ipv(x)dx — / (F(x) + A(x)Vu(zx)) - Vpu(z)de
2 [?)
= /Q A(x)(Vpu(x) — Vu(z)) - Vpu(x)de.

The Cauchy—Schwarz inequality then implies

/ flx)Ipv(x)dx — / (F(x) + A(x)Vu(z)) - Vpu(z)de
2 2

HVDUHL2(Q)d

Taking the supremum over v on the left hand side yields (2.27). Inequality
(2.28) is an immediate consequence of the definition of Sp(@). L]

Let us conclude this section by stating the convergence of the GS, which
follows easily from Theorem 2.28 (notice that, by Lemma 2.6, the sequence
of GDs considered in the corollary is also coercive in the sense of Definition
2.2).

Corollary 2.31 (Convergence, homogeneous Dirichlet BCs). Under
Hypotheses (2.21), let (Dy)men be a sequence of GDs in the sense of Def-
inition 2.1, which is GD-consistent and limit-conforming in the sense of Def-
initions 2.4 and 2.5.

Then, for any m € N, there exists a unique solution u,, € Xp, o to the
gradient scheme (2.23) and, if w is the solution of (2.22) then, as m — oo,
IIp, U, converges to w in L%(§2) and Vp, u, converges to Vu in L?(£2)4.

m m

Remark 2.32 (On the compactness assumption). Note that, in the linear case,
the compactness of the sequence of GDs is not required to obtain the con-
vergence. This compactness assumption is in general only needed for some
non-linear problems (see also Remark 2.46).

Remark 2.33 (GD-consistency and limit-conformity are necessary conditions)

We state here a kind of reciprocal property to Corollary 2.31. Let us assume that,
under Assumptions (2.21a)—(2.21b), a sequence (Dm)men of GDs is such that, for
all f € LQ(.Q) and F & LQ(Q)d and for all m € N, there exists u,, € Xp,,,0 which
is solution to the gradient scheme (2.23) and which satisfies that IIp,,un (resp.
Vp,,um) converges in L?(2) to the solution @ of (2.22) (resp. in L?(2)¢ to Va).
Then (Dy)men is GD-consistent and limit-conforming in the sense of Definitions
2.4 and 2.5.

Indeed, for ¢ € Hj(£2), let us consider f = 0 and F = —AV¢ in (2.22). Since in
this case, = ¢, the assumption that ITp,, um (resp. Vp,,um) converges in L*(12)
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to the solution ¢ of (2.22) (resp. converges in L*(2)% to V), inequality (2.28)
proves that Sp,, (¢) tends to 0 as m — oo, and therefore the sequence (Dim)men is
GD-consistent.

For ¢ € Haiv(£2), let us set f = divep and F = —¢ in (2.22). In this case, the
solution w is equal to 0 a.e., since the right-hand side of (2.22) vanishes for any
v € H{ (). Then inequality (2.27) implies

Wn,,(¢) < MV, tmllp2(0)a — 0 as m — 0,

hence concluding that the sequence (Di,)men is limit-conforming.

Note that, if we now assume that Vp,, un, converges only weakly (instead of strongly)
in LQ(Q)d to Vu, the same conclusion holds. Indeed, the other hypotheses on
(D) men are sufficient to prove that Vo, w., actually converges strongly in L?(£2)?
to Va. It suffices to observe that

lim (f(z)IIp,, um(x) — F(x) - Vp,, um(x))de

m—»00 o
- [ (@yte) - F@)- Va(@)de.
2
Then we take v =¥ in (2.22) and v = u,, in (2.23), this leads to

lim A(x)Vp,, um(x) - Vp,, um(x)de = /Q A(x)Vu(x) - Vu(x)de.

m—»00 0

In addition to the assumed weak convergence property of Vp,, tm, this proves

lim A(x)(Vp,,um(x) — Va(x)) - (Vp,,um(x) — Va(x))de = 0,

m— 00 7}

and the convergence of Vp, unm to V@ in LQ(Q)d follows.

2.1.3 On the notions of consistency and stability

Theorem 2.28 gives a control of the approximation error thanks to the GD-
consistency indicator Sp, the limit-conformity indicator Wp and the coer-
civity indicator Cp. This theorem yields the convergence of the GDM for
sequences of GDs that are GD-consistent and limit-conforming, as stated in
Corollary 2.31 below. Can this be re-stated as the usual

Consistency and Stability = Convergence (2.40)

statement, well-known in the context of finite difference schemes? The answer
to this question is yes, provided a correct definition of consistency is chosen.

In the classical finite difference setting, the consistency error measures (roughly
speaking) how well the exact solution “fits” into the scheme. Formally, assume
that the equation to be discretised is written under the form Lu = f, and that
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the scheme is under the form Ljpup = fr, = I, f where h denotes the discreti-
sation step and, for a given function g, II;g is the vector whose components
are the values (g(@;))i=1,.. .~ of g at the discretisation points (@;)i=1,... n-.
Then the consistency error for the finite difference scheme is defined by

Chp = LhHhu — fh = Lhﬂhu — Hh(Lu)

In this context, it is well-known that (2.40) holds: indeed, consistency (i.e.
cn — 0 as h — 0) and stability (i.e. L; ' bounded) imply convergence (i.e.
max;=1,.. ~ [ Hp(u) —up|(x;) — 0 as h — 0).

In the finite element context, (2.40) no longer holds under these terms, al-
though the spirit remains the same. The reason for the failure of (2.40) is
that consistency no longer refers to how the exact solution fits into the com-
plete scheme, but only into the discrete equation of the scheme. To be more
explicit, consider the following elliptic problem:

wev, (2.41)
a(u,v) = (f,v), Yvey, (2.42)

where V = H}(02), f € L?(£2), and a is a continuous coercive bilinear form on
V. Consider a finite element scheme for the discretisation of Problem (2.42),
which reads

up € Vi, (2.43)
ap(up,v) = (f,v), Yv €&V, (2.44)

where V}, is a finite dimensional space. In order to measure “how well the
exact solution fits into the scheme”, the consistency error should measure

(i) how far V}, is from V,
(ii) how far kp, is from 0, with
|lan(Ipu, v) — (f,v)|

Kp = max , 2.45
N e Tolly (2:45)

where IT,u is either u itself, or some kind of interpolant of w. In most finite
element textbooks, these two notions have been separated: Property (i) is
measured by the so-called interpolation error, while the term “consistency”
(or asymptotic consistency) only refers to the fact that k, =0 (or k5, — 0 as
h — 0). We shall call this latter property “FEM-consistency” for the sake of
clarity. For the conforming IP; finite element for instance, ap = a, IIpu can
be taken equal to u, and kj, = 0, in which case the finite element scheme is
said to be consistent. However, there are cases where the solution to the PDE
itself cannot be plugged into the scheme’s equation (for instance when using
numerical quadrature), but when an interpolant of this solution needs to be
used; for more on this, see, e.g., [50, Chapter 4] or [88, Chapter 20]. Hence in
the FEM context, (2.40) still holds provided
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Consistency = FEM-consistency and interpolation error control.  (2.46)

For the stability issue in the FEM context, we also refer to [88].

Let us now view a finite element method as a GDM. In this context, the
GD-consistency (see Definition 2.4) together with the limit-conformity (see
Definition 2.2) is sufficient to ensure the consistency of the scheme in sense
(2.46). Indeed, in the context of the GDM, the equivalent of the term rp
defined by (2.45) reads (for F = 0)

/ A(x)Vp(Ipu)(x) - Vpu(z)de — / A(x)Vu(z) - Vpu(x)de
= J& 2

VDUl 2 (0)a

KD

Controlled by Sp(a), see (2.36)
/ AN@)Va(@) - Voo(@)de — | f(@)Tpo(x)de
4 L0 02 _

VDol 20

Controlled by Wp(AVa), see (2.32)

Note that GD-consistency and stability (or coercivity) are not sufficient to
prove the convergence of a general GDM. It is clear that limit-conformity is
inherent in all conforming finite element methods; for non-conforming meth-
ods, it is needed to ensure that the discrete function reconstruction and the
discrete gradient reconstruction are chosen in a coherent way. Hence for the
GDM, we may also write

Consistency and Stability = Convergence, (2.47)
provided
Consistency = GD-consistency and Limit-conformity. (2.48)

There is an additional twist. In (2.47), the stability of a sequence of GDs
amounts to its coercivity, since a bound on Cp and the consistency (as de-
fined by (2.48)) are sufficient to prove the convergence by Theorem 2.28.
However, by Lemma 2.6 the limit-conformity implies the coercivity and thus
the stability. Hence, (2.47) can actually be recast, in the context of the GDM
and with the definition (2.48),

Consistency = Convergence.

The trick, that does not seem to be explicit in most FEM books, is that the
consistency hides a stability requirement.
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2.1.4 Gradient schemes for quasi-linear problems

Here, and in the other sections on quasi-linear problems, we consider the
quasi-linear operator! u +— —div(A(z, u(x))Vu), which is often used to model
non-linear heterogeneous materials. For such an operator, we remain in the
functional framework of the linear case, taking again p = 2 in the definitions
and results of Section 2.1.1.

We consider the following problem:
—div(A(z,w)Vu) = f in £2, (2.49a)

with boundary conditions
w =0 on 012, (2.49Db)

under the following assumptions:

e 2 is an open bounded connected subset of R, d € N*, (2.50a)
e A is a Caratheodory function from 2 x R to M4(R),

(i.e. A(x,s) is measurable w.r.t.  and continuous w.r.t. s),

there exists A, A > 0 such that, for a.e. = € {2, for all s € R,

A(z, s) is symmetric with eigenvalues in [\, A], (2.50b)
o fcL*(N). (2.50c)

Under these hypotheses, a weak solution of (2.49a) is a function @ (not nec-
essarily unique) satisfying:

ue H(2), Vv e HL(9),
/Aa:u ))Vu(z) - Vu(z d:l:—/f (2.51)

Then Problem (2.51) is approximated under Assumptions (2.50) by the fol-
lowing gradient scheme.

Definition 2.34 (GS, quasi-linear problem, homogeneous Dirichlet
BCs). If D = (Xp,,p,Vp) is a GD in the sense of Definition 2.1, then
we define the related gradient scheme for (2.51) by

Find u € Xp, such that, for any v € Xp g,

/ Az, Hpu(x))Vpu(x) - Vpu(x)de = / F(@) Mpv(z)de. (2.52)
[0} o

! Recall that a partial differential operator is said to be quasi-linear if it is linear
with respect to all the highest order derivatives of the unknown function.
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Note that, considering a basis (f(i))i:17,,,,N of the space Xp o, Scheme (2.52) is
equivalent to solving the system of N non-linear equations with N unknowns
A(u)U = B with

N
w= Z Ujg(j)7
j=1

Aij(u) = , A(:c,HDu(:c))Vpg(j)(w) . fo(i)(ac)dcc, (2.53)

Bi = | f(x)[Ipe® (x)de.
2

Standard methods for the approximation of a solution of this system can be
considered, such as the fixed point method A(u(®)U*+1) = B or the Newton
method.

An error estimate between an approximate solution and a weak solution to
(2.52) cannot be stated, since the uniqueness of the solution to neither (2.53)
nor (2.52) is known in the general case. We can nonetheless establish a con-
vergence result on the GDM for quasi-linear models.

Theorem 2.35 (Convergence, quasi-linear problem, homogeneous Di-
richlet BCs). Under assumptions (2.50), take a sequence (Dp,)men of GDs
in the sense of Definition 2.1, which is GD-consistent, limit-conforming and
compact in the sense of Definitions 2.4, 2.5 and 2.8.

Then, for any m € N, there exists at least one uy, € Xp,, o solution to the
gradient scheme (2.52) and, up to a subsequence, IIp, u, converges strongly
in L2(£2) to a solution u of (2.51) and Vp,, uy converges strongly in L?(£2)?
to Vu as m — oo.

In the case where the solution @ of (2.51) is unique, then the whole sequence
converges to u as m — oo in the senses above.

Proof.

By Lemma 2.10, (D,,)men is coercive in the sense of Definition 2.2.

Step 1: existence of a solution to the scheme.

Let D = (Xp,,Ip, Vp) be a GD in the sense of Definition 2.1. Let w € Xp o
be given, and let uw € Xp ¢ be such that

Find v € Xp o such that, Vv € Xp o,

/ Az, Ipw(z))Vpu(x) - Vpu(z)de :/ f(x)Ipv(x)de. (2.54)
2 2

Therefore, u is solution to the square linear system A(w)U = B, where A(w)
and B are defined in (2.53). Let us prove that the matrix A(w) is invertible.
Letting v = u in (2.54), and applying the Cauchy—Schwarz inequality and
Hypothesis (2.50b), we get

AVoullZeaye < 1fll2e) 1 Hpull20) < Ol fllz2 (@) [ Voull 120y,
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where Cp is defined by (2.1) in Definition 2.2. This shows that

Cp
[Voullpz oy < T||f||L2(Q)~ (2.55)

This completes the proof that A(w) is invertible, since (2.55) shows that
A(w)U = 0 implies U = 0. We then can define the mapping F' : RY — RY,
by F(w) = U, with U is the solution of the linear system A(w)U = B. This
mapping is continuous, thanks to the continuity of the coefficients of the in-
verse of a matrix with respect to its coefficients. Moreover, we get from (2.55)
that some norm of U remains bounded, which means that F maps RV into
some closed ball B if RY. Therefore the Brouwer fixed point theorem D.2
proves that the equation F'(U) = U has at least one solution. This proves the
existence of at least one discrete solution to (2.52).

We note that the previous estimates easily show that any solution to this
scheme satisfies (2.55).

Step 2: convergence of IIp  uy, and Vp,  t,.

m

Thanks to the coercivity hypothesis and (2.55), we have

C
IV, |22yt < 57122 (2.56)

We may then apply Lemma 2.15, which states that there exists a subsequence
of (D, Um)men, denoted in the same way, and there exists u € Hg(£2) such
that Vp, u,, converges weakly in L?(£2)? to Vu and IIp,, u,, converges weakly
in L2(£2) to u. Thanks to the compactness hypothesis, once again there exists
a subsequence of the latter one, denoted in the same way, such that IIp  up,
converges in L?(£2) to .

Step 3: proof that @ is a solution to Problem (2.51).

This proof is done by passing to the limit in the gradient scheme (2.52),
considering as test function the following interpolation of a given function
¢ € Hy(92).

Let us define, for a given GD D, Ip : H}(2) = Xp o by

Ing = argmin (| Tov = 9l () + IV00 = Vol g2gape ) -
ve€XD,0

We have
I (Ipp) = ¢l 20y + IVDUIDY) = Vol p2(0)a < Sp(p)

and therefore, by GD-consistency of the sequence (Dy,)men, Hp,, (I, ¢) — ¢
strongly in L?(§2) and Vp,, (Ip,,¢) — Ve strongly in L2(£2)%.

Using Lemma D.9 page 465 (non-linear strong convergence), we infer that
A(, IIp,, um)Vop,, (Ip,, ) — A(-, W)V strongly in L2(2)%. By symmetry of
A and the weak-strong convergence property (Lemma D.8), this shows that
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| Alw. T, 10 (@), u(@) -V, (Ip, ) @)de
2

= , Vo, u(x) - [Alz, Hp,, um(x))Vp,, (Ip, ¢)(x)] de

— , Vu(x) - [Alz,u(x))Ve(x)]de asm — oo

= / Az, u(x))Vu(z) - Vo(x)de. (2.57)
2
Moreover, since IIp, (Ip, @) — ¢ in L?(£2) as m — oo,

/ f(@)p,, (Ip,, ¢)(x)dx — / f(@)p(x)de as m — oo. (2.58)
2 o)

Letting v = Ip, ¢ in (2.52), we can use (2.57) and (2.58) to pass to the limit
and see that @ is a solution to (2.51).

Step 4: strong convergence of Vp, tup,.

Let now prove that Vop, u,, converges to V@ in L?(£2)%. We let v = u,, in
(2.52) and we pass to the limit in the right-hand side. Since @ is a solution to
(2.51), we obtain

lim A, Ip,, um(x))Vp, um(x) - Vp, tn(x)de

m—r 00

@ (2.59)
= / f(@)u(x)dx = / Az, u(x))Vu(z) - Vu(e)de.
I7; fe)

We have
/Q A(@ I, 1 (2))(Vp,, () — V() - (Vp,, s () — ViI() )dae
- /9 A, IIp,, um () VD, Un (X) - V,, Uy (x)de
_ /Q A, I, (2)) Vo, i (x) - Vi(z)dz
- /Q A(@, ITp, () V(@) - (Vp,, tm (@) — Vi(@))de.  (2.60)

By (2.59), the weak convergence of Vp, u,, the strong convergence of
A(+, IIp,, um)VTu (obtained by non-linear strong convergence property, see
Lemma D.9), and the weak-strong convergence lemma (Lemma D.8), we infer
that

/n Az, IIp, um (x))(Vp,, um(x) — Vu(z)) - (Vp,, um(x) — Vu(x))dx

—0 asm — oo.
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The coercivity of A shows that the left-hand side is larger than
A/ |V, tm(x) — Vi(x))|*de.
Q

This quantity therefore converges to 0 and the proof of the strong L?(2)
convergence of the gradients is complete. ]

2.1.5 Gradient schemes for p-Laplace type problems: p € (1, +00)

This section is concerned with PDEs involving non-linearities with respect to
the gradient of the unknown function, not just the unknown function itself
as in Section 2.1.4. The p-Laplace problem is first considered, for which error
estimates in terms of Wp and Sp are established in the same way as error
estimates are provided in Section 2.1.2. Then, in Section 2.1.5, the case of a
Leray—Lions type operator is considered, and the convergence of the GDM is
proved for this model.

As mentioned in the introduction of this monograph, some of the techniques
developed for the GDM are applicable outside this framework. As an illus-
tration of this, the techniques used here to analyse the GDM for p-Laplace
type problems and the discrete functional analysis of B have been adapted in
[58, 59] to a higher order numerical scheme which is not presented under the
form of a gradient scheme.

An error estimate for the p-Laplace problem

We consider in this section the so-called p-Laplace equation:

—div(|Va|P~2Va) = f + div(F) in 2, (2.61a)
with boundary conditions

u =0 on 012, (2.61b)

under the following assumptions:
e (2 is an open bounded connected subset of R? (d € N*), (2.62a)
epc(l,+0) (2.62b)
o fe LV () and F € L7 (2)* with p/ = Ll. (2.62c)

p—

Under these hypotheses, the weak solution of (2.61) is the unique function u
satisfying:
e Wy P(R2) and, for all v € W, P(£2),

\Va(z)|P~2Va(z) - Vo(z)de (2.63)

= [ f(@)v(x)de — | F(x)- - Vu(x)de.
e} fo)
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Definition 2.36 (GS, p-Laplace problem). Let D = (Xp, Ip,Vp) be
a GD in the sense of Definition 2.1. The corresponding gradient scheme for
Problem (2.63) is defined by

Find u € Xp o such that, for any v € Xp,
Vou(x) P 2Vpu(zx) - Vpu(z)de
| 19pu@P2Vu(a) - Vou(e) (2.64)

- [ s@iiv(@)de - [ F@): Vou(a)de,
2 2

The following lemma establishes the existence and uniqueness of the solutions
to (2.63) and (2.64), as well as estimates on these solutions.

Lemma 2.37. Under Hypotheses (2.62), there exists one and only one so-
lution to each of the problems (2.63) and (2.64). These solutions moreover
satisfy

1

IVallze(@yr < (CrpllfllLe (o) + 1 Fll Lo ()a) 7T (2.65)

and
1

IVoup|Le(2ye < (CollfllLe () + 1l Lo ()a) 7T (2.66)

where Cp,, is the continuous Poincaré’s constant in Wol’p(Q), and Cp is
defined by (2.1).

Proof. The existence and uniqueness of @ and up are obtained by noticing
that (2.63) and (2.64) are respectively equivalent to the minimisation problems

u € vzl;g?i(%) (119 /Q |[VolPde — /Q f(@)v(x)dz + /QF(:B) . Vv(m)da:)
(2.67)
and

1
up € argmin <7/ |Vpu(z)|Pde—
pPJa

veEXD0
/ F(@) Tpv(z)dz + / F(z) .va(m)dm). (2.68)
Q Q
This equivalence is a consequence of the inequality

VX, € ERY X+ &P — [xIP —pIxP2x €20,

which follows by writing that the convex mapping H : { — |¢[? lies above
its tangent at x, and by noting that VH(x) = p|x|P~2x. The existence and
uniqueness of the solutions to (2.67) and (2.68) are classical consequence of
standard convex minimisation theorems, see, e.g., [18].

Then inequalities (2.65) and (2.66) follow by taking, in each corresponding
problem, the solution itself as a test function. [
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Theorem 2.38 (Error estimate, p-Laplace problem). Under Hypotheses
(2.62), let w € Wy (82) be the solution of Problem (2.63), let D be a GD in
the sense of Definition 2.1, and let up € Xp o be the solution to the gradient
scheme (2.64). Then there exists Cs > 0, depending only on p such that:

1. Ifpe (1,2,

V@ = Vpupl||rs(ny < Sp(@) + Cs[Wo(|Vul[P~>Vu + F) + Sp(u)’ ]

2—p

2

% |$p@) + [(Cp + Crp)Ifllw ey + I Fll i @a] 77| 7+ (2:69)

2. If p € (2, +00),
||Vﬂ — VDUDHLp(Q)d < Sp(ﬂ) + C5 WD(|Vﬂ|p_2Vﬂ—|— F)

1
_ 1 _\1p—2] 1
+Sp@ [(Croll fll e (@) + I F L (2)0) 7 + Sp(@)]" } - (2.70)
As a consequence of (2.69)—(2.70), we have the following error estimate:
@ — Hpup| ey < Sp(a) + Cp(Sp(w) + ||V — VDUD||LP(Q)d)~ (2.71)

Remark 2.39 (Link with space size of gradient schemes and lower bound).
As in Remark 2.29 (for the case p = 2 and d < 3), if u € W?P(£2) and
|VuP=2Va + F € W' (2)%, Theorem 2.38 gives an error estimate of the
form

O(hy ') if p € (1,2],

O(hp ') ifp> 2,

where hp := hp(W2P(£2) N Wy P (2); W' (2)4) is the space size of the GD
in the sense of Definition 2.22. Note that a lower bound in the spirit of (2.29)
can also be derived.

Proof. Notice that, since f € L¥'(£2), the equation (2.61a) in the sense of
distributions (i.e. taking v € C°(£2) in (2.63)) shows that ¢ = |Vu|[P~2Vu+F
belongs to Wd’i’:,(.Q) defined by (2.5), with divp = —f. The function ¢ is
therefore valid in the definition (2.6) of Wp and we obtain, for any v € Xp g,
setting W = Wp(|VulP—2Vu + F),

% Vou() - (|Va(@)["~*Vi(z) + F(z)) - Tpv(z) f(x)dx

< |IVpoll Loy W.

Use the fact that up satisfies (2.64) to replace the term ITpv f:

/Q Vpu(z) - [|[Va(z)|P*Vu(z) — |Vpu(z) P *Vpu(z)|dz




48 2 Dirichlet boundary conditions
< IVooll Loy W.
Defining

Ipu = argmin (||[[Tpw —@l|pr(0) + [[Vpw — V| Lo (0)a),
weEXp o

we obtain

A(v):=
’/Q Vpu(x) - [|Vplpﬂ(w)|p_2vplpﬂ(w) — |Vpu(w)|p_2vpup(w)]d:v

<NVl ey W

+

/Q Vpu(z) - [|[Volpu(z) [P *Vplpu(z) — |Vu(z)|P *Vu(z)|dx

< IVpvl|Lr(a)a [W+ [ Vo IpulP~*VpIpu — |Vﬂ|p_2Vﬂ||m’(m]
CaAsE p € (1,2].
Thanks to (2.75) in Lemma 2.40 below, we get the existence of Cg depending
only on p such that

Vo Ipuf~*Vplpu — |VaP=*val?, .

< OﬁHVDIDﬂ — va”i?((l)d'
Setting S = Sp(u) defined by (2.2), this leads to

A() < VD0 oy [ W+ 217, (2.72)
We then apply (2.77) in Lemma 2.40 with £ = VpIpu and x = Vpup, and

use Holder’s inequality with exponents 2/p and 2/(2—p). Taking v = Iptu—up,
we get C7 depending only on p such that

HVDIDﬂ — vDuDsz,p(Q)d

2—p

< C7A(IDE - UD)g(”leDﬂ”ip(Q)d + ||VDUD||Z[),p(Q)d)Tv
and thus

IVpIpt — Vpupl|7, (g

2-p

2
< C7 A(Ipt — up) (Vo IpTl[], )0 + [VDunll}, 0)a) 7 -

Plugging (2.72) into this estimate gives Cs depending only on p such that

—  —p-1
IVpIpti — Vpupl| ey < Cs[W+ 5]
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=P
< [IVoIpTll], gya + VDUl 0]

We have ||V@ — Vpup|| (o) < S+|VpIpt— Vpupl|| ey, and Estimate
(2.69) therefore follows from (2.65) and (2.66).

CASE p € (2, +00).
We use (2.74) in Lemma 2.40, Holder’s inequality with exponents p/p’ = p—1

and g%, and (a + b)? < 29(a® + b%) with 6 = 1%2, a = |Vplpu|P~2 and

b= |Vu[P~2. This gives Cy depending only on p such that
[ Vo IpulP~*VpIpu — |Va~ V| 1
< Gy||VpIpt — V| o@)e (Vo IpTll Lo (2ya + [Vl Lo (2)a)" >

This leads to

A(v) <
—_— — _ _ —2
Vv L) [W + CoS[|IVpIntl| po(aye + IV 1o (2)a]” } (2.73)

As before, we take v = Ipu — up. Thanks to (2.78) in Lemma 2.40, we get
the existence of Cy depending only on p such that

||VDIDU - VDUDHZP(_Q)d < CloA(IDﬂ — up).
Using (2.73) we infer

IVplpu — VDUDH]z;(lQ)d < Cio [W + ng[HVﬂHLP(Q)d + ?]p_ﬂ ,

and the proof of (2.70) is complete by invoking (2.65). ]

In the following lemma, we gather a few useful estimates.
Lemma 2.40. Let p € (1,+00) and d € N*. Then
Ve, x € RY,
|[€P72¢ — IxIP7?x| < max(L,p — 1)IE = x| (€72 + [x[P7%), (2.74)
which implies
vp e (1,2], V&, x € RY, [[€P72¢ — [x[P~2x| < 5l€ — x[P~ 1. (2.75)

Moreover, setting Co(p) = p%l for p € (1,2] and Co(p) = 2P~ for p > 2,
there holds

VE x € RY,
Co(p)(IE[772€ = IXIP2x) - (6 = x) > 1€ = xI* (|¢] + Ix[)"~2, (2.76)
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which implies

Vp € (1,2], V& x € RY,

- < (20— 0+ € 0)
(2P (EP + [xI7) =

and

Vp 22, Y€, x €RY, € — x| < 2PTH(EPTE ~ [XIPTEX) - (€ - x). (2.78)

Proof. Estimates (2.74) and (2.75) originally appeared in [21]. Let H(&) =
|E[P=2¢. Tf p > 2 then H € CY*(RY)4 and |[DH(€)| < (p — 1)|¢|P~2 (where DH
is the differential of H and |DH| the norm induced by the Euclidean norm).
Hence, for all £,y € R?,

[H (&) — H(x)| <€ = x|(p—1) max [¢[P2 (2.79)
Celéx]

The proof of (2.74) is complete in the case p > 2 since the mapping s + sP~2 is
non-decreasing, and thus max¢ee o [¢]P~? = max([£[P72, [x[P~2) < (J§[P~2 +
p—2

|I)f(|p <)2, (2.79) remains valid but does directly lead to (2.74). Without loss
of generality, we can assume that 0 < |x| < || (the case where x = 0 is
trivial since the right-hand side of (2.74) is then equal to +00). Let & be the
point in R? at the intersection of the segment (£, ) and of the ball of centre
0 and radius |y| (see Figure 2.1). Since |¢| = |x| we have |H(£) — H(x)| =
|X|p’2|§~f x|. Hence, by the triangle inequality and (2.79) between £ and E,

|H(€) — H(x)| < [H(€) — HE)| + [x[P%|E - x|
< |€ —€](p — 1) max [P+ |x|P72[€ — x|
Celg€]

s

Since p < 2, max i 5 C[P~2 = |€[P~2 = |x[P~2 and therefore

H() = HO)I < [l — & +1€ = xI] IxP2.

The proof of (2.74) in the case p < 2 is complete by noticing that |{ — 5~| +
1€ = x| = 1€ — x|

Let us now prove (2.75). Let nn > 0. If || and || belong to [n, +00), by (2.74)
we have

[IE[P72€ — IxIP*x| < 20P7%|€ — x|. (2.80)
Otherwise, assume that |x| € (0,7]. We have

[[EP726 = IXP2x| < 1P+ < (€= Xl + )P+ P71 (2.81)
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NI

Fig. 2.1. Definition of the additional variable gfor the case p € (1,2).

Combining (2.80) and (2.81) we see that, for all £,y € R? and all 5 > 0,
1617726 = [x[P~2x| < 20P72[¢ = x|+ (1€ = x| + )P~ + 0P

Estimate (2.75) follows by choosing n = [£ — x/.
We now turn to the proof of (2.76). Set A = (|¢[P72¢ — |x|P72x) - (€ — x). By
developing both sides we see that

A= (P = Pl = IxD) + (P72 + IXP=2) (€l Ixl = €-x). - (2:82)

Let us prove that the function f(x) = 2P~! — yP=1 — COQ(p) (z+y)P2(z—vy)
satisfies f/(z) > 0 for all z >y > 0. We have

/ — _ xp—2_i _ T P=3 (g — _ix p—2
f(z)=(p-1) Co(p)(p 2)(x+y)P " (z —y) Co(p)( +y)P

o If 1 < p <2, we write, since Cy(p) =2/(p—1),

Fl@) > (p—1)ar2 — CL(N _o.

o If p>2

F) > p-1a? 2 — o (p— 2+ 9P +y) — ()P,

Co(p)
1

and therefore, since x > y and Cy(p) = 2771,

2
Co(p)

fl@)> (-1 2 - (22)P~2) = 0.

Co(p)

In either case, since f(y) = 0, this shows that, if z >y > 0,

2
Pt — Pt > (x+y)P %z —y).
Co(p) ey
Assuming (without loss of generality) that |{] > |x| and applying the previous
inequality to = |£| and y = |x| gives
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P~ = P = x) > = (el + D720 = xD?. (2.83)

= Co

—~
~—~

p

Let us again take generic numbers x > y > 0. If 1 < p < 2 we can write

2
e - T () Lo (R DI C T V) L (x4 y)P 2.
Co(p)

If p > 2 we have

2
2P 4 P72 > P72 > 02 P (g 4 y)p—2 = (z+ y)p—2.
( Co(p)

Applying these inequalities with = [£| and y = |x|, plugging the result in
(2.82) and using (2.83) leads to

1
A>
~ Co(p)

The proof of (2.76) is complete by writing
(1€ = IxD? +2(€] [x] = € x) = [€1* = 2I€] x| + |xI* + 2I¢] Ix] — 26 - x
=€ -2 x +[x* = € - xI*

Estimate (2.77) is obtained by raising (2.76) to the power p/2 and by using
(€] + [x)? < 2P7L(|€]P + |x|P). Estimate (2.78) follows by writing |€ — x|P =
1€ = xI%1€ = x[P7* < [¢ = x[*(|¢] + x])P~* and by using (2.76). .

(€] + IxD)P=* [(lel = IxD* + 2(1¢] Ix] = € x)] -

Convergence of gradient schemes for Leray—Lions type problems

We now study the convergence of gradient schemes for the non-linear problem

—div a(z,u, Vu) = f in £,

w =0 on 02, (2.84)
under the following assumptions:
epc(1,00) and a: 2 x LP(2) x R* = R? is a Caratheodory
function (2.85a)

(i.e. for a.e. © € {2 the function (u, &) — a(x,u, &) is continuous, and for any
(u,&) € LP(2) x R? the function x +— a(x,u, &) is measurable),

e Ja € (0,400) such that a(x,u,&) - & > a|€|P for a.e. x € 2,
Yu € LP(92), V&€ € RY, (2.85b)
o (a(z,u,&) —a(z,u,x)) - (£—x)>0forae xe 2,
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Vu € LP(02), V&€, x € RY, (2.85¢)
e Jac L (2), I € (0, +0c) such that |a(z,u, £)| < a(x) + pul€P~

for a.e. ¢ € 2, Yu € LP(12), V€ € RY, (2.85d)
o f € LP (), where p/ = ]% (2.85€)

Remark 2.41 (Leray—Lions operator [127]). Note that the dependence of a
on u is assumed to be non-local: a(x,u,-) depends on all the values of u €
LP(£2), not only on u(x). These assumptions cover for example the case where
a(z,u, Vu(z)) = Alu](x)Vu(z) with A : LP(£2) — L>°(§2;S4(R)) as in [43,
66, 140].

These assumptions (in particular (2.85a)) do not cover the usual local depen-
dencies a(x,u(x), Vu(x)) as in the non-monotone operators studied in [127].
However, the adaptation of the following results to this case is quite easy
and more classical, see, e.g., [69, 15, 30, 96, 58] for adaptations of the orig-
inal Leray—Lions techniques to the convergence analysis of various schemes
(some of them based the HMM method of Chapter 13, or the DDFV method
presented in Section 14.2) for local non-monotone operators.

If a function a satisfies (2.85), then the mapping u — —div a(-, u, Vu) is called
a Leray—Lions type operator. Such operators contain the p-Laplace operator
as a particular case, obtained by setting a(x,u, &) = |€|P~2¢. The existence of
at least one solution to (2.84) is shown in [127] under hypotheses (2.85) in the
case where a does not depend on w. In our framework, we say that a function
u is a weak solution to (2.84) if:

e Wy P(0), Yo e Wy P(02),

/Qa(:v,ﬂ, Vu(x)) - Vo(z)dx = /Qf(a:)ﬁ(:c)dm

(2.86)

Remark 2.42. Note that, even if @ does not depend on u € LP({2), the solution
to (2.86) is not necessarily unique. Consider the case where d = 1, 2 = (-1, 2),
f(z) =0for x € (—1,0)U(1,2), f(z) =2 for x € (0,1) and

a(z,u, &) = (min(|€|,1) + max(|€] — 2,0)) £ Ve € R, Yu € L*(92).

&I

Then (2.85b) is satisfied with a = 3, (2.85c) is satisfied since a is non-
decreasing with respect to & and (2.85d) is satisfied with @(x) = 0 and p = 1.
Then the function u(x) = a(z+1) for z € (=1,0), a+ (1 —z) for z € (0,1),

a(2 — z) for z € (1,2) is solution to (2.86) for any value « € [1,2].
The hypothesis that a is strictly monotone, which may be expressed by

(a(m,u,é) - a(w, qu)) : (E - X) > Oa (2 87)
for a.e. © € 2, Yu € LP(£2), V&€, x € R? with € # x, '
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is only used to prove the strong convergence of the reconstructed gradient (see
theorem below). We now define the gradient scheme for Problem (2.84) .

Definition 2.43 (GS, Leray—Lions type problems). If D = (Xp o, IIp, Vp)
is a GD, then we define the related gradient scheme for (2.84) by

Find w € Xp,o such that, Vv € Xp o,

/ a(z, IIpu, Vpu(x)) - Vpv(x)de :/ f(x)pv(x)de. (2.88)
0 [0

Theorem 2.44 (Convergence, Leray—Lions type problems). Under
Assumptions (2.85), take a sequence (Dp)men of GDs in the sense of Defini-
tion 2.1, which is GD-consistent, limit-conforming and compact in the sense
of Definitions 2.4, 2.5 and 2.8.

Then, for any m € N, there exists at least one up,, € Xp,, o solution to the
gradient scheme (2.88). Moreover, there exists U solution of (2.86) such that,
up to a subsequence, Ilp, up,, converges strongly in LP(§2) tow and Vp, up,,
converges weakly in LP(£2)? to VU as m — oo.

If we assume that the Leray—Lions type operator a is strictly monotone in
the sense of (2.87), then Vp, up, converges strongly in LP(£2)% to Vu as
m — 00.

In the case where the solution u of (2.86) is unique, then the whole sequence
converges to u as m — oo in the above senses.

Remark 2.45 (Existence of a solution to (2.86)). Since there exists at least one
sequence of GDs which satisfies the assumptions above (see Remark 2.11), a
by-product of this theorem is the existence of a solution @ to (2.86).

Remark 2.46 (Non-linearity without a lower order term)

In the case where a does not depend on u € LP(2), the proof of the weak convergence
of IIp,,u to a solution of (2.86) does not require the compactness of the sequence
of GDs. In this case the strong convergence results from (2.87) (which gives the
strong convergence of the reconstructed gradients) and from the coercivity and the
GD-consistency of the sequence (Dp,)men.

Proof.
This proof follows the same ideas as in [69, 96]. We start by noticing that, by
Lemma 2.10, (Dy,)men is coercive in the sense of Definition 2.2.

Step 1: existence of a solution to the scheme.

Let D be a GD in the sense of Definition 2.1. We endow the finite dimensional
space Xp ¢ with an inner product (, ) and we denote by |- | its related norm.
We define F' : Xpy — Xp as the function such that, if v € Xp o, F(u) is
the unique element in Xp o which satisfies

Vo€ Xpo, (F(u),0) = /9 a(@, Tpu, Vou()) - Voo(z)de,
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Likewise, we denote by w € Xp o the unique element such that
Yoe Xpoy, (wv)y= [ f(z)Ipv(z)de.
Q

The assumptions on a show that F' is continuous and that, for all u € Xp o,
(F(u),u) >a ||Vpu||1£p(md. By equivalence of the norms || and [[Vp-|| 1, ()4
on Xp,o, we deduce that (F'(u),u) > Cq1]u|P with C11 not depending on w.
This shows that lim,| e <F(|Z)""> = +oo and thus that F' is surjective (see
[127] or [57, Theorem 3.3, page 19]). Note that we could as well use Theorem
D.1, consequence of the topological degree. There exists therefore up € Xp g
such that F'(up) = w, and this up is a solution to (2.88).

Step 2: convergence to a solution of the continuous problem.

Letting v = up,, in (2.88) with D = D,, and using (2.1) and Hypothesis
(2.85b), we get
~1
a ||VDmqu||I£p(Q)d < CDm”fHLP/(.Q)'

Thanks to the coercivity of the sequence of GDs, this provides an estimate
on Vp,_up, in LP(2)% and on IIp, up, in LP(£2). Lemma 2.15 then gives
7 € W, P(2) such that, up to a subsequence, IIp, up, — @ weakly in LP(£2)
and Vp, up, — Vu weakly in L (£2)¢. By compactness of the sequence of
GDs, we can also assume that the convergence of Ilp,  up, to % is strong in
LP(£2) (this strong convergence property is only necessary for coping with the
dependence of a with respect to u).

By Hypothesis (2.85d), the sequence of functions

Ap, (x) = a(z,Ip, up,,,Vp, up,, ())

remains bounded in L”,(Q)d and converges therefore, up to a subsequence, to
some A weakly in LP ()%, as m — oc.

Let us now show that @ is solution to (2.86), using the well-known Minty trick
[132]. For a given ¢ € Wol’p(!?) and for any GD D belonging to the sequence
(D) men, we introduce

Ipp = argmin (|[IIpv — ¢|| 1o (0) + VDV — Vol 10(02)a)
veEXD,0

as a test function in (2.88). By the GD-consistency of (D, )men, letting m —
00 we get

/A(w)-Vgo(w)dw:/ f(@)p(x)de, Yo e W, P(02). (2.89)
2 2

On the other hand, we may let m — oo in (2.88) with up,, as a test function.
Using (2.89) with ¢ = @, this leads to
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lim [ a(z,lIp,up,, Vo, up, (®)) - Vb, up, (x)dz

2 (2.90)
:/ f(x)u(z)dx :/ A(z) - Vu(x)de.
7 o

Hypothesis (2.85¢) gives, for any G € LP(§2),

/ (a(e. ITp, up,, Vo, up, (@) - a(z, Ip, up, , G(@))
N
(Vp,,up,, () — G(z))dz > 0.

Developing the preceding inequality, using Lemma D.8 for the weak-strong
convergences and (2.90) for the convergence of the sole term involving a prod-
uct of two weak convergences, we may let m — oo and we get

/Q(A(a:) —a(z, 7, G(x))) - (Vi(x) — G(z))dx > 0, VG € LP(£2)".

We then set G = V7 + aw in the preceding inequality, where ¢ € C°(£2)¢
and a > 0. Dividing by «, we get

- /Q(A(cc) —a(x,q, Vi(x) + ap(x))) - @(x)dx > 0, Ve € C°(02)?, Ya > 0.

We then let @ — 0 and use the dominated convergence theorem, which leads
to

f/n(A(m) —a(z,w, Vi(z))) - p(x)dz >0, Ve € C(2)%

Changing ¢ into —¢p, we deduce that

| (@) - aa.u Va@) - p(e)de =0, v € C (@)%
o)
and therefore that
A(x) = a(z,u, Vu(zx)), for a.e. x € (2. (2.91)

In addition to (2.89), this shows that @ is a solution to (2.86). This concludes
the proof of the convergence of IIp, up,, to w in LP({2) and of Vp, up,, to
Va weakly in LP(£2)4 as m — oco.

Step 3: Assuming now Hypothesis (2.87), strong convergence of the recon-
structed gradients.

We follow here the ideas of [127]. Thanks to (2.90) and (2.91), we get

liﬁm {a(w, IIp  up, ,Vp, up, (x)) —a(x, p, up, ,Vu(x))
m oo Q

: [vaqu (z) — Va(az)} de = 0.
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Since the integrand is non-negative, this shows that

[a(~, Hpm’u,pm R va qu) — a(-, Hpmu'Dm R VE)]
[Vop, up, —Va] —0in L*(£2), (2.92)

and therefore a.e. for a sub-sequence. Then, thanks to the strict monotonic-
ity assumption (2.87), we may use Lemma 2.47 given below to show that
Vp, up, — Vu a.e. as m — oo, at least for the same sub-sequence. This
shows the a.e. convergence of a(-, IIp, up,, ,Vp, up,, ) Vpup to a(-,u, Vu) -

V. We next recall that, by (2.90) and (2.91),

li_I)n a(z,lIp, up, ,Vp, up, () Vo, up, (x)dx
m oo N

:/ a(z,u, Vu(z)) - Vu(x)de. (2.93)
7

Since a(-, [Ip,, up,,,Vp, up,, ) Vp, up, > 0, we can apply Lemma 2.48 to
get a(-, lIp, up,, ,Vp,up,, ) Vp,up, — a(-,u, Vu)-Vuin L1 (2) asm — oco.
This L!-convergence gives the equi-integrability of the sequence of functions
a(-,IIp, up,,,Vp, up,,) Vp, up,,, which gives in turn, thanks to (2.85b), the
equi-integrability of (|[Vp, up,, |P)men. The strong convergence of Vp  up,,
to Va in LP(§2)¢ is then a consequence of Vitali’s theorem. (]

Lemma 2.47. Let B be a metric space, let b be a continuous function from
B x R? to R? such that

(b(u,8) —b(u,v))- (6 —7) >0, V6 #~v € R%, Yu € B.

Let (tm, B )nen be a sequence in B x R? and (u,3) € B x R? be such that
(b(um, Bm) — b(um,B)) - (Bm — B) — 0 and uy — u as m — oo. Then,
Bm — B as m — 0.

Proof. We begin the proof with a preliminary remark. Let § € R4\{0}.
We define, for all m € N, the function hs,, from R to R by hsm(s) =
(b(wm, B + s8) — b(um, B)) - 6. The hypothesis on b gives that hs,, is an
increasing function since, for s > &/,

hem(s) — hsm(s") = (b(um, B + $8) — b(ty,, B + s'8)) - & > 0.

We prove now, by contradiction, that lim,, . B, = (. If the sequence
(Bm)men does not converge to 3, there exists € > 0 and a subsequence,
still denoted by (By)men, such that s, := |8, — 8| > ¢, for all m € N. Set
O = @::gl. We can assume that, up to a subsequence, that §,, — d as

m — oo, for some § € R? with |§] = 1. Then, since s, > ¢,

Bm_lg

Sm

(b1t Bn) — B(tt, B)) -

= h(s'num(sm) Z hfsnnm(e)
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= (b(um, B +€6m) — b(tm, B)) - Om.

Then, passing to the limit as m — oo,

0= lim i(b(umaﬁm) - b(umvﬂ)) ! (Bm - ﬁ)

m—00 S,

> (b(u, B +¢d) —b(u,B)) - 6 >0,
which is impossible. [

The following result is classical (see [127]). Its proof is given for the sake of
completeness.

Lemma 2.48. Let (F,,)men be a sequence non-negative functions in L'($2).
Let F € L'(£2) be such that F, — F a.e. in 2 and [, Fy,(x)de —
[o F(x)dxz, as m — co. Then, Fr, — F in L'(2) as m — occ.

Proof. The proof of this lemma is very classical. Applying the Domi-
nated Convergence Theorem to the sequence (F' — F,,)" leads to [, (F(x) —
F.(x))Tdz — 0 as m — oo. Then, since |F — F,,,| = 2(F — F,,,) " — (F — F,;,),
we conclude that F,, — F in L'(§2) as m — oo. "

2.2 Non-homogeneous Dirichlet boundary conditions

We now present GDs and GSs for non-homogeneous Dirichlet boundary condi-
tions. To handle non-homogeneous boundary conditions, we need the concept
of trace of functions in W1?(£2), for p € (1,+00). The existence of the trace
operator y : WhP(02) — Wlf%’p(aﬂ) requires more regularity on {2 than in
Section 2.1, and this open set is therefore assumed here to have a Lipschitz
boundary.

2.2.1 Gradient discretisations

Definition 2.49 (GD, non-homogeneous Dirichlet BCs).
A gradient discretisation D for non-homogeneous Dirichlet conditions is de-
fined by D = (Xp,Zp,s, p,Vp) where:

1. the set of discrete unknowns Xp = Xp o ® Xp,o is the direct sum of two
finite dimensional spaces on R, corresponding respectively to the interior
unknowns and to the boundary unknowns,

2. the linear mapping Ip o : Wl_%’p(aﬂ) — Xp.o is an interpolation ope-

rator for the trace yu of the elements u € WLHP(£2),

. the function reconstruction IIp : Xp — LP(§2) is linear,

. the gradient reconstruction Vp : Xp — LP(£2)? is linear,

. the operator Vp is such that ||-||p == [Vl 1y oya is a norm on Xpp.

v A Qo
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Remark 2.50 (Domain of Ip p). The interpolation operator Ip g does not

necessarily need to be defined on the whole space WiwP (092). If g is the
boundary condition of the considered problem (e.g., in (2.98b)), we only need
to define Zp pg. Hence, if g has a better regularity than Wl_%’p(aﬁ), we can
take advantage of this to find a simpler definition of Zp 5g, see for example
Remark 13.4.

In that case, the GD-consistency (Definition 2.51) is required only for func-
tions ¢ € WHP(£2) such that ¢ has the additional regularity supposed when
constructing Zp 5.

Coercivity, limit-conformity, compactness and piecewise constant re-
constructions are defined as in the homogeneous case, by considering Def-
initions 2.2, 2.5, 2.8 and 2.12 on the spaces Xp . The definition of GD-
consistency needs to be modified and implicitly imposes assumptions on the
interpolation operator.

Definition 2.51 (GD-consistency, non-homogeneous Dirichlet
BCs)

If D is a gradient discretisation in the sense of Definition 2.49, define
Sp : WHP(£2) — [0, +00) by

Vo € WHP(2),
S5p(p) = min {HHDU —@llere) + IV = Velo@e = (2.94)

v € Xp such that v —Zp gyp € XDyo}.

A sequence (Dp,)men of gradient discretisations in the sense of Defini-
tion 2.49 is GD-consistent if

Yo € WHP(02), lim Sp, (p) = 0. (2.95)

m—0oQ

Since coercivity, limit-conformity and compactness are the same as for homo-
geneous Dirichlet conditions, the characterisation Lemmas 2.7, 2.17 and 2.21
may also be used in the context of non-homogeneous Dirichlet conditions.
Likewise, the limit-conformity or compactness of a sequence of GDs implies
its coercivity, by Lemmata 2.6 and 2.10.

It will be useful, as in the homogeneous case, to also have a characterisation
of the GD-consistency using dense subsets of W!P({2). This characterisation
however requires an additional assumption on the trace interpolation operator,
stating that for any given trace on 92, we can find elements in Xp which
interpolate this trace and have a norm controlled by this trace.

Lemma 2.52 (Equivalent condition for GD-consistency, non-homo-
geneous Dirichlet BCs). Let (Dy,)men be a sequence of gradient discreti-
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sations in the sense of Definition 2.49. We assume that there exists C1o such
that, for any m € N and any o € WHP(£2),

min{||IIp,, v 1oy + VDLVl Lo (2)e v = Ip,,.07% € XD o} (2.96)
< Ci2 ”‘inl,p(g) .

Then (D) men is GD-consistent in the sense of Definition 2.51 if and only if
there exists a dense subset Wy in WLP(82) such that

Ve W, lim Sp, () =0, (2.97)

Remark 2.53. Note that (2.96) is almost a requirement to GD-consistency in
the sense of Definition 2.51. Indeed, for any ¢ € W1P(£2), taking and element
in Xp +Ip o7 € Xp,o which realises the minimum Sp(p), we see that

min{HHDUHLp(Q) + ||VDU||LP(Q)CI ;v —TIpoyp € Xpo}
< Sp(p) + ||S0||W1,p(9) :

Hence, if (Dp,)men is GD-consistent in the sense of Definition 2.51, estimate
(2.96) is asymptotically true as m — oo since Sp,, (¢) — 0.

Proof. The proof is very similar to the proof of Lemma 2.16 and we obviously
only have to prove the “if” direction (the “only if” holds with W, = WP (£2)).
Let o € W'P(£2) and ¢ > 0. Take ¢ € W, such that ||¢ — ¢|lwire) < e
Let v € Xp,_ o0+ Ip,, 0y which realises the minimum in Sp, (1) and let
w € Xp, 0+ Ip,, 0v(p — ¢) which realises the minimum for ¢ — 1 in the
left-hand side of (2.96). Then v+ w € Xp,, o + Ip,, o7 and, therefore,

m m

5p,,(¢) < MIp,,(v+w) = @l Loy + VD, (v + w) = V| o)
< [fp,,v — 7/)||LP(Q) +Vp,,v - Vz/)”Lp(Q)d
+Ip,, wll o) + IVD, Wil o)
+ 1l — wHLP(_Q) + Ve — vaLP(Q)d
< 5p,, () + (Cr2 + 1) [lo — ’(/J”WLP(.Q)
< Sp,, (%) + (Cr2 + 1)e.

The conclusion follows as in the proof of Lemma 2.16. [

The convergence properties imposed on the interpolant Zp 5 are somewhat
hidden in the definition of GD-consistency. The following lemma shows that
the formulation (2.101) of gradient schemes for non-homogeneous Dirichlet
conditions make sense (for linear as well as non-linear problems): sequences
of solutions to the gradient schemes indeed converge, up to a subsequence, to
a function that has the required trace on the boundary of (2.
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Lemma 2.54 (Regularity of the limit, non-homogeneous Dirichlet
BCs). Let (Dy)men be a sequence of gradient discretisations in the sense of
Definition 2.49, that is limit-conforming (Definition 2.5) and GD-consistent
(Definition 2.51). Let g € Wlf%’p(aﬂ). Let u,, € Xp, be such that
Um — Ip,.09 € Xp,.0 and ([[Vp,,unl ps(0)e)men remains bounded. Then
there exist a subsequence of (D, Um)men, denoted in the same way, and
u € WHP(Q) such that yu = g and, as m — oo, IlIp, um, converges weakly in
LP(2) to u and Vp,, um converges weakly in LP(£2)¢ to Vu.

Proof. Notice first that, by Lemma 2.6, (D, )men is coercive in the sense of
Definition 2.2.

Let g € W1P(§2) such that vg = g. By GD-consistency of (D, )men, We can
find vy, € Xp,, 0+Zp,, 09 such that IIp_ v, — gin L?(£2) and Vp_ v, — Vg
in LP(£2)%.

By assumption, wy, — Um = (Um —Ip,,.09) + (Ip,,.09 — Um) belongs to Xp,, o,
and [[Vp,, (um — vm)||1s(0)e remains bounded. Hence, by recalling that the
coercivity and limit-conformity of (D,,)men are identical to the coercivity
and limit-conformity of the underlying gradient discretisations for homoge-
neous Dirichlet conditions (i.e. with Xp_ o instead of Xp ), Lemma 2.15
shows that, up to a subsequence, IIp, (um — Um) — U weakly in LP(£2) and
Vb, (U — vm) — VU weakly in LP(£2)%, where u € Wy P(£2).

The properties of (v )men then show that IIp u, = Ip,, (um — vm) +
IIp, vy — u+g=:uin LP(£2), and Vp_tpm = Vp,_, (Um —Vm) + VD, Uy —
Vi + Vg = Vu in LP(£2)%. The function u = @ + g belongs to WP (£2) and
has trace yu = yu+vg=0+g = g. n

2.2.2 Gradient schemes for linear problems

Here, we take p = 2 in all the definitions of the previous section. We consider
the linear problem defined in its strong form by:

—div(AVa) = f + div(F) in £2, (2.98a)

with boundary conditions
T =g on 02, (2.98b)
under similar assumptions as in Section 2.1.2; adapted to the non-homogeneous

BCs:

e (2 is an open bounded connected subset of R? (d € N*),
with Lipschitz boundary, (2.99a)

e / is a measurable function from {2 to the set of d x d

symmetric matrices and there exists A\, A > 0 such that,

for a.e. € 2, A(z) has eigenvalues in [A, A, (2.99b)
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o f€ L), FeL*2)?, ge H/?0). (2.99¢)

Under these hypotheses, the weak solution of (2.98) is the unique function @
satisfying:

u € {w € HI(Q)W( ) _g}v Vo € HO(
/ @) V(@) - Vo(z)ds / 2)dz — / F(z) - Vo(z)dz.
(9]

The GDM applied to Problem (2.100) yields the following gradient scheme .

Definition 2.55 (GS, non-homogeneous Dirichlet BCs). If D = (Xp =
Xpo® Xp,0,Zp,s, D, VD) is a gradient discretisation in the sense of Defi-
nition 2.49, then we define the related gradient scheme for (2.100) by

(2.100)

Find u € Ipag + Xp,o such that, for any v € Xpp,
/ A@)Vou(e) - Vpu(z)de (2.101)

/f VIpv(x dmf/F - Vpu(x)dx

The following theorem states error estimates for the GS for non-homogeneous
Dirichlet boundary conditions. This theorem yields a convergence result (not
explicitly stated) similar to Corollary 2.31.

Theorem 2.56 (Error estimate, non-homogeneous Dirichlet BCs).
Under Hypotheses (2.99), let T be the solution of (2.100) (remark that since
f € L*(92), one has AVu + F € Ha;y(02)).

Let D be a GD in the sense of Definition 2.49. Then there exists one and
only one up € Xp solution to the GS (2.101), and it satisfies the following
inequalities:

1 _
||Vﬂ — VDUDHLZ(Q)d < X [WD(AVH + F) + (/\ + A)Sp(ﬂ)] , (2.102)

[CoWp(AVu+ F) + (CpA+ A)Sp(w)],  (2.103)

> =

@ — Hpup| r2(2) <

where Cp, Sp and Wp are defined by Definitions 2.2, 2.51 and 2.5.
Remark 2.57. A lower bound in the spirit of (2.29) could also be stated.

Proof. Reasoning as in the proof of Theorem 2.28, we arrive at (2.33) for
any v € Xpo. We then define
Ipu = argmin (HHDUJ — ﬂ”Lz(Q) + ||pr — Vﬂ”LZ(Q)d),
w€Ip,09+XDp,0

and we notice that, by definition (2.94) of Sp, (2.35) is still valid. Moreover,
the vector v = Ipu — up belongs to Zp 99 + Xpo+ (—Ip.ag+ Xpo) = Xpo
and can therefore be used in (2.33). The rest of the proof is then exactly as
in the proof of Theorem 2.28. [
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2.2.3 Gradient schemes for quasi-linear problems

We still consider p = 2 in the definitions and results of Section 2.2.1, and we
deal with (2.49a) with non-homogeneous Dirichlet boundary conditions, that

1S:

—div(/l(wﬁ)vaz =[in £, (2.104)
u =g on of.

We consider the same assumptions as in Section 2.1.4, adapted to the non-
homogeneous boundary conditions:

e (2 is an open bounded connected subset of R? (d € N*),

with Lipschitz boundary, (2.105a)
e /A is a Caratheodory function from 2 x R to My(R),

(i.e. A(x,s) is measurable w.r.t.  and continuous w.r.t. s),

there exists A, A > 0 such that, for a.e. € 2, for all s € R,

A(z, s) is symmetric with eigenvalues in [\, )], (2.105b)
o fe L), ge HY?(80). (2.105¢)

Under these hypotheses, a weak solution to (2.104) is a function @ (not nec-
essarily unique) satisfying:

7 € {we H'(2),7(w) = g}, Yv € Hy(£2),

/ Az, W(z))Va(z) - Vo(z)de = / F(@)o(@)dz. (2.106)
«? 0]

This problem is approximated by the following gradient scheme.

Definition 2.58 (GS, quasi-linear problem, non-homogeneous Dirich-
let BCs). If D = (Xp = Xp,o® Xp.9,Zp,o,Ip,VD) is a GD in the sense
of Definition 2.49, then we define the related gradient scheme for (2.106) by

Find u € Ip pg + Xp,o such that, for any v € Xp o,

/ A, Tpu(@))Vou() - Voo(a)de = / f@)Ipo(@)de. 107
Q o)

This scheme leads to a non-linear system of equations under the form A(u)U =
B, similar to (2.53). We then have the following convergence result.

Theorem 2.59 (Convergence, quasi-linear problem, non-homogene-
ous Dirichlet BCs). Under Assumptions (2.105), let (Dp)men be a se-
quence of GDs in the sense of Definition 2.49, which is GD-consistent, limit-
conforming and compact in the sense of Definitions 2.51, 2.5 and 2.8.

Then, for any m € N, there exists at least one u,, € Xp_ solution to the

m

gradient scheme (2.107) and, up to a subsequence, IIp, u,, converges strongly
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in L2(02) to a solution @ of (2.106) and Vp,, u,, converges strongly in L?(£2)?
to Vu as m — oo.

In the case where the solution @ of (2.106) is unique, then the whole sequence
converges to u as m — oo in the senses above.

Proof. Take a lifting g € H'({2) of g, that is, g is such that v = g. For a
gradient discretisation D in the sense of Definition 2.49, define

Ipg= argmin  (|[IIpv—gl2(2) + VDU — Vil 12(0)e) -
vELp,09+XDp0

Thanks to Definition 2.51, as m — oo, Ilp, Ip, g converges strongly in L?(§2)
to gand Vp, Ip, g converges strongly in L2(£2)¢ to Vg. Then, for any solution
u to (2.107), writing w = u — Ipg € Xp o, we have

Yv € XD70,
/Q A, ITp(w + Ing) (@) Vow(@) - Vou(a)de

:/ f(w)ﬂpv(w)dw—/ Az, IIp(w + Ipg)(x))Vplpg(x) - Vpu(x)de.
Q 7

The remaining of the proof is then similar to that of Theorem 2.35, reasoning
on w instead of w. m
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Neumann, Fourier and mixed boundary
conditions

The previous chapter presents the concepts of GDM for Dirichlet boundary
conditions. Here, we show how these concepts must be modified and/or ex-
panded to deal with other kinds of boundary conditions, namely Neumann,
Fourier (or Robin), and mixed Dirichlet/Neumann. Each section is concerned
with one particular form of boundary condition, and its structure is similar
to the presentation adopted for Dirichlet boundary conditions: the notion of
GD for the considered boundary conditions is first presented; it is followed by
an analysis of the convergence of the corresponding GSs for some (linear or
quasi-linear) elliptic PDEs.

The particular choices of definitions, and some of the resulting lemmas, are
consequences of the abstract setting presented in Appendix A. Assimilating
this appendix beforehand is however not mandatory, unless the reader wants
complete proofs of all the results presented here. Since these proofs follow
the same ideas as for homogeneous Dirichlet boundary conditions, the inter-
ested reader can alternatively attempt to write self-contained proofs, without
reference to the results in Appendix A.

In all this chapter, {2 is assumed to have a Lipschitz-continuous boundary,
and p € (1,+00).

3.1 Neumann boundary conditions

3.1.1 Gradient discretisations
Homogeneous Neumann boundary conditions

With the choice of spaces and operators described in Section A.1.2, the defi-
nitions and results of Section A.2 lead, with Pp = IIp and Gp = Vp, to the
following concept of GDs for homogeneous Neumann boundary conditions.

Definition 3.1 (GD, homogeneous Neumann BCs). A gradient discreti-
sation D for homogeneous Neumann conditions is D = (Xp, [Ip,Vp) where:
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1. the set of discrete unknowns Xp is a finite dimensional vector space on
R,
2. the function reconstruction IIp : Xp — LP(§2) is linear,
3. the gradient reconstruction Vp : Xp — LP(2)? is linear,
4. the operators Vp and IlIp are such that
PN\ 1/p
) (3.1)

lollp = <|VDU|I[7,P(Q)d + ‘/ﬂ pv(z)de

is a norm on Xp.

Remark 3.2. The choice of ||v||p, involving the integral of ITpv rather that its
LP({2) norm, is justified by the way GSs for Neumann problems are written,
and by the a priori estimates that can be established on the approximate
solution (cf Section 3.1.3).

The following discrete properties of gradient discretisations for Neumann
problems, ensure the convergence of the associated gradient schemes.

Definition 3.3 (Coercivity, homogeneous Neumann BCs)
If D is a gradient discretisation in the sense of Definition 3.1, define

1I
Cp = max M. (3.2)
veXp\{0} lvl|o

A sequence (Dy,)men of gradient discretisations in the sense of Defini-
tion 3.1 is coercive if there exists C'p € R, such that Cp,, < Cp for
all m € N.

Definition 3.4 (GD-consistency, Neumann BCs)

If D is a gradient discretisation in the sense of Definition 3.1, define
Sp : WHP(02) — [0, +00) by

Yo € WhP($2),

. 3.3
Sp(¢) = min (1o = pllzsce) + Vo0 =~ Velluwa) .

A sequence (D, )men of gradient discretisations in the sense of Defini-
tion 3.1 is GD-consistent if

Vo € WHP(82), lim Sp, () = 0. (3.4)

m—r0oQ
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Definition 3.5 (Limit-conformity, homogeneous Neumann
BCs)

For p € (1,400), let p’ = 1% and

Wi o(2) = {p € LY ()% : divg € L7 (£2), 1u(e) = 0},

where vy, (¢p) is the normal trace of ¢ on 942 (see Section 3.1.2). If D
be a gradient discretisation in the sense of Definition 3.1, define Wp:

W 5(£2) = [0, +00) by

Ve € Wi o(92)

Wo(p) = :

max —
veXp\{0} ||’UH'D

/Q Vopu(x) - p(x)de (3.5)

+/QH'D’U(IE)diV(p(£E)d£B .

A sequence (D, )men of gradient discretisations in the sense of Defini-
tion 3.1 is limit-conforming if

Ve € Wi, 0(£2), lim Wp, (@) =0. (3.6)

Definition 3.6 (Compactness, homogeneous Neumann BCs)

A sequence (Dp,)men of gradient discretisations in the sense of Def-
inition 3.1 is compact if, for any sequence w,, € Xp, such that
(lum||D,, )men is bounded, the sequence (IIp, tum)men is relatively
compact in LP({2).

Note that the definition of piecewise constant reconstruction for a gradi-
ent discretisation for homogeneous Neumann boundary conditions is the same
as Definition 2.12, replacing the space Xp o by Xp.

As in the case of Dirichlet boundary conditions (see Lemma 2.16), the GD-
consistency (resp. the limit-conformity) of sequences of gradient discretisa-
tions in the case of homogeneous Neumann BCs needs only be checked on a
dense subset of W1P(£2) (resp. Wolp/(ﬂ))

Lemma 3.7 (Equivalent condition for GD-consistency, Neumann BCs).
A sequence (D )men of gradient discretisations is GD-consistent in the sense
of Definition 3.4 if and only if there exists a dense subset W in WP (§2) such
that

Yo € Wy, n}gnoo Sp,, (¢) =0.
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Proof. Apply Lemma A.13 with the choices in Section A.1.2. [

As for Dirichlet BCs, the limit-conformity or compactness of a sequence of
gradient discretisations imply its coercivity.

Lemma 3.8 (Limit-conformity implies coercivity, homogeneous Neu-
mann BCs). Any sequence of gradient discretisations that is limit-conform-
ing in the sense of Definition 3.5 is also coercive in the sense of Definition

3.8.

Proof. Apply Lemma A.8 with the choices in Section A.1.2. m

Lemma 3.9 (Compactness implies coercivity, homogeneous Neumann
BCs). Any sequence of gradient discretisations that is compact in the sense
of Definition 3.6 is also coercive in the sense of Definition 3.5.

Proof. Apply Lemma A.16 with the choices in Section A.1.2. [

Lemma 2.21 states a compactness criterion in the case of Dirichlet boundary
conditions; we state below a similar criterion for the case of Neumann bound-
ary conditions, which holds under an additional regularity property on the
domain (2. Contrary to the case of Dirichlet boundary conditions, we may no
longer extend the functions by 0 outside of §2, and therefore the criterion can
only involve “interior” translations.

Lemma 3.10 (A criterion for compactness). Let {2 be an open subset of
R satisfying the “segment condition”: there exist open sets (U;)i=1,..r and
non-zero vectors (&;)i=1,...x such that 02 C Uk U; and, for alli=1,...,k
and all t € (0,1], 2NU; +t& C 0.

Let p > 1 be given and (um)men be a bounded sequence in LP({2) such that

lim‘ﬁ\ﬁo SUPeN ”um( + 5) - Um”Lp(Q&) =0 (3 7)
(where Q¢ = {z € 2,[z,x + & C 2}). :

Then (Wm)men s relatively compact in LP({2).

Proof.

Let us first notice that, for any w relatively compact in {2, we have w C {2¢ for
|€] small enough. Hence, by the classical Kolmogorov compactness theorem,
there exists u € LY. (£2) and a subsequence, still denoted by (tm, )men, such

|
that u,, = v in Lﬁ:{()). Since (Um)men is bounded in LP(§2), Fatou’s lemma
shows that u belongs in fact to LP(§2). We infer that (u,, —u)men is bounded
in LP(£2) and satisfies (3.7). Reasoning on wu,, — u rather than u, we can
therefore assume that © = 0 and we have to prove that u,, — 0 in LP({2).
The main issue is of course to estimate this convergence on a neighbourhood
of 012.

Let (U;)i=1,...x and (&;)i=1,...x be given by the segment condition for 2. For
any i € {1,...,k} and any r € (0,1], K;, = 2NU; +r€; is a compact subset
of 2. Moreover, for any m € N, by the change of variable y = x 4 r§;, we get
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/ |t () [Pde < / lum (y — r&)|Pdy
NU;

QNU;+r€;

< v / t (3 — 7€2) — ()P ly
NU;+r€;

w270 [ () Py,
Kinr
For any z € 2 NU; and any s € [0,1] we have (z + r&;) — sr& = z+ (1 —
s)r€; € £2, by definition of z if s = 1 and by definition of &; if s < 1. Hence,
N2NU; +r& C (2_¢, and the preceding inequality gives

/{  lum(@Pde < 2 ) 2 / i () Py
nuU;

K r

where 7(§) = sup,,en [|um (- +&) — um||1£p(9£) tends to 0 as || — 0. Summing

all these inequalities on ¢ = 1,...,k and defining the open set U = UF_, U;,
neighbourhood of 942 in R?, we obtain

k k
/ fum(@)[Pdz < 2271 (=) + 201y / i () Pdy.
nNU i=1 i=1 Kq',,r

Let us now take ¢ > 0 and fix » € (0,1] such that, for all ¢« = 1,...,k,
n(—r&;) < e. Since, for any i, K;, is a compact subset of 2 we have
Jr.  |um(y)Pdy — 0 as m — oo and therefore

limsup/ |ty () [P < 2P ke,
onu

m—o0

The proof is completed by letting ¢ — 0. =

Non-homogeneous Neumann boundary conditions

The framework of gradient discretisations for diffusion problems with non-
homogeneous Neumann boundary conditions is now presented. It corresponds
to the abstract setting of Appendix A with the choice of spaces and operators
described in Section A.1.3, provided that Ppu = (IIpu, Tpu) and Gpu =
Vopu.

We recall that {2 is a connected open bounded subset of R? with Lipschitz
boundary, and that p € (1, 400).

Definition 3.11 (GD, non-homogeneous Neumann BCs). A gradient
discretisation D for non-homogeneous Neumann BCs D is defined by D =
(XD,HD,TD,VD) where:

1. the set of discrete unknowns Xp is a finite dimensional vector space on
R

7
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NS

. the function reconstruction Ip : Xp — LP(£2) is linear,
3. the trace reconstruction Tp : Xp — LP(912) is linear; it provides, from
an element of Xp, a function over 912,
. the gradient reconstruction Vp : Xp — LP(2)? is linear,
. the operators Vp and IIp are such that
PN\ 1/p
) (3.8)

Gy B

lollp = <|VDU|I[7,P(Q)d + ‘/ﬂ pv(z)de

is a norm on Xp.

The discrete properties of gradient discretisations for Neumann problems,
that ensures the the convergence of the associated gradient schemes, are the
following. The GD-consistency and piecewise constant reconstruction
are still defined by Definitions 3.4 and 2.12 (replacing Xp ¢ with Xp in the
latter definition).

Remark 3.12 (Variant of the GD-consistency for non-homogeneous Neumann BCs)
Following the abstract setting in Appendix A, with the choices made in Section
A.1.3 the definition A.12 of GD-consistency would lead us to consider a different
Sp than in Definition 3.4; namely, Sp would be defined by (3.52), as for Fourier
BCs. Keeping the same definition (3.3) of Sp for non-homogeneous Neumann BCs
as for homogeneous Neumann BCs offers a variant to the choice made in Appendix
A. Note that Lemma A.13 (checking the GD-consistency using a dense subset of
WP(02)) is still valid with this variant, upon minor modifications in the proof.

If approximating the trace is not a necessity, this definition (3.3) of Sp is sufficient
to analyse gradient schemes for non-homogeneous Neumann problems. To recover
a strong approximation of the trace, Sp needs to be changed into (3.52) — see
Proposition 3.24.

Definition 3.13 (Coercivity, non-homogeneous Neumann

BCs)

If D is a gradient discretisation in the sense of Definition 3.11, define

1I T
Cp= max (max{ I DUHLP(Q), |Tpvl|Lr00) }) . (3.9)
vEXp\{0} [vllp [vllp

A sequence (D, )men of gradient discretisations in the sense of Defi-
nition 3.11 is coercive if there exists Cp € Ry such that Cp,, < Cp
for all m € N.
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Definition 3.14 (limit-conformity, non-homogeneous Neu-
mann BCs)

For p € (1,400), let p’ = 1% and

WL 5(2) = {p € LY ()" : dive € LF(2), (ep) € L¥ (902)},
(3.10)
where vy, (¢p) is the normal trace of ¢ on 912 (see Section 3.1.2). If D
is a gradient discretisation in the sense of Definition 3.11, define Wp:

W 5(£2) — [0, 4+00) by
Ve € W, 5(12),

Wo(p) =

max ——— Vou(z) - o(z) + Hpv(z)dive(z)) de
veXp\{0} ||v]p /Q( po(x) - p(x) pv(z)dive(x))

- / Tou(@) () (@)dy(@)| (3.11)
ofn

A sequence (Dp,)men of gradient discretisations in the sense of Defini-
tion 3.11 is limit-conforming if

’

Vo € WE (2), lim Wp,, (¢) = 0. (3.12)

m—00

Note that in the case of Dirichlet boundary conditions, the definition of limit-
conformity ensures that the dual operator to Vp_, approximates the contin-
uous divergence operator, whereas in the case of non-homogeneous Neumann
boundary conditions, it ensures both this duality and the fact that Tp,, ap-
proximates the continuous trace operator (see also Lemma 3.21 below).

Definition 3.15 (Compactness, non-homogeneous Neumann
BCs)

A sequence (D,,)men of gradient discretisations in the sense of Def-
inition 3.11 is compact if, for any sequence u,, € Xp, such
that (||um||D,, )men is bounded, the sequences (IIp, Um)men and
(Tp,, tm)men are relatively compact in LP(£2) and LP(912), respec-
tively.

Remark 8.16 (Alternative definition of compactness)

As for Dirichlet problems, compactness of the sequence of gradient discretisations is
only useful when dealing with non-linearities in the PDE. If these non-linearities do
not involve the trace of the solution, then the compactness property can be relaxed
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by only requesting the weak relative compactness of (Tp,, um)men in LP(02); see,
e.g., the proof of Theorem 3.35.

As for other boundary conditions, the limit-conformity or compactness imply
the coercivity in the case of non-homogeneous Neumann BCs.

Lemma 3.17 (Limit-conformity implies coercivity, non-homogeneous
Neumann BCs). Any sequence of gradient discretisations that is limit-
conforming in the sense of Definition 3.14 is also coercive in the sense of
Definition 3.13.

Proof. Apply Lemma A.8 with the choices in Section A.1.3.
u

Lemma 3.18 (Compactness implies coercivity, non-homogeneous Neu-
mann BCs). Any sequence of gradient discretisations that is compact in the
sense of Definition 3.15 is also coercive in the sense of Definition 3.13.

Proof. Apply Lemma A.16 with the choices in Section A.1.3. [

Lemma 3.19 (Equivalent condition for limit-conformity, non-homo-
geneous Neumann BCs). Let (D,,) be a sequence of sequence of gradient
discretisations. Then (Dy)men is limit-conforming in the sense of Definition
3.14 if and only if it is coercive in the sense of Definition 3.13, and there
exists a dense subset W, in I/Iéf\:’a(ﬂ) (endowed with the norm |||, .»» =

iv,0(92)
”‘PHLP’(Q)d + ”diVSo”LP’(Q) + ||7n(90)||LP’(8.O)) such that
Vo € W, lim Wp, () =0. (3.13)
m— o0
Proof. Apply Lemma A.9 with the choices in Section A.1.3.
m

Remark 3.20 (A possible choice for the dense subset W, ). Lemma 3.27 in
Section 3.1.2 below shows that the set W,, = C>(R%)? is dense in W, ,(12)
and is therefore an interesting choice to prove the limit-conformity.

The following lemma is the equivalent of Lemma 2.15 for non-homogeneous
Neumann conditions.

Lemma 3.21 (Regularity of the limit, non-homogeneous Neumann
BCs). Let (Dm)men be a limit-conforming sequence of gradient discretisa-
tions in the sense of Definition 3.14. Let uy, € Xp,, be such that (||[um||p, Jmen
is bounded. Then there exists u € WP(£2) such that, up to a subsequence,
IIp, um — w weakly in LP((2), (3.14)
Tp,, tm — yu weakly in LP(02), (3.15)
Vo, um — Vu weakly in LP(£2)%. (3.16)
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Proof. Apply Lemma A.11 with the choices in Section A.1.3.

Remark 3.22 (Convergence of the trace). This lemma shows in particular that,
for a sequence (Dy,)men of limit-conforming GDs, if u,, € Xp, is such that,
for some u € WYP(92), Ilp, uy, — u weakly in LP(£2) and Vp, u, — Vu
weakly in LP(£2)%, then Tp, u, — yu weakly in LP(942).

Remark 3.23 (Homogeneous Neumann BCs). In the case of a gradient dis-
cretisation for homogeneous Neumann conditions, a trace reconstruction is
not needed, and Lemma 3.21 is still valid with (3.15) removed.

We complete this section by stating an approximation property of Tp. This
property is useful to deduce error estimates on the traces of gradient scheme
approximations to linear elliptic problems (see Remark 3.31) .

Proposition 3.24 (Approximation property of Tp — Neumann BCs).
Let D be a gradient discretisation in the sense of Definition 3.11. We define,
for o e WHP(02),

w

Sp(¢) = min ([1Tow = 9l () + [ Tow = 19l oo
» (3.17)
190w ~ Vel gy )-
Then, for any v € Xp and any p € WHP(0),

ITo0 =70l o) < Co (1217 D0 = ll ey + VD0 = Vol ogaye)
1 —
+ max (1, Cp,Cp|0| p’) Sp(p).

Remark 3.25. The quantity Sp in (3.17) is actually the measure of the GD-
consistency for Fourier boundary conditions, see (3.52).

Proof. We introduce

Ing = argmin ([ Tow = ¢l (o) + ITow = 19l 1 00
weXp

+ IV = Vol )

and we notice that

[IpIpe — </7||Lp((z) + Tplpy — ’W’Hm(ag)
+IVoIne = Vol g < Splp).  (3.18)

By definition of C'p and of ||-||5, Holder’s inequality gives, for all w € Xp,
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1Tl Lo oa) < Co (190wl oops + 1217 [ Hpwl ) - (319)
A triangle inequality therefore provides
[Tpv — ’Y<PHLP(69)
< | To(v = In@)ll ey + IToIDe = Y9l Lo (a0
< Cp (1217 |lTpv — Mo Ip¢| 1o ey + V0 = VD I0¢] 1o e
+ 1 ToIpe — 10l Lean) -

We then use the triangle inequality again in the first two terms in the right-
hand side, to introduce ¢ in the first one and V¢ in the second one, and we
apply (3.18) to conclude the proof. [

3.1.2 Complements on trace operators

Dealing with Neumann or Fourier boundary conditions often requires a specific
knowledge of the trace operators in Sobolev spaces. We recall here the main
properties used in this monograph.

Let £2 be a bounded open subset of R? with Lipschitz boundary. The trace
operator v : W1P(§2) — Wlfi’p(aﬂ) is well defined and surjective, and there
exists a linear continuous lifting operator L : Wl_%’p(aﬂ) — WLP(0) such
that vL5g9 = g for any g € Wlf%’p(aﬂ). Recall that in the case p = 2,
W2-2(982) is generally denoted by Hz(9£2) and the set W12(£2) is denoted
HY(£2).

We can then define the normal trace v, () € (Wl_%’p((’?(}))’ of p € I/Vd’i’;(ﬁ)
(where p’ = %) the following way. Denoting by (-,-)s the duality product

between (Wl_%’p(aﬂ))’ and Wl_%’p(aﬁ), we let, for any g € Wl_%’p((‘?()),

(al0), 9)0 = /Q (p(x) - VLog(@) + Log(@)dive(x)) de.  (3.20)

The linearity and continuity of L5 ensure that v, () is indeed an element of

(Wlf%’p(aﬁ))’. Moreover, for any ¢ € WHP(£2) such that y¢ = g we have
Log — ¢ € Wy P(£2) and thus, by Stokes’ formula,

/Q (V(Log — 9)(@) - p(@) + (Log — o) (@)divep(e)) dz = 0.

This shows that (3.20) is also valid if we replace Lyg with any ¢ € W1P($2)
having trace g on 0f2.

Lemma 3.26 (Surjectivity of the normal trace). The normal trace
Yn VVd]z;(_Q) — (Wlf%’p(aﬁ))’ is linear continuous surjective. More pre-
cisely, there exists Cg > 0 depending only on {2 and p such that, for any
le (Wlf%’p(aﬁ))’, there ezists ¢ € VVd’f;(Q) satisfying yn (@) =1 and
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< Colll, (3.21)

||90H%1;L(Q) = =37 00y

where we recall that ||<p||Wd?/(Q) = llellps (0ya + 1divepll o ) -

Proof. Since v : W1P(2) — Wlf%’p(&(?), for any | € (Wlf%’p(&(?))’ we
have v*1 € (WP(£2))". There exists thus (h, @) € LP (£2) x L? (£2)¢ such that,
for all o € WLP(02),

(Lvpla = (V'L o) w2y, wie (o)

- /Q (0(@) - Vol(@) + h(@)p(x)) dz (3.22)

and

||‘P||Lp’(9)d + ||h||Lp’(Q) < ||’7*l||(W1,p(Q))/ <Colll -1, (3.23)
(W

092))’
where Cy is the norm of v (it is also the norm of v*). Testing (3.22) with
functions ¢ in C2°(£2) shows that h = dive and, therefore, that ¢ € W (2).
Taking then a generic g € Wl—%ﬂ’(an) and applying (3.22) with ¢ = Lsg
gives 7n(¢) = I and Estimate (3.23) gives (3.21). n

’

Lemma 3.27 (Density of smooth functions in Wy, ,(£2)). Let 22 be a

polytopal open set (see Definition7.2) and p € (1,+00). The space I/I{f‘;’a(ﬂ)
is defined by (3.10) and endowed with the norm ||p||,,» @ = lell L () +
div,d

1diveell Lo (o) + lIm (@)l Lo 902y - Then

1. C(02)4 is dense in W, ((12) = {p € Wit .0(2) + m(e) =0},
2. C(RY)? is dense in Wi, 5(£2).

Remark 3.28. We only state the lemma for polytopal open sets {2, but the
proof shows that the result is more general than this; in particular, it ap-
plies to open sets with piecewise C!'! boundary — since the normal n is then
Lipschitz continuous outside a set of zero (d — 1)-dimensional measure. An
alternative approach to prove this lemma, that would give the density for
Lipschitz domains, consists in using the mollification technique of [86].

Proof.

ITEM 1: using the localisation techniques of [137, Ch. 1, Theorem 1.1, (iii)],
we can reduce the study to the case where (2 is strictly star-shaped, say with
respect to 0. This means that, for any A € (0,1), Af2 C 2.

Let ¢ € W{iﬁl,’a(ﬂ) such that v, (@) = 0. Then the extension @ of ¢ to R? by
0 outside {2 belongs to VVdZi’;(Rd), since the normal traces of ¢ is continuous

through 92. Let A € (0,1) and define @) : * — @(x/A). As A — 1, we
have @) — @ in LP ()¢ and div(gy) = A~H(divep)(-/\) — dive in LP' (£2).
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Moreover, the support of @y is contained in A\f2, and is therefore compact in
0.

Let (pe)eso be a smoothing kernel. For e small enough, @y * p. belongs to
Cx(2)%. As e — 0, we also have @y * p. — @ in LP (£2)? and div(@y * pc) =
div(@y) * pe — div(gy) in LP (£2).

Hence, letting in that order A — 1 and € — 0, the functions (@x * pc)|o give
an approximation in V[{if;’a(()) of ¢ by functions in C2°(£2)¢, and the proof
of Item 1 is complete.

ITEM 2: let ¢ € Wi?\:,a(g) and ¢ > 0. In the following, C denotes a generic
constant, independent on € but whose value can change from one occurrence
to the other.

Since (2 is polytopal, n is piecewise constant and thus smooth outside a set S
of 0 measure in 9f2. We can therefore find a function v, that is C'*°-smooth,
vanishes on a neighbourhood of S, and such that [[yn(e) — Yell 1 (90) < &
Since 1. vanishes on a neighbourhood of the singularities S of m, we can
find a function . € C°(R%)? such that v, (1).) = 1. (simply extend, on a
neighbourhood U of 92, the smooth function i.n into a function that does
not depend on the coordinate orthogonal to m, and multiply this extension
by a function in C°(U) equal to 1 on a neighbourhood of 912).

Let us consider the function ¢ — ). € Wﬁf;’a(!)). We have
[yn (e — '¢E)HL1)’(89) = [lm(e) - %HLP’(aQ) e (3:24)

By Lemma 3.26 and since LP' (9£2) is embedded in (Wlf%’p(ﬁﬂ))’, we can
find ¢. € WY, (£2) such that
Tn(Ce) = Mmlp — ¥:) (3.25)

and
¢y < (e = )l o) < Ce (3.26)

’

Property (3.25) shows that {. € W, 5(£2) and, combined with (3.24) and
(3.26), that

HCE”%{'\:.a(Q) = ||<5HVVdT::,(Q) + ||'7n(<5)HLP’(BQ) < Ce. (3:27)

The function ¢ — 1. — (. therefore belongs to Wﬁf;) 5(£2) and satisfies yn (¢ —
. — ) = 0. By Item 1 we can find & € C°(£2)? such that
H(SO — e — Cs) - £€||Méip\:,5(9) <e. (328)
We now set ¢, = 1. + &€.. This function belongs to C2°(R%)¢ and
p—pe=(p—. —¢( — &)+
so, by (3.27) and (3.28), ||¢ — (PE”W;;pvl.a(Q) < Ce. ]
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3.1.3 Gradient schemes for linear problems

We consider here a linear elliptic problem with non-homogeneous Neumann
boundary conditions

—div(AVT) = f + div(F) in £,

AVi-n+F-n=hon o, (3.29)

where n is the unit normal outward 2 to 0f2. We assume that

e (2 is an open bounded connected subset of R? (d € N*),
with a Lipschitz boundary, (3.30a)
e / is a measurable function from (2 to the set of d x d

symmetric matrices and there exists A\, A > 0 such that,

for a.e. € 2, A(x) has eigenvalues in [\, )], (3.30b)
o fcL?(N), FeL*(2), heL*0n),
and / F(@)da + / h(z)dy(z) = 0. (3.30¢)
7 Ye;

Under these hypotheses and defining

@) ={oc @, [ ple)a=o}.
the weak formulation of (3.29) is
ue HND), Yve Hl(())
| 4@vit@) - vo(a a1
/ f(@yo(@)de - / Fle)-Vo(e)de+ [ h@nio)@ie)

Owing to Hypothesis (3.30c), Problem (3.31) is equivalent to

ue HY (R vveHl(Q)

/ Az Vo(z)dz + < /Q u(w)dm) < /Q v(@dl‘) (3.32)

/ f(@)v(z)dz — / F(z) - Vou(z)dz + / h(x)y(v)(x)dy(x).

Q Ele)
Indeed, letting v = 1 in (3.32) implies that fQ w(x)dx = 0. The approximation
of Problem (3.31) by the GDM is described now.

Definition 3.29 (GS, Neumann BCs). If D = (Xp, IIp,Tp,Vp) is a GD
for Neumann problems in the sense of Definition 3.11, then we define the
related gradient scheme for (3.31) by
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Find u € Xp such that, for any v € Xp,

//1 )WVou(z) - Vpo(z) dw+</ pu(z dw) (/ Ipu( )dw)

= | 1@ )da:—/Q F(#) - Voo(z)ds (3.33)
+/ h(x)Tpv(x)dy(x).
on

Fixing a basis (€®),=;n of the space Xp, Scheme (3.33) is equivalent to
solving the linear square system AU = B with

N
= Z Ujg(j)’
j=1
Ay = / A(x)VpeD () - Vpe (xz)da
(9]

+ ( /Q HDgU)(:c)dw) < /Q Hpé(”(w)dw>,

B; = /{2 f(@) g (x)dw — /QF(OU) - VptW(z)dz
+ h(z)TpED (z)dy ().

o0
Contrary to the case of Dirichlet boundary conditions, the matrix A here
is full, due to the second term in the expression of A;;. There exist different
modifications of this system, aiming at recovering a sparse matrix. A standard

one consists in adding a new unknown p = [, IIpu(x)de, and to rewrite
(3.33) as

Find v € Xp and p € R such that, for any v € Xp,

A(x)Vpu(z) - Vpu(z)de + p HDU( )dax

0
/f Vpo(z dsc—/F - Vpu(z)da (3:34)
/ h(@) Tpo()dy (x),

/ Ipu(x)de — p = 0.
o)

Assuming that the diameter of the supports of (fo(i))izlw,N is small com-
pared to diam(s2), which is often the case for standard choices of spaces and
bases, the new linear system deduced from this reformulation is sparse, sym-
metric and invertible (though not positive).

The error estimates for Neumann boundary conditions are stated in the next
theorem. We do not explicitly state the convergence result, similar to Corollary
2.31, that stems from these error estimates.
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Theorem 3.30 (Error estimate, Neumann BCs). Under Hypotheses
(3.30), let u € HL(£2) be the solution of (3.31) (remark that f € L*(2)
and h € L2(002) imply that in AVu+ F € V[é?ma(!?), see (3.10)).

Let D be a GD for a Neumann problem in the sense of Definition 3.11.
Then there exists one and only one up € Xp solution to the GS (3.33), and
this element satisfies the following inequalities:

HVE — V’DU’DHLZ(Q)d < Err + SD(H), (3.35)

@ — Hpup||r2(0) < CpErr + Sp(u), (3.36)
. L 1 _ -~ 1/2 _

with Brx = s [Wo(AVE + F) 4 (34 |4 CD)SD(U)} :

where Cp, Sp and Wp are defined by (3.9), (3.3) and (3.11).

Remark 3.31 (Error estimate on the traces and lower bound). If we let Sp be
the measure of GD-consistency for Fourier boundary conditions (i.e. (3.17)),
then Proposition 3.24 and Theorem 3.30 show that

1V(@) — Toun| 129 < C1 (Wo(AVE + F) + Sp(u)) ,

where C; depends only on A, A, |[2| and an upper bound of Cp. Note that a
lower bound in the spirit of (2.29) could also be derived.

Proof. Proving (3.35) for any solution up € Xp to Scheme (3.33) is sufficient
to establish the existence and uniqueness of this solution. Indeed, this estimate
shows that, whenever f =0, h = 0 and F = 0 (in which case @ = 0), Vpup
vanishes a.e.; then, letting v = up in (3.33) implies fQ Ipup(x)de = 0, and
therefore up = 0 since (3.8) is a norm on Xp.

To prove the estimates, we take ¢ = AVT + F € W3, 5(£2) in the definition
(3.11) of Wp and using that @ is the solution to (3.31). We then have, for any
v e Xp,

/Q [Vpu(z) - (A(x)Vu(z) + F(z)) — Hpv(x) f(x)|de

—/{m h(z)Tpv(x)dy(x)| < ||v]lp Wp(AVT + F).

Therefore, since up is a solution to (3.33), we get
] / Alx)Vpo(z) - (Va(z) — Vpup(a))de
2
7/ pup(z)dz / Hpv(m)dw’ < |[vllp Wp(AVE + F).
(%} (7}

‘We then introduce
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Ipu = argr)r(ﬂn (| Hpw — ﬂHLZ(Q) + ||Vpw — VU||L2(_Q)(1) (3.37)
weXp

in the above inequality. It leads to

/Q A(x)Vpu(z) - (Vplpu(x) — Vpup(z))de

+A(prpﬂ(w)—HDuD(x))dw /Qﬂpv(a:)dw

/Q A(x)Vpu(z) - (Vplpu(zx) — Vu(x))dx

Jr/QHDIDH(m)d:c /QHDU(m)dCC

Observing that

/QHDIDE(:B)da: = ’/Q(lepu(:c) —u(x))dx

< |QY2 | ITpIpt — | 12 »

we can write, using the definition (3.9) of Cp,

/Q A(x)Vpu(x) - (VplIpu(z) — Vpup(x))de

—&—/Q(HDIDE(:B)—HDuD(:B))dw /Qﬂpv(w)dw

< |vllp [Wp(AVE + F) + (X + |Q|1/Zcp)sp(u)] .

We now let v = Ipu — up. Recalling the definition (3.8) of ||-||, we obtain

Wp(AVT + F) + (A + |Q‘1/2CD)SD(E)

Ipu — <
ot = upllp < min(A, 1)

The conclusion follows as in the proof of Theorem 2.28. [

3.1.4 Gradient schemes for quasi-linear problems
Homogeneous Neumann BCs

We consider Problem (2.49a), replacing the homogeneous Dirichlet BCs by
homogeneous Neumann BCs:
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—div(A(z,7)Vu) = f in £,

3.38
Az, w)Vu - n =0 on 012. (3.38)

We take usual assumptions:

e 2 is an open bounded connected subset of R? (d € N*),
with Lipschitz boundary, (3.39a)
e /A is a Caratheodory function from 2 x R to My(R),

(i.e. A(x,s) is measurable w.r.t.  and continuous w.r.t. s),

there exists A, A > 0 such that, for a.e. & € £2, for all s € R,

A(z, 5) is symmetric with eigenvalues in [\, A], (3.39b)
e f € L?(2) such that / f(x)dx = 0. (3.39¢)
2
Under these hypotheses, again defining H}(2) = {¢ € H'(2) : [, p(x)dx =

0}, a weak solution to (3.38) is a function @ (not necessarlly umque) satlsfylng.

ue HLND), Vve HH D),
/Aazu ) Vu(x) - Vo(x da:—/f (3.40)

This weak formulation is approximated by the following gradient scheme.

Definition 3.32 (GS, quasi-linear problem, homogeneous Neumann
BCs). If D = (Xp, IIp,Vp) is a GD in the sense of Definition 3.1, then we
define the related gradient scheme for (3.40) by

Find u € Xp such that for any v € Xp,
Az, Hpu(x))Vpu(x) - Vpu(z)de

+( /Q Hpu(:v)d:c> ( /Q Hm;(:v)d:v) - /Q f (@) Tpv(e)dz

This scheme leads to a non-linear system of equations of the form A(u)U = B,
similar to the system (2.53) obtained in the case of Dirichlet BCs. As in the
linear case, the matrix A(u) corresponding to (3.41) is in general not sparse,
but algebraic methods can be used to compute the solution of (3.41) by solving
linear systems with better sparsity properties (see (3.34)).

(3.41)

The next theorem states a convergence result for the gradient scheme (3.41).

Theorem 3.33 (Convergence, quasi-linear problem, homogeneous Neu-

mann BCs). Assume (3.39), and let (D) men be a sequence of GDs in the
sense of Definition 3.1, which is GD-consistent, limit-conforming and compact
in the sense of Definitions 3.4, 3.5 and 3.6.
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Then, for any m € N, there exists at least one u,, € Xp,, solution to the
gradient scheme (3.41) and, up to a subsequence, IIp, u,, converges strongly
in L2(£2) to a solution u of (3.40) and Vp,, uy converges strongly in L?(£2)?
to Vu as m — oo.

In the case where the solution @ of (3.40) is unique, then the whole sequence
converges to u as m — oo in the senses above.

Proof. We proceed as in the proof of Theorem 2.35.
For any GD D in the sense of Definition 3.11, let w € Xp be given, and let
u € Xp be such that

/ z, Tpw(x))Vpu(x) - Vpu(x

(3.42)
/Hpu d:c/HDv da:—/f JIpv(x)de, Yve Xp.

Then, letting v = w in (3.42), and applying the Cauchy—Schwarz inequality
and the coercivity property in the sense of Definition 3.3, we get

min(A, 1)[[ullp < £z [ Hpull 120y < Collfll2 ) llullp-

This shows that
[ullp < _Cp £l (3.43)
P = min(y, 1) EHE '

Therefore, u is obtained by the resolution of an invertible square linear system
(since a null right hand side implies © = 0). The mapping w — w is continuous,
by continuity of the coefficients of the inverse of a matrix with respect to its
coefficients. The Brouwer theorem D.2 yields that this mapping w — u has at
least one fixed point. This shows the existence of at least one discrete solution
0 (3.41). Tt is clear that any solution to this scheme satisfies (3.43).
We denote by u,, € Xp,, such a solution for D = D,,,. The estimate (3.43)
shows that (|[um|p, )men is bounded and thus, up to a subsequence still
denoted by (U, )men, we find u € H'(£2) such that ITp  u,, converges strongly
in L2(£2) and a.e. to u and Vp,, u,, converges weakly in L2(£2)? to Vu. We
used here Remark 3.23 and the compactness of the sequence of GDs.
We define Ip : HY(2) = Xp by

IDSO = argmin (”HDU - 4?”[,2(9) + ||V'DU - VQOHL’z(Q)d) . (3.44)

veEXp

By GD-consistency of the sequence of GDs, for any ¢ € H!(£2) we have
Ip, (Ip,,©) — ¢ strongly in L*(2) and Vp, (Ip, ¢) — Vi strongly in
L2(0)%.

Since 1y, (the characteristic function of §2) belongs to H'(£2), we can take
v = 1Ip, 1o in (3.41) and pass to the limit. We get, thanks to Hypothesis
(3.39¢), that
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0= tin ([ 15, un(@)ae) ([ 1o, (1, 0)(e)ie)
- </Qu(a:)dm) 2],

This shows that w € H}(£2) and that

lim / IIp, upy(x)de = 0. (3.45)
Q

m—0o0

Let ¢ € H!(§2) be given. Using the non-linear strong convergence property
of Lemma D.9, A(:, IIp,, um)Vop, (Ip, ¢) — A(-,u)Ve strongly in L%(£2)<.
Lemma D.8 (weak-strong convergence property) enables us to pass to the
limit in (3.41) with v = Ip,, ¢, which proves that 7 is a solution to (3.40).
By passing to the limit in the left-hand side of (3.41) with v = w,, and using
(3.45), we get

lim Az, IIp,, um (x))Vp,, um(x) - Vo, tum(x)de

- /Q F(@)a(z)de = /Q A, (@) Vi(z) - Vii(z)ds

and the strong convergence of Vp_ u., to Vu follows from this as in the proof

m

of Theorem 2.35. ]

Non-homogeneous Neumann boundary conditions

We consider Problem (3.38) in which the boundary condition is replaced with
a non-homogeneous condition:

Az, w)Vu - n = h on 012,
under the assumptions (3.39a)—(3.39b) and
FeLX®), he L200), /Q f@ia+ [ ha@) =0 (@46
Under these hypotheses, recalling that
@) ={ecm@: [ pare=of,
a weak solution of this problem is a function @ (not necessarily unique) satis-

fying:
u€ HN D), Yvoe H(),

/ Az, u(x))Vu(z) - Vo(x)de
Q

— [ f@w(@)dz + / W)y (v) (@) dy ().

2 a8

(3.47)
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As for homogeneous Neumann BCs, owing to Hypothesis (3.46), Problem
(3.47) is equivalent to

ue HY(Q), Vv e HY(0),

/Aa: u(x))Vau(z) - Vo(z)de + (/ﬂu(m)dm> (/ﬂv(w)dw> (3.48)

/ f@)o(@)d + /6 @) (@) (@)

This problem is therefore approximated by the following gradient scheme.

Definition 3.34 (GS, quasi-linear problem, non-homogeneous Neu-
mann BCs). If D = (Xp,IIp,Tp,Vp) is a GD in the sense of Definition
3.11, then we define the related gradient scheme for (3.47) by

Find uw € Xp such that, for any v € Xp,

/Q A, Tpu(@))Vou(@) - Voo(z)ds + < /Q Hpu(a:)da:> < /Q npv(x)dm>

:/Qf(ac)ﬂpv(w)da:—i—/{m h(x)Tp(v)(x)dy(x). (3.49)

We then have the following convergence result.

Theorem 3.35 (Convergence, quasi-linear problem, non-homogene-
ous Neumann BCs). Under Assumptions (3.39a)—(3.39b) and (3.46), let
(Din)men be a sequence of GDs in the sense of Definition 3.11, which is GD-
consistent, limit-conforming and compact in the sense of Definitions 3.4, 3.14
and 3.15.

Then, for any m € N, there exists at least one u,, € Xp,, solution to the
gradient scheme (3.49) and, up to a subsequence as m — oo, IIp, u,, con-
verges strongly in L*(£2) to a solution U of (3.47), Tp,, U, converges strongly
in L2(012) to vu, and Vp, um converges strongly in L?(£2)? to V.

In the case where the solution uw of (3.47) is unique, then the whole sequence
converges to w as m — oo in the senses above.

Proof. We follow the same ideas as in the proof of Theorem 3.33. Note that,
by Lemma 3.18, (D,,)men is coercive.

Brouwer’s fixed point theorem yields the existence of at least one discrete
solution u,, € Xp,, to (3.49) with D = D,,,. Plug v = u,, in this scheme. The
coercivity property (Definition 3.13), which involves the discrete trace, then
yields

[tmllD,, <

Cp

m(”f”w(m + |hllr2(00))- (3.50)
Then the compactness of (Dy,)men (Definition 3.15) and similar arguments
as in the proof of Theorem 3.33 give the existence of @ € H]({2) and of
a subsequence of (D, Um)men, denoted the same way, such that Vp_
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converges weakly in L2(£2)? to Vu, IIp, u,, converges strongly in L?(£2) to
u and Tp,, u,, converges strongly in L?(9f2) to vu. Moreover, if ¢ € H}(£2)
and v, = Ip,, ¢ is the interpolant defined by (3.44), Remark 3.22 shows that
Tp,, vm — Yo weakly in L?(942) (actually, by the compactness property of
(Din)men, this convergence is strong, but this is not required to pass to the
limit). The conclusion then follows as for Theorem 3.33. (]

3.2 Fourier boundary conditions

The general case of non-homogeneous Fourier (also known as Robin) boundary
conditions is considered here; it also covers, of course, homogeneous Fourier
BCs. The notions and results in this section correspond to those in Appendix
A with the choices in Section A.1.4.

Here {2 is again a connected open bounded subset of R? with Lipschitz bound-
ary, and p € (1, +00).

3.2.1 Gradient discretisations

Except for the choice of the norm || - ||p, the definition of a gradient discreti-
sation for Fourier boundary conditions is the same as for Neumann boundary
conditions.

Definition 3.36 (GD, non-homogeneous Fourier BCs). A gradient dis-
cretisation D for non-homogeneous Fourier conditions D is defined by D =
(Xp, p,Tp,Vp) where:

1. the set of discrete unknowns Xp is a finite dimensional vector space on
R,

. the function reconstruction Ip : Xp — LP(§2) is linear,

. the trace reconstruction Tp : Xp — LP(912) is linear,

. the gradient reconstruction Vp : Xp — LP(2)? is linear,

. the operators Vp and Tp are such that

v Lo o

1/p
lollp = (V005 0y + ITovlE s 00)) (3.51)

s a norm on Xp.

The coercivity, limit-conformity, compactness and piecewise constant
reconstruction for gradient discretisations for non-homogeneous Fourier
conditions are defined exactly as for non-homogeneous Neumann conditions,
i.e. Definitions 3.13, 3.14, 3.15 and for Dirichlet conditions, i.e. Definition
2.12 (with Xp o replaced by Xp in the latter, and using the norm (3.51) in
all these definitions). The GD-consistency, however, must take into account
the trace reconstruction.



86 3 Neumann, Fourier and mixed boundary conditions

Definition 3.37 (GD-consistency, non-homogeneous Fourier
BCs)

If D is a gradient discretisation in the sense of Definition 3.36, define
Sp : WHP(£2) = [0, +00) by

Vo € WhP(Q)
Sp(p) = U@}};(HHDW — @llze2) + | Tov — yellLr00) (3.52)

+|[Vpv — V<P\|Lp(9)d)~

A sequence (Dy,)men of gradient discretisations in the sense of Defini-
tion 3.36 is GD-consistent if

Yo € WEP(02), lim Sp, (p) = 0. (3.53)

m—r0oQ

We notice that Lemma 3.7 (characterisation of GD-consistency using a dense
set of WP(£2)), Lemma 3.19 (characterisation of limit-conformity using a
dense subset of I/Iéf\:) 5(£2)) and Lemma 3.21 (regularity of the limit) still hold
in the framework of gradient schemes for non-homogeneous Fourier boundary
conditions. Similarly, the equivalent of Lemma 3.17 (limit-conformity implies
coercivity) and Lemma 3.18 (compactness implies coercivity) are satisfied for
sequences of GDs for Fourier boundary conditions.

For Fourier boundary conditions, the reconstructed trace has been included in
the definition of Sp, and we can therefore expect an approximation property
as in Proposition 3.24. However, the norm is different and actually already
includes the reconstructed trace. For this reason, an additional assumption
must be introduced which states that the reconstructed trace can be controlled
by the reconstructed function and gradients, see (3.54). In practice, for many
gradient discretisation this assumption is easy to check by using Lemma B.21
and the notion of control by a polytopal toolbox (cf. Section 7.2.2).

The proof of this proposition is identical to the proof of Proposition 3.24, the
assumption (3.54) playing the role of (3.19).

Proposition 3.38 (Approximation property of Tp — Fourier BCs).
Let D be a gradient discretisation in the sense of Definition 3.36. We assume
that there exists 0 > 0 such that
Vo € Xp ¢ || Tpv|1pp0) <0 (HHDUHLP(Q) + HVDUHLP(Q)d) : (3.54)
Then, for any v € Xp and any ¢ € WHP($2),
ITov = %6l o) < 0 (1100 = ¢l Loy + V0 = Vol ()
+ max(1,0)Sp(¢).
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3.2.2 Gradient schemes for quasi-linear problems
We consider Problem (2.49a) with Fourier boundary conditions, that is

—div(A(z,w)Vu) = f in £2,

A(z,w)Vu - n + bu = h on 942, (8:55)

e (2 is an open bounded connected subset of RY, d € N*, (3.56a)
e A is a Caratheodory function from 2 x R to M4(R),

(i.e. A(x,s) is measurable w.r.t.  and continuous w.r.t. s),

there exists A\, A > 0 such that, for a.e. ¢ € £2, for all s € R,

A(z, s) is symmetric with eigenvalues in [\, A], (3.56b)
o fcL*(2), he L*(002), b e L>=(52) and

there exists b > 0 such that b(z) > b for a.e. © € 012. (3.56¢)

A weak solution of this problem is:
ue HY (N), Wwe Hl(!))
/Q A, 7(@))Va(e) - Vo(a)da + / W (@ @n ()@ (@) o
z)da + / h(z)y(v)(z)dy(z).

The gradient scheme for this model is given in the following definition.

Definition 3.39 (GS, quasi-linear problem, Fourier BCs). If D =
(Xp,IIp,Tp,Vp) is a GD in the sense of Definition 3.56, then we define
the related gradient scheme for (3.57) by

Find uw € Xp such that, for any v € Xp,

/ Az, Ipu(x))Vou(x) - va(:c)dw+/ b(z)Tpu(x)Tpv(x)dy(x)
I7; 09

:/ f(w)HDv(w)da:—f—/ h(z)Tpv(x)dy(x). (3.58)
2 o0

The convergence result is similar to the previous ones.

Theorem 3.40 (Convergence, quasi-linear problem, Fourier BCs).
Under assumptions (3.56), let (Dy)men be a sequence of GDs in the sense of
Definition 3.36, which is GD-consistent, limit-conforming and compact in the
sense of Definitions 3.37, 8.1/ and 3.15.

Then, for any m € N, there exists at least one u,, € Xp_ solution to the

m

gradient scheme (3.58) and, up to a subsequence, IIp, u,, converges strongly
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in L2(£2) to a solution @ of (3.57), Vp, w,, converges strongly in L?(£2)? to
Vi, and Tp,, ., converges strongly in L?(0£2) to yu as m — oc.

In the case where the solution w of (3.57) is unique, then the whole sequence
converges to W as m — 0o in the senses above.

Proof. The proof is very similar to the proofs of Theorems 2.35 and 3.33,
we only indicate here the elements which differ.

Letting u = v in (3.58), by assumption on A and b and Definition 3.51 of ||-||
we obtain

min(\, b) [[ull?, < /Q A, Hpu(@)Vou(@) - Vou(e)de

+ - b(x)Tpu(x)Tpu(x)dy(z)

:/ f(:c)HDu(:I:)dSC-I—/ h(z)Tpu(x)dy(x)
0 o0

Sl 2oy Hpull 2 o) + 1Bl 200y IToull 200
< Op(Ifll 2y + 10l L200)) lullp -

This gives an estimate on ||u|l, which allows us, as in the proof of Theorem
2.35, to use Brouwer’s fixed point theorem to prove the existence of a solution
to (3.58).

Noticing that (D,,)men is coercive (Lemma 3.18), this estimate also shows
that the solution u, for D = D,, is such that [|u,[|p ~remains bounded and
therefore, using Lemma 3.21 and the compactness of the sequence of GDs,
that, for some @ € H'(2),

IIp, U, — U strongly in L?(§2) and a.e.,
Tp, Uy — YU strongly in L?(062) and (3.59)
Vp,, tum — VU weakly in L2(Q)d.

Defining then Ip : H*(£2) — Xp by

Ipp = argmin (| Ipw — ¢l r2(0) + VDV = Vol L2(0)a

veEXp

+Tpv — vl r2(0)e),

the GD-consistency of the sequence of GDs shows that, for any ¢ € H(£2),
Iip, (Ip, ) — ¢ strongly in L2(£2), Vp, (Ip,, ) — Ve strongly in L?(£2)?
and Tp,, (Ip, @) — v strongly in L?(992).

We can then, as in the proof of Theorem 2.35, use v = Ip,, ¢ in (3.58) and
pass to the limit, thanks to these strong convergences and to (3.59), to see
that @ is a solution to (3.57).

We then take v = u,, in (3.58) and pass to the limit, using the convergences
(3.59) and the fact that @ satisfies (3.57), to obtain
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lim A(:c IIp, um(x))Vp,, tm(x) - Vp,, ty(x)de

/f dx+/mh(:c) / b(@)ya(x) dy ()
_ /QA( W(e)) Va(e) - Va(e)da.

By developing the following expression, this limit and (3.59) yield

/Q/l(w Ip, um(x))(Vp,, um(x) — Va(x)) - (Vp,, um(x) — Vu(x))dx — 0.

By Assumptions (2.50b) on A, the left-hand side of this limit is greater than
MMV, Um — Vﬂ”iz( Q) and the strong convergence of the reconstructed gra-
dients therefore follows. n

Remark 3.41. In the linear case (A independent of ), error estimates for (3.58)
similar to the ones in Theorem 2.28 can be obtained, with an additional error
estimate on the the traces.

3.3 Mixed boundary conditions

3.3.1 Gradient discretisations

From the framework of non-homogeneous Dirichlet and Neumann boundary
conditions, it is very easy to construct a gradient scheme discretisation for
mixed boundary conditions. We counsider here p € (1, 00), 2 a connected open
bounded subset of R? with Lipschitz boundary and we assume that

Iy, I, are two disjoint relatively open subsets of 042

such that |02\(IyUT,)|=0and |4 >0 (3.60)

(| - | denotes here the (d — 1)-dimensional measure).

Definition 3.42 (GD, mixed BCs). Under Assumption (3.60), a gradi-
ent discretisation D for mized boundary conditions D is defined by D =
(XD,ID,F(“HD,TD,Fnva) where:

1. the set of discrete unknowns Xp = Xp o,r, ® Xp,r, is the direct sum of
two finite dimensional vector spaces on R, corresponding respectively to
the unknowns in £2 and on I, and to the unknowns on Iy,

2. the linear mapping Ipr, : Wl_%’p(é)(}) — Xp,r, is an interpolation
operator for the restrictions (yu)|r, of traces of elements u € Whe(0),

3. the function reconstruction IIp : Xp — LP(§2) is linear,

4. the trace reconstruction Tp r, : Xp — LP(I3,) is linear, and reconstructs
from an element of Xp a function over I,

5. the gradient reconstruction Vp : Xp — LP(2)¢ is linear,

6. the operator Vp is such that [[v]|p := [[Vpvl| 1, g)a is @ norm on Xp o r, -
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Definition 3.43 (Coercivity, mixed BCs)

Under Assumption (3.60), if D is a gradient discretisation in the sense
of Definition 3.42, define

Cp = max (max{ [ Tpv|lLr2) | To,rvllzer,) }) .
\{0} ’

vEXD 2., ||U||D HUHD

A sequence (Dy,)men of gradient discretisations in the sense of Defi-
nition 3.42 is coercive if there exists Cp € R such that Cp,, < Cp
for all m € N.

Definition 3.44 (GD-consistency, mixed BCs)

Under Assumption (3.60), if D is a gradient discretisation in the sense
of Definition 3.42, define Sp : W1P(§2) — [0, +00) by

Vo e WhP(02),
Sp(¢) = min { | Tpv = ¢lroga) + Vo0 = Velliay © (3.62)

v € Xp such that v —Zp r,vp € XD“Q’[‘"}.

A sequence (Dy,)men of gradient discretisations in the sense of Defini-
tion 3.42 is GD-consistent if

Yo € WHP(2), lim Sp,, (p) = 0. (3.63)

m—00 m

Definition 3.45 (Limit-conformity, mixed BCs)

For p € (1,400), let p’ = p%l and
W 1 () = {p e IV ()7 : divep € LP (), (@) € LP (I},
(3.64)
where vy, (¢p) is the normal trace of ¢ on 0f2. Under Assumption (3.60),
if D is a gradient discretisation in the sense of Definition 3.42, define
Wo: WY 1, (©2) = [0, +00) by
VSO € V[{iip\//,Fn(Q) ’
1

W = max TPRTER
D(‘P) veEXp o,r, \{0} ”vHD

/Q (Vou(@) - ) + Mpv()dive(x)) dz
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- /F Toro(@) m(@)@d(@)|.  (3.65)

A sequence (D, )men of gradient discretisations in the sense of Defini-
tion 3.42 is limit-conforming if

’

Vo € Wi, . (2), lim Wp, (¢)=0. (3.66)

v m—o0

Remark 8.46. Note that “yu(¢p) € Lp/(Fn)” makes sense because I, is a rel-
atively open subset of d2. Indeed, when ¢ € L? (2)% and dive € L? (12)
then m(p) € (Wl_%’p(aﬂ))’ and saying that this linear form belongs to
LP (I,) means by definition that there exists g € LP (I},) such that, for any
w € W“%’P(a(z) with support in I7,,

1

(1), w)

W' B 00) W TR (00) /[‘ g@u(@)dy(@).

Definition 3.47 (Compactness, mixed BCs)

Under Assumption (3.60), a sequence (D,,)men of gradient discreti-
sations in the sense of Definition 3.42 is compact if, for any se-
quence uy, € Xp,, such that (||um|/p,,)men is bounded, the sequences
(IIp,, um)men and (Tp,, r, um)men are relatively compact in LP(£2)
and LP(I,), respectively.

The definition of piecewise constant reconstruction for a gradient dis-
cretisation for mixed boundary conditions is the same as Definition 2.12, re-
placing the space Xp g by Xp.

The equivalent of Lemmas 2.15, 2.54 and 3.21 is the following lemma.

Lemma 3.48 (Regularity of the limit, mixed BCs). Under Assumption
(3.60), let (Dpm)men be a coercive, GD-consistent and limit-conforming se-
quence of gradient discretisations in the sense of Definitions 3.43, 3.44 and
3.45. Let g € Wl_%’p(aﬂ) and, for m € N, let u,, € Xp,, be such that
um — Ip,,.r.9 € Xp,0,r, and ([[Vp,, unllrs(oya)men is bounded. Then, there
exists u € WYP(£2) such that yu = g on Iy and, up to a subsequence, as
m — 00,

Ip,, wm — u weakly in LP(12), (3.67)
Vop, Um — Vu weakly in LP(§2)%. '

If we assume moreover that g = 0, or that there exists p, € W1P(£2) such
that ypg = g and, as m — oo,
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min {||p,,v — @4/l o (2) + ITD,0, 10 = Y29l 11,
+ IV, v = Vgl : v—"Tp, r,7¢g € X0, } =0, (3.68)

then we also have
Tp,, .1, um — (yu)|r, weakly in LP(I},). (3.69)

Remark 3.49. Assumption (3.68), if satisfied for all ¢, € W1 (£2), is similar to
the GD-consistency of (Dy,)men in the sense of Fourier boundary conditions
(but with a trace reconstruction only on I,).

Proof.

Step 1: we suppose that g = 0.

Since Uy, = um—2Ip,, 1,9 € Xp,, 0.1, by coercivity of (D, )men the bound on
[tmllp,, shows that [|[Ip,, tmll o0y ITD,.. 0 tmll 1o,y a0 [V D, tmll o (o)
are bounded. There exists therefore u € LP(£2), w € LP(I},) and v € LP(£2)?
such that, up to a subsequence as m — oo, IIp  u,;, — u weakly in LP((2),
Top,, r, um — w weakly in LP(I3,), and Vp, uy, — v weakly in LP(§2)9.

Let ¢ € I/I{fi’;fn(ﬁ). By Definition (3.65) of Wp, passing to the limit in

[uml|p,, Wp,, (¢) >

/Q(meum(ac) ~(x) + Ip,, u(z)dive(x))dz
- [ Torn(@rale)@)h (@)

yields

/Q (v(@) - p(@) + u(@)dive())dz - / W(@)ym (@) (@)dy(@) = 0.

I'n

Selecting ¢ € C°(2)¢ gives v = Vu, and therefore u € W1P(£2). Taking
then ¢ smooth that does not vanish on 92 and using an integration-by-parts,
we obtain

/ () (x)yu(z)dy(z) = / w(x)ym(p)(x)dy().
X9

Iy

This shows that yu = w on I, and that yu = 0 on Iy, which concludes the
proof of (3.67) and (3.69) if g = 0.

Step 2: we consider a general g € Wl_%’p(aﬁ).

As in the proof of Lemma 2.54, we take an extension g € W1P(§2) of g and
we use the GD-consistency to find v,, € Xp,, such that v,, — Ip, r,g €
Xp,, a.r,, Ip, vy — g in LP(2) and Vp, v, — Vg in LP(2)4. Then u,, —
Um € Xp,, . 0,r, and we can apply the reasoning in Step 1 to this function. We
therefore find U € W1P(§2) such that yU = 0 on I'; and, up to a subsequence,
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IIp,, (um — V) — U weakly in LP(£2),
Vo, (U — vm) — VU weakly in LP(2)?, (3.70)
Tp,,.r, (Um — V) = YU weakly in LP(I3,).

We then let uw = U + g € W1P(§2), so that yu = g on I';. The convergence
properties of (v, )men and (3.70) then show that (3.67) holds.

Step 3: we consider a general g € Wlf%’p(aﬂ), and we assume that (3.68)
holds.

Then we can take v, € Xp,, such that v, =Zp,, r,9 € Xp,, 0.r., p,, vm —
g in LP(Q), Tp, r,vm — ¥g = g in LP(I},), and Vp, v, — Vg in LP(2)%.
We can then reproduce Step 2 with this vy,. Since Tp,, 1, v — ¢ in LP(2),
the convergence Tp,, 1. (Um —vm) = YU = yu—g in LP(I},)-weak (see (3.70))

my

ensures that (3.69) holds. ]

3.3.2 Gradient schemes for linear problems

We only present gradient schemes for mixed BCs on the linear model
—div(AVT) = f + div(F) in £,
uw=gon Iy, (3.71)
AVu-n+F -n=hon I,

under Assumption (3.60) and

e (2 is an open bounded connected subset of R? (d € N*),
with Lipschitz boundary, (3.72a)

e / is a measurable function from (2 to the set of d x d

symmetric matrices and there exists A\, A > 0 such that,

for a.e. € 2, A(zx) has eigenvalues in [\, \], (3.72b)
o feL}), FeL*)?, ge HY*(0N), h e L*(I},). (3.72¢)

Denoting by H }d (£2) the set of functions in H'(£2) whose trace on I'; vanishes,
the weak formulation of (3.71) is

ue{weH' () : y(w)=gon I}, Yvoe H} (12),
/QA(w)Vﬂ(w) -Vou(z)de :/ f(x)v(z)de (3.73)

F(z) Vo@)dz + | h@)y(v)(@)dy(@).
(9} I’y

The GDM applied to this mixed problem yields the following scheme.



94 3 Neumann, Fourier and mixed boundary conditions

Definition 3.50 (GS, mixed BCs). If D = (Xp,Zp,r,, Ip, Tp,r,,, VD) is
a GD for mized problems in the sense of Definition 3.42, then the related
gradient scheme for (3.73) is defined by:
Findu € Ip r,g + Xp o, such that, for anyv € Xp o r,,
/ Alx)Vpu(x) - Vpu(x)de :/ f(@x)[Ipv(x)dx
10
/ F(x) - Vpu(z)de +/ h(x)Tp,r,v(x)dy(x).
I

n

(3.74)

The proof of the following error estimates for mixed boundary conditions is
similar to the proofs made in the case of other boundary conditions (see The-
orems 2.28, 2.56 and 3.30). Likewise, a convergence result similar to Corollary
2.31 follows from these error estimates.

Theorem 3.51 (Error estimate, mixed BCs). Under Hypotheses (3.72),
let u € HY () be the solution of (3.73) (remark that since f € L?(£2) and
h e L*(I,), we have AVu+ F € W3, - (£2), see (3.64)).

Let D be a GD for mized boundary conditions in the sense of Definition 3.42.
Then there exists one and only one up € Xp solution to the gradient scheme
(3.74), and this element satisfies the following inequalities:

||VE - VDUD||L2(Q)d [WD(AVU + F) ()\ + A)Sp(ﬂ)} s

—
\>/\'—‘

@ — Hpupl||r2(0) < + [CDWD(AVQ-‘F F)+ (C’DX-FA)SD(E)] ,

>

where Cp, Sp and Wp are defined by (3.61), (3.62) and (3.65).

Remark 8.52. In this case again, a lower bound in the spirit of (2.29) could
be derived.

Remark 8.53 (Other linear and non-linear models)

In [80], the notion of GD for mixed boundary conditions is extended to cover linear
and non-linear elasticity models. It is also proved that several schemes designed
for these models, including schemes built to be accurate in the near-incompressible
limit, are GDMs. The time-dependent poro-elasticity model is covered in [126].

As other examples of models with mixed BCs that are covered by the GDM, we can
mention linear and non-linear variational inequalities [10, 11].
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Parabolic problems






4

Time-dependent GDM

In this chapter, the definition of gradient discretisations (GDs) for time-
dependent problems is first given; it is followed by compactness results for
the analysis of such problems. These results include discrete Arzela—Ascoli
and Aubin—Simon theorems, and are presented first in a general setting, be-
fore their consequences for gradient discretisations are discussed.

To deal with all kinds of boundary conditions at once, the notation Xp o
stands for Xp ( in the case of homogeneous Dirichlet boundary conditions, and
for Xp in the case of other boundary conditions. Similarly, we write WP (12)
for Wy ?(£2) in the case of homogeneous Dirichlet boundary conditions, and
WLP(§2) in the case of other boundary conditions.

4.1 Space—time gradient discretisation

To fix ideas, let us consider a general time-dependent problem under the form
Oru+ A(u) = f, over a domain {2 x (0,7) with T > 0. Adequate boundary
conditions and initial conditions are also assumed. If § € [0, 1] and t(®) =0 <
tM) < ... < t(N) = T is a set of time points, then the -scheme reads: for all
n=20,...,N—1,

w(n D) )

m + A(Gu(”“) + (1 — 9)u(")) = f(n) (41)

For § = 1, the scheme is Euler implicit (or “backward”), for § = 0 it is

Euler explicit (or “forward”); both choices are of order 1 in time. For 6 =

and A linear, A(fu™*V) + (1 — 9)u™) = w and we recover
the Crank-Nicolson time-stepping, which is of order 2; numerical experiments
show that, for many non-linear models, the scheme (4.1) with § = % is usually
more accurate than with § = 1 or 6 = 0. Values 6 € [$,1] yield an L?
stability for several non-linear models, as shown in our analysis; they are the
most frequently considered in this book due to the parabolic nature of the
equations under study.
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Definition 4.1 (GD for time-dependent problems). Letp € (1,+0),
2 be an open subset of R? (with d € N*), T > 0 and 6 € [0,1]. We say that
Dr =(D,Ip, (t(”))n:() ,,,,, N) is a space—time gradient discretisation if
oD = (Xp.e,I[Ip,Vp,...) is a GD in the sense of Definition 2.1 (resp.
Definition 2.49, 3.1, 3.11, 3.36 or 3.42 — depending on the considered
boundary conditions), which satisfies IIp(Xp o) C L™XP:2) (),
eIp : L*(2) — Xp. is an interpolation operator,
ot =0<tM <) =T,

The gradient discretisation D is called the underlying spatial discretisation
1
of Dr. We then set &2 = ¢+ — 4 for n = 0,...,N — 1, and
dp = maxp—o,. N-1 &2 To g family v = (U("))nzo,...,N € Xg:l
we associate the piecewise-constant-in-time functions vy € L™>(0,T;Xp.,),
v e L0, T; L2 (), V¥ e L0, T; L7(2)?) and TYv €
L°(0,T; LP(012)) defined by:
Yn=0,...,N—1, forallte (t(”),t("ﬂ)],
vg(t) = v = g+ 1 (1 = 0)v™ and, for a.e. x € 0,
I v(x,t) = Oplve(t)) (), V& u(x, t) = Vplvg(t)](x) and
T v(a, t) = Tplve(t)] ().
To state uniform-in-time convergence results, we also need to extend the def-
inition of II,’v up tot = 0:

For a.e. ¢ € (2, Hg)v(w,O) = ITpv (x). (4.3)
Ifv e Xg:l, we define dpv € L>®(0,T; L™XP2)((2)) by
Yn=0,...,N =1, for a.e. t e (t™ )

1 (n+1) _ 1750 (4.4)
_ (n+dy  IIpv DU
(;D’U(t) = 57.) v i= &(n+%) .

Remark 4.2. The iterative definition (4.1) requires the initialisation step, a
way to compute u(®). The interpolation operator Zp applied to the initial
condition describes this initialisation of u(®) (cf., e.g., (5.5) in Section 5.1).

Definition 4.3 (Space—time-consistency for space—time GD)

For T > 0 and 8 € [0,1], if Dy is a space-time GD in the sense of

Definition 4.1, we define Sp by (2.2), (2.94), (3.3), (3.52) or (3.62)
(depending on the considered boundary conditions), where Wq ?(£2) is
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replaced with We?(£2) N L2(2) and || IIpv — @l Lo () 1s replaced with
[ITpv — | Lmax(p,2) ()"

A sequence ((Dr)m)men of space-time GDs in the sense of Defini-
tion 4.1, with underlying spatial discretisations (D, )men, is said to be
space—time-consistent if

Vo e WhP(2)NL2(2), lim Sp (¢) =0,
m—0o0

Yu € L*(02), |u—Ip,, Ip,, vl 120 = O, (4.5)

lim
m—r00

dp, — 0asm — oo.

Remark 4.4 (A generic definition of Ip)
Given a spatial gradient discretisation D such that IIp(Xp.e) C L?(£2), we can
define an interpolator Zp : L*(2) — Xp.. by

Vu e L*(0),

Ipu = argmin {[|v||; : v € Xpe, IIpv = Pru,(xp )}, (4.6)

where Prp,xp,) : L*(2) — IIp(Xp,) is the L?(£2)-orthogonal projector on
IIp(Xp,e). Since the norm ||-|| is uniformly convex (see the definitions in Chapters
2 and 3, depending on the various boundary conditions), the argmin in (4.6) is
indeed unique, and we can even check that Zp : L?(f2) — Xp . is linear continuous
(although this is not required in Definition 4.1).
Consider now a sequence (Dm)men of spatial GDs, such that, as m — oo,
Sp,, (u) — 0 for all u € Wo'P(2)NL*(2) (this is an improved consistency property of
(Dm)men)- This shows that, for such a function u, there exists um € Xp,, e such that
11D, um — ull12(oy — 0. The definition (4.6) yields IIp,,Ip,, = Pru,,  (xp,, 4
and thus, by the properties of the orthogonal projector,

|lu — HDmIDmuHL2<Q) = Hu = PI‘HD"L(XDWM.)UI -

IN

lu = IIp,, um| 1 2(q) — 0 as m — oco.

Hence, (4.5) holds for u € Wa™®(£2) N L?(£2). Since the mapping IIp,, Ip,, =
Prip, (Xp,, ) ° L*(22) — L*(22) has norm 1, reasoning by density of We'?(£2) N
L?(0) into L*(2) shows that (4.5) actually holds for all u € L?(2).

Remark 4.5. To illustrate the definition of §D, here is how it looks for Fourier
boundary conditions:

Vo € WhP(2) N LA(12),
Sp(p) = min ([[Tpv - |

pmaxe.2 () T 1 TDV — 70| L0 (002)
+IVpv = Vol 1o 0)a)-
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The notions of coercivity, limit-conformity and compactness for sequences of
space—time GDs boil down to the corresponding notion for the sequence of
underlying spatial discretisations.

Definition 4.6 (Coercivity, limit-conformity and compactness
for space-time GDs)

Let T > 0 and ((D1)m)men be a sequence of space-time GDs in
the sense of Definition 4.1, with underlying spatial discretisations
(Dm)m€N~

The sequence ((D7)m)men is coercive (resp. limit-conforming, resp.
compact) if the sequence (D, )men is coercive (resp. limit-conforming,
resp. compact) for the corresponding boundary conditions.

Remark 4.7 (One GD per time step)
In some instances, such as when using time-varying meshes or for coupled sys-
tems (see, e.g., [48, Section 4.1.1]), it might be required to consider one spatial GD
for each time step. In this case, a space-time GD is Dy = (DS,ID, (t<"))n:o,...,1\r)
where D° = (D™)p=1,...,~n is a family of spatial GDs for the considered bound-
ary conditions. The coercivity, GD-consistency and limit-conformity of a sequence
(’Dfn)meN = ((Dy)n=1,...,N,, )Jmen of such families of GDs should then be defined by
using
Cps = max Cpn, Sps = max Spn and Wps = max Wpn.
L2 n=1,...,Nm m i n=1,...,Nmp, m [ n=1,...,Npmp m
The compactness of (D,i)mgN is defined as the compactness of the function re-
constructions (and possibly the trace reconstructions, depending on the boundary
conditions) of any family ((up,)n=1,...,N,, )meN With uy, € D;, such that, for some C
not depending on n or m, ”u%HD;; <C.
After modifying the time-space reconstructions (4.2)—(4.4) by using the GD appro-
priate to each time step, the analysis carried out here and in Chapters 5 and 6 can
easily be adapted to this setting of space—time GDs with time-varying spatial GDs.

The following lemma is the counterpart of Lemma 2.15 and Lemma 3.21.
We could as easily state counterparts of the regularity of the limit for non-
homogeneous Dirichlet boundary conditions or mixed boundary conditions (as
in Lemma 2.54 or Lemma 3.48).

Lemma 4.8 (Regularity of the limit, space—time problems). Let p €
(1,00) and ((Dr)m)men be a limit-conforming sequence of space—time GDs,
in the sense of Definition 4.0, for homogeneous Dirichlet or non-homogeneous
Neumann boundary conditions. Let 6 € [0,1], g € (1,400) and take, for any
meN, u, € Xg:’::*l such that (|| (um)oll pa(o,7;xp, o))men is bounded.
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Then there exists uw € L9(0,T; W.lp(.Q)) such that, up to a subsequence,
Hl(fium — u weakly in L9(0,T; LP(£2)) and Vg)num — Vu weakly in
L4(0,T; LP($2))4.

In the case of non-homogeneous Neumann boundary conditions, we also have,
up to a subsequence, Tg}num — yu weakly in L9(0,T; LP(012)).

The same conclusions hold in the case ¢ = +oo, provided that the weak con-
vergences are replaced with weak-+ convergences.

Remark 4.9. Note that each space Xp,, o is endowed with its natural norm
IIlp,, i-€- IVD,,*| s (2)a for Dirichlet boundary conditions and (3.1) for Neu-
mann boundary conditions. For ¢ < 400, a bound on |[(um)ell a0, 7. xp ) 18

therefore a bound on
T
/0 Num)o@®)]S, dt

Proof of Lemma 4.8. We only consider the case of homogeneous Dirich-
let boundary conditions; the case of non homogeneous Neumann boundary
conditions can handled similarly by following the proof of Lemma 3.21.

By Lemma 2.6 or 3.17 (depending on the considered boundary conditions),
the sequence of space-time GDs ((Dr)m)men is coercive and thus

1/q

_ (0)
ICum)olloo,rixs,, ) = Hvl’mu’” La(0,T;L7(£2))2
L@
>_ | m) .
= Cp H D[ La0.1:L0(02))

The sequences (Hgium)meN and (Vg}num)meN are therefore bounded in
L9(0,T; LP(£2)) and L9(0,T; LP(£2))%, respectively. Up to a subsequence, they
converge weakly (or weakly-x if ¢ = +00) in these spaces towards u and v,
respectively. Extending all the functions by 0 outside {2, these convergences
still hold weakly in L4(0,T; LP(R?)) and L?(0, T; L?(R%))4. The proof is com-
plete if we show that v = Vu in the sense of distributions on R? x (0,7'). To
this purpose, let ¢ € C(R4)4 and ¢ € C°(0,T). Dropping the indices m
for the sake of legibility, we have, for t € (0,T), by definition (2.6) of Wp,

/Q [Voluo(t))(@) - () + Hpfug (1)) (x)divp(a))| da

< uo®)llp Wo(p)-

Hence, using Holder’s inequality:

T
| [ 790t e + 18 . taiv((0p)(@)|deds

T
S/
0

dt

Y(t) /Q [Vg)u(:mt) () + H(De)u(:c,t)divcp(w)} da
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T
< WD(SO)/O luo (D)l [d(B)|dt < W (e) uoll Lago,r:x0 0) 1%l Lo (0,17) -

As m — o0, [[(um)ollpa(o7,xp, o) i bounded and Wp,, (¢) — 0 by limit-
conformity. We can thus pass to the limit and see that

/ ' [ [p@ - @oe@) + ula, Odiv(w(t)e)@)]dedt 0.
0 (%}

This relation holds true for linear combinations of functions of the form
(z,t) — Y(t)e(x), that is for all tensorial smooth functions. These tensorial
functions are dense (e.g., for the C1(£2 x [0, 7)) norm) in C°*(R< x (0,7))¢,
see [64] or [68, Appendix D]. This shows that, for all & € C>*(R? x (0,7))4,

/OT /Q [U(mvt) @ (x,t) + u(z, t)div(D(-, t))(z) |dedt = 0.

Hence, v = Vu in the sense of distributions on R? x (0,7, as required.
L]

The following result shows that functions depending on time and space can
be approximated, along with their gradient, by reconstructed functions and
gradients built from space—time-consistent GDs.

Lemma 4.10 (Interpolation of space—time functions). Forp € [1,00),
T >0 and 0 €|0,1], let ((Dr)m)men be a sequence of space—time GDs in the
sense of Definition 4.1, that is space—time-consistent in the sense of Definition
4.3. Let v € LP(0,T; Wa *(2)). Then:

1. There exists a sequence (Um)men Such that v, = (’Ugg))n:o’,,,,]vm €
Xg::fl for allm € N, and, as m — oo,

Hg:zvm — o strongly in LP(£2 x (0,T)), (4.7a)
V(gy)nvm — Vo strongly in LP (2 x (0,T))%. (4.7b)

2. In the case of non-homogeneous Neumann boundary conditions, if the
sequence of underlying spatial discretisations is limit—conforming in the
sense of Definition 3.14, then the sequence (U )men in Item 1 also satis-
fies

']Tgr)nvm — YU weakly in LP(002 x (0,T)) as m — oo. (4.8)

3. In the case of non-homogeneous Fourier boundary conditions, the sequence
(Um)men in Item 1 can be chosen such that

Tg) U — YU strongly in LP (082 x (0,T)) as m — oc. (4.9)

m
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4. If moreover v € C([0,T]; L*(£2)), 0,v € L*(2 x (0,T)) and v(-,T) = 0,
then the sequence (U )men in Item 1 can be chosen such that, in addition

to (4.7),

vm € N vﬁnN’"*l) = vﬁnNm) =0

(and thus Hglvm =0 on 02 x (tWm=1 $(Nn)]), (4.10a)
Ul()eyl’vm(-,O) — 0(+,0) strongly in L*(2) as m — oo, (4.10Db)
5p,, Um — 040 strongly in L?(£2 x (0,T)) as m — oc. (4.10¢)

Proof.

Step 1: proof of Item 1.

Define the set 7(0,T; Wa(£2)) of space-time tensorial functions in the fol-
lowing way: v € 7(0,T; W.lp(Q)) if there exist £ € N, a family (;)i=1,....¢ C
C>(]0,T]) and a family (w;)i=1....¢ C Wa’(£2) such that

¢
vz, t) = Zg@i(t)wi(m) for a.e. x € 2 and all ¢t € (0,7). (4.11)
i=1

By [68, Corollary 1.3.1], T(0,T; We*(£2)) is dense in L?(0,T; We'?(£2)) and
we can therefore reduce the proof of (4.7) to the case 7 € T(0,T; Wa'(£2))
(the proof of this reduction is similar to the proof of Lemma 2.16).

Given the structure (4.11) of functions in 7(0,7; Wa?(£2)), we actually only
need to prove the result for v(x,t) = p(t)w(x) with ¢ € C*([0,T]) and
w e WaP(£2). Let vy, € Xgr’:fl be defined by o = ot Ip, w for n =
0,..., Ny, where 7

Ip,, w = argmin (Ilﬁpmz — W[l pmaxr2r () + VD, 2 — VwHLp(md) . (4.12)
ZEX'Dm,.

Define @,, : (0, T] — R as the piecewise constant function equal to (" 1))+
(1 —0)p(t™) on (t™ t+V)] for all n = 0,...,N,, — 1. Then, by definition
(4.2) of the space—time reconstruction operator Hgl, for all t € (0,T) and
a.e. x € §2,

B(a,t) — 1Y) v (2, 1) = p(Hw(@) — G, (t) Ip,, (Ip, w)(z) (4.13)

= [p(t) = P (D)]w(@) + P (t)[w(x) - Ip,, (Ip,, w)()].
Using the definitions of §Dm and Ip,,, we infer that

(e
[0-115) vl Lo (2x 0.7
< o =Pl oo, 1wl o) + 1Pmll oo, 1w — o, (I, W) 10 ()
< e =Pl oo, lwlzecoy + 1Pmll oo, 7) S (W) (4.14)
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As m — oo, the space-time-consistency of ((Dr)m)men gives §Dm (w) = 0
and the smoothness of ¢ shows that @,, — ¢ uniformly (and thus in LP(0,T)).
Hence, (4.7a) follows from (4.14). The proof of (4.7b) is obtained by the same

argument starting from (4.13) and replacing v with Vo, w with Vw, and Hgi
: (9)
with Vi’ .

Step 2: proof of Items 2 and 3.

In the case of Neumann boundary conditions, applying Lemma 4.8 t0 (v; ) men
yields (4.8).

In the case of Fourier boundary conditions, the definition (4.12) can be re-
placed with

Ip, w= argmin ¢, ( [Ip,,z - w”Lmax(p,z)(Q) +Vp,,z - Vw”Lp(Q)d

T, = 0l o0 )

and the reasoning starting from (4.13) can be done with (47, ']I‘(gT)n U instead

of (7, Hg’lvm), since [|Tp,, (Ip,, w) — Y| 1r(00) < Sp. (w). This shows that
(4.9) holds.

Step 3: proof of Item 4.

Assume that 7 € LP(0,T; We*(2)) N C([0,T]; L3(2)), 8;v € L*(2 x (0,T))
and (-,T) = 0. By [68, Theorem 2.3.1], we can find a sequence (T, )nen C
C>([0,T); Wa P(£2) N L2(£2)) such that, as n — oo,

T — 0 in LP(0,T; Wa?(£2)) N C([0,T); L2(£2)), and
atﬂn — 8755 in LQ(O,T‘7 L2(Q))

The proof of [68, Theorem 2.3.1] is based on an even extension of 7 at t =T,
required to preserve the continuity of the extended function. Since (-, T') = 0,
we can actually use an extension by 0 on [T,00) and, by selecting in [68,
Theorem 2.3.1] a smoothing kernel with support in (—7',0), we ensure that
each T,, vanishes on [T — ¢,,00) for some ¢, > 0.

Having approximated v by these v,, we just need to prove the result for
each v, instead of v. Let us drop the index n and write v for v,,. We have
e C®([0,T); WP (2) N L2(2)) and T = 0 on 2 x [T — ¢, T] for some € > 0.
Let 7 € (0,¢/4), ¢ = [T/7] and take (¢;)i=1,...,,, C C°°([0,T]) a partition of
unity on [0, 7] subordinate to the open covering ((iT — 27,47 + 27);=1,.. ¢, )-
Set

v (x,t) =v(x,T) +§: (/Tt wz‘(s)d3> dv(x, i)

) ( /T t wi(s)ds> 80 (x, ir).

i=1
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Since 7=0o0n 2 x [T —¢,T] D 2 x [T — 47, T}, the terms corresponding to
i =140, —3,...,4; in the previous sum vanish (since it > ¢,7 — 37 > T — 47).
For i < ¢, — 4, the support of 1; is contained in [0,7 — 27]. This shows that
U (,t)=0forallt e [T —27,T).

We write

¢,
O (x,t) = > i(t)dy(a, ir).
i=1

Since

i%‘(t) =1forallte (0,7), (4.15)
i=1
we have 0,0(x,t) = Zf;l ;i (t)0yv(x, t) and thus
1007 (-,t) = 00( Dl wav )Lz
¢
< Zwi(t) 10:0(-, i) = 00 (-, )ll e (2)nr2(0) -
i=1

Using the fact that 1;(t) # 0 only if [t —i7| < 27 (that is, iT € (t—27,t+27)),
and invoking (4.15), we infer

10s0- (-, ) — 0o (-, t)HW,l’p(Q)ﬂLZ(Q)

< sup 100(+, ) = 00 (- D) b2 e ()nr2(0) -
re(t—27,t+271)

By smoothness of T, this shows that 8,7, — 8,0 in L>(0,T; Wa P (£2)NL2(£2))
as 7 — 0. Integrating and using v, (-,T) = v(-,T) = 0, we obtain 7, — T in
C([0,T); WaP(£2) N L?(£2)). Hence, we only need to find approximations in
the sense (4.7) and (4.10) for each T, instead of . Given the structure of v,
this amounts to finding such approximations when o(x,t) = p(t)w(x) with
w e WaP(2) N L2(2) and ¢ € C=([0,T]) having support in [0,7 — ] for
some v > 0.

We set, as before, o = o(t")Ip, w for n = 0,..., N,,. The proof of (4.7)
is done exactly as in Step 1.

If m is large enough so that t(Nm =1 > T — v, then V=) = V) — 0 and
(4.10a) is satisfied. We can modify v,, for the remaining m (for example by
setting v,, = 0) to ensure that this property holds for any m.

By definition (4.3) of Hglvm att =0,
(@, 0) — I v, (2,0) = p(0)w(z) — () Ip,, (Ip,, w)(x)
= o(0)[w(z) — Ip,, (Ip, w)(x)].

Then, by definition of I'p,, and §Dm7
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|7(0) = 15 v, 0)]

ey = 1O =I5, (75, 0) | 125 < 10(0)1S,. ()

and (4.10b) follows from the space—time-consistency of ((D7)m)men-
To establish (4.10c), we define ¥, : (0,7] — R as the piecewise constant

. (n+1)y_ cp(n)
function equal to % on (™ t+V)] for allm = 0,..., N, — 1.

Then, by definition (4.4) of dp,, v, for all t € (0,T) and a.e. © € §2,

0yv(x, 1) — 0p,,vm (@, t) = ¢ (H)w(x) — ¥ (t)p,, (Ip,, w) ().
By smoothness of ¢ we have ¥,,, — ¢’ uniformly on [0,7] as m — oo, and
the proof of (4.10c) therefore follows by using the same sequence of esti-
mates as in Step 1, starting from (4.13) and replacing (v, [Ip,, Vm, @, Pm)
with (9y0,0p,,Vm,¢’,¥m), and the LP norms with L? norms (note that

Sp,,.(w) > |[w = IIp,, (Ip,, )| 1) by definition of Sp). .

m

4.2 Compactness results for space-time gradient
discretisations

The compactness results established here are consequences of the generic time-
DFA results in Appendix C.

4.2.1 Averaged-in-time compactness for space-time GDs
Aubin—Simon theorem

Compactness for parabolic problems is often obtained through the wellknown
Aubin-Simon theorem, see [19, 133] for the original papers and [108, section
4.5] or Section C.1 below for an adaptation to discrete settings. In the context
of GDs, the spaces Y, in Definition C.6 (compactly—continuously embed-
ded sequence) and Theorem C.8 (Aubin—Simon with sequences of spaces and
discrete derivative) are often IIp,, (Xp,, o) with the dual norm [[wl[,  as
defined below. ’

m 5.

Definition 4.11 (Dual norm on IIp(Xp.)). Let Dr be a space—time GD
in the sense of Definition 4.1. The dual norm |||, p on IIp(Xp.) C L*(£2)
is defined by:

Yw € HD(XD’.),

(4.16)
[wll, p = sup / w(x)Ipv(x)de : ve Xp,, ||v|lp=1,.
Q

A straightforward consequence of this definition is
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Vw € IIp(Xpe), Vv € Xpa,

/Q w(@) Tpv(@)dz| < wll, p lollp. (4.17)

This relation shows that |||, 5 is a norm (not just a semi-norm). Indeed, if
|wll, » = 0 then [, w(x)Ipv(z)dx = 0 for all v € Xp . Taking then v such
that IIpv = w shows that w = 0.

The norm ||-[|,  will mostly be used on dpv(t) for v € Xg‘fl. Recalling the
notation (4.4), it is clear that dpv(t) € IIp(Xp ) for a.e. t € (0,7'), and thus
[6pv(?)]], p is well-defined.

Remark 4.12 (Boundary conditions)
It is also worth noticing that [|wl|, ,, takes into account the considered boundary
conditions, through the norm ||v||, on Xp e (see, e.g., Definitions 2.1 and 3.1).

Remark 4.13 (|||, p is a discrete H™' norm)

Let us consider the case of homogeneous Dirichlet boundary conditions and
p = 2. Then Definition 2.1 shows that (Xp,,|||p) is a discrete version of
(H}(92), ||-HH3(J,2>)7 where H-||Hé<9> = [|V-ll2(qya is the standard norm on H{(02).
In the continuous setting, (4.16) therefore reads: for w € L?(12),

[lw]l, := sup {/ w(x)v(z)de : v e Hy(2), HUHH&(J’?) = 1}. (4.18)
2
Identifying w as an element of H *(£2), we have
/ w(z)v(z)de = (w,v) g1 43 -
o)

Hence, (4.18) turns out to be the standard dual norm on H~'(£2), that is the norm
of linear continuous functions Hj(2) — R.
The norm ||-||, » can thus be considered as a discrete version of the standard dual

norm on H™'(£2).

The next result is a consequence of the discrete Aubin—Simon theorem (The-
orem C.8).

Theorem 4.14 (Aubin—Simon theorem for GDs). Let T > 0, p €
(1,400) and 0 € [0,1]. Assume that ((Dr)m)men @S a compact sequence
of space—time GDs in the sense of Definition 4.6. For any m € N, let
U € Xg:jl be such that there exists C' > 0 satisfying

T
VmeNn/wadm@mwgC (4.19)
; ,

and

T
WEN/H%Mwm%ﬁga (4.20)
0
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Then the sequence (Hz()aivm)meN is relatively compact in LP(£2 x (0,T)).

Proof. To apply Theorem C.8, let B = LP(12), X,,, = lIp, (Xp,, ), and
define the norm on X, by

[ullx, = min{|lwllp : w € Xp,, o such that IIp,,w = u}. (4.21)

Set Y., = X, = IIp, (Xp,, ) and |-

Let us prove that the sequence (X,,, Yin)men is compactly—continuously em-
bedded in B, in the sense of Definition C.6. First, the compactness hypothesis
on (D) men shows that (X, )men is compactly embedded in B, in the sense
of Definition C.4 (see, e.g., Remark 2.9 in the case of Dirichlet BCs). Then, by
construction, X, =Y, for all m € N. Assume now that (u,,)men is such that
Uy, € Xy, for all m € N, (lumll , )Jmen bounded, [[un|ly, — 0 as m — +oo0,
and (Um)men converges in LP(2). Take Ry um € Xp,, o a lifting of u,, with
minimal norm, i.e. IIp, Rty = Um and [|[Rpumllp = [[umlx, A use of
(4.17) yields

/ ()2t = / () [T, Ryt ()
(9] (9}

v = Illp,,-

< lumlly o, [Bmumllp,, = lumlly,, lumlx,, -

The assumptions on (um)men thus ensure that lim,, oo fn U (x)?dz = 0.
This shows that, up to a subsequence, u,, — 0 a.e. in {2, and hence that
the limit in LP(£2) of (um)men must be 0. The proof that (X, Y )men is
compactly—continuously embedded in B = LP({2) is complete.

The relative compactness of (Hgilvm)meN in LP(0,T; LP(£2)) follows from

Theorem C.8 with f,, = Hg)jl U, if we can check the four assumptions stated
in this theorem.

The first of these assumptions is obviously satisfied by the definition of H(DOZL
in (4.2).

Since the sequence of underlying spatial discretisations is compact, it is also
coercive (see, e.g., Lemma 2.10 for homogeneous Dirichlet boundary condi-
tions). The definition of Cp_, combined with (4.19) and the definition of Hg}n
then shows that (Hgl Um )men is bounded in LP(0,T’; LP(2)). This takes care
of the second assumption in Theorem C.8.

The third assumption follows immediately from (4.19) and the fact that

0
|18 om®)|| = 1120, (@m)e @), < I1@m)o @)l -
To prove the fourth assumption in Theorem C.8, we notice that

H‘SmH(DG,lUm(t) HYm = ||5Dm'Um(t)

Yo = 19D, vm (@), p,,

and we use (4.20). ]
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Convergence of a weak—strong product, and identification of
non-linear weak limits

Dealing with degenerate parabolic equations often requires fine results to iden-
tify non-linear limits of weakly converging sequences. The main result in this
section, Theorem 4.17, is one of these fine results. We consider here the partic-
ular case p = 2 and we restrict ourselves to homogeneous Dirichlet boundary
conditions. The adaptation to other boundary conditions is rather simple,
but establishing the equivalent of Theorem 4.17 for p # 2 requires a different
approach; see [73, Theorem 5.4] for details.

The inverses of the discrete and continuous Laplace operators with homoge-
neous Dirichlet boundary conditions now need to be introduced.

Definition 4.15 (Inverse of discrete and continuous Laplace opera-
tor). Let D = (Xp,,Ip,Vp) be a GD in the sense of Definition 2.1, for
p = 2. We define the operator A% ¢ Xp,o = Xp,o such that, for allv € Xp g,

Yw e Xpyo, / Vo (ALv)(x) - Vpw(z)de :/ Ipv(z)Ipw(z)de. (4.22)
Q Q

We also define A" : L?(£2) — Hi(£2) such that, for all v € L?(£2),

Yw € Hy(02), / V(AW)(z) - Vw(x)dx = / v(x)w(x)de. (4.23)
Q Q

Theorem 4.16 (Compactness of AY). Letp=2,T >0, 0 € [0,1] and
((Dr)m)men = (’Dm,Ipm,(tgff))n:()w’Nm)meN be a space—time-consistent,
limit-conforming and compact sequence of space—time GDs for homogeneous

Dirichlet boundary conditions, in the sense of Definitions 4.3 and 4.6. For any
m €N, let v, € Xg;j:gl be such that there exists C' > 0 and q > 1 satisfying

T 2
Vm €N, HH(Q) ot ’ dt<C 4.24
men. [ [au],, d< (124)
and
T
Vm € N, / 165, vm (D)2, dt < C. (4.25)
; ,

We also assume that Hgivm converges weakly in L?(0,T; L*(£2)) as m — oo

to some v € L*(0,T; L*(£2)).
Then, as m — oo,
Hgl(A%mvm) — Ay in L*(0,T; L*(12)), and (4.26)
V@ (AL 0y) = V(AW) in L2(0,T; L*(2)). '
Moreover, if g > 1 then

6D, (AD, vm) — 0(AD) weakly in L1(0,T; L*(£2)) as m — co.  (4.27)
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Proof.

Step 1: we prove, using Proposition C.5 with p = 2, that (H(Dej1 (AiDm Um))meN
is relatively compact in L?(0,T; L?(2)).

Let u,, = Aipmvm. Since the sequence of underlying spatial discretisations
is compact, it is coercive (Lemma 2.10). Denote by Cp a coercivity constant
of this sequence. Using the definition (4.22) of A}, with v = (vy,)e(t) and
w = (um)e(t), the Cauchy—Schwarz inequality in the right-hand side, the
definition of Cp > Cp,, raising to the power 2 and integrating over ¢t € (0,7T),
we see that

/0 () ()]

Set B = L*(2) and X,,, = IIp,, (Xp,, 0), endowed with the norm

2
C%C. (4.28)

T
2 2 (9
Dm S CP/O ‘ HDm Um (t)‘ L2(_Q) S

lwlly,, = nf{lzllp,, : Op,2z = w}.

m

The compactness of (D,,)men ensures that (X,,)men is compactly embedded
in B as per Definition C.4. Estimate (4.28) and the coercivity of (Dy,)men
prove that items 1 and 2 of the hypotheses of Proposition C.5 hold for f,, =
Hgi Uy,. Let us now observe that, for all z € Xp_ o,

mo

HIp,, zllx.D,,
= sup{ [ Vo..(8b, 2)@) - T, u@)ie s we X, ulp, =1}
2
= [|45, 2|5 - (4.29)

HDu(n+1) —HDu(")
s(nts)
coercivity property (with constant C'p) imply

Therefore, since dp,, um(t) = , Hypothesis (4.25) and the

T
Vm €N, / 185, i (B[ L) dt < (Cp)IC, (4.30)
0

Apply the same computation as in (C.9), followed by (C.10) with Y;, replaced
by L?(£2). Using (4.30), this proves that (C.11) holds (still with L?(£2) instead
of Y,,). Hence, item 3 of the hypotheses of Proposition C.5 holds with n(h) =
h. Note that, contrary to the proof of Theorem C.8, we do not use an inequality
similar to (C.8), which is the discrete equivalent of the Lions lemma.
Therefore, Proposition C.5 provides the existence of w € L?(0,T'; L?(§2)) such
that, up to a subsequence as m — oo, Hg)ium — @ in L2(0,T; L?(02)).

Step 2: we prove that @ = A'D.

By Lemma 4.8, @ belongs to L?(0,T; H}(£2)) and V(gfnum — Vu weakly
in L2(0,T;L?(2)%). Let w € L%*(0,T;H}(£2)) and consider the sequence
(Wm)men given by Lemma 4.10 for w. Writing (4.22) with v = (v,)e(t) and
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w = (wm)e(t) and integrating over ¢ € (0,7T), we can pass to the limit to see
that w satisfies

/ / Vu(x,t) - Vo(z, t)dedt = / / x,t)w(x, t)dedt. (4.31)

This precisely shows that @ = A'w.

Step 3: proof of (4.26).

Write now (4.22) with v = (v)e(t) and w = (un)e(t), and integrate over
€ (0,T). By the strong convergence of H(Deglum to W, we can pass to the

limit in the left-hand side and, using (4.31) with W = @, we find

T
lim/ /|Vg) U (2, 1) ddt
m—0o0 /g 0 m

/ / x)dzdt = /OT /Q \Va(z, t)|*dzdt.

This convergence of L? norms shows that the convergence of (V(gium)mel\l

to V@ is actually strong. The proof of (4.26) is thus complete.

Step 4: assuming that g > 1, proof of (4.27).
We proved in Step 1 that (Hépm(AiDmvm)HLq(o Ty ))meN is bounded (recall

that Aipmvm = Uy, ). By coercivity of the sequence of GDs, this shows that
op,, (A%mvm) is bounded in L4(0,T; L?(£2)) and therefore converges, up to a
subsequence, to some V weakly in this space.

Take v € C°(0,T) and ¢ € C(£2). Multiply ép,, (A% vn)(t) by [y (™ +
(1 — v)y(t+)]eh, where v = 1 — 0 and n is such that ¢ € (¢, t("+1)) inte-
grate over (x,t) € 2% (0,7) and use the discrete integration-by-part formula
(D.17) to transfer the §p,, operator onto (y(t()),—o.. . n. By smoothness of
v, passing to the limit shows that

/ / (x,t)y x)dxdt = / / u(x, t)y (t)y(x)dxdt.

We infer that V = 9;u = 9,(A%) and the proof is complete. L]

The next result is characterised as “weak—strong space—time” because it deals
with the product of two sequences of functions, one of them being strongly
compact in time and weakly in space (estimates on the time derivative), the
other one being weakly compact in time and strongly in space (estimate on
the spatial derivatives).

Theorem 4.17 (Weak-strong space—time convergence of a product).

Take T > 0, 6 € [0,1], p = 2 and a space-time-consistent, limit-conforming
and compact sequence ((Dr)m)men of space—time GDs for homogeneous Diri-
chlet boundary conditions, in the sense of Definitions 4.3 and 4.6. For any
m €N, let B, (m € ng’:fgl be such that
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e The sequences
T
(Jo 16, Bm®)l, p,, Jmen and (va,)nCm||L2(O,T;L2(Q)d))m€N are bounded,
e Asm — oo, Hglﬁm — B and Hg}i(:m — ¢ weakly in L2(£2 x (0,T)).

Then it holds

lim / / I By (@, O)ILY) G, t)dacdt
/ / B(z,t) {(x,t)dzdt. (4.32)

Proof. The sequence (B,,)men satisfies the hypotheses of Theorem 4.16.
Hence, V(g,)n(AiDmﬁm) converges strongly to V(A?S) in L2(0,T; L?(£2)%). By
definition of A%, | we have

T
//Hgiﬁm(w»t)ﬂgiCm(w,t)dwdt
0 (P
T .
- / VDm( %mﬁm)(:c,t)-vg’jncm(m,t)dmdt. (4.33)
0 (9] .

By assumption on (Cm)mENa the sequence ([|Gmll 20,7 x,  ,)men is bounded

and thus, by Lemma 4.8, V{7 Cm — V¢ weakly in L2(0,T; L?(£2)?). Passing
to the limit in the right- hand side of (4.33), we infer

lim / / 1) By (@, )L G, t)dacdt

_ / ' / V(AB)(@,t) - VT (x, t)dadt.
0 2

The definition of A? concludes the proof of (4.32). m

4.2.2 Uniform-in-time compactness for space-time GDs

We now consider applications to space-time gradient discretisations (for
generic BCs, as described in Section 4.1) of the results in Section C.2. The
following theorem is a consequence of Corollary C.12.

Theorem 4.18 (L>°(0,T; LP({2)) compactness). Let p € (1,400), T > 0,
0 €10,1], and ((Dr)m )meN be a space-time-consistent, limit-conforming and
compact sequence of space—time GDs in the sense of Definitions 4.3 and 4.6.
For each m € N, let v, € Xg;”"fl. Assume that there exist C' > 0 and ¢ > 1
satisfying

VmeN, H(Um)GHLoo(o,T;XDm,.) <G, (4.34)
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and
VYm e N, H573mvm||Lq(07T;L,,(Q)) <C. (4.35)

Then, there exists u € C([0,T]; LP(£2)) N L®(0,T; Wa'?(2)) and a subse-
quence, again denoted by ((D1)m,Vm)meN, such that

—0. (4.36)

li HH(G) (1) — t‘ =
im  sup b, Um(t) —u(t) ()

M= tc0,T)

Moreover, Oyu € L1(0,T; LP(2)) and, along the same subsequence, dp,, Uy —
Opu weakly in L9(0,T; LP(£2)).

Proof. We apply Corollary C.12 with B = LP({2), X,,, = IIp, (Xp,, )
endowed with the norm (4.21), and u = Hpmvsff).

The compactness hypothesis on (D, )men states that (X,,)men is compactly
embedded in B in the sense of Definition C.4, which yields Hypothesis (h1)
in Corollary C.12. Hypothesis (h2) is satisfied owing to (4.34) and

I(um)o®)llx,, = D, [(vm)o(®)]llx,, < [I(vm)o(®)lp,, -

Hypothesis (h3) of Corollary C.12 is obtained by (4.35) since &, tum = 0p,, Urm.

Hypothesis (h4) is included in the definition of space-time-consistency of
((D1)m)men (Definition 4.3).

By Corollary C.12, we obtain u € C([0,T]; LP(§2)) such that, up to a subse-
quence, (4.36) holds. The fact that u belongs to L°°(0, T; Wa'*(£2)) follows by
Lemma 4.8.

It remains to prove the convergence of the discrete time derivative. By (4.35)
we can assume, upon extraction of a new subsequence, that dp v, — U
weakly in L2(0,T; LP(£2)). The proof is complete by showing that U = d;u
in the sense of distributions on {2 x (0,7 (this also proves in particular that
no further extraction was necessary). Take ¢ € C2°(f2 x (0,T)) and write, by
definition (4.4) of dp,, vy,

T
/ / 0D, Um (2, 1) (x, t)dedt
0o Jo
N7n_1 1 t(n+1)
= Z m/ / (Hpmvg”rl)(w)—ﬂpmv,(s)(w)) Y(x, t)dedt.
o AR (O] 7]
(4.37)
(n+1)
Set q/}n(w) = ﬁ tt(n) w(wat)dt andv forv=1-6, wn+u = an—&-l +
(1 — v)aby. Since ¢ is smooth, [, (&) — Yntv(2)| < Cydp,, for some Cy not

depending on @ or n. Using the discrete integration-by-parts formula (D.17),
(4.37) yields, for m large enough so that vy = ¢, = 0 (which is possible due

m

to v vanishing on a neighbourhood of 0 and T),
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/ /59 Um (2, ) (x, t)dedt (4.38)
Nypp—1

= Z / (”“)(w)—ﬂpmvg?)(m)) V(@)

- Z / (2, @) ~ I, 003(2) ) Yo (@) + Ry

”m_l

= - Z /H 0+ (@) (g1 (@) — Yu(@)) dz + Rey,

¢(n+1)

- _ Z /n) /U o) ( )%Hgﬁ:ﬁn(w)dwﬁ—Rm (4.30)

where, owing to (4.35),
|Rm| < Cyétp,, ”(SDmvm”Ll(Qx(O,T)) — 0 as m — oo.

The term (4.38) converges to

/T/ Uz, t)y(x, t)dedt (4.40)
0o Jo

and, owing to the smoothness of ¥ and the convergence of H 9 . Um, the term
(4. 39) converges to

_/T/ u(x, )9 (x, t)daedt. (4.41)
0 2

The proof that U = 0;u is complete by equating (4.40) and (4.41). L]

The uniform-in-time weak-in-space compactness result provided by the next
theorem is an essential step to proving a uniform-in-time strong-in-space con-
vergence result for gradient scheme approximations of parabolic equations
(see, e.g., the proof of Theorem 5.19).

Theorem 4.19 (Uniform-in-time L?(2)-weak compactness). Let T >
0, 0 € [0,1] and ((Dr)m)men be a sequence of space—time-consistent space—
time GDs in the sense of Definition 4.3. For each m € N, let v, € Xﬁ:fl.
Assume that there exists C' > 0 and q > 1 such that, for allm € N, 7

sup Hﬂg) vm(t)’
te[0,T) "

T
<C d ép, vm(O)||E p dt < C (4.42
iy <€ and [ 1n 05, dt < C (442)

(see Definition 4.11 of H”*D)
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Then, the sequence (Hgivm)meN is relatively compact weakly in L*(2) uni-
formly on [0,T], that is, it has a subsequence which converges in the sense of
Definition C.1/ in page 45/.

Moreover, any limit of such a subsequence is continuous [0,T] — L*(£2) for
the weak topology.

Proof. Theorem 4.19 is a consequence of the discontinuous Arzela—Ascoli
theorem C.11, with K = [0,7] and E the ball of radius C in L?(£2), endowed
with the weak topology. Let {¢; : | € N} C C°(£2) be a dense set in L?({2)
and endow E with the metric (C.24) from these ;. By Proposition C.15, this
metric defines the weak L2({2) topology.

The set E is metric compact and therefore complete, and the functions H(Dejl U

have values in E. It remains to estimate dE(Hg’i v (8), Hg}n U (). We drop

the index m in D for legibility.

Let 0 < s < ¢ < T and take ny,ny € {0,...,N — 1} such that s €
(t) ¢+ D] and s € (t(72) (2 4D] I 5 = 0 we let ng = —1 and t(=1) = 0.
In a similar way as (C.19), we write

10, (s') = T0,,(s)

no 1 2 1
=0 Y &gty -0 S & Hsg Ny,

n=ni+1 n=ni+1

where &("2) = 0 and 5(97%)1)771 = 0. Take Ipy; € Xp,. that realises the
minimum defining Sp(¢;), multiply the previous relation by by ITpIpp; and
integrate over {2. Estimates (4.17), (4.42) and the Hélder inequality (D.3)
(used as in (C.20)) yield

/ (H(De)vm(w, s') — Hl()e)vm(m, s)) Iplpy(x)dx
Q

ng
<l &<n+%>/ 82y, (@) [IpIpoi () dw
2

n=ni+1

+la-o > &<"—%>/ 802y, (@) MpIpe(a)de

n=ni+1 2
o2 1 ntl
<Ol Ipgillp Z stz ’5(D+2)Um
n=ni+1 D
S 1) [[ (n—)
n—s n—yz
Fa=0lpaly Yo & o e

n=ni1+1

<ol {g(t(nzﬂ) - t(m+1))1/q/

+ (1= ) =t ] [ Ipgill (4.43)
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By definition of Ip and of ||-||, (depending on the specific boundary condi-
tions), we have

[ IpIppr — ill 20 < Spl1)

and, using a triangle inequality,
[ Ipwillp < Sp(wr) + Dy, < Cy,

where D, and C,, do not depend on D (and therefore on m). Since ("2 +1) —
tm+D) < |s' — 5| + & and t("2) — (") < |5’ — 5| + &, the estimate on Hgivm
in (4.42) gives, owing to (4.43),

/ (Hg))vm(m, s') — Hl()g)vm(w, s)) oi(x)dx
Q

< / (Hi(f)vm(cc,s’) - H(De)vm(x,s)> IIpIpgi(x)da| + 2CSp(e1)
2
< CVaC,, |s' — s|V7 + CY1C,, &Y + 208 (). (4.44)

Plugged into the definition (C.24) of the distance in F, this yields

dp (H(De)vm(s’), Pv,, (s))

min(1,CV9' Oy, |s" — s|1/")
<X 3

leN
min(1, 208, (¢)) + CY/9 C,, &1/
D 2l

=:w(s,s) + Tm.
leN

Using the dominated convergence theorem for series, we see that w(s,s’) — 0
as s —s — 0, and that 7,,, = 0 as m — oo (we invoke the space-time-
consistency of ((Dr)m)men to see that lim,, §Dm (¢1) = 0 for any ).
Hence, the assumptions of Theorem C.11 are satisfied and the proof is com-
plete. L]
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Non degenerate parabolic problems

In this chapter, we consider some generic non degenerate parabolic problems
and their approximation by the gradient discretisation method (GDM).
First, in Section 5.1, we study a quasi-linear problem, which is the transient
version of the quasi-linear problem studied in Section 2.1.4. An error estimate
for the GDM approximation of the linear version of this problem is first proved,
under additional regularity hypotheses. For the complete non-linear problem,
the mathematical arguments used in the convergence analysis of the GDM
come from Section 4.2. The convergence of the gradient schemes (GS) for this
problem is proved under minimal regularity on the solution.

In Section 5.2, we analyse the convergence of the GDM applied to a non-
conservative parabolic equation, which includes the regularised level-set equa-
tions. For this model, additional regularity on the initial condition must be
assumed.

Finally, in Section 5.3, we turn to (non-local) Leray—Lions type parabolic
problems with Neumann boundary conditions. These problems arise in par-
ticular from image processing models. Using again the results of Section 4.2,
several convergence results for the GDM are obtained, including a uniform-
in-time strong-in-space convergence result. We stress that such a convergence
implies in particular the pointwise-in-time convergence, which is of high prac-
tical interest. Indeed, users of numerical techniques are often more interested
in approximating a quantity of interest at a given time, rather than averaged
over a time span.

5.1 The gradient discretisation method for a quasi-linear
parabolic problem

In this whole section, we let p = 2.
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5.1.1 The continuous problem
We consider the following problem: approximate the solution u of
o — div (A(z,w)Va) = f+div(F) in 2 x (0,T), (5.1a)

with initial condition
U(,0) = Uini, on £2, (5.1b)

and homogeneous Dirichlet boundary conditions
u=0on 02 x (0,T). (5.1¢)
The following hypotheses are assumed:

e 2 is an open bounded connected subset of R?, d € N*,
and T > 0, (5.2a)
o A: 2 xR — MyR) is a Caratheodory function

(i.e. (x,s) — Az, s) is measurable w.r.t.  and continuous w.r.t. s),

and there exists A\, A > 0 such that, for a.e. € £2,

for all s € R, A(z, 5) is symmetric with eigenvalues in [\, A], (5.2b)
o €L} x(0,T)), FeL*2x(0,T))%, (5.2¢)
o uiy; € L2(12). (5.2d)

Under Hypotheses (5.2), a function @ is a weak solution of (5.1) if

u e L*(0,T; Hi(£2)) and, for all v € L2(0,T; H}($2))
such that 9,v € L*(2 x (0,T)) and v(-,T) = 0,

- /O ! /J,2 (e, t)0;0(x, t)dzdt — /Q uini(®)0(2, 0)d

+/0 /Q/l(:c,ﬂ(a:7t))Vﬂ(m,t) -Vo(zx,t)dedt

T
- /0 /Q(f(m’ t)o(e,t) — F(x,t) - Vo(w, t))dzdt.

Taking v € C°(£2 x (0,T)) in this equation shows that (5.1a) then holds in
the sense of distributions. Since A(x,u)Vu and F both belong to L?(£2 x
(0,7))¢, this implies that d;u € L?(0,T; H (£2)). As a consequence, U €
C([0,T); L?(£2)) and, integrating by parts the first term in (5.3) and using the
density of C2°([0, T); H}(£2)) in L?(0, T; H}(£2)) (see [68, Corollary 1.3.1]), we
see that u satisfies
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u e L2(0 T; Hy(2)) N C([0,T]; L*(2)), dyu € L*(0,T; H1(2)),
= Ujy; and, for all w € L2(0,T; H} (12)),

\ﬁ\

atu t)>H—1 Hldt
// (@, (z, 1)) Vi(z, {) - Voo(w, t)dadt
/ / P, Dw(m, t) — F(a,1) - Ve, {)dedt,
(9]

Remark 5.1. The existence of at least one solution @ to (5.3), and therefore
o (5.4), will be a consequence of the convergence analysis of the GDM (see
Remark 5.5).

In the linear case, that is A(x,u) = A(x), estimates on the continuous solution
show that this solution @ is also unique.

5.1.2 The gradient scheme

Recalling that p = 2, let Dy = (XD,O,HD,VD,ID,(t(”))n:o _____ ~) and 6 €
[%, 1] be a space-time GD for homogeneous Dirichlet boundary conditions
in the sense of Definition 4.1. Using a #-scheme for the time stepping, the
GDM applied to Problem (5.4) leads to the following GS: find a family
(™) po,..N € XNJrl such that, with the notations (4.2) and (4.4),

u® = Ipum1 and, for all n =0,..., N — 1, u(™*1) satisfies
/ 802 () Mpv () dae
+/ /1(:1:,Hpu(”+‘9)(a:))vpu(7"+9)($) -Vpu(z)de
0

t(7b+1)

- [, LU - Py Vo)t

Yv € Xpyo.
(5.5)
Here, of course, u(™ is expected to provide an approximation of @ at time ¢,,.

Remark 5.2 (Practical implementation of the GS (5.5))
For any n =0,..., N — 1, taking w9 as unknown, and using
w9 — (1 - g)u™
0 )
the implementation of the GS (5.5) is similar to that of the GS (2.52) for the steady
quasi-linear problem.

WD —
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5.1.3 Error estimate in the linear case

We now consider Problem (5.1) under Hypotheses (5.2) and the following
additional hypotheses.

F=0 and A(,s)=Id (5.6)

The equation considered here is therefore 0;u — Au = f, with homogeneous
Dirichlet boundary conditions. The following theorem states, under some reg-
ularity assumptions, an error estimate based on the notion of space size of a
GD as in Definition 2.22 page 29.

Theorem 5.3 (Error estimate, linear case and regular solution).
Under Hypotheses (5.2) and (5.6), let Dp be a space-time GD for homo-
geneous Dirichlet boundary conditions, in the sense of Definition 4.1. Let
hp = hp(W2(02) N W, P(02); W22 (2)%) > 0 be given by Definition 2.22.
Assume that the solution to (5.4) is Lipschitz-continuous [0, T] — W2 (£2),
and let u be the solution to the GS (5.5) with @ = 1. The error due to the
interpolation of the initial condition is denoted by

ep = ||[tini — IpIpUinill 120 - (5.7)
Let Cp > Cp; then there exists C > 0, depending only on w, {2, T and Cp,
such that

max HH(Dl)u(-,t) - H(-,t)‘

< CO(& h ini
te(0,T] ( ot D+€D)

L2(2)

and

V8- val < C(tp + hp + ).

L2(2%(0,T))d

Proof. In the following proof, we denote by C; various quantities depending
only on @, {2, T and Cp. For the sake of brevity, if n € {0,...,N — 1} and
g = f,wor 0yu, we set

L(n+1)

1
(D) gy — 1
9" () pIEYEY /M g(z, t)dt.

We also let 7(?) = 7(0).

Step 1: a linear spatial interpolator.

The interpolator Ip defined by (2.34) enables us to “plug” the exact solu-
tion into the scheme, which is an essential process in establishing error esti-
mates. However, this I'p is not necessarily linear, which becomes a problem
for parabolic equations. We therefore need a slightly modified version of this
interpolator. We define I(DQ) : Hi(2) — Xp o by: for ¢ € H}(92),

1§ = argmin (| Tow = ¢l + V0w = Vel ). (58)

weXp,o
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Let V = {(IIpw,Vpw) : w € Xpo} and P : L3(2) x L*(2)? — V be
the orthogonal projection. Since [[Vp-|[12(gya is a norm on Xpp, for any
z € V there exists a unique Rz € Xp o such that (IIpRz, VpRz) = z. This
defines a linear continuous mapping R : V. — Xp, and (5.8) shows that

I(Dz)gp =RoP(p, V) for all p € H}(£2). Hence, I(Dz)cp is uniquely defined and
Ig ) is linear continuous. The characterisation of the orthogonal projection P
also shows that, for all ¢ € H}(£2) and w € Xp o,

/Q HDIg)go(ac)HDw(w) + VDIg)ap(m) - Vpw(x)de
= /Q p(x)Ipw(z) + Ve(x) - Vpw(x)de.

Let ¢ € H}(£2). Taking v € Xp o that realises the minimum defining Sp ()
and using the definition of 11(92 ) shows that

2 1/2
L2(R)d )

1/2
< (10 = I3y + IVo0 = Veliaay ) < V2Splp). (5.9)

2
(oo =]+ [7o15% - 7]

Since @ € C([0,T];W?>°(£2)), (5.9) can be applied to ¢ = @(t**tY)). The
regularity on @ shows that Va : [0,T] — L2(§2)¢ is Lipschitz-continuous.
Hence, using (2.14) and (2.16) in Definition 2.22,

HVH(nJrl) _ VDI(DQ)E(t(n+1))‘

LQ(Q)d

Sp (w(tth)
Lzm)d+ b (u( )

< C’l(étp + hp) (510)

< HVE(WH-l) _ Vﬂ(t(n—i_l))‘

By regularity assumption on w, the quantity ||8tﬂ(” 1 is bounded

* )HW2v°°(Q)
E(t(”"'l))fﬂ(t("))

independently of n. Applying (5.9) to ¢ = 9@t = oD
T2

, using

the linearity of I(D2 ) and invoking (2.14), we obtain

_ 6tﬂ("+1)

< Chhp.  (5.11)

H HpIFut™ D) — 1P u™)
12(2)

snt3z)

Step 2: proof of the error estimates.
Since Va"*tY) € Hg;, (2) we can write, for all v € Xp g,

/Q (Hpv(m)div(Vﬂ("H))(a:) + va D () - VDv(m))d:c
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< Wp(Va"*) flullp -
Owing to the regularity of @, the equation d;u— f = div(Va) is satisfied a.e. in

space and time. Averaging over time in (¢, t(*+1) gives 9;a("*+1) — f(n+1) =
div(Va(™*tY) a.e. in space, and thus

[ (11pv(a) (2 @)~ £ @) + Vi (@) - Tou(a)) de
Q

< Wp(Va™ V) [lvflp -
Use the GS (5.5) to replace the term f("*1) in the left-hand side. Since

u € C([0,T); W%>(£2)), the quantity ||Vﬂ(”+1)HW1,oo(Q)d is bounded inde-
pendently on n and thus, using (2.15)—(2.16) in Definition 2.22,

/ ITpo() (950 (@)~ 65 P u(z)) da
2
+ / (w<n+1>(m) _vDuWU) -Vpu(z)dx < Cshp ||v]p. (5.12)
2
For k=0,...,N, set e®) = I(DQ)ﬂ(t(k)) —u®). We have

oI a0 — 12 utm)
&(”+%)

(5%"—%)6 =

_ atu(”+1)‘|

+ [@ﬂ(”H) — 5(;4%)“} .
and

Vet = {VDI(DQ)ﬂ(t(rH»l)) _ Vﬂ(n+1)] T [vﬁ(nﬂ) _ VDu(nJrl)]

Then (5.12), (5.11), (5.10) and the definition of Cp give

/ HDU((B)(S%I+%)6(£B)(1$ +/ Vpe" ) (x) - Vpu(x)de
2 7

< Cy(dp + hp) vl p -

Take v = &("+%)e(”+1)7 and sum over n = 0,...,m — 1 for some m €
{1,..., N}. Recalling the definition of ||-||p,

m—1
Z/ Tpe™ ) () [Hpe("+1)($)—ﬂpe(”)(w) dx
n=0 "

m—1
n 1 n
3 +z>/n\vpe< ) () [2da
n=0
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m—1

X 1/2
< > Cu(dp + hp)a"tz) Vpe™ D (z)]2de )] . (5.13)
(7}

n=0

We now apply the relation

—_

1 1 1
—a’+ =(b—a)* > 5b2 - —a? (5.14)

1
Va,b € R, b(b—a)=§b2—2 5

[\)

to a = IIpe™(x) and b = ITpe™ Y (x). Using the Young inequality (D.8)
with p = p’ = 2 in the right-hand side of (5.13), this leads to

1

m—1
3 / (ITpe™ (x))?dx + Z&("+%> / |Vpe™ ) (x)2da
2 2

n=0

m—1
<1 / (ITpe® (x))?da +1 3wt / IVpe™ ) (x)|2da
o 2 0

T2 n=0
1 ,
+5 ZO C3(8tp + hp)2a"t2), (5.15)
n=

Owing to (2.15)—(2.16), (5.7) and Estimate (5.9), since u(®) = Tpuy,; =

ane@)\ + [[(0) — IpZpTa(0)]| 12

anfg>a<0) . H(O)‘

<
12(2)
< Oshp + eBl.

L2(92)

Hence, recalling the definition of V(1) and using Zzlz_ol &tz < T, Equation
(5.15) yields

%/Q(Hpe(m)(a:))de-i-%/o

£(m

)
/ \Vg)e(w,t)\Qdmdt
2
< Co(8p + hp + €p). (5.16)

Using a triangle inequality, (5.9), and the power-of-sums inequality (D.13)
with a = 1/2, Equation (5.16) leads on one hand to: for all m =1,..., N,

anw - u(t<m>)HL2(Q) < Cy(&p + hp + € + V2Sp (@(t™))
< Cg((stp + hp + B%i). (517)

On the other hand, using again (5.9) and a triangle inequality, Equation (5.16)
with m = N — 1 and the power-of-sums inequality (D.12) with « = 2 lead to

N-—-1
Z s(nt32)
n=0

2

(Vpu““‘“) — Vﬂ(t(”+1))‘

L2(2)
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< 4Cs(dtp + hp +eBH)? +4 Z &2 S ()2

< Co(dtp + hp + elnh)2. (5.18)

The conclusion follows from (5.17), (5.18) and the Lipschitz-continuity of
@ : [0,T] — H'(£2) to compare (t) (resp. Va(t)) with w(t+1) (resp.
Va(t"t)) when t € (¢t ¢ +1)], .

5.1.4 Convergence analysis in the quasi-linear case

We come back to the generic quasi-linear model (5.1). The convergence result
we intend to prove is the following.

Theorem 5.4 (Convergence of the GDM). Under Assumptions (5.2), let
6 € [3,1] and ((Dr)m)men be a sequence of space—time GDs for homogeneous
Dirichlet boundary conditions in the sense of Definition 4.1, which is space—
time-consistent, limit-conforming and compact in the sense of Definitions 4.3
and 4.6. For any m € N, let u,, be a solution to (5.5) with Dy = (Dr)m
Then, up to a subsequence as m — oo,

(0) —
su 115 u —u(t ‘ —0 5.19a
te OpT] H Do m( ®) L2(£2) ( )
V(g) Um — VT in L2(02 x (0,T))%, (5.19b)

where @ is a solution to (5.3) (and thus also (5.4)).

Remark 5.5. We do not assume the existence of a solution @ to the continuous
problem. The convergence analysis establishes this existence.

The analysis of any GDM for non-linear models starts by establishing a priori
estimates on the solution to the GS. These estimates are useful to establish
the existence of this solution, and to invoke the compactness results of Section
4.2.

Lemma 5.6 (L°°(0,T; L?(2)) estimate and discrete L?(0,T; H}(£2)) es-
timate). Under Assumptions (5.2), let § € [3,1] and Dr be a space—time GD
for homogeneous Dirichlet boundary conditions, in the sense of Definition 4.1.
Let u be a solution to the corresponding GS (5.5). Then, for anyk =0,..., N,

= / (IIpu™ (z))2de
£()
/ / Az, H( ) u(x, t))V(e) (x,1) - Vg)u(w,t)da:dt
(5.20)

<c /(HDIDulm( ))de

/toe)

/ (F(@, )T u(@, ) — F(a, 1) - VOu(, 1)) dadt.
2
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Consequently, there exists C19 > 0 depending only on Cp > Cp (see Definition
2.2), Cini > [ IpIpuinill2(0), f, F, and A such that

< Cho. (5.21)

a1t

Ciyo and va’)u‘
te[0,T]

L2(2) L2(02x(0,T))4

Moreover, there exists at least one solution u to the GS (5.5).

Proof. Relation (5.14) is generalised to the following: for all a,b € R,
1 1 1
(a—b)(Ba+ (1 —0)b) = (a —b) [(9— 2) a+ (2 —0) b} + i(a—b)(a—i-b)
1 T Loy 1o
= —_ = — — — > _ .
(9 2)((1 b) +2(a b)72(a b%)

Let n € {0,...,N — 1}. Applying the above relation to a = IIpu(™*?) and
b= Ipu™ yields

n+l 1
Fr+3) 50Dy [ (140 > 5 ((Hpu("'H))Q - (HDu<">)2) . (5.22)
Setting v = G+ 3) g (n+0) iy (5.5) and summing over n = 0,...,k — 1 (we

assume here that & > 1, the case k = 0 in (5.20) is trivial) therefore leads to

52 (e - i)

k—
Z A //1:13 Tpu™* (2))Vpu 9 () - Vpu 9 (x)dx

<% .

The first sum is telescopic and reduces to

£(nt1)

/ (f(, ) Tpu™* (x) — F(x,t) - Vpu"™9 (z))dedt. (5.23)

/ (Tpu® ())2dz — / (Tpu® (2))2dz

2 (9]
/ (pu™ (2))2da — / (Ip Totins () 2dac.
(9] (9]

Recalling that I10u(z,t) = Hpu™®(z) and VP u(z,t) = Vpu+o ()
whenever ¢t € (t(”),t("+1)], Equation (5.23) can then be recast as (5.20).
Using the Cauchy—Schwarz inequality (i.e. (D.5) with p = p’ = 2), the Young
inequality (D.9) and the definition (2.1) of Cp, we write

J

£k

/ (F(a, )T u(@, t) — F(a,t) - VOu(w, £))dadt
2
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0
< Wfllzzcox o0y HH(D)U‘

Vg)u’

L2(02x(0,t(F)))

F1F N L2002 0,409y

L2(2%(0,£()))d

c% o A @)
< By 122 (2 (0,6my) + 40723 ‘H ‘

L2(2x(0,¢0))
2

1 Ao
+5 ||F||2L2(Qx(o,t<k>))d v ‘ V%)U’

02
< D ||fHL2(Q><(O wyy Ty HFHL2(9><(0 £(k)))d

#3195

Plugged into (5.20) and using the coercivity of A, this gives

L2(2x(0,t(k)))d

’ (5.24)

L2(2x(0,t0)))a

%/(Hpu(k)(a:)) dz -+ AV ‘
(9]

LQ(QX(O £()))d
Loz Sy L
ini L2(02x(0,t(k))) 2\ L2(02x(0,t(k)))d

v ‘

2 H L2(2%(0,t(0)))d

Hence,

] L |

v(® ‘

L2(92) 2 H

|~

Ko L2(02x(0,T)4

*012111 + l ||f||L2 oxor) T3 ||F||L2 (2% (0,T))¢ -

The estimates in (5.21) follow from this inequality and from the fact that, by
definition (4.2) of HZ()G),

[Tpu" || ) < O Tput™ V| L2() + (1 = 0)|[ Tpul™ | L2(0).

Following the same arguments as in the proof of Theorem 2.35, it is easy to
establish by induction that, for each n = 0,..., N — 1, there is a solution
u(™Y) to the equation in (5.5). This shows that this GS has at least one
solution w. [

Lemma 5.7 (Estimate on the dual norm of the discrete time deriva-
tive). Under Assumptions (5.2), let 0 € [1,1] and Dr be a space-time GD
for homogeneous Dirichlet boundary conditions, in the sense of Definition 4.1.
Let u be a solution to the corresponding GS (5.5). Then there exists C11, de-
pending only on Cp > Cp, Cini > |[IIplpuiillz2(0), f, F, A and A, such
that
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T
| 18ou02 pat < . (5.25)
where the dual norm ||-||, p is defined by (4.16).

Proof. In (5.5), choose v € Xp o which realises the supremum in the def-

inition (4.16) of ||5gl+%)u\|*7p. Recalling that [[v|l, = 1 and applying the
Cauchy—Schwarz inequality as well as the definition (2.1) of Cp, we get

Hé(mr%)u < XHVDu("W)’
D D L2(2)
1 ¢(n+1)
[ OOl + IFC Dl o)t
t("Jrl)

- ﬁ /t(n) [X va)u(t)HLz(Q) +Cp lf( D)l 20

FIFC 1) 2 |t

Square, use the Jensen inequality (D.10), multiply by &+2) and apply the
power-of-sums inequality (D.14). Recalling the definition (4.4) of dpu, this
yields

H(n+1)
2
/ L enu)] pt <
t n

¢(n+1)

—9 0 2
3 [A [V u®|| + CE NSOz + IFC DI 2(ape |

We conclude the proof of (5.25) by summing over n = 0,..., N — 1 and by
invoking Estimates (5.21). m

We are now ready to prove the convergence of the GS (5.5).

Proof of Theorem 5.4.

We note that since ((Dr)m)men is compact, it is also coercive (see Lemma
2.10).

Step 1: Application of compactness results.

By Estimates (5.21), Lemma 4.8 gives the existence of some u € L?(0,T;

H}($2)) such that, up to a subsequence as m — oo, Hg) Uy — U weakly

in L(2 x (0,7)) and Vg}num — Vu weakly in L?(£2 x (0,T))?. Estimate
(5.25) and Theorem 4.14 show that, in fact, Hz(fgl Uy, converges strongly to w
in L2(2 x (0,7)).

Step 2: @ is a solution to (5.3) (and thus also (5.4)).

Let v € L?(0,T; H}(£2)) be such that 8;v € L*(£2 x (0,T)) and v(T,-) = 0.
Let (vm)men be given for 7 by Lemma 4.10 (with 1 — @ instead of ).
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In the following, we drop the index m in D,,,, N,,, and v,, for legibility reasons.
1

Introduce v("+(1=9) ag test function in (5.5), multiply by &*3) and sum

the result on n = 0,...,N — 1. Recalling the definitions (4.2), this gives

T + T8 = T with

N-1
T = 3 /Q [1Tpu" ) (@) — Hpu™ (@)| Hpol 00 (2)da,
n=0

T
Té’”)Z/ / Ale, 115 u(e, 1)) VS u(@, t) - Vi~ v(, t)dadt,
0 2

and
T
Tém) = / / (f(m7t)ﬂg70)v(w,t) — F(z,t) - ngﬁ)v(:v,t)) dadt.
o Jo

Applying the discrete integration-by-parts (D.17), with v = 1 — 6, to Tl(m)
and using the fact that v(™) = 0, we write

N-1
T — T / a9 (a) [HDU(nJrl)(w) _ HDU(n)(:E)} de
n=0 "%

—/ Tpu'® () Tpv® (z)da
7

>

n=0 )

¢(n+1)

/Hg)u(m,t)épv(m,t)dmdt
2

—/ Ipu' () Tpo® (x)da
e

T
_ / / IO u(w, 1)5pv(a, t)dadt
0 (7
(1-0)
—/HDIDUini(l‘)UD v(x,0)dz.
2

Recall that H(De)u — w in L*(2 x (0,T)) and, by space-time-consistency of
((D1)m)men, that IIpTpuin; — uin; in L2(£2). The convergence properties of
(Um)men stated in (4.10c) and (4.10b) (with 1 — 6 instead of §) show that

T
lim 7™ = — / / (e, t)0;v(x, t)dadt — / Uini ()0 (e, 0)dz.  (5.26)
0 2 2

m—r oo
Since H(De)u — win L2(2x(0,T)), Lemma D.9 (non-linear strong convergence
property) shows that /1(-7H(D0)u)vg_9)v converges to A(-,u)Vo in L?(£ x

(0,7))% as m — oo. Hence, using the symmetry of A and the weak-strong
convergence result of Lemma D.8,



5.1 The gradient discretisation method for a quasi-linear parabolic problem 129

T
lim 7™ = lim/ /Qv§§>u<w,t>~ Az, 115 u(z, 1)) V5~ v(a, t)dedt

m—0oQ m—r o0 0

/ ' / A, @(w, 1))V, t) - Vo(a, t)dwdt, (5.27)

—6)

The convergences of 11 (=0),, and V(l v readily give

lim 74" // F@,0)5(@,1) — F(a,t) - Vo(a, 8)) dwdt.  (5.28)

m—o0

Using (5.26), (5.27) and (5.28) to pass to the limit m — oo in Tl(m) + Tz(m) =
T?Em) shows that u satisfies the equation in (5.3).

Step 3: Uniform-in-time convergence of Hgium.

Let s € [0,7] and (S;)m>1 be a sequence in [0,7] that converges to s.
Assume first that s,, > 0 and let k(m) € {0,...,N,, — 1} be such that
S € (M) M+ By convexity of the square function and by Defini-
tion (4.2) of I3,

2
(1) (@, 500))? = (01T, ulh™ ) (1= 0) 1T, ulk™))
< 0(IIp,, ufy ™) + (1= 0)(IIp, uly ™))% (5.29)

Set 57({) .= t(k(m)) and 57(7?) = t<k(m)+1), which both converge to s as m — oo.
Write (5.20) for & = k(m) + 1, multiply by 6, write (5.20) with k = k(m),
and multiply by 1 — . Summing the two inequalities thus obtained and using
(5.29) yields

1/(Hg’) u(x, 8,,)) % de
/ //1 (e, )V u(, ) - V) u(e, t)dadt

(+)

/ / (@, 115 u(z, )V u(z,t) - V) u(z, t)dedt

< Q/IZ(HD Ip,, Uini(T ))*da

+/ /(f(w,t)Hgiu(w,t)—F(:c,t)~V§§;u(:c,t))dwdt
S ()
/(_ / (x,t Hé u(zx,t) — F(x,t) - V(Deilu(w,t))dwdt. (5.30)
Inequality (5.30) also obviously holds if s, = 0 (with, in this case, s =

357;) = 0). Our aim is to take the superior limit of (5.30). We first analyse the
behaviour of all the terms, except the first one.
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The Cauchy—Schwarz inequality for the semi-definite positive symmetric form

sty
W e L2(2 x (0,T))% — / / Az, 1) w (,0)W (2, 1) - W (2, t)dadt
2

shows that
) 2
" Q ) o
</ / Az, I um(x, 1))V, um(z,t) Vu(:c,t)d:cdt)
0 2 '
st
< (/ / A(m,Hgium(:c,t))v(gium(a:,t) . Vg;um(:c,t)d:cdt>
0 2

5
" ©) u - Vu(x x . .
X (/0 /QA(:B,HDmum(m7t))Vu(w,t) Vu(x,t)d dt) (5.31)

As m — oo, we have
H(Deium — @ strongly in L2(_Q X (()7T))7 and
1[0735;)]Vﬂ — 19,4 VU strongly in L*(2 x (0,7T))%.
Here, 1[4 is the function of time such that 1p,;(t) = 1 if t € [a,b], and

1(a,4)(t) = 0 otherwise. The non-linear strong convergence property stated in
Lemma D.9 page 465 then shows that, as m — oo,

L, s(f)]/l(-, nglum)Vﬂ — 19,4 A(-, W)V strongly in L2(£2 x (0,7))%.

Owing to Lemma D.8 (Weak—strong convergence property) and to the weak

convergence in L2(§2 x (0,7T))¢ of VD U, to V@, the left-hand side of (5.31)
and the second term in the right—hand side of (5.31) pass to the limit. Taking
the inferior limit of this inequality and dividing by [ [, A(z,7)Va - Va, we
deduce that

/ A5, ) V(e 1) - Va(e, ) dadt
(9]

sm_)
< liminf / / A2, IT5) i (,0)) VSt (2,1) - V) (2, ) ddl.
Y , "

m— 00
(5.32)
The space-time-consistency of ((Dr)m)men (Definition 4.3) gives
/ (IIp,, Ip,, tini(x )2dx — / Uini())2da as m — oo. (5.33)
o)

Still considering m — oo, we have 1 (0,561 f = 1qf in L2(02 x (0,T)) and

1[0 S(_)]F — 1pp,qF in L2(02 x (0,7))%. The weak convergences of H(Dylum

0 .
and V(D,)n Uy, thus give, as m — oo,
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o)
/ / (f(m,t)Hl(fi’u(m,t) — F(;c7t) . Vg,)nu(fv,t))da:dt
0 n
—>/0 /Q(f(m,t)ﬂ(:c,t) ~ F(z,t) Va(e, t))dzdt. (5.34)

Finally, since 1, (- S<+)]f — 0 in L?(2 x (0,T)) and 1[5(*) s(+>]F — 0 in

L2(0 x (07T))d7[

(+)

/(": /(f(mat)Hg?nU(iC,t)*F(:c,t)~V§,9T)nu(a:,t))da:dt%0. (5.35)
S n

We now come back to (5.30), drop the non-negative term in brackets, move
the second term from the left-hand side to the right-hand side, and take the
superior limit. The convergences (5.32), (5.33), (5.34) and (5.35) yield

1
limsupi/ (Hgium(sc,sm))de
fo)

m—oo

1 ) s B et o )
Sif(zuini(w) dw—i—/o /Q(f(w,t)u(@t) F(x,t) - Vu(z, t))dodt

m—r o0

st
~ liminf / / A, T (2, 8)) V') g (1) - T 11 (2, ) Al
0 Q ' "

1 ) s B e ol )
§§/Qumi(33) dw—i—/o /Q(f(:n,t)u(@t) F(x,t) Vu(z,t))dzdt

—/S/ Az, u(z,t))Vu(zx, t) - Vu(e, t)dedt. (5.36)
0 Jo

Since w € L2(0,T; HX(£2)) and d,u € L?(0,T; H=*(£2)), the following integra-
tion by parts is justified (see [68, Section 2.5.2]):

o u = L u 2 —1 u(x,0)2dx
/O<8tu(t)7u(t)>H_17Hédt—§/Qu(w,s) dz 2/9 (z,0)2dz.

Making w = U1y 4 (t) in (5.4), we therefore see that

% /Qﬂ(w, s)dx + /0 /!2 Az, u(x, 1) Vi(e, 1) - Vi@, t)dadt

1 , ) o
:i/gui“i(‘”) d$+/0 /Q(f(w,t)u(w,t) F(z,t) - Va(z,t))dzdt.

(5.37)

Used in (5.36), this relation gives

limsup/(ﬂgium(%sm)fdwg/ﬂ(:c,s)de, (5.38)
o

m—o0 0
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Owing to Theorem 4.19 and to Estimates (5.21) and (5.25), (H(D(ilum)meN
converges to U weakly in L?({2) uniformly in [0, 7] (in the sense of Definition
C.14). Hence, H(Deium(-, Sm) — (-, 8) weakly in L2(£2) as m — oo. Estimate
(5.38) and a standard reasoning in Hilbert spaces then show that this con-

vergence is actually strong in L?(£2). By Lemma C.13, we infer that (5.19a)
holds.

Step 4: Strong convergence of Vg')num.
Note that, by (5.19a), II% u (-, T) — a(-,T) in L?(£2). Write (5.30) with

sm = T (so that s = t™==1 and s$) = T), move the first term to the
right-hand side and take the superior limit. We can pass, as in the previous
step, to the limit in all the terms on the right-hand side. Let g, : [0,7] — R

be the function such that g, =1 on [0, s )] and g, = 6 on (ssnf),T}. Using
(5.37) with s = T, we obtain

lim sup/ / gm/(t )um(w,t))vg) U (2, 1) ~Vg}num(w,t)d:cdt

m—r o0

T
< 5 /numl( ) d.’B—F/O (f(a:,t)ﬂ(zc,t) — F(m7t) . Vﬂ(w,t))da:dt

71/ w(x, T)*dx
2 Je

T
:/ / Az, u(zx, t))Vu(e, t) - Vu(x, t)dedt.
0o Jo
Using this estimate, the strong convergence in L?(£2 x (0,T)) of Hgi Uy, 10 T,
Lemma D.9, the strong convergence in L2(£2 x (0,T))? of g,,Vu to Vu, the
weak convergence in L2(£2 x (0,7))¢ of V(g) Uy, to Vu, and developing the
following expression in a similar fashion as (2 60), we infer that

T
Jim sup / / () A, T 11, (22, )) (VL) (1) — V(1))
m—oo Jo Jo

(VY (@, 1) — Va(z, t))dzdt < 0.

By coercivity of A and since g,, > 6 > %, this shows that, as m — oo,

/ /‘VD U (2, t) — Vu(z, t) d:cdt—>0.

This concludes the proof that VD Um — VT strongly in L(£2 x (0,7))? as
m — OQ. |
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Remark 5.8 (About the discrete IBP formula (D.17))

The usage in Step 2 of the “v”-discrete integration by parts formula (D.17) is non-
standard. A usual way of proceeding, see, e.g., [77] or the proof of Theorem 5.19, is
to analyse in this proof the convergence of Hg}n Um towards w. Using this analysis,
the test function v+ instead of v (=) can be used in Step 2, and the more
standard discrete integration-by-parts formula (D.15) can then be applied.

Thanks to (D.17), we can however fully analyse in the proof of Theorem 5.4 the
convergence of H’(DB,L Um without having to analyse at the same time H(Dlgn Um,, which
is a less natural reconstruction for #-schemes.

5.2 Non-conservative problems

5.2.1 The continuous problem

We focus in this section on the approximation of some non-linear problems
under the following non-conservative form:

vz, t,u(z,t), Vu(e, t))du(z, t) — div(u(|Vu(z, t)|) Vu(z, t))

5.39
= f(z,t), for a.e. (z,t) € 2 x (0,T) (5.39)
with the initial condition
u(x,0) = uini(x), for a.e. x € £2, (5.39b)
and boundary conditions
u(zx,t) =0, for a.e. (z,t) € 902 x (0,T). (5.39¢)
The hypotheses are as follows:
e (2 is an open bounded connected subset of R? (d € N*)
and T > 0, (5.40a)
o uini € HY () (5.40b)
e fcL?(2x(0,7)), (5.40c)

e : 2 x(0,T) xR xR? - R is a Caratheodory function and

there exists Vmax > Vmin > 0 such that v(x,t,,€) € [Vmin, Vmax)

for a.e. x,t and for all s, ¢, (5.40d)

(here, Caratheodory means that, for all (s,€&) € R x RY, the function (x,t)
v(x,t,s,&) is measurable and, for a.e. (x,t) € £2x(0,7T), the function (s,&) —
v(zx,t,s,£) it is continuous)
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e 11 : RT — R is Lipschitz-continuous, non-increasing, and
there exists fmax = fmin > 0 and a > 0 such that

©(8) € [Hmin, Hmax] and (su(s))” > a for all s € RT. (5.40¢)

One specific choice of i and v is of particular interest. For given real numbers
0 < a < b, using the functions

1 1
= e Rt
w(s) max( 52+a2’b> , Vs e RT,
v(x,t,2,6) = p(€]), Y(z,t) € 2x(0,T), z€ R, V¢ € RY

in (5.39a) lead to the regularised level set equation [90]. These functions satisfy
(5.40d)—(5.40e) with o = a?/b3.

Let us now give the precise mathematical meaning of a solution to Problem
(5.39) under Hypotheses (5.40).

Definition 5.9 (Weak solution of (5.39)). Under Hypotheses (5.40), we
say that u is a weak solution of (5.39) if

1.u € L%0,T;H(2)) and du € L*(2 x (0,T)) (which implies u €
C([0,T); L*(12))),

2. u(,O) = Ujni,

3. the following holds

/T/ v(z,t,u(x,t), Vu(zx, t))Owu(z, t)v(x, t)dedt
o Jo
+/O /Q,u(|Vu(:B,t)|)Vu(:c,t) - Vo(x, t)dedt

:/T/f(m,t)v(m,t)dmdt, Yo € L*(0,T; Hy(£2)). (5.41)
0 2

The third item shows that a weak solution to (5.39) satisfies (5.39a) in the

sense of distributions. In particular, for such a solution, div(u(|Vu|)Vu) €
L2(02 x (0,T)).

Our aim is to use the GDM to construct gradient schemes for (5.41), and to
prove their convergence to a weak solution of (5.39). As usual for non-linear
models, convergence proofs start with a priori estimates. Let us formally show
the kind of estimates that can be obtained on (5.39).

Defining F' by

s 2 2
Vs e Ry, F(s) = / zu(z)dz € [uminz,umax‘;} ) (5.42)
0

any sufficiently regular function u satisfies
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d

&/ F(|Vu(zx,t)|)de = / w(|Vu(e, t))Vu(z, t) - Vou(z, t)dedt. (5.43)
Q 2

Therefore, assuming that w is solution of (5.39a) with f = 0 (for the sake of

simplicity of this brief presentation) and taking v = Jyu in (5.41), we see that

/T/ u(u,Vu)atu(a:,t)dedt—&—/ F(|Vu(z,t)|)de
o Jo 12,
_ /Q F(| Vi (2))dz.  (5.44)

The discrete equivalent of this essential estimate is established in Lemma
5.10 for the fully-implicit scheme (using that s — su(s) is increasing), and
in Lemma 5.14 for the semi-implicit scheme (using that u is decreasing). For
both schemes, the hypothesis that s — su(s) is increasing is instrumental to
proving that the reconstructed gradients converge strongly.

5.2.2 Fully implicit scheme

Let Dy = (Xp,0, IIp, VD, Ip, (t("))nzo ,,,,, ~) be a space—time GD, for homoge-
neous Dirichlet boundary conditions, in the sense of Definition 4.1 with p = 2
and 6 = 1. Using a fully implicit time-stepping, the GDM applied to Problem
(5.41) leads to the following GS: find a family u = (u("))n:07,,_,N € Xg’gl
such that 7

u® = Tpui; and, for n =0,..., N — 1, «("t1) satisfies
¢(n+1) )

/V(a:,t,Hpu(”ﬂ),Vpu(”H))5$+§)u(w)ﬂpv(a:)dxdt
10

t(n)

80D [ (o D @) Vo @) Voviara 049
0

¢(n+1)

= /f(w,t)ﬂpu(w)d:cdt, Yo e Xpp.
t(n) Q

We recall the notations (4.2) and (4.4), and that § = 1 here. The operators

Hz()l ) and Vg) will therefore be our natural space-time function and gradient
reconstructions.

Estimates and existence of a solution to the fully implicit scheme

Lemma 5.10 (L*(2 x (0,T)) estimate on dpu and L*(0,T; Xp,) es-
timate on wu, fully implicit scheme). Under Hypotheses (5.40), let Dr
be a space—time GD for homogeneous Dirichlet boundary conditions, in the
sense of Definition 4.1. Then, for any solution u to the GS (5.45) and for all
m=1,...,N,
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VDU

me/ / opu(x t) dedt + pmin

2(0)d

< Hmax ||VDIDUm1HL2(Q)d + ||fHL2(Q><(O ) (5.46)

As a consequence, there exists at least one solution u to the GS (5.45).

Proof. Setting v = % in (5.45) and summing over n =0,...,m—1
2
leads to
t(m)
z/min/ / Spu(x,t)?dxdt
m—1

Z / (IVpu™ D (2)|) Vpu" D (x) - [Vpu("ﬂ)(:c) — Vpu'™ ()| dz

t(m)
/ /Q f(z, t)opu(e, t)dedt. (5.47)

Hypothesis (5.40¢) implies the convexity of the function F' defined by (5.42),
and thus

Ver,eo € R Fley) — Fey) = / zu(z)dz < cap(ea)(ca — ¢1).

C1

This gives in particular

F(IVpu") (@)]) - F([Vpu'™ ()
< (| Vpu™ D (@) Vou ) (@) [|[Vou ) ()] - [Vpu (@)]] . (5.48)

The Cauchy—Schwarz inequality implies

Vou™ D (@)| |[Vpul" ) (@)| - [Vpul") ()]
= Vpu" (@) - Vou (@) — [Vpul" ) (@)||Vou' ()]
< Vpu™(z) - [vpu<"+1>(ac) — Vpu™ (x)] : (5.49)

Combining (5.48) and (5.49) and plugging the result into (5.47) yields

Vmin /

+Z/ (IVpu"tD(@)|) = F(|Vpu™ (z)|)| d

*('m)

/ Spu(zx,t)*dedt

t(m)

/ [ J@.ou. Odadr. (5.50)
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The sum in the left-hand side is telescopic and reduces to

[ [F9ou™ @) - F(Vu® @))] e
o)
The right-hand side of (5.50) can be estimated by means of the Cauchy—

Schwarz inequality and the Young inequality (D.9). Since the range of F' is in
[Mmin32/27 ,umax52/2]7 this gives

t(m)
me/ /5Dux t) dmdt+“mm/ \Vpul™ (x)2da

Nmax
< — / IVpu® () ?dz + ||fHL2(Q><(O ) 10Dull 1202 (0,60m)))

Nmax 2 2
< L [ 190 Tpuim ()4 + 5o oy

Vmin

2
9 H(SDU||L2(Qx(o,t<m>))-

Moving the last term to the left-hand side yields Estimate (5.46).

To prove the existence of at least one solution to the GS, we create an homo-
topy between the model (5.39) and a linear PDE. By induction, it suffices to
show that, for a given u(™) € Xp,o, there exists u(mth) e Xp,o satisfying the
integral relation in (5.45). For A € [0, 1], define py and vy by

£A(8) = fimax(1 — A) + Au(s) , and
V)\<$,t,5,§) = Vmin(l - )\) + )\V(SC,t,S,E)~

Let (v;)i=1,....m be a basis of Xp o and define & : Xp o x [0,1] = Xpo by
its components (P(w, A);)i=1,...m on (v;)i=1,... Mm:

¢(n+1)

= /t(n) /QV)\(CL'J,HD’LU(w),VDw(w))
" Hpw(x) — Tpu™ (x)

pIEESy Hpv;(x)dedt
+ &("+%)/ wr(|[Vpw(x)|)Vpw(x) - Vpu;(x)de
L)
/ f(x, t) [Ipv;(x)dadt.
(n) 0

Then u("*+Y) satisfies the integral equation in (5.45) if and only if ®(u("+1) 1) =
0.

The mapping @ is clearly continuous. If @(w,\) = 0 then, since ) (resp.
vy) has its range in [fmin, max] (T€SP. [Vmin, Vmax]), similar estimates to the
ones established above give a bound on [[Vpwl|2(ge = [[w[p that does
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not depend on A € [0,1]. Finally, for A\ = 0, &(-,0) is affine and therefore
invertible since, by the previous bound, its kernel is bounded (and thus neces-
sarily reduced to a single point). As a consequence, for some R large enough,
&(-,0) = 0 has a solution in the ball of radius R in Xp g.

A topological degree argument (see Theorem D.1 page 462) can therefore be
applied and show that @(-,1) = 0 has at least one solution, i.e. that there
exists u(™*1) solution to the integral equation in (5.45). "

Convergence of the fully implicit scheme

For u € Xg'gl, define wp and Gp by, for a.e. (x,t) € 2 x (0,7T),

wp(z,t) = fla,t) — v (m,t,ng>u(m,t), vg>u(m,t)) Spu(z,t),  (5.51)
Gola,t) = (|v<1>( )|)vg>u(m,t). (5.52)

With these definitions, (5.45) can be recast as

XN+1 XN+1

and, for all v € X557,

/ / Gp(z,t) - Vg)v(w t)dxdt (5.53)

/ /wp (@, )1 (:L',t)d:cdt.

The following lemma is an initial step towards establishing the convergence
of the fully implicit GS for (5.39).

Lemma 5.11 (A convergence property of the fully implicit scheme).
Under Hypotheses (5.40), let ((D7)m)men be a sequence of space—time GDs
for homogeneous Dirichlet boundary conditions (with p = 2). Assume that the
sequence ((Dr)m)men s space—time-consistent, limit-conforming and compact
in the sense of Definitions 4.3 and 4.6. Also assume that (Vp,, Ip, Uini)meN
is bounded in L?(£2)%.

For any m € N, take up, a solution to the GS (5.45) and define wp,, and
Gp,, from un, by (5.51)—(5.52). Then there exist functions

€ L>®(0,T; Hy(£2)) N C([0,T]; L*(2)) with 0,1 € L*(£2 x (0,T))
and u(-,0) = Uip; ,

G e L*(2x(0,7)%, and

w e L2(2 % (0,T))

such that, along a subsequence as m — oo,

1
o supyco. 7 [HI5 ) () — a(t) | 222y — 0,



5.2 Non-conservative problems 139

. Vg; U converges weakly in L?(2 x (0,T))? to Vu,
® 0p,, Um converges weakly in L?(2 x (0,T)) to dyu,
e Gp,, converges weakly to G in L?(2 x (0,T))4,

e wp, converges weakly to w in L?(2 x (0,T)),

o it holds

T
/ / Gp,, (x.) - V) up (@, t)dzdt
v (5.54)

— /OT/QG(:c,t) - Vu(x, t)dzdt.

Remark 5.12. At this stage, we do not identify G and 0, respectively, with
1(|Va|)Va and v(w, Va). This is done later, in the proof of Theorem 5.13, by
using (5.54).

Proof. Owing to (5.46), (Gp,, )men is bounded in L>(0,T; L*(£2)?) and
(wp,, )men is bounded in L2(£2 x (0,T)). Hence, there exists G € L?(£2 x
(0,7))* and w € L2(£2 x (0,T)) such that, up to a subsequence as m — oo,
Gp,, — G weakly in L?(2 x (0,T))? and wp,, — w weakly in L2(£2 x (0,T)).
By Lemma 5.10, the sequence ((um)1)men (see notation (4.2) with § = 1)
is bounded in L*°(0,T; Xp,, 0) and the sequence (0p,, Um)men is bounded
in L2(0,7T;L*(£2)). Theorem 4.18 thus provides w € L°(0,T;H}(£2)) N
C([0,T); L?(£2)) such that d;u € L?(2 x (0,T)) and, up to a subsequence as
m — 00, SUPseo,1] ||H(D1T)n“m(t) —u(t)||z2(2) — 0 and 6p,, up — O¢u weakly

in L2(£2 x (0,T)). The weak convergence of Vgilum to Vu is a consequence
of Lemma 4.8.
The definition (4.3) gives Iy, u,, (0) = IIp, uly) = IIp

time-consistency of ((D7)m)men then yields H(Dli’um(O) — Uiy in L?(£2) as

Ip,, tini- The space—

m

m — oo. By the uniform convergence of (Hgium)mg\r to w, we infer that
ﬂ(-, O) = Ujnij-

We now aim to prove (5.54). Since u € L?(0,T; H}(£2)) we can take (U )men
given by Lemma 4.10 for © = w. Using v,, as a test function in (5.53) with
Dr = (Dr)m and passing to the limit yields

T - - T - B
/0 [ Gla.t) vt - /0 /Q D@, a(m, dzdt.  (5.55)

Putting v = wu,, in (5.53), the weak-strong convergence lemma (Lemma
D.8 page 464) enables us to pass to the limit in the right-hand side, since
(wp,, )men converges weakly in L2(£2 x (0,7)) and (Hgium)meN converges

strongly in L?(§2 x (0,T)). Owing to (5.55), this gives

T T
lim / / Gp, (1) - V) (@, t)dzdt = / / w(z, t)u(z, t)dadt
0 2 ) 0 2

m— 00
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_ /OT/QG(:mt)-Vu(w,t)dwdt

and the proof of (5.54) is complete. L]
We now state and prove the convergence of the fully implicit GS for (5.39).

Theorem 5.13.

Assume (5.40) and let ((Dr)m)men be a sequence of space—time GDs for ho-
mogeneous Dirichlet boundary conditions (with p = 2). Assume that the se-
quence ((Dr)m)men is space—time-consistent, limit-conforming and compact
in the sense of Definitions 4.3 and 4.6.

We also suppose that (Vp,, Ip,, Wini)men is bounded in L%(2)? and, for any
m € N, we let u,, be a solution to the GS (5.45).

Then there exists a weak solution @ of (5.39) in the sense of Definition 5.9
such that, up to a subsequence as m — oo,

o supyco 7y TG i (t) = G(t) 122y — 0, and
o V) wy — VI in L2(£2 % (0,T))".
Proof.

Let W, G and W be given by Lemma 5.11. Then, SUPcfo,7] ||H(D13Lum(t) —
U(t)| 22y — 0 along a subsequence (not explicitly indicated below).

Step 1: a strong monotonicity property.
We aim to prove here that, for all V, W € L?(£2 x (0,T))¢,

T
| [ wwiw = vy v - viasar
0
2
> alIW[ = 1VIllz2(ex@©ry - (5-56)
Use first the Cauchy-Schwarz inequality for the dot product of R? to get

/OT/QMOWDW-dedtS/OT/QHUWDWl |V |daedt.

Writing the same properties with W and V swapped leads to
T
| [ wwiw = vy - v - v)dzar
T
> /0 /Q ((WDIW] = w(VDIV]) (W] = [V]) deedt.
By Property (5.40e) on pu, (5.56) follows.

Step 2: Proof that G = u(|Vu|)Va.
We use Minty’s trick (see Section D.5). For V € L2(§2 x (0,T))9, set
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/ / (VL) ) VD), — ,,L(\V\)V] : [vg;um - v] dzdt.

Recall that u(\V(l) um\)V% U = Gp,, . Together with (5.54), the weak con-

vergences of Gp,_ . and V um therefore yield

m

Jim_T,(V) :/O /Q (G~ u(IV)V] - [Va — V] dadt. (5.57)

By (5.56), T,,(V) > 0 and thus

/OT /g (G — u(V)V] - [Va — V] dadt > 0.

Take W € L2(2 x (0,7))¢ and set V = Va + AW for A € R. This gives

T -~ — —
)\/0 /Q[G—u(wumwn(vuﬂvv)}-dedtzo.

Since A is any real number, this shows that the integral term is equal to zero.
The dominated convergence theorem justifies letting A — 0 in this term, which
shows that

T
/ / |G — p(IVal)Va] - Wdadt = 0.
0o Jo
Taking W = G — u(|Va|)Va yields

G = u(|Vu)Vu  a.e.on 2 x (0,7). (5.58)

Step 3: strong convergence of Vgilum, and proof that w is a solution to
(5.39).
Making W = V%Bﬁum and V = Vu in (5.56) gives

1

L2(2%(0,T)4 — « T (V).

195wl 91|

By (5.57), litnse0 T (V) = 0 and thus |V5) u,,| = |V in L*(£2 x (0, T))
as m — oo. This entails the convergence of the L? norm of these functions,
that is

= IVl L2 (0,7))0 88 M — 00

(1)
H D'Nl um

L2(02%(0,T))4

This latter convergence shows that the weak convergence of (Vgr)n U )meN t0

Va in L2(2 x (0,T)) is actually strong.
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By a form of non-linear strong convergence property similar to Lemma D.9
page 465, the strong convergences of (H(Dlium)meN and (Vgr)n Um )meN Show
that, as m — oo,

v(-, ~,H(Dl3lum, Vg}num) — v(-,-,u, V) strongly in L2(2 x (0,7T)).

The weak convergence of dp,, u,, towards 0,u and the weak-strong convergence
property in Lemma D.8 page 464 then enable us to identify the limit of wp
(defined by (5.51)):

w=f-v(,-uVu)ou ae in 2x(0,T). (5.59)

Let v € L?(0,T; Hi(£2)) and take (v,,)men provided by Lemma 4.10 for v.
Write (5.53) for Dy = (Dr)m and v = v,,. Passing to the limit m — oo in
this relation is justified by the weak convergences of Gp,, and wp,,, and the
strong convergences of Hgi Uy, and Vg}nvm. This leads to

/OT/QG(:c,t) -Vo(x, t)dedt = /OT/Qw(m,t)v(m,t)dmdt,

Then (5.58) and (5.59) show that @ satisfies (5.41). Since the regularity prop-
erties of w required in Definition 5.9 are ascertained in Lemma 5.11, the proof
that @ is a solution to (5.39) is complete. L]

5.2.3 Semi-implicit scheme

Given a space—time gradient discretisation Dr and using a semi-implicit time-
stepping, the GDM applied to (5.41) gives the following GS: seek a family
u = (u(”))nzow’N € Xg“ such that

u® = Tpui; and, for n =0,..., N — 1, «("t1) satisfies
t(ﬂ+1)

+5t(n+%)/ M(‘VDu(n)l)VDu(n-ﬂ) Vpo(z)ds (5.60)
o

£t

= / / f(wvt)HDU<$)dSCdt, Yv € XD,O-
t(m) 9]

Quite naturally, the analysis of this semi-implicit implicit scheme uses both
H(D1 ), Vg) and Hg) ), Vg). Recall that the definition of these latter operators
(see (4.2)):

H(Do)u(:c,t) = ITpu™(x) and Vg)u(w,t) = Vpu™(z),

for ae. (x,t) € 2 x (t™ T yp=0,... N —1.
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Estimates and existence of a solution to the semi-implicit scheme

Lemma 5.14 (L*(2 x (0,T)) estimate on dpu and L>(0,T; Xp) esti-
mate on u, semi-implicit scheme.). Under Hypotheses (5.40), let D be
a space—time GD in the sense of Definition 4.1. Then the GS (5.60) has a
unique solution u, and it satisfies, for allm=1,..., N,

t(m) 9
Vmin / / 5DU($7 t)zdil?dt + [4min
0 2

Vpu™ ‘

L2(Q)d
m—1 9
+ Hmin Z /Q ’VDu("H)(w) - Vpu(”)(w)‘ dx (5.61)

n=0

2 1 2
< tmax |V Iptinill72(0)a + o 1122201y -

Proof. First notice that, by Hypothesis (5.40¢),

x|

Ve, x € RY, /

I gl (e < plehx- (-0 (56

To prove this property, simply remark by developing |x — £|? that it simplifies
into
g 1 ) ) x|
Ve ERY, Sl )~ [ etz 20
€

Set, for a,b € RT,

b
B(b) = pul@)? ) - [ zu(e)d

Then &' (b) = b(u(a)—pu(b)), whose sign is that of b—a since 1 is non-increasing.
Hence ®(b) is non-increasing for b < a and non-decreasing for b > a. Since
@(a) = 0, this shows that @(b) > 0 for all b € Rt and the proof of (5.62) is
complete.

Applying this relation to & = Vpul™ (x) and x = VputV(x) and recalling
the definition (5.42) of F leads to

F(|Vpu"*V(@)]) — F(|Vpul™ (z)|)

HMmin
+ 2

2
Vou™(z) — Vpu™ (w)‘

< u(|Vpu™ (2)) Vpu™ D (z) - [vDu<n+1>(az) - vDuW(az)} . (5.63)

Estimate (5.61) is then established as the proof of Lemma 5.10, by plugging
= % in (5.60), summing over n =0,...,m — 1, and using (5.63) in
T2

lieu of (5.48). L]
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Convergence of the semi-implicit scheme

If w is the solution to the GS (5.60), let

’LT)D = f — I/(Hg))uD, V(DO)UD)(SDUD y (564)
Gp = p(|VR up ) V5 up , (5.65)
Gp = p(IVY up ) V& up. (5.66)

Note that the GS (5.60) can be recast as:

u € ngl and, for all v € ngl ,

T
G x,t vy x,t)dxdt
/O/QD( ) Vvl 1) (567
T
:/ /{Ep(m,t)ﬂg)v(m,t)dmdt.
0o Jo

The following lemma is the equivalent, for the semi-implicit scheme, of Lemma
5.11.

Lemma 5.15 (A convergence property of the semi-implicit scheme).
Under Hypotheses (5.40), let ((D1)m)men be a sequence of space—time GDs
for homogeneous Dirichlet boundary conditions (with p = 2). Assume that this
sequence is space—time-consistent, limit-conforming and compact in the sense
of Definitions 4.3 and 4.6. Assume also that (Vp,, Ip,, Uini)men S bounded in
L2(02).

For m € N, let up, be the solution to the GS (5.60), and define wp
and épm from w,, by, respectively, (5.64), (5.65) and (5.66).

Then there exist functions

G,

m 7

€ L>®(0,T; Hy(£2)) N C([0,T]; L*(2)) with 8;u € L*(£2 x (0,T))
and u(-,0) = Uip; ,

G e L*(2x(0,7)%, and

w e L2(2 % (0,T))

such that, along a subsequence as m — oo,

1 _
® SUDie(0,T7] ||H2(),ium(t) —u®)|z2(2) = 0,
° V(DO,)”“m and ng)num converge weakly in L?(£2 x (0,T))? to Vu,

® 0p, Uy, converges weakly in L*(£2 x (0,T)) to 0,4,
e Gp, and Gp, both converge weakly to G in L*(£2 x (0,T))¢, and

T
/ / (Gp,, (x,t) — Gp,, (x,1)) - VU, (z, t)dzdt — 0, (5.68)
0 2
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e wp, converges weakly to w in L*(2 x (0,T)),
e it holds

T
/ / GDm(w,t)'Vg,)num(:c,t)dmdt
v (5.69)

s /O ! /!2 G, 1) - Vaa(a, t)dadt.

Proof. The proof is similar to the proof of Lemma 5.11. The a priori estimate
(5.61) provide the existence of @ such that (Hggl Um )meN, (VSL Um )meN and
(0D, Um)men converge as stated in the lemma. The same estimates show that
(Gp, )men and (Gp, Jmen are bounded in L2(£2x (0,T))<, and therefore have
weak limits in this space (up to a subsequence). Likewise, (wp,, )men has a
weak limit in L2(£2 x (0,T)) up to a subsequence.

Let us now prove that Vg)

m

of (ép )men and (@D )men are the same, and that (5.68) holds. Since

m m

U, converges weakly to Vu, that the weak limits

2
V9 =2

L2(2%(0,T))2

N-1
2
= > & [ |90, w2 @) - Vo, ) (@) da
n=0 Q
N-1 9
<dp,, Z/ ‘meug’;*l)(:c) — meuﬁfj)(a:)’ dz, (5.70)
n=0 2
the estimate (5.61) shows that
1) (0)
HVDmum - VDmum‘ (x0T —0 asm — oo. (5.71)

This proves in particular that V(DO,)n Um — VU weakly in L2(£2 x (0,T))4. Take
now (% )men bounded in L2(2 x (0,7))? and write

/ /(éDm(w»t) —épm(w,t)) <y (2, t)dxdt
0o Jo

T
< [ ] 98w, 0) [V () = T8 )| o, 1)
0 2

< Hmax ||¢mHL2(Q><(O,T))d :

Vl(Dl’V)YL um - v’(DO’V)TL um ‘

L2(£2x(0,T))¢

Use then (5.71) to infer

/OT /Q(épm (z,t) — Gp, (x,1)) - (@, t)dmdt — 0 asm — co.  (5.72)
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Applied to ¥, = 4 for a fixed ¢, this relation that the weak limits of
(Gp,,)men and (Gp,, )men are the same function G. The same relation (5.72)
with ¢, = V(g}num provides (5.68).

Let us conclude by proving (5.69). Relation (5.55) is established as in the
proof of Lemma 5.11. The GS (5.67) applied to D = D,,, and v = u,,, and the

strong convergence of Hg ) Uy, then show that

m

T T
/ / Gp,, (z,t) - Vg}n U (2, t)dedt = / / wp,, (@, t)Hgi U (2, t)daedt
0o Je o Je

— /OT/Qw(:c,t)u(a:,t)dccdt
= /OT/QG(m,t)-Vu(m,t)dmdt.

Since Vg}ylum - V%)Bnum — 0in L2(£2 x (0,7))* and (Gp, )men is bounded
in L2(£2 x (0,7))¢, this gives

T T
/ / G, (,8) - V) i (. t)dzdt — / / G, 1) - Va(a, t)dadt.
0 2 0 (9]

We conclude the proof of (5.69) by using (5.68). L]

The following theorem states the convergence of the semi-implicit scheme.
The proof is omitted, as it is identical to the proof of Theorem 5.13, replacing
Gp,, by CA?DM and Vg}n Uy, Dy Vg)um in the definition of T,,(V) in Step 2
(use of Minty trick).

Theorem 5.16.

Assume (5.40) and let ((Dr)m)men be a sequence of space—time GDs for ho-
mogeneous Dirichlet boundary conditions (with p = 2).

Assume that ((D1)m)men is space—time-consistent, limit-conforming and com-
pact in the sense of Definitions 4.3 and 4.6.

We also suppose that (Vp,, Ip,, Wini)men is bounded in L%(2)? and, for any
m € N, we let up, be the solution to the GS (5.60).

Then there exists a weak solution w of (5.39) in the sense of Definition 5.9
such that, up to a subsequence as m — oo,

o sup,cpo.7y 15 wm(t) — (1) r2(0) — 0, and
o V)t — VT and V) wn, — VI in L2(2 x (0,T))%



5.3 Non-linear time-dependent Leray—Lions type problems 147

5.3 Non-linear time-dependent Leray—Lions type
problems

5.3.1 Model

We consider here an evolution problem based on a Leray—Lions type operator,
with non-homogeneous Neumann boundary conditions and non-local depen-
dency on the lower order terms. The model reads

ou — div(a(z,u,Vu)) = f in 2 x(0,7),
u(x,0) = uini(x) in {2, (5.73)
a(z,u,Vu) - n=gyg on 02 x (0,T),

where a satisfies (2.85a)—(2.85d) and

o T e (0,+00),
® Uini € L2(_Q), (574)

o f €LV (2x(0,T)) and g € LV (92 x (0,T)), where p/ = 7.

The non-linear equation (5.73) covers a number of models, including semi-
linear ones appearing in image processing [43, 47]. The analysis of the GDM
applied to (5.73) with homogeneous Dirichlet boundary conditions is done in
[77]. In the quasi-linear case, that is a(x,u, Vu(x)) = G(x,w)Vu(z) with G
a matrix-valued function having a non-local dependency on @ as in (2.85a),
the convergence of the GDM was established in [104].

The precise notion of solution to (5.73) is the following:

u € LP(0,T; Wh(2)) N C([0,T]; L*(£2)), (-, 0) = tini,
Ay e LY (0,T; (WP (£2))') and

T
/ (Ou(-, 1), o( 1)) (wrr )y, wie(2)dt
/ / a(x,u(-,t), Vu(z,t)) - Vi(x, t)dedt (5.75)

//f:ct mtdmdtJr/ /ém (z,t)yo(x,t)dy(x)dt,

Vo € LP(0; T; WhHP(02)).

Remark 5.17. The derivative 0;u is understood in the sense of distributions on
(0,T) with values in L?(£2). Stating that it belongs to L? (0, T; (WP(£2))) =
(LP(0,T; WHP(£2)))" amounts to asking that the linear form defined by
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C>(0,T; L*(2)) N LP(0, T; W'P(2)) = R

© = (04T, )7 (0,7;L2(2)), D(0,T5L2(£2))

T
= _/ <ﬂ('at)aat@('at»lﬁ(ﬂ),LZ(Q)dt (576)
0

_ /0 ! /Q (@, 1) 0yp(x, t)dmdt

is continuous for the norm of LP(0,T;W1P(£2)). Since the set of tensorial
functions S = {37, pi(t)Bi(x) : ¢ € N, p; € C=(0,T), B; € C>®(2)}
is dense in LP(0,T; W'P(£2)) (see [68, Corollary 1.3.1]), the derivative 9;u
belongs to Lp,(O,T; (WLP(£2))") if and only if (5.76) is continuous on S for
the LP(0, T; WP (£2))-norm.

Remark 5.18. Using regularisation and integration-by-parts techniques [68,
Section 2.5.2], it is possible to see that any solution @ to (5.75) also satis-
fies, for any s € [0, T,

%Hu s o / /Q 2,7(-,7), Vi, 7)) - Vii(a, 7)dadr
—§||uini||L2(Q)+/0 /Qf(a:,T)U(w,T)dwdT
+/0 /BQQ(CB,T)’}/H(QB,T)d’y(QZ)dT. (5.77)

With a reasoning similar to the one employed to establish the equivalence of
(5.3) and (5.4), we can see that (5.75) is equivalent to:

u e LP(0,T; WhP(£2)) N L>°(0,T; L*(£2)) and,
for all v € C1([0, T]; WP (£2) N L?(£2)) such that (-, T) = 0,

/ / u(x, t)0yo(x, t)daedt —/ Uini (2)T(2, 0)d

/ / a(x,u(-, t), Vu(z, t)) - Vo(z, t)dzdt (5.78)

- /0 /Q F(a, )5z, t)dzdt + /0 ' /8 gl (e, dy ()

To prove this equivalence, we use [68, Section 2.5.2] to see that if ©w €
LP(0, T; WhP(2) N L2(2)) satisfies 8@ € LP (0,T; (WhP(£2) N L2(12))),
then w € C([0,7T]; L?(£2)). We also use the density in LP(0,T; W1P(£2)) of
C([0,T); WHP(2)NL3(£2)), which is for example a consequence of [68, Corol-
lary 1.3.1].

5.3.2 Gradient scheme and main results

Let Dy = (Xp, IIp, Tp, Vo, Ip, (1™ ) =0 n) be a space-time GD for non-
homogeneous Neumann conditions in the sense of Definition 4.1, and let 6 €
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[3,1]. The GDM applied to Problem (5.73) yields the following GS: find a
family (u("))nzo,_“’N € Xg"’l such that
) = Tpuy € Xp and, for all n = 0,..., N — 1, u("*1) gsatisfies
/ §gl+%)u(ac)ﬂpv(w)da:
Q

+/ a (m,HDu("w),Vpu(”*G)(m)) - Vpu(x)de
Q (5.79)

1 £(nt1)
= — t) 11 dadt

t(n+1)
/ g(x, t) Tpv(x)dy(x)dt, Vv e Xp.
a9

Lo
&("JF%) #(n)

The choice 6 > % is required for stability reasons. As explained in Section
4.1, 0 = 1 leads to the classical Euler time implicit discretisation, while 8 = %
corresponds to the Crank—Nicolson time discretisation.

Recalling the notations in (4.2), we now state our first convergence results for
this GS.

Theorem 5.19 (Convergence of the GS for transient Leray—Lions
type problem). Under Assumptions (2.85a)—(2.85d) and (5.74), let ((Dr)m)men
be a sequence of space—time GDs for non-homogeneous Neumann boundary
conditions, in the sense of Definition 4.1. Assume that this sequence is space—
time-consistent, limit-conforming and compact in the sense of Definitions 4.3
and 4.6. Let 6 € [3,1] be given.

Then, for any m € N, there exists a solution u,, to the GS (5.79) with D = D,,
and, along a subsequence as m — o0,

QH(DG)

° Hgi U converges to w weakly in L?(82) uniformly on [0, T| (see Definition

C.14),
. V(Dezﬂum converges to Vu weakly in LP(2 x (0,T))%,

U, converges to u strongly in LP(2 x (0,T)),

m

where @ is a solution to (5.75).

Remark 5.20. As for the stationary problem (see Remark 2.45), the existence
of a solution to (5.75) is a by-product of the proof of convergence of the
GDM. Moreover, in the case where the solution @ of (5.75) is unique, the
whole sequence (um,)men converges to @ in the above senses.

The convergence of the function reconstructions is actually much better than
in the above result. It is uniform-in-time and strong in space.

Theorem 5.21 (Uniform-in-time convergence of the GS). Under the
assumptions and notations of Theorem 5.19, and along the same subsequence
as in this theorem, we have
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0 _

o sup,cpo.17 1115 wm(t) — (1) £2(a2) — 0,
1 _

o sup,cpo.1) 1115 wm(t) — (1) £2(2) — 0.

If the Leray—Lions type operator a is strictly monotone, then a strong con-
vergence result can also be stated on the gradients.

Theorem 5.22 (Strong convergence of the gradients in the strictly
monotone case). Let us assume the hypotheses of Theorem 5.19, and that a
is strictly monotone in the sense of (2.87). Then, with the same notations and

along the same subsequence as in Theorem 5.19, V(g}num converges strongly
to Vu in LP(£2 x (0,T))<.

5.3.3 A priori estimates

We begin by establishing a priori estimates.

Lemma 5.23 (L*>°(0,T; L*(12)) estimate, discrete LP(0,T;W1P(02)) es-
timate, and existence of a solution to the GS). Under Hypotheses
(2.85a)—(2.85d) and (5.74), let Dr be a space—time GD for non-homogeneous
Neumann conditions in the sense of Definition 4.1. Then there exists at least
one solution to the GS (5.79), and there exists C12 > 0, depending only on p,
Cp > Cp, Cipi > ||HDIDuini||L2(Q), f, g and a such that, for any solution u
to this scheme,

(1) (6)
sup HI[ ’ < Cyg, sup HH u(t ‘ <C
te[0,T) Q L3(2) 2 te[0,T) o (i) L2(2) 2
o (5.80)
a V8| < .
an D Y Lo axorys = 12
Proof. Let us first prove the estimates. Recall (5.22), that is
1 1
&(n+%)6gb+é)u HDU(TH-G) > 5 ((Hpu("+1))2 _ (HDU(”))2) ,
choose v = & 2)q(+0) i (5.79), and sum over n =0,...,k — 1 for a given

ke {1,...,N}. This yields

©),, (9) o
L2(2) / / @, 11 u(- 1), Vp u(, )) Vo u(z, t)dedt

t(
(6)
t)I1 t)dadt
L2((2)+/ /Qf(a:, VI u(z, t)de
o)

/ /a gl 0T Vula, t)dy(z)dt. (5.81)

In particular, owing to the coercivity property (2.85b) of a, and using Holder’s

inequality and Young’s inequality (D.9) (the latter with ¢ = 40‘2 ),

5 o],

<4
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1“ k)’ +a/wc) Hv(e)u(' o’
2 L2 P e ()
41/ (= 1)CP
(0) 4ve-ven
HHD ’ L2(2) + (pa)t/(P— 1) 4 Hf”LP (2x(0,¢(R)))
41/ p— 1)01’3
|z, o Lol
4Cp Lr(2x(0,4®))  (pa)/P=1) L7 (002 (0,t()))
754
4Cp LP (092 (0,t0))

Apply the definition (3.9) of Cp and recall that u® = Tpuy,; to deduce

1 2 a P
iz <k)’ a va)
2 H pU L2(2) 2 DU Lp(nx(o,toc)))d
1 p—1) CP
<35 T Tptinil|72 () + W ||f||Lp (2% (0,6))

41/ (p— 1)CP
* (pa)t/(P=1) p HgHLP (092 (0,¢0R))) *

This establishes the estimates on Hg)u and V(g)u. The estimate on H(De)u
follows from the inequality

HHDU n+9)‘

< 9HHDu ”+1>’

+(1-6) HHDW)’

L2() L2(2) L2(2)

The existence of at least one solution to (5.79) is done as in the proof of
Theorem 2.44, reasoning on u(™*?) and using the above estimates. [

The following estimate will be useful to apply the Aubin—Simon theorem for
GD (Theorem 4.14).

Lemma 5.24 (Estimate on the dual norm of the discrete time deriva-
tive). Under Hypotheses (2.85a)—(2.85d) and (5.74), let D be a space—time
GD for non-homogeneous Neumann conditions in the sense of Definition 4.1.
Let u be a solution to the GS (5.79). Then there exists Cy3, depending only
onp, pu,a,a, Cini > HHDI’Duini”LQ(_Q); f; 9, T and C’P > C’D; such that

T
/ [pu®)? pdt < Cis, (5.82)
0

where the dual norm ||-||, p ts given by Definition 4.11.

Proof. Let us take a generic v € Xp as a test function in (5.79). We have,
thanks to Assumption (2.85d) on a,
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/5“’*) ) Ipv(z)de

< [ (a(@)+ n¥ou* @) ) [Vpu(a)jda

¢(n+1)

&(n+ )/( | / f(x, t) [Ipv(x)dedt

t(n+1)
[ | s nTou@a@

This leads, by definition (3.9) of Cp, to the existence of C14 > 0 depending
only on p, u such that

/ 5gl+%)u(w)ﬂpv(w)dw
2

.
(@l oy + [0
c f(nt1) (
D
<Cu| 4=l [ IOt | ol
C L)
D
2 [ el oy

Taking the supremum on v € Xp such that |[v|p =1 gives

nt+ _ "
5;; 2y, < Calfall o (o) + Cra Vpul +0)||”
*,D

Lr(£2)d
£(nt1) £(n+1)

C14Cp C14Cp
# s S WD SEEE [ 0oy

The proof is concluded by raising this estimate to the power p’, distribut-
ing this power to each term on the right-hand side thanks to the power-
of-sums inequality (D.14), using Jensen’s inequality for the integral terms,

multiplying by &(”+%), summing on n and invoking Lemma 5.23 to estimate
0)
IV

ulliP(QX(O,T))d' .

5.3.4 Proof of the convergence results

We now prove the convergence of the GDM for the transient Leray—Lions type
model (5.73).

Proof of Theorem 5.19.

Step 1: Application of compactness results.
The definition (3.8) of [|-|p ~and Estimates (5.80) and (5.82) show that
the hypotheses of Lemma 4.8 (regularity of the limit) and Theorem 4.14
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(Aubin—Simon for GD) are satisfied by (u;,)men. Therefore, there exists u €
LP(0,T; WHP(£2)) such that, up to a subsequence as m — oo, Hz(f,zlum — T
strongly in LP(§2 x (0,T)), V(gznum — Vu weakly in LP(§2 x (0,T))¢, and
']I‘(g;um — ~u weakly in LP(9f2 x (0,7)). Moreover, since (H(ngzum)meN
is bounded in L>(0,T; L?({2)), the convergence Hgium — @ also holds in
L>(0,T; L?(2)) weak-*.

Estimates (5.80) and (5.82) show that (um,)men satisfies the assumptions
of Theorem 4.19 with 6 = 1. Hence, up to a subsequence as m — oo,
(Hgﬁhum)meN converges to some ¥ uniformly-in-time for the weak topology

of L?(£2) (as per Definition C.14).
Estimates (5.80) and Assumption (2.85d) show that the functions Ap  (x,t) =

a(z, Hglum(-, t), ngnum(m, t)) remain bounded in L? (2 x (0,T))%. Up to a
subsequence, Ap, therefore converges to some A weakly in L¥' (£2 x (0,T))¢
as m — oo.

Step 2: Proof that u = u.

First notice that the convergence of (ngl Um )meN towards @ also holds for the
weak topology of L?(2x (0,T)) (this is an easy consequence of its convergence

uniformly-in-time and weakly in L?(2)).
Take ¢ € C°(§2 x (0,T)) and let

Ip,,p(t) = axgmin (| o, w = o(t) | gnoscrr ()
weXDnL

+ ||V, w— V@(t)HLp(Q)d )

Since 0 € Xp,,, a triangle inequality shows that

D, Ip,, ()| mexv. () + IV D, 1D, 2O o ()0
< 2[e(?)] Lmax(p.2) () T 2 HVSD(t)”Lp(Q)d - (5.83)

In particular, by definition of |||, ~and smoothness of ¢, ||1Dm<PHLp(o,T;XDm)
remains bounded. Moreover, the space-time-consistency of ((Dr)m)men en-
sures that, for all t € (0,7), IIp, Ip, ¢(t) — ¢(t) in L?(2) as m — oo.
Combined with the dominated convergence theorem and (5.83), this yields
IIp, Ip, @ — ¢ in L?(2 x (0,T)) as m — oc.

For n € {0,...,N — 1} and t € (¢t ¢+,

19w (t) — 15w (1) = IIp,,
= (1—0)(IIp, u"™V — ITp ul™)
=1 =08 6p um(t) (5.84)

m

WD [Ty (nt)

and thus, by (4.17),
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T
[ [ (1) et = 1) () 11, 0, o (0) )l
0 (%

T
< (1-6)dp, / 160, 5. I, 2Bl .

Use Lemma 5.24 and Hélder’s inequality to see that the right-hand side of this

relation tends to 0 as m — oo. Since Hgium and Hgii Uy, converge weakly

in L2(£2 x (0,T)) towards @ and @, respectively, we deduce
T
/ / (u(x,t) —u(x,t))p(x, t)dedt
0o Jo

T
— Jim / / (It (. 1) — T (30, ) I, I, (1) () el
0o Jo ' "
—0. (5.85)

This proves that @ = u, and thus that H(Dljl U, — @ uniformly on [0, T weakly
in L2(£2). In particular, nglum (T) — u(T) weakly in L?({2) and thus

/ﬂ(a:,T)Qdocgliminf/ 5w, (2, T)2da. (5.86)
2 2

m—» 00

Step 3: Proof that @ is a solution to (5.75).

Let v € C1([0, T); WHP(2)NL?(£2)) such that (-, T) = 0, and let (v,,)men be
given by Lemma 4.10. Properties (4.7), (4.8) and (4.10) therefore hold, with
6 =0.

We drop some indices m for legibility. Using &3y a5 test function in
(5.79) yields 7™ + 7™ = 7{™ + T{™ with

N—-1
100 = Y [ [ (a) ~ Mg )] 10 )
n=0 2

T
T = / / a (2. 10 u(, 1), Vu(. 1) - Vol t)ddr,
0 2

T
Tsm):/ /f(w,t)ﬂg))u(nt)dwdt,
o Jo
and
T
1 = [ [ w1 v @)
o Joo

N)

Accounting for (™) = 0, the discrete integrate-by-parts formula (D.15) gives

N-1
10" = = 3 [ a0 (@) 110" (@) - o™ (@)] de
n=0 12
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pu® () Tpv©® (x)de
T
= —/ /H(Dl)u(wj)(hv(%t)dwdt—/ HDIDuini(w)Hg))v(w,O)dw.
0 2 2

The strong convergences (4.10c) and (4.10b) of v, and the weak convergence
in L2(02 x (0,T)) of Hglum thus ensure that, as m — oo,

T
(m) — ulx L u(x xdt — Uini(x)V(X x. .
109~ [ [ atenoate it - [ ws@ie.0de.  (6557)

Owing to the weak convergence of Ap, and the strong convergence (4.7b) of
Vg}n/vm, as m — oo,

T
T / / A(z, t) - Vo(z, t)dzdt. (5.88)
0
Finally, by (4.7a) and (4.8), as m — oo,

T
Tg(m)ﬁ/ /f(m,t)@(m,t)dmdt, and
0o Jo

T
" - / / g(z,t)yv(z, t)dy(x)dt.
0 on

Using (5.87)—(5.89) we can pass to the limit in Tl(m) + TQ(m) = Tg(m) —|—T4(m) to
see that

_ /0 ! /Q u(x, )0y (e, t)dedt — /Q Uini (z)0(z, 0)de
+ / ' / A, 1) - Vi, t)dadt
/ /fa:t wtdwdt—i—/ /89 (@, t)yo(, t)dy(z)dt.

This holds for all v € C([0,T]; W1P(02) N L3(2)) such that v(-,T) = 0.
By a density argument similar to the one used to prove the equivalence of
(5.3) and ( 4), or of (5.75) and (5.78), we infer that w € LP(0,T; W1P(£2))N

C([0,T); L*(£2)), 8w € LP (0, T; (W'P(2))'), u(-,0) = uin; and, for all T €
LP(0, T; WHP(£2)),

(5.89)

T
/(@u( t),0(:, ))(Wlp(g))fwlp(g)dtJr/ /Aa:t Vo (x,t)dedt

/ /f:ct :Btda:dt—i—/ /dn (z,t)yv(x, t)dy(x)dt. (5.90)
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It remains to prove that
A(z,t) = a(z,u(-,t), Vu(a,t)), for ae. (z,t) € 2x (0,T). (5.91)

The formula

T
/@ﬁ(ut)ﬁ(wt)><ww<m>',ww<mdt
0

1 1
= 7/ H(w,T)zda:ff/ (e, 0)%dx
2Je 2Ja

is justified by [68, Section 2.5.2] since w € LP(0,T; WbHP(£2) N L?(£2)) and
Ou € LP (0, T; (WhHP(£2))). Writing (5.90) with ¥ = u thus yields

%/7( )dx—%/ulm( dx+//A:ct V(e t)dadt

/ / flz, t)u(e,t dwdt+/ / (z, t)yu(z, t)dy(x)dt. (5.92)
a0
Relation (5.81) with k = N yields

1/(17(“ (x,T))%dz
/ / x, 11}, @ t),Vg)u(w,t)) -Vg)u(m,t)dmdt

<3 / (ITpTpum;(z))2dz + / / fa, ) T u(x, t)dadt

/ /BQ (2, )T u(x, t)dy(x)dt.

Recall that Ugil U, — T strongly in LP(£2x (0, 7)), that Tg}n Uy, — YU weakly
in LP(042 x (0,T)) and, by space-time consistency, that IIp_Tp_ ini — Uini
in L2(£2). Moving the first term of (5.93) into the right-hand side, taking the
superior limit of the resulting inequality and using (5.86) therefore leads to

limsup/ / H(a) ),Vg})u(w,t)) ~Vg)u(w,t)dwdt

(5.93)

m—0o0

m—r oo

//fa:t actdacdt+/ /{m (z, t)yu(e, t)dy(x)dt

< _7/ a(z, )dscdt+1/u1m( )2da
2 (9] 2 2

< _11mmf2/(n<” (z,T)) dwdt+;/ Uini ()2
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+ /O ' /Q @, t)a(m, £)dadt + /0 ' /8 gl t)yta, ()t

Relation (5.92) then yields

T
limsup/ / a (:c,ng)num(~,t),Vg}num(w,t» .V(De}num(w,t)dwdt
0o Jo

< /OT/QA(ac,t)-Vu(:c,t)d:cdt. (5.94)

It is now possible to apply Minty’s trick. Consider, for G € LP(0,T; L?(£2))¢,
the quantity

[ o (muc.0.98ute0) - a (w00 a0, G000

: {vg”u(m,t) - G(:c,t)} dadt > 0. (5.95)

Since Hg)i U — T strongly in LP(0,T'; LP(£2)), up to a subsequence we can
assume that Hgium(t) — u(t) strongly in LP(£2) for a.e. t € (0,T). As-
sumptions (2.85a) and (2.85d) and the dominated convergence theorem then
show that a(-, H(Dg)u, G) — a(-, W, G) strongly in L¥' (£2 x (0, T))%. Developing
(5.95), all the terms except one pass to the limit by “weak-strong” conver-
gence (cf. Lemma D.8). For the only “weak-weak” limit, apply (5.94) and,
taking the superior limit as m — oo, write

/0 /Q [A(2,1) — a(@,a(- 1), G(@,1))] - [Vi(e, t) — e, )] dadt > 0,

In a similar way as in Step 2 of the proof of Theorem 2.44, take then G =
Vi + ap for « € R and ¢ € LP(0,T; LP(£2))?, divide by o and let o — 0.
This gives

T
| [ 140 - at@at.o. Vate,0) - el iz =0
0 (%}

which shows that (5.91) holds. The proof that @ is a weak solution to (5.75)
is therefore complete. [

Proof of Theorem 5.21.

Step 1: a preliminary result.

Take (Sm)men C [0,T] that converges to some s € [0,T]. Since H(Deium —u
strongly in LP(£2 x (0,T)), as in Step 3 of the proof of Theorem 5.19, Assump-
tions (2.85a) and (2.85d) show that (l[o’sm]a(uHgium,Vﬂ))meN converges
strongly in L¥' (£2 x (0,T))?. The weak convergence of (Vg)}num)meN to Vu
in LP(£2 x (0,T))? then yields
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/gm/ (. 118 (1), V(. 1)

[VD U (2, t) — V(z,t)|dzdt — 0. (5.96)

Write (5.95) with s,, instead of T and V7 instead of G, and develop the terms.
Using (5.96), the weak convergence a(',Hl(flum,Vg;um) — a(-,u,Vu) in
LP' (2% (0,T)) (see (5.91)), and the strong convergence 10,6,,1VU — 1) VT
in LP(§2 x (0,T)), we obtain

liminf/ /a(m,H{fW)lu,,L(.,t),Vgilu,,L(x,t)) VD (@, ) dadt
2

m—r oo

/ / (@,7(, 1), Vii(z, 1)) - Vii(z, )dadt.  (5.97)

Step 2: proof of the uniform-in-time strong in L?({2) convergences.
Let s € [0,7] and k(s) such that s € () R+ Apply (5.81) to k =
k(s) + 1 to write

Lo 2
S r® oy, ’
2 H D,, Um(s) L2(2)

// (@ 9 (1), V) iy (2, 1)) - T 1y, )t
< §||HDmIDmuini”L2(g)+/ /f(a:,t)ﬂpmum(w,t)dwdt
0 Jo
—|—// g(x, t)Tp, wpm (x, t)dy(x)dt + p(dp, ) (5.98)
o Jon

where p(dp,, ) — 0 as d&p,, — 0 (all time integrals should be up to t*(5)+1),
but we used the non-negativity of the integrand involving a to limit its integral
to s, and p is the quantity that includes the remaining parts of the integrals
in the right-hand side, estimated using to (5.80)).

The proof of the uniform convergence of (Hgm Um)meN 1s done by invoking
Lemma C.13. As in Step 1, take (s, )men C [0, T] that converges to some s €
[0, T]. We want to show that H(Dlium (sm) — w(s) in L2(£2). Apply (5.98) with
S = Sm, move the second term to the right-hand side, and take the superior
limit as m — oco. Relation (5.97) and the strong (resp. weak) convergence of
Hggl U, (resp. ']I‘g?n U, enable us to pass to the limit in all the terms except
the first one. Owing to (5.77), this gives

2

lim sup — HHD U (8 m)‘

m—o0 L2(£2)

<_//Q 2, 7(- 1), Vii(z, 1) - Ve, t)dsdt
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1 2 s _
t3 l[winill 2 (o) + [z, t)u(z, t)dzdt
0 (9

[ sttt @it = 5 WO 699)

The uniform-in-time weak L?({2) convergence of (H(Dl) Um )men towards @ and

Lemma C.13 show that H(Dlium(sm) — (s) in L?(£2) weak. Owing to (5.99),
this convergence is actually strong in L?(§2). Invoke again Lemma C.13 to
conclude that sup;co 1 ||Hg) U (t) = ()| 22y — 0.

The strong convergence of (Hp(i " Um)men in the same sense follows imme-
diately from the definition of these functions, the strong convergence of
(H(Dlium)meN, and the continuity of @ : [0,7] — L*(2). Indeed, Hg)ium(, t)

is a convex combination of values of HI()) Uy at two times within distance

&D of t. ]

m

Proof of Theorem 5.22.
Using (5.94) and (5.96) with s,, =T,

T
limsup/ / {a (az, Ugilum V(g) Um) —a (a:, Hl(f) U, Vﬂ) ]
O Q L m m

m—roo

VY — Va)dedt < 0.

This relation and the strict monotonicity of a enable us to conclude, as in
Step 3 of the proof of Theorem 2.44, that ng)num — V@ a.e. on 2 x (0,T).
From (5.94) and (5.91) we also infer

T
limsup/ / a (w,Hgium,Vg;um) .ngnumdwdt
0 J

m—0o0
T
S/ /a(m,ﬂ,Vﬂ)~Vﬂdxdt.
0o Jo

Together with (5.97) (with s,,, = T), this proves that this relation holds with
a limit instead of a superior limit, and an equality instead of an inequality.
The same technique as in Step 3 of the proof of Theorem 2.44 then yields the
strong convergence of Vp, u,, to Va in LP(£2 x (0,T))4. L]

Remark 5.25 (Navier—Stokes equations)
The GDM has been adapted to the Stokes and Navier—Stokes equations in [75, 91],
with similar convergence results as for the transient Leray—Lions type model.






6

Degenerate parabolic problems

In this chapter, we study the following generic non-linear parabolic model

0B(w) — div (A(x)V({(m)) = f in 2 x(0,T),
B(@)(x,0) = B(uini)(x) in 2, (6.1)
C(m) =0 on 02 x (0,7),

where 8 and ( are non-decreasing. This model arises in various frameworks
(see next section for precise hypotheses on the data). This model includes

1. Richards’ model, setting {(s) = s, which describes the flow of water in a
heterogeneous anisotropic underground medium,

2. Stefan’s model [24], setting §(s) = s, which arises in the study of a sim-
plified heat diffusion in a melting medium.

The purpose of this chapter is to study the convergence of gradient schemes for
(6.1). Although Richards’ and Stefan’s models are formally equivalent when 3
and ( are strictly increasing (consider 8 = (! to pass from one model to the
other), they change nature when these functions are allowed to have plateaux.
Stefan’s model can degenerate to an ODE (if ¢ is constant on the range of the
solution), and Richards’ model can become a non-transient elliptic equation
(if B is constant on this range). The techniques developed in this chapter also
apply to the following more general non-linear PDE, which mixes (6.1) and
Leray—Lions type operators as in Section 5.3:

B (u) — diva (z,v(u), V{(u)) = f, (6.2)

where v/ = B¢’ [73].

The chapter is organised as follows. Section 6.1 is devoted to the assumptions
and the notion of weak solution for the problem (6.1), which is reformulated
using the notion of maximal monotone graph. Section 6.2 presents the gradi-
ent schemes (GSs) obtained by applying the gradient discretisation method
(GDM) to the generic model (6.1). Based on estimates proved in Section 6.3,
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Section 6.4 contains the convergence proof of these GSs. Section 6.5 is fo-
cused on a uniform-in-time convergence result. A uniqueness result, based on
the existence of a solution to the adjoint problem, is given in Section 6.7.

6.1 The continuous problem

6.1.1 Hypotheses and notion of solution
We consider the evolution problem (6.1) under the following hypotheses.

e 2 is an open bounded connected subset of R? (d € N*)
and T > 0, (6.3a)
e ( : R — R is non-decreasing, Lipschitz continuous with Lipschitz
constant L¢ > 0, ¢(0) = 0 and, for some My, M; > 0,

|C(s)| > Mpls| — M; for all s € R, (6.3b)
e §: R — R is non-decreasing, Lipschitz continuous with Lipschitz

constant Lg > 0, and $(0) = 0, (6.3¢)
e 3+ ( is strictly increasing, (6.3d)
o A: 2 — My(R) is measurable and there exists A > A > 0 such that,

for a.e. © € £2, A(x) is symmetric with eigenvalues in [A, A]. (6.3¢)
o uini € L*(0), f e L*(2x (0,T)). (6.3f)

Remark 6.1 (Common plateauz of ¢ and (3)

Hypothesis (6.3d) does not restrict the generality of the model. Indeed, if we only
assume (6.3b)—(6.3c), and if there exist s1 < s2 such that (8+ ¢)(s1) = (8+ ¢)(s2),
then [s1, s2] is a common plateau of 8 and . Denoting by E, E and 7 the functions
obtained from S and ¢ by removing this common plateau (by a contraction of the
s-ordinate), we see that u is a solution to (6.1) if and only if u is a solution of the
same problem with 8 and ¢ replaced with ﬂ and C

The precise notion of solution to (6.1) that we consider is the following:

C(m) € L*(0,T; H(2)),
/ /ﬁ wt@tthdwdt—/ﬁuml ))o(x,0)dx
+/0 /QA(:B)VQ(E)(:B,t) - Vo(x, t)dedt (6.4)

T
= / / f(z, t)o(x, t)daedt,
0 2
Vo € L*(0; T; Hy (£2)) such that 8,5 € L*((0,T) x £2)
and o(-,T) = 0.
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Remark 6.2 (All the terms in (6.4) make sense). If T and 90 belong to
L?(0,T; L?(£2)), then v € C([0,T]; L%(£2)) (see [68]), and we can therefore
impose the pointwise-in-time value of (-, T"). Moreover, Assumptions (6.3b)
and (6.3c) ensure that, if (@) € L?((0,T) x (2), then u and 3(%) also belong
to L2((0,T) x §2). Hence, all the terms in (6.4) are well-defined.

The existence of a solution to this problem follows from the proof of conver-
gence of the GS (see Remark 6.13). The uniqueness of this solution is proved
in Section 6.7.

Theorem 6.3 (Existence and uniqueness of the weak solution). Under
Hypotheses (6.3), there exists a unique solution to (6.4).

Remark 6.4. We will see in Corollary 6.15 that the solution to (6.4) enjoys
additional regularity properties, and that (6.4) can be recast in a stronger
form.

6.1.2 A maximal monotone operator viewpoint

Following [79], we show here that (6.1) can be recast in a maximal monotone
operator framework. Let us first recall a few definitions.

e A multi-valued operator 7 with domain R is a function from R to the set
P(R) of all subsets of R.

e The graph of T is defined by Gr(7T) = {(z,y) : z € R,y € T(x)}.

e The operator T is said to be monotone if, for any (x,y) and (2/,y') in
Gr(T), (2 — 2)(y — 1) > 0.

e The operator 7 is said to be maximal monotone if it is monotone and, for
any (z,y) € R? such that

for all (2/,y") € Gr(T), there holds (' — z)(y' —y) > 0, (6.5)

we have (z,y) € Gr(T). Then the resolvent R(7) = (Id + 7)~! of the
maximal monotone operator 7 is a single-valued function R — R, is non-
decreasing and Lipschitz continuous with Lipschitz constant 1.

We refer to [34] for more definitions and properties of maximal monotone
operators.

Lemma 6.5 (Caracterisation of sublinear maximal monotone opera-
tors). Let T be a multi-valued operator with domain R. The following prop-
erties are equivalent:

1. T is a mazimal monotone operator, 0 € T(0) and T is sublinear in the
sense that there exist Ty, To > 0 such that, for allz € R and ally € T (x),
ly| < Thlz| + Ta;

2. There exist ¢ and B satisfying (6.3b) and (6.3c) such that the graph of T
is given by Gr(T) = {(¢(s), B(s)), s € R}.
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Proof. (2)=(1). Clearly 0 = ({(0),3(0)) € T(0). The monotonicity of T
follows from the fact that ¢ and 8 are non-decreasing. We now have to prove
that 7 is maximal monotone. Let (x,y) € R? be such that (6.5) holds, which
implies that, for all s € R, ({(s) —x)(8(s) —y) > 0. By (6.3b) and (6.3c), the
mapping 8+ ¢ : R — R is onto, so there exists s € R such that

Bls)+<¢(s) =z +y. (6.6)

Then ((s) —x = y—B(s) and therefore —(3(s) —y)* = (¢(s) —z)(B(s)—y) > 0.
This implies 3(s) = y and, combined with (6.6), {(s) = z. Hence (z,y) €
Gr(T). The sub-linearity of T follows from |B(s)] < L | | < La(|¢(s)] +
M) /M.

(1)=(2). Set ( = R(T) and 8 = Id — (. These functions are non-decreasing
and Lipschitz continuous with constant 1. By definition of the resolvent,

(,y) € Gr(T) & (z,z+y) € Gr(Id+7T) & (z+y,z) € Gr(¢) & = = ((z+y).

Since § = Id — ¢, setting s = x + y shows that (z,y) € Gr(7) is equivalent
o (z,y) = (¢(s),B(s)). Since 0 € T(0) this gives 5(0) = ¢(0) = 0. Finally,
the existence of M7 and M in (6.3b) follows from the sublinearity of 7. If
(x,y) € Gr(T) then |y| < Ti|z| + T> and = = {(x + y), which gives |z + y| <
(1 +T)|¢(z + y)| + T2). .

Using this lemma, we recast (6.1) as
T (z) — div(A(x)Vz) = f in 2 x(0,7T),
T(2)(-,0) = bin; in 2, (6.7)
z=0 on 012 x (0,T)

where bin; = B(uini) € L?(§2). Hypotheses (6.3c) and (6.3b) are translated

into:
T :R — P(R) is a maximal monotone operator, 0 € 7(0)

and T is sublinear: 377,75 > 0 such that, for all x € R (6.8)
all y € T(x), ly| < Ti|z| + Tb.
Definition 6.6. Let us assume (6.3a), (6.3e), (6.3f) and (6.8). Let zin; €
L2(2) and byy; : 2 — R such that, for a.e. * € 2, bini(x) € T (zini(x)). A
solution to (6.7) is a pair of functions (z,b) satisfying

z€ L*(0,T; HY(2)),

aztET(( t)) for a.e. ( EQX(OT)
/ b(x,t)0v(x, t)daedt — / bini(x
Q
/ / A(x)Vz(z,t) - Vo(z,t)dedt (6.9)

f(z, t)o(x, t)daedt

Vf € LQ(O;T; Hi(02)) such that 0,5 € L*((0,T) x §2)
and o(-,T) = 0.
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Remark 6.7. The sublinearity of 7 ensures that b € L?(0,T; L?(£2)) and by; €
L2(02), since z € L*(0,T; L?(£2)) and zy,; € L*(£2).

Given (zini, bini) as in Definition 6.6 and fixing ¢ = R(T) and § = Id — ¢
(as in the proof of Item 2 of Lemma 6.5), we can find a measurable u;y; such
that zini = ((wini) and bini = B(uini). the estimate |zini| > Mo|umi| — M1
ensures that wuy; € L?(§2). These ¢, B8 and wuj,; being fixed, the existence
and uniqueness of the solution to (6.4) (Theorem 6.3) gives the existence and
uniqueness of the solution to (6.9). This solution satisfies that z = {(u) and
b = p(u), where @ is the unique solution to (6.4).

6.2 Gradient scheme

Let p =2 and Dy = (D, Ip, (t(”))nzo’m,N) be a space—time gradient discreti-
sation for homogeneous Dirichlet boundary conditions, in the sense of Defini-
tion 4.1. Assume that D has the piecewise constant reconstruction property
in the sense of Definition 2.12. We take § = 1 in (4.2), which means that an
implicit time-stepping is considered. We recall the corresponding notations

H(Dl) and Vg).

Formally integrating (6.4) by parts in time, we obtain a new formulation of
(6.1) (see (6.26)). The GDM applied to (6.4) leads to a GS which merely
consists in using, in this new formulation, the discrete space and mappings of
the GD. The GS is therefore: seek a family (u(”))nzo,m’N C Xp,o such that

O):

ul Ipuiy; and, for all v = (U(”))n:1

.....

T
/O/Q[595(u)(x,t)ng>u(m,t)+A<x)vg)g(u)(x,t).vg>v(m,t) dzdt

:/T/ f(m,t)ﬂg)v(a:,t)da:dt.
0o Jo

(6.10)
We recall the definition, in Remark 2.13, of ((u) and (), which is coherent
with ITp since this reconstruction is piecewise constant.

6.3 Estimates on the approximate solution

As it is usual in the study of numerical methods for PDE with strong non-
linearities or without regularity assumptions on the data, everything starts
with a prior: estimates.

Lemma 6.8 (L>°(0,T; L?({2)) estimate and discrete L%(0,T; H}(2)) es-
timate). Under Assumptions (6.3), let Dr be a space—time GD for homoge-
neous Dirichlet boundary conditions, in the sense of Definition 4.1. Assume
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that the underlying spatial discretisation has a piecewise constant reconstruc-
tion in the sense of Definition 2.12, and that u is a solution to the correspond-

ing GS (6.10). Let n : R — R be defined by

VsER, 1(s)= /0 (@8 (@)da. (6.11)

Let Ty € (0,T] and denote by k = 1,...,N the index such that Ty €
(t*=D ()], Then

To
/H(l) (x,Tp dm+/ / (1)C )z, t) - Vg)C(u)(m,t)dmdt

o)
S/ HDU(IDUini)(iB)dw—F/
Q 0

Consequently, there exists C1 > 0, depending only on Lg, L¢, Cp > Cp (see
Definition 2.2), Cini > |[IIpTptinill 120y, f and A such that

/Q fa, ) IS¢ (u) (z, t)dadt.  (6.12)

() (t ‘ <, ’v(” ‘
o0 RO PN AL PP
d swp |mgsw)| , <c o
an su uw)(t ‘ < .
te[o,pT] P L2(R2) !

Proof. Let us first remark that, for all a,b € R, an integration by parts gives

=/ ¢(q)B'(q)dg = ((b)(B(D) — B(a)) —/ ¢"(9)(B(q) — Bla))dg.

Since f; ¢'(¢)(B(q) — B(a))dg > 0 (as ¢ and B are non-decreasing), we get

n(b) —n(a) < C(b)(B(b) — B(a)). (6.14)

Using Remark 2.13 (consequence of the definition 2.12 of piecewise constant

reconstruction) and (6.14), we infer that for any n = 0,...,N — 1, any t €
(t(n),t(nJrl)]’

opB(u) () ITn¢ (™) = &@3@ (B(HTout"™D) = B(1Tpu™)) ¢(HTpu™*)
> ﬁ (U(H,Du(n+1)) _ W(HDU(n))> '

Hence, taking v = (C(u(®),¢(uM),..., ¢(u®),0,...,0) C Xp, in (6.10), we
find

£(R)

/ (IS u(e, tW))dx + / Ax) VY () (@, t) - V() (2, t)dadt
2
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(k)

u()m xTr ' Xr (1) ujxr xr . .
s/Qan O(z))d +/0 /Qf( ATV (u) () dedz. (6.15)

Equation (6.12) is a straightforward consequence of this estimate, of the rela-
tion H(Dl)u(~7 Ty) = H(Dl)u(-, t*)) (see (4.2)) and of the fact that the integrand
involving A is non-negative on [Ty, t(*)].

Using the Young inequality (D.9), we write

J

()

/Q F@, )15 ¢ (u) (z, t)dadt

C? A 1
< 2212 a0y 5o TS ClI2a g (0 sy (6:16)
2\ 2C%,

We also notice that

s 2
0<n(s) < Lake [ ada=LoLe, (6.17)
0
so that
(1) ‘ _ (1)
1I - Tt = 1L Th))d
[nzg .z, ,, = [ a7 ute Tia
and
LgL
(0) - . B¢ 12
[n(ou )|, = (T Toun) 1) < =5 10 Totml72(0)

The first two estimates in (6.13) therefore follow from (6.15), (6.16), Assump-
tion (6.3e) on A, and the definition (2.1) of Cp.

Let us now prove that the uniform-in-time L!(£2) estimate on Hg )n(u) im-
plies the uniform-in-time L?(§2) estimate on H(Dl)ﬁ(u) = B(Hg)u). Owing to
(6.3b), for all s > 0 there holds ((s) > Mys — M; > %? (s) — M. Hence,
using the Young inequality,

n(s) = /0 (@B (9)dg > f; /0 " Bg) (q)dq — M /0 " B(g)dg

= mﬁ(s)z — Myj(s)

_ LgM?

M, M,
> mﬂ(sﬁ - mﬂ(s)z M,

For s < 0, we use —((s) > —Mys — M, > —203(s) — M, to infer the same

= L[i
estimate. Therefore,
My o LM}
VseR, — — < . 1
SER, B~ e <) (6.18)
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Making s = Hg )y in this inequality and using the uniform-in-time L!(§2) esti-
mate on n(H(Dl)u), we deduce the uniform-in-time L?({2) estimate on B(H(Dl)u)
stated in (6.13). m

Corollary 6.9 (Existence of a solution to the GS). Under Assumptions
(6.3), let Dr be a space—time GD for homogeneous Dirichlet boundary condi-
tions, in the sense of Definition 4.1. Assume that the underlying spatial dis-
cretisation has a piecewise constant reconstruction in the sense of Definition
2.12. Then there exists at least a solution to the GS (6.10).

Proof. For p € [0,1] we let 8,(u) = pu+ (1 — p)B(u) and (,(u) = pu+ (1 —
p)G(u). It is clear that 8, and (, satisfy the same assumptions as 8 and ¢ for
some Lg and My, M; not depending on p. We can therefore apply Lemma 6.8
to see that there exists Co, not depending on p, such that any solution u, to
(6.10) with 8 = 8, and ¢ = (, satisfies

< (Cs.

(1)
HVD Cp(up)‘ L2((0,T)x2)4 —

Since ||[Vp-||f2(p)a 1s a norm on Xpp, this shows that (,(up))pefo,1) re-
mains bounded in this finite dimensional space. In particular, for all i € I,
(Co(up)i)pefo,1] is bounded. Using Assumption (6.3b) for ¢, with constants not
depending on p, we deduce that ((u,);),e[0,1] remains bounded for any i € 1,
and thus that (u,),e[0,1) is bounded in Xp .

If p = 0 then (6.10) is a square linear system. Any solution to this system being
bounded in Xp o, this shows that the underlying linear system is invertible.
A topological degree argument (see Theorem D.1) combined with the uniform
bound on (u,),e[0,1] then shows that the scheme corresponding to p = 1, that
is (6.10), possesses at least one solution. [

Lemma 6.10 (Uniqueness of the solution to the GS). Under Assump-
tions (6.3), let Dy be a space—time GD for homogeneous Dirichlet boundary
conditions, in the sense of Definition 4.1. Assume that the underlying spatial
discretisation has a piecewise constant reconstruction in the sense of Defini-
tion 2.12. Let u,u be solutions to the GS (6.10). Then, for alln =0,...,N,
Opu™ = pu™ in L2(2), and ((u™) = ((@™) in Xp.

Proof. The proof is done by induction on n. The result is clearly true for
n = 0, since u® = 7 = Zpu;. Let us now assume that, for some n <
N — 1, Ipu™(x) = Ipu™(x) for a.e. & € 2. Subtracting the equation
corresponding to ("1 to the equation corresponding to u("t1) we get

/ (B ™) = D)) @)
[0}

5,5(”4-%)
+ Vp (¢ — ¢@™ V) (x) - Vpo(z)|de =0, Yve Xpo. (6.19)
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Using (6.3b)—(6.3¢) we have

o [B(u™1) = 8@ )] x 1p [¢a™D) — ¢@ )] =

[BUTu" ) = BT D)] [¢(Hpul™V) — (i 1))] = 0.
Hence, making v = ((u(®*t1) — ¢(@™+V) in (6.19),
[ 1906 ) — @) @) de = 0.
(9}

Since [|V+[|2(p) is a norm on Xp,o, this shows that ClutD)y = ¢(@r+h),
We then get, from (6.19), that

/Q [np(ﬁ(w“)) - 5(a<n+1>))(w)} Ipv(x)dz =0, Vv e Xpy.

Letting v = S(u™tD)) — @™tV gives IIpp(utV)) = IIpp((E"+Y) ae.
on £2. Since Tp¢(u™t)) = MTp¢(@™*tY) ae. on 2, Assumption (6.3d) and
the fact that IIp(8(w) + {(w)) = B(IIpw) + ((IIpw) for all w € Xp ¢ imply
Ipu"tY) = [Tpu( D) ae. on 0. [

Lemma 6.11 (Estimate on the dual norm of the discrete time deriva-
tive). Under Assumptions (6.3), let Dy be a space—time GD for homogeneous
Dirichlet boundary conditions, in the sense of Definition /.1. Assume that the
underlying spatial discretisation has a piecewise constant reconstruction in the
sense of Definition 2.12. Let u be a solution to Scheme (6.10). Then there ex-
ists C3, depending only on Lg, L¢, Cp > Cp, Cini > |[IpIpuini 20y, f, A,
X and T, such that

T
| 1803012 5t < (6:20)
where the dual norm ||-[|, p, is given by Definition 4.11.

Proof. Let us take a generic v = (v("))nzl,,,,’N C Xpy as test function in
(6.10). We have

/ ! / 5pB(u)(z, t) 19 v(x, t)dadt <
0 2

r T
X/O /QIV%M(u)(:Jc,t)IIvg)v(a:,t)|d:cdt+/0 /Qf(wat)ﬂ(pl)v(w,t)dwdt,

Using the Cauchy—Schwarz inequality, the definition 2.2 of Cp, and Estimates
(6.13), this gives Cy > 0 depending only on Lg, Cp, Cini, f, A and X such
that
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g (1) 1)
| [ sostua. o v(e,dede < Gl vl 1,22
0o Jo
The proof of (6.20) is completed by selecting

o= (=)
* n=0,...,N

with (z("))n:(J,,_ﬂN C Xp, such that, for any n =0,...,N -1, 2(+1) realises
ntl
the supremum in (4.16) with w = 5;) +Q)ﬂ(u). L]

6.4 A first convergence theorem

The following theorem states initial convergence properties of the GS for (6.1).

Theorem 6.12 (Convergence of the GS). Under Assumptions (6.3), let
((D1)m)men be a space—time-consistent, limit-conforming and compact se-
quence of space—time GDs, for homogeneous Dirichlet boundary conditions, in
the sense of Definitions 4.3 and 4.6. We assume that the sequence of under-
lying spatial discretisations has the piecewise constant reconstruction property
(Definition 2.12). Let v : R — R be defined by

VseR, wv(s) =/ ¢'(q)B'(q)dg. (6.21)
0
For anym € N, let u, be a solution to (6.10) with D = D,,,. Then, as m — oo,

113) Blum) = B()  weakly in L*(2) uniformly on [0,7]

(see Definition C.1/4),
H(Dlic(um) — (@) weakly in L*(2 x (0,T)), (6.22)
5 v(uy) = v(@  in L2(2 x (0,T)),

V9! C(um) = V(@) weakly in L*(£2 x (0,T))?,
where T is the unique solution to (6.4).

Remark 6.13. We do not assume the existence of a solution @ to the continuous
problem, the convergence analysis establishes this existence, which proves part
of Theorem 6.3.

Proof.
Note that, since ((Dr)m)men Is compact, it is also coercive (Lemma 2.10).

Step 1: Application of compactness results.
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Thanks to Theorem 4.19 and Estimates (6.13) and (6.20), we first extract
a subsequence, without changing the notations, such that (Hgi B(tum))men
converges weakly in L?(§2) uniformly in [0,7] (in the sense of Definition
C.14) to some function B € C([0,T]; L?(£2)-w). By space-time-consistency
of ((Dr)m)men, M) B(um)(-10) = Ip, B(Tp, uin) = B(Ip,Ip,, tin) —
B(uini) in L?(§2). Hence, the uniform-in-time weak L2({2) convergence of
(H(Dliﬁ(um))m@\; shows that 3(-,0) = B(ui) in L?(£2). Using again Esti-
mates (6.13) and applying Lemma 4.8, we extract another subsequence such
that, for some ¢ € L2(0,T; H (£2)), IT5) ¢ (uy) — ¢ weakly in L?(£2 x (0,T))
and V3 ¢(upn) — VC weakly in L2(£2 x (0,T))%.

Estimates (6.13) and (6.20) also show that 8, = B(um) and (n = ((um)
satisfy the assumptions of Theorem 4.17 (weak-strong time-space convergence
of a product theorem). Hence,

Aijnoo/ / (D“ - t)) ¢ (ng> - ,t)) daedt

//ﬁa:t C(w, t)dzdt.  (6.23)

Assumptions (6.3b)—(6.3d) allow us to apply Lemma D.10 to w,, = 1(31) Upp-

This gives the existence of a measurable function @ such that 8 = 3(%) and
¢ = ((u) a.e. on 2 x (0,T). Since ¢ € L?(£2 x (0,T)), the growth assumption
(6.3b) on ¢ ensures that w € L*(2 x (O T))

Since 0 < ('(q ) <V/L¢Lg \/ ¢'(q)8'(q), the following inequality holds for
all a,b € R:

It can therefore be deduced that

/ / 115) w(@,1)) - v(a(, t))rda:dt

<Ld¢/ / 115) (@, 1)) = Bla(a, 1))
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X | CUTS g (2,)) — C(a(a, 1)) | daedt.  (6.24)
Developing the right-hand side of this inequality, using (6.23) and the weak
convergences B(H(Dljlum) — B = B(u) and C(Hgium) — ¢ = ((u), we see

that this right-hand side goes to 0 as m — oo. Hence, taking the superior
limit as m — oo in (6.24) shows that V(H(Dlium) — v(u) in L2(2 x (0,7T)).

Step 2: @ is a solution to (6.4).
We drop some indices m for legibility. Let v € L?(0,T; Hi(£2)) such that
0w € L2(2 x (0,T)) and v(-,T) = 0. Let (vy)men be given by Lemma 4.10
(for # = 0) and introduce (0,v® ..., vV =1) as test function in (6.10). This
gives T™ + 7™ = (™) with

N-1
" = Z /Q 110 8(ut" ) (@) = ITpB(ut™) (@) | Hpo™ (2)da,

T
T = / Az)VD (), t) - V0 (, t)dadt,
0 (]

and

T
™ = / / F@, ) 10 (a, t)dadt.
0o Jo
Use the discrete integration-by-parts formula (D.15) in Tl(m):
T
(™ = —/ /H(Dl),é’(u)(w,t)(Spv(wJ)dwdt
0o Jo
—/ ﬁ(ﬂp[puini)(m)ﬂpv(o)dw
Q

Hence, by the convergence properties (4.10c) and (4.10b) of (v, )men, as m —
oo we have

T
Ty / / BT (, £)0,5(w, £)dwdt — / Bluins) (2)5(@, 0)dz.  (6.25)
0 2 2
Using the convergence (4.7b) and (4.7a) of (v, )men, we have, as m — oo,
T
Tm - / / A()V¢ () (z,t) - Vo(, t)dadt,
0 2
T
T / / (@, )5, t)dadt.
0 2

Plugged alongside (6.25) in Tl(m) + Tz(m) = T3(m)7 these convergences show
that @ satisfies (6.4). L]
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Remark 6.14 (Convergence of Hg)um ?)

We do not prove here that w is a weak limit of H(Dll Um. Such a limit is not stated
in (6.22) and can actually be considered as irrelevant for the model (6.1) since, in
this model, the quantities of interest (physically relevant when this PDE models a
natural phenomenon) are 8(u) and ((@).

As a corollary to this convergence analysis and to the uniqueness of the solu-
tion (Theorem 6.3), an equivalent form of (6.4) can be stated.

Corollary 6.15 (Equivalent form of (6.4)). Under Hypotheses (6.3), Prob-
lem (6.4) is equivalent to

u € L*(0,T5L*(R2)), ¢(w) € L*(0,T; Hy(£2)) ,
8() € C((0,7), LA(©2)- W) 5 ﬂ( ) € L*(0, T H™1(12)),
5(?) ) (uml) i L
) atﬂ 7 ( at)>H 1 Hldt (626)

/ / x,t) - Vu(x, t)dedt

//fsct O(x, t)dxdt, Vo e L*(0;T; Hy(£2)),

where C([0,T]; L2(£2)-w) denotes the space of continuous functions [0,T] +
L2(02) for the weak-x topology of L*(£2).

Proof. Let us prove that (6.4) implies (6.26). There is a unique solution

o (6.4) (Theorem 6.3), so it must be the function @ constructed in the
proof of Theorem 6.12. We saw in Step 1 of this proof that B(u) = B €
C([0,T); L?(2)-w) and that B(@)(0,) = 5(0,) = A(usm;). Using C2*((0,T) x
£2) test functions in (6.4), we see that

O f(u) = div(AV((m)) + f

in the sense of distributions. Since V{(u) € L?(0,T; L*(£2)), this shows that
0Bm) € L*(0,T; H-1(£2)). Let v € C°((0,T) x £2). By definition of the

distribution derivative,

T
- / / B@) (@, t)0v(x, t)dzdt = / (OB (), 5(E) 11y
0 2 0

and thus (6.4) shows that the equation in (6.26) is satisfied for such smooth
compactly supported v. Since these functions are dense in L?(0,T; Hg(£2))
(see [68]), we infer that (6.26) is fully satisfied.

Let us now assume that @ satisfies (6.26). Then it clearly has all the regularity
properties expected in (6.4). To prove that it also satisfies the equation in this
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latter problem, we start by taking 7 € C°((—o0,T) x §2). By smoothness
of this function and regularity assumptions on (%) an integration-by-parts
gives

T T
/ <8t5(ﬂ)(t)75(t)>Hfl,Hgdt:*/ B(u)(x,t)0v(x, t)dedt
0 0
- / B(@) (=, 0)0(, 0)da.
(9]

Since B(u)(x,0) = B(uini), (6.26) proves that (6.4) is satisfied for such 7. As
discussed at the end of the proof of Theorem 6.12, this shows that (6.26) is
satisfied for all required test functions. [

Remark 6.16 (The continuity property of f(w))

The continuity property of 3(%@) : [0,T] — L?(£2)-w is rather natural. Indeed, the
PDE in the sense of distributions shows that Ty, : t — (B8(@)(t),p)r2 belongs to
W0, T), and is therefore continuous, for any ¢ € C°(£2). The density of ¢ €
C°(2) in L?(2) combined with the fact that B(@) € L>(0,T; L?(£2)), proves the
continuity of T}, for any ¢ € L?(£2), that is to say the continuity of 3(w) : [0, T] —
L?(0)-w.

This notion of B(u) as a function continuous in time is nevertheless a subtle one.
It is to be understood in the sense that the function (z,t) — B(@(z,t)) has an
a.e. representative which is continuous [0,T] ~ L?(£2)-w. In other words, there is
a function Z € C([0,T); L*(£2)-w) such that Z(t)(x) = B(u(x,t)) for a.e. (x,t) €
2 x (0,T). We must however make sure, when dealing with pointwise values in
time to separate Z from S(u(-,-)) as B(u(:, t1)) may not make sense for a particular
t1 € [0, T]

That being said, in order to adopt a simple notation, in the following we denote by
B(@)(+,-) the function Z, and by B(u(,-)) the a.e.-defined composition of 8 and w.
Hence, it will make sense to talk about 3(@)(:,t) for a particular ¢; € [0,77], and we
will only write 8(u)(z,t) = B(u(x,t)) for a.e. (z,t) € 2 x (0,T).

6.5 Uniform-in-time, strong L? convergence results

We denote by Rg the range of 3 and define the pseudo-inverse function 3* :
Rz — R of 5 by

iy Jinf{t e R|B(t) =s} if s >0,
s € Rg, f(s) = {sup{t ER|B() = s} ifs <0, (6.27)
= closest t to 0 such that §(t) = s.

See Figure 6.1 for an illustration of 3.
Since B(0) = 0, it holds 8° > 0 on Rz NR* and ¢ < 0 on Rg NR~. The
function B : Rg — [0, 0] is defined by
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Fig. 6.1. An example of 3 (dashed line) and its pseudo-inverse function 3* (contin-
uous line). Here, the range of 3 is [a,b).

Be) = [ o as (6.28)

The function ¢ is non-decreasing, and thus B(z) is always well-defined in
[0,00). The signs of 3* and ¢ also ensure that that B is non-decreasing on
Rz NRT and non-increasing on Rz N R™. B can therefore be extended to the
closure Rg of Rg, by defining B(a) = lim,_,, B(z) € [0, +00] at any endpoint
a of Rg that does not belong to Rg. Lemma 6.21 in Section 6.6 states a few
useful properties of B.

Remark 6.17 (Range of f(u))
The a.e. equality B(u)(x,t) = B(u(x,t)) (see Remark 6.16) ensures that S(@)(,-)

takes its values in Rg.

The following theorem shows that the solutions to GSs for (6.1) actually enjoy
stronger convergence results than those established in Theorem 6.12.

Theorem 6.18 (Uniform-in-time convergence of the GS). Under the
assumptions of Theorem 6.12, the solution u,, to the GS (6.10) with Dr =
(Dr)m satisfies the following convergence results, as m — 0o:
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s (7)) ® - v o)

5) ((um) = C(a) in L*(2 x (0,T)),
V) C(um) — VC(@) in L2(2 x (0,T))%,

L2(0)
(6.29)

where U is the unique solution to (6.4), and v is defined by (6.21).

Remark 6.19. For the Stefan problem, 8 = Id and thus v(w) = ((u) is the
temperature of the melting material. For the Richards model, ( = Id and
thus v(w) = B(u) is the water saturation. Hence, in both cases, v(u) is the
quantity of interest to approximate.

Proof.
By (6.39) in Lemma 6.21, n = B o 3. The energy estimate (6.12) can thus be
written

/Q BB up))(@, To)dz

To
T / M) () (@) - VD () (2, 1)t
0 0

B(B(Ilp,,Ip,, uini))(x)dx

“

Here, we recall that t(®) is the time such that Ty € (t*=1 ()],

(k)

/Q F(@, 0I5 ¢ (up) (2, t)dzdt.  (6.30)

Step 1 Uniform-in-time convergence of Hgiy(um).

Let us take T € [0,7] and (T5,)m>1 & sequence in [0,7] which converges to
Ty. The Cauchy—Schwarz inequality for the semi-definite positive symmetric
form

W e L2((0,T) x 02)% %/ / ) - W(t, z)dedt

shows that

( / / 2)V ¢ )(t,w)-V((u)(t,w)dmdt)
( / / (@)V5) ¢( um)(t,m)-vg}ng(um)(t,m)dmdt>
T
X ( /O /ﬂ A(az)VC(u)(t,x)-VC(u)(t,:c)da:dt)
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By weak convergence in L2((0,T) x )% of V(l) ° C(um) to V((u) and strong
convergence in the same space of 1)o7, V((u ) to V{(@), we can pass to the
limit in the left-hand side (by Weak—strong convergence, see Lemma D.8 page
464) and in the second term in the right-hand side. Hence, taking the inferior

limit of this inequality and dividing by [, [,, AV¢(w)- V¢ (@), we deduce that

m—r oo

lim inf / / (@)V) C(um) (@, t) - V) ¢(um) (@, t)dadt

2/0 /QA(‘”)VC(E)(W)'VC(E)(w,t)dwdt. (6.31)

By space-time-consistency of ((Dr)m)men (Definition 4.3) and quadratic
growth (6.17) of n = B o j3, it holds

B(ﬁ(HDmIDmuini)) — B(B(uini) in Ll(Q) as m — oQ. (632)
We then write (6.30) with T}, instead of Ty. The time t(E(m) such T, €

(t(km)=1) $(k(m)] satisfies t(F(™) — T, as m — oo. Hence, using (6.31) and
the weak convergence of Hgi{(um) to ¢(m),

limsup/QB(ﬁ(H(l)um(a: T)))dx

m— o0

/ / F(@, )T ¢ () (@, t)dadt
(9]

T
- / / A<w>V%;<<um><w,t>-VS;<<um><w,t>dwdt>

To
/B (Uini)) dw+/ /f (z,t)¢(T)(x, t)dedt

~ liminf / / )V, C(um)(@,t) - V. C(um) (2, t)dzdt

m—r oo

/B (Uini)) dw+/TO/ f(z, t)¢(u)(x, t)dadt
-/ K | A@)Ve@ @) - Ve (e, azt

Corollary 6.24 therefore gives

< limsup (/ B(B(IIp,,Ip,, uini))(x)dx

£(k(m))

limsup/QB(B(H(Dl) U (2, T))))dx < / B(B@)(z, Ty))dz.  (6.33)

m—r o0
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By Lemma C.13, the uniform-in-time weak L? convergence of B(Hg)ﬂ Up) tO

B(u) and the continuity of B(w) : [0,T] — L?(§2)-w (see Corollary 6.15), we
have

B(Hg) um)(Tn) — B@)(Ty) weakly in L?(£2) as m — oo. (6.34)

m

Therefore, for any (s,,)men converging to Tp,

BULY wm(T)) + B(@) (5m)
2

— B(w)(Ty) weakly in L%(£2) as m — oc.

Lemma D.11 then gives, by convexity of B,

/Q B(B(@) (. Ty))de

<liminf [ B

m—r o0 o)

1) T u)(x, s
<ﬂ(171>m“m( ’T”;))“Lﬂ( (@, ’”)>dw. (6.35)

Property (6.41) of B and the two inequalities (6.33) and (6.35) allow us to
conclude the proof. Let T be the set of 7 € [0,T] such that S(u(-,7)) =
B(@)(-,7) and v(u(-,7)) = v(@)(-,7) a.e. on {2 (see Remarks 6.16 and 6.25),
and let (S, )men be a sequence in 7 which converges to Tp. Since v(u) €
C([0,T); L*(£2)) by Corollary 6.24, we have

v, sm)) — v(@) (-, To) in L2(£2) as m — oo. (6.36)

Inequality (6.41) gives

2

m

18 ) = v )|

L2(%2)
2
< 2|01 - T)) = vl s,

+ 2 |lv(u(-, sm)) — V(ﬂ)("To))||2L2(Q)

<8aLe [ [BEUIE) (@, T0) + B3(a(z,5,))] da

(1) _
_ 16L5LC/ 5 <6<Hpmum(m,n,;)) +5(u(w,sm))> N
2

+ 2|, sm)) — v(@) (- To)) 220 -

We then take the limsup as m — oo of this expression. Thanks to (6.33)
and to the boundedness of B : t € [0,T] — [, B(8(uw)(x,t))dz € [0,00) (see
Corollary 6.24), the first term in the right-hand side has a finite lim sup. We
can therefore split the limsup of this right-hand side without risking writing
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oo — oo and we get, thanks to (6.33), (6.35), (6.36) and to the continuity of
B (Corollary 6.24),
2

<0.
L2(£2)

limsupH D lum v Tim)) —I/(ﬂ)(-,To)‘
m—o0

Thus, V(H(D17lum(~,T )) — v(u)(Ty) strongly in L?(§2). By Lemma C.13, this
concludes the proof that sup,c(o, 1 \\V(H(Dlglum)(t) —v(@)(t)||z2(2) — O.

Step 2: Strong convergence of Vg?ﬂ{(um).
Since B is convex, the convergence property (6.34) (with T, = Ty = T') and
Lemma D.11 give

/QB(ﬁ(ﬂ)(:c,T))d:ngliminf B(BUIS) uy)(z,T))dz.

m—r o0 9]

Writing (6.30) with Tp = T, taking the limsup as m — oo, using (6.32) and
the continuous integration-by-part formula (6.50), we therefore find

T
lim sup/ / A(m)V%BﬂC(um)(m, t)- Vgig(um)(m t)dadt
0o Jo

< /0 " /Q A@)VE@) (@, t) - V() (e, )dadt.

Combined with (6.31) with T;,, = To = T, this shows that

Jim / / 2)VD ) (2,1) - VL) () (@, )zt

To
- /0 /QA(“:)VC(H)(W)-VC(H)(m,t)dmdt. (6.37)

Developing all the terms and using the weak convergence of vgfng (um) to
V{(u), we deduce

i / | 46@) [98) ctum(@.) — Vel 0)
: [Vgl((um)(a:,t) - vg(a)(x,t)} dadt = 0.

The coercivity of A therefore implies Vg’)nc () — V() strongly in L?(£2 x
(0,7))% as m — oo.

Step 3: Strong convergence of H(l)  C(um)-

Apply Lemma 4.10 tov = (( ). This gives (U, )men such that H(l) vm — C(W)

in L2(£2 x (0,T)) and V4 vm — V(¢(m) in L?(2 x (0,T))%. The coercivity
definition 2.2 gives
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118 ¢ ) = 115 0

m
Dm m

L2(2x(0,T))

1 1
<Cp HV%LC(U’”) B V%anm‘ L2(2x(0,T))d

By strong convergence of V%Eﬂ( (um ), letting m — oo in this estimate proves
that H(Dlig‘(um) — ((u) in L2(2 x (0,T)) follows. L]

Remark 6.20 (Convergence of B(B(I1 (Dl) um(Tm))))
Let T, — To. The convergence property (6.34), the convexity of B and Lemma
D.11 show that

/ B(B(w)(x, To))dx <hm1nf/ B(pB 1()1) Um ) (, Trn))de.

m—r 00

Combined with (6.33), this gives

lim B(ﬂ(H(Dllum(a:,Tm)))dm:/QB(B(E)(:(:,TO))dm. (6.38)

m—oo [

6.6 Auxiliary results

We state here a family of technical lemmas, starting with a few properties on
v and B.

Lemma 6.21. Under Assumptions (6.3b) and (6.3c), let v be defined by
(6.21), B be defined by (6.28), and n be defined by (6.11). Then the function
B is convex lower semi-continuous on Rg, the function Bo 3 : R — [0,00) is
continuous,

VseR, n(s)= / ¢(q9)B'(q)dq, (6.39)

Va € R,Vr € Rg, B(r)— B(B(a)) > ((a)(r — B(a)), (6.40)
and
Vs, s € R, (v(s) —v(s')? <4LgL¢ | B(B(s)) + B(B(s))

op (W)]- (6.41)
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Proof.

Let us first notice that, since 5 > 0 on RT and 3 < 0 on R™, B(s) is a
real number for all s € Rz. Moreover, since 3 is non-decreasing, 3° is also
non-decreasing on Rg and therefore locally bounded on Rg. Hence, B is well
defined and locally Lipschitz-continuous, with an a.e. derivative B’ = ((8%).
B’ is therefore non-decreasing and B is convex. Since B is continuous on Rg
and extended by its (possibly infinite) limit at the endpoints of this interval,
B is lower semi-continuous on Rg.

To prove (6.39), we denote by P C R the countable set of plateaux values of
B, i.e. the numbers y € R such that 371 ({y}) is not reduced to a singleton (P
is countable since (871({y}))yep is a family of disjoint intervals of positive
lengths, and can therefore be counted by associating to each interval a rational
number in it). If s € 371(P) then B71({B(s)}) is the singleton {s} and there-
fore 3*(8(s)) = s. Moreover, 3¢ is continuous at (3(s) and thus B is differen-
tiable at 3(s). Since 3 is differentiable a.e., we deduce that, for a.e. s € 37 1(P),
(B(B))'(s) = B'(B(s))B'(s) = C(B'(B(5))B'(s) = ((s)B'(s). The set 571(P)
is a union of intervals on which 8, and thus B(f), are locally constant; hence,
for a.e. s in this set, (B(8))'(s) = 0 and ((s)5’'(s) = 0. As a consequence,
the locally Lipschitz-continuous functions B(5) and s — fos ¢(q)3'(¢)dg have
identical derivatives a.e. on R. Since they have the same value at s = 0, they
are thus equal on R and the proof of (6.39) is complete. The continuity of
B o  follows from this relation.

We now prove (6.40), which states that ((a) belongs to the convex sub-
differential of B at 5(a). We first start with the case r € Rg, that is r = 3(b)
for some b € R. If A% is continuous at $(a) then B is differentiable at 3(a),
with B’(B(a)) = ¢((B8*(B(a))) = ¢(a), and (6.40) is an obvious consequence of
the convexity of B. Otherwise, a plain reasoning also does the job as

B(r) - B(8(a)) = B(8(8)) — B(3(a))
b

- [ c@stas
b

— [ @)~ c@)F @da + C@(50) - o)
= ((a)(r — B(a)).
Here, the inequality comes from the fact that 8’ > 0 and that ((¢) — {(a) has

the same sign as b — a if ¢ is between a and b. The general case r € Rg is
obtained by passing to the limit on b,, such that 5(b,) — r, and by using the
fact that B has limits (possibly +o00) at the endpoints of Rg.

Let us now take s, € R, and let § € R be such that 3(5) = w We

have
[ B'(g)dq + / B'(g)dg = B(s) + B(s') — 26(5) = 0.

Hence, using (6.39),
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B(B(s))+B(B(s") — 2B(B(s))

/c dq+/< dq—/c
=/§<‘(q dq+/< )8(q

- /S<<<q>—<<§)>ﬁ’<q>dq+ / (C(a) - CENB Qg (6.42)

S

We then use [¢(q) = ¢(5)] = 75[v(a) = v(3)| and B'(a) = /(@) 2 = 42 to

write

The same relation holds with s replaced by s’. Owing to

(W(s) —v(s)? < 2(u(s) — v(5)* +2(u(s") — v(5))*,
the inequality (6.41) follows from (6.42). L]

The following property states an expected integration-by-parts result, which
can be formally obtained by writing (9;5(v))((v) = ' (v)¢(v)dw = 0 B(B(v))
(owing to (6.39)). The rigorous proof of this result is however a bit technical,
due to the lack of regularity on u and to the non-linearities involved.

Lemma 6.22. Let us assume (6.3b) and (6.3c). Let v : 2 x (0,T) — R be
measurable such that

((v) € L*(0,T; Hy(2)), B(B(v)) € L=(0,T; L'(2)),
B(v) € C([0,T}; L*(2)-w), 9,B(v) € L*(0,T; H™'(£2)).

Then t € [0,T] — [, B(B(v)(z,t))dx € [0,00) is continuous and, for all
t1,t2 € [ ,T]

/t 2<at/3<v><t>,<<v<t>>>Hfl7Hgdt
= B(B(v)(x,t2) daz—/B (z,t1))dx. (6.43)

Remark 6.23 (Continuity of B(v))
Since = B o § satisfies (6.18), the condition B(B(v)) € L*(0,T;L'(£2))
ensures that B(v) € L°°(0,T;L*(£2)). Combined with the condition 9:;3(v) €
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L*(0,T; H'(£2)), this shows that 8(v) € C([0, T]; L*(£2)-w). Hence, this continuity
property on ((v) is actually a consequence of the other assumptions on v.

We also point out that, as in Remark 6.16, it is important to keep in mind the
separation between B(v(:,-)) and its continuous representative S(v)(-,-).

Proof.

We obviously only need to prove the result for ¢t; < ts.
Step 1: truncation, extension and approximation of 3(v).
We define B(v) : R — L?(£2) by setting

ﬁ(U)(t) ifte [tl,tQL
B)(t) = { Bu)(tr) ift <t
Blo)(ta) it >t

By continuity property of 5(v), we have 3(v) € C(R; L?(£2)-w) and 9;3(v) =
L4, 1) 8(v) € L*(R; H1(£2)) (no Dirac mass has been introduced at ¢ = ¢,
or t = to). This regularity of 9;3(v) ensures that the function

t+h
teR — D,B(v) == %/t " 0:B(v)(s)ds (6.44)
_ B)(t+h) = BOE)
= . e H () (6.45)

tends to 9;4(v) in L2(R; H=1(£2)) as h — 0.

Step 2: Let us prove that || B(B8(v)(t)l|lr1(2) < [B(B)ll =0 101 (0) for all
t € R (not only for a.e. t).

Let t € [t1,ts]. Since S(v)(+,-) = B(v(-,-)) a.e. on §2 X (t1,t2), there exists a
sequence t, — t such that, for all n, B(v)(:,t,) = B(v(:,t,)) in L?(§2) and
BB tn))ll L1y < IB(BW))l o< 0,711 (2))- Using the continuity of 5(v)
with values in L2(£2)-w, we have B(v)(-,t,) — B(v)(-,t) weakly in L?(£2). We
then use the convexity of B and Lemma D.11 to write, thanks to our choice
of t,,

/ B(8 ))de < hmlnf/ B(p n))dx < ||B(B(v >)||L°°(0,T;L1(Q))'

n—oQ

The estimate on B(8(v))(t) is thus complete for ¢t € [t1,t2]. The result for
t <ty ort >t is obvious since 5(v)(t) is then either S(v)(t1) or B(v)(t2).

Step 3: We prove that for all 7 € R and a.e. t € (t1,t2),

(B)(1) = B)(@), (1)) -1,
/ B(Bl0)(x, 7)) — B(3(v)(w,))dw. (6.46)
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Let ¢ such that B(v)(-,t) = B(v(-,t)) a.e. on £2. Almost every ¢ satisfies this
property. By Remark 6.17, for a.e. € {2 we have B(v)(x,7) € Rg and we
can therefore write, by (6.40) with r = 8(v)(x,7) and a = v(x, t),

B(B(v)(z, 7)) — B(B(v(,1))) = C(v(, 1) (Bv)(x, 7) — B(v(,1))).

Integrating this relation over x € (2, Property (6.46) follows since the H -
H} duality product in (6.46) can be replaced with an L? inner product, as all
terms in this product belong to L?(2).

Step 4: Proof of (6.43)
By convergence of Dy, 3(v) to 9;8(v) in L(0,T; H~*(£2)) and since 1, 46 (v)
€ L?(R; H}(£2)), we have

[ @80)0.cw0) -1 ma

t1

=A@Rmmummmwummﬂ%w

= %g% <Dhm( ) 1(7&1 tg)(t)C(v('7t))>H—17Hédt

= lim - / )(s + ) = B0) (1), C(v( ) g1 pydt.  (6.47)

h—0 h

We then use (6.46) for a.e. t € (t1,t2) to obtain, for h small enough such that
t1+h <t

b B 1) = BN, O

%/tQ/QB(M(mJ—Fh))—B(M(w,t))dwdt

1 ta+h ti+h
7/ / B(B(v)(x,t))dedt — f/ / ))dxdt
h to t1
t14h
/ B(B(v)(x,t2))da — 7/ / B(B ))dadt. (6.48)
2 t1

In the last line, we used B(v)(t) = B(v)(t2) for all t > to. We then take the
superior limit of (6.48), and use the fact that B(8(v)(-,t2)) is integrable (Step
2) to take its integral out of the limsup. Coming back to (6.47) we obtain

@800,y

t1

ti+h
S/{)B(ﬁ(v)(az,tg)) :Iz—hmlnff/ ’ /B ))daedt. (6.49)
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But since B(v) € C([0,T]; L*(£2)-w), as h — 0 we have + ttllJrh B)(#)dt —
B(v)(t1) weakly in L2(£2). Hence, the convexity of B, Lemma D.11 and

Jensen’s inequality give

- 1 hth
/QB(ﬁ(v)(m,tl))dw§11£njglf/sz (h /t1 ﬁ(v)(w,t)dt) dx

1 ftith
< lim inf/ f/ B(B(v)(z,t))dtdx.
=0 Joh Jy
Plugged into (6.49), this inequality shows that (6.43) holds with < instead of
=. The reverse inequality is obtained by reversing time. We counsider o(t) =
v(t; +ta —t). Then ((v), B(8(v)) and B(v) have the same properties as (v),
B(B(v)) and B(v), and B(v) takes values B(v)(t1) at t = to and B(v)(t2) at
t = t1. Applying (6.43) with “<” instead of “=" to ¥ and using the fact that
WB)(t) = —0:B(v)(t1 + t2 — t), we obtain (6.43) with “>" instead of “=”

and the proof of (6.43) is complete.

The continuity of t € [0,T] — [, B(B(v)(z,t))dz is straightforward from
(6.43), since the left-hand side of this relation is continuous with respect to
tl and t2. ]

The following corollary states continuity properties and an essential formula
on the solution to (6.4).

Corollary 6.24. Under Assumption (6.3), if w is a solution of (6.4) then:

1. The function t € [0,T] = [, B(8(u)(x,t))dx € [0,00) is continuous (and
thus bounded);
2. For any Ty € [0, T,

[ Be@e e+ [ [ a@To@e.n - Vom)e ded
2 0 (9]
To
_ /Q BB () de + A /Q F(@, 6)C@) (@, t)dadt; (6.50)

3. v(w) is continuous [0, T] — L?(£2).

Remark 6.25 (Continuity of v(u))

The continuity of v(@) has to be understood in the same sense as the continuity of
B(w) (see Remark 6.16), that is, v(u) is a.e. on {2 x (0,T) equal to a continuous
function [0, 7] — L?(£2). We use in particular a similar notation v(%@)(-,-) for the
continuous representative of v(u(+,-)) as we did for the continuous representative of

B(@).

Proof.
We first notice that Corollary 6.15 was established using Theorems 6.3 and
6.12, which do not make use of Corollary 6.24. Hence, we invoke Corollary
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6.15, which tells us that @ is also a solution to (6.26). The continuity of
t€[0,T] = [, B(B(u)(x,t))dx € [0,00) and Formula (6.50) therefore follow
from Lemma 6.22 applied to v = u, by using ¥ = ((@)1[p,1,) in (6.26).

Let us prove the strong continuity of v(u) : [0, T] — L?(2). Let T be the set
of 7 € [0,T] such that S(u(-,7)) = B(uw)(-,7) a.e. on 2. The set [0, T]\T has
zero measure. Let (s;)eny and (tx)gen be two sequences in T that converge to
the same value s. Owing to (6.41),

/g[u(ﬂ(az, 51)) — v(a(z, ty)))*de

<azate( [ <ﬂ<czso»dmr/;zxﬁudm,nandm)
B(u(x, s;)) + f(u (wvtk)))dx

- 8LBL< B (6.51)

—u@(/Bmxwam+/B (e )i
_8LBL< (5 (x, 51 +5( )(%tk))dw.

Since ﬁ(ﬁ)("sl);ﬁ(ﬂ)("tk) — B(u)(-,s) weakly in L?(£2) as I,k — oo, Lemma
D.11 and the convexity of B (Lemma 6.21) give

[ B n <yt [ (A D) o,
(9]

1,k— 00 2

Taking the superior limit as I,k — oo of (6.51) and using the continuity of
t— [, B(B(u)(z,t))dx thus shows that

lv(@(, s1)) — v(@(, te)llp2o) =0  aslk— oo (6.52)

The existence of an a.e. representative of v(@(,-)) that is continuous [0, T] —
L2(02) is a direct consequence of this convergence.

Let s € [0,T] and (s;)ieny C T that converges to s. Applied with ¢, = sy, (6.52)
shows that (v(u(-, s1)))ien is a Cauchy sequence in L?(£2), and therefore that
limy o0 v(U(, 81)) exists in L2(£2). Relation (6.52) also shows that this limit,
that we can call v(@)(-,s), does not depend on the Cauchy sequence in T
which converges to s. With ¢, = s, we also see that whenever s € T we have
v(u(-,s)) = v(@)(-,s) a.e. on §2, and v(u)(-,) is therefore equal to v(a(-,-))
a.e. on 2 x (0,7).

It remains to establish that v(@) thus defined is continuous [0,7] Lz(Q)
For any (7.)ren C [0,7] which converges to 7 € [0,7T], we can pick s,
TN(r -1+ andt, € TN(r—2% 7+ 1) such that

1

0@ () = w50 oy <
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il

(@) 7) v ) gy <

We therefore have

sup (@) (- 7) = v(@) (5 7l L2(0)
te[0,T]

2 . _
<=+ sup [, s,) = v(@t, t))ll g2 -
T tefo,1)

By (6.52) with | = k = r, this proves that v(@)(-, 7.) — v(@)(-,7) in L?(£2) as
7 — 00. u

6.7 Proof of the uniqueness of the solution to the model

We give here a proof of the uniqueness of the solution to (6.4) (and thus also to
the solution to (6.7)). The uniqueness of entropy solutions to 9;3(u) — A (u) =
f (with an additional convective term, and a merely integrable f) has been
established in [42], using the doubling variable technique. Although this proof
could be extended to our framework, we rather provide here a much shorter
proof, following the idea due to J. Hadamard [114]. This idea consists in using
the solution to an approximate dual problem. It was successfully applied to
the one-dimensional Stefan problem in [25], and subsequently generalised to
the higher dimensional case in [113].

The proof provided here was originally developed in [79] and applies the ap-
proximate duality technique to the doubly degenerate model (6.1), which con-
tains both Richards’ and Stefan’s models as particular cases.

Proof of uniqueness of the solution to (6.4).
Set ug = B(u1) + C(u1) — B(uz) — {(us2), and for all (x,t) € 2 x [0,T], define

C(ua(z,t)) — C(uz(z, 1))
q(z,t) = uq(x,t)
0 otherwise.

if ug(x,t) # 0,

Take v € L2(0,T; H}(2)) with 90 € L2(2 x (0,T)), ¥(-,T) = 0 and
div(AVy) € L2(2 x (0,T)). Subtract the two equations (6.4) satisfied by
u1 and ug, and use 1 as a test function. The assumed regularity div(AVy) €
L?(2 % (0,T)) enables us to integrate by parts the term involving AV - V4,
and we obtain

/ / uq(x,t) ((1 —q(x, )0 (x, t) + q(z, t)div(AVY)(x, t))dwdt =0.
o Jo

(6.53)
For e € (0,1/2) set ¢. = (1 —2¢)q+e. Since 0 < g <1 wehavee < g. <1—¢,
and
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— )2 N2
(g —q) < and (g — q)

qe 1—4qe
Let 1. be given by Lemma 6.26 below, with g = ¢. and some w € CZ°(§2 x
(0,7)). Making ¢ = 1. in (6.53) and using (6.57),

ot g

T
/0 /Q uala, t)(qe(z, t) — gz, ) (div(AVY.) (2, t) — Opbe (. t))dadt
(6.55)

<e. (6.54)

<

The Cauchy—Schwarz inequality, (6.58) and (6.54) imply

T 2
l / /Q wal, 1)(g: (2, 8) — gl ) (div(AV.) (2, 1) — atwgu,t))dxdt]
r 2((](58,?5) _QE(mvt))Q
<2 </o /S?ud(x,t) @0 dwdt)
T 2
X (/0 /Qqe(a:,t) (diV(/lV’(/JE)(il:7t)) da:dt)
12 (/0 /Qud(w,t)Q(q(ml’?;j;(gt)) d:ndt)

x (/OT/Q(l—qs(a:,t))(8t¢5(w,t))2dmdt>

< 26Co [[uall 2o 0,1y

x (va||2L?(Q><(O,T))d + w72 ox 0, + Hatwnf'ﬂ(QX(O}T))) - (6.56)

Letting ¢ — 0 and using (6.55) gives

/oT /Q ug(x, tyw (@, t)dedt = 0.

Since this holds for any function w € C2°(£2 x (0,T)), we deduce that ug =0
a.e. on {2 x (0,T). Hence B(u1) + ((u1) = B(uz) + ((uz), and the proof is
complete since 8 + ( is one-to-one. ]

The following lemma ensures the existence of the function 1, used in the proof
above.

Lemma 6.26. Let T > 0, and let £2 be a bounded open subset of R (d € N).
Assume Hypothesis (6.3¢). Let w € C°(£2 x (0,T)) and g € L>=(£2 x (0,T))
such that g(x,t) € [gmin, 1 — gmin] for a.e. (x,t) € 2 x (0,T), where gmin is a
fized number in (0, %) Then there exists a function i such that:
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1.4 € L>=(0,T; H}(2)), 0w € L2(2 x (0,T)), div(AVy) € L3(£2 x (0,T))
(this implies ¢ € C([0,T]; L*(£2)));

2. (- T) = 0;

3. For a.e. (z,t) € 2% (0,T),

(1 - g(mvt))atw(mat) + g(a:,t)div(/lvw)(m,t) = w(a:,t); (657)

4. There exists Cy > 0, depending only on T, diam(£2), A\ and A (and not
ON Gmin ), such that

/OT /Q ((1 - g(oc,zf))(<9t1/z(ac7t))2 +g(@,1) (div(Aw)(w,t))Q) dwdt

2 2 2
< Co (IVwlliz ooy + I0l32(axco.ry + 1003z oxory) - (6:58)
Proof.

Step 1: existence of vy satisfying 1, 2 and 3.
After dividing through by g, observe that (6.57) is equivalent to

For a.e. (x,t) € 2 x (0,T),
D(x, )0 (x, t) + div(A(z) Vi (z,t) = f(x,t), (6.59)

where f € L>®(2 x (0,T)), & € L*>®(£2 x (0,T)) and, for some fixed numbers
©* > s >0, o < P(x,t) < @* for ae. (x,t) € 2 x (0,T). The parabolic
equation (6.59) is slightly non-standard because of the time-dependent coef-
ficient @ in front of d;1). However, as we shall now see, a standard Galerkin
approximation provides the existence of a solution to this equation.

Let (Vi)ren be a non-decreasing family of finite-dimensional subspaces of
H{(£2) such that ey Vie = H§(£2). We look for 1y, : [0,T] — Vj solution to
the following Galerkin approximation of (6.59), with final condition:

Yi(T) =0 and Vt € [0,T],Yv € V},
(@, ) (1), v) 22 — (AVYR(E), VU)(2)2 = (f(-,1),0) 2.
Here, (+,-)z2 is the L?(£2) inner product. Choosing an orthonormal (for this

inner product) basis (e;);=1,...n, of V4 and writing ¥ (t) = vaz’“l 0;(t)e;,
(6.60) can be re-cast as

(6.60)

O(T) = 0 and, for all ¢ € [0,T], M(£)€'(t) — S(t)O(t) = F(t)  (6.61)

where O(t) = (0;(t))i=1,....N,, M (t) and S(t) are the symmetric matrices with
respective entries M; j(t) = (P(-,t)e;, e;)r2 and S; ;(t) = (AVe;, Ve;)(p2)a,
and F(t) = ((f(-,t),€;))j=1,....N,- Since & > ¢* and (e;);=1,... n, is orthonor-
mal for (-,-)z2, it holds M(t) > @.Id. M(t)~! is therefore well defined and
measurable bounded over [0, T]. Hence, the initial value problem (6.61) can be
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put in standard form, with bounded measurable coefficients, and it therefore
has a unique solution © such that @' is bounded.

There exists thus a unique solution 1y to (6.60), with 1, € W1°(0,T;V;) C
Whee(0,T; Hi(£2)). Let us now prove some a priori estimates on 1. We
make, for a.e. t € (0,T), w = ¢ (¢) in (6.60) and we integrate over ¢t € (7,7,
for some 7 € (0,T). Since A is symmetric and does not depend on ¢,

1d

(AVYi (L), Vj, (1) (£2ye = =

5 7 (AVL(0), Vb (6)) (120

and we therefore obtain, using ¥, (-,7) = 0 and the Young inequality (D.9),

T
/ / (a, 0)|On (. t)Pdadt + / A@) Vi (@, 7) - Vi (, 7)de
T (9] 2 0

IA

||fHL2(Qx(0,T)) HatwkHLz(Qx(T,T)

IN

1 P 2
ﬂ ||fHL2(Qx(0,T)) + o Ha“/”f”Lz(QX(T,T) ’

This estimate holds for any 7 € (0,T"). Given that A is uniformly coercive
and that & > ¢,, we deduce that (¢y)ken is bounded in L>(0,T; HE(£2))
and that (9;vx)ren is bounded in L2(2 x (0,T)). Hence, there exists ¢ €
L°(0,T; H}(£2)) such that ;) € L*(£2 x (0,T)) and, up to a subsequence
as k — oo, P — ¥ weakly-+ in L>(0,T; H}(£2)) and 9y, — Oyp weakly
in L?(2 x (0,T)). Using the Aubin-Simon theorem, we also see that the
convergence of (¢ )xen holds in C([0, T]; L?(§2)), which ensures that (-, T') =
0.

We then take § € C2°(0,7) and v € V; for some ¢ € N, and apply (6.60) for
k > ¢ to O(t)v instead of v. Integrating the resulting equation over ¢t € (0,7,
we can take the limit and see that v satisfies, with p(x,t) = 0(t)v(x),

T T
/ / B(a, )0 (w, 1) p(, 1)l — / / A@) Vi@, t) - Vpla, t)dadt
0 2 0 2
:/ /f(:&t)p(:c,t)dwdt. (6.62)
0 (9]

Any function p in L?(0,T; H}(£2)) can be approximated in this space by finite
sums of functions (x,t) — 0(t)v(x), with 8 € C(0,T) and v € UpenVe
(see [68]). Hence, (6.62) also holds for any p € L?(0,T; H}(£2)). Considering
smooth compactly supported functions p, (6.62) shows that div(AVy) = f —
@01 in the sense of distributions. This proves that div(AVy) € L2(02x(0,T))
and thus, by (6.62), that (6.59) is satisfied.

Note that Lemma 6.27 below provides an additional regularity property and
an integration-by-part formula on .

Step 2: proof of (6.58).
Taking s, 7 € [0,T], we have
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/ / x,t)div(AVY)(x, t)dedt = / / x)Vw(z,t) - Vip(z,t)dedt,

/sT/!2w(w7t)at¢(w,t)dwdtz/g(w(a;,r)w(wj)_w(w78)¢($78))dw

_/ST/Qw(x7t)8tw(w,t)dwdt.

Multiplying (6.57) by dwp(x,t) + div(AVY)(x,t), integrating over 2 x (s,T)
for s € [0,T], using (6.66) in Lemma 6.27, and recalling that ¢(-,T) = 0, we
obtain

1
7/0/1(33)V1/1(w,s) -Vip(z, s)dx

2
+/ST/Q ((1—g(x,t))(@tw(a:,t))z—l—g(z,t)(div(/lvw)(a:,t))z) dardt
—/T/ A(:B)Vw(:c,t)~Vw(:c,t)dmdt—/ w(z, $)(x, s)dx
s Jo 17
—/T/sz(:c,t)atw(m,t)dmdt. (6.63)
Integrating (6.63) with respect to s € (0,7 leads to
;/OT/QA(:B)Vz/J(azs) -V(x, s)deds
T T
gT/O /Q|A(ar:)Vw(:c,t)-Vw(sc,t)|dacdt+/0 [ (e, dads
+T/O A|w(m,t)8tw(w,t)\dwdt. (6.64)

Apply the Cauchy—Schwarz and Poincaré inequalities to obtain

A _
5 IVl L2k 0,y < TAIVW 20 0,7))
+ diam(82) (Iwll 2@ omy + T 100l 2oy ) - (6:65)

Letting s = 0 in (6.63), recalling that w(-,0) = 0, and using (6.65) gives

/OT /Q <(1 — gl ) (D@ 1)) + (a1 (div(Aw)(x,t))Q) dzdt

< (X IVwll 20 (0,7 + diam(£2) ||‘9thL2(nx(o,T))) IVl L2 (2% 0,79 -
Combined with (6.65), this shows that (6.58) holds. L]
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Lemma 6.27. Assume that 2, T and A satisfy (6.3a) and (6.3e). Let ¢ €
L°(0,T; HY(£2)) such that Oyp and div(AV) belong to L2(2 % (0,T)). Then
Y € C([0,T); HA(£2)) and, for all s,7 € [0,T],

/T/ Op(z, t)div(AVY)(z, t)dedt = —%/ ANx)Vip(z, ) - Vip(x, 7)dx
s 2 0]
1
+ 5/9/1(:3)V¢(w,s) -V(x, s)de.  (6.66)

Proof.

Step 1: ¢ € C([0,T); L3(£2)) and 4 : [0,T] — HE(£2) is continuous for the
weak topology of H}(£2).

Since v € L>(0,T; H}(£2)) € L*(0,T; L*(£2)) and 9,y € L*(0,T; L?(£2)), we
have ¢ € H'(0,T; L2(R2)) € C([0,T]; L2(£2)).

Let M = ||’L/J||LOO(O7T;H(%(Q)) and let ¢ € [0,T]. There exists (t,)nen converging
to ¢ such that [[¢)(,)]| g1 (o) < M. Since 1) is continuous with values in L%(92),
we have 9(t,) — (t) in L?(£2). Given the bound on H"/J(tn)”H(}((z)? this
convergence also holds in Hg(£2), and ”w(t)”Hé(Q) < M. In other words, M
is not just an essential bound of ||1(-) ”Hé(ﬂ)’ but actually a pointwise bound.
Let us now prove the weak continuity of ¢. Let ¢t € [0,7] and ¢, — t. If

v € C°(§2) we have
(W(ta) Ny = [ Vol tn)  Vr(e)dedt = - [ bl ta) 21 (@)dads
Q Q
and thus, as n — oo, since 1 € C([0,T]; L(£2)),
(lb(fn)a’V)Hé - = / Y(x, t) Ay(x)dedt
Q
= [ Vola.t) - Va@)dadt = 60D (667

If v € H}(£2) then we take 7. € C2°(£2) such that ||y — %HHé(Q) < e and we
classically write

(), Vmy —(@(@) )y
< |@ ) iy = W) 70y
|7 i — @0,y

< Me+ | (@(ta), 7 my = (00,7

|t iy — (8,72

+ Me.

Taking the superior limit as n — oo (using (6.67) with 7. instead of v), and
then the limit as ¢ — 0, we deduce that that (¢ (tn),7)gz — (¥(t),7)my as
n — oo. This concludes the proof of the continuity of ¢ : [0,T] — HJ (£2)-w.
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Step 2: proof of (6.66).
We only have to consider the case s < 7. We truncate ¢ to [s, 7] and extend
it by its constant values at the endpoints of this interval, which consists in

defining 1) on R by
P(s) ift <s,
P(t) = v(t) ifte(sT),
P(r) it >,

Since ¢ € C([0,T]; L2(£2)) N C([0,T); H}(2)-w), this definition makes sense
and we have ¢ € C(R; L?(£2)) N C(R; H} (£2)-w). By these continuity prop-
erties, we have 0p) = 1(5,70s1p since no Dirac masses are introduced at
s or 7. We also have, on (s,7), div(AV%y) = div(AVY) € L*(2 x (s,7)).
However, because we cannot ensure that div(AVy (7)) and div(AVy(s)) be-
longs to L?({2), we cannot say that div(AVy) € L2(£2 x R). We only have
div(AVY) € C(R; H~1(02)-w), owing to ¢ € C(R; H (£2)-w).

Let (pn)nen be a smoothing kernel in time, such that supp(p,) C (—(7—s),0).
We set ¥, (x,t) = (Y(x,-) * pn)(t). Then ¢, € C°(R; Hi(£2)) and we can
write, since A is symmetric and does not depend on time,

/ (0B (6), div AV, ) (1) g gt

- _/T/ 0V, (@, 1) - M) Vi, (x,t)dzdt
s 2

— _;/STjt/n/l(x)vwn(w,t)-an(w,t)dwdt
- %/Q Ax)V,,(2,7) - Vi, (z, 7)dz
+%/ Az) Vi, (2, s) - Vi, (2, s)da. (6.68)
2

We aim at passing to the limit n — oo in this relation. By choice of supp(pn)
and by definition of ¥,

B, 7) = / D@, )pu(r — q)dg

-/ " B(@, )pu(r — q)ds = (z,7) [ ot —a)da = vam).

T

Hence, for all n € N,

1 _
5/!2A(m)vwn(mm) -V, (x, 7)dx

1

= 5/Q/l(ac)vw(acﬂ')-Vw(acn')dzc. (6.69)
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Since ¥ € C(R; HE(£2)-w), as n — oo we have 1,,(s) — ¥(s) = ¥(s) weakly
in Hj(£2). The bilinear form (AV-,V-)(12)a being a Hilbert norm in Hg(2),
we infer that

lim inf 1/ Ax)V, (2, ) - Vib, (x, s)dz
2J)a

n— o0

1
> iéA(w)Vw(w,s)-Vw(w,s)dw. (6.70)

Dealing with the left-hand side of (6.68) is a bit more challenging, due to the
lack of regularity of div(AV) outside (s, 7). By definition of ¢, we have

div(AVY (1)) = 10,5 (t)div(AVY(S)) + 15,7 (¢)(div(AVY(2))
+ L ooy () (div(AVH(T)).

The choice of the support of p,, ensures that, whenever ¢ > s, 1(_q 5% pn(t) =
0. Hence, for t € (s, 7),

div( AV, () = [div(AVE() L] #9u(8) + (L) * o) ((diV(ATH(T)).

Since div(AV)1(, ) € L?(£2 x R), the left-hand side of (6.68) can therefore
be re-cast as

/s O (1), div(AVT, ) (1)) gy sl
= /ST/Qatzpn(:c,t) [div(AVY) (2, )1(5 )] * pu(t)dadt
[ 0B 0. AT g1+ ey ) O
_ / ' /Q 0 (1) [Aiv(AVE) (@, VLomy] * pu(t)dmd + Ty, (6.71)
where T,, = [ F},(t)(1fr.00) * pn) (t)dt with
Fo(t) = Fxpu(t), F(t)= ), div(AVH(1)) g g1
Integrating-by-parts, we have
T = Fo(T)(17,00) * pn)(T) = F(8)(Lfr,00) * pn)(8)
- [ B0 ) O
The choice of support of p,, ensures that (1(r,s)*pn)(s) = 0 and that (1. *

pn)(T) = 1. We also notice that (1[; ) * pn)’ = 7 * p, has support in (s, 7)
and converges weakly in the sense of measures toward the Dirac mass d,. Since
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P € C(R; HE (£2)-w), we have F € C(R) and thus F,, — F locally uniformly
on R. Hence, as n — oo,

T, =F, (1) — /T Fo(t)(1jr.00) * pn) (t)dt = F(1) — F(1) = 0. (6.72)

The functions 8y and div(AVY)(z,)1(s ) belong to L2(2 x R), so
04, = (04) * pn — Ot in L2(£2 x R)
and
[div(AVY) (2, )1(s )] * pn = div(AVY) (@, )15 ) in L2(2 x R).

Using (6.72), we can therefore pass to the limit in (6.71) and we see that,
since Oy1) = Opp on 2 X (s,7),

T

lim [ (0, (t), div(AVY,,)(t) g -1 dt

:/T/ Op(z, t)div(AVY)(z, t)daxdt.
s ]

Combined with (6.68), (6.69) and (6.70), this gives (6.66) with “>” instead of
“=". The converse inequality is obtained by re-doing the previous reasoning
with smoothing kernels p,, having support in (0,7 — s), or by reversing the
time as at the end of the proof of Lemma 6.22.

Step 3: Proof that v : [0, T] — H}(2) is continuous.

Since the left-hand side of (6.66) is continuous with respect to s, the mapping

s+ (AV(s), Vib(s))(L2)a is continuous. Assume that s, — s in [0, T]. Owing

to ¢ € C([0,T); H}(2)-w) we have ¥(s,,) — ¥(s) weakly in HE(£2). Moreover,

(AVY(50), V(8n)) L2y — (AVY(s), V)(8))(L2)a. Since (AV:, V) (12ya is a

Hilbert norm on H{ (£2), we conclude that ¥ (s,) — 1(s) strongly in H{ (£2).
"
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Examples of gradient discretisation methods
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In this part several classical and popular numerical methods are shown to fit
in the gradient discretisation method (GDM).

Chapter 7 introduces the concept of polytopal meshes, on which most schemes
considered in the subsequent chapters are built, and presents discrete tools to
analyse the properties of various gradient discretisations (GDs). The notions
of “control by polytopal toolboxes”, of “local linearly exact (LLE) GDs”, of
“mass lumping”, and of “barycentric condensation” provide very easy and
short proofs of the consistency, coercivity, limit-conformity and compactness
of the considered GDs.

Chapters 8 to 14 are devoted to specific well-known classes of methods,
namely:

e Methods based on Galerkin and polynomial interpolations: conforming
Galerkin methods, non-conforming finite element methods and derived
methods, mixed finite element schemes, discontinuous Galerkin methods;

e Methods derived from the finite volume framework: the multi-point flux
approximation (MPFA)-O scheme, hybrid mimetic mixed schemes and
nodal mimetic finite difference methods, the cell-vertex—face/edge discrete
duality finite volume “CeVeFE-DDFV” method .

For each of these methods, a gradient discretisation is constructed such that
the corresponding gradient scheme (GS) (2.23) for the standard linear diffu-
sion model (2.20) corresponds to the considered numerical method applied to
this model.

The properties (defined in Part I) of each of these GDs thus constructed are
then analysed. Once these known numerical methods are recast as GDMs
through the choice of appropriate GDs, the analysis developed for various
models in Parts I and II directly applies to these methods. A by-product is
the convergence of say, the non-conforming P;, HMM and nMFD schemes, for
the Leray—-Lions, Stefan and Richards models.

It is worth mentioning that some ideas underlying the methods in Chapters
8 to 14 have been adapted to other models than those covered in Parts I
and II, including for instance advection terms: see e.g. [23, 38, 40, 41, 62,
124] and references therein. Although not necessarily amenable to a direct
GDM analysis, such adaptations could still benefit from some of the tools
developed in this monograph. The GDM itself can be coupled with specific
treatments of non diffusive terms; this is the case in [48], which introduces
and analyses a scheme coupling the GDM for the diffusion terms and the
Eulerian-Lagrangian Localized Adjoint Method (ELLAM) for the convection
term.

In all the following chapters in this part, p € (1, 00) is an index referring to the
regularity of the solution of the considered problem and {2 is an open, bounded
and connected subset of R? (d € N*) with Lipschitz-continuous boundary 942.
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Analysis tools for gradient discretisations

Polytopal meshes are often used in real applications, for instance in the nu-
merical simulation of complex flows in porous media. The design of numerical
methods on such meshes is at the origin of the GDM. Most of the examples
of GDs reviewed in this part of the book are based on such meshes. These
meshes can be very generic, non-conforming and with possibly non-convex
cells.

The convergence analysis of one of the “historical” gradient scheme built upon
such polytopal meshes, namely the SUSHI scheme, relies upon a number of
discrete functional analysis results which are described in detail in [97, Ap-
pendix], see also chapter B in the Appendix. These results rely on some “poly-
topal tools”, detailed in Section 7.1:

e the polynomial mesh itself (see Definition 7.2 below),

e the set of discrete unknowns on the cells and faces of the mesh,

e piecewise constant reconstruction operators on the cells and faces using
these unknowns,

e the (non stabilised) discrete gradient based upon the geometrical property
(B.2) and defined by (7.7¢) below,

e a discrete WP norm defined by (7.7f) below,

e some parameters referring to the regularity of the mesh.

In Section 7.2, these tools are organised in “polytopal toolboxes”, consisting of
some of the above tools, chosen according to the type of boundary condition.
Hence each polytopal toolbox is associated to a given boundary condition.
The control of a GD by a polytopal toolbox consists in mapping the discrete
unknowns of a GD onto cell- and face-unknowns on a polytopal mesh; if the
mapping satisfies three core properties, this control is shown to give the co-
ercivity, compactness and limit-conformity of the GDs, thanks to the discrete
functional analysis results of Appendix B. Precise estimates on the coercivity
measure C'p and the limit-conformity Wp are also established.

The notion of local linearly exact (LLE) gradient discretisation is then intro-
duced and analysed in Section 7.3. The linear exactness ensures the consis-
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tency of sequences of GDs. Section 7.4 extends this analysis to provide explicit
estimates on Sp(p), when ¢ € W2P with p > d/2.

The notion of LLE GD is also used to describe a generic elimination process
of unknowns in gradient schemes, replacing them with barycentric combina-
tions of other unknowns. This process, called “barycentric condensation” is
standard in the construction of numerous schemes (e.g., SUSHI [97], VAG
[100, 102]), but was always performed on a case-by-case basis. In the context
of LLE GDs, such barycentric condensations are described without referring
to the specificities of each GD, and are shown to preserve the LLE property
— and thus the GD-consistency.

A general way to mass-lump any GD is finally presented. Mass-lumping hides
various processes which are not always well defined nor justified, and whose
purpose is to modify a scheme so as to obtain piecewise constant approxima-
tions. In the GDM framework, a rigorous way for performing mass-lumping
is set up so that, under a single easily-checked assumption, the mass-lumped
GDs enjoy the same properties as the initial GDs.

As a conclusion to this chapter, Section 7.5 presents tracks for further research:
a generalised notion of discrete unknowns (Section 7.5.1), and non-linearly
exact barycentric combinations (Section 7.5.2) — such combinations may arise
in the case of heterogeneous diffusion problems.

Example 7.1 (Illustration of the notions)

Boxes such as the present one provide illustrative examples of the concepts
introduced in this chapter (control by a polytopal toolbox, LLE GDs, etc.).
These examples are all based on the non-conforming P; finite element
method, covered in detail in Chapter 9.

7.1 Polytopal tools

7.1.1 Polytopal meshes

We recall that a O-polytope is a vertex, a 1-polytope is a segment or an edge,
a 2-polytope is a polygon, a 3-polytope is a polyhedron. In order to give
a precise definition of a polytope, we first define the k-simplices of R¢ for
k=0,...,d. For any family (x;);=1,... k+1 of points of R? such that the family
of vectors (&; — ®k+1)i=1,...k is linearly independent, the k-simplex denoted
by S((x;)i=1,... k+1) is defined by the convex hull of the points (@;)i=1,... k+1,
that is

k+1 k+1
S((®)i=1,. k+1) = {Z ae; oy >0,0=1,...,k+1, Zai = 1} - (7.1)
i=1

=1
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An open d-polytope {2 (also called poytopal subset of R?) is defined as the
interior of the union of a finite number of d-simplices (S;);j=1,..,am, such that
the intersection .S, NS, of two different simplices S,, and .S,, of the family is
either empty or equal to a d’-simplex with d’ < d. In particular, we have

n= UMS]-

j=1,..,

and 2 is the interior of £2. The boundary of {2 is then the union of the faces
of the simplices (5;);=1,...,» which are not common to two different simplices.
012 is therefore the union of (d — 1)-simplices.

In this section, we work with the following conditions and notations:

d € N\ {0} denotes the space dimension,
(2 is a d-polytopal bounded connected open subset of R?, (7.2)
with boundary 0f2.

Definition 7.2 (Polytopal mesh). Let 2 C R? satisfy Assumption (7.2);
a polytopal mesh of 2 is a quadruplet ¥ = (M, F,P,V), where:

1. M is a finite family of non-empty connected polytopal open disjoint subsets
of 2 (the “cells”) such that 2 = Ugem K. For any K € M, let 0K =
K\ K be the boundary of K, |K| > 0 be the measure of K and hy denote
the diameter of K, that is the maximum distance between two points of
K.

2. F = Fint U Foxs 18 a finite family of disjoint subsets of §2 (the “faces” of
the mesh — “edges” in 2D), such that any o € Fint is contained in {2 and
any o € Fext 1S contained in 052. Fach o € F is assumed to be a non-
empty open subset of a hyperplane of R?, with a strictly positive (d — 1)-
dimensional measure |o|, and a relative boundary a\o of zero (d — 1)-
dimensional measure. Furthermore, for all K € M, there exists a subset
Fri of F such that 0K = Uyex, 0. We set My ={K € M : o € Fk}
and assume that, for all o € F, either M, has exactly one element and
then 0 € Fext, or My has exactly two elements and then o € Fint. The
centre of mass of o is denoted by T, and, for K € M and 0 € Fk, Nk »
is the (constant) unit vector normal to o outward to K.

For all K € M, N is the set of neighbours of K :

Nk ={L € M\{K} : 30 € Fins, M, = {K,L}}. (7.3)

3. P is a family of points of (2 indexed by M and F, denoted by P =
(®r)Kem, (®s)oer), such that for all K € M, xx € K and for all
ocF, xz, € 0. We then denote by di - the signed orthogonal distance
between Tk and o € Fi (see Figure 7.1), that is:

di,o =(x —Tg) Nk, foralx € o. (7.4)
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(Note that (x — xk) - Nk - is constant for ¢ € o.) We then assume that
each cell K € M is strictly star-shaped with respect to i, that isdy , > 0
for all o € Fi. This implies that for all x € K, the line segment [k, x|
ts included in K.

For all K € M and 0 € Fk, we denote by D , the cone with vertex xk
and basis o, that is

Digo={tex +(1—-t)y : t €(0,1), y €0} (7.5)

We denote, for all 0 € F, D, = UKEMU Dk, (this set is called the
“diamond” associated to the face o, and for obvious reasons Dy , is also
referred to as a “half-diamond”).

.V is a set of points (the vertices of the mesh). For K € M, the set of

vertices of K , i.e. the vertices contained in K, is denoted by Vi . Similarly,
the set of vertices of o € F is V,.

The size of the polytopal mesh is defined by:

hp =sup{hk : K € M}. (7.6)

Fig. 7.1. A cell K of a polytopal mesh

Remark 7.3. Definition 7.2 covers a large variety of meshes. In particular,
the cells are not assumed to be convex, and the common boundary of two
neighbouring cells can include more than one face.

A classical geometry that can be handled through this definition is that of
“generalised hexahedron” (see Figure 7.2). This 3D-cell is made of 8 vertices,
but the corresponding “physical faces” are not necessarily planar. In that case,
by cutting each of these faces in two triangles, we recover a polyhedron with
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planar faces. This polyhedron has 8 vertices, up to 12 triangular faces (in the
case where all physical faces are non-planar and need to be cut in half), but
only 6 neighbouring cells.

Fig. 7.2. A “generalised hexahedron” with one (non-planar) physical face cut in
two (planar and triangular) faces.

A number of finite element methods require the notion of simplicial mesh.

Definition 7.4 (Conforming simplicial mesh). A conforming simplicial
mesh of (2 is a polytopal mesh T = (M, F,P,V) in the sense of Definition
7.2, such that for each K € M we have Card(Fk) = Card(Vk) = d+1. Most
often, for these polytopal meshes, P will be the set of centres of mass of the
cells and faces.

In a conforming simplicial mesh, each cell is therefore a d-simplex (triangle if
d = 2, tetrahedron if d = 3), and there are no hanging nodes, i.e. the vertices
of the mesh are exactly the “physical” vertices of the cells.

7.1.2 Operators, norm and regularity factors associated with a

polytopal mesh

Under Hypothesis (7.2), if € = (M, F,P,V) is a polytopal mesh of 2 in the
sense of Definition 7.2, we define the space of cell and face unknowns by

Xz ={v=((vK)kem, (Vs)oeF) : VK € R,v, € R}, (7.7a)
and the subspace of vectors with a zero value on the boundary by
Xzo={veXg: v, =0forall 0 € Fexi}. (7.7b)

The function reconstruction IIs : Xg — Loi((Z), trace reconstruction Ts :
Xg — L>(012) and gradient reconstruction Vg : X — L°(£2)? are defined
by
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Vv € Xz, VK € M, for a.e. x € K, IIzv(x) = vk, (7.7¢)
Vo € Xg, Vo € Foxt, for ae. x € 0, Tgv(x) = vy, (7.7d)
Vv e Xg, VK € M, for a.e. ¢ € K,

= = 1
Vav(z) = Vgv = — lo|(ve — VK )NK, o
‘K | U;K (7.7e)

\K| > lolvonk.e.

ceFK

The gradient defined by (7.7¢) is consistent thanks to the geometrical property
(B.2), see lemma B.10; it is however not stable since it only involves the face
unknowns (us)ser and not the cell unknowns (ux)rxem (see also Remark
7.8). The last equality in (7.7e) is a consequence of Stokes’ formula, which
ensures that > » |o|nk, = 0 (see the proof of Lemma B.3). Finally, for
p € [1,+00) a discrete WP semi-norm on Xz is defined by

p
Yo € Xg, |z, = Z Z \U|dKa —

’ (7.76)
KeMoceFk Ko

The semi-norm || , is in fact a norm when restricted to Xz o.

Remark 7.5 (Cell-centred schemes)
For cell-centred schemes, whose unknowns are v = (VK )kem, @ more natural norm

than (7.7f) is
p
v o= loldx,z |~ ‘

gEF

where, in this sum, K and L are the cells around o and dk,r. = dk,c + dr,s if 0 is
an interior face, or v, = 0 and dg,1. = dk,» if 0 € Fr N Fext. Switching from cell
unknowns to cell and face unknowns as in (7.7a) and (7.7f) is quite easy. It suffices
to extend v = (v )kem into ¥ = ((vk)kem, (Vo)oer) With v, = YEEUL if 5 is an
interior face and K, L are the cells around o, or v, = 0 if o is a boundary face.
Then, the norms v — [0 , and v — |v|¢ , . are equivalent, with constants involving
Nz given in (7.9) below, and all the results presented in this section can therefore
be applied provided that nz is bounded independently of the mesh size. Note that
the equivalent for face-based methods (adding cell unknowns to a method with face
unknowns only, in order to use the results of this section) is also easy — see the
analysis of non-conforming finite elements in Chapter 9.

Finally, two numbers are introduced to measure the regularity properties of a
polytopal mesh, namely:

05 = max (max + Card(]-'K)> (7.8)

KeM \oeFk dK o

dK o dL o
: : . 7.9
o€Fint 711/{/2115(:{K,L} <dL,o + d}gg) ( )

nx
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A number of results involving sequences (%, )men of polytopal meshes will
require one or the other, or both, of these corresponding regularity factors to
be bounded along the sequence of meshes.
For simplicial meshes, only the following simpler regularity factor is needed:
h
Kt = max —>, (7.10)
KeM pi

where, for K € M, pg is the radius of the largest ball included in K and
centred at the centre of mass Tx of K. It is proved in Lemma B.4 page 409
that, for simplicial meshes, k¢ controls 6z and 7<.

7.2 Control of a GD by a polytopal toolbox

Example 7.6 (GD for the non-conforming P; finite elements)
The non-conforming P; finite element is used to illustrate notions intro-
duced below; the corresponding gradient discretisation is briefly recalled: a
simplicial mesh ¥ (see Definition 7.4) is used; the set of discrete unknowns,
located on the faces of the mesh, is denoted by

Xpo= {1] = (Vg )oeF : Vs € R for all 0 € Fiye,

7.11
vy =0 for all o € Fext }- ( )

The function reconstruction IIp : Xpo — LP({2) is defined by: for
v € Xp,o, IIpv is the function on {2 that is linear on each K € M,
continuous at the face centres (T,),cr, and takes the values (vy)secr
at these centres. The gradient reconstruction Vp : Xp o — L (Q)d is the
“broken” gradient: Vpu is constant equal to V[(/Ipv) k] in each K € M.

7.2.1 Dirichlet boundary conditions

Definition 7.7 (Polytopal toolbox for homogeneous Dirichlet BCs).
Let §2 satisfy Assumption (7.2), and let T be a polytopal mesh in the sense of
Definition 7.2. The quadruplet (X<, Iz, Vs, |'|z,p) is a polytopal toolbox for
Dirichlet boundary conditions if:

1. The set Xz o is defined by (7.7b):
Xzo={veXz:v,=0 forall 0 € Fex¢}-
2. The function reconstruction Iz : X< o — L>(£2) is defined by (7.7c):

Yo € Xx g, VK € M, for a.e. x € K, IIzv(x) = vk.
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3. The gradient reconstruction Vz : X« o — L>(2)¢ is defined by (7.7¢):

Vv € Xz, VK € M, for a.e. x € K,
— 1 1
Veu(z) = ol(vo — VK )P ,e = T |o|venr o
" "

oceFK oceFK
4. The space Xz o is endowed with the norm (7.7f):
vy —vg |V
Yv € X, |U|§7p: Z Z lo|dk o Ung‘

KeMoeFg

Remark 7.8. Note that (tho,ﬂf,ﬁg) is not a GD since HﬁT'HLP(Q)d is not
a norm on X« o: if v € X5 has zero values at all the faces but not in the
cells, Vgv = 0 but v # 0 in X« o. The original SUSHI scheme [97] combines
the gradient Vv with a stabilisation on half diamond cells (see Chapter 13).

Often, ¥ refers to both the polytopal mesh and to the polytopal toolbox
(Xz,0, 5, Vs, |~|37p). There is an abuse of notation here, since the polytopal
mesh does not depend on the considered boundary conditions (Dirichlet, Neu-
mann, etc.), whereas the polytopal toolbox does depend on these conditions
as seen in Section 7.2.2. However, the context will always make clear which
boundary conditions are considered, and thus which kind of polytopal toolbox
should be used.

Definition 7.9 (Control of a GD, hom. Dirichlet BCs). Let {2 satisfy
Assumption (7.2), let D be a GD in the sense of Definition 2.1, and let T be
a polytopal toolboz in the sense of Definition 7.7. A control of D by ¥ is a
linear mapping @ : Xpo — Xg. We then define

1P (V)]s

L = ax , 7.12
1®lpe = _max =i (7.12)
IIpv — Iz ®(v)||,,

STDE ) =  max [ 1Ip @), @
vEXp0\{0} lvllp
w¥(D,T,P) =
1
1 — Py ®
max «——— Kl_p/va—Vsﬁvxdac )
vexp.o\{0} ||Vl p (K%;A' | K[ pv(@) = VaP()(@) )

Example 7.10 (Control of the non-conforming P; GD)
Finding a control of a given gradient discretisation D by a polytopal tool-
box ¥ consists in computing — often in the most natural way — face and
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cell values (which define an element of X« () from the discrete unknowns
of D.

Let us consider the case of the non-conforming P; gradient discretisa-
tion. Recalling the definition (7.11) of Xp o, there is not need to actually
compute face unknowns since they are already in Xp o. Cell unknowns are
computed by creating equally weighted averages of the d+1 face unknowns
in each cell.

This leads us to defining the following control @ : Xpo — Xg: for
v = (Vp)oer € Xp,o, the element $(v) = ¥ = ((Vk)xem, (Vs)oer) of
X< o is given by

1
Vo e F, Uy = Vs d VKeM, vg=—-— o
o Uy =0, an UK = oo U;T:Kv
We prove in Lemma 9.3 that, for this control, [|®|ps < Kd'/P,

Wl (D, T, ®) < hpg and wV (D, T, ®P) = 0. Example 7.13 shows how such
bounds are used.

Theorem 7.11 (Estimates for a controlled GD, hom. Dirichlet BCs).
Let 2 satisfy Assumption (7.2), let D be a GD in the sense of Definition 2.1,
let ¥ be a polytopal toolbox in the sense of Definition 7.7, and let @ be a control
of D by ¥ in the sense of Definition 7.9. We take o > 0 +n< (see (7.8) and

(7.9)).

Then, there exists C1 depending only on 2, p and o such that
Cp <w'(D, T, )+ C1 ||®|p+ (7.13)

and, for all o € W' (02)4,

Wp(ep) < ||‘P||W1,p’(g)d Cihpm(1+ HQSHD&) +WH(Da T,9P)
+wV(D,%, ep)] (7.14)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. Using the triangle inequality, Lemma B.15 and the Hélder’s inequality
(D.7) we observe that, for any v € Xp o,

||HDU||Lp(Q) < wH(D,‘Z, ?) [[vllp + HHT@(’U)”LP(Q)
11
<w'(D, %, ) ||v]lp + Csl92]7 75 |B(v)lg

with ¢ and Cg given in Lemma B.15. The proof of Estimate (7.13) is concluded
by dividing by [[v]| and using the definition (7.12) of || 2] p <-
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We turn to (7.14). Let ¢ € W' (£2)? and use the triangle inequality, the
definition of w (D, T,®) and (B.31) (notice that TpP(v) = 0 since P(v) €
Xz o) to obtain

/Q (va(a:) ~p(x) + HDU(:D)diwp(a:))da;

< /Q[VDU("B)—WZQS(U)(:E)}-w(w)dw + [ divepll 1o () 0 (D, T, D) [lv]lp

+

/Q (V=d(v)(@) - p(@) + = B(v) (@)dive(@)) d

IN

/Q Vou(@) - Vsd(o)(@)] - p(@)de| + [dive] (o) & (D, T, B) 0]
+Cs |1Vl | o 2y 1B(0) 5, . (7.15)

Let px = ﬁ Sy p(x)de. Assuming that p > 1 (so that p’ < co) and applying
(B.12) in Lemma B.6 to p’ instead of p, we find Cy depending only on d, p and

o such that [l¢ — @kl x) < Cohk ||Vl (k) Hence, using Holder’s
inequality,

/Q Vpu(e) — Vad(v)(@)] - pla)de

Z /K[va(m) — Vz®(v)(z)] - p(z)dx

KeMm

> ([ vou@) o(e) ~ pxlie

KeMm

+ ook /K [Vpo(z) — vgds(v)(w)]dw)

< Coha [ IVl 1o (o) VDUl 1o (2)a

+ 3 lowl| [ 1Vp1(e) - Tr#(o) @)

Kem

. . . _ 1—2 1
By Holder’s inequality |pr| < |K|7H K| " » ||go||Lpz(K)d = |K]|» ! ||<p||Lp/(K)d
and thus

/f [Vou(e) - Vsb()(@)] - pla)de

< Cohpm |||V HLp’(Q) HVDUHLP(Q)d

+ ||S"|‘Lp/(9)d ( Z |K|'P

KeMm

p> 1/p

/ [Vpu(x) — Ved(v) ()] da
K
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< (Cohm + 0¥ (D, T, ®)) 1@l @y VDV o (ya - (7.16)

Plugged into (7.15) and using the definition (7.12) of ||®||;  this gives (7.14).
In the case p = 1 (and thus p’ = +00), extend ¢ into a Lipschitz-continuous
function over R, with a Lipschitz constant bounded by Cj || |[V¢| | o0 (52) for
some C3 depending only on 2. The previous calculations can then be done
by using the estimate [¢(x) — ¢k| < Cshi || [Ve| || 1o () for any @ € K.

m

An immediate consequence of Theorem 7.11 is the following corollary.

Corollary 7.12 (Properties of controlled GDs, hom. Dirichlet BCs).
Let 2 satisfy Assumption (7.2), let (Dp)men be a sequence of GDs in the
sense of Definition 2.1, and let (Z,n)men be a sequence of polytopal toolbozes
in the sense of Definition 7.7. We assume that hpq,, — 0 as m — oo and that
sup,,en(fs,, +1z,,) < +0o (see (7.8) and (7.9)).

For all m € N we take a control ®,, of D,, by T, in the sense of Definition
7.9, and we assume that

sup ||@m||17m5m < +o0,
meN

lim w(Dy, Tny ) =0, and

m— o0

lim wV(Dp, T, ®rn) = 0.

m—0o0

Then (Du)men 18 coercive in the sense of Definition 2.2, limit-conforming in
the sense of Definition 2.5, and compact in the sense of Definition 2.8.

Example 7.13 (Properties of the non-conforming P; GD)

Using the control @ and the estimates on |||y «, w(D, T, ®) and
wY (D, %, ®P), from Example 7.10, the above corollary establishes the co-
ercivity, limit-conformity and compactness of the gradient discretisations
built on non-conforming Py finite elements.

Proof. The coercivity and limit-conformity are trivial since (7.13) and (7.14)
ensure that sup,,cy Cp,, < +oo and that Wp,, (¢) — 0 as m — oo, for all
@ € W' (12)? (we use Lemma 2.17 and the fact that W' (2)¢ is dense in
W(’fl’;(ﬁ) — see Remark 2.18).

It remains to prove the compactness. If u,, € Xp,, o is such that ([|um|lp, )men
is bounded, then the bound on ||®, |5 ensures that (|45m(um)|3m’pl)meN
is bounded. By Lemma B.19, we infer that up to a subsequence ITg, D, (u,)
converges to some u in LP({2) as m — oo. Since

| Ip,, wm — Hfmdim(um)HLp(Q) <Dy T, B ||Um||Dm —0

as m — oo, we deduce that ITp,  u, — win LP(§2) and the proof is complete.
"
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Remark 7.14 (Non-homogeneous Dirichlet boundary conditions). The defini-
tions of coercivity, limit-conformity and compactness of GDs for non-homoge-
neous Dirichlet boundary conditions are identical to the definitions for ho-
mogeneous Dirichlet conditions. Hence, all results in this section (in particu-
lar, Corollary 7.12) can be used in the context of non-homogeneous Dirichlet
boundary conditions.

7.2.2 Neumann and Fourier boundary conditions

We define here the notions of polytopal toolboxes and control by polytopal
toolboxes for non-homogeneous Neumann boundary conditions, in a similar
way as what we did in Section 7.2.1 for Dirichlet boundary conditions. In
Remarks 7.19 and 7.20 we indicate the minor modifications that need to be
made to the following definitions and results for homogeneous Neumann and
Fourier boundary conditions.

Definition 7.15 (Polytopal toolbox for Neumann BCs). Let 2 satisfy
Assumption (7.2), and let T be a polytopal mesh in the sense of Definition
7.2. The family (X<, s, Ts, Vs, ||-||¢7p) is a polytopal toolbox for Neumann
boundary conditions if:

1. The set X< is defined by (7.7a):
Xe={v=((vk)kem: (Vo )oecF) : vk € Rjv, € R}.

2. The function reconstruction Iz : Xz — L% (£2) is defined by (7.7¢):
Yo € Xg, VK € M, for a.e. x € K, IIzv(x) = vk.

3. The trace reconstruction Tg : X¢ — L°°(012) is defined by (7.7d):
Yo € X, Vo € Fext, for a.e. € o, Tzv(x) = v,.

4. The gradient reconstruction Vg : Xz — L>(02)? is defined by (7.7e):

Yo € X, VK € M, for a.e. x € K,

— 1 1
Vzou(x) = 4 Z lo|(ve — VK )NK - = R Z lo|venK 6.
oceFk oceFK

5. Recalling the definition (7.7f) of the semi-norm || . the space Xz is
endowed with the norm

p

ol = ol2, + ] [ nzviaia (7.17)

As mentioned in Section 7.2.1 on Dirichlet boundary conditions, we will of-
ten use T to denote both the polytopal mesh and the polytopal toolbox
(XTa HS, TT? vT? ||.H‘I,p)'
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Definition 7.16 (Control of a GD by a polytopal toolbox, Neumann
BCs). Let £2 satisfy Assumption (7.2), let D be a GD in the sense of Defini-
tion 3.11, and let T be a polytopal toolbox in the sense of Definition 7.15. A
control of D by ¥ is a linear mapping ® : Xp — Xz. We then define

|2(v)|<
H45||D,fz = max ———o—"
veXp\{0}  |vllp
(D58 = max 20T T2Olee)
o veXp\{0} (RPN ’
w'(D,T,#) = max [Tov = Te@(v)llro0)
Y veXp\{0} [P ’
— p P
Z |K|tP / [Vpu(x) — Ve®(v) ()] de
K
wV(D,%,#) = max KeM )

veXp\{0} lvllp

Theorem 7.17 (Estimates for a GD controlled by polytopal tool-
boxes, Neumann BCs). Let {2 satisfy Assumption (7.2), let D be a GD
in the sense of Definition 3.11, and let T be a polytopal toolbox in the sense
of Definition 7.15. We take @ a control of D by ¥ in the sense of Definition
7.16, and o > 05 +nz (see (7.8) and (7.9)).

Then, there exists Cy depending only on {2, p and o such that

Cp < max (w"(D,T,®),0"(D,T,®)) + C4 [P« (7.18)

and, for all @ € WHP' (£2)4,

Wo(@) < el [Calm(1l + [Blp 5) +w" (D, 5, @)
+wY¥(D,%, &)+ Cw' (D, T, gb)} . (7.19)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (3.9) and (3.11).

Proof. The proof is similar to the case of Dirichlet boundary conditions
(Theorem 7.11). By Lemmas B.21 and B.25 we have [Ts®(v)|lsp0) <

C5 ||@(v)||5, for some Cs depending only on (2, p and o. Hence, using the
triangle inequality,

ITovll 000y < W' (D, %, D) [v]lp + ITs (V)| o)
<W'(D, %, D) |v]lp + Cs [|D(v) 5,
<W'(D, %, D) |vllp + Cs |1l p < V]l -

The proof of (7.18) is concluded by reproducing the same steps starting from
[ Ipvll s 50y and using Lemma B.25 to control [[IIs@(v)| s (o) by [[@(0)]|< -
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We turn to (7.19). Let ¢ € W' (£2)? and use the triangle inequality, the
definition of w (D, T, ®) and W' (D, T, P) and (B.31) to obtain

/Q (Vou(e) - p(@) + Mpv(@)dive(e) ) dz — /8  Tov(a)ia () @)y )

<

/Q Vou(z) — Vad(v)(z)] - p(x)

+ ||7n(<P)||Lp'(aU) WT(D>T7 ?) [lv]p

+ ”diV‘PHLP’(Q) wH(D’ ‘37 45) HUHD

+

/Q (Ve®(v)(x) - @(x) + <P (v)(x)dive(x)) de

- / T (v) () v () () dy () dar
o8

< + ”diV‘PHLP’(Q) wH(D"I7QS) HUHD

/ﬂ Vpu(z) - Vsb(v)(@)) - o(x)

+ (@)L 0y @ (D, . @) [0l p + Co | Voo | L ()0 D)5, hera

where Cg depends only on d, p and . The first term in the right-hand side
can be bounded above by using (7.16). Invoking the definition of ||®||p + and

a trace inequality in W' (£2) then concludes the proof. L]

Corollary 7.18 (Properties of GDs controlled by polytopal tool-
boxes, Neumann BCs). Let p > 1, 2 satisfy Assumption (7.2), (Dm)men
be a sequence of GDs in the sense of Definition 3.11, and (% )men be a
sequence of polytopal toolboxes in the sense of Definition 7.15. Assume that
ham,, = 0 as m — oo and that sup,,cn(f=,, + 1z,,) < +o0o (see (7.8) and
(7.9)).

For all m € N we take a control @, of Dy, by T, in the sense of Definition
7.16, and we assume that

sup [|Pm|lp,, <, < +00,
meN

lim w(Dp, Tny ) = 0,

m—r 00

lim w (D, Tpn, Brn) = 0, and
m—00

lim wV (D, Ty, P) = 0.
m—r 00

Then (Dp)men is coercive in the sense of Definition 3.13, limit-conforming
in the sense of Definition 3.14, and compact in the sense of Definition 3.15.

Proof. The coercivity and limit-conformity follow from Estimates (7.18)
and (7.19), from Lemma 3.19, and from the fact that W1? (£2)¢ is dense in

V‘éﬁ:,a(()) (see Lemma 3.27).
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To establish the compactness, we notice that if v, € Xp,  is such that
([lvmllp,, Jmen is bounded, then so is ([|@m(vm)|l5,, ,)men since

m

1@m(vm)ls,, p < 1Pmllp,, <, [Vmllp,, -

Hence, by Lemma B.27 and the definition (7.17) of || @y, (vm)||, . some sub-
sequences of (ITg, P, (vm))men and (Tx,, D, (Vm))men converge strongly in
LP(§2) and LP(012), respectively. The convergences of w!!(D,,, %,n, ®,n) and
W (D, Ton, @) towards 0 then ensure that, along the same subsequences,
(IIp,, vm)men converges in LP(§2) and (Tp,, vm)men converges in LP(012),
which completes the proof. ]

Remark 7.19 (Homogeneous Neumann boundary conditions). Homogeneous
Neumann conditions are a particular case of non-homogeneous Neumann con-
ditions, so all previous results also apply. However, if one is solely interested
in homogeneous Neumann conditions, some simplifications can be made. Pre-
cisely, there is no need to include Ts in Definition 7.15, w" in Definition 7.16
and Corollary 7.18, and Theorem 7.17 holds with w" replaced with 0.

Remark 7.20 (Fourier boundary conditions). The only differences between
GDs for non-homogeneous Neumann conditions and Fourier conditions are
the definition of the norm |-||5, and the definition of the GD-consistency.
Since GD-consistency is not a notion covered by polytopal toolboxes, all pre-
vious results in this section apply to Fourier boundary conditions provided
that the norm (7.17) is replaced with the norm defined by

vllz, = 1ol + I T<0lZ0 (50 -

Estimating Cp in Theorem 7.17 in the case of Fourier boundary conditions is
straightforward thanks to Lemma B.22.

7.2.3 Mixed boundary conditions

Polytopal toolboxes for mixed boundary conditions are now going to be de-
fined; the associated results are presented without proofs; they can be estab-
lished quite similarly to the case of Dirichlet and Neumann boundary condi-
tions, using Lemma B.32 and B.33.

Definition 7.21 (Polytopal toolbox for mixed BCs). Under Assump-
tions (7.2) and (3.60), let T be a polytopal mesh in the sense of Definition
7.2. The family (X< o.r,, <, T<.r,, Vs, |-|T7p) is a polytopal toolbox for mized
boundary conditions if:

1. The set Xz o.r, is defined by (B.77).

2. The function reconstruction Iz : X — L™ (§2) is defined by (7.7¢).

3. The trace reconstruction Tx p, : X« — L(I,) is the restriction to I, of
the discrete trace (7.7d).
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4. The gradient reconstruction Vg : Xg — L>®(82)? is defined by (7.7¢).
5. The space X< 0.1, is endowed with the norm || , defined by (7.7f).

Definition 7.22 (Control of a GD by a polytopal toolbox, mixed
BCs). Under Assumptions (7.2) and (3.60), let D be a GD in the sense
of Definition 3.42, and let T be a polytopal toolbox in the sense of Definition
7.21. A control of D by T is a linear mapping ® : Xp or, = Xz o, We
then define

|45(’U)|‘I,p

ax T
ve€Xp,e,r, \{0} ||U||D

[Ipv — Iz P(V)| 1o ()

i

12llp < =

w(D, T, &) =

ax )
veXp o,r, \{0} HU”D
Tp,r,v — T r, PW)|»
wT(D,{Z, 45) = max H ( )”L (Fn)7
vEXp, 2,r, \{0} HUHD
N e
S (K[ / [Vou(a) ~ Vsb(v)(x)] da
K
wV(D,T, ®#)=  max Kem :
v € Xp,o,r, HU”D
v#0

Theorem 7.23 (Estimates for a GD controlled by polytopal tool-
boxes, mixed BCs). Under Assumptions (7.2) and (3.60), let D be a GD
in the sense of Definition 3.42, and let T be a polytopal toolbox in the sense
of Definition 7.21. We take @ a control of D by T in the sense of Definition
7.22, and o > 0z + nz (see (7.8) and (7.9)).

Then, there exists C7 depending only on 2, I,, p and o such that

Cp < max (w"(D,T,®),0"(D,%,®)) + Cy [P p <

and, for all ¢ € Wl’p,(Q)d,

Wo(9) < 1€l (@ys [Crhaa(1 + 1@ ]p5) + (D, T, @)
+wY(D,T,®) + Crw (D, T, @)} .

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (3.61) and (3.65).

Corollary 7.24 (Properties of GDs controlled by polytopal tool-
boxes, mixed BCs). Under Assumptions (7.2) and (3.60), let (Dp)men
be a sequence of GDs in the sense of Definition 3.42, and let (T,,)men be
a sequence of polytopal toolboxzes in the sense of Definition 7.21. We assume
that ha,, — 0 as m — oo and that sup,, ey (0x,, +ns,,) < +00 (see (7.8) and

(7.9)).
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For all m € N we take a control ®,, of D,, by T, in the sense of Definition
7.22, and we assume that

sup [|Pm|p,, <, < +00,
meN

lim w(Dp, Tny ) = 0,

m— 00

lim w™(Dp, Tpn, Brn) = 0, and
m—00

lim wV (D, Ty, P) = 0.
m—r 00

Then (Du)men 18 coercive in the sense of Definition 3.43, limit-conforming
in the sense of Definition 3.45, and compact in the sense of Definition 3.47.

The only (slightly) non-trivial adaptation of the preceding proofs to establish
this corollary is the density of smooth functions in W{f\;’ r. (£2), endowed with
the norm ||| ;7 ()2 +[|divepl| o (o) + I (@)l o (1, )- This density is actually
established in a similar way as in Lemma 3.27, where in Item 2 we take 1.
such that

||’7n(90) - '(/)e”( + ||’yn(<,0) — ¢5||LP'(FH) <e.

w'TB P (a0))

7.3 Local linearly exact GDs

7.3.1 Pg-exact and P;-exact reconstructions

Most numerical methods for diffusion equations are based, either explicitly or
implicitly, on reconstructions of functions — or gradients — from discrete un-
knowns. These reconstructions are designed to match certain simple functions
(e.g., constant, or affine) — or their gradients — when the discrete unknowns
interpolate these functions at certain points. We give here a precise mean-
ing to these notions, and state some of their approximation properties of the
corresponding reconstructions.

Definition 7.25 (Pp-exact function reconstruction). Let I be a finite set,
K be a bounded subset of R% with non-zero measure, and p € [1,+oc].

A Py-ezact function reconstruction on K is a family nx = (7% )icr of func-
tions in LP(K) such that

forae x e K, ZWZK(:B) =1. (7.20)

el

The norm of mi is defined by (setting |K\_% =1ifp=+oc0)

> Ikl

i€l

_1
Imxell, = K]~ (7.21)

Lr(K)
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If v = (v)ier is a family of real numbers, Tv denotes the function in LP(K)
given by:
fora.e. x € K, (mgv)(x) = Zvﬂﬁ((‘f)
el

Property (7.20) shows that, if v = (v;);cr is such that there exists ¢ € R
with v; = ¢ for all ¢ € I, then mgv = ¢ a.e. on K. The reconstruction wy is
therefore exact on interpolants of constant functions.

Example 7.26 (Elementary basis functions for non-conforming
P; finite element)
Let K be a simplex. For each 0 € Fk, let 7% be the affine function in
K that has value 1 at T, and 0 at T, for all face ¢’ # o of K. Then
Yver, T = Lon K, that is, Tk = (7%)oecr, is a Po-exact function
reconstruction on K.

Since regular functions are locally close to constant functions, it is expected
that Py-exact function reconstructions enjoy some approximation properties
when computed on interpolants of regular functions.

Lemma 7.27 (Interpolation estimate for Pj-exact function recon-
struction). Let I be a finite set, K be a bounded subset of RY with non-zero
measure, p € [1,+00], T = (7% )icr be a Po-exact function reconstruction on
K, and (x;)icr be points in RY.

Then, if p € WH*(R?) and v = (o(@:))ier,

17w = @l Loy

< <1 + max dist(z;, K)

1.
iel  diam(K) ) HWK”P |K|» diam(K) |||VSD|HLoo(Rd).

Proof. For a.e. x € K, using (7.20) yields

pla) = p(@) ) mie(x) =) mic(@)p(x).

el el

Moreover, for any ¢ € I and « € K,

lp(x:) — p(x)] < |z — ] |||V<P|HL00(JRd)
< (diam(K) + dist(z;, K)) |||V<P|||Loo(Rd) :

Hence, for a.e. x € K,

mrv(@) — p(@)] = | Y wi () (v — p(x)) (7.22)

icl
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< max|<p x;) |Z |7t (2
icl
dist(x;, K)\ .. i
< (1+ dem(K)) i () [Vl sy 3 ke ()

iel

The proof is complete by taking the LP(K) norm over & and by using the
definition of [|m ||, m

We now turn to the notion of gradient reconstructions that are exact on
interpolants of affine functions.

Definition 7.28 (P;-exact gradient reconstruction). Let I be a finite
set, K be a bounded subset of R with non-zero measure, p € [1,+00], and
S = (x;)ics be a family of points in R?.

A Py-ezact gradient reconstruction on K upon S is a family Gk = (G% )ier of
functions in LP(K)? satisfying the following property:

for any affine A: R - R and a.e. x € K , ZA(ml)g}((a:) =VA. (7.23)

iel

The norm of Gk s defined by (setting |K\_% =1ifp=+0)

> 19k

icl

Gk, = diam(K)|K| ™7 (7.24)

LP(K)
If v = (v;)ies is a family of real numbers, Gxv denotes the function in LP(K)?
given by:

for a.e. x € K, (Ggv)(x Zvng

el

We notice from (7.23) that
for all affine function A, if v = (A(x;))ier then Ggv = VA. (7.25)

This is the Py-exactness of the gradient reconstruction G .

Example 7.29 (Gk for non-conforming P; finite element)

Let K be a simplex. Recalling the definition of 7 = (7% )ser, in Ex-
ample 7.26, we let G% = V7% € LP(K)? As proved in Lemma 9.12,
the family Gx = (G%)oer, is a Pr-exact gradient reconstruction on K
upon S = (T, )sery- The fact that Gi is the gradient of 7%, which also
holds for conforming finite elements, is a very specific property. It is not
satisfied by a number of other schemes such as mixed finite elements, hy-
brid mimetic mixed methods, etc. (see Chapters 10, 12, 13 and 14), nor
by mass-lumped schemes (see Example 7.46). Hence there are a number
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of methods for which a full description cannot be given only by the ele-
mentary functions 7}, but also requires a separate definition of the local
gradients Gi..

Remark 7.30 (Why the factor diam(K)|K|~'/? in (7.24)?)
The scaling diam(K)|K|~'/? in Gk ||, is chosen to ensure that this norm provides
an intrinsic measure of Gi, that does not blow up or vanish as the size of K goes
to zero.
To understand this, take zx € K and consider A(x) = £ (& —xx) for some & € R%.
Then (7.23) gives

£=> & (@i — zx)Gk (). (7.26)

i€l

The gradient reconstruction over K is expected to be based on points «; not far
from K; in practice, this means that each x; is expected to remain within distance
O(diam(K)) of K. Hence, assuming that |£| = 1 and taking the LP(K)* norm of

(7.26) yields
> 16k|

i€l

|K|? < Cdiam(K)

LP(K)

This shows that diam(K)|K|™"/? |3, |Gk|]|,, ) = I9xll, remains bounded
away from 0, independently of size of K. Any other scaling in ||Gx||, would lead to
a quantity that could either go to 0 or to +o0o as the size of K goes to 0.

A similar reasoning can be done to understand the need for the scaling factor |K|~'/?
in (7.21).

In a similar way as for Pg-exact function reconstructions above, the fact that
any smooth function is locally close to an affine function ensures that P;-exact
gradient reconstructions enjoy approximation properties.

Lemma 7.31 (Interpolation estimate for Pj-exact gradient recon-
structions). Let I be a finite set, K be a bounded subset of R? with non-zero
measure, p € [1,40], S = (zi)icr C R, and Gk = (G%)icr be a Pi-ezact
gradient reconstruction on K upon S.

Then, if o € W2>(RY) and v = (p(x;))ier,

1 dist(z;, K)]°
G50~ Tl < ( + 31l |1+ ma S D)) ) -

< || diam(K) [ D% g

Proof. Let us first assume that ¢ € CZ(RY). Take zx € K and let
A(x) = o(zk) + Vo(zk) - (£ — Tk) be the first order Taylor expansion
of ¢ around xg. If & = (A(x;))icr, by Pi-exactness (7.25) of Gx we have
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Gr& =VA=Vy(xrgk)on K. Hence, since Vy is Lipschitz-continuous with a

Lipschitz constant bounded above by || |D2<P|HL00(R¢), we write

195€ = Vol Lo rys = Vo(@K) = Vol 1o (x)a
< K7 [Vo(@r) = Vol oo (5)a

< |K|» diam(K) [[| D? (7.28)

For any ¢ € I we have, by Taylor’s expansion,

v; — & = p(mi) — A(z) (7.29)
= p(zi) — p(zk) — Vo(zk) - (2 — ZK)

1
= / (1- s)DQcp(a:K +s(x; —zx))(x; —xK) - (2, — TR )dSs.
0
Using |x; — x| < diam(K) + dist(x;, K) yields
1, .. .
lv; — &l < §[d1am(K) + dist (x;, K)]? |||D2g0|HLw(Rd) ) (7.30)

Hence, for a.e. x € K,

Grev(@)~Gicé(x)| = | Y (vi — &)G (@)

icl

2
17, . i
§§ {dlam(K)—i—r?ealxdlst(wi,K)} H|D2‘P|HL00(Rd)§ |G (x)|.
il

Taking the L?(K) norm over x and recalling the definition of ||Gk||, leads to

1Gxv = G&ll Loy

K Gkl L diam(K) + max dist(x;, K) ’ H|D2<p|||
diam(K) 2 i€l ’ Lo (R)
1 dist(z;, K)]° 1 . 5
= §||QK||p [1 JFI?QIX diam(K)} |K|» diam(K) |||D <P|HL<X>(R(1) .

Combined with (7.28) and a triangle inequality, this completes the proof of
the lemma if p € CZ(RY).

If ¢ € W2%°(R?), use convolution to construct a sequence (¢y,)neny C CZ(R?)
such that ¢, — ¢ and V,, = Vi uniformly on compact sets as n — oo, and
H'DQ(‘O””’LW(]}W) < H'DQ‘PMLOO(W) for all n € N. Apply then (7.27) to ¢, and
pass to the limit n — oo to prove the same estimate for . [
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Remark 7.32. For all functions and gradient reconstructions considered in
Chapters 8-14, the functions 7% (resp. G%) have values in L*(K) (resp.
L>(K)%). In that case, by Holder’s inequality,

7l < 17l = esssup D [mic ()]
icl

(where esssup is the essential supremum) and

1G5l < 19k o < diam(K) D [|Gic || o e
el

These estimates will be used, when analysing specific GDs in Chapters 8-14,
to obtain upper bounds on |7kl and [|Gk||,-

In a number of cases, estimating ||7x||,, (and thus [|7kl[,) is trivial. For
example, if for a.e. £ € K the value mxv(x) is computed as a convex
combination of the real numbers (v;);cs, then ﬂﬁ{ > 0 for all 4 € I and
Sier (@) = >, i (x) = 1. This is for instance the case if mxv is lin-
ear on K, v; = mgv(x;) and (x;);es are extremal points of K (this situation
appears in the conforming linear P; finite element method).

Another example is the case where for a.e. £ € K there is exactly one i € I
such that 7% (z) = 1, and ) () = 0 for all other j € I. Then >, |7k ()| =
1 a.e. on K (and mxv is piecewise constant on K). This situation occurs in
the case of the mass-lumped P finite element method, see Section 8.4.

7.3.2 Definition and consistency of local linearly exact GDs for
Dirichlet boundary conditions

The previous concepts of Py/Py-exact function/gradient reconstructions are
useful to establish GD-consistencies, through the following notion of local
linearly exact gradient discretisation (LLE GD). This notion applies to the
vast majority of GDs analysed in the Chapters 8-14. LLE GDs are the gra-
dient discretisations whose function reconstructions are locally Pgp-exact and
whose gradient reconstructions are locally P1-exact, both reconstructions be-
ing computed locally. To measure this locality, a regularity parameter reg, .
is introduced; the boundedness of this parameter imposes that, at any given
point x, the reconstructed functions and gradients are computed by discrete
unknowns (or zero values) located not far from .

Definition 7.33 (Local linearly exact gradient discretisation (LLE
GD)). A gradient discretisation D = (Xpo,Ip,Vp) in the sense of Def-
inition 2.1 is a local linearly exact gradient discretisation (LLE GD) if:

1. There exists a finite set I of geometrical entities attached to the discrete
unknowns, where I is partitioned into I (interior geometrical entities
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attached to the discrete unknowns) and Iy (boundary geometrical entities
attached to the discrete unknowns), such that

Xpo={v=(vi)ier :vi €R foralliecl, v;=04ficly}. (7.31)

2. There exists a family of approzimation points S = (x;);c; C R, a mesh
M of 2 and, for each K € M, a subset Iy C I and
a) a Py-exact function reconstruction i = (7% )ier,, on K (see Defini-
tion 7.25) such that

Yv € Xpyo, forae xeK,
HD’U(IE) = FK[(Ui)ie]K](IB) = Z ’Ui']'r%(w), (732)

i€l

b) aPy-exact gradient reconstruction G = (G&)icr, on K upon (z;)icry
(see Definition 7.28) such that

Yv € Xpyo, forae xekK,
Vou(x) = Gr[(vi)icr](x) = Z 0;Gl (). (7.33)

i€lk

Here, the mesh M is merely a finite family of open disjoint subsets of 2
such that | o K = 2. Its size is hyy = maxgen diam(K), and the LLE
reqularity of D is defined by

dist(x;, K)
reg,, (D) = Ir(ne% <|7TK||p + ”gK”p + max > (7.34)

iclx  diam(K)

Example 7.34 (LLE GD interpretation of the non-conforming
P; gradient discretisation)

Example 7.6 defines the Py gradient discretisation D in a global way. For
both the analysis and the practical implementation, a definition starting
from elementary basis functions is necessary. This gradient discretisation
is an LLE GD for which the set of geometrical entities attached to the
discrete unknowns are the faces of the mesh (that is, I = F), the elemen-
tary basis functions are the 7% described in Example 7.26, and the local
gradients Gf, are given in Example 7.29.

It is proved in Lemma 9.12 that, under standard regularity assumptions
on ¥, reg, (D) is bounded. Used in Proposition 7.37 below, this bound
yields the consistency of non-conforming P; gradient discretisations.

Remark 7.85 (Geometrical entities attached to the discrete unknowns)
For most methods considered in Part III, the space Xp, is defined by (7.31) with I
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a certain set of elements associated with a mesh of 2. For example, each ¢ € I can
correspond to a cell, a face or a vertex of the mesh. These mesh elements are what
we call “geometrical entities attached to the discrete unknowns”.

The discrete unknowns themselves are just the components v; of a vector v € Xp .

Definition 7.33 calls for a few comments. First, it is not required that the
mesh M satisfies Item 1 in Definition 7.2 of a polytopal mesh. Nevertheless,
in all the examples of LLE GDs encountered in Chapters 8-14, the mesh
M in Definition 7.33 is indeed the set of cells of some polytopal mesh ¥ =
(M, F,P,V). Note that the choice of hpq in Definition 7.33 is the same as
(7.6) in Definition 7.2.

The set S in Definition 7.33 might be such that there exist i¢,j € I with
i # j and x; = x;. This means that two different discrete unknowns may be
located at the same point ; = ;. This happens for instance in the case of
the MPFA-O scheme, see Remark 12.1, page339.

Finally, the function reconstruction IIp of an LLE GD is not necessarily
locally Pj-exact; only the local Pg-exactness is required. This enables us to
consider gradient discretisations with piecewise constant reconstructions (see
Definition 2.12), and in particular mass-lumped GDs (see Section 7.3.5 below).

Remark 7.86 (Generalisation of reg; )
The term diam(K) in reg;,,(D) could be replaced by any quantity wx > 0: the
requirement to prove Proposition 7.37 below is that maxxeam,, wx — 0 as m — oco.

Proposition 7.37 (LLE GDs are consistent). Let (D,,)men be a se-
quence of LLE GDs (in the sense of Definition 7.33), with associated meshes
(M) men- If (reg, .(Dm))men is bounded and haq,, — 0 as m — oo, then

(Din)men is GD-consistent in the sense of Definition 2.4, i.e. Sp, (¢) — 0 as
m — oo, for any ¢ € Wy P(2).

Proof. Lemma 2.16 states that the convergence of Sp_ () to zero only needs
to be proved for functions in a dense subspace of W?(£2). Having in mind
to use Lemmas 7.27 and 7.31, we take Wy(£2) N W2 (R%) as the dense
subspace in Wy (£2) (the space C2°(£2) would also be adequate).

Let @ € WyP(2) N W2°°(R%) and let v™ = (p(x7"))icrm € Xp,, 0, Where
Sm = (&");erm is the family of approximation points of D,,. Let K € M,,
and denote by 7 ., the Pp-exact function reconstruction associated to K
for D,,. The definition (7.32) of IIp,, Lemma 7.27 and the definition of
reg, (D) give

| Ip, o™ = @llLery = ||7xml(V])icrp] — 90||LP(K)

< (1 + max dist(z;, K)

1 ..
i et ) el T3 e () il o
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1
< (1 + regLLE(Dm)) regLLE(Dm)|K| P hMm ||50||W1=°O(]Rd) :

Raise to the power p, sum over K € M,, and take the power 1/p to obtain

[ p,,v™ = @l oo
1
S (1 + e g (Dm)) reg e (Dm)|g| P hMm ”(pHleOO(]Rd) . (735)

Let us now turn to the gradients. For K € M,,, let Gg ,,, be the Pi-exact
gradient reconstruction associated to K for D,,. Owing to the definition (7.33)
of Vp_,, to Lemma 7.31 and to the definition of reg,, .(Dp,),

m

IVp,, v™ — V‘P”LP(K)d = ||gK,m[(vi )iel;’g] - V‘PHLP(K)d
1 1,
< (14 5 98P+ vy (D) ) KT dian(R) el e

Again, raise to the power p, sum over K € M,, and take the power 1/p to
obtain

[Vp,,v™ — V‘PHLP(Q)«!

1 1
< (14 G remue Do)+ 168 (D) ) 120 s, el - (730)

Since (reg, ;(Dm))men is bounded and Sp,,(¢) < [IIp,v™ = @l oo +
VD, 0™ = V| 1s(mya, We infer from (7.35) and (7.36) the existence of Cjg
not depending on m or ¢ such that

Sp,, (@) < Cghpm,,

|llvp2.co (Ray - (7.37)
Thus, Sp,, (¢) — 0 as m — oo and the proof is complete. L]

As demonstrated by (7.37), the notion of LLE GD provides order 1 approxi-
mation properties, which is expected when the local reconstructions are only
linearly exact. A number of numerical schemes are based on local reconstruc-
tions which enjoy a stronger form of exactness: they are exact on interpolants
of polynomial of higher order than 1. In this case, a better estimate than (7.37)
is expected, as confirmed by the next proposition. As expected, P, denotes
the space of polynomials R — R of degree £ or less.

Proposition 7.38 (Estimate on Sp for higher order LLE GDs). Let
k € N\ {0} and D be an LLE GD (in the sense of Definition 7.33), that is
of order k in the following sense: for any cell K of the underlying mesh M of
D,
1. The family mx = (7% )icr, is a Py_1-ezact function reconstruction on K
upon (;)icry , that is

Vg € Pp_1, forae xeK, Z q(x) e (x) = q(x). (7.38)

1€lk
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2. The family G = (Gi)ier, is a Px-exact gradient reconstruction on K
upon (mi)ielx; that is

Vg € Py, forae x €K, Z q(x;)Gi (x) = Vq(z). (7.39)
i€l

Let 0 > reg,,.(D). Then there exists Cy, depending only on 0, k and {2, such
that

Vo € WHHL=(2) N Wy P(12), Sp(p) < Cohly [ellywiroo ) - (7.40)

Proof. Let v = (¢(x;))ier € Xp,o be the same interpolant as in the proof of
Proposition 7.37, with D,,, = D. Estimate (7.40) follows if we can prove that
[1Ipv — ‘P”LP(Q) + Vv — V‘PHLP(Q)d < C9h]f\/t ||‘P||Wk+1,oo((z) - (741)

By standard extension and approximation techniques in Sobolev spaces, ¢ can
be approximated in C*(§2) by functions in C¥*1(R9), in such a way that their
Wk+L20(2)-norms remain bounded by Cj [[lyyr41.00 () With C1o depending

only on (2 and k. Proving (7.41) for ¢ € C**1(£2) is therefore sufficient.
If K € M, a Taylor expansion of order ¢ < k about a given point in K gives
Py i € Py such that, for all y € R4,

|Pei(y) — ¢(y)] < Cna (dist(y, K) + diam(K)) " [|ollyuri,oo gy » (7:42)
IVPLi(y) = Veo(y)| < Cu (dist(y, K) + diam(K))* [@llyprer o) (7:43)

with C7; depending only on k£ and (2. For any « € K, the P;_;-exactness
(7.38) of Tk gives T [(Pr—1,K(€:i))icix|(®) = Py—1 k() and therefore

rv(T) — p(x) = Trv(x) — TR [(Pr-1,Kk(Z0))iern (®) + Pr—1,x(T) — 0(T).

Using the bound (7.42) (with y = @ and y = x;), and the fact that § >
reg, (D) > dist(x;, K)/diam(K) for all ¢ € I, we infer

mrv(®) — (@) < | D mie(@) (v = Poor g (20))] + | Pao1,x (@) — o()]
i€l

< Cu1 (0 + 1 diam(K)F [l ys ey S I (@)

1€lk

+ Cradiam (K)* (|l yyrs 1,00 () -

Taking the LP(K) norm of this inequality and recalling the definition (7.21)
of ||7TKHp yields C1s, depending only on 6, k and (2, such that

1
150 — @ll iy < CralSal K15 lolpis (o) - (7.44)

Similarly, by (739)7 gK[(PhK((Bi))iE]K}(IL') = VPk7K($) and thus
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Grv(x) — Vo(x) = Grv(x) — G [(Prx (T:))icr ) (®) + VP k() — V().
Using (7.42) and (7.43) with ¢ = k, this shows that
|Gk v(z) — V()|

< Z G () (vi — Py ()| + |V Py i () — Veo())|
i€l
< Cu1(0 4+ 1) diam(K)* (@]l i 1,00 () diam(K) D |G ()]
i€l K
+ Cradiam(K)* [y ) -

Taking the LP(K)-norm of this inequality and recalling the definition (7.24)
of |GK||, yields

. 1
[Vpv — V‘P”Lp(K)d < ClShI}\A|K|" ||<P||Wk+1,oo((z) ) (7.45)

where Cy3 depends only on 6, k and 2. Estimate (7.41) follows by raising
(7.44) and (7.45) to the power p, summing over K € M, taking the power

1/p, and writing |Q\% <|0)+1. ]

Remark 7.39 (Estimate (7.40))

This estimate is particularly useful for problems in which Sp participates in the
error estimates established for the GDM (cf. Theorems 2.28 and 2.38 for example).
At the cost of increased technicality, Estimate (7.40) can often be established if ¢
merely belongs to WP (2)NW, ?(£2), instead of W1 (2)NW, P (£2). We refer
to Section 7.4 for the case k =1 and p > d/2.

7.3.3 From local to global basis functions, and matrix assembly

Let D = (X_p70, IIp,Vp) be an LLE GD in the sense of Definition 7.33. The
functions (7l ) kem,icrx and (G )kem,ici, can be seen as elementary basis
functions, from which global basis functions can be constructed. Each of these

global basis functions is associated with one discrete unknown of the GD in
the following way. For i € I, define 7* € LP(£2) and G' € LP(2)¢ by:

VK € M such that i € I, (Tl'i)‘K = 7% and (gi)‘K =G,
VK € M such that i & I, (wi)‘K =0 and (Q’i)‘K =0.

Let (v¥);er,, be the canonical basis of Xp g, that is: for i € I, vZ@ =1 and
vj(-l) =0for all j € I'\ {i}. It can be checked that, for any i € I,

7t = Ipv® and G' = Vpuv® on 0.
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From the definition of reg,, (D) it is expected that, for each i € I, the cells
K € M such that ¢ € Ik are close to ;. Hence, the global basis functions
7* and G have their support in a neighbourhood of «;, associated with the
discrete unknown v; of a generic v € Xp .

This construction is illustrated in Figure 7.3, for the special case of basis
functions from the P finite element method (for which I =V and I = Vk).
As can be seen, the elementary basis function 7% is only defined in K, whereas
the global basis function 7* is defined over all of {2, and is zero on the cells
K’ that do not have s as a vertex (i.e., s € Vi/).

Tic

Fig. 7.3. Elementary basis function (left) and global basis functions (right) for Py
finite elements

Let us now consider the problem (2.22) and its GS approximation (2.23). As
seen in Section 2.1.2, this scheme can be re-cast as a linear system AU = B

with
U= Z Uin®,

i€ln
Ay = / A@) VoD (@) - Voo (z)de,
0
B; :/ f(m)ﬂpv(i)(a:)daz—/ F(z) - Vpo' (z)de.
0 0
As in finite element methods, for an LLE GD the matrix A and vector B

can be assembled by local computations. Define the elementary matrices and
vectors by

Vi eIk, V] e Ik,
A5 = [ A@)Gi (@) Gi(w)da
K

BE — /K F(@)ri (z)da — /K F(e)- G (z)de.
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Then the global matrix and vectors are assembled by the following operations:

Aij = Z Ag and 31 = Z BZK

KeM s.t. i,je€lK KeM s.t. i€li

7.3.4 Barycentric condensation

The construction of a numerical scheme often requires several interpolation
points, the approximation points S of an LLE GD, corresponding to as many
discrete unknowns of the scheme. The higher the number of discrete unknowns,
the larger the matrix will be and, very likely, the more expensive the scheme
is. A classical way to reduce the computational cost of a scheme is to eliminate
some of these unknowns through barycentric combinations. This consists in
replacing (and thus, eliminating) certain unknowns by averages of other un-
knowns.

We describe here a way to perform this reduction in the general context of
LLE GDs, while preserving the required properties (coercivity, consistency,
limit-conformity and compactness). In the following definition, a subset I®* is
selected from the geometrical entities I associated with the discrete unknowns
of an LLE GD, and all other discrete unknowns (associated with I'\I**) are
eliminated from the GD space by being expressed as local barycentric combi-
nations of the discrete unknowns corresponding to ™.

Definition 7.40 (Barycentric condensation of an LLE GD). Let D be
an LLE GD in the sense of Definition 7.33, S = (x;)icr C R? be its family of
approximation points, and M be its mesh. A gradient discretisation D" is a
barycentric condensation of D if there exists a strict subset I** C I and, for
all i € I\I*, a set H; C I** and real numbers (6;)]€H satisfying

Z 6;- =1 and Z 5;% =x;, (7.46)
JEH; JEH;
such that

o[y C I®,
o Xpoig={u= (uj)ierm : u; €R foralli € I™, u; =0 for all i € Iy},
e The function and gradient reconstructions Ilps. and Vpsa are given by:

Yv € X'DBA70 y HDBA'U = HD"l; and VDB.\’U = V'Dfﬁ,

where v € Xp g is defined by

vi ifi e I™,
Viel, vi=93 3" Biv; ifiel\I™ (7.47)
JEH;

(Recall that Xpo = {u= (u;)ier : w; ER forallie I, u; =0 forallie
Iy}, and notice that v indeed belongs to this space since Iy C I™ and v; =0
ifi€ly.)



230 7 Analysis tools for gradient discretisations

The regularity of the barycentric condensation D®* is

. dist(x;, ;)
DBA _ Z i et Sad' R Rad 74
regg, (D) iérlli%A = 1851 + Keﬂeﬁ(eh{ Jné%;{ diam(K)

It is clear that D" defined above is a GD. Indeed, if Vpeiv = 0 on (2 then
Vpu =0 on 2 and thus v; = 0 for all i € I, since D is a GD and ||V |15 ()
is a norm on Xp . This shows that v; = 0 for all ¢ € I™, and thus that
||VDBA-HL1,(Q)G, is a norm on Xpss q.

Note that regp,(D™) is always greater than or equal to 1 (take ¢ € I\ I™
and write 1=}, g Bi < > jen, |8%]). Let us, for a brief moment, confuse a
discrete unknown with the geometrical entity ¢ € I it is attached to, and with
the interpolation point x; it corresponds to (x; usually lies on or close to 7).
Bounding the last term in regp, (D") consists in requiring that, if ¢ € I\ 1™
is involved in the definition (for D) of mx or Gi for some K € M, then i lies
within distance O(diam(K)) of any j € H; used to eliminate ¢. This ensures
that, after barycentric condensation, mx and G are still computed using only
discrete unknowns in a neighbourhood of K.

“Barycentric condensation” refers both to the operation consisting in replac-
ing some unknowns with combination of others, and to the resulting gradient
discretisation (called, as mentioned above, a barycentric condensation of the
initial GD). The combinations performed during a barycentric condensation
are linearly exact thanks to (7.46). The LLE property is therefore preserved
in the process, as formally stated in the lemma below.

Remark 7.41 (Barycentric condensation vs. static condensation)

A barycentric condensation is not quite the same as a static condensation. A

static condensation consists, after having written a linear scheme, in expressing
some of the unknowns in terms of others and of the source terms. Examples of static
condensations are given in Remarks 8.19 and 13.9.
A barycentric condensation occurs before a scheme is even written, and can also
be performed for non-linear schemes; the replacement of discrete unknowns in a
barycentric condensation modifies the space and operators of the scheme indepen-
dently of the model to which it is applied.

Lemma 7.42 (Barycentric condensation preserves the LLE prop-
erty). Let D be an LLE GD in the sense of Definition 7.33, and let D"
be a barycentric condensation of D in the sense of Definition 7.40. Then D™
is an LLE GD on the same mesh as D, and

regi e (DBA\) S regpa (DBA) Teg g (D) + regpa (IDBA)' (748)

Proof. Let M be the mesh corresponding to D, and let K € M. Take
v € Xpna g and let v € Xp g be defined by (7.47). For any K € M, the values
(Vi)ier, are computed as linear combinations of (v;);eu:, with
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I =IxknI*)u | J H. (7.49)

1€l \IBA

By (7.32) in Definition 7.33 and the definition (7.47) of v, for K € M and
ae x € K,

Mpsv(x) = Mpi(x) = Y Gir(x)

i€l
= Y urk@+ Y (Zﬁ;vj)wg((w):zvﬁ;{(m), (7.50)
i€l NIBA i€l \IBr  jEH; jerks

where, for j € I}, the function ﬂ'{ € LP(K) is defined by

Wg(-ﬁ- Z ﬁ]lw}( if j e IgNI™,
i€l \IB* | jEH,;

7TK = .
> Bimi if j & Ie NI,
i€l \IB* | jEH,;

Using (7.46) and (7.20) yields, for a.e. ¢ € K,

Yo = > w@+ > > Birk()

JEIR JEINIBA JEIBNi€T\IB | jEH;
= D> @+ Y mk(@) > 5 (7.51)
jEINIBA €1k \IB» JjEH;
= Y mk@+ Y i)
i€l NIBA €1k \IBA
:Zﬂ}{(w)zl.
i€l K

In the first term of the penultimate line, we simply performed the change of
index j ~ 4. The family (7 )¢ o is therefore a Po-exact function reconstruc-

tion and, by (7.50), IIpesv has the required form (7.32).
In a similar way as above, write

Vpmv(x) = Vpo(x) = Z Gk ()

i€l

= Y wlk@+ Y| D B | Gk@) = D vGk(@),

i€l NIBA i€l \IBr \jEH; jer

where the function 5}( € LP(K)4 is defined by
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Gie+ Y. BiGk ifjelgnI™
~ i€l \IB* | jEH,;

> BiGi if j & I N I™,

i€l \IB | jEH;

Let A be an affine map. Reproduce similar computations as above for %}; and
write

> Az;)Gk ()

jert

= Y Al)Gr(@)+ Y Alz) Y BiGk(@)

jelxnIB jerss €T \IB | jEH,;
= > Al)G@+ > | D A@)B) | Gi(m). (7.52)
JEINIBA i€l \IB \JEH;
Since A is affine we have A(x) = A(x;) + VA - (x — ;). Hence, (7.46) yields
> BilA(x) = BiA(m) +VA- | > Biwj—x; | = A).
JEH; JEH; JEH;

Plugged into (7.52) and using (7.23), this gives

Y A@)Gi(@) = Y Al@)Gi(@)+ Y Al@)Gi(x)

JEIR i€l NIBA i€l \ 1P
=) Am)Gi(x) = VA.
i€lk

The family (’g})]E s is therefore a Pi-exact gradient reconstruction, and
V peav has the required form (7.33). This completes the proof that D** is an
LLE GD.

Let us now establish the upper bound on reg,, (D). Reproducing the rea-

soning that leads to (7.51) but using absolute values and inequalities, we see
that for any K € M and a.e. x € K

NoFk@I< Y mk@+ D> Ink@)] Y 18]
jert i€IxNIBA i€l \IPA JEH;
< regp, (D™) Y Imic(2)]: (7.53)
i€l

Take the LP(K) norm, multiply by |K\7% and recall the definition (7.21) of
the norm of Py-exact function reconstructions to obtain



7.3 Local linearly exact GDs 233

17k |l < regpa(D™) [[mkll, - (7.54)
The estimate on the gradient reconstructions is similar. Using the definition
of (g;()je,?, we see that (7.53) still holds with “G” instead of “7” so that,
taking the L?(K) norm and multiplying by diam(K)|K|_%,

|G| < ress(@™) G, (7.55)

Finally, for j € I} we estimate %ﬁg)

there exists ¢ € Ix\I™ such that j € Hy, and thus %ﬁ?)‘) < regp, (D™).
This gives

by assuming first that j & Ix. Then,

dist(x;, K) < dist(x;,xe) ~ dist(x, K)
diam(K) — diam(K) diam(K)

dist(x;, K
< regp, (D) + max dist(@;, K)

ielx diam(K) (7.56)

This last inequality obviously also holds if j € Ix. The proof of (7.48) is
completed by recalling the definition (7.34) of reg,,., by combining (7.54),
(7.55) and (7.56), and by using regg, (D™) > 1. L]

The following theorem shows that barycentric condensations of sequences of
LLE GDs satisty the same properties (coercivity, GD-consistency, compact-
ness, limit-conformity) as the original sequence of GDs. The GD-consistency
is a consequence of Lemma 7.42 and Proposition 7.37, and the other three
properties result from the fact that Xps.  is (roughly) a subspace of Xp o.

Theorem 7.43 (Properties of barycentric condensations of GDs).
Let (Dy)men be a sequence of LLE GDs in the sense of Definition 7.33,
that is coercive, GD-consistent, limit-conforming and compact in the sense of
Definitions 2.2, 2.4, 2.5 and 2.8. Let M,,, be the mesh associated with D,,.
We assume that haq,, — 0 as m — oo, and that (reg,,.(Dm))men s bounded.
For any m € N we take a barycentric condensation D} of Dy, in the sense of
Definition 7.40, such that (regp, (D)) men is bounded.

Then (D)) men is also coercive, GD-consistent, limit-conforming, and com-
pact. Moreover, we have

Cpu < Cp,,  and  Wps < Wp,,. (7.57)

Remark 7.44. Each of the property is transferred to the barycentric condensa-
tion independently of the others. This means, for example, that we only need
to know that (Dy,)men is coercive to deduce that (D2),,en is also coercive.

Proof. For any v € Xpg: o, with v defined by (7.47) we have

17080l ) = 10Tl
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<Cp,, Hva5||LP(Q)d =Cp,, VDE{\U

leroye-

This shows that Cps. < Cp,, and thus that (D;;)men is coercive if (D )men
is coercive.

To prove the compactness, we take (Vs v )men = (Vp,, Uy )men bounded in
LP(£2)?%, and we use the compactness of (D,,)men to see that (IIp, Un)men =
(IIpssvim ) men is relatively compact in LP(£2).

The limit-conformity follows by writing, for v € Xps o and ¢ € I/V(fi;(.Q),

1
|Vpeav

m

/Q (Vpmv() - @(x) + Hpmv(z)dive(x)) da

|2y
1

VD, 0ll o)

b

| (95.5(@) - pla) + 11, 3(e)dive(e) da

which shows that Wps. () < Wp,, (p) — 0 as m — oo.

Finally, by Lemma 7.42 each D} is an LLE GD and (reg,,,(D:))men is
bounded, since (reg,,.(Dm))men and (regpg, (D)) men are bounded. Proposi-
tion 7.37 then gives the GD-consistency of (D2),,en. L]

7.3.5 Mass lumping

“Mass-lumping” is the generic name of the process applied (usually on a case-
by-case basis) to modify schemes that do not have a built-in piecewise constant
reconstruction, say for instance the P; finite element scheme (see Chapter 8).
In the GDM framework, a generic and rigorous way to perform mass-lumping
can be described. It simply consists in modifying the reconstruction operator
IIp so that it becomes a piecewise constant reconstruction. Under an assump-
tion easy to verify in practice, this “mass-lumped” GD can be compared with
the original GD, which ensures that all properties are preserved.

Note that the notions and results in this section are not limited to LLE GDs,
they apply to any kind of gradient discretisation.

Definition 7.45 (Mass-lumped GD). Let D = (Xp,Ip,Vp) be a GD
in the sense of Definition 2.1. A mass-lumped version of D is a GD DM =
(Xp,0, I3, Vp) such that I} is a piecewise constant reconstruction in the
sense of Definition 2.12.

Example 7.46 (Mass-lumped non-conforming P; gradient dis-
cretisation)

Consider the special case of an LLE GD D, with I as set of geometrical
entities attached to the discrete unknowns. Recalling the notations in Defi-
nition 2.12, mass-lumping D first requires to select disjoint subsets (£2;);cs
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of 2 with each (2; lying “around” i. Then, a new function reconstruction
IT}" is defined such that, if v = (v;);e1, for all ¢ € I we have IT}"v = v; on
£2;. According to Theorem 7.49 below, this new reconstruction is a valid
choice if the (£2;);es are such that IIpv =~ v; on §2;, for all i € I.

For the non-conforming P; finite element on a simplicial mesh ¥, since
I = F we need to find, for each 0 € F, a set 2, that lies “around” o
and is disjoint from all the other sets ({2,/),/£,. There are many possible
choice; one of them is presented in Figure 9.2 page 299, in which each (2,
is the diamond D, around o. Then, (II}v)p, = v, for all o € F.

Remark 7.47 (Mass-lumping with respect to a canonical basis preserves the
LLE property). Let D be an LLE GD, with I as set of geometrical entities
attached to the discrete unknowns. Let D" be a mass-lumping of D with
respect to I, that is, II33" is a piecewise constant reconstruction in the sense
of Definition 2.12 with B = I and (e;); = J;;. Then D" is also an LLE GD,
and regLLE(DML) <reg g (D)

Remark 7.48 (Mass lumping with respect to a non-canonical basis)

The basis (e;)ics of Xp,o used in Definition 2.12 to perform a mass-lumping of D
is usually a canonical basis, each vector in this basis corresponding to a natural
discrete unknown of D. Mass-lumping could be done with respect to a non-standard
basis, but this might lead to additional numerical cost if the computation of Vp
in this non-standard basis is complex; the scheme implementation might require to

perform changes of basis, possibly with full transition matrices, to compute IT}"

and Vp.

Theorem 7.49 (Properties of mass-lumped GDs). Let (D,;)men be a
sequence of GDs in the sense of Definition 2.1, that is coercive, GD-consistent,
limit-conforming and compact in the sense of Definitions 2.2, 2.4, 2.5 and
2.8. For any m € N we take D) a mass-lumped version of Dy,. If there exists
(Wm)men such that wy,, — 0 as m — oo and

vmeN, Yo € Xp, 0, |5, v — HDmvHLP(Q) <wm [[vllp, (7.58)

then (DY)men is coercive, GD-consistent, limit-conforming, and compact.
The reconstruction Il is also piecewise constant.

This theorem is a direct consequence of Theorem 7.50 below, which gives

a general setting for proving the properties of a GD by comparing it with
another GD.

Theorem 7.50 (Comparison of function reconstructions). Let (D,,)men
be a sequence of GDs in the sense of Definition 2.1. For any m € N, let D}, be
a GD defined from Dy, by Dy, = (Xp,, 0,115, ,Vp,,), where II3, s a linear
operator from Xp, o to LP((2).
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1. We assume that there exists a sequence (wm)men such that

lim wy, =0 and, for allm € N and all v € Xp,, 0,
[t (7.59)
||HDmv — HDWUHLP(Q) < wm ||vHDm )

If (D) men is coercive (resp. GD-consistent, limit-conforming, or compact
— in the sense of Definitions 2.2, 2.4, 2.5 and 2.8), then (D}, )men is also
coercive (resp. GD-consistent, limit-conforming, or compact).

2. Reciprocally, if (Dm)men and (D},)men are both limit-conforming and
compact in the sense of Definitions 2.5 and 2.8, then there exists (W )meN
such that (7.59) holds.

Proof.
Step 1: proof of Item 1.
COERCIVITY: let us assume that (D, )men is coercive with constant Cp. Set-
ting M = sup,, ey Wm, using the triangle inequality and invoking (7.59), we
have, for any v € Xp,, 0,

HH'Bm’UHLP(_Q) < ||11p, v~ IIp,,v

m

|Lp(9) + ||H'DmUHLp(Q)
< M|V, vl o0y + Cp,, VD0l o (02 -

The coercivity of (D},)men follows, with Cp: <M+ Cp,, <M+ Cp.
GD-CONSISTENCY: let us assume that (D, )men is consistent. Using the tri-
angle inequality and (7.59), we write, for v € Xp, o and ¢ € Wy (£2),

Sp;, () < | Tpz v = ¢l 1) + IVD,0 = Vol o)
S wm VD, vllpo(aye + D, v = @l 1oy + IVD, 0 = Vol o)
Swm Vol o (@ya +wm VD, v = Vo L ()a
+ [ p,,v = ¢l o) + VD, v = Vol 1o (o)
< Wm ||V<P||Lp(0)d
+ 1+ M)([p,,v = @l o) + IVD, 0 = Vol Lo(gya)-
Hence Spy (¢) < wim [[V@llpr(gye + (1 + M)Sp,, (¢) and the consistency of

(D}, )men follows from the consistency of (Dy, )men and from lim,,, oo Wy, = 0.

LIMIT-CONFORMITY: let us now assume that (Dy,)men is limit-conforming.
By the triangle inequality and (7.59), for any ¢ € W (2) and v € Xp,, o,

/Q (mev(a:) ~p(x) + Hl*)mv(m)diwp(ﬂ?))d:c

< diveell o () Wi VD, vll 1o ()
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+

/Q (Vop, v(x) - p(x) + p, v(x)dive(x)) de| .

We infer that Wp; () < wi, [[dive| . o) + W, (¢) = 0 as m — oo, and
the limit-conformity of (D}, )men is established.

COMPACTNESS: we now assume that (Dy,)men is compact. If (Vp, Um)men
is bounded in LP(£2)¢, then the compactness of (D,,)men ensures that
(IIp,, Vm)men is relatively compact in LP(£2). Since ||H1*,mvm —IIp, v, ||LF(Q)
tends to 0 as m — oo by (7.59), we deduce that (/175 vm)men is relatively
compact in LP(f2).

Step 2: proof of Item 2.
We reason by way of contradiction, therefore assuming that (Dp,)men and
(D}, )men are both compact and limit-conforming, and that

[Ip,, v — 11} vlLr(2)

w = max
" vexp, M0y VD, vlle o)

—~ 0 as m — 0. (7.60)

Then there exists ey > 0, a subsequence of (D, D}, )men (not denoted
differently) and for each m € N an element v,, € Xp,, o\{0} such that
HH{)mvm — HpmvaLp(Q) > €0 IV, vm|l 1o(ya- Since vy, # 0, the element

Um = ||Vp,, UmHZ?}(Q)d Um € Xp,, 0 is well defined. It satisfies || Vp,, U/ 15 ()
=1 and

||Hl*)mi7m - HDmfﬁm > €9 (761)

HLP(Q)
Extract another subsequence such that Vp, v,, weakly converges to some G in
LP(£2)4, and, using the compactness of (D,,)men and (D) men, Ip,, U — v
in LP(§2) and 115 vy, — v* in LP(§2). Passing to the limit in (7.61) we find
[v = v*[|ps() = €0- Extending the functions Vp,, U, Ip,,Um and I3 Om

by 0 outside {2, we see that, for any ¢ € T/I{fi’;(ﬂ),

[ (F0,0n@) ¢@) + 115, 5 (@)dive(a)) da| < W ().

and

< Wp,,(¢)-

[, (V0.50(@) - ¢(@) + T, T (@)ive(@) da

By limit-conformity of both sequences of GDs, let m — oo to find
/ (G- p(x) + v*(x)dive(x)) de = / (G- p(x) + v(z)dive(x)) de = 0.
Rd Rd
This proves that v,v* € Wy*(2) and that G = Vv = Vu*. Poincaré’s in-

equality then gives v = v*, which contradicts [|v — v*[| (o) = €o. Therefore
the sequence (wm,)men defined by (7.60) satisfies (7.59). L]
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Remark 7.51. Three estimates obtained in the course of this proof deserve to
be put forward. Under Assumption (7.59) and setting M = sup,,cn Wm, We
saw that

Cp: <M+ Cp,,, (7.62)

that
Vo € WoP(2), Sp;, (9) < wm IVl 1o (ya + (1 + M)Sp,, (), (7.63)
and that
Vip € WEL(2), Wpy () < win | diveg]l 1o ) + W, (). (7.64)

These estimates are particularly useful in the situation where rates of conver-
gence of Sp_ and Wp,_ to 0 are known. Indeed, in this case, (7.63) and (7.64)
give some rates of convergence of Sp: and Wp. to 0, which in turns provides
rates of convergence for D}, applied to linear, and some non-linear, problems
(see, e.g., Theorems 2.28 and 2.38).

An example of this is given for mass-lumped P; gradient discretisations in
Remark 8.18.

7.3.6 Non-homogeneous Dirichlet, Neumann and Fourier
boundary conditions

The (minor) changes that must be made in the definitions and results in the
previous sections in case of non-homogeneous Dirichlet conditions, Neumann
conditions or Fourier conditions are now described. Mixed boundary condi-
tions being deduced from Dirichlet and Neumann conditions, we do not detail
this last case.

Upon trivial changes of the space of discrete unknowns, the definition of a
mass-lumped GD (Definition 7.45) does not depend on the considered bound-
ary conditions since it only deals with the reconstruction I1p.

Non-homogeneous Dirichlet boundary conditions
LLE gradient discretisation

Definition 7.52 (LLE GD for non-homogeneous Dirichlet BCs). A
gradient discretisation D = (Xp,Ip s, IIp,Vp) for non-homogeneous Diri-
chlet conditions in the sense of Definition 2.49 is an LLE GD if

e There exists a finite set I = I U Iy such that
Xp={v=(vi)ier : vi €R forallie I} =Xpo® Xpoy
where
Xpo={v=(vi)ier : vi €R forallic o, v; =0 forallic Iy},
and

Xpo={v=(vi)ier : vi €R forallie Iy, v; =0 for alli € Ip},
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o [Ip and Vp satisfy Item 2 in Definition 7.53, with Xp o replaced by Xp,
oIpy: Wlfi’p(aﬂ) — Xp.g is a linear mapping.

The regularity factor reg,, (D) is defined by (7.34).

Proposition 7.53 (GD-consistency of LLE GDs for non-homogeneous
Dirichlet BCs). Let (Dy,)men be a sequence of LLE GDs for non-homoge-
neous Dirichlet boundary conditions, in the sense of Definition 7.52. Denote
by M, the mesh associated to Dy,. Assume that (veg, ., (Dm,))men is bounded,
that haqg,, — 0 as m — oo, that (2.96) holds, and that

m

Vo € C(0),
max max |(ID’"’67_(SD))i —p(@)| =0 asm — oco. (7.65)
KeM., iclxnly diam(K)

Then (Dy)men is GD-consistent in the sense of Definition 2.51.

Here and in the following, to simplify notations we make the convention that
max;ci,enl, Z;=0if Ix NIy =0.

Proof. The property (2.96) enables us to check the GD-consistency only
on smooth functions (see Lemma 2.52). Let ¢ € C2?(R?). The function
o™ = (p(x"))icrm, defined as in the proof of Proposition 7.37, has good
approximation properties since Vp, v™ — Vo in LP(2)? and IIp, v™ — ¢
in LP(£2) as m — oo (these properties were established in the proof of Propo-
sition 7.37 without using the zero boundary value of ¢). However, v™ does
not necessarily satisfy the requirement v™ —Zp, a7(¢) € Xp,, 0 in Definition
2.51.

Consider therefore w™ € Xp,_ o+ Ip,, 57(p) defined by w™ = v = p(x")
if i € Iy and w = (Ip,,,07(p))i if i € I}". Let, for K € M,

o — o7
K) = —_ .
wm (K) ps diam(K) (7.66)

By definition of [|Gk||, (we do not explicitly denote the dependency with
respect to m of this P1-exact gradient reconstruction),

> ot —wi| G|

19k [(vi")icrc] = Grl(wi™)icr]ll po(roye <

i€lk Lp(K)d
< Wy (K)diam(K) | > G|
i€lk LP(K)d
1
< Gk, [K|Pwim (K)
1
< 1egp (D) | K [P wimn (K).  (7.67)
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Raising this estimate to the power p and summing the result over K € M,,
gives

m m 1
”vav - vaw ”LP(Q)d < regLLE(Dm)|‘Q|p Krél/%/}l(m wm(K)'

Since (reg,,,(Dm))men is bounded, Assumption (7.65) shows that the right-
hand side of the previous inequality tends to 0 as m — oo. Hence, the con-
vergence of (Vp,, v™)men gives Vp, w™ — Vo in LP(£2)9. The convergence
of (Il'p,, w™)men is established similarly. [

Barycentric condensation

The change to be made in Definition 7.40, besides considering an LLE GD for
non-homogeneous Dirichlet conditions, is the obvious replacement of Xpe. o =
{v=(v)iermr : v; ERforall i € I";v; =0 for all i € Iy} with Xps. = {v =
(vi)sermn : v; € Rfor all i € I™}. Notice that the boundary unknowns are
not eliminated (Ig C I"®*).

Lemma 7.42, that is the preservation of the LLE property, still holds (the
proof did not use the zero boundary condition). The properties of barycentric
condensations, Theorem 7.43, is also valid provided that we assume (2.96)
and (7.65) — to establish the GD-consistency by invoking Proposition 7.53.

Mass-lumping

Since the interpolation operator Zp 5 is unchanged by the mass lumping of D,
it is easy to see that Theorem 7.50, and thus Theorem 7.49, still hold modulo
a trivial adjustment of the space of discrete unknowns.

Neumann boundary conditions

LLFE gradient discretisation

Definition 7.54 (LLE GD for Neumann BCs). A gradient discretisa-
tion D = (Xp,IIp,Vp) (resp. D = (Xp,IIp,Tp,Vp)) for homogeneous
Neumann boundary conditions (resp. non-homogeneous Neumann boundary
conditions) is an LLE GD if

e There is a finite set I = I U Iy such that
Xp={v=(vi)ier : vi R forallie I} =Xpo® Xp,o,
where
Xpo={v=(v)ier : vi €R foralli eIy, v;=0 for alli € Iy},
and

Xpo={v=(vi)ier : vi €R foralli €Iy, v; =0 for alli € I},
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o [Ip and Vp satisfy Item 2 in Definition 7.53, with Xp o replaced by Xp,
The regularity factor reg,,.(D) is defined by (7.34).

The proof of the following proposition is identical to the proof of Proposition
7.37, in which we actually did not use the boundary values of the functions.

Proposition 7.55 (GD-consistency of LLE GDs for Neumann BCs).

Let (D) men be a sequence of LLE GDs for Neumann boundary conditions,
in the sense of Definition 7.54. We denote by M., the mesh associated to D,,.
If (reg, . (Dm))men is bounded and hpq,, — 0 as m — oo, then (Dp,)men is
GD-consistent in the sense of Definition 3.4.

Barycentric condensation

Starting from an LLE GD for Neumann conditions as defined above, a
barycentric condensation is defined as in Definition 7.40, with the addition
that, in the case of non-homogeneous conditions, the trace Tps. of D is de-
fined by Tpesv = Tpv, where U is given by (7.47). We note that, with the
norm (3.8) considered in a GD for Neumann boundary conditions, we have
ol = [

The preservation of the LLE property by barycentric condensation (Lemma
7.42) is still valid, as well as Theorem 7.43.

Mass-lumping

There is no change in the definition of a mass-lumped GD. Note that, if IIp
and I1} are two function reconstructions on Xp, by the Holder inequality
(D.6),

+ QY| 1T — 1pv| ()

/Q II5v(x)de

< ‘ /Q Tpv(z)dz

and vice versa with IIp and I}, switched. This enables the proof of the
equivalent, for Neumann boundary conditions, of Theorem 7.50 in which the
norm |[vp in (7.59) is defined by (3.8).

Theorem 7.49 then clearly holds, provided that we use the norm (3.8) in (7.58).

Remark 7.56 (Mass-lumping the trace reconstruction)

In the case of non-homogeneous Neumann conditions, one could also mass-lump
the trace reconstruction Tp. This would be useful for problems that are non-linear
with respect to the trace, or that involve the trace in a time-stepping. If the trace
is mass-lumped, then for Theorems 7.50 and 7.49 to hold one must introduce this
trace in (7.59) and (7.58). This latter formula, for example, would therefore become

| T, v — HDm”HLp(m +||Tp,,v - TDm””LF(am < @m[ollp,, (7.68)
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Fourier boundary conditions
LLE gradient discretisation

LLE GDs for Fourier boundary conditions are probably those that undergo
the most changes with respect to Definition 7.33. Because the consistency of
GDs for Fourier boundary condition involves the trace reconstruction, this
trace must be dealt with in a similar way as IIp.

Definition 7.57 (LLE GD for Fourier BCs). A gradient discretisation
D = (Xp,Ip, Tp,Vp) for Fourier boundary conditions is an LLE GD if

e There is a finite set I = I U Iy such that
Xp={v=(vi)ier : vi €R forallie I} =Xpo® Xp,o,
where
Xpo={v=(v)ier : vi €R foralli €Iy, v; =0 for alli € Iy},
and
Xpo={v=(vi)ier : v; €ER forallie Iy, v; =0 for alli € Ip},

o IIp and Vp satisfy Item 2 in Definition 7.533, with Xp o replaced by Xp,

o There exists a finite mesh My of 012 and, for each Ky € Mgy, a subset
Ir, C I and a Py-ezxact function reconstruction mg, = (W}(a)iefKa on Ky
such that

Vv € Xp, forae x € Ky (for the (d — 1)-dimensional measure)
Tov(x) = T, [(v)iere, |(®) = Y virh, ().

1€k,
The LLE regularity of D is defined by

dist(aci, K)
reg,.;(D) = max (Ilwllp * G, + g dm(K))

dist(x;, Kp)
diam(Ka) '

(7.69)
e, (Il +
The following proposition is then proved as Proposition 7.37, the estimate on
ITp,,v™ = ¥()ll 1» (552 Peing obtained as the estimate on || IIp,, v™ — @[ 1.» (-

Proposition 7.58 (Consistency of LLE GDs for Fourier BCs). Let
(Din)men be a sequence of LLE GDs for Fourier boundary conditions, in the
sense of Definition 7.57. We denote by M,, the mesh associated to D,,. If
(reg, . (Dm))men is bounded and hpq,, — 0 as m — oo then (Du)men 18

m

consistent in the sense of Definition 3.37.
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Barycentric condensation

With the above definition of an LLE GD for Fourier boundary conditions, we
use the same definition of barycentric condensation as for non-homogeneous
Neumann conditions, i.e. Definition 7.40 to which we add the relation Tpsiv =
Tpv. With the norm (3.51) of a GD for Fourier boundary conditions, we still
have [[v]| o, = [[7]p-

The preservation of the LLE property (Lemma 7.42) is still valid, the trace
reconstruction Tpss being dealt with as IIps.. A barycentric condensation for
Fourier boundary conditions preserves the properties of a GD (Theorem 7.43
holds).

Mass-lumping

The definition of a mass-lumped GD for Fourier boundary conditions is not
different from Definition 7.45. In particular, if the trace reconstruction is not
mass-lumped, Theorems 7.50 and 7.49 hold. If the trace reconstruction trace
is mass-lumped, Assumption (7.58) must be replaced with (7.68).

7.4 W?2P estimate of Sp for local linearly exact GDs

Estimates on Sp(p) are useful to obtain rates of convergences of GSs for linear
(and some non-linear) problems, see, e.g., Theorem 2.28 and Theorem 2.38.
The estimate (7.37) on Sp(p) requires o € Wy (£2) N W2 (RY). Hence, to
use for example this estimate in the aforementioned theorems, the solution
to the corresponding problem ((2.20) or (2.61)) would need to have a W2
regularity, which is quite restrictive.

The purpose of this section is to write a consistency estimate similar to (7.37)
in the case ¢ € W2P(02) for p > d/2 (this condition ensures the embedding
of W2P(£2) into C(£2)). This regularity property is much more likely to hold,
if ¢ is the solution of problems (2.20) or (2.61), than the W2 regularity.

7.4.1 Functional estimates in W2P

We start with a lemma that compares in the LP(V) norm a function ¢ €
WLP(V) with its average value on a ball in V.

Lemma 7.59. Let V. C R? be an open bounded set that is star-shaped with
respect to all points in a ball B C V. Let p € [1,400). There exists Ciy
depending only on d and p such that, for any ¢ € WHP(V),

oy o

d
diam(V)»
< 014%
Lr(V) diam(B)»

HVellloy - (7.70)
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Proof. Since C(V) N WP (V) is dense in WP(V), we only need to prove
the result for ¢ € C*°(V) N WP(V), and the conclusion follows by density.
To simplify the notations we let hy = diam(V'). For all (z,y) € V x B, since
V is star-shaped with respect to y the segment [x,y] belongs to V and we
can write

(@) — o) = / Voltz + (1 t)y) - (@ — y)dr.

Taking the average value with respect to y € B and writing |z — y| < hy
gives

o) = o [ otwnas] = | [ [ vette+ (1- 09 o - vty

Vo(te + (1 — t)y)|dtdy.
<t /] )

Taking the power p, using the Jensen inequality (D.10) with the convex func-
tion ¥ = |- [P and A = B x (0,1), and integrating with respect to & € V, we

get
p(x) / y)dy
/v 1B
|B|/// [Vo(te + (1 — t)y)|Pdtdydz.  (7.71)

We then apply the change of variable € V' — z = tx + (1 — t)y, which has
values in V since V' is star-shaped with respect to all points in B. This gives

1
/// [Vo(te + (1 — t)y)|Pdtdyde
vJBJo
g/ |V<p(z)|p// t~ddtdydz, (7.72)
\%4 B JI(z,y)

where I(z,y) ={t€ (0,1) : 3x €V, te+ (1 —t)y = z}. For t € I(z,y) we
have t(x — y) = z — y for some & € V and therefore hyt > |z — y|. Hence
I(z,y) C [%7 1] and we deduce that (for d > 1)

d 1 d 1 hd71
/I(z,y) \zh—vy\ d —1 |Z — yld 1°

Thus, denoting by wy the area of the unit sphere in R?, since B ¢ V C
B(z,hy) forall z € V,

het 1
/ / t~ddtdy < -V / —dy
B JI(z,y) d=1Jp |z -yl

da:
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hd71 B
v / |z —y|'dy
d—=1JB(zhy)
d—1
hV
d—1

" d hy
wd/ pt 4 ldp < 7 Vlwd. (7.74)
0

IN

The proof is complete by plugging this estimate into (7.72), by using the
resulting inequality in (7.71), and by recalling that

diam(B) d
5= 150.)| (52
Note that in the case d = 1, (7.73) is modified and involves In( |zhfy‘) but the
final estimate (7.74) is still in O(h9). L]

The following lemma is a simple technical result used in Lemma 7.61 below.

Lemma 7.60. Let h > 0, d € N*, x € R? and let us define the function
Fppn : B(z,h) =R by

1
Vz € B(,h), Fyn(z) = / s1=dds, (7.75)

Let g € [1,400] ifd =1, g € [1,400) if d =2, and q € [l,d%'lQ) if d > 3.
Then, there exists C15 > 0 depending only on d and q such that

”Fw,h”Lq(B(m,h)) < Ol5hd/q~ (7.76)

Proof.
Case d = 1.
We have |F, ;(z)| < 1 and therefore (7.76) is satisfied with Cy5 = 21/,

CASE d = 2.
We have Fp p(z) = In (ﬁ) and therefore, since ¢ < 400, using a polar

change of coordinates,

h q
h
1Fe 1 gy = 27 /0 plo <p) o

q
The function p — pln (%) reaches its maximum over [0, h] at p = e~ ?h and
thus

h
1 nl Lo By < 277/ e~Thqldp = mqe" R>.
0

This proves (7.76) with Cy5 = 7'/9ge™".

CASE d > 3.
‘We write
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and, using again polar coordinates,

h
Wd d—2 2—d)q+d—1
||Fmah||%Q(B(m,h)) < mh( )q/o p( a+ dp

where wy is the area of the unit sphere in R?. The assumption ¢ < ﬁfZ ensures
that (2 —d)g +d —1 > —1 and therefore

Wy hd
(d—=2)1((2 - d)q + d)

q
HFw,h”Lq(B(m,h)) <
wi/a

The proof is complete by choosing C5 = D7

The following lemma states, for a given ¢ € W2P(V) with p > d/2, the
existence of an affine function that approximates ¢ on V. This approximation
is constructed in the spirit of the “averaged Taylor polynomial” of [33].

Lemma 7.61 (First order polynomial approximation of elements of
W2P). Assume that p > %, and let B C V be bounded open subsets of R?,
such that B is a ball and V is star-shaped with respect to all points of B. Let
0 > diam(V')/diam(B).

Take p € W2P(V) N C (V). Then there exists C1g > 0, depending only on d,
p and 8, and an affine function A, : V — R such that

. _d
sup |p(x) — Ay ()| < Crediam(V)* ™7 || [D?@] ||,y 5 (7.77)
xzcV
IVAe = Vol oy < Crediam(V) || [ D] Hmm . (7.78)

Remark 7.62. If V is sufficiently regular, W2?(V) c C(V) and we only need
to assume that ¢ € W2P(V).

Proof. To simplify notations, set hp = diam(B) and hy = diam (V). Let us

first assume that ¢ € C2(R?). For a given © € V and any y € B, write the
Taylor expansion

p(x) = (y) + Ve(y) - (- y)
1
+ [ st sty — )@ - v) - (@ - y)ds. (119
0
Denote by ¥ the centre of B, and set p = ﬁfB o(y)dy and Vo =

\%”IIB Ve(y)dy. Taking the average of (7.79) over y € B gives p(x) =
Ay(x) + Ry () + Ro(x) with
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Ay(x) =7+ Ve (z—7),

1 1
Ri@) = /B / sD¥o(a + s(y — 2))(@ — ) - (@ — y)dsdy,
and

Ry(x) = ,g, /B (Veo(y) - V) - (z - y)dy.

Hence,
lo(x) — Ap(x)] < |Ri(@)| + [Ra()|. (7.80)
It remains to bound R; and Rs.

BounD ON R;.
The change of variable y € B — z = x + s(y — «) has values in V, since V
is star-shaped with respect to all points in B. This gives

|Ri(z)| < |B//I( s'74 D%*p(2)|dsdz,

where I(x,2) ={s€(0,1) : Jye B, z=x+s(y—x)}. If s € I(x, z) then
|z — x| = sly — x| < shy for some y € B, and thus s > 2=2! V‘ Hence,

mie) < [ D%t [ 1ddsdz—|B|/|D2 )| e (2)d

where Fy, 1, is defined by (7.75). Using Holder’s inequality, the inclusion V' C
B(x, hy) and Lemma 7.60 we infer

2+4

h2 h
‘Rl( )| < ‘Bl H |D2(P| HLP(V ||Fm hv”LP (B(z,hv)) — C’17 || |D250‘ ||Lp

where Cy7 depends only on d and p (notice that p > d/2 implies p’ < fg if
d > 2). Since & =d— ¢ and |B| = 279|B(0,1)|h, > 27 B(0,1)|6~h{, this
gives the existence of dy 18 depending only on 6, p and d such that

_d
[Ri(@)] < Cishy, * [[1D%6] | gy - (7.81)

BounD ON Rs.
By Holder’s inequality and |B| = 27%B(0,1)|h%,

[Ra(2)| < | Bl7 [V = V|| Ly
_d _
< 2U7|B(0,1) Fhy * ||V = Vol 10 g0

Apply Lemma 7.59 with V' = B and ¢ replaced by ;¢ (for i = 1,...,d). This
gives C19 depending only on d and p such that
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_a
[Ra(@)| < Crohiy " || 1D%6] | - (7.82)

CONCLUSION.
Combining (7.80), (7.81) and (7.82) gives (7.77). To prove (7.78), notice that

_ 1
VA, =Vp= Bl /B Vo(y)dy

and apply Lemma 7.59 with ¢ replaced by 0;¢p, for all i = 1,...,d. This gives
C59 depending only on d an p such that

hd/p-i-l
v 2
IVAs = Vellioye < Coo= G D%l | 1oy
B

Since hp > 0~ 1hy, this completes the proof of (7.78) if ¢ € C2(RY).

All quantities and norms involved in (7.77) and (7.78) are continuous with
respect to ¢ for the norm of W2P(V) N C(V) (sum of the norms in both
spaces). Since V is star-shaped, a classical dilatation and regularisation ar-
gument shows that the restrictions of C2(R?) functions to V are dense in
W2P(V)NC(V). This density ensures that (7.77) and (7.78) are still valid for
p e W2P(V)nC(V). L]

We can now state and prove a local W?2? interpolation estimate for P;-exact
gradient reconstructions.

Lemma 7.63 (W?? estimates for Pi-exact gradient reconstructions).
Assume that p > %, and let B C K CV be bounded open subsets of R%, such
that B is a ball and V' is star-shaped with respect to all points of B. Let S =
(:)icr CV, and G = (G%)ier C LP(K)? be a Py-exact gradient reconstruction
on K upon S in the sense of Definition 7.28. Let § > diam(V')/diam(B).

Take o € W2P(VYNC (V) and set v = (p(x;))icr. Then, there exists Ca1 > 0,

depending only on d, p and 0 such that
Gv — v‘PHLP(K)d < Cyrdiam(V)(1 + [|G]1p) || ‘D2§0| ||LP(V) : (7.83)

Proof. We set hg = diam(B) and hy = diam(V'). Take A, given by Lemma
7.61 and define § = (A, (x;))icr. Since G is a Pi-exact gradient reconstruction
upon (x;)icr, we have G = VA,. The definition of |G|, shows that

> (i —&)G'

IGv — ngLp(K)d =

i€l LP(K)d
< 1> 19°] max |v; — &|
i€l
iel

L (K)
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1 _
= ||G||p| K| > diam(K)~* max lo(x;) — Ay(x;)|.
Using (7.77) and the inequality diam(K)~* < hz' < 0k, we deduce

1—4 1
IGv = Gl oreye < CrelIG, Ohy " IK 17 [[ 1Dl || 1, ) -

Since | K| < |B(0,1)|diam(K)? < |B(0,1)|h{, this shows that there exists Cay
depending only on 6, d and p such that

1Gv — g§||Lp(K)d < Oz Hng hy H ‘D290| ||Lp(v)’

The proof of (7.83) is complete by recalling that G¢ = VA, by using the
triangle inequality, and by invoking (7.78). L]

7.4.2 Application to local linearly exact GDs

The next proposition states our main bound on Sp(p) for an LLE GD, in the
case of homogeneous Dirichlet boundary conditions and ¢ € W?2P(£2) with
p > d/2. This is established under a slightly restrictive assumption on the
points «;, which holds for most of the LLE GDs presented in Chapters 8-14.

Proposition 7.64 (W?2? estimates of Sp for an LLE GD). Take p > d/2
and let D be an LLE GD in the sense of Definition 7.33. Let S = (x;)ier be
the family of approximation points of D, and M be the mesh associated with
D. Assume that

(i) For all K € M and alli € I, x; € K,
(i1) For all K € M, there exists a ball Bk C K such that (7.84)

K is star-shaped with respect to all points in By .
Take 60 > reg,, ,(D) + maxgem d?;%(g?). Then, there exists Caz > 0, depend-
ing only on p, d, 2 and 0, such that

Vo € W2P(2) N WP (£2), Sp(e) < Cashp l9llw0 () » (7.85)
where Sp 1is defined by (2.2).

Proof. Remember that, in all this part, {2 is assumed to have a Lipschitz-
continuous boundary. Hence, the choice of p ensures that ¢ € C(£2). The
vector v = (¢(x;))ier € Xp,o is therefore well defined, and Lemma 7.63 can
be applied, for any K € M, with V = K and G = Gi. Estimate (7.83) then

yields, with hx = diam(K),

Voo — V%OHLP(K)d < C21hK(1 + HgK”p) H |D2<P| HLP(K) (7-86)
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where C5; depends only on p, d and 6. Raising to the power p and summing
over K € M leads to

HVDU - V@HLP(Q)d < CthM(l + regLLE(D>) H ‘D2W| ||LP(Q) ' (7'87)

To estimate IIpv—y, we first establish a bound on p(x)—¢(y) forall z,y € K.
Using the affine function A, given by Lemma 7.61, write

lp(@) — o(y)] < lp(®) — Ap(®)] + [Ap(z) — Ap(y)] + [Ap(y) — ¢(y)]
9_4d
< 2C16hi 7 [[1D*¢] || Lo ) + IV Al (7.88)
Since VA, is constant, (7.78) gives
‘VAH =|K|™» ||VA¢||L;>(K)d
1 1
< 1K1 196 o ey + 1K1 Crshn | 1026 || s, -
Plugged into (7.88), this yields
p(x) = #(y)]
. 1-2 . _1
< (2016d1am(9)hK ? 4+ (14 Crgdiam(02))hk | K| é) [P
Since K C B(z,hg) for all z € K, we have
K| < |B(2,hx)| = |B(0,1)|2~ R

Combined with the previous inequality, this provides Cy4 depending only on
(2, p and 0 such that

—1
(@) — e(y)| < Coshr [K|77 [l ypan k) - (7.89)

Recalling the relation (7.32) between IIp and the elementary basis functions
(7% )icry, (7.89) gives, for a.e. ¢ € K,

[pv(z) — p(@)| = | D mi(@)(vi — o(@))

i€k
< sup |p(xi) — (@) D |k ()|
ielx i€l
_1 i
< Coshic @iy K175 3 Imic(@)].

i€lk

Take the LP(K) norm over x € K and recall the definition (7.21) of [|[7k|[, to
deduce

[1Ipv — SOHLD(K) < Coshg ”(PHWZP(K) ||7TKHp : (7.90)
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As (7.86), this estimate in K translates into the global estimate
HIpv = ¢ll 1o () < Coshamt 1]l (o) re815(D)- (7.91)
The proof is complete by combining (7.87) and (7.91). ]

Remark 7.65 (Broken WP estimates)
An inspection of the proof shows that Proposition 7.64 also holds if we only assume
that ¢ € C(2) N WP (2) N W2P(M), where the broken space WP (M) is defined
by

WP(M) = {¢ € L*(2) : VK € M, b € W>P(K)}.

We just have to replace, in (7.85), the term “hat [[¢]lp2.5 ()" With

1/p
(Z hill@m!livz,p(m) :

KeM

Assumption (7.84) ensures that local error estimates can be computed on
a mesh of the domain (with non-overlapping sets). When added together,
the right-hand sides of these estimates directly produce an L?({2) norm. We
can relax this assumption of non-overlapping sets if we impose a control on
the overlaps. The following result makes this broad reasoning explicit, and is
required to establish W2 estimates for some methods described in subsequent
chapters, noticeably the condensed version of the SUSHI scheme and the VAG
scheme, and any other barycentric condensation of an LLE GD, when some
discrete unknowns in I are eliminated by using other discrete unknowns that
lie outside K (see Definition 7.40).

Proposition 7.66 (W?2? estimates of Sp for an LLE GD — generalised
form). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.33. Let S = (x;);cr be the family of approximation points of D,
and M be the mesh associated with D.
For each K € M, take Vg O K an open bounded set such that

(i) For alli € I, x; € Vi,

(i1) There exists a ball Bx C K such that Vi is star-shaped (7.92)

with respect to all points of By .

Let

diam(Vie) | csoup Card({K € M : @ € Vic}). (7.93)

6> D diam(B)
=z regLLE( )+ [I(nea}\)f[ d1am(BK) Te?

Then, there exists Cos > 0, depending only on p, d, {2 and 0, such that
Vo € W2P(2) N WEP(2), Snle) < Cosha [@llwan(en

where Sp s defined by (2.2).
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Remark 7.67. Imposing that 6 > esssupgcn Card({K € M : x € Vk}) is
equivalent to imposing that, almost everywhere on (2, at most 0 sets (Vi) ke m
overlap.

Proof. Introduce the same v € Xp as in the proof of Proposition 7.64 and
use Lemma 7.63 with V' = Vi to arrive, in a similar way as for (7.86) and
(7.90), to

[ Ipv — ‘P”LP(K) + Voo — v‘PHLv(K)d < Cygdiam (Vi) ‘|<IOHW2’7)(VK) ’

where Cag depends only on p, d, £2 and 6. Since diam(Vk) < fdiam(Bg) <
Ohaq, raising to the power p gives Cy7 depending only on p, d, {2 and 6 such
that

1HTpv = @ll7, ) + VD0 = Vol o xye < Corbhi 1912 vie) -

Summing over K € M yields

[1Ipv — ‘PHip(Q) + Voo — v‘PHI;,p(Q)d < O3l Z H‘PH?}VM(VK) - (7.94)
KeM

We now estimate the sum in this inequality. By the Fubini—Tonelli relation
and letting 1y, be the characteristic function of Vi, for any g € LP((2),

> il = 3 [ 1u(@lo@)ras

KeM KeM

- /Q o(@)P? ( 3 1VK<w>> da.

KeM

The choice of § ensures that ), v v, (x) = Card{K e M : ® € Vi }) <0
for a.e. € 2. Hence,

S lolloiy <6 [ loPde =011 o).
KeM 2

The proof is complete by using this estimate in (7.94) with g = ¢, g = |V
and g = |D?¢p|. ]

We now turn to the adaptation of the previous results to other boundary
conditions than homogeneous Dirichlet conditions.

Proposition 7.68 (W?? estimates of Sp for an LLE GD — non-
homogeneous Dirichlet BCs). Assume that p > d/2 and that D is an
LLE GD in the sense of Definition 7.52. Let S = (x;);cr be the family of ap-
prozimation points of D, and M be the mesh associated with D. Assume that
(7.84) holds and take 0 > reg,, (D) + maxxe %&i{)). Take o € W2P(02)
and assume that



7.4 W?P estimate of Sp for local linearly exact GDs 253

Vi€ I, (Ipov(p))i = p(xi). (7.95)
Then, there exists Cog > 0, depending only on p, d, 2 and 6, such that

Sp(p) < Coshat el () - (7.96)
where Sp is defined by (2.94).

Proof. Assumption (7.95) ensures that the vector v = (¢p(x;))ic;r € Xp
satisfies v — Ip 57(p) € Xp 0. This vector is therefore suited to the definition
(2.94) of Sp. Since v satisfies the estimates (7.87) and (7.91) (which have
been established without using the boundary value of ¢), this completes the
proof. m

Proposition 7.69 (W?? estimates on Sp for an LLE GD — non-
homogeneous Dirichlet BCs and relaxed assumption on Zp 5). Make
the same assumptions as in Proposition 7.68, except (7.95) which is replaced
by

VK € M, there ezists Ck(p) > 0 s.t.

. 1 7.97
max |(Tpore)i — ples)] < hadiom(K)|K|FC(e). O
i€lxgnly
Then, there exists Cog depending only on p, d, 2, and 0, such that
1/p
Sp(p) < Coohp | Il o) + ( > CK(@)”) ~ (7.98)
KeM

By convention max;cg|Z;| = 0 and the quantity Ck(¢) can thus be set to
0 if K is an interior cell (that is, Ix NIy = B). For a general K, Ck ()
would usually be the norm on K (or a lower dimensional subset of K) of
some derivatives of ¢, and the quantity ), Ck(¢)? would be bounded
by some constant depending only on ¢ (not on M). Notice however that, in
practical situations, the regularity imposed on ¢ in Proposition 7.69 is such
that Zp oy(¢p) is usually re-defined so that (7.95) holds. See Remarks 2.50 and
13.4.

Proof. The estimates established in the proof of Proposition 7.64 are inde-
pendent of the boundary conditions. Hence, if v = (p(x;));cr € Xp is defined
as in that proof,

HIpv =@l o) + IVDV = Vol 1o (g)a < Caohm l¢llweniy,  (7:99)

where C3g depends only on d, p, {2 and 6.

Let us now consider w € Xp as in the proof of Proposition 7.53, that is
w; =v; if i € Ig and w; = (Ipoy(p)): if i € Iy. By (7.97) the quantity w(K)
defined by (7.66) satisfies w(K) < hM|K|7%CK(<p). Plug this estimate into
(7.67), raise the result to the power p and sum over K € M. This gives



254 7 Analysis tools for gradient discretisations
(IVpv — VDw”LP(Q)d < OhpColy), (7.100)

where Co(9) = (X e Cx(9)?)/P. The term IIpv — Ipw is estimated
similarly. For K € M and a.e. ¢ € K,

po(@) — Hpw(@)| < 3 [wh (@) o — wil
1€lk

< hadiam(K)Cre (@)K |77 S | ().

i€lk

Taking the LP(K) norm, recalling the definition (7.21) of |7k ||, raising to
the power p and summing over K € M leads to |[IIpv — pr||Lp(Q) <

0h3%,C(p). The proof is complete by combining this estimate with (7.100)
and (7.99). .

Since the estimates (7.87) and (7.91) have been obtained without referring to
the boundary values of ¢, they immediately give the following result.

Proposition 7.70 (W?? estimates of Sp for an LLE GD — Neumann
BCs). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.54. Let S = (x;);cr be the family of approximation points of D,
and M be the mesh associated with D. Assume that (7.84) holds and take
0 > reg,, (D) + maxgem %. Then, there exists C, depending only on
p, d, 2 and 0, such that

VQD € Wz’p(ﬁ) ) SD(SD) < ChM ||SD||W2:P(Q) y
where Sp 1is defined by (3.3).

The W?2P estimates on Sp for Fourier boundary conditions are notably harder
to establish than for the other boundary conditions, since the trace reconstruc-
tion Tp also needs to be handled. The issue is that this trace has values in a
lower-dimensional space. If the mesh of 92 is made of parts of hyperplanes
(which is natural if {2 is a polytopal open set) and satisfies the equivalent of
(7.84), then the estimates of Tp can be obtained as the estimates on ITp in
the proof of Proposition 7.64.

Proposition 7.71 (W?? estimates of Sp for an LLE GD — Fourier
BCs). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.57. Let S = (x;)icr be the family of approximation points of D,
and M be the mesh associated with D. Assume that (7.84) holds and, with
Hy, ..., H, hyperplanes whose union covers 0f2, that
(i) For any Ko € My there is lk, € {1,...,r} such that Ko C Hy,,
(ii) For all Ky € My and alli € Ik,, x; € Kp,
(iii) For all Ky € My, there exists a ball Bk, C Ky in Hy, such that

Ky is star-shaped with respect to all points of B, .
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We take

9 > D 5 Tam(Be )
> reg (D) + REM diam(Br) | KoeM, diam(Br,)

Then, there exists Cs3; > 0, depending only on p, d, {2 and 6, such that, for
all o € W2P(92) satisfying v(p) € W2P(0Q2 N Hy) for all £ =1,...,r,

Sp(p) < Cs1hpm (Ilelwz,pm) +> ||7(<P)||W2,p(armH£)> ;
/=1

where Sp is defined by (3.52).

7.5 Further topics on LLE GDs

7.5.1 LLE GDs with generalised discrete unknowns

The definition 7.28 of P;-exact gradient reconstructions implicitly assume that
the discrete unknowns of the method correspond to the values of functions
at given points in the domain (the approximation points S). Some numerical
schemes, especially high order methods, use other kinds of discrete unknowns;
for example, unknowns that represent moments of functions

/K 2 f(z)da.

It is possible to write a more general definition of P;-exact gradient reconstruc-
tion to account for such generalised discrete unknowns. It also makes sense
to generalise the definition to higher order reconstructions, as in Proposition
7.38.

Definition 7.72 (Py11-exact gradient reconstruction with generalised
discrete unknowns). Let K be an open bounded subset of R%, p € [1, +00]
and k € N. A Pyiq-ezact gradient reconstruction on K with generalised dis-
crete unknowns is (P,G) where:

o P = (P)ics is a finite family of linear mappings P; : C*(K) — R,
® G = (G")icr is a family of functions in LP(K)? such that, for any polyno-
mial function q of degree k 4+ 1 or less,

ZPi(q)gi =Vq on K.
iel

The norm of (P,G) is defined by

1(P.G)ll, = diam(K)|K|~# || > [Pl cny 1G]

i€l

)

Lv(K)d




256 7 Analysis tools for gradient discretisations

where Py(uw)|
(w
1Pillery = max o
weck®N\{0} [[wll oz

The P;-exact gradient reconstruction of Definition 7.28 corresponds to P;(¢) =
o(x;) and k = 0.
In a similar way as in Definition 7.72, these gradient reconstructions could
be used to design a notion of “Pjii-exact GDs with generalised discrete
unknowns” and to perform most of the analysis done for LLE GDs (using
[(P,G)l|, instead of [|G]|,, and with adjustments in some spaces of functions

~ e.g., in Lemma 7.31 we would work with ¢ € W¥*+2>(R9)). We let the
interested reader fill in the details.

7.5.2 Non-linearly exact barycentric condensation

Let us consider a heterogeneous material, with a discontinuous diffusion tensor
A which is smooth inside subdomains P, . .., Py (partition of £2). The solution
to (2.20) is not expected to be smooth over §2, but rather smooth (at least
if we exclude the corners) inside each P, and with continuous fluxes at the
interfaces Py N Pp. LLE GDs are adapted to such solutions provided that all
approximation points (&;);cr, , for each K € M, lie in a single subdomain Py.
Indeed, in this case, the gradient reconstruction Ggv from the interpolated
values v; = u(x;) of the solution will be a good approximation of (V) x
(Lemma 7.31).

When performing a barycentric condensation of an LLE GD, it is common
that for some eliminated unknowns i € I'\I**, the set of approximation points
(x;)jen, spreads over several subdomains Py, especially if «; lies at or close to
an interface between two such subdomains. It is then clear that a barycentric
condensation that is an LLE GD is not the best choice to approximate u: if
we define v; = u(x;) for all j € I™ then, for the unknowns ¢ € I\I™ such
that H; spread over several subdomains, the values v; defined by (7.47) are
no longer good (of order diam(K)?) approximations of %(x;), and therefore
(Vo) g = (Vpv)x will not approximate (V) g properly. This does not
prevent the corresponding GS from converging, but leads to reduced accuracy
on coarse meshes.

Barycentric condensation preserves the LLE property thanks to Assumption
(7.46); it is this assumption that ensures that >, ;. BiA(z;) = A(z;) for all
affine function A. To deal with heterogeneous materials, it might be suitable to
relax this assumption and create barycentric condensations that do not satisfy
(7.46). Instead, we should aim for relations that ensure that, if v interpolates @
at (x;);jerss, the values v computed through (7.47) give good approximations
of the values of @ at (x;);cs. This leads to the notion of S-adapted barycentric
condensation.

Definition 7.73 (S-adapted barycentric condensation). Let D be an
LLE GD in the sense of Definition 7.33, and let S be a dense subset Wy (2)
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such that S C C(£2). An S-adapted barycentric condensation D° of D is a
barycentric condensation in the sense of Definition 7.40, without Assumption
(7.46) on the barycentric coefficients but such that:

1. for oll K € M there exists an open set O such that
a) Ok is star-shaped with respect to some x,
b) Ix C Ok, and
¢c) forallp €8, 0, € W»*(Ok),
2. for all p € S, there exists C, > 0, depending only on ¢, and Rps, de-
pending only on DS, such that

VK € M, Vi € I\I™ :
‘w(wi) =Y Bip(x))

JEH;

< CyRpsdiam(K)?. (7.101)

The S-regularity of DS is then defined by

diam
reg,(D%) = regp, (D°) + Rps + nax, diam((OKK))'
Linearly exact barycentric condensations (i.e. in the sense of Definition 7.40)
are S-adapted barycentric condensations with S = C$°(£2) and O the inte-
rior of the convex hull of (@;);e ..
The following theorem is an equivalent of Theorem 7.43 for S-adapted
barycentric condensations.

Theorem 7.74 (Properties of S-adapted barycentric condensations).
Let (Dy)men be a sequence of LLE GDs in the sense of Definition 7.33,
that is coercive, GD-consistent, limit-conforming and compact in the sense of
Definition 2.2, 2.4, 2.5 and 2.8. Let S be a dense subset of Wol’p(Q) and,
for each m, take DS, an S-adapted barycentric condensation of Dy,. Assume
that (reg,,,(Dm))men and (regs(DS))men are bounded, and that haq, — 0
as m — oo (where My, is the mesh associated with D,y ).

Then (DS))men is coercive, GD-consistent, limit-conforming and compact.

Proof. A close examination of the proof of Theorem 7.43 shows that the
transfer of the coercivity, limit-conformity and compactness properties from a
sequence of GDs to their barycentric condensations does not require Assump-
tion (7.46). Hence these properties are satisfied by S-adapted barycentric
condensations.

Let us now prove the GD-consistency. We drop the index m for legibility
and we take p € S. Analogously to the proof of Proposition 7.37, define the
interpolant v € Xps o by v; = ¢(x;) for all i € I™. Let v € Xp be given by
(7.47), that is v; = v; = p(x;) if i € I* and

U= By=> Biplx;) ifie\I*

JjEH; JjEH;
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By (7.101) we have [0; — p(z;)| < C,Rpsdiam(K)? if i € I. Hence
VK € M, Vic Ik : 0 = o(x;) + O(diam(K)?). (7.102)

We can then reproduce with this v the proof of Lemma 7.31, using the xx
with respect to which Ok is star-shaped. This shows that (7.29) holds up to
an additional term O(diam(Of)?) = O(diam(K)?). Still following the com-
putations in the proof of Lemma 7.31, the W2 (Ox)-regularity of ¢ then
shows that |G — Vol 1 (xya = O(|K|*/?diam(K)) on K. This gives

[Vpsv — V‘PHLP(Q)d = Vv - V‘P”Lp(n)d = O(hpm). (7.103)

The property (7.102), the definition (7.32) of IIp and the boundedness of
reg, (D) also give

[ psv — <P||LP(Q) = |[1Ipv - QOHLP(Q) = O(hpm). (7.104)

Estimates (7.103) and (7.104) show that Sps(¢) = O(ha) for any ¢ € S. The
proof is complete by invoking Lemma 2.16 and the density of S in Wg’p(Q).
m
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Conforming approximations

8.1 Conforming Galerkin methods

8.1.1 Homogeneous Dirichlet boundary conditions

Conforming Galerkin methods are probably the simplest GDMs. They simply
consist in replacing the infinite-dimensional Sobolev space involved in the
weak formulation (e.g., H}(£2) in (2.22)) by a finite dimensional subspace;
the corresponding GD is defined as follows.

Let A = (;)ier be a linearly independent finite family of elements of W, (£2).
A conforming Galerkin GD based on A is defined by:

Xp,o={v=(vi)ier : vi € Rforall i € I} and, for v € Xp g,
Ipv =Y wvipi € WyP(£2) and Vpv = V(IIpv) = » _v;Ve;. (8.1)
iel ~
The properties of this GD are straightforward.

Theorem 8.1 (Conforming GDs for hom. Dirichlet BCs). For all m €
N, take A" = (Lp,gm))iel(m) a linearly independent finite family of Wy (£2)
and define D, = (Xp,, 0, p,,,Vp,,) by (8.1) with A = A . Then D, is a
GD for homogeneous Dirichlet boundary conditions in the sense of Definition
2.1.
Furthermore, if
1, . . .

Vo € Wy(92), Jim | min Vo =V, v|Lr2)y =0, (82)
then the sequence (Dp,)men s coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.2, 2.4, 2.5 and 2.8.

Remark 8.2. Tf (u;)ien is a dense sequence in W, *(£2) and if, for all m € N,
A(™) ig a basis of the space v m) spanned by (u;)i=o,... m, then the hypotheses
of the preceding theorem, in particular (8.2), are satisfied.



260 8 Conforming approximations

Proof. Thanks to the Poincaré inequality in Wy 7 (£2), V[l £s(2ya is @ norm

on W)P(£2). Let v € Xpo and assume that IV(Ip,,v)| 1o(ya = 0; then

Ip,v=">c; vigal(m) = 0in WyP(£2). Since the family (wgm))iel(M is linearly

independent, we infer that v; = 0 for all ¢ € I, which shows that ||Vp,, || (o)
is a norm on Xp, . Hence, D,, is a GD in the sense of Definition 2.1.

The coercivity of (D,,)men is an immediate consequence of the continuous
Poincaré inequality, since this inequality gives, for all u € Xp, o,

1T, ull oy < diaan(€2) [V (T, 0)]| o ye = diamn(€2) [ Vip, ] oy

Assumption (8.2) and Poincaré’s inequality imply the consistency of (D, )men-
Indeed, for all v € Xp,, o and ¢ € WyP(£2),

D, v =&l ooy + VD, v = Vol (o)

||HDm,7’} - ‘p”Lp(Q) =+ ”v(HDmU) - v‘)OHLP(_Q)d
<(1+ diam(Q)) ”V(HDmU) - v‘PHLp(Q)d .

Hence,

5p,,(p) < (1 +diam(£2)) min  [[Vp,v = Vel 1, — 0 as m — .
) vEXD,, .0
The limit-conformity is also straightforward, since Vp, u = V(IIp, u) for
all u € Xp, o, and therefore Stokes’ formula in Sobolev spaces shows that

ms

Wp,, (¢) =0 for all p € I/lei;(Q) The compactness of (D, )men follows from
Rellich’s theorem. Indeed, if v,, € Xp,, o is such that HVDmvaLv(Q)d =
IV(IIp,, vm)|l s (0ye is bounded, then by Rellich’s compactness theorem,
(IIp,, Vm)men is relatively compact in LP(£2). L]

Remark 8.3. Dealing with non-homogeneous Dirichlet boundary conditions re-
quires the design of an interpolation operator Zp . This interpolator usually
depends on the chosen method and of the expected regularity of the solution.
See Section 8.3 for an example.

8.1.2 Non-homogeneous Neumann boundary conditions

The definition of a conforming Galerkin GD for Neumann boundary condi-
tions is pretty straightforward. Take A = (p;);cs a linearly independent finite
family of elements of WP (§2) and set

Xp ={v=(v;)icr : v; € Rforall i € I} and, for v € Xp,

Ilpv = Zviipm Vopv =V(IIpv) = Zviv% and Tpu = v(IIpu), (8.3)
el i€l

where v is the trace on 942 functions in W1?(2). The following result can be
proved in a similar way as Theorem 8.1.
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Theorem 8.4 (Conforming GDs for non-hom. Neumann BCs). For
all m € N, take A™ = ((pgm))iel(m) a linearly independent finite family of
WLP(2) and let D,, = (Xp,, 0,1p, ,Tp,, ,Vp, ) be defined by (8.3) with
A=A Then D,, is a GD for non-homogeneous Neumann problems in the
sense of Definition 3.11.
Furthermore, if

Yo € Wl’p(ﬁ) , W}gnoo UEHIXigm ||Q0 — HDm'UHWLp(Q)d =0, (84)
then the sequence (Dp,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.15.

Remark 8.5 (Fourier boundary conditions). The relations (8.3) also define a
conforming Galerkin GD for Fourier boundary conditions, and the equivalent
of Theorem 8.4 holds for sequences of such GDs.

8.2 P, finite elements for homogeneous Dirichlet
boundary conditions

8.2.1 Definition of Py gradient discretisations

Py finite elements methods are particular conforming Galerkin methods, and
are thus GDMs (Section 8.1). They however deserve to be described in detail,
if only because they give us our first practical example of LLE GD.

Let T = (M, F,P,V) be a conforming simplicial mesh of {2 in the sense of
Definition 7.4, and let & € N*. We follow Definition 7.33 for the construction
of the P, LLE gradient discretisation D = (Xp o, Vp, IIp) for homogeneous
Dirichlet boundary conditions. We therefore describe the geometrical entities I
attached to the discrete unknowns, the set of approximation points S, the Pgy-
exact function reconstructions mx and the P;-exact gradient reconstructions
Gk on the elements K of M, and we check that ||[Vp-||;,(g)a is a norm on
Xppo.

1. The set I of geometrical entities attached to the discrete unknowns is
I = V® and the set of approximation points is S = I, where V%) =
Uxenm Vgc) and Vj((k) is the set of the points x of the form (see Figure 8.1
for examples):

z= Y %Ss with (is)sevy € {0,... .k} st Y g =k (85)
sEVk sEVK
(Note that for k = 1, V&) = V.) Then I, = V¥ .= v®n 1, = V) =
V) N 912, and thus

Xp,o={v=(vs)gepm : vs € Rforall se VI wg=0forall s € Vég}

int
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k=1 k=2 k=3

Fig. 8.1. Location of the unknowns in each cell for the P; finite element method.

2.

For K € M, we let Ix = Vﬁf). The function reconstruction I1p in (7.32)
is defined on K through the local basis functions (W?f)sev““)’ called in
K

this particular case the Lagrange interpolation functions and defined the
following way. For each s € VI(?), 7y is polynomial in K of degree k, and
satisfies 7% (s) =1 and 7% (s’) =0 for all s’ € V%c) \ {s}. This leads to

Vo€ Xpo, VK € M, (IIpv)jx = Y vamik. (8.6)

SGV;}C)
Since Zsev(k) T} is a polynomial of degree at most k that has value 1
K

at each s € Véf), Lemma 8.6 shows that Esev(k) w5 = 1 on K. Hence,
K
(T ) gepto 18 a Po-exact function reconstruction on K.
K

For each v € Xp o, IIpv is polynomial of degree £ or less in each cell, and
satisfies IIpv(s) = vs for all s € V() By Lemma 8.7, IIpv is therefore
continuous over §2, and thus belong to W1?(£2). Moreover, for any o €

Fext N Fi, IIpv vanishes at all s € Vgc) N ; since ¢ is a simplex in

dimension d — 1 and Vc(,k) = Vﬁ?) N @, by Lemma 8.6 applied to o instead
of K we deduce that IIpv = 0 on the boundary faces, and thus that
IIpv € Wy P(82).

We define the family Gx = (G%) of functions in L>(K)? by

SGV%’C)

Gk = Vrk. (8.7)

If ¢ is a polynomial of degree less than or equal to k, then 37« q(s)m5
K

is a polynomial of degree less than or equal to k, and matches ¢ at all

s € Vl(f). By Lemma 8.6, these two polynomials coincide. In particular,
with ¢ = A affine map,

Y As)Gr = > As)Vri =V Y A(s)my = VA

sev{ sev{ seV(®)

Hence, Gk is a P1-exact gradient reconstruction on K upon Vgc).
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The gradient reconstruction Vp is given by these local gradients, which
means that

Vo € Xpo, VK € M, (Vpv)ix = Y vsG,

sEVﬁf)
that is, given (8.6),
Yo e Xpo, Vpv=V(IlIpv) a.e. on (2. (8.8)

4. Relation (8.8) and the Poincaré inequality in W, *(£2) imply that v
Vol pr(2ye is a norm on Xp .

The following two lemmas justify the existence and uniqueness of the Lagrange
interpolation functions 7%, and the above construction. They are classical re-
sults, and form together what is called the “unisolvence of V*) for conforming
Py-finite elements” [49].

Lemma 8.6 (Vj(f) is a complete family for Pj). Let K be a simplez,

k € N* and Véf) be the points defined by (8.5). Then for any choice of values
(as)sev(k>, there exists a unique polynomial function p of degree at most k
K

such that p(s) = as for all s € Vgc).
Proof. Let

@ :Pp(K) — Xk :={(as) : as € R for allsGV%g)}

serKk)

be defined by @(p) = (p(8)) ;.0 - @ is clearly linear, and X is a vector space
K

of dimension Card(Vgc)). Let us assume that (1) dim(Py(K)) = Card(V[(f))7
and (ii) if @(p) = 0 then p = 0. Then @ is one-to-one between two vector
spaces of same dimension, and therefore @ is an isomorphism. Hence, for any
family of real numbers (as)sevﬁf) € Xk there exists a unique p € Py (K) such

that &(p) = (as>s€V§<k)’
prove (i) and (ii).

which is the conclusion of the lemma. It remains to

Proof of (i): the dimension of Py (K) is the number of monomials of the form
x® = 27" - 2y? with o = (a1,...,aq) and |a] = a; + -+ ag < k. For
such a a we define i = (ig,...,iq) by @0 = k — (a1 + ... + aq), i1 = a1,
..., tg = aq. This correspondence o — 1 clearly creates a bijection between
{a € N? : |a| <k} and {i € N9+ : |i| = k}. Hence those two sets have the
same cardinal. Since dim(PPy(K)) is the cardinal of the first set and, by (8.5),

Card(VI(?)) is the cardinal of the second set, the proof of (i) is complete.

Proof of (ii): the proof is done by induction on d.

d=1: K is then a segment of line, and V}f) are k + 1 distinct points on K.
It is well-known that if p is a polynomial of one variable, of degree less than
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or equal to k and that vanishes on k + 1 distinct points, then p = 0 and the
case d = 1 is thus proved.

d —1 = d: we take d > 2, we assume that (ii) holds for d — 1 and we want to
prove that it holds for d. The proof is done by induction on k.

e k = 1: the polynomial p is affine and vanishes at the vertices of K. The
mapping p — p(0) is linear, and therefore preserves barycentric combina-
tions. This mapping takes the value —p(0) at the vertices of K. Since
these vertices form a barycentric basis of R?, we deduce that p — p(0) is
constant equal to —p(0) on R, which shows that p = 0 on R%.

e k— 1= k: up to an affine change of variables, we can assume that one
of the faces o9 of K lies on the hyperplane {x4 = 0}. We then denote by
so the vertex of K opposite to oo (see Figure 8.2). A polynomial p in d
variables of degree less than or equal to k can be written

p(x) = zaq(x) + (21, ..., Ta-1)

where ¢ is a polynomial of degree less than or equal to £k — 1, and r is a
polynomial of degree less than or equal to k. Since p vanishes on Vﬁﬁ) and
0o is a (d — 1)-dimensional simplex that lies on {z4 = 0}, we see that r
vanishes on Vgc) Naog = Vg];). By the induction hypothesis the result (ii)
is valid in dimension d — 1 and r is therefore the zero polynomial.

The convex hull of v}é“)\vé’;) forms a (closed) simplex K’ such that
Vg,_l) = v}?\v},’;) (these vertices correspond to (8.5) with the index
i, corresponding to sy, different from zero). Moreover, since K' N {xq =
0} = 0, the relation p(x) = xq4q(x) shows that ¢ vanishes on VED Since
q has degree k — 1 or less, the induction hypothesis on k shows that ¢ = 0.
The proof that p = 0 is therefore complete.

0o

Fig. 8.2. Illustration of the construction in the proof of Lemma 8.6 for k = 3.
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Lemma 8.7 (Continuity through the faces of piecewise polynomial
functions). Let k € N*, let K and L be two simplices of R? with a common
face o, and let the sets V%g) (resp. Vék)) be defined by the points (8.5) (resp.
with K replaced with L). Let px and pr be polynomial functions on K and
L, respectively, such that px and pr, have degree at most k and coincide at all

points of V%C) N Vék). Then px and py, coincide on o.

Proof. The functions (px )|, and (pr)|, are polynomial of degree at most k,

and are identical at the points of Vl(f) ﬂVék). Since o is a simplex in dimension

d—1, and Vc(,k) = Vﬁ?) nNo = Vék) nNo = Vﬁ?) N Vgc), Lemma 8.6 can be applied

to o, and shows that (pk)|, and (pr)|, are identical over the whole face o.
m

8.2.2 Properties of P, gradient discretisations

The properties of P, GDs follow from their conformity and from Proposition
7.37, provided that we establish an estimate on their LLE regularity. We first
state a classical result, which relates the independence properties of a family
of vectors in R? with the fact that they enclose a ball of radius comparable
to their lengths. This result is then used to bound the LLE regularity of Py
GDs.

Lemma 8.8. Let (x;)i=1,...a be vectors in R, and let M be the d x d matriz
with columns x;. We let £ = max;—1 . q|x;| and we assume that the convex
hull of {0, 1, ..., x4} contains a ball of radius ol for some ¢ > 0. Then

d1/2

M~ <
| < wqo?

1 (8.9)

where wq 1s the measure of the unit ball in R?.

Proof. We first recall that |det(M)| is the volume of the d-dimensional
parallelogram M|0, 1]¢ defined by (1,...,24). This parallelogram contains

the convex hull {Z‘Ll Xix; A >0, > A <1} of{0,21,..., 24} Therefore
|det(M)| > |B(0, of)| = wao®?. (8.10)

Let &€ = (&1,...,&) € RY We have M¢ = Z?zl &x;. Hence, for all j =
1,...,d,

det($17 e ,mj_l,ME,a:j+1, .. .,ZBd)

= det(iI)l, v ,wj_1,§jill‘j,$j+1, .. .,:Bd)
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:fj det(:cl,...,scd) :gj det(M), (8.11)

where we have used the properties of the determinant and created linear
combinations to eliminate all vectors except x; from M§. The determinant
is multi-linear continuous with norm 1. Using the definition of ¢ and (8.10),
Equation (8.11) thus gives

(Y ME| > || - [y | [ME] |2j] - |zl
Z |det(:1:1,...,scj_l,ME,a:j+1,...,acd)|
> [¢] | det(M)| > wao®e?|g],

that is, |M&| > wq0?l|¢;|. We square this relation, sum over j = 1,...,d, and
take the square root. This leads to d'/2|M¢| > wqo®|€|. Applying this to
& = M~'n for a generic vector n establishes (8.9). L]

Lemma 8.9 (Estimate of the LLE regularity of a P, GD). Let T be a
simplicial mesh of 2 in the sense of Definition 7.4, and D be a Py LLE GD
as in Section 8.2.1. Then, if 0 > k< (see (7.10)), there exists Cy, depending
only on d and p, such that

reg, (D) < Ch. (8.12)

Proof. For any K € M and any i € Ix = Vgc) we have x; € K and thus
dist(x;, K) = 0. To control the first and second terms in reg,, .(D), thanks to
Remark 7.32 and to (8.7), it is sufficient to prove that

il oo i) < Co and (VAR o 400 < Cohi (8.13)

where C5 depends only on d and g. This is done by a classical reference element
technique.

Let K € M. Up to a translation we can assume that one of the vertices of
K is 0. Let (0,s1,...,84) be the vertices of K and let Sy be the reference
d-simplex {a € R? : a; >0, >, < 1}. Let M be the d x d matrix with
columns (s1,...,8q). Each column of M is a vector with length at most hg.
Since K contains a ball of radius m;lhK > 0~ 'hg, Lemma 8.8 shows that
M~ < C3hj* for some C3 depending only on ¢ and d. By definition of the
simplex K, we have K = M Sy, and M maps each approximation point of
Véﬁ) onto the corresponding approximation point of Vl((k) (because M is linear
and these approximation points are defined by barycentric relations).

Hence, if s € Vﬁf), then @ — 75 (Mx) is a polynomial of degree k that is

lat M~ 1ls € Vg;) and 0 at all other points in Vg;). There are only a finite
number of such polynomials — remember that Sy is fixed and does not depend
on K. We can therefore define Cy as the maximum of the L>(Sp) norms of
these polynomials and their gradients. This constant depends only on d, and
satisfies
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175 (M) ooy < Ca and V(a5 (M))[| oo (592 < Ci-
Estimates (8.13) then follows by recalling that M Sy = K, that
(Vi) (M) = (M) 7'V (i (M),
and by using the estimate |(M7)~| = |M~! < C3hy'. L]
We can now establish the properties of Py, GDs.

Theorem 8.10 (Properties of P, GDs for homogeneous Dirichlet
BCs). Let (Dy)men be a sequence of P, GDs, as in Section 8.2.1, based on
underlying conforming simplicial meshes (T )men. Assume that (K<, )men 18
bounded (see (7.10)), and that haq,, — 0 as m — oo.

Then the sequence (Dy,)men 18 coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.2, 2.4, 2.5 and 2.8.

Proof. If v, € Xp,, o then ITp, v, € Wy (£2) and Vop,, v, = V(IIp, vy,).
Thus, as in the proof of Theorem 8.1, Poincaré’s inequality and Rellich’s
theorem in WO1 P(£2) show that (Dy,)men is coercive and compact. Applying
Stokes’ formula shows that Wp, (@) =0 for all ¢ € W;ﬁ;((?), which gives the
limit-conformity. Finally, the consistency is a direct consequence of Proposi-
tion 7.37 and Lemma 8.9. [

The previous theorem gives all the properties required to apply, for example,
Theorem 2.35 to establish the convergence of the conforming Py scheme for
the quasi-linear model (2.49a). If aiming for error estimates, e.g., by using
Theorems 2.28 or 2.38, one needs specific estimates on Sp and Wp. The
following proposition provides such estimates.

Proposition 8.11 (Estimates on Sp and Wp for P, GDs). Let ¥ be a
conforming simplicial mesh of {2 in the sense of Definition 7.4, and D be the
Py LLE GD on ¥ as defined in Section 8.2.1. Let o > k< (see (7.10)). Then,
there exists Cs, depending only on (2, k and o, such that

Vo € WEL(2), Wn(p) =0, (8.14)
Vi € WHLS(2) NP (82), Sp(p) < Cshliq @l (o) - (8:15)

Here, Sp and Wp are defined by (2.2) and (2.6), respectively. This means
that the space size (see Definition 2.22) of the GD is such that

hap (W19 (2) N WGP (2); WE,(2)) < Cshly

Proof. The relation (8.14) follows directly from the conformity of the P, GD,
and was already noticed in the proof of Theorem 8.10. The estimate (8.15)
on Sp is a straightforward consequence of Lemma 8.9 and Proposition 7.38,
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once we notice that D is of order k (as defined in Proposition 7.38). Indeed,
for any ¢ € Py and any K € M, Zsev(’“) q(s)m% is a polynomial of degree
K

at most k that takes, by definition of (73 ) )., the value g(s) at a generic
K

s € Vgc). The polynomial g also satisfies this property so, by Lemma 8.6,
q =2,y q(8)mf. This proves (7.38) for polynomials of order k& (not just
K
k —1), and the exactness (7.39) of the gradients follows since G5, = V7¥,.
]

Remark 8.12 (Rates of convergence of the Py, GS)

Proposition 8.11 and Theorem 2.28 give, as expected, O(h’j\/l) error estimates
on the Py method applied to the linear diffusion equation (2.20), in the case
u € WFHL2 (). We refer to [33, Theorem 4.4.20] for more optimal W™P-error esti-
mates, obtained by taking advantage of the specificities of this conforming method.

8.3 Py finite element for non-homogeneous Dirichlet,
Neumann and Fourier boundary conditions

We briefly describe here, following the remarks in Section 7.3.6, the mod-
ifications to bring to the Py GD to deal with non-homogeneous Dirichlet
conditions, Neumann conditions or Fourier conditions.

8.3.1 Non-homogeneous Dirichlet conditions

Following Definition 7.52, a P;, GD for non-homogeneous Dirichlet boundary
conditions consists in (Xp,Zp g, [Ip, Vp) where

Xp ={v=(vs)gepw : vs €Rforall se V(k)},

IIpv and Vpu are defined by (8.6) and (8.8) (for all v € Xp), and an inter-
polation operator Zp g : Wl_%’p(aﬂ) — Xp o has to be defined, where

Xpo={veXp :vs=0forall se Vi(ft)}.
The definition of such an interpolant on WpP (002) is somewhat problem-
atic, given that P, methods call for nodal interpolants — i.e. values of the
function at the vertices V(*). Since functions in Wl_%’p(&(?) are usually not
continuous, their value at a given point is not defined. One could then use
the notion of Clément interpolators [51], but this would have to be adapted
to interpolate functions only defined on the boundary of f2.
In practice, in the context of Py, finite element schemes, the boundary condi-
tions are usually continuous. Following Remark 2.50, we therefore only need
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to define Zp 5 : Wl_%’p(&()) NC(9§2) - Xp p. This can be done by setting,
for g € W5 P(92) N C(002) and s € V¥

ext
(Zp,09)s = 9(s). (8.16)
We then have the following result.

Theorem 8.13 (Properties of P, GDs for non-homogeneous Dirichlet
BCs). Let (Dyy)men be a sequence of Py, GDs for non-homogeneous Dirichlet
boundary conditions, as above. We denote by (% )men the underlying con-
forming simplicial meshes, and we assume that (K<, )men S bounded (see
(7.10)). We also suppose that haq,, — 0 as m — oo.

Then, the sequence (Dy,)men s coercive, limit-conforming and compact in the
sense of Definitions 2.2, 2.5 and 2.8. Moreover, with Sp defined by (2.94), we
have Sp,,(p) — 0 as m — oo, for all p € W*>(£).

Proof. Poincaré’s inequality, integration-by-parts and Rellich theorem in
WO1 "P(£2) give the coercivity, limit-conformity and compactness as for homo-
geneous Dirichlet boundary conditions. Given the definition (8.16) of Zp,_, a,
the consistency for ¢ € W2°°(£2) follows by selecting v = (vs) ey defined
by vs = (s), and by using Lemmas 7.27 and 7.31 as in the proof of Proposi-
tion 7.37. ]

Remark 8.1} (General GD-consistency property)

The last assertion of Theorem 8.13 states a weaker version of the consistency, re-
quired only for regular functions. Checking the consistency in the sense of Definition
2.51, that is for functions in W' (£2) instead of W (£2), would require to ascertain
that (2.96) holds. This is somewhat technical and requires the usage of a Clément
interpolator, with boundary interpolator Zp o defined by (8.16). The literature does
not seem to contain clear results in that direction.

8.3.2 Neumann boundary conditions

The modification for Neumann boundary conditions is natural. Following Def-
inition 7.54, we simply enable boundary discrete unknowns to be non-zero,
i.e. we take

Xp = {v=(vg)sepm : vs €R forall s € VF1.

IIp and Vp are still defined by (8.6) and (8.8) (for all v € Xp).

The proof that (3.1) is a norm on Xp is straightforward. If [[v]|, = 0 then
Vpv = V(IIpv) = 0 and thus IIpv is constant. As [|v|, = 0 also implies
[ Ipv(x)de = 0, we infer that IIpv = 0. Then, for all s € V, vg = IIpv(s) =
0, which shows that v = 0.



270 8 Conforming approximations

Finally, for non-homogeneous Neumann boundary conditions, we define Tp :
Xp — L*>®(012) by
Tpv = y(IIpv) = (1Ipv)s0- (8.17)

The Poincaré-Wirtinger inequality in W1P(£2) gives C depending only on {2
and p such that, for all v € Xp,

o0l < € (IV Ty + | [ Tov(@)aa]) = C ol
Combined with the continuity of the trace v : WP (£2) — LP(942), this gives
a uniform estimate on Cp (defined by (3.9)) depending only on {2 and p. The
choice (8.17) of the trace reconstruction shows that Wp, defined by (3.11), is
identically zero.

Proposition 7.55 gives the consistency of sequences of Pr GDs for non-
homogeneous Neumann boundary conditions. The compactness of such a se-

quence follows from Rellich’s theorem and from the compactness of the trace
operator v : WLP(2) — LP(952).

Theorem 8.15 (Properties of P, GDs for Neumann BCs).

Let (Dyn)men be a sequence of P, GDs for Neumann boundary conditions
as above, defined from underlying conforming simplicial meshes (Tp)men-
Assume that sup,, ey ks, < +00 (see (7.10)) and that haq,, — 0 as m — oco.
Then the sequence (Dy,)men 18 coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.15.

8.3.3 Fourier conditions

For Fourier boundary conditions, the trace is still defined by (8.17) and clearly
satisfies the conditions in Definition 7.57, with My = Foxt and I, = V}f) for
all K € M and all 0 € Fg N Fext- A bound on the LLE regularity of the
obtained GD can be established as in the proof of Lemma 8.9, by transporting
the basis functions on the reference simplex Sy to check that ||7r§|| Lo (o) is

uniformly bounded for all 0 € Fg N Fext and all s € Vﬁf). To bound the

quantities %&g@)) in reg, (D) defined by (7.69), we also use the fact that
diam(o) < hx whenever o € Fr.

As a conclusion, by Proposition 7.58, Theorem 8.15 remains valid in the con-
text of Fourier boundary conditions (with Definition 3.4 replaced with Defi-

nition 3.37).

8.4 Mass-lumped P; finite elements

It is obvious from (8.6) that the reconstruction ITp of the P GD is not
piecewise constant. To benefit from the advantages of a piecewise constant
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reconstruction, such as a diagonal mass matrix in time-dependent problems, or
the applicability to non-linear models such as Stefan’s or Richards’ equations,
the P, GD needs to be mass-lumped as per Definition 7.45.

Mass-lumping leads to a piecewise constant reconstruction II}", whose best
approximation properties are of order 1. There is therefore little interest in
using high order methods when mass-lumping is required, which is why we
only consider the case k = 1 here. Since mass-lumping is essentially indepen-
dent of the boundary conditions (see Section 7.3.6), we only present here the
case of homogeneous Dirichlet boundary conditions.

Definition 8.16 (Mass-lumped P; GD). Let ¥ = (M, F,P,V) be a con-
forming simplicial mesh of {2 in the sense of Definition 7.4, and let D =
(Xp,0,Ip,Vp) be the Py GD built on ¥ as in Section 8.2.1 (with k =1).
For each s € V and K € M such that s € Vi, let

rs={ye K : nk(y) > Wf(/(y) for all 8 € Vi \{s}}

(recall that (7% )sey, are the Py basis functions, defined in Item 2 of Section
8.2.1). Define then (see Figure 8.4 for an illustration)

.= |J k.
KeM | SEVK

Then a mass-lumped P1 GD is defined by DM = (Xp o, [I}Y", Vp) where I}
is the piecewise constant reconstruction built from (£2s)sey, that is

Yo e Xpo, Vs eV, IIFv=uvs on 2.

Fig. 8.3. Partitions for the mass-lumping of the P; GD.
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The mesh (25)sey thus constructed is sometimes called the barycentric dual
mesh, or Donald dual mesh, of . This is only one possible mesh that can be
used to create a mass-lumped version of the Py GD on ¥. It is however the
most classical one; indeed, for the time-dependent heat equation, this choice
leads to the usual mass lumping as known to the finite element community,
which consists in replacing the mass matrix M = (M;;) (resulting from the
discretisation of the time derivative term) by the diagonal matrix D with
coefficients D;; = Zj M;;, see e.g. [138, Chapter 15].

The properties of this mass-lumped P; GD are stated in the following theorem.

Theorem 8.17 (Properties of mass-lumped Py GDs). Let (T,,)men be a
sequence of conforming simplicial meshes of {2 in the sense of Definition 7.4,
and let (DX)men be the corresponding mass-lumped Py GDs given by Defini-
tion 8.16. Assume that sup,,cy kz,, < +0o (see (7.10)), and that ha,, — 0
as m — oo.

Then (DM:)men is coercive, GD-consistent, limit-conforming, compact, and
has a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4,
2.5, 2.8 and 2.12.

m

Proof. Let us assume that
Vo € Xp,,.0, |[Ip, v =I5, 0| 1y o) < Pt VD, 0l p0pe - (8:18)

Then the conclusion of the theorem follows from Theorem 8.10 (which states
that the underlying sequence of P; GDs (D, )men is coercive, GD-consistent,
limit-conforming and compact) and Theorem 7.49.

The proof of (8.18) is done by way of simple Taylor expansions in each 2k .
Indeed, since IIp,, v is linear in K D Q2 s with V(IIp,,v) = (Vp,, v)k, and

since I35 v =v(s) = Ilp,,v(s) in 25 D Nk s, we have, for ¢ € O,

Iy v(x) — IIp, v(x) = IIp,,v(s) — IIp,,v(x)

= (Vp,v)ik - (s —x) = Vp, v(®) - (s — ).

Hence,
Iy, v(x) — IIp,v(x)| < ha, |V, v(Z)]- (8.19)

This estimate is valid for any © € 2k s, any K € M,, and any s € V.
Hence, it is valid for any x € 2. Raised to the power p and integrated over
x € (2, (8.19) gives (8.18). L]

Remark 8.18. If p > d/2, by Proposition 7.64 the P; gradient discretisations
on (T )men satisty Sp,, (¢) < Ch,, [[@llyr2m (o) for all ¢ € W2P(£2) (with

C not depending on m or ¢), and Wp, (¢) =0 for all ¢ € VVdIf;(Q)
Estimate (8.18) shows that (7.59) holds (with D}, = D)) with w,, = ha,, -

m
Combined with the estimates on Sp,, and Wp, in Proposition 8.11, and

m
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with (7.63) and (7.64) in Remark 7.51, this proves that the mass-lumped Py
gradient discretisations satisfy

SD%L (¢) < C'hm,, ||‘P||W2,p(9)

(with C’ not depending on m or ¢), and

WDM(‘P) < ha,, diV"pHLP’(Q) .

Hence, as expected, mass-lumped P; GSs are order 1 schemes. More precisely,
if the exact solution to the linear elliptic problem (2.20) belongs to H? and
d = 1,2,3, then the estimates (2.25) and (2.26) are O(ha¢) when the mass-
lumped P; GD is used in the GS (2.23).

8.5 Vertex approximate gradient (VAG) methods

Successive versions of the VAG schemes have been described in several papers
[100, 102]. VAG methods stem from the idea that it is often computationally
efficient to have all unknowns located at the vertices of the mesh, especially
with tetrahedral meshes (which have many fewer vertices than cells). It is
however known that schemes with discrete unknowns at the vertices may lead
to unacceptable results for the transport of a species in a heterogeneous do-
main, in particular for coarse meshes (one layer of mesh for one homogeneous
layer, for example). The VAG schemes are an answer to this conundrum. After
all possible local eliminations, the VAG schemes only have vertex unknowns,
and have been shown to cure the numerical issues for coarse meshes and het-
erogeneous media [102, 101, 103]; this is due to a specific mass-lumping that
spreads the reconstructed function between the centre of the control volumes
and the vertices. Let us remark that the original version of the VAG scheme
in [100] uses the same nodal formalism as in Chapter 14, but was shown in
the FVCAG6 3D Benchmark [105] to be less precise than the version presented
here [99].

Starting from a generic polytopal mesh ¥, the VAG GD is defined as a barycen-
tric condensation and a mass-lumping of the P; GD on a conforming simpli-
cial sub-mesh of ¥. We consider here the situation of homogeneous Dirich-
let boundary conditions and space dimension 3; other boundary conditions
and/or dimension 2 are easy adaptations.

1. Let T = (M, F,P,V) be a polytopal mesh of §2 in the sense of Definition
7.2, except for the removal of the hypothesis that the faces ¢ € F are
planar. We define a conforming simplicial (tetrahedral in 3D) sub-mesh by
the following procedure. For any K € M, any o € Fg, and any s,8 € V),
such that [s, '] is an edge of o, we define the simplex Tk » s s by its four
vertices Tk, Ty, S, s (see Figure 8.5), where the point @, corresponding
to the face o is given by
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1
To = GardVe) Y s (8.20)

9/ sev,

We denote by 7 the conforming simplicial mesh (as per Definition 7.4)
defined by the simplices T ;s s - More precisely, 7 = (MT, FT pT VT,
where

o M7 is the set

T — {TK,a,s,s’ :KEM, o€ Fk,
(s,s') € V? such that [s, ] is an edge of o},

o FT is the set of all faces of the simplices in M7,

e PT is an arbitrary set of centres of the simplices (they do not play
any role in the construction of the scheme),

o V7T is the set of all vertices of the simplices in MT; this means that

VI =PUVU{x, : 0 € F}. (8.21)

2. We let D = (X5.,0: V5 1I55) be the P1 GD defined from T as in Section
8.2.1 for k = 1. Given (8.21), for D we can define the set I of geometrical
entities attached to the discrete unknowns by I = MUV U F, and the set
of S of approximation points is S = ((xx)kem, (8)sev, (Ts)oer).

3. We define a barycentric condensation D of D (see Definition 7.40) which
consists in eliminating the discrete unknowns attached to the internal
faces Fint of T. Precisely, we let I®™ = M UV U Feyt and, for o € Fiyt,
we set H, =V, and we define the coefficients 87 = 1/Card(V,), for all
s € V,. These coefficients are precisely the ones appearing in (8.20). The
mapping v € Xpes o — U € Xp o described by (7.47) is therefore given by
U= ((:JK)KGM; (ES)SGVV (50)06.7:) with

VK e M, EK:UK,

VseV, Vs = Vg,
Vo € fext, 5o‘ = Vg = Oa (822)
Vo € Fint, Vo = Card Z Vs-

SGV

4. The VAG GD is the gradient discretisation D obtained from D" by per-
forming a mass-lumping in the sense of Definition 7.45. We therefore have
I=MUVUFu, Io=MUVNN) and Iy = (VN O2) U Fext, which
gives

XD,O = {U = ((UK)KGMa (vs)s€V7 (UU)Uefext) :vg € Rforall K € Ma
vs ERforallse VN2, vg =0forall s VNasL,
vy =0 for all 0 € Foxt }-
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To perform the mass-lumping of 5&\, we start by splitting each sim-
plex Tk ss,s into three parts TII((’0787S/7 TR 5.5, and Tféavs,s, (whose
detailed geometry is not needed), that respectively contain in their clo-
sure g, s and s’. We then let, in Definition 2.12, {2 be the union of all
(TE )o,s,s, and 25 be the union of all (7 )K,0,s'- This leads to

K,o,s,s’ K,o,s,s8’
Vo€ Xpo : Ipv= Y vklo,+ Y valg,. (8.23)
KeM seV

The gradient reconstruction is not modified by the mass-lumping, and
therefore Vpv is equal, in a tetrahedron Tk , s s/, to the gradient of the
affine function that takes values (vi, U5, vs, vs/) at the vertices (z i, 5, s, )
ij}ﬂms@“

Fig. 8.4. Definition of a simplex T s s in a mesh cell K.

Remark 8.19 (Elimination of the cell unknowns in the VAG GS by static conden-
sation,)

Apply the VAG GD to obtain a GS (2.23) (with F' = 0 to simplify the presen-
tation), and take in this scheme the test function v € Xp o which satisfies vg = 1
for a given cell K, v;, = 0 for all other cells, and vs = 0 for all vertices. Then, the
integral in the right-hand side of (2.23) can be reduced to K. Let ax be the Py
Lagrange interpolator in the tetrahedra (T'k s s,s')0,s,s’, With value 1 at x and 0
at all other vertices of these tetrahedra; then

Vpou =urgVag + Z usOs in K,
sEVK

for some functions ©, (involving the Lagrange interpolators at the vertices of the
tetrahedra contained in K). Since Vpv = Vagk, we infer that
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uK/KA(m)VaK(m) -Vag (x)dz

- [ f@ax(@)az— 3 u [ A(@)6u(@)- Vax(@)ia.

sEVK

The coefficient of ux in the left-hand side is not zero, so this relation yields an
expression of ux in terms of (us)scv, (and the source term f), without even having
to solve a local system.

Hence, when using the VAG GD to obtain a GS for a linear elliptic problem, the
cell unknowns can be locally eliminated and expressed in terms of the neighbouring
vertex unknowns.

Lemma 8.20 (Control of regg, for VAG GD). Let T be a polytopal mesh
of 2 in the sense of Definition 7.2, and let T be the conforming simplicial
sub-mesh < as in Item 1 above. We take o > kgr (see (7.10)). Let D be the
barycentric condensation, defined in Item 3 above, of the Py GD on IT.
Then there exists Cg depending only on o such that regpy, (fm) < Cs.

Proof. The proof is made in several steps. Here, we write a < b for a < Cb
for some C' > 0 depending only on 9. We write a = b, and we say that a and
b are comparable, if a < b and b < a.

Step 1: The length of any edge in any tetrahedron T € M is comparable to
the diameter hr of the tetrahedron.

Let 7 be a face of T and let s be the opposite vertex. Let B(®r, pr) be the
largest ball included in T and centred at its centre of mass; by definition of
kgt we have pp =~ hp. Let (s;)i=1,...q be the vertices of 7. We write Zr as a

convex combination Ty = As + Z?zl A;8;. Let np . be the outer normal to
T on 7. For any s’ vertex of 7, since (8 — s;)Lny, foralli=1,...,d, and

since X\ + Zle A; = 1, we have
d

(8" —@r) nr, =" —s8) nr, + Z Ni(s' —8;) -nr,
i=1
=8 —3s) nr,.

We have (s’ — Zr) - ny,, = dist(Tr, 7) > pr ~ hr, and therefore
hr SAS —s) nr,. <(s'—3s) nr,. (8.24)
Therefore, hy < |8’ — s|. Since we also have |8’ — s| < hp, we infer that

The length of any edge of a tetrahedron T € M7T

is comparable to hAr. (8.25)

Step 2: If o € F and h, is the mazimal distance between two of its vertices,
then hy is comparable to the diameter of any tetrahedron T € MT having its
base on o.
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Recall that a face o does not need to be planar. Let T be a tetrahedron with
its face on o, and denote by K € M the cell that contains T. We first notice
that any two tetrahedra 77,75 € M7 in K having their base on ¢ share the
common edge [z, ,] and thus, by (8.25),

hr, = [Tk — x,| = hr,. (8:26)

We have h, = |81 — sa| for some vertices s; of . Let us take Ty,T, € MT
tetrahedra in K with base on ¢ and having respectively s; and ss as vertices.
Using (8.26) we have

he =81 — 82| < |81 — x| + |y — 82| < hpy, + hr, = hr. (8.27)

Any edge of o is also an edge of a tetrahedron with base on o. Properties
(8.25) and (8.27) therefore give

The length of any edge of ¢ is comparable to h,. (8.28)
Finally, T shares an edge with o. Hence, (8.25) and (8.28) show that

For any tetrahedron 7' € M7 having its base on o, hy = h,. (8.29)

Step 3: conclusion.

The mesh corresponding to the P; gradient discretisation D on ¥ is MT.
Hence, a cell of this mesh is a tetrahedron T" with its base on some o € F, and
the only unknown that is eliminated in Ik (from the P; GD) is the unknown
at @,. This elimination is done by using the vertices of o and, by (8.29), these
vertices all lie within distance h, ~ hp of the points in T'. Moreover, since
Bg =1/Card(V,) we have > _ .y, |B7|=1.

These properties give a bound on regg, (D) that depends only on o (through
the relations ). (]

Remark 8.21 (Comparison between hr and hi )

If p is also an upper bound of maxxeam Card(Fk), then by working neighbour to
neighbour it can be shown that any tetrahedra T € M7 in a cell K € M has a
diameter hr =~ hk.

Theorem 8.22 (Properties of VAG GDs). Let (T,,)men be a sequence of
polytopal meshes of {2 in the sense of Definition 7.2. For each m € N we define
the conforming simplicial sub-mesh TL of T, as in Item 1 above. Assume that
ha,, = 0 as m — oo, and that (Kt )men is bounded (see (7.10)). Let Dy, be
the VAG GD built on T,,.

Then (D) men 1s coercive, GD-consistent, limit-conforming, compact and has
a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4, 2.5,
2.8 and 2.12.
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Proof. Let D,, be the P; GD on L. Since D,, is the mass-lumping of the
barycentric condensation D, of Dy, the result follows from Theorems 7.43

and 7.49 if we can prove that reg,,.(D,,) and regBA(D:) remain bounded,
and that the following version of (7.58) holds:

vaA v

m

Yv € XDm,O s

’HDmv — HfBA/U

m

< ha,, (8.30)

Le(2) ~ Le(2)d

Since (kg7 )men is bounded, the boundedness of reg,, (D) follows from
Lemma 8.9. The bound on regBA(f}:;) follows from Lemma 8.20. To prove
(8.30), we use the same technique as for the mass-lumping of P; GDs. In each
T 5ae (esp. T, o o), smv is linear, Vs = V(IIgsv) and IIp, v is
equal to vy = Ilzsv(x k) (resp. vs = Ilm.v(s)). Thus, in each T{{ays,s, and
T that is, on the whole of 02, "

K,o,s8,8"

UDm’U _HﬁBA/U S h./\/lm V=s\v| . (831)

D

We then conclude the proof of (8.30) by taking the LP(§2) norms in (8.31).
|

Theorem 8.23 (Estimates on Sp and Wp for VAG GD). Let ¥ be a
polytopal mesh of §2 in the sense of Definition 7.2, and T be the conforming
simplicial sub-mesh of T, as in Item 1 above. We take

> Card
0 > Kgr + max Car (Vk),

and we let D be the VAG GD built on T. Then, there exists C7 depending only
on d, p, 2 and o such that

Cp < (7, (8.32)
Vo € Wi (2), Wo(p) < ha ldive]l o ) (8.33)

and
Vo € WO (2) N W(Q), Sp(9) < Crhat lellyanay - (834

Note that, in practice, the uniform bound on the number of vertices of each
cell, implied by p, is not a restrictive assumption.

Proof. By (7.62) and (8.30) (which shows that we can take wy, = hpn, <
diam(£2) in (7.59) with D}, = D and D,, = D), we have Cp < diam(£2) +
Czea. We then use (7.57) to get Czsn < Cp < Cp, where Cp depends only on
d, p and 2 (we can actually take C'p = diam({2), an upper bound of Poincaré’s
constant in W**(£2) - remember that D is the P; GD). This gives (8.32).

Similarly, Estimate (8.33) follows from (7.64) (in which we can take w,, =

h,, by (8.30)) and from (7.57), which shows that Wxzs. < W5 = 0.
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Owing to (7.63) with D}, = D and D,, = D™, and to (8.30), to prove (8.34)
it suffices to show that Sges () < Csh [|@llyy2.0 (o) With Cs depends only on
p, d, {2 and p. This estimate is obtained by using Proposition 7.66, provided
that we find sets (Vi )xen that satisfy (7.92) and (7.93), with D =D and
0 depending only on d, p, {2 and p.

We first notice that the bound on reg,, (D ') in (7.93) is a consequence of
Lemma 7.42, Lemma 8.9 (with D = D the P; GD on ¥7), and Lemma 8.20.
Each cell of the mesh M7 associated to D' is a tetrahedron Tk 4.4 in a
certain cell K € M. In Proposition 7.66, set Vr, ., = K. Each € 2
belongs to a single cell K € M, and can therefore only be in Vi oo for
Tk s, @ tetrahedron contained in K. The bound Card(Vg) < o ensures
that the number of such tetrahedra, and thus Card({Tk s ss € MT : @ €
VTK,U,S,S/})v is bounded above by some constant depending only on o. This
takes care of the last term in (7.93). It therefore remains to prove that each
VTK,a,s,s’ = K is star-shaped with respect to a ball BTK,M,S/ C Tko,s,s
such that diam(BTKy”rs,) > Cyhg with Cgy depending only on ¢. As in the
proof of Lemma 8.20, in the following we denote a < b for a < Cb with C
depending only on g, and a =~ b for ¢ < b and b < a. From now on, we also
set T'= TK,a,s,s’-

In the current setting, the faces 0 € Fx of K may not be planar. However, in
the construction of M7 each of these faces has been split into triangles that
are necessarily planar. Hence, we can consider the cell K to be polytopal,
with planar faces the bases of the tetrahedra of M7T contained in K. If 7 is
the basis on o of T, applying (8.24) with s = &) (which is indeed the vertex
opposite to 7 in T') and any vertex s’ of 7 shows that

hr S (s —xk) -nr, =dg, -

Since Card(Vk) < 1 we have Card(Fk) < 1 and Remark 8.21 can be invoked.
This gives

hK ~ hT 5 dKﬂ—. (835)
Then Lemma B.1 shows that K is star-shaped with respect to a ball B(xk, k)

with 7 ~ hg (see Figure 8.5 for an illustration).
Since kgr < p, T contains a ball B(yr, pr) with, owing to (8.35),

pPT = th ~ hK XTK. (836)

We now find By — mentioned in (7.92) — by an homothetic transformation of
B(yr, pr). Let € (0,1) and let

Br = (1 = p)xx + pB(yr, pr) = B(1 — p)xk + pyr, ppr).

Since T' is convex, By C T. If By C B(xk,7k), then Vp = K is indeed star-
shaped with respect to Br. Since diam(Br) = 2upr ~ phx = pdiam(Vr),
this shows that the second term in the right-hand side of (7.93) is bounded
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Fig. 8.5. Illustration of the proof of Theorem 8.23. This figure is a planar section
of a cell K.

by p~1C1g with Cyo depending only on o. Hence, the proof is complete if we
can find p depending only on p such that By C B(zk,rk).
If z € By we have z = (1 — p)zx + pyr + ph with |h| < pp, and therefore

|z —xx| < plyr — x|+ ppr < plhr + pr) < Criprg

with C7; depending only on o (we used (8.36)). Taking p = 1/Cy; ensures
that Br C B(xk,rk) and concludes the proof. ]
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Non-conforming finite element methods

As briefly seen in Chapter 1 and along the examples of Chapter 7, the non-
conforming P; finite element method on triangular meshes can be recast in
the GDM framework. In the present chapter, all standard non-conforming
methods are shown to be GDMs. These methods are mesh-based, and their
analysis is facilitated by a simple generalisation of the notion of control by a
polytopal toolbox from Chapter 7.

A generic presentation of non-conforming methods is first developed for ho-
mogeneous Dirichlet boundary conditions and embedded in the GDM frame-
work. The case of non-conforming Py finite elements is then considered; high
order estimates on Sp and Wp are obtained. Finally, the specific case k = 1
is detailed: the non-conforming P finite element method is shown to be an
LLE method for various types of boundary conditions; mass-lumping is finally
addressed.

9.1 Non-conforming finite element methods for
homogeneous Dirichlet BCs

9.1.1 Abstract framework

Definition 9.1 (Non-conforming Wol’p space). Let T = (M, F,P,V) be a
polytopal mesh of §2 in the sense of Definition 7.2. The non-conforming Wol’p
space on X, denoted by Wé:g, is the space of all functions w € LP({2) such
that:

1. [WlPregularity in each cell] For all K € M, the restriction wig of w to
K belongs to WHP(K). The trace of wyx on o € Fi is denoted by w)f o

2. [Continuity of averages on internal faces| For all 0 € Finy with M, =
{K, L},

/ Wi (4)d () = / w0 ()d (y). (9.1)
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3. [Homogeneous Dirichlet BC for averages on external faces] For all 0 € Fext
with M, = {K},

/wm,a(y)dv(y) =0. (9-2)
If w e Wézg, the “broken gradient” of w is Vgw defined by
VK e M, Vaw = V(w|K) m K

and we set
1
P

||w||W;,g=|vzwLp(md:<Z ||V<wK>H’;p(K)d> SNCE

KeM

Owing to (9.4) in Lemma 9.3 below, ||'||Wi=g is indeed a norm on Wég

Remark 9.2 (Non-conforming approzimation). The only continuity require-
ment for functions in W%io is the “O-degree patch test” (9.1). All families
of non-conforming finite elements spaces based on the geometric elements of
¥ are subspaces of Wég , and we also observe that W,**(£2) C Wég

Due to this weak continuity requirement (9.1), approximations with func-
tions belonging to W%:g are “non-conforming”, in the sense that functions in

W, " (£2) are approximated by functions not necessarily in Wy?(£2). In par-
ticular, these approximations in W%’g do not satisfy the Stokes formula in
general.

Let us now prove some properties of the space Wé’g, similar to the notions of
coercivity, limit-conformity and compactness for GDs.

Lemma 9.3 (Properties of W%g) Let ¥ = (M, F,P,V) be a polytopal
mesh of {2 in the sense of Definition 7.2. Let o > 0z + nz (see (7.8)—(7.9)).
Let Wéig be given by Definition 9.1. Then there exists C1, depending only on
(2, o0, d and p, such that

Vo € Wah,  [wllpega) < Crllwlyas (90.4)

and, for all ¢ € Wl’p/(Q)d and all w € Wé:g, the quantity

We (0, w) = / (p(a) - Vsu(a) +dive(e)u(@)da

satisfies
Wz, w)| < CLha 1901 L (g ol - (9.5)

Moreover, for any sequence of polytopal meshes (¥, )men such that (0=, +
N, )meN 18 bounded and haq,, — 0 as m — oo, the sequence (Wéf,o)mEN is

m

compactly embedded in LP((2) in the sense of Definition C.J.
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Proof. Step 1: We mimick the notion of control of a GD by a polytopal
toolbox (see Chapter 7). Recall that X<, |7, /I and Vg are defined by
(7.7).

Let ¥ : Wé:g — Xz o be the linear mapping defined by: for all w € W%:&

VK € M, ¥(w /
K]

(9.6)
Voe F,VK € My, ¥(w |/w|Ka x)dy(x).

The definition of ¥ (w), is justified by (9.1), which shows that ¥(w), does not
depend on K € M,,. Moreover, owing to (9.2), ¥(w) indeed belongs to Xz g.
Let us first establish the existence of Cs, depending only on g, d and p, such
that

Vi € WED, [#(w)lz,, < Ca lullyy (9.7)
Vw € WES, [0 — Tel(0) | o) < Cohnt [l (0.8)

Vw e W VK € M, / [V (wiie) (@) — Vsl(w)(@)] dz =0.  (9.9)
K
Apply first Lemma B.6 to obtain C; depending only on d, p and g such that
Cihb!
), ~#(w)sl? < S [ V@i (010)

and
Hw - HTW(W)HLP(K) < Cihk HV(W\K)HLp(K)d : (9-11)

Divide (9.10) by dKU, multiply by |o|, use hx/dk < 0z and sum over
o€ Fk and K € M to find

‘ ()‘:p_clep 12 Z/|V’LU|K ‘pdw

KeMoeFk

=005t Z Card(Fk) / |V (w) k) (z)|Pdz.
KeM
Using Card(Fg) < 0 leads to [¥(w); , < C16% ||w||p Lo which proves (9.7).

Estimate (9.8) is obtained by raising (9.11) to the power p and summing over
K e M.
Relation (9.9) follows from the Stokes formula by writing, for any K € M,

/Vw‘K )da = Z /w|K(r Ydy(z) nk - = Z |o|¥ (w) sk, o

oE€FK ocE€EFK
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— |K|(Tst )i = [ Tab(w)(e)de.
K

Step 2: We mimick the proofs of Theorem 7.11 and Corollary 7.12.

To prove (9.4), use the triangle inequality, Estimate (9.8), the Holder inequal-
ity (D.7), Lemma B.15 (providing the ¢ > p and Cs below), and Estimate
(9.7) to write, for any w € Wé:g,

||w||Lp(_Q) < lw - qu;(w)”Lp(Q) + HHTw(w)”LP(Q)
1_1
< Cah [l + 121575 | Hx (w)]] g

< Ou(diam(2) + 5123 H) g

We turn to (9.5). Let o € W' (£2)? and w € Wég Use the triangle inequality
and Estimates (9.8), (B.31) (noticing that T<W¥(w) = 0 here) and (9.7) to
obtain

‘WT(")&’ w)‘
< | [ IVsule) - Vsp(u)(@)]) - ¢l@)de
+ /Q[w(a:) — Iz ¥ (w)(x)]dive(z)de
+ /Q (Ve (w)(z) - p(z) + Hz¥ (w)(x)dive(z)) de
< / [Vzw(x) — V¥ (w)(@)] - (@)dz| + [[divel| L o) Cohat [wllyy
0 T,0
+ G5 IVl Lo (o) [¥ (W), haa
< | [ Vzut@) - Tertw)@] - p@)ia] + 16l o Consa el
2 T,0

+C5HVQO||LP'(Q)(¢ Cs Hw”W;ﬁ hat- (9.12)
Let o = ﬁ Sy p(x)dx and write
[ [Fsu(@) - Fst(w)(@) - ¢le)de
o

= ¥ [ [Fwin)(@) - Tst(w)(a)] - pe)de

I
—
S
4
£
Z
&
|
<
A
&
g
A,
i)
G
|
)
al
o
8
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Use (9.9) and [, (¢(x) — ¢x)dz = 0 to infer
/Q[Vg:w(ac) — Va¥(w)(x)] - p(x)dx = Z / V(wk)(x) - [p(x) — px]de.

Applying (B.12) in Lemma B.6 to p’ instead of p, we find C3 depending only
on d, p and g such that [[¢ — @kl ) < Cshi [ [Vl |l 1o (k) Hence, by
the Holder inequalities (D.5) (in each cell) and (D.1) (for the sum over the
cells),

/Q [Vew(w) - Ve (w)(@)] - p(@)de| < Chat il 19010 )

Plugged into (9.12), this gives (9.5).

It remains to prove the compact embedding. If w,, € W 0 18 such that

(||wm||W1 » )men is bounded, then (9.7) ensures that (|, (wm)|‘z pJmen is
o m

bounded. By Lemma B.19, (IIx, Wy, (wm))men converges up to a subsequence

as m — oo to some w in LP(Q). Estimate (9.8) shows that

[wm — 1, Wm(“’ﬂ%)HLP(Q) < Cohm,,

m

Wiy |ly1e = 0 as m — oo.
T 0

Hence, w,, — w in LP(§2) and the proof is complete. L]

Let us describe, in the case p = 2, the approximation by a generic non-
conforming method of the linear elliptic problem (2.22) under Hypotheses
(2.21). To this purpose, a bilinear form ag and a linear form bz are defined
by

Yw,w € Wé’ﬁ, az(w,w) = / A(x)Vzw(z) - Vew(z)dx
«“ (9.13)
and bz (w) = /Q(f(:c)@(w) — F(x) - Vzw(x))dex.

Let V C W% be a finite dimensional space. The non-conforming finite ele-
ment scheme based on V, for the approximation of (2.22), reads

find u € V such that, for all w € V, ag(u, w) = bg(w). (9.14)

Owing to (9.4), a<(+,-) is an inner product in V. The Riesz representation
theorem thus shows that Problem (9.14) has a unique solution. It can be
proved, see for example [50, Theorem 4.2.2], that the following error estimate
is satisfied: if w € H}(§2) is the solution to (2.22), then there exists C' > 0
depending on the regularity of M (factor 0z + n< as defined by (7.8)—(7.9))
but not on hag, such that

T, w) — b
@ — ullyrr < C [ inf |[@—vllyr, +  sup lox(@ w) =b(w)l} g 45
0 eV TO wev\{o}) lwliwan
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This estimate is based on the second Strang Lemma [134]. As shown below,
it can also be recovered from the generic results obtained in the framework of
the gradient discretisation method, once we prove that non-conforming finite
element methods are GDMs.

9.1.2 GDM formulation of abstract non-conforming finite element
methods

Definition 9.4 (Non-conforming finite element gradient discretisa-
tion). Let T = (M, F,P,V) be a polytopal mesh of {2 in the sense of Defi-
nition 7.2. A non-conforming finite element gradient discretisation (NCFE
GD, for short) on T is D = (Xp,, Ip,Vp) defined the following way.

1. Let V be a finite dimensional subspace of W%:g (see Definition 9.1). Fizing
(xi)ier a basis of V, we set
Xp,o={v=(v)ier : vi €R foralliecI}. (9.16)

2. The operator Ilp is the reconstruction in Wé’g from the coordinates de-
scribed by elements of Xp o:

Yv € X'D,o y HD’U = Z’lel (917)
iel
For all K € M and v € Xp o, we set IIxv = (IIpv)|x € WHP(K).
3. The gradient reconstruction Vp is defined from the broken gradient Vg
by setting, for v € Xp o, Vpv := Vg (IlIpv). In other words,
VK e M, for a.e. x € K, Vpu(z) = V(IIgv)(x). (9.18)
Observe that IIp : Xp o — V is an isomorphism and that, by (9.3),
19 zo eyt = 1Tl - (9.19)
Hence, |[Vp-[|1s(g)e is a norm on Xp .

Proposition 9.5 (Estimates on Cp, Sp and Wp for NCFE GDs).
Let D be a NCFE GD in the sense of Definition 9.4, based on an underlying
polytopal mesh T and a finite dimensional space V' C Wég Let o > 0 + 1z
(see (7.8)—(7.9)). Then, with Cy defined in Lemma 9.3 (and depending only
on 2, o, d and p),

Cp < Ch, (9.20)

Vo € Wy(2), 021

. . 9.21
Jnf [l —wllyrr < Sple) < (1 +C1) inf o —wlye,

and

Vo € WHP ()%, Wo(e) < Crhag 1@l (ya - (9-22)
Here, Cp is defined by (2.1), Sp is defined by (2.2) and Wp is defined by
(2.6).
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Proof. Inequality (9.20) is a consequence of (9.19) and of the Poincaré
inequality (9.4) applied to w = IIpv for a generic v € Xp .

Since ITp : Xp,o — V is onto, the second inequality in (9.21) follows from the
same Poincaré inequality (9.4) applied to w = IIpv — ¢, for ¢ € W, () and
a generic v € Xp . The first inequality in (9.21) comes from the definition of
Sp.

Estimate (9.22) is established by applying (9.5) to w = IIpv for a generic
v € Xp, and by using (9.19). n

In the case p = 2, using an NCFE GD D = (Xp,Ip, Vp) as above, the
gradient scheme (2.23) for the discretisation of (2.22) is identical to the non-
conforming finite element scheme (9.14). Moreover, since IIp is an isomor-
phism, (9.19) yields

u —b
Wo(AVT + F) = sup 19x(@w) = bs(w)]
wev\{0} [wliwzs

Alongside (9.21), this proves that the error estimate (9.15) is a consequence
of (2.25) in Theorem 2.28.

The properties of NCFE GDs are straightforward consequences of the previous
results.

Theorem 9.6 (Properties of NCFE GDs for homogeneous Dirichlet
BCs). Let (Dy)men be a sequence of NCFE GDs in the sense of Definition
9.4, based on underlying polytopal meshes (Tp)men and finite dimensional
spaces (Vin)men- Assume that the sequence (0=, + =, )men is bounded (see
(7.8)7.9)), that haq,, — 0 as m — oo, and that

m

1, . . -
Vo € Wy (), lim inf |lo—wlpr. =0. (9.23)

Then the sequence (Dy,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2.

Proof. Proposition 9.5 yields the coercivity, limit-conformity (using Lemma
2.17), and GD-consistency owing to Hypothesis (9.23). The compactness
of gpm)meN is an immediate consequence of the compact embedding of
(Wz® g)men in LP(£2) (see Lemma 9.3) and of (9.19). "

9.2 P, NCFE GDs for homogeneous Dirichlet BCs

We now turn to a specific example of NCFE GD, corresponding to a simplicial
mesh and functions in V' that are polynomial of degree k or less on each
simplex. This describes the non-conforming P, finite element method.
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Definition 9.7 (P, NCFE gradient discretisation). Let ¥ = (M, F,P,V)
be a conforming simplicial mesh of {2 in the sense of Definition 7.4, and
let k € N*. A P, NCFE gradient discretisation on ¥ is given by Definition
9.4 with the finite dimensional space V.= V*) defined as the set functions
w € LP($2) such that:

1. for all K € M, the restriction w| of w to K belongs to Pr(K),
2. for all 0 € F, there exists a polynomial R,w € P_1(0) such that

VK € My, Vo € Pp_1(0),
/ o(y)(wk (y) — Row(y))dy(y) =0,

3. for all 0 € Fexy, Row = 0.

(9.24)

For any o € F, the constant function ¢ = 1 on o is an element of Pj_1(0).
Hence, if w € V and o € Fiyy with M, = {K, L},

/ w () (y) = / Ryw(y)d(y) = / wi(y)d ().

In other words, (9.1) is satisfied. Similarly, if o € Foxr and M, = {K}, (9.2)
follows by writing

/w\K(y)dv(y) Z/Raw(y)dw(y) = 0.

Remark 9.8. Relation (9.24) is equivalent to saying that the L?(o)-orthogonal
projections on Pj_1 (o) of (the restrictions to o of) w|x and w);, are identical.

Theorem 9.6 applies to P, NCFE GDs if we can establish (9.23). Actually, as
expected for a method based on local polynomials of arbitrary degree, specific
estimates can be established for both Sp and Wp. Using these estimates,
Theorem 2.28 gives optimal orders of convergence for non-conforming P, finite
elements when applied to linear elliptic problems.

Lemma 9.9 (Estimates on Sp and Wp for P, NCFE GDs). Let D be a
Py, NCFE GD in the sense of Definition 9.7. Take o > k< (see (7.10)). Then
there exists Cy, depending only on §2, p, k, o and d, such that

Vo € WHL=(2) N Wy P(R2), Sp(9) < Cahliy lllwasrco(y  (9:25)

and
Vo € WHS(@)!, Wo(0) < Cibliy lellyomope,  (9:20)

where Sp and Wp are defined by (2.2) and (2.6), respectively. This means
that the space size (see Definition 2.22) of the GD is such that

B (W22 () AL (2): WE(2)%) < Culty.
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Proof. Let ¢ € W*HL0(0Q) N W, P(£2). By (8.15) in Proposition 8.11, there
is a function w (equal to some IIp_ v, where D, is the conforming P, GD on
T and v, € Xp_ o) such that w € WP (£2), wig € Pr(K) for all K € M, w is

continuous on {2, and

lw = @l o) + IV = Voll Logaye < Cshillollyssoe(a) » (9.27)

where Cj is given by Proposition 8.11 and depends only on {2, k and g. The
continuity of w ensures that it belongs to the space V%) given in Definition 9.7
(since w| g = wjr, on o whenever K, L € M,), and (9.25) is then a consequence
of (9.27) and (9.21).

We now turn to the proof of (9.26), starting with the case ¢ € C*(£2)?. Let
u € Xpo. Since Ilpu € V(%) the definition (9.18) of Vpu and an integration-
by-parts in each cell yields

/(z (Vpu(x) - p(x) + Hpu(x)dive(x)) de

= K;M/K(V(HKU)@)'Qo(w)JrHKu(a:)divgo(m))dm

= > > | Hxuyely) - ng.dy(y). (9.28)

KeMoeFg g

Set II,u = R,(IIpu) and, gathering the sums by faces, notice that

S | Hou(y)e(y) - nk ody(y)

KeMoeFk g

- Z Iu(y)e(y) - (ke +nr0)dy(y)
0€ Fint, Mo={K,L} "
+ > Tu(y)e(y) - nk ody(y) =0,

OEFoxt, MGI{K} g

since ng o +nr o, =0if M, = {K,L} and II,u = 0 if 0 € Feyx. Subtracting
this quantity from (9.28) yields

/Q (Vpu(z) - p(x) + IIpu(z)dive(x)) de
= > > [ Uxuly) - Hou(y)e(y)  niody(y).
KeMoceFg 9

Let s 5—1 be the Taylor expansion of degree k — 1 of ¢ - ng , around the
point Z,. Relation (9.24) shows that
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[ (Vpu(a) - pl@) + Hou(z)dive(e) da
[0}

=3 Y [ Wkuly) - Tou@) (o) - nico — por (©)dr(y).

KeMoeFg g
(9.29)

Let 0 € Fg. Since Il,u is the L?(o)-projection of ITiu on Pj_1(c), the
projection estimate in [58, Lemma 3.4] applied to U = o gives C5 depending
only on g, p, k and d such that

[ xu — Houll ooy < Csdiam(o) [V k)| 1o (e
< Cshk ||V(HKU)||Lp(a)d :

The function V(IIxu) belongs to Pj_;(K )% Hence, by the discrete trace
inequality [62, Lemma 1.52], |V(IIxu)| (e < Cohg " Vx| 1o sy
for some Cg depending only on g, p, k and d. We infer that

1—1
[ rcu — HUUHLP(G‘) < CsCshye * HV(HKU)HLp(K)d : (9.30)

Moreover, the smoothness of ¢ provides C7; depending only on k and d such
that

1
e -nKo— @U,k*l”[‘p'(g) < Crlo|¥ h’fvt ||90|\Wk~oo(rz)d :

Combined with (9.30) and a Holder inequality (D.5) on the right-hand side
of (9.29), this shows that

/ (Vou(®) - o(@) + Mpu(@)dive(z)) de
(94
< @llprmqa Wse 33 1017 B IV k)l iepa (9:31)
KeMoeFk

for some Cs depending only on g, p, k and d. Using p+d+1 > ks +d+1 > 0%
(see Lemma B.4) and the second relation in (B.1), we have

> Jolhk < (e+d+1) Y loldk.e = (o+d+1)d|K|.
oceFK cE€FK

A discrete Holder inequality (D.1) in (9.31) therefore provides, since Card(Fg) <
0‘5 < 0,

/Q (Vou(@) - p(@) + Hpu(e)dive(@)) d

1
7

< Ci @l e (20 B (0 + d+ 1)dI2D) 7 07 [Vpul] oy -
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This concludes the proof of (9.26) if ¢ € C*¥(£2)?. The general case ¢ €
Wkoe(§2)4 is obtained by an extension and regularisation argument, as in the
beginning of the proof of Proposition 7.38. [

The properties of P, NCFE gradient discretisations follow immediately from
Lemma 9.9 and Theorem 9.6.

Theorem 9.10 (Properties of P, NCFE GDs for homogeneous Dirich-
let BCs). Let (D) men be a sequence of P, NCFE GDs in the sense of Defini-
tion 9.7, defined from underlying conforming simplicial meshes (Tp,)men- As-
sume that (K=, )men is bounded (see (7.10)), and that haqg,, — 0 as m — oo.
Then the sequence (Dy,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2.

9.3 Non-conforming P, finite element method for
homogeneous Dirichlet boundary conditions

Among the non-conforming finite element methods, the P; non-conforming
finite element method has a particular importance. This scheme is often called
the Crouzeix—Raviart scheme, although this name historically pertains to the
usage of the method for the Stokes problem (see [56] for the seminal paper
and, for instance, [85, pp.25-26 and 199-201] for a synthetic presentation).
This finite element method approximates solutions to PDEs with functions
that are piecewise linear on a conforming simplicial mesh of {2, and continuous
at the centres of mass of the faces.

The P; NCFE method is nothing but a special case of the P, NCFE method
and, as such, its inclusion in the GDM and the properties of the corresponding
GDs follow from the analysis done in the previous sections. However, it is
possible to present the Py NCFE GD as an LLE GD, which makes it amenable
to the techniques developed for such GDs — in particular, the mass-lumping
process. Here, we give this LLE GD presentation of the P; NCFE method,
and we discuss some consequences.

9.3.1 Definition of the non-conforming P; gradient discretisation

Let T = (M, F,P,V) be a conforming simplicial mesh of {2 in the sense of
Definition 7.4. The non-conforming P; gradient discretisation is constructed
as an LLE GD, by specifying the objects introduced in Definition 7.33.

1. The set of geometrical entities attached to the discrete unknowns is I = F
and the approximation points are S = (%, )scr. Then I = Fin, Ig =
Foxt, and

Xpo={v=(vs)per : v €ER forall o € Fiy,

9.32
v, =0 for all 0 € Fox}. ( )

For all K € M, we let I = Fk.
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2. The reconstruction IIp in (7.32) is built from the affine non-conforming
finite element basis functions (7% )sc 7, defined, for each K € M, by

Vo € Fi, % is affine on K, 7% (%,) =1,

and 7% (Z,/) = 0 for all o’ € Fx\{o}. (9.33)
This leads to
Vv e Xpo, VK € M, forae o€ K,
pv(e) = 3 vy (). (9.34)

ocEFK

3. The functions (G%)kem, scFi that define the gradient reconstruction
Vp through (7.33) are the constant functions on the cells given by

G = Vr%k. (9.35)
Hence, the reconstructed gradients are piecewise constant on the cells:

VUEX'D’(),VKEM,

(Vov)ix = Y v Vrk =V [(ITpv) k] - (9.36)
c€FK

The properties of (7% )ser, and (G%)sery , ensuring that the relations above
indeed define an LLE GD, are given by Lemma 9.12 below.

The link between this non-conforming P; LLE GD and the notions in Section
9.2 is described by the following lemma, which also shows that ||V - || 1r ()
is a norm on Xp .

Lemma 9.11 (The non-conforming P; LLE GD is the P; NCFE GD).
Let ¥ be a conforming simplicial mesh and D be the non-conforming Py LLE
GD defined above. Then D is the Py NCFE GD given by Definition 9.7 with
kE=1.

Proof. Let V(1) be the space given in Definition 9.7 for k = 1. For all
we VM and K € M, since wg is affine on any o € Fx we have

/wlx(y)dv(y) = |o|w k(o).

Comparing with (9.24), this shows that R,w is the constant polynomial
w| i (T, ). Since this polynomial does not depend on K € M., we infer that w
is continuous at T, (its value at this point does not depend on the considered
cell on either side of o).

This allows us to define v, = W(T,). If 0 € Fexty, Vo = W(Ty) = Row = 0
by Definition of V(). Hence, v € Xp,o defined by (9.32). Since both w)x and
(IIpv) |k are affine and take value v, = w(ZT,) at any o € Fi (see (9.34)),
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we have w|g = (IIpv)|k (see, e.g., the start of the proof of Lemma 9.12). In
other words, w = ITpv and V(1) = ITp(Xp ). Moreover, ITp : Xp o — V(1)
is clearly an isomorphism.

For 0 € Fin, define 19 € Xpo by (19), = 1 and (19),» = 0 if ¢/ # o.
Then (Xo)oer,, = (IIp1?)ser,, forms a basis of V(1) and, using this basis
in Definition 9.4, we see that the Py NCFE GD given by Definitions 9.7 and
9.4 is the non-conforming P; LLE GD. [

9.3.2 Estimate on Sp for the non-conforming P; LLE gradient
discretisation

As mentioned above, the properties of sequences of non-conforming P; LLE
GDs follow from Theorem 9.10 (and Lemma 9.11). Proposition 9.5 gives a
bound on Cp, and optimal estimates on Wp (since the P; NCFE is a non-
conforming order 1 method, O(ha ) estimates on Wp are expected to be
optimal). Lemma 9.9 provides an estimate on Sp(p), but it is sub-optimal in
the sense that it requires a strong regularity on . Using the results of Section
7.4, a better estimate on Sp can be obtained.

We first need to formally establish that the non-conforming P; GD defined
above is indeed an LLE GD, and to estimate its regularity.

Lemma 9.12. Let ¥ = (M, F,P,V) be a conforming simplicial mesh in the
sense of Definition 7.4. Let K € M, ng = (1% )ser, be given by (9.33),
and Gx = (G%)oer, be given by (9.35). Then mx is a Py-exact function
reconstruction on K, and Gi is a Py-exact gradient reconstruction on K upon
(To)oecr,- Hence, D defined in Section 9.3.1 is an LLE GD.
Moreover, there exists Cy, depending only on d and o > kx (see (7.10)), such
that

reg, (D) < Co. (9.37)

Proof. Let K € M. The convex hull K of the centres of mass (To)ocri
of the faces of K is a d-simplex (see Figure 9.1). Applying Lemma 8.6 to K
instead of K and with k = 1 shows that, for any given real numbers (a¢)oery
there exists a unique affine map that takes these values at the face centres
(To)oery,- This proves in particular that (9.33) properly defines the basis
functions (7% )eer -

Themap ), .7, 7% is affine and takes the value 1 at each of the face centres of
K, exactly as the constant function equal to 1. These two affine functions must
therefore coincide, which shows that 7y is a Pg-exact function reconstruction
on K.

Let A be an affine map. The affine function ) . » A(Z,)7% has the same
values as A at (T, )ser,, and is therefore equal to A. As a consequence, on
K

)

> A@)GE = Y A@)VTE =V > A@,)rh = VA.

ocEFK cEFK cEFK
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Fig. 9.1. A simplex K and the convex hull K of its face centres

Hence, G is a Pi-exact gradient reconstruction on K upon (%, )sery -

We now establish the upper bound on reg . (D). If K € M, the simplex
K C K created by (ZTy)oery 18 a symmetry and dilatation by a factor 1/d of
K. Hence, its regularity factor “diameter of K over the radius of the largest
ball inscribed in K” is identical to that of K, which is bounded by k. Over
K the functions 7% are defined as affine functions with values 0 or 1 at the
vertices of K. Hence, as in the proof of Lemma 8.9 we can use Lemma 8.8
with the vertices of K as points x; to see that

7%l ey € Cro and  [[Vag |l poo (e < CrohZ', (9.38)

where Cj¢ depends only on d and ¢ > kz. Since Vn¥§, is constant in K and
hg = hi/d, we deduce that

||V7T?(||L°°(K)d < ClOdh?' (9-39)

We then write 7% (z) = 7% (y) + (x —y) - V7% for any ¢ € K and y € K,
and use |z — y| < hk to infer from (9.38) and (9.39) that

7% Lo 5y < C1r0 + Crod. (9.40)

Remark 7.32 and Estimates (9.39) and (9.40) give an upper bound on the first
two terms in the definition (7.34) of reg,,.(D). This upper bound depends
only on d and p. The proof is complete by noticing that all points (x;)icr, =
(Ty)oery, involved in the third term of reg,, (D) belong to K, which shows
that this third term vanishes. (]

Proposition 9.13 (Estimate on Sp for non-conforming P; GD). Let
T be a conforming simplicial mesh of (2 in the sense of Definition 7.4, and
D be the non-conforming Py LLE GD on ¥ as in Section 9.3.1. Assume that
p > d/2 and take o > k< (see (7.10)). Then there exists C11 > 0, depending
only on p, d, 2 and p, such that
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Vo € WP(Q2) N WP (), Sp(9) < Criliaa |2llwza(a) - (9.41)

Here, Sp is the measure of GD-consistency defined by (2.2). This means that
the space size (see Definition 2.22) of the GD is such that

hp(W2P(2) N Wy P(2); W' (2)?) < max(Ci1, C1)ha,

where Cy is defined in Proposition 9.5 (owing to Lemma B.4 page 409, C;
has the same dependencies as Ch1).

Proof. For any K € M, the approximation points (x;)icr, = (To)oer, all
belong to K. Using Lemma 9.12, Lemma B.1 and Lemma B.4, we can invoke
Proposition 7.64 and the conclusion follows. L]

9.4 Non-conforming P; methods for Neumann and
Fourier BCs

9.4.1 Neumann boundary conditions

Definition 7.54 of LLE GDs for Neumann boundary conditions provides a
straightforward definition of non-conforming P; GDs for these conditions, by
simply using the same I, Iy, IIp, Vp as in Section 9.3.1.

The proof of Proposition 9.3 shows that Inequality (9.7) is valid even if w does
not satisfy (9.2) for boundary edges. Apply this inequality to w = IIpv, for
v € Xp such that |[Vpv[;, )« = 0. Then the right-hand side vanishes and
the definition (7.7f) of |-[; , show that all (vs)ser are identical, equal to some
¢ € R. As a consequence, IIpv = ¢ over £2 and thus, if [, IIpv(x)dx =0, ¢
must be equal to 0. This shows that the quantity (3.1) is indeed a norm on
Xp.

For non-homogeneous Neumann boundary conditions, the trace reconstruc-
tion Tp : Xp — LP(9S2) can be naturally defined in a similar way as T in
(7.7d), that is,

Vv e Xp, Vo € Foxt : Tpv =0, on o. (9.42)

Since the regularity factor reg,, (D) for Neumann BCs is defined as for Dirich-
let BCs, Lemma 9.12 still applies and shows that this factor remains bounded
if kg is bounded. Define then the control & : Xp — X< by @ = ¥ o Ilp
with ¥ given by (9.6). Since (9.7)—(9.9) are also valid for non-zero bounda-
ry conditions, we have [|®], ¢ < (CF + DY W(D, T, &) < Cyhpq and

wV(D,%,®) = 0. We also obviously have w”(D, %, ®) = 0. Hence, Corollary
7.18 and Proposition 7.55 give the following theorem.



296 9 Non-conforming finite element methods

Theorem 9.14 (Properties of non-conforming P; GDs for Neumann
BCs). Let (Diy)men be a sequence of non-conforming Py GDs for Neumann
boundary conditions as above, defined from underlying conforming simplicial
meshes (T )men. Assume that (kz,, )men is bounded (see (7.10)), and that
ha, — 0 as m — oco.

m

Then the sequence (Dy,)men 18 coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.15.

Proposition 7.70 and Theorem 7.17 also give estimates on Cp, Wp and Sp
that are similar to (9.20), (9.22) and (9.41). The constants depend only on {2,
p and an upper bound of k.

Remark 9.15 (Other choice for the trace reconstruction)
Recalling the definition of the global basis functions 77, see Section 7.3.3, it is also
possible to replace (9.42) by

ThHv = Z Vo (77) 1902 = (ITpV))002-

o€ Fext

Then, for any K € M, any 0 € Fx NFexs and any @ € o, since Vpv = V((IIpv)|x)
is constant in K,

ITho(e) - Tov(e)| = [Tov(@) — Hpo(@s)| < hil (Vov) xl.

Taking the power p of this estimate and integrating over o gives
/ Tho(x) — Tov(@)Pdz < hlo] |(Vov)x[P.
Since hi|o| < Ci2| K|, where Ci2 depends only on an upper bound on 0 < kz+d+1,
/ Tho(z) — Tpo(@)Pda < Crah | K| [(Vov) |-

Sum this estimate over o € Fext. A given cell K can have at most d + 1 boundary
faces (and only in the trivial case where 2 = K, otherwise Card(Fx N Fext) < d),
and thus

ITho = Tollo(o0) < (d+1)Crahliy" > K] (VD) k7
KeM , 0KNON#D

< (d+ 1)CrahBy* Z |K| (VDo) x|?
KeM
= (d+ 1)012h1/7\;11 HVDUHZJZP(Q)d :

This estimate enables us to transport the analysis made with Tp to the GD based
on the trace reconstruction T, instead.
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9.4.2 Fourier boundary conditions

Starting from the non-conforming P; GD for Dirichlet boundary conditions,
we follow Definition 7.57 in Section 7.3.6 to define a non-conforming Py GD
for Fourier boundary conditions.

The boundary mesh My is simply Feoyt, and the trace reconstruction (9.42)
corresponds, for Ky = 0 € Feyxt, to I, = {0} and 77 = 1 on o, 77 = 0 outside
0. The bound on reg,, (D) for Fourier boundary conditions therefore easily
follows from the bound on this quantity for Dirichlet boundary conditions, and
the GD-consistency (under boundedness of kz ) is therefore a consequence
of Proposition 7.58.

As noticed in Remark 7.20, the work done for Neumann boundary conditions
then immediately show that Theorem 9.14 also applies for Fourier boundary
conditions. Similarly, we could obtain estimates on Sp, Cp and Wp as in
Propositions 9.13 and 9.5.

We finally remark that, instead of Tp defined by (9.42), we can also use T},
defined in Remark 9.15

9.5 Non-conforming P; finite elements for
non-homogeneous Dirichlet boundary conditions

For non-homogeneous Dirichlet conditions, the interpolation operator Zp g is
defined by

_1 1
Vg e W'oP(092), Yo € Fexr : (Ip.og)e = o] / g(x)dy(x). (9.43)

This interpolant clearly satisfies (7.65) since, for any i = 0 € Iy = Foxt,

x; = T, is the centre of mass of o and therefore, if ¢ € C®(£2), p(x;) =
L[, pl@)dy(@) + Ofdiam(0)?).

We now check that (2.96) holds with C5 depending only on {2, p and an upper
bound of k<. To this end, take ¢ € WHP(2) and let u = Iz € X<, where
Is is the interpolant defined by (B.10). Let v € Xp be such that v, = u, for
all o € F. Since v — Ip sy¢ € Xp,0, (2.96) is proved if we can establish that

”HDUHLP(Q) + HVDUHLP(Q)d < Cr H‘PHWW(Q) : (9.44)

Let K € M. We have (Vpv) gk = V(IlIpv)|x and (IIpv) k is the affine map
on K such that, for all o € Fx, (IIpv)(Z,) = u,. Since Vg is a Pi-exact
gradient reconstruction on K upon (%, )scr, (see Lemma B.10), we infer

(V’D'U)\K = V(H'D’U)‘K = WKu.

Hence, Vpv = Vzu. Using (B.29) and Proposition B.7 thus shows that
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= p=1
”vDUHLP(())d = HV‘ZUHLP(Q)d <dv ‘ul‘z,p <Ci HV@HLP(Q)d (9.45)

where C13 depends only on (2, p and an upper bound on k¢ (use Lemma B.4
to get, from the upper bound on k<, an upper bound on 5 and thus enable
the usage of Proposition B.7).
We now turn to the estimate on IIpv. Since this function is affine in each cell
K, with gradient (Vpv)|x and value u, at @, for all z € K and any o € Fg
we have

[Ipv(z) — uo| < hi|(Vov) k.

Recalling that u, = ﬁ [, ¢(y)dy(y) and using Estimate (B.11), we infer

1 P Kt
‘Hov(w) - @/Kso(y)dy < 014h?<|(VDv)|K\p+014ﬁ/KIVso(y)Ipdy

with C14 depending only on {2, p and an upper bound on kz. As a consequence,
the power-of-sums estimate (D.12) with o = p and Jensen’s inequality yield

G5
K|

hp
Oy / Vo(y)Pdy
K] )i

Tpu(@)P < /K o(y)Pdy + Crsh?|(Vov) |?

with C15 depending only on {2, p and an upper bound on x<. Integrate this
over x € K and sum over K € M to get
||HDU||I[),P(Q) < Cis ||SD||Z£p(Q) + Cisdiam(£2)? ||VDU||ip(Q)d
+ Cmdi&m(ﬂ)p Hv<p||1£p(9)d .

Estimate (9.44) follows from this inequality and (9.45).

Since (7.65) and (2.96) hold, Proposition 7.53 can then be invoked (using
Lemma 9.12 to bound reg,, (D)) and shows that sequences of non-conforming
Py GDs for non-homogeneous Dirichlet BCs are GD-consistent, provided that
the regularity factors (K<, )men remain bounded and that ha,, — 0.

The coercivity, limit-conformity and compactness of GDs for non-homogeneous
Dirichlet conditions are identical to the same properties for homogeneous
Dirichlet conditions, which follow from Theorem 9.10.

9.6 Mass-lumped non-conforming P; gradient
discretisation

In the case d = 2, if 0 # ¢’ are two different faces of the mesh,
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This property ensures that the non-conforming P; method has a diagonal mass
matrix. Nevertheless, the properties in Remark 2.13 are not satisfied, which
might prevent the usage of the non-conforming IP; scheme for some non-linear
problems. To recover a piecewise constant reconstruction, we apply to the
non-conforming P; GD the mass lumping process as in Definition 7.45.

Definition 9.16 (Mass-lumped non-conforming Py GD). Take a con-
forming simplicial mesh ¥ = (M, F,P,V) of 2 in the sense of Definition
7.4, and let D = (Xp,o, IIp,Vp) be the non-conforming Py LLE GD built on
T as in Section 9.3.1.
Foro € F, let 2, = D, be the diamond around o if 0 € Fint, and 2, = D »
be the half-diamond around o if 0 € Fexy with M, = {K?} (see Definition 7.2
for the definitions of these diamond and half-diamond, and Figure 9.2 for an
illustration,).
A mass-lumped non-conforming P1 GD is defined by DM = (Xp.o, 13", VD),
where ITR" is the piecewise constant reconstruction built from (£2,)scr, that
is

Yo e Xpyo, Yo € F, IIFv=uv, on (2.

o

Fig. 9.2. Partition for the mass-lumping of the non-conforming P; gradient dis-
cretisation.

As for the mass-lumped Py GD, the properties of this mass-lumped non-
conforming P; GD follow directly from Theorem 7.49.

Theorem 9.17 (Properties of mass-lumped non-conforming P; GDs).
Let (T )men be a sequence of conforming simplicial meshes of {2 in the sense
of Definition 7.4, and let (DX*)men be the corresponding mass-lumped non-
conforming Py GDs given by Definition 9.16. Assume that sup,,cy ks,, < 400
(see (7.10)), and that ha,, — 0 as m — oo.

Then (DX)men is coercive, GD-consistent, limit-conforming, compact, and
has a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4,
2.5, 2.8 and 2.12.
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Proof. In each Dk ,, lIp, v is affine and II}3" v = IIp,, v(®,). Hence, for
S DK,<77

\[Ip,,v(z) — I v(x)| = [Ip,,v(x) — IIp,, v(Ts)|
< o, (Vo) Dy, | = b, [Voou(T)].

Raising to the power p, integrating over Dk ,, and summing over o € Fg
and K € M we obtain

[1Ip,,v =I5 0| Lo ) < Pt VD, 0l o2y (9.46)

The conclusion then follows from the properties of sequences of non-conforming
P; GDs (Theorem 9.10) and from Theorem 7.49. n

Remark 9.18. As in Remark 8.18, Propositions 9.13 and 9.5, Estimate (9.46)
and Remark 7.51 show that, for p > d/2,

SD%L ((P) < Chpyy m

90||W2»P(())

and
W/D’}JIL((P) < Ch./\/lm ||(p||W1'p/(~Q)d ’

with C not depending on m, ¢ or ¢. Mass-lumped non-conforming P; GSs
are thus order 1 schemes: if the exact solution of the linear elliptic problem
(2.20) belongs to H? and d = 1,2, 3, then the estimates (2.25) and (2.26) are
O(ha) when the mass-lumped non-conforming P; GD is used in the gradient
scheme (2.23).
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Hg;y conforming GDs from mixed finite
element methods

In this chapter, the mixed finite element (MFE) schemes for an isotropic linear
elliptic problem is shown to be a GDM for p = 2 and homogeneous Dirichlet
boundary conditions; the reconstructed gradient, which belongs to Hqiy (§2) is
obtain by solving the non-local subsystem of the MFE scheme corresponding
to the first equation of the mixed form ((10.4b) below).

We prove that, under the so-called “inf-sup” or “LBB” condition, the gradient
discretisation thus obtained is coercive, GD-consistent and limit-conforming.
As a consequence, even though it has been designed only by considering the
Laplace problem, this GD can then be used on any of the models presented
in Parts I and II, provided that the corresponding convergence analysis only
relies on the coercivity, GD-consistency and limit-conformity properties (with
p=2).

After considering general MFE schemes, the special case of the popular RTy
mixed finite elements is considered. For this method, the corresponding GDs
are additionally shown to be compact. Turning then to the hybrid form of
RTy, a different GD is constructed in which, contrary to the previous one,
the reconstructed gradient is computed locally (as is the case for most GDs
studied elsewhere in this book). We prove that, under standard assumptions
on the meshes, sequences of hybrid RT, GDs are coercive, GD-consistent,
limit-conforming and compact. High order estimates on Sp and Wp are also
established.

10.1 Mixed finite element schemes

10.1.1 Presentation and error estimate

Let us first recall the formulation of the mixed finite element (MFE) method
for the linear isotropic diffusion problem|[82]. We consider the problem



302 10 Haiv conforming GDs from mixed finite element methods

Find @ € Hy (§2) such that, for all v € H(£2),

_ (10.1)
/ Vu(z) - Vo(x)dz = / f(x)v(x)de.
Q o)
The assumptions are as usual:
2 is an open bounded connected subset of R? (d € N*) (10.2)

and f € L*(0).

Take finite dimensional spaces V4V C Hg;, (£2) and W), C L?(2) such that
there exists By, > 0 with

1
Vq € Wy, sup

p / g(@)divw(@)dz > By gl g - (103)
weVAiv\ {0} ||’wHHdiv(9) Q

The formulation of the MFE scheme for Problem (10.1) then reads

(v,q) € Vi x Wi, (10.4a)

v € VAV, w(z) - v(x)de — / q(x)divw(z)dz = 0, (10.4b)
o 7}

Vi € Wh, /Q’L/J(:E)div’u(w)dw = /Qw(w)f(:c)d:c (10.4c)

There exists a unique (v, q) solution to (10.4), and it moreover satisfies the
following stability and error estimates (see [82, Theorem 5.2 p.38 and Theorem
5.3 p.39]): if 0 < 8 < B, there exists Cy depending only on {2 and S such
that

lall 20y + 10l gy 2y < CLllfll L2 (10.5)

and
lg =l 2oy + v+ Vg, 0

<Gy (wienvgh 1 =l 2 () + weil‘l/idiv [[w + VU|HdW(9)> - (10.6)

10.1.2 Construction and analysis of a mixed finite element GD

We construct a GD, in the sense of Definition 2.1, such that the corresponding
gradient scheme (2.23) (with F = 0 and A = Id) for (10.1) is the MFE
scheme (10.4). Let (x;)ier be a basis of W}, and define the mixed finite element
gradient discretisation (MFEGD) D = (Xp o, IIp, Vp) by:

Xpo={u= (wi)ier : u; e Rforalliel}, (10.7a)

Vu€ Xpo, Mpu=»_ uxi, (10.7b)
el
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Yu € Xpo, Vpu € V;I and (10.7¢)

/'w - Vpu(x)d sc:—/ Hpu(x)divw(z)de, Yw € VY. (10.7d)
2

In order for (10.7) to define a GD, the system (10.7¢)—(10.7d) should de-
fine one and only one Vpu, and ||-[|p := [|[Vp|12(g)« should be a norm on
Xp,. The existence and uniqueness of Vpu results from the Riesz represen-
tation theorem in V;31V for the L?(2)-inner product, which shows that, for
a given IIpu, (10.7d) has a unique solution Vpu € V;4V. The norm property
of [[Vp-[[p2(g)a follows from the coercivity property shown in Theorem 10.3
below.

Remark 10.1 (Haiy gradient discretisation). The interest of the MFEGD de-
fined by (10.7) is to provide a more regular reconstructed gradient than certain
other GDs. Indeed, we have here Vpv € Hgiy(£2), whereas for most GDs the
reconstructed gradient usually only belongs to L%(£2)%.

The following theorem establishes the link between the GD (10.7) and the
mixed finite element method.

Theorem 10.2 (The mixed finite element method is a GDM in the
isotropic case). Under Assumption (10.2), if u is the solution of the GS
(2.23) (with F = 0 and A = Id) using the GD defined by (10.7), and if
(v,q) is the solution of the mized finite element scheme (10.4), then (v,q) =
(=Vopu, IIpu).

Proof. Let u € Xp be the solution to (2.23) and let us prove that (v,q) =
(=Vopu, pu) € VhdiV x Wy, is a solution of (10.4). We first observe that
(10.7d) ensures (10.4b). Take then ¢ € Wj. Since (x;)iecr is a basis of Wh,
there exists a unique v € Xp such that ¢ = >, v;x; = IIpv. The GS
(2.23) gives

/QVDu(ac) - Vopu(zx)de = /Qf(a;)ilz(a:)dm. (10.8)
Write (10.7d) with u replaced by —v to see that, for all w € V4V,
/ w(z) - Vpu(z)de = / Ipv(z)divw (x)de.
Substitute w = —Vpu = v to obtain
/ Vpu(x) - Vpo(x)de = / P(x)dive(x)de.
Combined with (10.8), this completes the proof of (10.4c).
Reciprocally, consider the solution (v, q) to (10.4). Since ¢ € W}, as above

there exists a unique v € Xp ¢ such that ¢ = IIpu. Comparing (10.4b) and
(10.7d) yields v = —Vpu. Take v € Xp g, set ¢ = IIpv € W}, and follow the
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same computation as above to see, using (10.4c¢), that u is a solution to the
gradient scheme (2.23). L]

The properties of MFE gradient discretisations are established in the following
theorem.

Theorem 10.3 (Properties of MFEGDs).
Let B > 0 and, for allm € N, let Vh‘il" C Hai(2) and Wy, C L*(£2) be such
that:

1. for all m € N, the inf-sup condition (10.3) holds with V,3V = Vhdjnv,
Wiy = Wh,, and B, = p,
2. for all p € L*(2),
li inf - =
Jminf Y= gllraa) =0,

m

3. for all ¢ € Haiv(£2),

im wér‘lff?z 1 = wllay (2) = 0-
Let Dy, = (Xp,,0,Ip,,,VD,,) be the MFEGD defined by (10.7) from the
pair of spaces (Vhd,,i:,VWhm)' Then (Dpm)men s coercive, GD-consistent and
limit-conforming in the sense of the definitions in Section 2.1.1.

Proof.

COERCIVITY. Let m € N and u € Xp,, o. Using (10.3) (in which the supre-
mum is actually a maximum) for ¢ = IIp, u, take w € V3 such that
”wHHdiV(Q) =1and

/ p,, u(z)divw(z)de > B || p,,ull2(g) -
o)
Invoking (10.7d) and using the Cauchy—Schwarz inequality yields

Bl p,, ull g2 o) < —/ w(z) - Vp, u(z)dz < [|Vp,, ull 12 -
2

Hence,

1

12, ull2(0) < 519,120y (10.9)
and the coercivity property is proved with Cp = %
GD-cONSISTENCY. The GD-consistency follows from Lemma 2.16 if we prove
that, for all ¢ € C°(£2), Sp,,(¢) — 0 as m — oo. Consider the solution
(v,q) € Vhdyi" X Wy, of (10.4) with f = —Aep. Since (x;)ier is a basis of W}, ,
there is a unique u € Xp,, o such that ¢ = >, _; u;x; = IIp, u. Comparing
(10.4b) and (10.7d) then shows that v = —Vp, u. Since ¢ is the solution to
(10.1) for the chosen f, the error estimate (10.6) leads to
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D, w = ¢ll 22y + 1=V, u + Vel g, o

h,
m hm

< (welgvf 1= ellpzge) + wnf lw— V</’||Hdiv<o>> :

The hypotheses on V& and W, ensure that the right hand side of the
above inequality tends to 0 as m — oo, which proves that Sp,, (¢) tends to 0
as m — 0o.

LIMIT-CONFORMITY. Take a sequence (U, )men such that u,, € Xp, o for all
m €N, and (Vp, tm)men is bounded in L2(§2)%. Let o € Hg;y(£2), and take

m

om € VIV such that [l¢ — @m |y, (2) — 0 as m — oo. Then, recalling the
definition (2.9) of Wp and using (10.7d) with w = @,

W (1) = /Q (Vo (@) - @(@) + [T, i (@) divep()) das =

/Q (meum(a:) (p(x) — m(x)) + IIp,, um (x)(dive(x) — div<pm(a:)))d:c.

Apply the Cauchy—Schwarz inequality and the coercivity estimate (10.9) to
deduce

—~ 1
o, (r10m)| < 0 — Dl 2 (1 n /3) 1V, 1l gy -

The boundedness of (||Vp,, tmll2(g)e)men and the choice of (¢m)men con-

clude the proof that (2.10) holds, that is Wp_ (¢, umm) — 0 as m — oo, which
shows the limit-conformity by Lemma 2.7. (]

10.2 The particular case of the RT; mixed finite element

10.2.1 RT; mixed finite element gradient discretisation

Take k € N and T = (M, F,P,V) a conforming simplicial mesh in the sense
of Definition 7.4, with P the set of centres of mass of the cells, and let

Vi ={v € (L*(2))" : v € RTx(K), VK € M}, (10.10a)

VAV = Vi, N Hyio (2), (10.10b)

W, ={peL*2) : px € Pr(K), VK € M}, (10.10¢)

Mh:{uz Ua—)R:MJGPk(U),VUE}"}7 (10.10d)
oeF

M) ={peMy: poo=0}, (10.10e)

where
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e Pi(K) is the space of d-variate polynomials on K having degree less than
or equal to k,

e Pi(0) is the space of (d — 1)-variate polynomials on o having degree less
than or equal to k,

e RT;(K) = Py (K)?+ xPy(K) is the Raviart-Thomas space on K of order
k.

Let us recall some results on RT;, mixed finite element schemes. The broken
Sobolev space H! (M) is the set of functions whose restriction to each simplex
K of the mesh belongs to H'(K), and Haq := Hai(£2) N (H*(M))4. With
(VA W},) defined by (10.10b)—(10.10c), the following relations uniquely de-
fines an interpolation operator P, : Hxyq — V9V [82) Lemma 3.2]: for all
ve€ Hpand all K € M,

Vo € Fk, Yu € Py(o),
/ﬁ@wm@wnme@=/ﬁwxmmmw»nan@,
4 4 (10.11)
Itk > 1, Vg € Pp_y(K),

/mmwmw:/am@mﬂmm
K K

Then Pj, satisfies the following properties [82, Lemma 3.5 and Theorem 3.1]:

Vp € Wi, Yv € Hpy, / p(x)div(v — Pyv)(x)de =0 (10.12)
Q
and
1/2
Yv € HMa H’U - Pk'v||L2(Q)d < OLhM ( Z 'UH%H(K)) 5 (1013)
KeM

where o > 0 depends only on an upper bound of kz (see (7.10)).

The “inf-sup” condition (10.3), with 8 depending only on an upper bound of
k<, can be deduced from this property. Let p € W;,\{0}. Extend p by 0 outside
2 to a ball B with radius R containing (2. Then there exists w € H}(B)
solution to —Aw = p, that is,

Vg € H}(B), /B Vuw(x) - Ve(z)de = /Bp(ac)q(m)da:. (10.14)

Moreover, by [34, Theorem 9.25], w € H?(B) and, for some Cz > 0 depending
only on d and R,
lwllz2B) < CrllplL2(0)- (10.15)

Therefore, since Vw € H q, Estimate (10.13) yields

||Vw — kaw||L2(Q)d S OéCBhMHpHLZ(Q).
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Since hyq < diam(£2) < 2R, this shows that
||Pk-vaL2(Q)d < (2ROL+1)CB||])||L2(_Q). (1016)

From the definitions (10.10a)—(10.10c) it is easily checked that div(P,Vw) €
W}, Hence, writing (10.12) with v = Vw and div(P,;Vw) instead of p we find

||diV(Pka)H2Lg(Q) = /QdiV(Pka)(:B)div(Vw)(w)dw

IN

||diV(kaw)||L2(rz) ||Aw||L2(Q)

[div(PeVw)ll L2 () 1Pl 2 (2) -
Combined with (10.16), this shows that
1PeVwll g, (@) < [(2Ra+1)Cs + 1] [IpllL2(0)-

Thanks to (10.12), there holds

- [ (P T0)@)e = - [

| p@)div(Vu) (@) = / p(z)?dz,

2

which also implies that —P,Vw € V4V \ {0}. The inf-sup condition follows
by writing

/p(a:)divv(m)d:c f/p(:c)div(Pka)(m)d:c
2 Q

sup

vevary(oy 10l 0 12Vl gy, )
—/ p(z)div(Vw)(x)dx
2
B 1P Vwll ., (2)
e b e et
“QRat )05 +1 [plla  (2Rat1)Cp 11 VI@"
(10.17)

This shows that the inf-sup condition (10.3) holds with 8 = m.

The coercivity, GD-consistency and limit-conformity of sequences of RTj
MFEGDs follow from the generic result of Theorem 10.3, provided that the
last two assumptions of this theorem are checked. Here a different approach
is chosen: RT; MFEGDs is directly shown to be controlled by polytopal tool-
boxes (Definition 7.9) — yielding the coercivity, limit-conformity and compact-
ness properties — and by establishing high order estimates on Sp from which
the GD-consistency can be deduced.

Let us start with a preliminary lemma establishing the existence of the hybrid
variables for the RT; MFE.
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Lemma 10.4 (Hybridisation of the RT, MFE). Let D be the RT
MFEGD, in the sense of (10.7) with the spaces (10.10). There exists a unique
linear mapping I'p : Xpo — Mg such that

Yu € XD(), VK e M, Yw ERTk(K)

/w - Vpu(x d:c+/ Hpu(x)divw (x)dx

Z /Fpu ) - g sdy(x).

cEFK

(10.18)

Proof.

Fix u € Xp and let K € M. Denote by Px(9K) = [[,cx, Pr(c) the space
of families ¢ = (¢ )oeF, With ¢, € Py (o) for all o € Fk.

As a consequence of [82, Lemma 3.2], for any g € P (0K), there is a unique
w(q) € RTy(K) such that

w(q)js MK, = qo for all o € Fi, and
the L2(K)?-projection of w(q) on Py_;(K) vanishes

(if k = 0, the second condition is non-existent). This defines a linear map
w : Pt(OK) — RTk(K). The sum of the L?-inner product on each face defines
an inner product on the finite dimensional space Py (0K). Since w is linear,
there is therefore a unique I'xu € P (0K) such that

Vg € Po(9K), /K w(q)(@)- Vou(z)ds + / Tpu(a)dive(q)(z)de

- Y [ reu@u @i 0019)

ocEFK

(the left-hand side is the inner product of I'xu and q). Consider now a generic
w € RT,(K) and let ¢, = w|, - ng,, for all 0 € Fg. Since x € 0= T - ng 5
is constant for all o € Fk, it can easily be checked that ¢, € P(o) for all
o € Fk (see [82, Lemma 3.1]). This defines therefore ¢ = (¢ )oecr, € Pr(0K).
The function w — w(q) € RT,(K) has a zero normal trace on 0K, and its
extension to {2 by 0 outside K therefore belongs to V;41V (the normal traces
at the interfaces between K and its neighbouring cells are continuous). This
function can therefore be used in (10.7d), which shows that

/ (w—w(q))(x) - Vpu(x)de + / Hpu(x)div(w — w(q))(x)dx = 0.
K K

Owing to (10.19) and recalling the definition of (¢y)sec 7, , this yields

/w -Vpu(z da:—i—/ Ipu(x)divw(z)dz
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= Z I'ku(z)w(zx) - ng dy(x). (10.20)

cE€EFK VY

We have thus defined a cell-dependent mapping I'x : Xp o — Pr(0K) that
satisfies (10.18) on K. Take 0 € Fx N Fext and ¢, € Pi(0), and consider
w € Vj such that wy, - ng s = ¢, and all the normal traces of w on the
other faces vanish; this defines w € V3V (since the normal traces across the
interfaces are continuous) and, used in (10.7d) and combined with (10.20),
this shows that

/ Tieu(@)go ()dy (@) = 0.

Since this is true for any ¢, € Px(0) and since I'xu € Py (), this shows that
I'xu =0 on o, whenever 0 € Fi N Fext. If we prove that

Vo € Finy with M, = {K,L}, (FKU)|U = (FLU)|U, (1021)

then setting (I'pu), = (I'ku)), for any o € F and any K € M, provides
a mapping I'p : Xpo — M, that satisfies (10.18). The uniqueness of this
mapping follows from the uniqueness of each I .

Let o as in (10.21) and let ¢, € Py(0). Take w € V,3 such that w), - ng , =
~W|; " NLo = ¢o, and the normal traces of w on all the other faces vanish.
Writing (10.20) with this w on all the cells and summing over the cells, the
left-hand side vanishes thanks to (10.7d), and only the contributions from K
and L on ¢ remain on the right-hand side, leading to

/ I'ku(x)w(z) - ng dy(x) + / I'nu(z)w(x) -np ,dy(x) = 0.

g

This proves that

/ Ticu(@)go (2)dy(z) — / T u(@)go ()dy(z) = 0

g

and thus, since ¢, was arbitrary in Py (o), that (10.21) is satisfied. L]

Lemma 10.5 (Control of the RT;, MFEGD by a polytopal toolbox).

Let D be the RTy, MFEGD, in the sense of (10.7), using the spaces defined
by (10.10), and let o > ks (see (7.10)). Let I'p be given by Lemma 10.4 and
define the control @ : Xpo — Xz of D by T (see Definition 7.9) by, for
allu € Xp,

Vo & F, $(w, = [ Poutw)ii(w),
i 7 (10.22)
VI € M. Bl = o /K pu(z)da.

Then there exists Cy > 0, depending only on (2, k, and g, such that
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|P]lp s < Co, (10.23)
W (D, T, ®) < Cohpg, (10.24)
and
wV(D,%, ) =0. (10.25)
Proof.

Step 1: estimate (10.23).

Let K € M, 0 € Fg and wk,, € RTo(K) C RTy(K) be defined by wg, -
Nge =1on o, and Wi - Nk = 0 on o for all o’ € Fi \ {o}. Then, if
s is the vertex opposite to o in the simplex K, wg , is given by wg () =
% for all x € K, where dist(s, o) is the orthogonal distance between s
and o (that is, the distance between s and the hyperplane generated by o).

d__ _ lo|

Hence, div(wg ) = Tei(so) = K]

therefore yields

Taking wg , as a test function in (10.18)

/Kwac,(a:) -Vpu(zx)dx + |o|(®(u)k — P(u),) =0,

which implies

1
dk o]

o]

(B(w) — B(u)ic) < 1900l 2 ey o ey -

dK7O'
The expression of wg , yields the existence of C3 > 0, depending only on p,
such that, for all ¢ € K, |wk -(x)| < Cs. Moreover, using Lemma B.4 and
recalling that xx is the centre of mass of K, we can see that ‘UIdLKI < Cy
with C4 depending only on p and d. Hence, since Card(Fx) = d + 1 for all
KeM,

g
> Y AT @), - #)x)? < 30+ 1) [Toulaoy
KeMocFy K@

and (10.23) follows by noticing that the left-hand side of this inequality is
2
|¢(u)|‘z,2'

Step 2: Estimate (10.24).
Let w € H}(B) N H?(B) be defined by (10.14) replacing p by the extension
of IIpu — <P (u) to B by 0 outside 2. Applying (10.15),

IVl g1 (ya < Cp [ 1Ipu — HzP(u)|| 120 - (10.26)

Moreover, from (10.14) with ¢ = w,

/B|Vw(a:)|2d:c: > /K(Hpu(m)—di(u)K)w(m)dm.

Kem
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Denote by Wk the average value of w on K. Since [, (IIpu(x) — ®(u) g )dz =
0, we infer

| Ivui@)as - > | (pu(a) ~ B (w(@) - wx)da.

The Holder inequalities (D.5) and (D.1) (with p = p’ = 2), and (B.12) in
Lemma B.6, show that

AZERE

< Z HIpu — ()l L2 k) 1w = TK | 2k

KeM
< Y pu— T ®(u)| 1240 Cshic [Vl 2 gca
KeM
1 1
2 2
2 2
< Cshpm ( Z [{Ipu — Hf¢(“)||L2(K)> ( Z ||Vw||L2(K)d>
KeM KeM

with C5 depending only on d and g (the assumption of Lemma B.6 is checked
by using Lemma B.4 to write max,er, dhK—K <Oz <ke+d+1<p+d+1).
As a consequence, 1

”vaL2(Q)d < Csha [ Hpu — H‘Ids(u)”m(g) : (10.27)

Set w = —P,Vw € VA& (P is defined by (10.11)). Thanks to (10.12) and
(10.13),

/ Hpu(x)div(w + Vw)(z)de =0 (10.28)
7

and
||V’LU + w”LZ(Q)d < OZh/\/l ||Vw||H1(.Q)d :

Combined with (10.26) this yields
[Vw + w1290 < ahmCp [ Ipu — HzP(u)| 120
and therefore, with (10.27),
|wllp2(0ye < ham(aCp + Cs) [IIpu — HsP(u)| 12 - (10.29)

We now consider w in (10.7d). Using (10.28) and —div(Vw) = IIpu—ITzP(u),
this leads to

/w -Vpu(x d:c—i—/ IIpu(x)(IIpu — Hz®P(u))(x)de = 0.  (10.30)

The function I1z®(u) is the L?-orthogonal projection of IIpu on piecewise
constant functions on M, and thus
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/ Hpu(@) (o — Hed(u))(@)ds = / (o — d(u))?(x)d.
2 2

Used in (10.30) and owing to (10.29), this gives

[HIpu — Hz®(u)||F2(0) < 1wl 1200 VDUl 120y
< hm(aCp + Cs) [[Ipu — HzP(u)| 120 VDUl p2(0)a -

Hence, |IIpu — Hz®(u) 2o < hm(aCp + Cs) [[Vpull 2. and (10.24) is
proved.
Step 3: Relation (10.25).

Let u € Xpo, K € M, £ € R%, and w € RT(K) be such that w(z) = ¢ for
all x € K. Using this function in (10.18) yields

/K & Vpu(x)de = Z / I'pu(xz)€ - ng ,dy(x) = Z lo|®(v)o€ Nk o

ceFK Y oceFK

Since & is arbitrary, this proves that

/K Vou@)dz = 3 |ol@(u)oni., = /K Ved(v)(z)da,

oE€FK
and (10.25) is proved. ]

Before stating the properties of RT;, MFEGDs, we establish high order es-
timates on Sp and Wp for regular functions. These estimates are essential
to obtain optimal (’)(h]f\jl) error estimates for RTj schemes on linear prob-
lems (see Theorem 2.28). The estimate on Sp also helps establishing the
GD-counsistency of RT;, MFEGDs.

Lemma 10.6 (Higher order estimates for RT; MFEGD). Let D be
the RTy, MFEGD defined by (10.7) with the choice of spaces (10.10). Take
0 > kg (see (7.10)). There exists Cg > 0, depending only on on §2, k and o,
such that

Vo € H"2(2) N HG(2), Sp(p) < Cehit el grsagy » (10.31)
and
Vip € HEP (@), Wi () < Oy [l mas oy (10.32)

where Sp is defined by (2.2) and Wp is defined by (2.6). In other words, the
space size (see Definition 2.22) of the GD satisfies

ho (H*2(02) 0 HY (92); H(02)4) < Cehii .
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Proof. Asin Theorem 10.3, setting u € Xp o such that IIpu = ¢ with (v, ¢)
solution to (10.4) for f = —A¢, we have v = —Vpu and [82, Theorem 3.2]
thus gives the existence of C7 depending only on g and k such that

[—Vpu + v‘ﬂ”m(md < C7h’7\j{1 ||<P||Hk+2(9) . (10.33)
Apply then [82, Theorem 3.3] to find Cs depending only on g and k such that
1Tt = 0l g < CshE 10l ses o - (10.34)

Estimate (10.31) follows from (10.33) and (10.34).

Let us turn to the estimate on Wp. Let ¢ € H**1(£2)9. Thanks to Property
(10.12) of the interpolation operator Py, we have, for any v € Xp g,

‘ /Q (Vpu(x) - p(x) + Hpv(x)dive(x)) dw’
— ’/ (Vpu(x) - p(x) +HDU(CL’)diVPk(p(:1:))dm’
I7)

~| [ Vo1(@): (el@) - Peg(a)) da
2
< e = Pl o(ys 1900 2oy (10.35)

using Py € V4V and the definition (10.7d) of Vp. The estimate in [82,
Theorem 3.1] implies

e — Pk‘P”m(Q)d < C9h,/€\;t~_1 ||‘P||Hk+1(g)d

with Cy depending only on (2, k and g. Used in (10.35) this proves (10.32).
"

We can now state and prove the properties of RT; MFEGDs.

Theorem 10.7 (Properties of RT;, MFEGDs). Let (T,,)men be a se-
quence of conforming simplicial meshes in the sense of Definition 7.4, such
that ha,, — 0 as m — oo and (ks )men s bounded (see (7.10)). Let, for
m € N, D, = (Xp,, 0,1Ip,,,Vp, ) be the RT), MFEGD defined by (10.7)
with (VY W) = (VY W, ) given by (10.10) with T = T,,.

Then (Dpm)men s coercive, GD-consistent, limit-conforming and compact in
the sense of the definitions in Section 2.1.1.

Proof. Lemma 10.5 and Corollary 7.12 give the coercivity, limit-conformity
and compactness properties. The GD-consistency follows from (10.31) and
from Lemma 2.16 with Wy = H**2(02) N H}(92). "
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10.2.2 Gradient discretisation from the RTy hybrid mixed finite
element formulation

The hybrid, or Arnold-Brezzi, formulation [16] for the approximation of (10.1)
corresponds to an hybridisation of the mixed finite element scheme (10.4).
Using the discrete spaces defined by (10.10), it reads

(v,q,\) € Vi x Wi, x MDY, (10.36a)
/ w(x xz)dx —/ q(x)divw (x)dx
K
+ Z //\ wg(x) - ng dy(x) =0,
cEFK
Yw eV, VK € M (10.36Db)
/ P(x)dive(x)de —/ Y(x) f(x)de, Vip € Wy, VK € M, (10.36¢)

[ (@) vixe) nac o (@) + / () v (@) - nppdo (@) = 0,
Vo € Fine with M, = {K, L}, Vu € MJ. (10.36d)

Since the normal traces of RTy, functions on a face o belong to Py (o), (10.36d)

is equivalent to imposing the pointwise continuity of the normal traces of v,
that is, to imposing v € Vhdiv. Given that the elements in W}, have independent
values in each cell, (10.36¢) is then clearly equivalent to (10.4c). Taking w €
V4V in (10.36b) and summing over the cells yields (10.4b). Conversely, if (v, ¢)
satisfies (10.4b) then by introducing u € Xp o such that (—=Vopu, IIpu) =
(v,q) and by setting A = I'pu, where I'p is defined in Lemma 10.4, we see
that (10.18) is the same equation as (10.36b). All this shows that (v,q) is
a solution to (10.4) if and only if (v,q,A) is a solution to (10.36). As a by-
product, this also establishes the existence and uniqueness of a solution to
this hybrid formulation.

We now construct a GD (in the sense of Definition 2.1), called HMFEGD,
inspired from the hybrid mixed finite element formulation (10.36) of Problem
(10.1). Let Wy be defined by (10.10c) and let again (x;)icr be a basis of
Wi Let M be defined by (10.10d) and let (£;);es be a basis of Mp. To
avoid confusions in the notations below, the index sets I and J are selected
to be disjoint. Recalling that Vj, is given by (10.10a), define the HMFEGD
D= (X5 115,V 5) by:

D,0°
o = 1v = ((wi)icr, (vj)jes) : ve € Rforall ke TUJ}, (10.37a)
Vu € X5, Hpu= ZUiXi and I'zu = Zujfj, (10.37b)
iel jed
Vu € X5 0> Vpu € Vyis such that, for all K € M,
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/ w(x) - Vyu(x)de +/ IIzu(z)divw(x)de
K K

- Y [ Tsu(@) wik (@) - ngdy(x) =0, Yw € Vi (10.37¢)

cE€EFK VY

Remark 10.8 (Raviart-Thomas mized finite element and HMM). In the case
k = 0, the hybrid RTq scheme is a particular case of the mixed-hybrid mimetic
finite difference [131], which is itself a member of the HMM family of schemes
described in Chapter 13. The properties of RTg HMFEGDs therefore also
follow from the properties of HMM GDs.

As for (10.7), in order for (10.37) to define a GD the system (10.37¢) should de-
fine one and only one reconstructed gradient Vzu, and |- 5 := ||V75-||L2(Q)d
should be a norm on X5 The existence and uniqueness of V. zu again results
from the Riesz representation theorem (applied in each RTy(K) space with
the L2(K)%inner product). The norm property results, on one hand, from the
coercivity property shown in Theorem 10.10 below, and on the other hand,
from the reasoning in the proof of Lemma 10.4 (based on the fact that any
q € Px(0K) can be written as the normal trace of some w € RTy(K)), which
shows that, if Vsu = 0 and IIzu = 0, then I'zu satisfying (10.37c) must
vanish.

Let us check that the GD D indeed corresponds to the hybrid RTjy scheme.

Theorem 10.9 (Hybrid RT} is a GDM in the isotropic case). Using
the GD (10.37), w is the solution to the gradient scheme (2.23) for Problem
(10.1) if and only if (v,q,\) = (=Vzu,Izu, I'zu) is the solution to the
Arnold-Brezzi formulation (10.36) of the mized finite element method.

Proof. Let u € X5, be a solution to (2.23), and let us show that (v,q,A) =
(=Vau, IIzu, I'su) is the solution of (10.36). We first observe that (10.37c)
ensures (10.36b). Let 1 € W, and p € M}, consider a particular K € M, and
take in (2.23) a test function v € X75,0 such that IIzvx = ¥k, zv, =0
for all L € M\ {K}, and I'sv = 0. Thanks to (10.37c), the support of Vzv
is also reduced to K and the GS (2.23) therefore gives

/ Vsu(@) - Vsu(e)ds = / F(@)(@)d.
K K

Setting w = v in (10.37c) with u replaced by v, and using I'sv = 0, we get

/ v(z) - Vyv(x)de +/ IIzv(x)dive(x)dx = 0,
K K

which implies
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/ F(@)(@)ds — / Vsu(@) - Vsu(@)de
K K
= —/ v(z) - Vyv(x)de
K
= IIzv(x)dive(x)dr = / Y(x)dive(x)de.
K K

This completes the proof of (10.36¢). Then, we take p € M} and let v € X5
be such that IIzv = 0 and I'zv, = py, for a given 0 = K|L € Fiy, and

I'svier = 0 for all o' € F\ {o}. Setting again w = v in (10.37c) with u
replaced by v, we get

/ v(z) - Vyv(x)de — / w(x) vig(x) - nk dy(z) =0,
K

o

and
/ v(z) - Vyv(x)de — / pu(x) vp(x) -np ody(z) = 0.
L o
Summing these relations and recalling that v = —V zu gives
Vou(a) Vgul@)da + [ (@) vic@) nicady(e)
KUL o

+ [ n(@) va(@) meadr(@) =0. (1039

Using the GS (2.23), the fact that the support of Vzv is reduced to K U L,
and that ITzv = 0, we see that the first term in (10.38) vanishes. This proves
(10.364).

Conversely, considering the solution (v,q,\) to (10.36), since ¢ € W), and
A € M}, there exists a unique u € X5, such that ¢ = IIzu and A = I'zu.
From (10.36b), we get that v = fvﬁu; For any v € X5, letting ¢ = Il zv
and p = I'zv, and following the same computation as above, we get that
(10.36¢) and (10.36d) imply (2.23), using (10.37c) where u is replaced by v.

m

Theorem 10.10 (Properties of the hybrid RT, GDs). Let (%) men be
a sequence of conforming simplicial meshes in the sense of Definition 7.4,
such that haq,, — 0 as m — 0o and (K<, )men s bounded (see (7.10)). Let
D,, = (X5, 0115,, V5, ) be the gradient discretisation defined by (10.37)
with the spaces (10.10) built on T,p.

Then (15m)meN 1s coercive, GD-consistent, limit-conforming and compact in
the sense of the definitions of Section 2.1.1.

Proof. Let ¥ be a conforming simplicial mesh, D be the RT;, HMFEGD
defined by (10.37), and D be the RT; MFEGD defined by (10.7). Define the
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mapping T' : Xz, — Xpo by T(u) = (u;)icr. Then Izu = IIpT (u). By
selecting w = VpT (1) € VY C Vj, in (10.37¢) and summing on K € M, all
the integrals on ¢ € Fi,¢ vanish and we obtain

/ VpT (u)(x) - Vzu(z)de + / IIzu(x)div(VpT(u))(x)dx = 0.
2 Ie;
Using (10.7d) with w = VpT'(u) and T'(u) instead of u then yields

/Q VpT(@) () - Vsi(e)dz = / T (@) (@)div(VpT (@))(@)de

/ VT (W) (z) - VpT(@)(z)de.

The Cauchy—Schwarz inequality then leads to
VDT (W) 22y < IVatllL2(o)e, Yue Xz (10.39)

We can now prove the properties of (ﬁm)mEN-

CoERCIVITY. The coercivity follows from the relation II5 u = IIp,, T(u),
from the coercivity of (D, )men (Theorem 10.7), and from (10 39).

GD-CONSISTENCY. Let u € Xp,, 0. Recalling the definition of I'p, in Lemma
10.4, there exists u € X5 such that T'(u) = u (this defines (u;);cr) and
I's w= Ip,u (this deﬁnes (@j)jes). Then (10.18) and (10.37c) show that
Vp, u= Vg . Take p € Hj(£2) and set

u= argmin (|Zp,,0 = ¢l 2(a) + V5,0 = Veéllpzay) -
VEXD 0

Then, since lIp v = IIp, T(u) = II5 u,

A

m

S, (p) < Hﬂﬁmﬂ—w)

L2(2) * H 30’ L2(2)4
[p,,u— ¢l 2 + IV, u = Vol 2g)a < 5p,,(¥)

and the consistency of (5m)m€N follows from the consistency of (Dy,)men
(Theorem 10.7).

LIMIT-CONFORMITY. If w € V¥ then writing (10.37c) over each cell and
summing over the cells, the face ‘terms cancel (since w-ng s +w-ng, =0
whenever o € Fiy with M, = {K,L}), and we see that (10.7d) holds with
5m instead of D. The limit-conformity can therefore be proved in a similar
way as in Theorem 10.3, by taking ¢,, € V,f}i" that converges to ¢ in Hgjy
and by writing, for u,, € Xp,, o,
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W, (o) = [

(Vﬁmﬂm(m) () + 5 ﬂm(:c)divcp(ac)) de =
(]

[ (95, (@)- (6(@) = (@) + 1T, i () divep() — divepy () ) .

COMPACTNESS. Similarly to the coercivity, this property is an immediate
consequence of the compactness of (D, )men (Theorem 10.7), of (10.39) and
of Hﬁ U= HDmT(’l’Z). ]

Remark 10.11. The coercivity, limit-conformity and compactness properties
of sequences of RT, HMFEGDs can also be established through the notion
of control by a polytopal toolbox. The control is defined in a similar way as
(10.22) in Lemma 10.5, by using I'.
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Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods have a long history, and have become
very popular numerical methods for PDEs of various types. They present the
advantage of being applicable on generic meshes and of providing possibly high
order approximations of weakly regular functions. DG methods are based on
polynomial approximations in the cells, without continuity conditions imposed
on these polynomials across the faces. The continuity is weakly enforced in the
scheme, by using various possible stabilisation terms controlling the jumps of
the polynomials at the interfaces [17]. The convergence of DG methods has
been proved for a variety of problems and stabilisation terms (see [62] and
references therein).

In this chapter, following [98], we build a discontinuous Galerkin gradient
discretisation (DGGD) such that, for linear diffusion problems, the resulting
gradient scheme is identical to the symmetric interior penalty discontinuous
Galerkin scheme (SIPG).

We then prove that, under standard regularity assumptions on the meshes,
sequences of DGGDs satisfy all the core properties of a GDM on general poly-
topal meshes in any space dimension. This is done via the notion of control by
a polytopal toolbox as defined in Chapter 7. Throughout this chapter, we con-
sider the general case p € (1,400), but we restrict ourselves to homogeneous
Dirichlet boundary conditions for the sake of simplicity.

11.1 Discontinuous Galerkin gradient discretisation

11.1.1 Definition of the DGGD
The definition of a DGGD uses some notations presented in Figure 11.1.

Definition 11.1 (Discontinuous Galerkin gradient discretisation). Let
T = (M, F,P,V) be a polytopal mesh of {2 in the sense of Definition 7.2,
k € N* be a polynomial degree, and 5 € (0,1). A discontinuous Galerkin
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gradient discretisation (DGGD) D = (Xpo,IIp,Vp) of degree k on T is
defined by the following elements.

1. Let (xi)icr be a basis of the space defined by (10.10c), that is

W, = {w € LP(2) : wk € Py(K), VK € M}, (11.1)

and set
XD70 = {U = (Ui)iel v, €R fO?” all i € I} (112)

2. The operator IIp is the reconstruction in LP(§2) of the elements of Xpo:
Yv € Xpyo, IIpv = ZviXi~ (11.3)
iel

For all K € M and v € Xp, denote by v € Pi(K) the polynomial
defined by (IIpv) x and extended to K, and set Vv = Vg0,
3. Forve Xpo, KeM, o€ Fg and a.e. x € Di ,, set

Vpu(x) = Viv(x) + '(/}(S)[’U](Iiﬂﬂn[{ﬂ; (11.4)
K,o
where:
o x is (uniquely) decomposed as x = xx + s(y —xx) with s € (0,1] and
yeo,

o for ally € o,

if 0 € Fint and M, ={K,L},

Tzv(y) — lzo(y)
) (11.5)

[U]K,a(y) =
if 0 € Fext and M, = {K},
[w]ko(y) =0 — Hzv(y),

et : (0,1) = R is the unique function such that ¥(s) = 0 on (0, 3),
Vs, € Pe—1([6,1]) and

1
/ Y(s)s? s =1, (11.6a)
B

1
Vi=1,...,k—1, / (1 —s)"p(s)s?1ds = 0. (11.6b)
B

4. The fact that ||VD'||Lp(9)d is a norm on Xp o is a consequence of Lemma
11.10 (see Remark 11.11).

In the case k = 1, the function v(5,1) € Po([3, 1]) has the constant value ﬁ.
For the general case k € N*, considering the basis B = (1,(1 — s),...,(1 —

s)¥=1) of Pi_1([3,1]), and writing the function ¢5,1] as 1(s) = Zle a;(1—
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r=xg + sy — xk)
\\ TK

DY

Fig. 11.1. Notations for the definition of a DG gradient discretisation

5)771, the equations (11.6) boil down to the system Aa = (1,0,...,0)T where
a=(ag,...,a;)T and

1
A= / (1 —s)ti725071ds.
B

In other words, A is the Gram matrix of B for the inner product (f,g) —
fﬁl f(s)g(s)s?tds on P.([B,1]). Hence, A is symmetric positive definite and
there exists a unique v(3,1) € Px_1([3,1]) such that (11.6) holds.

Remark 11.2 (Definition of the jump at the faces of the mesh). In (11.5), the
jump across the faces is divided by 2 for interior faces to allow for a seamless
definition of Vp on all Dk , no matter if o € Fine or 00 € Fext.

Throughout this chapter, given K € M and o € Fk, we use the functions
s : Dgos — (0,1) and y : Dk, — o defined such that, for x € Dg o,
z =xi + s(x)(y(x) — xx). In other words,

L —TK

s(z)

It will also be useful to split the cone Dk , into D%j)o, and Dk \Dg?) with

e

sta) = 2K

and y(x)=zx +

DY) ={x €Dk, :x=xx+sy—xx)sc(0,f], yca} (117

We then set )
K¥ = | ) D).
oceFK

This is illustrated in Figure 11.1. Note that |Dg o \ D;?,)U\ = %d;(,a

al.
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Remark 11.8.If v € Xpy, the function IIpv € W}, has discontinuities at
the faces of the mesh. Its distributional gradient therefore involves measures
concentrated on the faces (and absolutely continuous with respect to the (d —
1)-dimensional measure on the faces). The gradient Vpv € LP(£2)? can be
seen as a regularisation of this distributional gradient, in which the measures

on the faces are “spread” over a neighbourhood of the faces (specifically, for

each o € F, over Uprem, Do \ Dgﬁ?g), and weighted by functions whose

purpose is to ensure that the corresponding term has a proper orthogonality
property with respect to Vv, see (11.12).

Remark 11.4. The mathematical analysis of the DGGD is essentially un-
changed if the uniform constant 3 is replaced with local constants Sk, €
(0,1).

Remark 11.5 (Piecewise constant reconstruction). A DGGD with piecewise

constant reconstruction can be obtained by replacing IIp with .ﬁp defined,
for all K € M and a.e. x € K, by

ﬁpv(:c) = ul(/KHKv(m)dw.

This function reconstruction is piecewise constant in the sense of Definition
2.12 if the basis (x;)ier is chosen such that, for each K € M, there exists
i € I with v; = ﬁfK IIzv(x)dx for all v € Xpo (in other words, the
zero-th moment of ITv must be a degree of freedom of the method).

11.1.2 Link with the symmetric interior penalty discontinuous
Galerkin (SIPG) method

Theorem 11.6 (SIPG is a gradient scheme). Let T be a polytopal mesh
and D be a discontinuous Galerkin gradient discretisation on X as per Def-
inition 11.1. Assume Hypotheses (2.21), F = 0 and that A is constant in
each cell of €. Then the gradient scheme (2.23) constructed from D for the
linear elliptic problem (2.22) is a symmetric interior penalty Galerkin (SIPG)
method as in [84, 62].

Proof. Recall that the gradient scheme (2.23) is given by
u e XD70, Yv € XD,O;

11.8
/ A@)Vpu(a) - Voo(z)da = / f@Tpo@ydz. D
Q Q
Write the integral in the left-hand side as a sum of integrals over the cells and
use the definition (11.4) of Vp to develop the dot product. Since A is constant
in each cell, denoting by Ax the value of A in K € M this yields
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/Q A@)Vpu(x) - Voo(a)de

/ AxVu(@) - Vo(a)de
K

KeMm

> [ vty e e oy

’ aez;x /DK,(, Ax V(@) ¢(s(w))WnKﬂdm

+ gerK /DK,C, AKMK;ZGK(:Z(Q:))nKJ . W”Kﬁiﬁ@(w)ydw )

(11.9)
Let us first consider the cross-products (third and fourth lines above). They
are symmetric in u,v so understanding only one of them is sufficient. The
change of variable * € Dk, — (y,s) € o0 x (0,1) is defined by * = xx +
s(y — xx) and satisfies de = dx ,5?"1dy(y)ds. Hence,

/ AKw(s(:c))[u]K;wnK,g - Vu(x)de
Dk.o K,o

(11.10)
= [ atea) dK / Yoy, 5))(s)s™ Ldsd (y)dxco.

Since Vv € Py (K), the function ¢(s) = Vzv(zkx + s(y — Tk)) - Nk, is a
polynomial of degree k or less. Expanding it along its Taylor series at s = 1
leads to

¢(s) = Vgo(y) - nro + Z P (y)(1 = 5) (11.11)

where, for m =1,...,k — 1, p,,(y) is a polynomial with degree less or equal
to k — 1 with respect to the coordinates of y. Using (11.6) thus shows that

/ﬁ Veu(@(y, s)) - not(s)s ds = Vio(y) - nico. (11.12)

Plugged in (11.10) this yields the following representation of the first cross-
product in (11.9):

[, Aot P oieria
Dk.o K,o

= / AK[’U/]KJ(y)nK,o : va(y)d,}/(y)

Using the same change of variable as above, the last term in (11.9) is easily
re-arranged into
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[ ey, k()
Dk,o

2
dKO’ 7 dKO' anw( ( )) de

_ AK’I’LKU nKU/ w 2 4= 1d3/[ ] ( )[ ]K,U(y)d’Y(y)'

dKU

The relation (11.9) is therefore re-written as

/ A(x)Vpu(x) - Vpu(x)de

/AKVKU - Vzv(x)de

KeM
+ > {/AK ulk,o (Y)Vro(y) + [0k o(y) Vru(y)) - ni.dy(y)
cEFK
+AKnZ;UnKJ/ W(s)2s0™ 1ds/[] + (V) [V]x ,U(y)dv(y)}].

This right-hand side corresponds to the bilinear form in the SIPG scheme as
presented in [84 62]. Here, the penalty coefficient 7, (term 5 of [84, eqn.

felfo
(11)], term 7L of [62, eqn. (4.12)]) is

if 0 € Finy and M, = {K, L},

1t 9 d-1 Agng, Nge AN . -npo
= —_ d 2 2 kl )
(4 /5 1/)(8) s 8 dK,a * dL,a' ’
=1

if 0 € Foxt and M, = {K},

Agn n
2d1d K KO’ KU’
</w dKa

The proof is complete by noticing that the right hand side of (11.8) is identical
to the right-hand side of SIPG methods as in [84, 62]. L]

Remark 11.7 (Lower bound for T, and mesh regularity). By the Cauchy—
Schwarz inequality and (11.6a),

1 2 1 1
1= </5 1/J(s)sd1ds> §/ﬂ w(s)zsdlds/ﬁ 577 1ds.
' 2 .d—1 d
/ﬁ P(s)*s*"ds > T 73d

The coercivity assumption (2.21a) on A therefore shows that 7, > d\/dk o
for all ¢ € F, where K is any mesh in M,.

Hence,

>d.
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Classical analyses of SIPG methods require the stabilisation parameter to be
larger than some constant depending on the mesh regularity (in particular,
through max g e o Card(Fk ) and some discrete trace constant, see [62, Lemma
4.12]). For the DGGD analysis, no such assumption is made. The lower bound
on 7, only depends on dg,, and no “large enough” parameter has to be
selected by the user.

11.2 Mathematical properties of DG gradient
discretisations

11.2.1 Preliminary results

Definition 11.8 (Comparison of norms on R"™!). Let n € N and ¢ > 0

be given. We denote by Cyq, > 0 the largest number, depending only on n, q
and d, such that

1] n q n

Y(ag, ..., an) € R™L, / > ait'] 177 ds > Can Y Jagl? (11.13)
0 li=o i=0

Note that the existence of C,, follows from the homogeneity of each side

of (11.13), and from the fact that, if the left-hand side vanishes, then the

polynomial Y7 a;t* is zero on [0,1], and thus a; =0 for all i = 0,...,n.

The following lemma is instrumental to the study of [Vp-[[1s(q)a-

Lemma 11.9. Let n € N and 8 € (0,1) be given. Let ¥ be a polytopal mesh
in the sense of Definition 7.2. Then
Yo € P, (RY), VK € M, Vo € Fg,

(n+1)P~1
p < p
/DK,G @I < B,y Jp 11O

where Cp ., is defined in Definition 11.8 with ¢ = p, and D&?)g is defined by
(11.7).

Proof. For K € M and ¢ € Fk, compute [, |v(x)[Pdz by making the
K,o

change of variable * = zx + s(y — k), where y € o and s € (0, 8). Recalling
that de = dx ,5%"1dy(y)ds, this yields

B
/D(ﬁ) |v(z)[Pdx = //0 lv(zx + s(y _wK))|de,65d_ld5d'7(y)'
K,o a

For a given y € 0, s = v(xx + s(y — xk)) is a polynomial of degree at most
n, and we can thus write v(zx + s(y — zx)) = >, ai(y)s’. Then, using
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the notation introduced in Definition 11.8, performing the change of variable
s = Bt, and recalling that 8 € (0,1),

B 1
/ s471ds = 6d/
0 0

> B1Cyn Z jai(y) B[P > BHPC, Z ai(y

p p

ttae

n

Z ai(y)s'

1=0

n

> ai(y)st’

=0

This leads to

/D o, @z > BTG, / Ko (Zai(y)|p> dy(y).  (11.14)
K,o g =0

On the other hand, since (3" |a;(y)])? < (n+1)P~1 37" |ai(y)|P (see (D.1)
with b; = 1 for all 7),

/D ) - /0 /0 (@ + 5(y — 2x)Pdic.o 5% dsdy (y)
Zai(y)si
< (n+1)P" 1/ (Z lai(y ) dic,ody(y).-

The lemma is proved by using (11.14) in this last equation. ]

dK,UsCF Ydsdy(y)

Norms well-suited to the analysis of DG methods involve the LP norm of the
gradient in each cell, and jump terms at the faces. The following lemma relates
such a norm with the norm of the DGGD reconstructed gradient.

Lemma 11.10. Let D be a DGGD in the sense of Definition 11.1. Then there
exists A > 0, depending only on B, p, k and d, such that

1
Vo € Xpo, lvlpes < IVollira) < Allvlpe.p, (11.15)
where
lvlbe,p =
( | @+ 3 o / [l () Pdr(y >). (11.16)
KeM ceFK

Remark 11.11 (DG norm). It is easy to see that |-[|pq , defined by (11.16) is
a norm on Xp . Indeed, if [[v[|pg , = O then the jumps at the faces (both
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interior and exterior) are equal to 0, which implies that ITpv € W, (£2).
Since [[v][pg, = 0 implies that VIIpv = 0 a.e. in £2, we get that IIpv = 0
a.e. in (2. It is then deduced from the definition (11.3) of IIpv that v = 0.

Note that this DG norm is slightly different from [61, eqn. (5)] or [62, eqn.
(5.1)], mostly through the usage of dk , instead of diam(o) in the jump term.

Proof. Let K € M and 0 € Fi. Writing * = i + s(y — xx) and using,
for some ¢ > 0 to be chosen later, |a + b|P < (1 + ¢ )P~ 1([a|? + |2|P) with

1iLl =1 a=Vgo)+ L ““’(“””w( (@)nr, and b = —Vgo(@), we
have

/K|va(a:)|pda3

— / V() Pda
K

[U]Kﬁ(y(w)) D
"FJGZ}_:K /DK \Dﬁf}, )va(w)‘FT’JI/)(S(:B))nKﬁ da
1
= /K(B) Vrv(@)lde - P /K\K(ﬁ) |Vzv(z)|Pdz
o’(y(w)) P
M 1+cp (1 4 P )p—1 Z /DK \DE), Tw(s(w))n;(’g de. (11.17)

We have, by equivalence of the (? and [? norms on R? (iterate (D.13) with
a=d/2),

d d
1
- > |ilIgvl? < Vol < dP/? Y [0, vl (11.18)

i=1 i=1

Applying Lemma 11.9 to the polynomial 9;IIzv € Py_1(R?) for i = 1,....d
then shows that

ﬂd+p(k—l)c b1

d
I p >—p’_ I P
I e M LA

c’ / IV o(@)|Pda,
K
ﬁd+P(k'*1)C

where by C" = =527 We then define c by L =10 Using Ink,| =1
and coming back to (11.17) yields

1
/ Vou(@)dz > L' / IV co(@)Pda
K
l—l—cp (14 cP')p—1 Z /DK(,\D“”

ocEFK
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Using once more the change of variable = xx + s(y — k), we obtain

A \D(ﬁ) [v}K’”(y(w))w(s(w))

dKO’
_dKU/| dp / [(s)|Psi ds
K,o

_ v P s)[Ps?1ds.
- / o]0 () Py () /B (s)Ps1d

Used in (11.19), this completes the proof of the left-most inequality in (11.15).
To prove the other inequality, simple use the definition of Vpv and (D.12) to
write

/ |[Vpu(z)Pde < 2p_1/ |Viv(x)|Pde
DK,U DK,a

o V] k,0 (y(x))
+2 1/DK,0\D% K

dK,U
= 2’)_1/D |Viev(x)|Pde
K,o

op—1
2y [ loliea )P drty /\w (s)Psi1ds.
K,o V9

p

dx

U(s(z))| dz

We now define, and state estimates on, a control of a DGGD by a polytopal
toolbox.

Lemma 11.12 (Control of a DGGD by a polytopal toolbox). Let ¥ be
a polytopal mesh and D be a DGGD in the sense of Definition 11.1. Define the
control @ : Xpo— Xz of D by T (see Definition 7.9) by: for allv € Xp o,

Vo € Fint with M, = {K, L},
II;zv(y —v(y)
v . dy
o W)

(11.20)
Yo € Fext) ( )O’

VK e M, K |K‘/HK’U

Take o0 > O< + nz (see (7.8)-(7.9)). Then, there exists C1 > 0 depending only
on §2, k, d, B, p and o, such that

[@]lp s < Ch, (11.21)

(D, T, &) < Crhp, (11.22)

and
wV(D,%,®) = 0. (11.23)
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Proof. Apply first Lemma B.6 to obtain Cy depending only on d, p and o
such that, for all K € M and ¢ € Fk,

P p—1
Cgh
— | ‘ |HVKU|HLP(K)GZ (1124)

‘;' / Ieo(y)dy(y) — B(v)x

|0 = B(0) il sy < Cohic V0l ey - (11.25)

By Definition (11.5) of [v]k,s, in all cases 0 € Fg N Fing Or 0 € Fr N Fext
there holds

P(v), = |a/ k.o(y)dy(y ‘ |/HK1) )dy(y (11.26)

Therefore, using (D.12), Jensen’s inequality (D.10) (with ¥(s) = sP) and
[@(v)o — P(v)k|”

(11.24),
< <G|/| oty ) + 2 )

Divide this inequality by dKW multiply by |o], use hi/dk o < 0=, and sum
over 0 € Fg. Then use Card(]:K) < Az and sum over K € M to see that
there exists C3 > 0 depending only on {2, p and g, such that

[8(v)lz , < Csllvllbe -

Conclude (11.21) by invoking Lemma 11.10.

Estimate (11.22) is obtained by raising (11.25) to the power p, by summing
over K € M and by using Lemma 11.10 to see that ), HV?”H]ZP(K)d <

AP ||VDU||I£p(_Q)d-

To prove (11.23), notice that the change of variable © = xx + s(y — k),
(11.6a) and Stokes formula on Vv = V(IIzv) give

/KVDv(a:)dm:/ x)dx + Z dKU/T@)nK,od’Y(y)

cEFK Ko

-y / o]0 ()P o7 (3.

cE€FK
Accounting for (11.26) leads to
/va Yz = Y |o|®(v)onk e = /vgqs
cEFK

and the proof of (11.23) is complete. ]
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11.2.2 Properties of DGGDs

Most of the properties of sequence of DGGDs are immediate consequences of
their control by polytopal toolboxes.

Theorem 11.13 (Properties of DGGDs). Let (Dy,)men be a sequence
of DGGDs in the sense of Definition 11.1, defined from underlying polytopal
meshes (T )men. Assume that (Oz,, + 1z, )men is bounded (see (7.8) and
(7.9)), and that ha,, — 0 as m — oo.

Then the sequence (Dy,)men s coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2.

Proof. The limit-conformity, coercivity and compactness are obtained by

applying Corollary 7.12, thanks to Lemma 11.12.

The GD-consistency is obtained by applying Lemma 11.14 below with ¢ = 1,

and by using Lemma 2.16 and the density of W2P(£2) N W, (£2) in W, P(£2).
n

As expected, DGGD is a high order method, which means that high order
estimates should be obtained for Sp and Wp. These estimates are given in
the following two lemmas.

Lemma 11.14 (Estimate on Sp for DGGD). Let D be a DGGD in the
sense of Definition 11.1, with underlying polytopal mesh ¥. Take o > Oz +
ne (see (7.8) and (7.9)) and let ¢ € {1,...,k}. Then there exists Cy > 0,
depending only on on §2, B8, p, k, £, d and o, such that

Vo € WEHP(Q) NWEP(R2), Sp(9) < Cultlyg lollwesiniy . (11:27)

where Sp is defined by (2.2).

Proof. In this proof, C is a generic notation for various positive numbers
depending only on £2, 3, p, k, £, d and o. Let ¢ € WEHLP(Q) N WP (02)
and, for K € M, denote by 7% : L'(K) — Py(K) the L?(K)-projection on
polynomials over K of degree at most k. By [58, Lemmata 3.4 and 3.6],

||Q0 - W]IC(QDHL;:(K) S Chig_l HQDHWH—L:D(K) ) (1128)

Ve = V(@) 1o sepe < Chie @ lwesingsey » (11.29)
041-1

Vo € Fk, ||<p — Wf(tpHLp(o_) <Chy 7 ||<pHWe+1,p(K) . (11.30)

The functions (W];(@)KGM define an element of W},. Since IIp : Xpo — W),
is an isomorphism (see its definition (11.3)), there exists v € Xp ¢ such that
(IIpv)x = IIgv = mh¢ for all K € M. Then, raising (11.28) to the power p
and summing over K € M yields

e — HDUHLP(Q) < Chf\—/ti_l H‘PvaHLp(Q) . (11.31)
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Let us now analyse the jump terms in Vpv. Let 0 € Fipy with M, = {K, L},
and y € 0. Writing

Wi y) = 5 (Tpo(y) — oly) + ¢(y) ~ Mgo(y))

1

= %(m’-iw(y) — oY) + 5 (ely) - 7))

and using (11.30) in cells K and L yields

4+1-1 4+1-1
Iv]k.ollpspy < Chy lellwesro(ry + Chy llollwesrm ey

1-1 1-1
< O (17 Molessoay + i Bolhwesnocy )

11
By definition of ¢, di , > 0 ‘hy and dr,e > Q_ldL’g > 07 %hy, so d}}’a <

1_q 1_1 1 1
Chy, and dj . < Ch; . Hence,

19
B 0l ooy < Ot (Il + Ielwernoio)) -

Using the same change of variable = i + s(y — ¢k ) as in the proof of
Lemma 11.10, we infer

/ |[Vpv(x) — Viv(z)Pde
Dk,o

/L)K,a

= 1 s)Ps?1ds =P ) g o () P
/ﬂw( Psitd /UdK,(,m )Py ()

14
< O (Iellyenoqny + 10 Mesrne)) - (11.32)

Since ¢ = 0 on 942, performing the same steps as above shows that (11.32)
also holds if o € Fi N Fext, by simply removing the term involving L. Sum
(11.32) over o € Fi and K € M, recall that Vv = V(IIzv) = V(rkp),
and use then (11.29) and the triangle inequality to infer

P

w(s(w))[v]K’a(y(x)) dx

dK,U

IV = Vol Loy < Chi @ lwerng) -

Combined with (11.31), this completes the proof of (11.27). L]
Lemma 11.15 (Estimate on Wp(y) for DGGD). Let D be a DGGD
in the sense of Definition 11.1, with underlying polytopal mesh T. Take o >

Oz + nz (see (7.8) and (7.9)) and let £ € {1,...,k}. Then there exists Cs,
depending only on (2, B, p, k, £, d and p, such that

Yo € WO ()", Wp(@) < Cablyllellwer oy, (11.33)
where Wp is defined by (2.6).
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Remark 11.16 (Estimate on the space size of a DGGD). Lemmata 11.14 and
11.15 give the following estimate on the space size of a DGGD (as in Definition
2.22):

hp(WELP(02) N WEP(02); WO (2)1) < max(Cy, Cs)hly,.

Proof. In this proof, C' denotes various constants having the same depen-
dencies as Cj in the lemma. Let ¢ € W% (2)%. Using the definition of Vpuv
and ITpv yields

/I2 (Vpu(x) - o(x) + Hpv(z)dive(x)) de (11.34)
= 3 | (VUgo(e) - ¢l@) + Hrv()dive(e) de
Kem 'K
olyl@)
+ ng Uezf:K . (S(CB))TTLK,U p(x)d
=T, +Tp. (11.35)

Stokes formula in each cell K yields

Tv=3 Y | Igo(ye(y) nxodiy). (11.36)

KeMoeFk o

Let mh- ! : LP(K)? — Pj_;(K)? be the component-wise L?(K)-projection
over polynomial vectors on K of degree at most k — 1, and write

_ @)
T2 B K;MO'EZJ:K Dk o ( ( )) dK,U Ko (‘P( ) K 90( ))d
P Y [ wtsta) W@, (a)aa
KeMoeFy ' Pr.o Ko
= To1 + Tho. (11.37)

Similarly to (11.28) we have || — ”f(_l‘PHLp'(K)d < Ch; @y e (xya- Hence,
the Holder inequalities (D.1), (D.5) and the now classical change of variable
T =z + s(y — xk) show that

‘T2,1| < Chf\/( HSD||W€,p’(Q)d

1/p
x (Z > b (s)[Ps* " ds / d}gﬁ[v]K,g<y>|Pdv<y>>

KeMoeFg DK’G
< Chﬁvl H‘P”We,p’(n)d HU”DGJJ
< CAhﬁvt H"pHW@,P’(Q)d ||VDUHLp(Q)d : (11.38)
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Lemma 11.10 was invoked in the last line. We now turn to 75 2. Since ﬂ’;(_lcp
is a polynomial of degree kK — 1 or less, using the change of variable * =
xx + s(y — xk) and a Taylor expansion in s about s = 1 we have, similarly
to (11.11),

k—1
T e(@) nk o =T e(Y) ko + > pm(Y)(1— 8™
m=1

where p,, is a polynomial in y. Hence, by (11.6),
T2,2 = Z Z [U]K,o(y)wlf(_lso(y) : nK,ady-
KeMoeFk 7
Therefore, with (11.36)

T+ Toa= Y Y [ (Hgo@)e) + i)l o)) - nxdy(y)
KeMoeFg V9

= > > | (ITgv(y) + ko) ¢(y) nr.dy(y) (11.39)

KeMoeFg g

+ Y > | ko) e(y) — o(v) -k ody(y).

KeMoeFg g

If o € Fin with My = {K, L}, Igv(y) + vk (y) = 3(ITzv(y) + Tzu(y))
and thus, since ng,, +nr s =0,

/ (Tev(®) + ]x0 ) 0(y) - nc o ()

+ / () + [0 () ©() - ni oy (y) = 0.

If 0 € Foxt with M, = {K'}, then IIzv(y) + [v]k,0(y) = 0. These arguments
show that the term (11.39) vanishes, and thus that

T+ D= Y > [ [ke@)( i e) — @) nko.dv(y).
KeMoeFg“°
Similarly to (11.30), we have [|l¢ — 75 0|l 1ot (o0 < Chic " [l @llype eys <
Chf\,ld[_(’lgp/ lellwer (xya (use dx,e < hi). The continuous and discrete
1
Holder inequalities (D.5) and (D.2) (the latter with parameters d; = d}';’gl =

AP / ) thus give

1/p
Ty + 1o <C ( Sy d}gﬁ[v]x,g(y)l”dv(y)> Wi lellwes (o)

KeMoeFg g
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<C ||U||DGp h el e ()4
< CAhM ”vDU”Lp(Q)d ”‘P”Wf,p’(_o)d .

Combined with (11.38) and plugged alongside (11.37) into (11.35), this con-
cludes the proof of (11.33). m

11.3 Average DG gradient discretisation

This section presents an alternative gradient discretisation associated with
discontinuous Galerkin methods. This GD, called the Average Discontinuous
Galerkin Gradient Discretisation (ADGGD), leads to simpler computations,
as shown in Chapter E in the case k = 1. Let Xp o and IIp be defined as in
Section 11.1. We substitute to (11.4) the following definition: for v € Xp g,
K e M, o€ Fkg and ae. ¢ € Dg 5, set

V%o

Vou(e) = Vieo(a) + v(@) g

NK,o, (11.40)

for x € Dk, \ D(ﬂ) and the

O'

where ¢(x) = 0 for « € Dgg)g, P(x) = = Bd
average jump [v]% ., which replaces the pointwise jump in (11.4), is defined
by

if o € Fing and M, ={K,L},
a 1 1Hv(y) — Iwv(y
U]K,o:m/ L ( )2 b ( )d'y(y),

if 0 € Foxt and M, = {K},

o = o [ 0= Tgow)dw).

The same analysis as in the previous sections can be carried out, following
the items below.

(11.41)

e Lemma 11.10 holds for the ADGGD, replacing ||v||pg,p by ||v|lapa,p, de-
fined by

g
IvlfApe,, = (/ Vgo(@)[Pde + ) || K,a|”>. (11.42)
KeM

c€FK K o

e The conclusions of Lemma 11.12 hold, with the same definition of the
control @ : Xp o — Xz of Dby T. Hence, Theorem 11.13 is also verified
by ADGGDs, by noticing that Lemma 11.14 holds and by replacing the
pointwise jump by the average jump.
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e The proof of Lemma 11.15 cannot be immediately adapted since the term
(11.39) does no longer vanish.

The idea of using jumps of mean values (instead of jumps of functions) appears
in [115], and in [32] with a non-symmetric scheme. Following the same steps
as in the proof of Theorem 11.6, we check that using the ADGGD in the GS
(2.23) consists in applying to the linear diffusion model (2.22) the method
described in [115] on a model of linear elasticity.
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The multi-point flux approximation MPFA-O
scheme

The two-point flux approximation (TPFA) method was introduced in Section
1.1.3. This scheme has been widely used in industry because of its simplicity
in the case of scalar diffusion operators, since it leads (in 2D) to a 5-point
approximation for the Laplace operator, with no face unknowns. As we saw
in Section 1.1.3 the TPFA-CG scheme is a GDM. The GDM version can then
be written with any full diffusion matrices, with the drawback that the face
unknowns can no longer be eliminated from the flux conservation equations
at the faces. The multi-point flux approximation-O [2] scheme mitigates this
drawback, but leads to a symmetric definite positive matrix only on certain
meshes. The aim of this chapter is to show that, in two such particular cases
of meshes, the MPFA O-scheme is a GDM.

12.1 MPFA methods, Dirichlet boundary conditions

12.1.1 Definition of the MPFA gradient discretisation

We consider the MPFA-O scheme on particular polytopal meshes ¥ =
(M, F,P,V) of £2: Cartesian (each K € M is a parallelepipedic polyhedron
with faces parallel to the axes), or simplicial (in the sense of Definition 7.4).
In each of these cases, P is the set of centres of mass of the cells. We define a
partition (Vi s)scyx of each K € M the following way (see Figure 12.1):

o Cartesian meshes: Vi ¢ is the parallelepipedic polyhedron whose faces are
parallel to the faces of K, and that has x x and s as vertices. For o € F and
s €V,, welet ¢, 5 = T,. We have Card(Vx) = 2¢ and Card(V,) = 2¢71.

e Simplicial mesh: We denote by (B85 (x))sey, the barycentric coordinates
of x in K, that is,

T—Tg = Z BE(x)(s — xx) with B (z) > 0 and Z BE(x) =1.

sEVk sEVk
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The set Vi s is made of the points € K whose barycentric coordinates
(BE (x))srevy satisfy BE(x) > pE(z) for all s’ € Vi \ {s}. For 0 € F
and s € V,, ¢, s is the point of o whose barycentric coordinates in o are
B9 (xss) =1/(d+1) for all ' € V,\{s}, and 87 (x,s) = 2/(d+1). Then,
denoting by s the vertex opposed to ¢ in K, the barycentric coordinates
in K of x, s are given by B85 (z,s) = 1/(d+ 1) for all 8 € V, \ {s},
BE(xys) =2/(d+ 1) and BE (z,,s) = 0. We have Card(Vk) = d + 1 and
Card(V,) = d.

In both cases, we denote by Fg s the set of all elements o € Fx such that
s € V,, and we denote by 7, s the external face of Vi 5 defined by

Tos = VK73 No.

Observe that

K]

|VK,s| = m and |Tg' sl = Card(Va) (121)
S
g
VK,s
L

Fig. 12.1. Notations for MPFA-O schemes defined on Cartesian (left) and simplicial
(right) meshes.

We follow the notations in Definition 7.33 to construct the MPFA-O LLE GD
in both cases:

1.

The set of geometrical entities attached to the discrete unknowns is I =
MU{r,s : 0 € F, s € V,} and the family of approximation points
is S = (xx)kem (To,s)oeF, sev, ). We define Ip = M U{1,5 : 0 €
Fint, § € Vo) and Iy = {755 : 0 € Fext, 8 € Vy}. This gives, with a
slight abuse of notation (we should write v, , instead of vy s),

Xpo=1{v=((vk)Kem: (Vo,s)oeF, scv,) :
vg € Rforall K € M, v, € R for all 0 € Fiys and s € V,,
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Vg,s = 0 for all 0 € Fexy and s € V, }.

For any K € M, weset Ix = {K}U {755 : 0 € Fx, s € V,}.
2. The functions mx = (7% )icr, of LP(K) are defined by

mi, =1for i = K, and 7l = 0 for i = 75 4, (12.2)
which means that
Yv € AX’D707 VK e M, Ve K, HDU(.’E) = VK. (123)

3. The functions Gx = (Gi )ier, of LP(K)?¢ are defined by: for all s € Vi
and a.e. ¢ € Vi s,

1
K e —
gK (:13) - |VK,S| e; |Ta,s|nK,aa
(e K,s
., 1 12.4
Vo € Frs, 95° () = —|To.sNK 0 (124)
|VK,S‘
Vo € Fks, Gp° =0 on K outside Vi s.
Hence, for all v € Xp g,
VK e M, Vs e Vg, forae x e Vg,
(12.5)

(Uo,s - UK)nK,cr

1
VD'U(.’B):Vi Z |To,s

| K.s 0CFK,s

4. The exactness of the reconstructions mx and Gg, as well as the fact that
VD - [l Lr(2ye is a norm on Xp o, are proved in Lemma 12.3 below.

Remark 12.1 (Identical approximation points). Note that, in the case of a
Cartesian mesh, for a given o € F all the approximation points (€,,s)sey,
are identical. This is allowed in the definition of an LLE GD, see Definition
7.33

For such a GD, the GS (2.23) is a finite volume scheme. Indeed, by selecting
a test function with only non-zero value v =1 in (2.23), we obtain the flux

balance
YD Fros(u) = /K f(a)dz,

c€EFK 8€EV, (12.6)
where Fr o s(u) = / Gru(x) - nk dy(x).

Selecting a test function with only non-zero value v, s = 1 in (2.23) leads to
the conservativity of the fluxes:

FKJ,S(U) + FL,U,S(U) =0

. (12.7)
for all o € Fiyy with M, = {K, L}, and all s € V,.
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For a given s € V, the unknowns (us s)s|sey, can be locally expressed in
terms of (ux)k|sev,- This is done by solving the local linear system issued
from (12.7) written for all o such that s € V,. After these local eliminations
of u, s, the resulting linear system only involves the cell unknowns. This dis-
cretisation of (2.20) obtained by writing the balance and conservativity of
half-fluxes Fk s, constructed via P;-exact gradients reconstructions, is iden-
tical to the construction of the MPFA-O method in [2]. The GD constructed
above therefore gives indeed the MPFA-O scheme when used in the GS (2.23).

Remark 12.2 (Other meshes)

The identification of MPFA-O schemes as GSs is, to our knowledge, restricted to
the two cases considered here (Cartesian and simplicial meshes). In the case of more
general meshes for the approximation of (2.20), the gradient reconstruction defined
by the MPFA-O scheme can be used in the finite volume scheme (12.6)—(12.7);
however, the GS (2.23) built upon this gradient reconstruction cannot be expected
to always converge, since the corresponding GD may fail to be limit-conforming and
coercive.

12.1.2 Preliminary lemmas

Let us first prove that the GD constructed above is indeed an LLE GD, and
let us estimate its regularity.

Lemma 12.3 (Estimate on reg,; ., MPFA-O). Let T be a polytopal mesh
in the sense of Definition 7.2, which is either Cartesian or simplicial. For
K € M, let ng = (mi)icr, be defined by (12.2), and Gk = (G% )icr, be
defined by (12.4). Then g is a Py-exact function reconstruction on K, Gx
is a P1-exact gradient reconstruction on K upon (Tk, (Tss)ocFx, sev, ) and

V€ = (ks (§os)ocFu,sevy) s (GKE ) Vi.  (Tos —Tk) = &5 — €k (12.8)

Moreover, D is an LLE GE and there exists Cq, depending only on d and
0 > 0 (see (7.8)), such that

reg, (D) < Ch. (12.9)

Proof.

Step 1: properties of mx and Gg.

We have >, ;- mi, = 7k =1 so 7k is a Py-exact function reconstruction.
Let s € Vi and assume that we can prove the following two properties:

Vo € Frxs\{o}, (®os —xKx) LNk, and (12.10)
1

—— |5k (Tes —XK) = 1. (12.11)

|VK,S|

Then the expression
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(gKé-)\VK‘S = ﬁ Z |Ta,s|(€a,s - gK)nK,a
'8 0EFK,s
shows that
1
(gK§)|VK78 : (mo,s - -'BK) = 7|Ta,s|(€o,s - fK)nK,a : (ma,s - mK)
|VK,S|
= ga,s - gKa

which proves (12.8). Take an affine function A and apply this relation to
§= (A(wK)a (A(wo,s))UG}'K,SGVU)' Then

(gK§)|VK,5 : ("Ba,s - .’BK) = A(ma,s) - A(mK) =VA- (-’Bo',s - mK)

Since the family (24,6 — €K )se 7., SPans the whole space R4, this shows that
the two vectors (Gr§)|v, , and VA are identical, which concludes the proof
that Gg is a Py-exact gradient reconstruction on K upon the approximation
points (Tx, (To.s)ocFi, scv, ). We now have to establish (12.10) and (12.11).

e Cartesian mesh. For a Cartesian mesh, (12.10) and (12.11) are rather
straightforward by inspecting Figure 12.1, left.

o Simplicial mesh. Let 0 € Fi s and 5 be the vertex opposed to ¢ in K.
Recall that the barycentric coordinates in K of x, s are given by

BE(xys) =1/(d+1) for all s € V, \ {s},
B3 (€4,) = 2/(d + 1)
ﬁ?(wo,s) =0.

Since the barycentric coordinate of £ = Tk are all 1/(d+ 1), this shows

that
1

gy

For any face ¢ € Fi s\{c}, the vertices s and 5 both belong to o, and
s — 5 is thus orthogonal to ng 5. This proves (12.10).

Since N, - (€55 — i) is the orthogonal distance between zx and o,
|08 K o - (To,s — k) is equal to d times the measure of the cone with
basis 7, s and vertex xx. We therefore have |7, s|nk o - (Xos — Tx) =
|K|/(d+ 1), which concludes (12.11) due to (12.1).

Los — LK

Step 2: proof that D is an LLE GD, and estimate on reg,, ,(D).

To prove that D is an LLE GD, it remains to show that [[Vp:| 1, i a
norm on Xp . If Vpv = 0 then (12.8) shows that vg = v, for all o0 € Fi
and s € V,. Reasoning from neighbour to neighbour, this shows that v is the
constant vector. Since v, s = 0 whenever o € Fot, we infer that v = 0.

Let us now bound reg, (D). Since all 7% are non-negative, >, |mk| =1
and thus [|7kl[, < 1. All points (z;)icr, are in the closure of K, so



342 12 The multi-point flux approximation MPFA-O scheme

dist(z;, K) = 0 and the third term in reg,, (D) vanishes. To bound ||Gk||,,

we simply use |7, < Cgh?{l and h% < |V s| for some Cy depending
only on 6 and d, so that, by (12.4),

G| < dC3hy! and [GR*| < C3hy!.

The bound on ||k ||, follows from Remark 7.32. L]
Let us show how the generic tools presented in Chapter B apply.

Lemma 12.4 (Control of the MPFA GD by a polytopal toolbox).
Let T = (M, F,P,V) be a Cartesian or simplicial polytopal mesh. Define the
polytopal mesh T = (M, F', P, V') such that the cells and centres (M, P) are
those of X,

F'={16s : 0 € F,8€Vs},

and V' is the set of all vertices of the elements of F'. We define a control of
D by X' (in the sense of Definition 7.9) as the isomorphism @ : Xp o — X/ o
given by $(u)g = ug and P(u)r, , = Uss-

Then, there exists Cs, constant if ¥ is Cartesian and depending only on 0 > k<
if T is simplicial, such that

|@]lp 5 < Cs, (12.12)
WD, %, ®) =0, (12.13)
wV (D, T, &) =0. (12.14)

Proof. Let u € Xp and apply (12.8) to & = (ux, (Us,s)ocFx,scv,) tO
deduce

. P
u“suK‘ §C4/ \Vpu(z)|Pde,
dK,U K

Z Z ‘Ta,s|dK,cr

c€FK 8EV,

with C4 = 1 for parallelepipedic meshes, and C4 > 0 depends on 0 > kg
for simplicial meshes. Therefore ||®(u)|%, , < C4||Vpu\|ip(md and (12.12) is
proved.

Relation (12.13) follows immediately from I[Ipu = </ ®(u). Finally, we have

/KVDu(:B)da: = Z Z |70 (Uo,s — UK )NEK. o

cEFK s€EV,
= > 101 @(w)e - B(u)x)nK o = |K|(Veb(u)) k.

o' €F}

This shows that wV (D, T, ®) = 0, which establishes (12.14). ]
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12.1.3 Properties of the MPFA-O gradient discretisation

Thanks to the previous lemmas, the proof of the properties of MPFA-O GDs
is straightforward.

Theorem 12.5 (Properties of MPFA-O GDs). Let (Dy,)men be a se-
quence of MPFA-O GDs, as in Section 12.1.1, defined from underlying poly-
topal meshes (T )men that are either Cartesian or simplicial. Assume that
(O, + 1z, )men s bounded (see (7.8) and (7.9)), and that hpaq,, — 0 as
m — 00.

Then the sequence (Dy,)men 18 coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2. Each
D, also has a piecewise constant reconstruction.

Proof. The limit-conformity, coercivity and compactness are obtained by
applying Corollary 7.12, thanks to Lemma 12.4. The consistency is obtained
by applying Proposition 7.37, thanks to Lemma 12.3. The piecewise constant
reconstruction property is obvious from (12.3). [

The following two propositions, also direct consequences of results in the pre-
vious sections, are useful to establish precise error estimates for MPFA-O
GSs.

Proposition 12.6 (Estimate on Wp for MPFA-O). Let T be a polytopal
mesh of £2 in the sense of Definition 7.2, that is either Cartesian or simplicial.
Let D be the MPFA-O GD as in Section 12.1.1. For Cartesian meshes we take
0> Oz +nx (see (7.8) and (7.9)), and for simplicial meshes we take o > Kz
(see (7.10)). Then, there exists Cs depending only on §2, p, and o, such that

Cp < C5 (12.15)
and, for all o € W' (02)4,
W) < Cs [l oy it (12,10

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. The conclusion follows immediately from Theorem 7.11 and Lemma
12.4. [

Proposition 12.7 (Estimate on Sp for MPFA-O). Let T be a polytopal
mesh of (2 in the sense of Definition 7.2, that is either Cartesian or simplicial.
Let D be the MPFA-O GD as in Section 12.1.1. Assume p > d/2 and take
0 > O< (see (7.8)). Then there exists Cg > 0, depending only on §2, p and o,
such that

Vo € WP(2) N WP (£2), Sp(e) < Cs [ @llwan(a) im,
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where Sp is defined by (2.2). This means that the space size (see Definition
2.22) of the GD satisfies

hp (WP (2) N Wy P (2); WHP'(2)1) < max(Cs, Cs)hu,
where C5 is defined in Proposition 12.6.

Proof. For all K € M and all i € I, we have ; € K. By Lemmas 12.3 and
B.1, the hypotheses of Proposition 7.64 are satisfied with # depending only
on p. This proposition yields the expected estimate on Sp. ]

The application of Lemmas 12.3 and 12.6 to the estimates (2.25) and (2.26)
in Theorem 2.28 provides an error in O(hq) in the case of a linear elliptic

problem in one, two or three space dimensions, when the exact solution belongs
to H2(02).

12.2 MPFA-O methods, Neumann and Fourier boundary
conditions

12.2.1 Neumann boundary conditions

We refer to Definition 7.54 for the construction of an MPFA-O GD for Neu-
mann boundary conditions, with the same I, Iy, IIp, Vp as in Section
12.1.1.

Defining ¥’ as in Lemma 12.4, for v € Xp = X« such that |[Vpvl|, gy =0,
Inequality (12.12) (still valid for non-zero boundary values) and the definition
(7.76) of ||/, show that all (vk)xkem and all (vss)ser,sev, are identical.
Hence, by definition of ITp the quantity (3.1) is indeed a norm on Xp.

For non-homogeneous Neumann boundary conditions, the trace reconstruc-
tion Tp : Xp — LP(02) can be defined as T/ (see (7.7d) with T = T'):

Vv € Xp, Vo € Fext, V8 €V, : Tpv =055 00 Ty s. (12.17)

Since the regularity factor reg,, (D) is defined as for Dirichlet boundary con-
ditions, Lemma 12.3 still applies and show that this factor remains bounded
if O< is bounded. Defining the control & = Id : Xp — X</ as in Lemma 12.4,
we see that this lemma still holds and that w™ (D, %', @) = 0. Hence, Corollary
7.18 and Proposition 7.55 give the following theorem.

Theorem 12.8 (Properties of MPFA-O GDs for Neumann BCs). Let
(Din)men be a sequence of MPFA-O GDs for Neumann boundary conditions
as above, defined from underlying polytopal meshes (Tp,)men that are either
Cartesian or simplicial. Assume that the sequence (0=, +nx, )men s bounded
(see (7.8) and (7.9)), and that haq,, — 0 as m — 0.

Then the sequence (Du,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.15. Moreover, each
D, has a piecewise constant reconstruction in the sense of Definition 2.12.
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Proposition 7.70 and Theorem 7.17 also give estimates on Sp, Cp and Wp
that are similar to those in Lemma 12.3 and Proposition 12.6. The constants
depend only on an upper bound of ¢ + 7z (for Cartesian meshes) or ks (for
simplicial meshes, due to Lemma B.4).

12.2.2 Fourier boundary conditions

Starting from an MPFA-O GD for Dirichlet boundary conditions, we follow
Definition 7.57 in Section 7.3.6 to define an MPFA-O GD for Fourier boundary
conditions.

The boundary mesh My is simply {7, s : 0 € Fext, 8 € V,}, and the trace
reconstruction (12.17) corresponds to I, s = {7, s} and 73’5 = 1 on 7, 5. The
bound on reg,, (D) for Fourier boundary conditions therefore easily follows
from the bound on this quantity for Dirichlet boundary conditions, and the
consistency (under boundedness of f) is a consequence of Proposition 7.58.
As noticed in Remark 7.20, the work done for Neumann boundary conditions
then immediately shows that Theorem 12.8 also applies to Fourier boundary
conditions. Similarly, we could obtain estimates on Sp, Cp and Wp as in
Propositions 12.7 and 12.6.
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Hybrid mimetic mixed schemes

Since the 50’s, several schemes have been developed which aim to satisfy some
form of calculus formula at the discrete level. These schemes are called mimetic
finite difference (MFD) or compatible discrete operator (CDO) schemes. Con-
trary to DDFV methods (see Section 14.2 and [78]) for which the discrete
operators and duality products are designed to satisfy fully discrete calculus
formula, the discrete operators of MFD/CDO methods satisfy a Stokes for-
mula that involves both continuous and discrete functions. Depending on the
choice of the location of the main unknowns (faces or vertices), two different
MFD/CDO families exist. We refer to [129] for a review on MFD methods,
and to [28, 27] (and reference therein) for CDO methods.

A first MFD method, that we call mixed/hybrid MFD or hMFD here, is
designed by using the fluxes through the mesh faces as initial unknowns [37,
36]. This requires to recast (2.20) in a mixed form, i.e. to write § = AVw and
—div(q) = f+div(F'), and to discretise this set of two equations. The resulting
scheme takes a form that is apparently far from the GS (2.23). It was however
proved in [76] that this form of hMFD can be actually embedded in a slightly
larger family also containing the hybrid finite volume (HFV) scheme, which
is the hybrid version of the SUSHI (Scheme Using Stabilisation and Hybrid
Interfaces) scheme [97], and mixed finite volume (MFV) methods [71, 72]. This
family has been called hybrid mimetic mixed (HMM) schemes; each scheme in
this family can be written in three different ways, depending on the considered
approach (hMFD, HFV or MFV). The HFV formulation of an HMM scheme
is very close to the weak formulation (2.22) of the elliptic PDE; it actually
consists in writing this weak formulation with a reconstructed gradient and
a stabilisation term (bilinear form on (w,v)). It was proved in [100] that this
specific stabilisation term could be included in an augmented gradient, and
thus that the HFV scheme is a GS. More surprisingly perhaps, [77] managed
to prove that all possible stabilisations in the HMM families can be embedded
in a gradient, and thus that all HMM methods (and thus all hMFD, HFV and
MFV schemes) are GDMs.
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In the following sections we detail the GD that leads to HMM methods when
applied to linear diffusion equations, and we establish its properties. HMM
methods correspond to LLE GDs. Following the nomenclature in Section 7.3.4,
the condensed SUSHI methods (including elimination of some or all of the
interface unknowns) are nothing else than barycentric condensation of HMM
methods; they are therefore also GDMs.

We conclude this section by presenting some considerations on the fluxes
associated to the HMM and SUSHI methods.

Note that some schemes adapting HMM ideas and variants to non-linear equa-
tions and systems have already been proposed and analysed in [69, 44, 96], but
they are not GDMs and do not fully take advantage of the coercive gradient
provided by HMM methods.

13.1 HMM methods for Dirichlet boundary conditions

We consider here the case of non-homogeneous Dirichlet boundary conditions,
which includes as a special case homogeneous Dirichlet conditions.

13.1.1 Definition of HMM gradient discretisations

The discrete elements that define an HMM GD are the following. We take
T = (M, F,P,V) a polytopal mesh of {2 as in Definition 7.2, and we refer to
the notions in Definition 7.52.

1. The geometrical entities attached to the discrete unknowns are I = MUF
and the approximation points are S = ((Zx)kem, (To)ocr). Welet I =
MU Fing and Iy = Fext. Hence, recalling the definitions (7.7a) and (7.7b)
of XT and X@o,

Xp = Xe ={v=((vk)kem, (Vs )oecF) : vk € R for all K € M,
vy €R for all o € F},

and
Xpo=Xzo={veXz:v,=0forall o € Fox}.

For K € M, we set Ix = {K} U Fk.
2. The function reconstructions 7y = (71X, (7% ),cx, ) of LP(K) are defined
by
7K =1and 7% =0 for all 0 € Fg. (13.1)

Recalling the definition (7.7¢) of Ilx, (7.32) therefore reads

Yo e Xp, VK e M, for ae. ¢ € K, IIpv(x) = lzv(x) =vk. (13.2)
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3. The gradient reconstruction Gg is best initially described through its ac-
tion Gxv on families of real numbers, than through explicit formulas for
the functions (G% )icr, . As already mentioned, the polytopal gradient de-
fined by (7.7e), that is,

= 1
Vv = TH Z lo|venk o, (13.3)
| | oEFK

is Py-exact (Lemma B.10), but not “strong enough” to control all the dis-
crete unknowns in X« o since it does not involve the unknowns (ux)xem
(see Remark 7.8). The HMM gradient is built by adding to this polytopal
gradient a stabilisation term that is constant in each half-diamond in K.
Let Xk = {v = (vk, (Vs )oery) : vk € R, v, € R} be the space of dis-
crete unknowns in K and define, for v € Xg, the function Gxv € LP(K)?
by
Vo € Fk , for ae. ¢ € D o,

d (13.4)

Grv(z) = Vigov+ [Lx Ri(v)]onK o

dK,U

where, denoting by Xr, = {{ = (§&5)oecri : & € R} the space of face
values around K,
o Ry : Xg — Xy, is the linear mapping given by

RK(U) = (RK,U(U))UG}'K with

- B (13.5)
Rk (V) =v, —vkg — Vgv - (Tr — k),

e Lk is an isomorphism of the vector space Im(R ).
The gradient reconstruction Vp is then defined by (7.33), which simply
gives

Yve Xp, VK e M, Vo € Fi, for ae. x € Dg

_ Vd (13.6)
Vpu(x) =Viv+ K[LKRK(U)]gnKJ.
Remark 13.1. If all values v, are equal to 0 and all values vj are equal to 1,
then Vv = 0 and the non-zero part of Vpv comes from the components
of Rk (v), all equal to —1.

Remark 13.2 (The SUSHI scheme). A natural choice of Lk is Lx =
Idim (R, )- The corresponding HMM method is then the hybrid finite vol-
ume (HFV) scheme, i.e. the full hybrid version of the SUSHI scheme [97].
The coefficient v/d in the expression (13.6) of the gradient may be modi-
fied to obtain other schemes; replacing it by d, for instance, leads to the
so-called “DGA” scheme, see [27, Remark 7.34].
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The functions (G& )icr,e of LP(K)? can be recovered through Gx defined
by (13.4). Let v& € Xg (resp. v € Xg) be the vectors with value 1 at
K (resp. at o) and 0 at all other positions. Then,

GE = Gxov® and G% = G for all o € Fi. (13.7)

4. The trace interpolation operator Zp 5 : Wlf%’p(a.(?) — Xp o is defined
by

1 1
Vg € WH00), Vo € P (Epos) = o / g(@)dy(z). (13.8)

5. Lemma 13.10 below establishes the exactness of mx and Gx, and the fact
that ||[Vp - [|Lr(0)e is a norm on Xp .

Remark 18.3 (Hybrid method)
The face unknowns (vs)ser correspond to the hybridisation of the hMFD methods.

Remark 18.4 (Simpler trace interpolation)
As explained in Remark 2.50, simpler trace interpolations can be used if the bound-
ary condition g of the considered problem (e.g., in (2.98b)) is more regular than

Wlf%’p(aﬂ). For example, if g € C(£2) we can define (Zp,09)s = g(To)-

We now want to prove that all h(MFD, HFV and MFV methods, as presented
in the literature, are GDMs with gradient discretisations as above for suitable
choices of (Lk)kem- As explained in the introduction of this chapter, hMFD,
HFV and MFV schemes are three different presentations of the same method
[76]. The presentation that is the closest to a GS is that of the HFV scheme.
With the notations above, any HMM method for the weak form (2.100) of the
linear problem (2.98) with F = 0 can be written (see [76] in the case g = 0):

Find u € Zp a9 + Xp,o such that, for all v € Xp g,

> IK|AkVku-Vgv+ > Ri(v)"BgRi(u)
KeM KeM (13.9)

= Z UK/Kf(m)d%

KeM

where Ag is the constant value of A on K (we assume that A is piecewise
constant on M — see Remark 13.17 below for a discussion on this assumption),
Bx = (Bk)o.o')o.0eFs is a symmetric positive definite matrix, and Ry (v)T
the transpose of the vector Ry (v).
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Remark 13.5 (RCK) s, Xz, )

There is a slight abuse of notation here. We write Rk (v) as a column vector as if it
belonged to RC2d(Fx ), while it actually belongs to X, . Implicitly, when switching
from elements w of X 7, to column vectors, we have chosen a numbering (o1, ..., 0¢)
of the faces of K, and we set w(o;) = w; for all ¢ = 1,...,¢. The same abuse of
notation is made when considering Bx as a matrix and writing Rx (v)TBKRK(v),
or further below in (13.15) when considering Dx as a matrix.

The following lemma will be useful both to establish that all HMM methods
are GDMs, and to analyse the properties of HMM GDs.

Lemma 13.6. Let T = (M, F,P,V) be a polytopal mesh of {2 in the sense of
Definition 7.2, and let D be an HMM GD as defined above, for certain choices
Of (‘CK)KGM' Then

1. For all K € M, B € Im(R) if and only if 3, c 7, |o|Bonk o = 0.

2. For allv e Xp and all K € M,

= 1
Viv= —/ Vpu(x)de. (13.10)
K] Jx

Proof.
ITEM 1. Let us first introduce the mapping EK : X7, = Xr, defined, for
g € XfK by RK(S) = (RK,a(é.))O'G}—K with

- . 1
Rio(€) =& — Xe Ty — ) with Xe= = > |0/|érmior

K| =%

By noting that R (v) = Ri((ve — vk )oer, ) we sce that Im(Rg ) = Im(Rx).
Let 8 € Im(Rg). Taking £ € Xz, such that 5, =&, — X¢ - (T — k), and
using Lemma B.3, we see that

Z |J|ﬁo—nK,a' = Z |0|§0nK,U - Z |0|X§ : (Ea - $K)nK,cr

ocEFK ceFK ceFK
= Z |U|€0'nK,a - ( Z |U‘nK7U(EJ :BK)T> Xf
oeFK oceFk
= > lolénk., — |K|Xe =0.
oceFK
Setting

GKZﬁEX]:K’—) Z |U|ﬂ0nK7UERd,
oceFK

we just showed that Im(Rg) C ker(Gg). Since (nK.o)oer, spans R?, the
linear mapping Gk has rank d and therefore dim(ker Gx) = Card(Fg) — d.
It is easy to see that
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ker(Ri) = {¢ € X7, ; 3Z: € R? such that &, = Z¢ - (TFy — )},

and thus that Z € R? — (Z - (Ty — ©x))oer, € ker(Ry) is an isomorphism
(the one-to-one property comes from the fact that (£, — Tx)ocr, spans R?).
Hence, dim(Im(Rg)) = Card(Fg) — d = dim(ker(Gg)). Since Im(Rg) C

ker(G k), the equality of dimensions therefore gives Im(Rg) = ker(Gg) and
completes the proof of Item 1.

ITEM 2. By (13.6), since Vpuv is constant in each half-diamond inside K, using
(B.1) to write | Dk »| = ‘U‘d% gives

/KVDv(w)da:: Z |Dk | (VD) Dy,

ocEFK

— 1
= |K‘VKU—|- ﬁag};( ‘O’H[:K(RK(U))]OTLK,U. (13.11)

But Lx(Rk(v)) € Im(Rg) since L is an isomorphism of this space, and by
Item 1 the last term in (13.11) vanishes. This proves that [, Vpv(x)dz =
|K|V kv as claimed. ]

Theorem 13.7 (HMM methods are GDMs). Let T be a polytopal mesh
of £2 in the sense of Definition 7.2, and for each K € M take Bx a symmetric
positive definite matriz of size Card(Fg). Then there exists a choice of iso-
morphisms Lk : Im(Rg) — Im(Rg) such that, if D is the GD defined above
using these isomorphisms, the GS (2.23) (with F = 0) is the HMM scheme
(13.9) for the choice of matrices (Bx)rkem-

The proof also shows that any choice of isomorphisms (Lx)kea leads to
an HMM method. In other words, there is a perfect equivalence between the
HMM family of methods and the family of GDs defined above.

Proof. Given the definition (13.2) of IIp, the right-hand sides of (2.23) and
(13.9) clearly coincide. Since the space for the unknown and the test functions
are the same in both schemes, it simply remains to prove that the left-hand
sides also coincide for a proper choice of the isomorphisms (Lx)xem-

Let K € M. We will prove that there exists an isomorphism Ly such that,
for all (u,v) € X3,

|K‘AKvKU . vKU + RK(U)TBKRK(U)
= / AgVpu(zx) - Vpu(z)de. (13.12)
K

Summing (13.12) over K € M then shows that the left-hand sides of (2.23)
and (13.9) are identical.

Recall the definition (13.6) of Vp and use >
developing the scalar product,

|DK,<7

vEFn = | K| to write, by
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/K AcVpu(@) - Vpo(z)de = 3 [Dicol Ak (Vou)x - (Voo)x

cEFK
= |K|AK§KU . WKv
\/»

+ A Vgu- Y il — [CKRK( Mok o (13.13)
cEFK
_ v
+Vgov- Ak Z |DK<7| [EKRK( u)]oNK, o (13.14)
cEFK
d
, Ao o[ Lx Ri(u)lo[Lx Ric (V)]s
ceFK
By (B.1), lDK”l %l and thus, since Lx has values in Im(Rg), Item 1 in

Lemma 13. 6 shows that (13.13) and (13.14) vanish. Hence

/ AgVpu(x) - Vpu(x)de
K

= |K‘AK§KU‘vK’U+ [[:KRK(”U)]TDK[EKRK(U)] (1315)

with Dy = dlag( AKnK o " MK,) a diagonal definite positive matrix. Re-
lation (13.12) therefore holds provided that, for all (¢,7) € (Im(Rg))?,
§"Brn = (Lx(€) Dr (Lx (1)) (13.16)

Consider the vector space E = Im(Rg) C X7, , endowed with the two inner
products (£,m)1 = &TBxn and (£,n)2 = ETDgn. The isomorphism Lr :
Im(Rg) — Im(Rg) given by Lemma 13.8 below then satisfies (13.17), which
is precisely (13.16) with z = & and y = 1. L]

Lemma 13.8. Let E be a finite-dimensional vector space endowed with two
inner products (, Y1 and (, }o. There exists an isomorphism L : E — E such
that

for all (z,y) € E?, (z,y)1 = (Lx, Ly). (13.17)

Proof. Let e be an orthonormal basis for { , )2 and M, be the (symmetric
definite positive) matrix of (, )1 in this basis. If X, and Y, are the coordinates
of z and y in e then (z,y); = YL M.X.. Let L. = /M, and define £ as the
isomorphism whose matrix relative to the basis e is L. Since e is orthonormal
for (, )2, the relation Y M. X, = (L.Y.)T(L.X,) translates into (z,y); =
(Lx, Ly)s. "

Remark 18.9 (Elimination of the cell unknowns in the HMM GS by static conden-
sation,)
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By static condensation, the cell unknowns can be eliminated when an HMM method
is applied to a linear elliptic equation. This is done by taking, in (13.9), the test
function v such that vxg = 1 for one cell K € M, v, = 0 for all other cells L, and
ve = 0 for all o € Fx. Then (13.3) shows that Viv =0 for all L € M, which gives
Rix(v) = —(1)oerx =8 —1k, and Rr(v) =0 for all L # K. Hence, (13.9) leads to

—1£BKRK(ZL) = / f
K
Since Ri (u) = Mk (uo)ocrx — 1xur, with Mg a linear operator, we infer that
(1kBx1k)uk 2/ f+1KBr Mk (o )oery -
K
The matrix Bx being symmetric definite positive, 1XBx1x > 0 and therefore

UK = (1£]BK1K)71 (/ f+ 1§BKMK(UG')O'€FK) .
K

Hence, the unknown ux can be locally computed from the source term f and the face
unknowns (4 )oc 7y, without even having to invert a local system. This expression
for ug can be plugged back into (13.9) and provides a symmetric positive definite
system only on (us)oer

int *
13.1.2 Preliminary lemmas

To prove that HMM GD satisfy the properties defined in Part I, preliminary
results must first be established. If D is an HMM GD as in Section 13.1.1, we
define the following measure of the invertibility properties of the isomorphisms
(Lx)Kem:

CD:min{C>O:VK€M, Yo € Xk,

_ Ri »(v)]" LR (v)]s
Y 1Dl [T 57 g | W
o FK Ko cEFK Ko
Ry o(0)|?
<¢ Z |DK,0 (I; ( ) }
ceFK Ko

In the case of the SUSHI scheme, see Remark 13.2, it is clear that (p = 1.
The following lemma states that HMM GDs are LLE GDs, and gives a control
of their regularity reg, ., in terms of (p and geometric regularity factors.

Lemma 13.10 (Estimate on reg,, (D) for the HMM GD). Let T be
a polytopal mesh of £2 in the sense of Definition 7.2, and D be an HMM
GD as in Section 13.1.1. Then, for oll K € M, g is a Py-exact function
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reconstruction on K, and G is Py-exact gradient reconstruction on K upon
Ik.

Moreover, D is an LLE GD and, if o > 0z +(p (see (7.8) and (13.18)), there
exists C, depending only on p, d and o, such that

reg, (D) < C4. (13.19)

Proof. Let K € M. According to (13.1), Y., 7k = 7 = 1 s0 7x is a
Pg-exact function reconstruction.

Lemma B.10 shows that V is P;-exact gradient reconstruction. Hence, if v
interpolates an affine mapping A at the approximation points (rx, (To)oery ),
(13.5) gives Rg o(v) = A(T,) — A(xx) — VA - (T, — k) = 0. Therefore,
OKkVDy., = Viv = VA and Gg is a Pi-exact gradient reconstruction on K
upon I.

To prove that D is an LLE GD, we need to show that v = 0 whenever Vpv = 0.
If the latter equality holds, then (13.10) shows that Vv = 0 for all K € M
and thus, by (13.4) and the fact that Lx is an isomorphism, Rg(v) = 0.
Combined with Vv = 0 this establishes that v, — vxg = 0 for all ¢ € Fk.
Reasoning from neighbour to neighbour we infer that v is the constant vector,
which means that it is zero since v, = 0 for all 0 € Foyt.

Let us now estimate reg,, (D). The first and last terms in the definition of
this regularity factor are easy to bound since, for all i € I, dist(z;, K) =0
and Y_,; |7 ()| = 1. Let us estimate the term 1Gk]l,-

Take v = (vk, (Vs )oeFy ) and write, using the power-of-sums inequality (D.12)
and the definitions (13.4) and (13.18) of Gk and (p,

||gKU||1£p(K)d = Z |DK,<7

Gk V) 1Dy, I

oc€FK
- p LxR +|P
< vt <|K|\VKu\p+dz > Dkl xRl )
dK,o’
oceFK
_ =1 P R o\ P
< or—1 <|K|\va\p+ngz > Dkl ;‘T() )
c€FK o

The definition (13.5) of Rk, the power-of-sums inequality (D.12), the esti-
mate [T, — x| < hx < 0zdk -, and the relation ) |Dk | = | K| then

o€F
give ®
p
= D Vg — U
IGK V1T 5 (gya < 2P <|K| Viol" +2°7¢pd® > Dkl dK‘
ceFK Ko
+ 2P pd 5 02| K| IVKv|p>. (13.20)

Integrating (B.30) over « € K yields
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Vo — VK P

A —1
|K||Vgo|P <dP Z |U|dK,g drs

cEFK

Plugging this estimate into (13.20) and recalling that |Dg »| = |o|dk,o/d (see
(B.1)), we obtain

P
Vg — VK
HgKU”ip(K)d < 02 Z ‘O’|dK70- a-dl<o.‘ (1321)
ocEFK ’
where C5 depends only on g, p and d. Apply this estimate to v = v¥ or v = v°

(defined in Item 3 of Section 13.1.1) and use |o|dk,, = d|Dk | < d|K| and
d;(}o < th}l for all o € Fx to obtain Hg;'{HLp(K)d < (C2d)l/p9‘z\K|1/ph}_<1
for all i € Ix. Recalling the definition (7.24) of [|Gk ||, and the fact that
Card(Ix) = 1+ Card(Fk), we infer that

|Gk, < (Cad)' /P (1 + Card(Fi)) < (Cad)/*0<(1 + o).

The proof of (13.19) is complete. m

Lemma 13.11. Let T be a polytopal mesh of §2 in the sense of Definition 7.2,
and let D be an HMM GD on ¥ as in Section 13.1.1. We take o > 05 + (p
(see (7.8) and (13.18)). Then, there exists C3 > 0 depending only on 2, p
and o, such that

1
Vv € Xp, 63 HVDUHLP(Q)d < ‘U|‘Z,p < (Cs ||VDU||LP(Q)d . (13.22)

Remark 13.12. The first inequality in (13.22) is used in Theorem 13.14 to
check Condition (2.96) and thus establish the GD-consistency of sequences
of HMM gradient discretisations. The second inequality in (13.22) is used
in Lemma 13.13 to control such sequences by polytopal toolboxes, and thus
prove their coercivity, limit-conformity and compactness.

Proof. In this proof, A < B means that A < M B for some M depending only
on 2, p and g. Let v € Xp. The first inequality in (13.22) follows simply by
summing (13.21) over K € M. Let us therefore turn to the second inequality
in (13.22). Relation (13.10) and Jensen’s inequality give

1

|vK,U|P < —
K]

/ |Vpu(x)|Pde. (13.23)
K

By definition (13.6) of Vpv and by the power-of-sums inequality (D.12), we
deduce that, for a.e. y € D 5,

Vd

dK,U

p

= |va(y) — ﬁKUrD

[LxRi(V)]oNk, o
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< Vo) + / Vpu(e)[Pda.
K|

Integrating over y € Dg , and summing over o € Fg leads to

Z |DKU|

oceFK

[EKRK

/ |Vpu(x)|Pde. (13.24)
Use then the definition (13.18) of {p to write

Z |DK0|

cEFK

RKO’

/ |Vpu(z)|Pde. (13.25)

By definition (13.5) of Rk o, and since |, — zx| < hx < O<dgk ., we have
[ve —vK| S |RKk,0 (V)| +|VKV|dK,o. Hence, recalling (13.23) and using (13.25),

S Diol |2 ‘ /\VDU J|Pdz.

ocEFK
Since |Dk »| = ‘Uld% (cf. (B.1)), summing the above relation over K € M
and recalling the definition (7.7f) of || ,, the second inequality in (13.22) is
proved. [

We can now define, and state estimates on, a control of an HMM GD by a
polytopal toolbox.

Lemma 13.13 (Control of an HMM GD by a polytopal toolbox).
Let € be a polytopal mesh of (2 in the sense of Definition 7.2, and let D be an
HMM GD on ¥ as in Section 13.1.1. Take o > 0x+(p (see (7.8) and (13.18))
and define the control @ =1d : Xpo — Xz of D by ¥ (see Definition 7.9).
Then, there exists C3 > 0 depending only on {2, p and o, such that

1@]lp s < Cs, (13.26)

and
1D, 3, &)=0, wv(D,T,H)=0. (13.27)

Proof. Estimate (13.26) is given by Lemma 13.11. The first relation in (13.27)
follows from IIpv = Ilzv = IIz®P(v) (see (13.2)). The second relation in
(13.27) is a straightforward consequence of (13.10). L]

13.1.3 Properties of HMM gradient discretisations

Thanks to the previous lemmas, the proof of the properties of HMM GDs is
straightforward.
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Theorem 13.14 (Properties of HMM GDs for Dirichlet BCs).

Let (D) men be a sequence of HMM GDs, as in Section 13.1.1, defined from
underlying polytopal meshes (Tp,)men. Assume that (0=, + Nz, )men and
((p,,)men are bounded (see (7.8), (7.9) and (13.18)), and that hpq,, — 0
as m — oo.

Then, the sequence (Dy,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.2, 2.51, 2.5 and 2.8. Moreover, each D,
has a piecewise constant reconstruction in the sense of Definition 2.12.

Proof. The limit-conformity, coercivity and compactness are obtained by
applying Corollary 7.12, thanks to Lemma 13.13. The property of piecewise
constant reconstruction is also straightforward from (13.2) (using the nota-
tions in Definition 2.12, one simply chooses 2 = K if K € M and 2, = 0
if o € F).

To prove the GD-consistency, we aim at applying Proposition 7.53. The bound
on reg,,.(D,,) being provided by Lemma 13.10, we just have to check that
(7.65) and (2.96) hold. We drop the index m in D,,.

Let ¢ € C*°({2) and o € Fi. We have, for « € o, by Taylor’s expansion
p(x) = p(Ts) + Vo(Ts) - (® — T5) + Ro ()

where |R, ()| < 3diam(0)? supg [D?¢|. Hence, taking the average over « € o
and recalling the definition (13.8) of Zp g, since ﬁ [, xdy(z) = =,,

(E0.07(9))r — ol < geiam(o)? sup | D,
7
Since diam(o) < diam(K) for any o € Fg, this proves that (7.65) holds.
To prove (2.96), take ¢ € W1P(£2) and consider v = Iz, where Iz is the
interpolant given by (B.10). By definition of the face values of v and by choice
(13.8) of the interpolant Zp g, we have v — Ip sy € Xp,o. Moreover, by
Lemma 13.11 and Proposition B.7,

DVl o) + IVDUl Lo 0ya < 1@l o) + Cs Iz elg,
< ||90||Lp(n) +Ca ||V<P‘|Lp(9)d

with C4 depending only on d, p and an upper bound of 85+ (p. This concludes
the proof of (2.96). L]

The following two propositions, also easy consequences of the preliminary
results in the preceding section, are useful to establish error estimates for
HMM GSs.

Proposition 13.15 (Estimate on Cp and Wp for HMM GD — Dirich-
let BCs). Let T be a polytopal mesh of 2 in the sense of Definition 7.2, and
let D be an HMM GD on ¥ as in Section 13.1.1. Take o > 0% + nz + (p (see
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(7.8), (7.9) and (13.18)). Then, there exists Cs depending only on (2, p, any
0, such that
Cp <Cs (13.28)

and
Ve € WP ()T, Wp(p) < Cs [l ()0 h- (13.29)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. The conclusion immediately follows from Theorem 7.11 and Lemma
13.13. (]

Proposition 13.16 (Estimate on Sp for HMM GD — Dirichlet BCs).

Let ¥ be a polytopal mesh of §2 in the sense of Definition 7.2, and D be
an HMM GD on ¥ as in Section 13.1.1. Assume that p > d/2 and take
0 > 0c + (p (see (7.8) and (13.18)). Let p € W2P(£2) and, as in Remark
13.4, re-define Ip oy(p) by: (Ip.o7(@))e = ©(ZTs) for all o € Fexy, (this makes
sense since p € C(£2)). Then, there exists Cg > 0, depending only on £2, p
and o, such that

Sp(p) < Cs HSOlep(_Q) ha,

where Sp is defined by (2.94). This means that the space size (obtained by an
easy adaptation of Definition 2.22 to non-zero Dirichlet BCs) of the GD is
such that

hp (W2P(02); W' (2)7) < max(Co, Cs)hs,

where C5 is defined in Proposition 13.15.

Proof. By Lemma B.1, each cell K is star-shaped with respect to a ball of
radius minyer, di,o > 9;1111( > 0 'hx. Moreover, for all K € M and all
i € Ix we have x; € K, which shows that (7.84) holds. Using Lemma 13.10,
Proposition 7.68 can be applied and the result follows immediately. [

The application of Propositions 13.16 and 13.15 to the estimates (2.25) and
(2.26) in Theorem 2.28 provides an O(h ) error in the case of a linear elliptic

problem in one, two or three space dimensions, when the solution belongs to
H?(9).

Remark 18.17 (Non piecewise constant diffusion tensor)

If A is not piecewise constant on M, then (13.9) is the GS (2.23) for the problem
(2.22) with A is replaced with its piecewise projection on the mesh, i.e. (13.9) is the
GS for

am € Hy(2), Yo € Hy(2),
/Q Apm () Vi (z) - Vo(z)de = /Q f(x)v(z)de — /Q F(z) - Vu(x)de
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where (Am)x = ﬁ [ A(m)dex for all K € M. Assuming that A is Lipschitz-
continuous inside each cell, we have ||A — Ay ||LOO(Q) < Cha and thus, denoting by
7 the solution to (2.22), subtracting the equations satisfied by w4 and @ and taking
v =TUm — U as a test function, we obtain

AV =Vl < [ Asa(@)(Vin = V0)(@) - (Vi — Vi) @)de

= / (A(x) — Apm(x))Vu(x) - (Vuam — Vu)(xz)de
fe)
< Chpm ||Vl 120y VUM = V| 204 -

This shows that |[wam — ﬂ”]{é(g) = O(ha). If u is the solution to the HMM scheme
(13.9), the estimates in Section 2.2.2 and in Propositions 13.16 and 13.15 show
that [[um — IIpullp2(p) + (VM — VDull2(g)a = O(ha). Hence, we see that
llu— HDUHL?(Q) + [IVa - V’DUHLZ(Q)d = O(hm).

In other words, the replacement of A by its piecewise constant approximation in
(2.22), and the approximation of this latter equation by an HMM GS, does not
impact the expected rates of convergence. Assuming that A is piecewise constant is
therefore not extremely restrictive, especially since it is the case in many practical
applications.

13.2 HMM methods, Neumann and Fourier boundary
conditions

13.2.1 Neumann boundary conditions

Following Definition 7.54, an HMM GD for homogeneous Neumann boundary
conditions simply consists in defining Xp, IIp and Vp as in Items 1, 2 and 3
in Section 13.1.1.

If v e Xp = Xz and [|[Vpolls(g)e = 0, then Inequality (13.22) and the
definition (7.7f) of |-| , show that all (vk) kem and all (v5)se7, are identical.
Hence, the definition of IIp shows that the quantity (3.1) is indeed a norm
on XD.

For non-homogeneous Neumann boundary conditions, we take as trace recon-
struction Tp : Xp — LP(912) the operator T (see (7.7d)), that is,

Vv e Xp, Vo € Foxt : Tpv=Tgv =v, on o. (13.30)

Since the regularity factor reg,,.(D) is defined as for Dirichlet boundary con-
ditions, Lemma 13.10 still applies and shows that this factor remains bounded
if 05 and (p are bounded. Defining the control @ = Id : Xp — X< of an HMM
GD D for Neumann boundary conditions by ¥, we see that Lemma 13.13 still
holds and that w™(D, T, ®) = 0. Hence, Corollary 7.18 and Proposition 7.55
give the following theorem.
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Theorem 13.18 (Properties of HMM GDs for Neumann BCs). Let
(Din)men be a sequence of HMM GDs for Neumann boundary conditions
as above, defined from underlying polytopal meshes (¥ )men. Assume that
(0<,, + 1z, )men and ((p,,)men are bounded (see (7.8), (7.9) and (13.18)),
and that haq,, — 0 as m — oo.

Then the sequence (Dy,)men 18 coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.15. Moreover, each
D, has a piecewise constant reconstruction in the sense of Definition 2.12.

Proposition 7.70 and Theorem 7.17 also give estimates on Sp, C'p and Wp that
are similar to those in Propositions 13.16 and 13.15. The constants depend
only on an upper bound of < + {p (for Sp), or of < + nz + (p (for Cp and
Wp).

13.2.2 Fourier boundary conditions

Starting from an HMM GD for Dirichlet boundary conditions, we follow Def-
inition 7.57 in Section 7.3.6 to define an HMM GD for Fourier boundary
conditions.

The boundary mesh Mj is simply Fext, and the reconstructed trace (13.30)
corresponds to I, = {0} and 77 = 1. The bound on reg,, (D) for Fourier
boundary conditions therefore easily follows from the bound on this quantity
for Dirichlet boundary conditions, and the consistency (under boundedness of
O<, + (p,,) is therefore a consequence of Proposition 7.58.

As noticed in Remark 7.20, the work done for Neumann boundary conditions
then immediately show that Theorem 13.18 also applies to Fourier boundary
conditions. Similarly, we could obtain estimates on Sp, Cp and Wp as in
Propositions 13.16 and 13.15.

13.3 HMM fluxes and link with the two-point finite
volume method

Let us define the family of fluxes (Fk ¢)kem ,occr, as the linear mappings on
Xp such that

Yu,v € Xp, VK € M :
Y Fro(u)(vk — vo) :/I(A(w)vpu(m).vpv(w)dw, (13.31)

oc€FK

The existence and uniqueness of these fluxes is ensured by the following propo-
sition.

Proposition 13.19 (Existence and uniqueness of the fluxes). There ez-
ists a unique family of linear mappings (Fk o) kem , scFi that satisfy (13.31).
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Proof. Let u € Xp and assume that (Fg ,(u))k,- a solution of (13.31).
Take K € M, 0 € Fg, and let w? € Xg be such that wy =1, w?, = 0 for all
o # o', and wg =0 for all L € M. Substituting v = w? in (13.31) gives

Fro(u / A(x)Vpu(x) - Vpw? (x)de, (13.32)

which determines uniquely F ,(u), since w” depends only on ¢. This formula
also clearly shows that u € Xp — Fik (u) is linear.

We now prove that the fluxes defined by (13.32) satisfy (13.31). Fix a cell
K € M and let v € X<. Multiplying (13.32) by vk — v, and summing on
o € Fk gives

> Fro(u)(vk — v,)

0EFK
= /KA(w)VDu(a:) -Vop < Z (v, — vK)w"> (z)dx

cEFK
= /K A(x)Vpu(x) - VpV(x)de, (13.33)

where V = ZUEJ:K (v — v )w® € Xp. V has components Vs = v,r — v for
all 0’ € Fg, and Vy» =V, = 0 for all o" & Fik and all L € M. We therefore
have, by definition (7.7¢) of Vg,

ViV = Z lo|Vonk.o = == Z lo](vo — v )NEK .o = VK.
|K| ceFK |K| oceFK

Moreover, for any o € Fg, V, — Vx = v, — vg. Hence, by (13.4) and (13.5)
we see that VpV = Vpov on K. Equation (13.33) therefore shows that (13.31)
is satisfied. -

The GS for (2.20) (with F' = 0) then corresponds to writing the flux conser-
vativity and flux balances (see [76]):

Vo € Fint @ Fro(u) + Fro(u) =0, (13.34)
VK eM: Y Frq(u / f(x (13.35)
cEFK

The HMM method is therefore a finite volume scheme (more precisely, the
mixed finite volume, see [76]).

For specific meshes and with A = Id, the flux F ,(u) actually depends only
on the values ux and u,.

Lemma 13.20 (Superadmissible mesh and two-point flux). Let T be
a polytopal mesh of {2 in the sense of Definition 7.2. We assume that the
following superadmissibility condition is satisfied:
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Ty —TK

VK e M, Vo € Fk : NK o = (1336)

dK,a'

(i.e. the orthogonal projection of xx on each face o € Fi is the centre of
mass T, of o). Assume that, for each K € M, Ax =1d and Lk =1d. Then

/Vpu ) Vpu(z)de = Y o] (ux — o) (Vi — V) (13.37)

cEFK Ko
and the fluzes defined by (13.31) are given by

d

Fro(u) = (ug — uy).

dK,a

A similar lemma can be proved [76] for isotropic A, i.e. A(x) = A(x)Id.

The superadmissibility condition is satisfied by rectangles (with @ x the centre
of mass of K) and acute triangles (with xx the circumcenter of K) in 2D,
and by rectangular parallelepipeds (with @ the centre of mass of K) in 3D.
It is unfortunately not satisfied by tetrahedra in general.

Proof. Since Ax =1d, the choice L =Id and Equation (13.15) give

/ Vou(x) - Vpu(x)de
K

lo|

= ‘K|vKU'vKU+ Z

ceFK X,

RK)U(U)RK)U(U>. (1338)

[ea

Thanks to Assumption (13.36), the reconstructed gradient may be written

_ 1 lo]| _
Vgv=— (vo — VK )(Ty — TK).
F1 25, e

)=

Using again (13.36), Equation (B.2) gives >~ dxl (To—zK)(Ty—xK
|K|Id and therefore, recalling the definition (13.5) of Rx o,

> C)L'RKJ(U)RKJ(U)

ocEFK Ko

= Z |a\ Uy — U )(ve —vK) — |K|Viu- Vio.
JEFK

Plugged into (13.38), this yields (13.37). The expressions of Fk , are then
obtained by comparing (13.37) and (13.31). ]
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13.4 A cell-centred variant of HMM schemes on
A-admissible meshes

Let us consider a A-admissible mesh in the sense of [92]. We recall that in the
case of a A-admissible polytopal mesh, the line (xx,xy,) is orthogonal to the
interface o. A discrete gradient was constructed in [94] to deal with anisotropic
problems on such meshes. Let us set Xp o = {(vk)xkem : vk € R} and define
d, and 0 su, for all u € Xp o, by

dy = dK’g + dL,a' and 5K,o-u =uy —ug, Vo = K‘L € Fint, (13 39)
dy =dg .« and dx ,u = —ug, Vo € Frg N Foxt- ’
Let as before ITpu € L?(£2) be the piecewise constant function equal to ux in
K. The gradient reconstruction Vpu € L?(£2)? is constructed in the following
way. We start, as in HMM methods, by defining a constant gradient in each
cell K, using a formula that accounts for the A-admissibility of the mesh:

1 (5}( U
Vit = —— 0|(Zy — xx) —2—. (13.40)
R s
We then let 5
Ry () = 575 = Vicu n,g (13.41)
and
V.ot = Viu+ VdRk o (u)(Ty — T ). (13.42)

Then, as in HMM methods, Vpu € L?(£2)? is the piecewise constant function
defined by the value Vg ,u in Dg .

The mathematical analysis of the consistency and limit-conformity follows
similar steps to that of standard HMM schemes. As in the case of an HMM
method with Lx = Id, this variant gives back the standard 2-point scheme
for superadmissible meshes when A = Id.

13.5 The harmonic averaging points for heterogeneous
domains

The SUSHI scheme [97] is probably the starting point in the development of
the GDM method. In its hybrid version, it is an HMM scheme, but it also fea-
tures a possible barycentric condensation, in which some of the face unknowns
are eliminated. In its simplest form, a SUSHI GD is given by Definition 7.40
with D an HMM GD and I™ = M U Fiyp, for some Fiyp, C F. The face un-
knowns that are eliminated correspond to Fpary = F\Fhyb. If 0 € Fpary, the
points (x;);cq, used to eliminate the unknown associated with o are located
around o. If ¢ is on or around a discontinuity of A, as discussed in Section
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7.5.2 a linearly exact barycentric condensation as in Definition 7.40 leads to a
poor approximation of the solution. The notion of S-adapted barycentric con-
densation introduced in Definition 7.73 relaxes this requirement of a linearly
exact condensation and is therefore particularly useful for the SUSHI GD.

13.5.1 Harmonic interpolation coefficients

We consider here p = 2, since this construction is mostly meaningful for linear
problems. If A is discontinuous, the solution @ to (2.20) is smooth in the regions
where A is smooth, and has continuous fluxes where A is discontinuous. This
describes a subset S of H}(§2). Here a S-adapted SUSHI GD is presented; it
produces better approximation results in the case of heterogeneous material.
The construction of the interpolation families is based on the following result.

Lemma 13.21. Let K = R4 x (=00,0) and L = R?! x (0,00) be two
half-spaces, and o = R¥~1 x {0} be their interface. We consider a diffusion
tensor A which is constant equal to Ax in K and constant equal to Ay, in L.
The vector ngy, is the unit vector in the direction xq > 0. We take xig € K
and xy, € L and define yx and yr, as the respective projections of Ty and
xr ono. Welet dg , = dist(xx,0) and dr, » = dist(xr, o) and we define the
harmonic averaging point Yy, € o by

o — ALdi oYL + Akdr oYk dr,odr,-
7 ALdr,o + Akdr o Adg.o + Akdr o

(AL — AL, (13.43)

where /\K = nKL~AKnKL, )\tK = (AK 7/\K1d)nKL, /\L = TLKL~/1LTLKL and
)\tL = (AL — )\LId)TLKL,

Let u be a continuous function on R%, affine in both sets K and L and such
that AxVug-nir = ALVup.nkr. Then we have

u( ) _ )\LdKJu(scL) + )\KdLJu(:cK)
Yo Ardr,o + Akdr o

(13.44)

Proof. Let us first notice that y, indeed belongs to o. This is a consequence
of yk € o, yr € o and (AL — AL) Lnky. This ensures that A} — AL is a
vector in o.

Let us now take u as in the lemma, and let G and G, be its gradients in
K and L. We decompose these gradients in their normal and tangential part
relative to 0: Gk = gxnkr + G with Gt -ngr =0, G = grnkr + G4
with G% - ngp = 0. We set ux = u(xg) and uy, = u(zr). Since y — xx =
Y—yYx +dgonkr and y—xp =y —yr —dr . k1, the continuity of u along
the o writes

Yy o :uly) =ux +dro9x + (Y — yx) - G (13.45)
ZUL—dL,UgL'i_(y_yL)'GtL' '

This is equivalent to the two conditions G4 = G =: g* and
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di 09K +drogL =ur, —uk + (yx —yr) - g' (13.46)
The condition AxGg - nir = AL G|, - ngy, can be written
g K — gLAL = g' - (AL — A%). (13.47)
From (13.46) and (13.47) we deduce

. Alup —ug + (Yx —yr) - g'] + drog" - (A}, — Al)
K Adg,o + Akdr o '

Plugged into (13.45), this formula gives, for any y € o,

Ar(up —uk)
Ardg,o + Akdro
A(yx —yr) - @' +drog" - (AL — Ak)
ALdi .o + Akdr o

w(y) = uk +di,»

+dx.o +(y—yk)-g' (13.48)

We then just need to define the point y, as the point y € ¢ which eliminates
the unknown term g* from this expression, that is

A (Yx —yr) +dr oA — AL
Ardr,o + Akdr o

di,o + (Yo —yx) =0,

which corresponds to (13.43). Equation (13.48) then reads

)\L(UL — ’ILK)
Adi,o + Akdr o’

u(yo') =ug + dK,o’

which is equivalent to (13.44). L]

This lemma justifies the following construction of interpolation families.

13.5.2 Construction of interpolation families

We recall that F is split into Fyp, corresponding to unknowns that remain in
the SUSHI GD, and Fpary, corresponding to unknowns that are eliminated.
We first compute, for any face 7 € F, a point y, on the hyperplane containing
7 and a value w, by the following method:

1. if 7 € Fuyp, then y, =2, and w,; = ur;
2. if 7 € Fpary is a common face to grid cells M and N, then

_ ANy YN + AvdN 2 Ym + dag AN s (A — AQy)
Andy -+ Avdn -
Avdarsun + Aardyr
w, — NaM+UN + AMmdN, UM’ (13.50)
ANdarr + Avdn -

Yr

. (13.49)
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where: yys and yy are the orthogonal projections of s and o on the
hyperplane containing 7; dar,, = dist(zar, yar) and dy - = dist(xn, yn);
and

Av =nyN - Aunyn, Ay = Aunyn — Aumun,

AN =nyn - Annyn, AN = Avnyy — Annun

with n sy the unit normal vector orthogonal to 7 and oriented from M
to N.

We can now construct the interpolation families for any o € Fiary. Let K and
L be the cells on each side of 0. We select d — 1 faces 1; € Fg U Fr,, different
from ¢ but sharing a common cell with o, such that there exists a unique
function w satisfying:

w is affine in K and in L, w is continuous on o,
AK(VUJ)K'TLKL:AL(VUJ)L'TLKL and (13.51)
ug = w(xk), ur = w(xr), wy, = w(y,,) foralli=1,...,d.

By construction of the values w,,, the function w is entirely determined by
the cell values (ups)rmem. We then set u, = w(T,), which defines u, as a
linear combination of cell values uy; for M € H, (a certain set of cells close
to o), that is
ug = Y Birun (13.52)
MeH,

fed

This defines the family of barycentric coefficients (57);cm,. The unknowns
corresponding to Fy1, are therefore not used to eliminate the unknowns on
Fhary-

The computation of the linear combination defining u, can be simplified by
adopting the following algorithm:

1. The continuity of w forces the tangential components of the gradients
Vwg and Vw, to be equal, say to g’, on 7. The gradients of w are
therefore entirely determined by g* and their two normal components gx
and gy, to 7 in K and L, that is, by d+1 scalar unknowns G = (g%, g, 91.)-

2. Given that w is affine in K and L, we can write a linear relation between
the gradient components G' and the increments X = (ugx — uy,ur —
Ug, (Wr; — Ug)i=1,....d—1) Of w, that is, MG = X for some matrix M.

3. We then invert M to get G = M !X, which defines all the gradients of
w in terms of the increments X.

4. The flux conservativity Ax(Vw)g - nir — A (Vw)r, - ngrp = 0 is then
imposed and, given the construction of X, gives a linear relation between
U and (ug,ur, (W, )i=1,....d4—1) as expected.

In practice, the selection of the faces (7;);=1,.. 4—1 is done by selecting those
which produce the most invertible matrix M in the previous algorithm.

GD-consistency of the method. We assume that A is piecewise constant
on a polytopal mesh 2 = U}_, P, of the domain {2, that the polytopal mesh
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% are adapted to this mesh (i.e. each cell of the mesh is fully contained into
only one Pp), and that the sets of barycentric faces Fiary are chosen such that

V7T € Foary @ Y- defined by (13.49) belongs to 7 (13.53)

We consider the set S of continuous functions ¢ on {2 that are equal to 0
on 012, belong to W2>(F,) for each P,, and that have continuous fluxes
through the jumps of A (that is, for all £, ¢ such that P, N Py has a non-zero
(d — 1)-dimensional measure, A;p, Vi|p, - ngpr = A1p;NVo|p, Tuge on PN Py,

where nyp is a fixed unit normal to Py N E) The following lemma is an
enabler of Theorem 7.74 and therefore shows that SUSHI GDs constructed
using the coefficients (13.52) are coercive, consistent, limit-conforming and
compact. SUSHI GDs also obviously have piecewise constant reconstructions.
We refer to Definition 7.73 for the definition of the quantity reg used in the
next lemma.

Lemma 13.22. Let S C H}(£2) be constructed as above, let D be an HMM
GD, and let DS be a SUSHI GD constructed from D by using the coefficients
(13.52).

Then S is dense in HE(£2) and, under Assumption (13.53), S satisfies: for all
p € S, there exists C, > 0 and Rps (depending only on an upper bound of
Cp and regg(D®)) such that

Vo € Frary : ‘@(EU) - Z B}Q(p(a:K)‘ < Oy Rpsdiam(o). (13.54)
KeH,

Proof.

The density of S is established in [8, Lemma 3.2]. We consider therefore Prop-
erty (13.54). For any 7 = M|N € Frary, define a piecewise linear approxima-
tion @ of ¢ in M U N by:

Ve e M : 9(x) = ¢(y,) + Vou(y-) - (2 — yr),
Ve €N : @(Sﬂ) = @(y‘r) + V@lN(y‘r) ’ (SC - yT)'

Then % is continuous on through 7 (because ¢ is continuous on 7, so the
tangential parts, with respect to 7, of V| (y-) and of Vo y(y-) coincide),
and the continuity of the fluxes of ¢ ensure that @ also has a continuous flux
through 7. Therefore, by Lemma 13.21,

7( ) _ /\NdMﬂ—@(wN) + /\MdN,TE(wM)
PYr )\NdMyT‘F)\MdN,T

Since ¢ — @ = O((har + hn)?) in M U N (because ¢ is smooth in M and in
N), we infer that

_ ANdyrp(®EN) + Avdn - o(xar)

2) = O((h ha)?). 13.55
©(yr) e T Anrdn + O((hy + hn)7) ( )
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Let us then consider the values w, constructed as above from the values
ur = (&) if 7 € Fuyp, and uny = p(xn), un = @(xar) if 7= M|N € Frary.
Using the bound on (p, the preceding reasoning shows that for any 7 € F,
¢(yr) = w, + O(diam(7)?). Hence, for a given face o = K|L, any piecewise
linear function w constructed as in (13.51) from the values ux = @(xk),
ur, = ¢(xk) and (wr, )i=1,..,d—1 satisfies

w — ¢ = O(diam(c)?) (13.56)

at the points xx, 1 and (yr,)i=1,. 4—1. This shows in particular that the
gradients of w in K and L (entirely computable from the values at the pre-
ceding points) are within distance O(diam(o)) of the gradients of ¢ in these
cells, and therefore that (13.56) actually holds uniformly in K U L. Applied at
T, € o, this estimate gives w(Z,) = p(Z,) + O(diam(c)?), which is precisely
(13.54). -
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Nodal mimetic finite difference methods

Nodal mimetic finite differences (nMFD) methods form the second family
of MFD methods, after hMFD, that we study in this book. The analysis of
nMFD is relatively similar to that of hMFD, but several changes have to be
made since the discrete unknowns of nMFED are located at the vertices of the
mesh, rather than the cells and edges as in hMFD.

We only consider here homogeneous Dirichlet boundary conditions, but we
briefly address the questions of other boundary conditions in Remark 14.1.

14.1 Definition and properties of nMFD gradient
discretisations

We first define the GD, and then prove that the corresponding GS (2.23) is
indeed the nMFD scheme as defined in [35].

Let € = (M, F,P,V) be a polytopal mesh of {2 in the sense of Definition 7.2.
For each K € M we choose non-negative weights (w%)sev, such that the
quadrature

/Kw(a:)da:z > wiw(s) (14.1)

seEVk

is exact for constant functions w, which means that
D wik =|K]. (14.2)
SEVK

For each face o € Fx N Fint, we also choose non-negative weights (w?)sey,
such that the quadrature

/ w(z)dr(@) ~ 3 whu(s) (14.3)

sEV,

is exact for affine functions w. This is equivalent to
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Z ws =|o| and Z wis = |o|Z,. (14.4)

s€EV, s€EV,

We also assume the following property on these weights.
VK € M, Vs € Vg, do € Fi s such that w] # 0, (14.5)

where Fxs = {0 € Fx : s € V,} is the set of faces of K that have s
as one of their vertices. This assumption, not very restrictive in practice,
states that each vertex of each cell K is genuinely involved in at least one of
the quadrature rules (14.3) on the faces of K. (14.5) is not required in the
construction of the nMFD, but it is used to identify the nMFD method with
a GDM.

For each cell K € M, we re-define its centre £ € P by setting

1
T =1 Y Wis (14.6)
|K‘ SEVK

(which is assumed to belong to K) and we select a partition (Vi s)sey, of K
such that

Dko| 1
Vs € Vi, Vsl = D wg| Lt ‘:g > widk. (14.7)

0EFK,s |U| 0EFK,s

The second equality follows from (B.1), and we note that (14.4) yields > .y,
|Vk.s| = |K|, which is compatible with the requirement that (Vi s)sevy is a
partition of K.

The nMFD LLE gradient discretisation is constructed by following the nota-
tions in Definition 7.33.

1. The set of geometrical entities attached to the discrete unknowns is I =V,
and the set of approximation points is S = I. We set I, = V N {2 and
Is =V N OS2 Hence,

Xpo={v=(vs)sey : vs ERforall se VN2,
vs =0 for all s € VN O},

For K € M, we let Ix = Vk.
2. For all K € M, the functions 7 = (7% )sey, are defined by

S

Vs € Vi, for ae. x € K, mi(x) := T;ﬁ

(14.8)
Relation (7.32) gives

1
Vo € Xpo, VK € M, Vz € K, IIpv(x) = vk = " D wiva. (14.9)

SEVK
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3. In a similar way as for the HMM method, the reconstructed gradient is
the sum of a constant gradient in each cell, and of stabilisation terms in
each Vi 5. It is also best defined by first giving an expression of Gxv. Let
Xy, ={v=(vs)sev, : vs € R} be the space of discrete unknowns in K,
and

1
VK € M, Vv € Xy, Vv =z D (Z wgvs> niq.  (14.10)
| | ocE€EFK SEV,

Define then, for v € Xy, , the function Grv € LP(K)¢ by

Vs € Vi, for ae. ¢ € Vi s,

hi[LKRK(U)}sNK,s (14.11)
K

Grv(x) = Vv +
where
hd NK,s = d|\};§,s\ ZUE}'K,S wgnKv‘T’
o Ri : Xy, — Xy, is the linear mapping described by Rg(v) =
(RK’S(’U))SE\)K with

Ry s(v) =vs —vg — Vgv- (s —xK), (14.12)

where vy is defined in (14.9) and x is given by (14.6),
e Ly is an isomorphism of the space Im(Ry).
By (7.33), we then have

Yve Xp, VK e M, Vs € Vg, forae x € Vg,,

1 (14.13)
Vpu(x) = Viv+ E[‘CKRK(/U)]SNK,S~

The functions (G )sey, of LP(K)? are recovered from the definition
(14.11) of Gkv by considering, for each s € Vg, the vector v* € Xy,
with value 1 at s and 0 at all other vertices of K, and by setting

Gi = Grv® for all s € V. (14.14)

4. The proof that mx and G are P1-exact reconstructions and that | Vp-|[ » ()
is a norm on Xp g, is provided in Lemma 14.8 below.

Remark 14.1 (Other boundary conditions)

The adaptation of nMFD to non-homogeneous Dirichlet conditions raises the same
interpolation issues as for P; finite element methods (see Section 8.3.1), and es-
sentially requires a boundary condition smoother than W'~'/??_ Other boundary
conditions (Neumann, Fourier) are rather straightforward to deal with, using the
value vy, = ﬁ Zsevg wius to define the trace reconstruction Tp.
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We prove that an nMFD scheme is the GS (2.23) corresponding the GD
defined above, for suitable choice of (L) ke Let us first recall the definition
of an nMFD scheme from [35]. The space of discrete unknowns at the interior
vertices of the mesh, denoted by N in [35], is simply Xp o defined above. The
nMFD for (2.20) (with F = 0) is then written under the general form

Find u € Xp o such that, for all v € Xp o, [u,v]x,, = f), (14.15)

where [+, -] x,, , is an inner product on Xp ¢ and fa linear form on Xp . Using
the quadrature rule (14.1), the linear form f is defined as

OEY <|I1(|/Kf> > wiv. (14.16)

KeM SEVK

The inner product [, ]xp, = > el Jvi is designed cell-by-cell to ensure
that a discrete Stokes formula is satisfied for interpolants of linear functions.
It is shown in [35] that this leads to the following generic form:

Yu EXVK , Vv € XVK :

1
[u, v]y, = u'Mgv with Mg = m(CKA;(l(Cﬂ + DrKgD%,

(14.17)

where

e g is the constant value of A on K (as in HMM methods, we assume that
A is piecewise constant on M),

o Ck is the Card(Vi) x d matrix with rows (3,7, | wE(Arnk o)) sevic,
where, as before, Fi o is the set of faces of K that have s as one of their
vertices.

e Dk is a Card(Vk) x (Card(Vk) — d) matrix whose columns span the
orthogonal space in Xy, of Fx, where

Ex = {(A(8))sevy : A:R? — R affine mapping}

is the vector space of the values of affine mappings at the vertices of K.
e Ky is a symmetric positive definite matrix of size Card(Vk ) — d.

Remark 14.2 (RYVE vs. RO4VK))

As in Remark 13.5, we make abuses of notation when we consider Cx, Dx and Kx
as matrices. Formally, this supposes that a numbering of the vertices Vx of K has
been chosen.

Before proving that nMFD methods are GDMs, two technical results are re-
quired. The first one contains in particular results similar to those in Lemma
13.6, and the second one describes the kernel of Dy .
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Lemma 14.3. Let € = (M, F,P,V) be a polytopal mesh in the sense of Def-
inition 7.2, and let D be an nMFD GD as defined above, for some choices of

(Lx)xem- Then,

1. For all K € M, B € Im(Rk) if and only if

> |‘2K’S|ﬂsNK,S =0. (14.18)
K

SEVK

2. For allv € Xpo and all K € M,
1
Vikv= —/ Vopu(z)de. (14.19)
K] Jx

3. Vi is a P1-exact gradient reconstruction on K upon Vi, in the sense of
Definition 7.28.
4. For all K € M and all s € Vi, [Nk s| > 1.

Proof.
ITEM 1. If 8 € Im(Rf) then, for some v € Xy, ,

Bs =vs —vg — Vigv- (s —xk) for all s € V.
Set ws = vs — v. Using (14.4) and ) . » |o|nKk, = 0 (see (B.4)) shows

that Vgw = Vgv. Hence, 8s = ws — Vgw - (s — ¢ k) Given the definition of
Nk s, this yields

Z %631\7[@5 = é Z Z BswgnK,a

sEVK s€Vk 0€F ks
1
3 (3 e
oEFK \S€V,
1 1
= > <Z w§w5> NKo o > (Z wf;VKw.(S—:cK)> K-
oc€FK \SEV, oEFK \8€V,
1
— = (|K|Viw=T). (14.20)

We then use (14.4) and Lemma B.3 to write

T1 = Z VK’LU~ (Z wf;(s — $K)>‘| TLKJ

ocEFK seV,

= Y lol[Vkw - (& — zx)|nK.s = |K|Viw. (14.21)
ocE€EFK

Substituted in (14.20) this shows that /5 satisfies (14.18). Defining
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Vi,s
Gr:BEXy, = Y |£‘5SNK,SeRd,

seEVk

we just showed that Im(Ry) C ker(Gg). The vectors (Nk s)sey, span RZ.
Indeed, for any vector £ € R%, using (14.4) and Lemma B.3 (with zx = 0),

3 IVKs|d ENks= > <Zw33'€> Nk

seVk oc€FK \8€V,
= Z lo|(Z5 - Enk,e = |KI[E.
ceFK

By Assumption (14.5), none of the (Vi s)scv, has a zero measure. Hence,
Im(Gx) = R? and dim(ker G ) = Card(Vx) — d. Using similar computations
as in (14.21), it can be seen that Z € R? v (Z-(s—x))sey, € ker(R) is an
isomorphism (the one-to-one property comes from the fact that (s —xx)secr,
spans R?). Hence, dim(Im(Rg)) = Card(Vk) — d = dim(ker(Gg)). Since
Im(Rg) C ker(Gg), the equality of dimensions therefore gives Im(Rg) =
ker(Gg) and completes the proof of Item 1.

ITEM 2. By Definition (14.13) of Vp,

Vic.o
/vpu 2)de = K[V + 3 | f;'z Ric(v)]s Nic.o.

SEVK

Since Lx Ry (v) € Im(Rk), Item 1 shows that the last term in this relation
vanishes, which concludes the proof of (14.19).

ITEM 3. If v = (A(S))sey, for some affine map A, then (14.4) shows that

D wive= > ws = |o|A(Z,).

sEV, SEV,

Hence, setting u = (A(x k), A(Ts)oery ), recalling the definition (7.7¢) of Vg
and using Lemma B.10,

Viv= Z |o| A( wg)nKafVKusA

|K| ceFK

ITEM 4. By definition (7.4) of dk , for 0 € Fi and s € V,, we have (s —xg)-
nk,. = di . Hence, by definition (14.7) of |V s,

hi
—wg) Ngs = 2K (s —TK) MKy
(s—xk) Ngs d|VK,s|U€Z}_;< wi(s —xK) ng,

hxi s
= wadK)J = hK.
d|VK,8| Uez]_-;”

Since (s—xi)-Nk s < |s—zx||Nk,s| < hix| Nk sl, it follows that |[Ng ¢ > 1.
n
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Lemma 14.4. Let T be a polytopal mesh in the sense of Definition 7.2, let
K € M, and let Dx and Ry be defined as above. Then, the mappings D% :
Xy, = RCdVK)=d gngd Ry = Xy, = Xy, have the same kernel.

Proof. The kernel of D% is the orthogonal (for the dot product in Xy, ) of
the columns of Dy, that is to say, according to the definition of Dy, the space
FEx of values at the vertices of K of affine mappings.

We have v € ker(Rf) if and only if

Vs € Vi : vs =vg + Vgv- (s —xk). (14.22)

If there exists A affine such that vs = A(s) for all s € Vi then Vv = VA by
Item 3 in Lemma 14.3. The definitions (14.9) and (14.6) of vx and xx show
that vg = A(xk). Hence, since A is affine,

v = A(s) = A(xk) + VA - (s —xk) =vkg + Viv- (8 — k)

and (14.22) holds. Conversely, if (14.22) holds then, defining the affine map-
ping A(x) = vg + Vgv- (z —xk), we have vs = A(s) for all s € V. We just
established that the kernel of Rx is made of the values at the vertices of K of
affine mappings. This kernel is therefore identical to Ex = ker(D%) and the
proof is complete. L]

We can now prove that the GD constructed above corresponds to the nMFD
scheme.

Theorem 14.5 (nMFD methods are GDMSs). Let T be a polytopal mesh
of 2 in the sense of Definition 7.2. Assume that A is piecewise constant on
M. Take weights that satisfy (14.2), (14.4) and (14.5), and let (14.15) be
an nMFED method constructed from these weights. Then, there exists isomor-
phisms (Lx)kem such that, if D is the GD defined as at the start of this
section, the corresponding GS (2.23) is identical to (14.15).

Remark 14.6 (Non piecewise constant diffusion tensor)

As for the HMM method (see Remark 13.17), if A is not piecewise constant on M,
then (14.15) is the GS (2.23) in which A is replaced with a piecewise constant ap-
proximation. We already noticed that this modification does not impact in practice
the rates of convergence provided by the theorems in Section 2.1.2.

Proof. Given the definitions (14.9) of ITp and (14.16) of ]77 the right-hand
sides of (2.23) and (14.15) clearly coincide. We therefore just have to prove
that the left-hand sides coincide. Since the inner product [-,-]x,, and the
gradient (14.11) are constructed cell-wise, it suffices to show that, for any
u,v € Xp, and any cell K, we can find Lg such that

/ A@)Vou(@) - Vou(a)de = u" Mo, (14.23)
K
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Let Sk (u) = Vpu — Vgu be the stabilisation part of Vpu on K. By (14.19),
we have [, Sk (u)(x)dx = [, Sk(v)(x)dx = 0 and thus, since A = Ak is
constant on K,

/K A(x)Vpu(x) - Vpu(x)de
= |K|/1KVKU -Vigv—+ /K AxViu - SK(’U)(IE)d:B
+ /K NS () (@) - Vcvda + /K Ak S (w)(@) - Sk (v) () de
K| Ak Vicu - Vico + /K AxSk()(@) - Sk () (@)de.  (14.24)

By definition of Cg, for all £ € Xy,

C%é': Z Z wsAKnK,cr fs

s€Vk \0EFK,s

= Ak Y (Z w§53> ni.o = |K|AxViE.

oc€FKk \8€V,

Hence,

%UTCKAI_Q(C%U = |K‘(/1KVKU)TAI_(1(AKVKU) = |K‘AKVKU . VK'U.
The first term in the right-hand side of (14.24) therefore corresponds to the
first term in the expression (14.17) of u"Mgwv. To complete the proof of the
theorem, we therefore only have to show that, for any symmetric positive
definite (nx — d) x (ng — d) matrix K, there exists an isomorphism Lg of
Im(Ry) such that, for all u,v € Xy,

WD KDLy = /K A Sic(w)(@) - S (v) () de. (14.25)

By Lemma 14.4 we have ker(D%) = ker(R). Let {-,-}1 be the inner product
on RCd(VK)=d defined by Ky, and apply Lemma 14.7 to produce an inner
product {-,-}2 on Xy, such that {DLu,DLv}; = {Rk(u), Rx(v)}2. Then
(14.25) follows if we can establish the existence of an isomorphism Lg of
Im(Rg) such that, for all u,v € Xp o,

{RK(v), Rk (v)}2 = /KAKSK(U)(:::) - Sk (v)(z)de. (14.26)
By definition of Sk (u) (see (14.13)), we have

/K A Sk (u)(@) - Sic (v) () da
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Vi s
- Z |}? ‘[LKRK(U)]S[EKRK(U)]SAKNKvS'NK’S
seVk K

= (Lx Rk (u), Lx R (v)) (14.27)

where (-, ) is the scalar product on Im(Ry) defined by

Vi s
<£7B> = Z |hI§’ |AKNK,S‘NK,S€SBS

seEVK K

(notice that Ax Nk s - Nk s > 0 by assumption on A and Item 4 in Lemma
14.3). Since {-,-}2 and (-, -) are two scalar products on Im(Rg), Lemma 13.8
provides an isomorphism Lx of Im(R) such that {£, 8}2 = (Lk (), Lk (B))
for all ¢, 8 € Im(Rk). Applying this relation to £ = Rx(u) and 8 = Rk (v)
and plugging the result in (14.27) shows that (14.26) holds for this choice of
Lk. u

The following lemma, used the in the above proof, is taken from [76].

Lemma 14.7. Let X, Y and Z be finite dimensional vector spaces and A :
X =Y, B: X — Z be two linear mappings with identical kernel. Then, for
any inner product {-,-}y on'Y, there exists an inner product {-,-}z on Z such
that, for all (z,2') € X2, {Bz, Ba'}z = {Ax, Az’ }y .

Proof. Let N =ker(A) = ker(B). The mappings A and B define one-to-one
mappings A : X/N — Y and B : X/N — Z such that, if Z is the class of x,
Az = Az and Bx = Bz. We can therefore work with A and B on X/N rather
than with A and B on X, and assume in fact that A and B are one-to-one.
Then A : X — Im(A) and B : X — Im(B) are isomorphisms. If {-,-}y is
an inner product on Y, we can define the inner product {-, -}y on Im(B)
the following way: for all z, 2" € Im(B), {2, 2 }imp) = {AB™'2,AB %'}y,
which precisely means that { Bz, Bx' }1yp) = {Az, Az'}y for all z,2" € X.
This inner product is only defined on Im(B), but we extend it to Z by choosing
W such that Im(B) @ W = Z, by selecting any inner product {-, -}y on W,
and by letting {2, 2"}z = {2B, 25} ) + {2w, 2y Jw for all z = 2p + 275 €
Z =Im(B)©W and 2’ = 25 + 213, € Z. This extension of {-, - }1;n(p) preserves
the property {Bx, Bx'}; = {Azx, Ax'}y. [

14.1.1 Preliminary lemmas

We now turn to prove the properties of nMFD GDs, starting with preliminary
results. In a similar way as for HMM GDs, we define the following factor which
measures the invertibility properties of the isomorphisms (Lx)xe:
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(p = min C>OZVK€M, VUEXVK,

_ R s LxRi(v)]s|”
Y |VKs|’ a0 <> Vil [Kh& (14.28)
SEVK SEVK K
R R s(v)
sEVKk

The boundedness of (p is a weaker assumption than the classical coercivity
assumption of nMFD methods, see, e.g., [35, Eq. (5.15)]. Choosing L = SxId
with Bx € [(71, (] ensures that the inequalities within (14.28) is satisfied.

Lemma 14.8 (Estimate of the LLE regularity of an nMFD GD). Let
T be a polytopal mesh in the sense of Definition 7.2, and let D be a nMFD GD
on T as defined in Section 14.1. Then, for any K € M, mx = (1% )sevy s
a Po-ezact function reconstruction on K, and Gx = (G )sevy 5 a Pi-ezact
gradient reconstruction on K upon Vi .

Moreover, D is an LLE GD and, if o > 0< + (p (see (7.8) and (14.28)) and

> .
02 max Card(Vk), (14.29)

then there exists Cy depending only on p, d and ¢ such that reg, (D) < Cy.

Proof. By choice (14.2) of the weights and definition (14.8) of the functions
(Tk )sevir 2scy Ti = 1 on K and thus 7 is a Pg-exact function reconstruc-
tion on K.

We proved in Lemma 14.3 that Vg is a P1-exact gradient reconstruction upon
Vi . Assume that v = (A(8))sey, interpolates an affine mapping A. As in the
proof of Lemma 14.4, v = A(x k) and thus Rg s(v) = A(s) — A(xx) — VA-
(s —xk)=0. Hence, Gxv = Vv = VA, which proves that Gx is a Pj-exact
gradient reconstruction on K upon Vi.

Let us now show that D is an LLE GD, i.e that |Vp-|[;, g« is a norm on
Xpo. If Vpv = 0 then (14.19) shows that Vgv = 0 for all K € M and
thus, by (14.13), Rk (v) = 0. The definition (14.12) of Rk s and the fact that
Vv = 0 then implies vg = vy for all s € Vi . Reasoning from neighbour to
neighbour, we see v is a constant vector. Since vs = 0 for s € V N 92, this
shows that v = 0.

Let us now estimate reg,, (D). For any K € M and any i = s € [x = Vi, we
have s € K and thus dist(z;, K) = 0. Moreover, since all functions 7, are
non-negative, >, k| = > ;c;, Tk = 1 and thus ||7kl|, = 1. The bound
on reg,, (D) will therefore follow from estimating |Gk ||,

For any s € Vi, by choice (14.7) of |Vk s,

hi <
| K, | = § wy < — E WSdK, = 0%.
’ leK S| 0CFK,s 7 d‘VK’sl 0CFK,s ’ 0
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P
|NK,U‘p

[chKamsp>

hx
,,) . (14.30)

RK73(1})
hx
Let V = maxsecy, |vs|. The definition (14.13) of V kv yields, thanks to (B.1),

0=V AV
IV kv < Z Ywi< <z T|K\ Z loldg.o = i (14.31)

UEFK s€EV,

Hence, if v € Xy, the definition (14.11) of Gi gives

[Lx Bi(v)]s

—1
1012 gy < 2° Qmwmw+§jww -

seVik

< or-1 <|K| Vo + 65 Y Vil

sSEVK

SW*QMWMM+%@§jmm

SEVK

Using the definition (14.9) of vk, we infer

1
[Bica(0)] < 7 > WiV +V + [Vivlhg < (2+ dbs)V.
SEVK
Hence,

R s P 24 do 24 df
Z |VKs| K, ( ) ( h‘Z) Z |VKS|_%|K|.

K K

s€EVk sEVK

Substituted alongside (14.31) into (14.30), this estimate gives
IGK V10 (ya < 207 [(dO5)P + 05Cp(2 + dbx)P [ hy” | K|V

Applied to v = v? for all ¢ € Fg, and recalling the definition (13.7) of the
functions (G )sevy, we deduce |G| 1o (gya < Coh | K|'/? with Cy depend-
ing only on d, p and p. The definition (7.24) of ||(]K||p and (14.29) then yield
a bound on ||QKHP that depends only on d, p and p. [

Lemma 14.9 (Norm on Xpg). Let T be a polytopal mesh in the sense of
Definition 7.2, and D be a nMFD GD on ¥ as in Section 14.1. We take
0> O+ (p (see (7.8) and (14.28)). Then, there exists Cs depending only on
(2, p and o such that

VUEX’DQ, Z Z |VK3|

KeM seVg

UK

‘ < C5|Voull], ) (14.32)

Proof.
In this proof, A < B means that A < CB for some C depending only on {2,
p and . Let v € Xp and K € M. By (14.19) and Jensen’s inequality,
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1

|VKU|P < —
K|

/ |Vpu(x)|Pde. (14.33)
K

Using Item 4 in Lemma 14.3 and the definition (14.13) of Vp, we infer that,
for all s € Vi and a.e. y € Vi s,

p p

1

e [LxRi(v)]s

[Lx Rk (v)]sNk s

1
< | =
<| i

- /|v (2)7d
v xI.
K/ IVP

Integrate over y € Vi s, sum over s € Vi and use the definition (14.28) of (p

to deduce
> [Vics

SEVK
Write |vs — vk | < |Ri,s(v)| + hx|Vkv| and use (14.33) to obtain

vs — vk [ _ v
D Vel |75 < | |Vpu(z)Pde.
SEVK K K

S [Vou(y)l” +

p
RLS(U) < / \Vpou(x)[Pda.
hK K

Summing this estimate over K € M proves (14.32). (]

We now define a control of an nMFD GD by a polytopal toolbox, and we
establish some estimates on this control.

Lemma 14.10 (Control of an nMFD GD by a polytopal toolbox).
Let ¥ be a polytopal mesh in the sense of Definition 7.2, and D be a nMFD
GD on ‘T as in Section 14.1. Let @ : Xp o — Xz, be the control of D by the
polytopal toolbox T (see Definition 7.9) defined by: for v € Xp g,

1
Vo € Fi, P(v)g = — Z wivs, and

. (14.34)
VK e M, P(v)gk = vk = — Z Wk Vs.

Let 9 > O+ (p (see (7.8) and (14.28)). Then, there exists Cy depending only
on §2, p and o such that
|@]lp 5 < Cu, (14.35)

and
WwT(D,%,®) =0, w¥(D,%,®)=0. (14.36)

Proof. In this proof, A < B means again that A < CB for some C depending
only on {2, p and p. By definition of @, for ¢ € Fg,

1 1
2(0)r ~ P)x| = |7 Y wilve — )| < 7 D whle — i

|U‘ seV, seV,
o o
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Hence, the discrete Jensen inequality (D.11) (with the convex function ¥(s) =
|s|P) and the definition of O« give

’45(0)0 —2(0)k
dK.o

p

P(v)s — P(v)K

< 62
T hK

L |
< _ S
~ |O_| Z wo’

SEV,

vs — Uk |”
hi

We multiply this by |o|dk », sum over ¢ € Fg, and swap the sums over the
vertices and edges in the right-hand side to find

p
S Z Z wg-dK,U

s€Vk 0€F K s

SP(’U)U — QS(U)K
dKa

)

Vg — VK p
hi

Since >
yields

Z Z loldk,o

KeMoeFg

o€ F Ko widk s = d|Vk s|, summing the above relation over K € M

D), — Pk
dx

p
Sd Z Z |VK,S|

KeM seVg

vs — Vi |”
hi '

)

The proof of (14.35) is completed by using (14.32) in Lemma 14.9 and by
recalling the definition (7.12) of ||®| 5 «-

We now turn to (14.36). By definitions (7.7¢) of II¢, (14.9) of IIp, and
(14.34) of @, we have IIpv = vg = IIz®P(v) on K, for all K € M. Hence,
wl(D, T, &) = 0. We then notice that

ﬁKé(’U) = |71‘ Z |0'|¢(’U)J'I’LK,0' = % Z

cEFK oceFK

<Z w§v5> Nk = VKU.

seV,

Hence, (14.19) shows that [, Vz®(v)(z)dx = [, Vpu(z)dx, and thus that
WY (D, T, ) = 0. .

14.1.2 Properties of nMFD gradient discretisations

The theorems presented here follow immediately, as for HMM GDs, from the
preliminary results above and from Propositions 7.37 and 7.64, Theorem 7.11
and Corollary 7.12.

Theorem 14.11 (Properties of nMFD GDs). Let (Dy,)men be a se-
quence of nMFD GDs, as in Section 14.1, defined from underlying polytopal
meshes (L) men. Assume that the sequences (0z,, +nz,. )men, (Cp,, )meN and
(maxgem,, Card(Vi))men are bounded (see (7.8), (7.9) and (14.28)), and
that ha,, — 0 as m — oo.

Then (Dp)men 48 coercive, GD-consistent, limit-conforming and compact in
the sense of Definitions 2.2, 2.4, 2.5 and 2.8.
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Remark 14.12. Contrary to HMM gradient discretisations, nMFD gradient
discretisations do not have a piecewise constant reconstruction for the natural
choice of unknowns, nor for any obvious choice of unknowns. The nMFD GDs
should therefore be modified, e.g., by mass-lumping as in Section 7.3.5, to be
applicable in practice to certain non-linear models.

Proposition 14.13 (Estimate on Cp and Wp for nMFD GD). Let ¥
be a polytopal mesh of (2 in the sense of Definition 7.2, and let D be a nMFD
GD on ¥ as in Section 14.1. We take 0 > 0z + n< + (p (see (7.8), (7.9) and
(14.28)) that also satisfies (14.29). Then, there exists Cs depending only on
2, p and o such that

Cp < Cs (14.37)

and
Vip € W (@)1, Wo(@) < Cs @l (s bt (14.35)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proposition 14.14 (Estimate on Sp for nMFD GD). Let T be a poly-
topal mesh of §2 in the sense of Definition 7.2, and D be a nMFD GD on ¥
as in Section 14.1. Assume that p > d/2 and take ¢ > 0 + (p (see (7.8) and
(14.28) ) that also satisfies (14.29). Then, there exists Cs > 0, depending only
on §2, p and o, such that

Vi € W2P(2) N WE(2), Sp(9) < Co @l b

where Sp is defined by (2.2). This means that the space size (see Definition
2.22) of the GD satisfies

hp(WP(Q) N Wy P (2); WHP'(2)1) < max(Cs, Cs)hou,
where C5 is defined in Proposition 14.183.

Remark 14.15 (Assumption on the weights)

As already mentioned, Assumption (14.5) is not very restrictive as most natural
weights will satisfy it. We emphasise that no lower bound on ) cF. ws is required,
only that this quantity is non-zero for any s € V. Even if this quantity becomes
extremely small for some vertex, no component of the GDs becomes extremely small
or large (we have 1 < |Ng | < 0<) and all estimates on Sp or Wp remain uniform
with respect to the weights.

14.2 Link with discrete duality finite volume methods
(DDFV)

Let us consider the special case, in dimension d = 3, of an octahedral mesh,
i.e. a polytopal mesh T such that the elements of M are octahedra (open
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polyhedra with eight triangular faces and six vertices, not necessarily convex;
five vertices may be coplanar), and the elements of F are the triangular faces
of the elements of M. Each Fi has 8 elements, each Vg has 6 elements, and
each V, has 3 elements (see Figure 14.1, left). For any K € M, the centre of
K is defined by wx = ;>

SEVK S.

Fig. 14.1. Left: octahedral cell K. Right: illustration of Tk - (greyed domain).

We consider a modification of an nMFD GD D = (Xp,,Ip,Vp) on ¥, in
which the space of discrete unknowns is unchanged, the gradient reconstruc-
tion is only built from the consistent part (14.10) of Vp, and the reconstructed
functions are piecewise constant on sub-tetrahedra. Precisely, we take for each
triangle o € F the order 1 quadrature rule (14.3) with equal weights w2 = %,
and we define D* = (Xp g, [Ip+, Vp+) the following way.

1. Vp- : Xpo — LP(£2)4 is given by
Yv e Xpo, VK € M, for ae. x € K,
1 1
VD*'U(m) = VK'U = m Z |U| (3 Z 'US) NKo-
cEFK sEVK

(given the equal-weights quadrature rule chosen for each face, this expres-
sion of Vv corresponds to (14.10)).
2. IIp+ : Xp,o— LP(£2) is given by

Yve Xpg, VK €M, Vo€ Fk, forae €Tk,
1
oote) =L ¥

sSEV,

where Tk, is the tetrahedra formed by xx and o (see Figure 14.1, right).
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The following lemma characterises the reconstructed gradient.

Lemma 14.16. For any v € Xpo and any K € M, the constant vector
(V) g is the unique vector & € R® such that

For all opposite vertices (so,s1) of K, €-(s0 — 81) = Vs, — Vs, (14.39)

Remark 14.17. The opposite vertices in the octahedra in Figure 14.1 are
(A,B), (C,D) and (E, F).

Proof. First note that, since the three directions defined by the three pairs of
opposite vertices in K are linearly independent, (14.39) indeed characterises
one and only one vector & € R3. We therefore just have to show that (Vp«v) |K
satisfies (14.39). We have

(Vpv) | = ‘K|3Z > lolnk. (14.40)

s€Vk ocEFK|sEV,

Let us consider for example the case where s = A in Figure 14.1. For a
triangular face o, the outer normal |o|ng , can be written as the exterior
product of two of the edges of o (with proper orientation). This gives

Z |a|nK7U:%(/ﬁxﬁ+ﬁxﬁ+@xﬁ+ﬁx@)

cE€FK|SEV,

:%(ﬁxﬁ—k@xﬁ):—%@xﬁ.

Applying this to all vertices of K, and since |K| = %AK with Ag =
det(zﬁ, @, ﬁ), we deduce from (14.40) that

(V) |k = ALK«UB - ’UA)@ X ﬁ—i— (vp — vc)ﬁ x AD
+ (’UF — ’UE)B X @)

Property (14.39) is then straightforward. Considering for example the case
(s, 81) = (B, A), the formula follows from ﬁ X zﬁ AB = (xﬁ X @) .
E—Oand @XE ?—det@ﬁ@ = Ag.

This lemma proves that |[Vp«-| 1, () is a norm on Xp o. Moreover, (14.39)
is a well-known characterisation of the reconstructed gradient in the CeVeFE
discrete duality finite volume (DDFV) method [53, 54], which is piecewise con-
stant on the so-called “diamond cells”. The function reconstruction IIp« has
been defined to match the function reconstruction used in the CeVeFE-DDFV;
this reconstruction is what ensures the discrete duality (Stokes) formula, that
gave the name to DDFV methods. Hence, the CeVeFE-DDFYV scheme can be
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considered as an nMFD scheme on octahedral meshes, without the need for a
stabilisation and with a different function reconstruction.

A complete analysis of the CeVeFE-DDFV method as a GDM may be found
n [78]. The same analysis also applies to the case d = 2, in which case the
mesh is now quadrangular (its cells still correspond to the “diamond cells” in
the DDFV terminology).
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The first chapter of this appendix presents gradient discretisations (GDs), and
some of their properties, in an abstract setting. This setting is shown to cover
most boundary conditions considered in Chapters 2 and 3, which enables us
to present unified proofs for some results on gradient discretisations.

Parts I (for elliptic problems) and II (for parabolic problems) introduced the
properties (coercivity, GD-consistency, etc.) needed on GDs to generate con-
vergent gradient schemes (GSs). Chapters B and C now introduce the tech-
nical tools which are used in Part III to prove that a given GD satisfies these
core properties.

Chapter B is devoted to discrete functional analysis tools, that is, the transla-
tion to the discrete setting of classical results of functional analysis (Poincaré
inequality, compactness theorems, etc.). These tools are used, in Section 7.6
in conjunction with the notion of control of a GD by a polytopal toolbox,
to establish the coercivity, limit-conformity and compactness of gradient dis-
cretisations. They also provide explicit estimates on Cp and Wp. Most of the
results and notions presented in this chapter expand results that originally
appeared in [97].

Chapter C covers generic compactness results for time-dependent functions,
with abstract Banach spaces E as co-domains. Both averaged-in-time (i.e., in
L?(0,T; F)) and uniform-in-time (i.e., in L>°(0,T; E)) situations are consid-
ered, and the focus is on piecewise-in-time functions, usually encountered in
numerical schemes for time-dependent problems.

In Chapter D, classical technical results are presented; these results are used
throughout the book.

Finally, numerical examples are provided in Chapter E to illustrate the be-
haviour of particular GDs applied to specific problems.






A

Gradient discretisations — abstract setting

Chapters 2 and 3 introduced the notions and properties of gradient discreti-
sation for various boundary conditions. Here, GDs are developed in a generic
setting that is shown to cover most boundary conditions. This enables uni-
fied proofs of many results on GDs, independently of the specific boundary
conditions they are designed for.

Throughout this chapter we take p € (1,+00) and let p’ be such that 1/p +

1/p =1.

A.1 Continuous abstract setting

Let L and L be reflexive Banach spaces, with respective topological dual
spaces L' and L’. Let H be a dense subspace of L’; this implies (and is
actually equivalent to) the following property.

Forallue L, (Vv e H,(v,u)r ., =0) = u=0. (A1)

Take a linear operator D : H — L', such that the graph of D is closed in
L' x L'. Endowed with the graph norm |[v|g = |v|. + |[Dv| .., H is a
Banach space continuously embedded in L’. Define

B={uelL:3ueLVve H, (v,u)r+ (Dv,u)r =0} (A.2)

Thanks to (A.1), for all w € B the element w € L in the definition of B is
unique. This defines a linear operator G : B — L, adjoint operator of —D in
the sense of [125, p. 167], such that u = Gu, that is,

Yu € B, Yv € H, (v, Gu)L/7L + <D’U,U>L/7L =0. (A.3)

This definition easily shows that the graph of G is closed in L x L. As a
consequence, B endowed with the graph norm [[ull 5 g = [lull, + |Gull is a
Banach space continuously embedded in L. By [125, Theorem 5.29], B is also
dense in L.
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Remark A.1. Equivalently, we could define the same abstract setting by start-
ing from a dense subspace B of L and a linear operator G : B — L with
closed graph, and by defining then H and D : H — L’ by:

H={vel :3wel' Vue B, (v,Gu)r + (w,u) =0}
and, for v € H, Dv is the element w in the definition of H.
Let V be a subspace of L’ such that
L' =Im(D) + V. (A.4)

We denote by |-|, the semi-norm on L defined by

qup WLl gy gor
Yu e L, |ul, =< pevi{o} [l (A.5)

0 if Vv ={0}.
Lemma A.2. With the definitions and notations above, for u € B we set
lullp = (rulf, + 1 Gul) . (A6)
Then |||z and ||| 5 g are two equivalent norms.

Proof. Since ||-[|5 g is a norm, proving its equivalence with ||-[| ; establishes
that this later semi-norm is also a norm.

For any v € L and p € V', we have (i, u) 1/ | < ||l ||ul|,- Hence, |ul, <
|w|l, and thus |jul 5 < 21/P |ull g g- This proves half of the equivalence. To
prove the other half, we just need to show that

E={ucB:|uly=1)

is bounded in L. Indeed, this establishes the existence of M > 0 such that,
for all uw € E, |Ju||, < M and thus, since |Gu|; < |ju|z =1,

lullpg < M+1=(M+1)|ull5

By homogeneity of the semi-norms, this concludes the proof that ||| p.g and
|-l 5 are equivalent on B.

To prove that E is bounded, take f € L’ and apply (A.4) to get vy € H and
py € V such that f = Dvy¢ + py. Then, for any v € E, by definition of the
semi-norm |-|; and since ||Gul|; <1 and |u|, <1,

[(fsuyr ol = [(Dvg,w)rn + (g u) e r

=|—(vp, Gu)p L + (g, u)r 1l
loplly 1Gully + gl lulg
lvpllp, + sl -

[VARVAN
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This shows that {(f,u)r/,1 : v € E} is bounded by some constant depending
on f. Since this is valid for any f € L’, the Banach—Steinhaus theorem [34,
Theorem 2.2] shows that F is bounded in L. (]

In the following sections, we make explicit correspondences between this ab-
stract setting and the specific settings of Dirichlet, Neumann and Fourier
boundary conditions.

A.1.1 Homogeneous Dirichlet BCs

We consider in this case the following spaces and operator D:
o L =LP(£2), so that L' = L¥' (£2).
o L =1IP(02)% sothat L' = LP' (£2)%.
o H=WP (2),D=divand V = {0}.
e B=W,?(0).

The choice of V ensures (A.4) since div : I/Vd’;;(ﬂ) — LP'(2) is surjective (see
the proof of Lemma 2.6).

The operator G : Wy P(£2) — LP(£2)% is then the standard gradient, G = V.
Moreover, (A.5) shows that |-|;, =0, and thus [lul|z = |Vul[ ;5 (g)a-

A.1.2 Homogeneous Neumann BCs

We consider in this case the following spaces and operator D:

o L =LP(£2), so that L' = L¥ (£2).

o L=L7(0)% sothat L' = LV (2)%.

o H=WE (), D=divand V =Rl

o B=WHr(0).
To see that this V satisﬁes (A4), take f € L¥ () and write f = fo +

prlo with py = IQ\ f(z x)dx. Since fy has zero average, there exists u €
WLP(§2) solution of —div(|Vu[P~2Vu) = fy in £2 with homogeneous Neumann
boundary conditions |Va[P~2Vu - ngp = 0 on 2. Set ¢ = —|Vu|P~2Vu €
%570((2) and notice that divep = fo, so that f = divep + sl € Im(D) + V.

The operator G : WP (§2) — LP(Q) is the standard gradient, G = V. The
definition (A.5) gives |u|, = |2|~1/? | [ u(z)dex|. The factor |2|~ /7" can be
dropped without changing anything to the analysis, and the norm on B can
therefore be defined by

fully = (| [ ateraa]

1/p
VU )
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A.1.3 Non-homogeneous Neumann BCs

We consider in this case the following spaces and operator D:

o L =LP(02) x LP(d12), so that L' = L¥ (£2) x L? (812).
o L=1L7”(0)% sothat L' = LV ()%

o H=WE 5(2), Dg = (dive, ) and V = R(10,0).
o B={(u,yu) € LP(2) x LP(002) : u € W'P(02)}.

To prove that (A.4) holds, write any (f,g) € LV (2) x L (902) as (f,g) =
(fo+ tygle,g) where

1 1
ha = g /Q f@ia+ g [ g@pie)

Then

/fo d:n-i—/dg x)dy(z /f d:c—i—/ g(@)dy(z) — |2y = 0.

Hence, (fo,g) satisfies the compatibility condition to be source and bound-
ary terms in a non-homogeneous Neumann problem. There exists thus @ €
WP(£2) solution of —div(|Vu[P~2Va) = fy in 2 with boundary condi-
tions |Va|P~2Vu - npo = g on 9. Set ¢ = —|VuP~2Vu € V[{lf;a(ﬂ)
We have divp = fy and —ynp = g, that is, Dy = (fo, g). Hence, (f,9) =
Do+ py,4(10,0) € Im(D) + V.

The operator G : B — LP(§2)? is then given by G(u,yu) = Vu, and Relation
(A.3) is the standard Stokes formula

VUEWLP( ) VSOE dlvﬁ(“Q)
/VU diE-l—/Qu(a:)divgo(w)da:
—/ Yu(z)mep(x)dy(z) = 0.
an

Moreover, (A.5) gives |(u,w)|, = |2~ /v’ | [ u(z)de|, and thus, after drop-
ping the factor |£2]~ /7" the norm on B is

ity = (| [ wterae]

A.1.4 Fourier BCs

1/p
IV )

The spaces and operator D are exactly the same as for non-homogeneous
Neumann BCs, except that we now take V' = {0} x LP (012). Any (f,g) €
LP (£2) x LP (012) can be written (f,g) = (f,90) + (0,v7 41lan), where
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o [ @z oo [ g
Vfg= 5T z)dr + — g(x)dvy(x).
ol Jg 1022] Joo

Then (f, go) satisfies the compatibility condition to be source and boundary
terms in a non-homogeneous Neumann problem, which allows us, as in the

case of non-homogeneous Neumann BCs, to find ¢ € Wﬁf;,a(ﬂ) such that
(f,9) = Dy + (0, I/f7gla_o) € Im(D) + V.
The definition (A.5) gives |(u, )|, = ||| ;s 50), which leads to

1/p
e P (S A L R (AT)

Remark A.3. The decomposition of (f,g) made above shows that we could
take V = R(0, 155), and thus that the norm on B could be weakened into

P

1/p
||(u,w)||3<‘ [ ey +||Vu||’2p<md) -

This norm is actually equivalent to (A.7). In the context of Fourier boundary
conditions, (A.7) is the standard norm in which estimates on solutions to
PDEs are obtained.

A.2 Gradient discretisation in the abstract setting

Based on the abstract setting described in Section A.1, we define a notion
of gradient discretisation, with corresponding properties and consequences. It
can be checked that, with the particular choices described in Sections A.1.1
to A.1.4, the following theory gives the concepts and results mentioned in
Section 2.1 (GDs for homogeneous Dirichlet BCs), Section 3.1.1 (GDs for
homogeneous and non-homogeneous Neumann BCs — with a variant definition
of consistency in the latter case) and Section 3.2.1 (GDs for Fourier BCs).

Definition A.4 (GD, abstract setting). In the context described in Section
A.1, a gradient discretisation D is defined by D = (Xp, Pp, Gp), where:

1. The set of discrete unknowns Xp is a finite dimensional vector space on
R.

2. The “function” reconstruction Pp : Xp — L is a linear mapping that
reconstructs, from an element of Xp, an element in L.

3. The “gradient” reconstruction Gp : Xp — L is a linear mapping that
reconstructs, from an element of Xp, an element in L.

4. The mappings Pp and Gp are such that

1
[ullp = (IPpult + [|Gpully)"”

is a norm on Xp.
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Remark A.5 (Pp and Gp for various boundary conditions). Definition A.4 is
translated in Chapters 2 and 3 to the contexts of homogeneous Dirichlet BCs,
homogeneous and non-homogeneous Neumann BCs, and Fourier BCs. Using
the notations in these chapters, we always have Gp = Vp. The operator Pp
however depends upon the boundary conditions:

e For homogeneous Dirichlet BCs (Definition 2.1) and homogeneous Neu-
mann BCs (Definition 3.1): Pp = IIp,

e For non-homogeneous Neumann BCs (Definition 3.11) and Fourier BCs
(Definition 3.36): Pp = (IIp, Tp).

Definition A.6 (Coercivity, abstract setting)

If D is a gradient discretisation in the sense of Definition A.4, let Cp
be the norm of Pp:

P
'p = max M. (A.8)
vexp\{0} ||v|lp

A sequence (D,,)men of gradient discretisations is coercive if there
exists Cp € Ry such that Cp, < Cp for all m € N.

m —

Definition A.7 (Limit-conformity,definition)

If D is a gradient discretisation in the sense of Definition A.4, let
Wp : H — [0,+00) be given by
Voe H,

7G u / + D ,P wU) 7.’ Ag
Wp(p) = sup |{¢, Gpu)r' L + (Dp, Ppu) L, ,L|. (A.9)
u€Xp\{0} [|ullp

A sequence (D, )men of gradient discretisations is limit-conforming
if
Vo e H, lim Wp_(p)=0. (A.10)
m— 00

The following lemma shows that the limit-conformity is stronger than the
coercivity.

Lemma A.8 (Limit-conformity implies coercivity, abstract setting).
Let (D) men be a sequence of gradient discretisations that is limit-conforming
in the sense of Definition A.7. Then (Dp,)men s also coercive in the sense of
Definition A.6.
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Proof. Set

P
E = DY eL: mEN7 UGXDT'L\{O} '
1vllp,

Proving the coercivity of (D, )men consists in proving that E is bounded in L.
Let f € L'. By (A.4), there exists vy € H and iy € V such that f = Dvy+py.
The definition of |-|, shows that [(us, )/ | < [lpsll;, |-, For z € E, take

m € Nand v € Xp_\{0} such that z = Lon? and write

m
HUHD,”

f,2) ol < 55—

|(ps, Pp,, vy Ll
[vllp,,

1
|(Dvs, Pp, v o] + ——
Ivllp,

|(Dvg, Pp, )1/ 1 + (vs, Gp, V) 1. L]

[vllp,,

1
+ . |<’Uf’ GD771U>L/7L
[vllp,,

<Wp,, (v) + lvgllp + lesllL - (A.11)

1
+ 7 sl [Po,, vl
[vllp,, ™ "

In the last inequality we used |Pp, v|;, < [[vllp, —and [|Gp, v|p < [[vlp, -
Since (Dp)men is limit-conforming, (Wp,, (vf))men converges to 0 and is
therefore bounded. Estimate (A.11) thus shows that {(f,z)r 1 : z € E} is
bounded by some constant depending on f. Since this is valid for any f € L',
we infer from the Banach—Steinhaus theorem [34, Theorem 2.2] that F is

bounded in L. -

Checking limit-conformity is made easier by the following result, which reduces
the set of elements ¢ on which the convergence in (A.10) has to be asserted.

Lemma A.9 (Equivalent condition for limit-conformity, abstract set-
ting). Let (Di,)men be a sequence of gradient discretisations in the sense of
Definition A.6. Then (D )men is limit-conforming in the sense of Definition
A.7if and only if it is coercive in the sense of Definition A.6, and there exists
a dense subset Hy of H such that

W € Hy, lim Wp,, (¢) = 0. (A.12)

Proof. If (Dp,)men is limit-conforming, then it is coercive by Lemma A.8,
and (A.12) is satisfied with Hy; = H (this is (A.10)).

Conversely, assume that (D,,)men is coercive and that (A.12) holds. Let Cp €
R4 be an upper bound of (Cp,, )men. To prove (A.10), let p € H, £ > 0 and
take 1 € Hy such that [|¢ — 9| < e. By definition of the norm in H, this
means that

lp =l + [Dp — DYl <e.
Hence, for any u € Xp_ \{0},
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|<<P - 1107 GDmu>L’,L + <D<p — Dd’a PDm,u>L/1L|

Tl
GDmU Ppmu
< o -l 1922 | ng — pyy,, P2t o yar, o).
el Tell,

Introducing 1 and D4 in the definition (A.9) of Wp, (¢), we infer

G / D P ’
Wp, (¢) < sup (%, Gp, wer + (DY, Pp,, u)pr.i] + max(1,Cp)e

wEXp,, \{0} ullp,,
= Wp,, (¢) + max(1,Cp)e.

Invoking (A.12) we deduce that limsup,, .. Wp, (¢) < max(1,Cp)e, and

m

the proof is concluded by letting ¢ — 0. [
The lemma of regularity of the limit (Lemma A.11 below) is an essential tool to
use compactness techniques in the convergence analysis of numerical methods

for non-linear models. We start by a preliminary result that facilitates the
proof of the regularity of the limit.

Lemma A.10 (On limit-conformity, abstract setting). Let D be a gra-
dient discretisation in the sense of Definition A.J. Define Wp : H x Xp —
[0, +-00) by

Y(p,u) € H x Xp, Wp(p,u) = (¢, Gpu)r 1 + (D, Ppu) . (A.13)

A sequence (Dy)men of gradient discretisations is limit-conforming in the
sense of Definition A.7 if and only if, for any sequence un, € Xp,, such that
(lem D, )men s bounded,

Vo € H, lim Wo, (@, ttm) = 0. (A.14)

Proof. Remark that

Wo (e, u
WD((P) = Sup M.
ueXp\{0} ||u||D

The proof that (A.10) implies (A.14) is straightforward, since |Wp, (@, tum)| <
[wm|lp,, Wn,, (#). Let us prove the converse by way of contradiction. If (A.10)
does not hold then there exists ¢ € H, ¢ > 0 and a subsequence of (D, )men,
still denoted by (D, )men, such that Wp,_ (¢) > ¢ for all m € N. We can then
find vy, € Xp,, \ {0} such that

=~ 1
Wo (. vm) 2 5 [0mllp,

Set tym = Ui/ ||vmllp,,. Then, for all m € N, [Juy|p =1 and



A.2 Gradient discretisation in the abstract setting 401

— — 1
W’D((P7Um) W’D(QO7’Um) Z 55-

 lvmllp,

This leads to a contradiction with (A.14). (]

Lemma A.11 (Regularity of the limit, abstract setting). Let (D, )men
be a limit-conforming sequence of gradient discretisations, in the sense of Defi-
nition A.7. For any m € N, take u,, € Xp,, and assume that (||um||p, Jmen is
bounded. Then there exists u € B such that, along a subsequence as m — oo,

Pp, uy converges weakly in L to u, and Gp, uy, converges weakly in L to
Gu.

Proof. By definition of |||, , (Gp,,um)men is bounded in L. By Lemma
A8, (D) men is coercive and therefore (Pp, U, )men is bounded in L. The re-
flexivity of L and L thus gives a subsequence of (D, U )men, denoted in the
same way, and elements u € L and uw € L such that Pp_ u,, converges weakly
in L to v and Gp,, u,, converges weakly in L to u. These weak convergences,
the limit-conformity of (Dyn)men and the boundedness of ([|um||p )men en-
able us to identify the limit in (A.14) to see that

Vo e H, (p,u)rr + (D, u)r 1 =0
This relation simultaneously proves that v € B and that u = Gu. [

We conclude this appendix by the notions of GD-consistency and compact-
ness in the abstract setting. Note that, once L, L, H and D are chosen, the
definition A.7 of limit-conformity is constrained by the continuous duality
formula (A.3); as a consequence of Lemma A.8, the definition of coercivity is
also constrained by this formula. These two notions therefore naturally follow
from the continuous abstract setting.

On the contrary, the definitions of GD-consistency and compactness are dis-
connected from the duality formula. In the absence of a specific problem to
analyse in the abstract setting, these definitions therefore remain rather open.
Particular choices for these notions are presented here, but variants are possi-
ble — see Remark 3.12 for GD-consistency and Remark 3.16 for compactness.

Definition A.12 (GD-consistency, abstract setting)

If D is a gradient discretisation in the sense of Definition A.4, let
Sp : B — [0,+00) be given by

Ve e B, Sp(p) = min (IPpv— gl +[Gpv—Gl,). (AL5)

A sequence (D, )men of gradient discretisations is GD-consistent, or
consistent for short, if
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Ve € B, lim Sp,(¢) =0, (A.16)

Lemma A.13 (Equivalent condition for GD-consistency, abstract set-
ting). A sequence (Dy)men of gradient discretisations is GD-consistent in
the sense of Definition A.12 if and only if there exists a dense subset By of B
such that
Vi € By, lim Sp  (¢)=0. (A.17)
m— o0

Proof. Let us assume that (A.17) holds and let us prove (A.16) (the converse
is straightforward, take By = B). Observe first that, since B is continuously
embedded in L, there exists C'g > 0 such that

Vo e B, |lell, <Crllellg-

Let ¢ € B. Take ¢ > 0 and ¢ € By such that ||¢ — ¢||p < e. Forv € Xp
the triangle inequality and the definition of the norm in B yield

m)

[Pp,,v—¢lr +[Gp,v— Gl
< | Pp,v =2l + 1Y — ¢l + |Gp,,v — Gl + |G — Gl
< |Pp,,v =9, + |Gp,, v — G|l + (C + 1) [ — ¢l 5 -

Taking the infimum over v € Xp_ leads to Sp,, (¢) < Sp,, (¢) + (Cp + 1)e.
Assumption (A.17) then yields limsup,,_, ., Sp,, (¢) < (Cp + 1)e, and letting

e — 0 concludes the proof that Sp,, (¢) — 0 as m — oco. L]

Definition A.14 (Compactness, abstract setting)

A sequence (D,,)men of gradient discretisations in the sense of Defi-
nition A.4 is compact if, for any sequence u,, € Xp,  such that
(|lum||D,, )men is bounded, the sequence (Pp, tm)men is relatively
compact in L.

Remark A.15. The compactness of (Dp,)men often follows from some com-
pactness property of B — perhaps translated in a discrete setting. The typical
example is the case of “conforming Galerkin” gradient discretisations, defined
by D, = (Xp,,,Pp,, = 1d,Gp, = G), where Xp _ is a finite dimensional
subspace of B. Then, if B is compactly embedded in L, (Dy,)men is compact
in the sense of Definition A.14.

Lemma A.16 (Compactness implies coercivity, abstract setting). Let
(Dim)men be a sequence of gradient discretisations that is compact in the sense
of Definition A.14. Then (Dy,)men s also coercive in the sense of Definition
A.6.
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Proof. Assume that (D,,)men is not coercive. Then there exists a subse-
quence of (Dy,)men (denoted in the same way) such that, for all m € N, we
can find v, € Xp,, \ {0} satisfying

m—roo ”Umnpm
Setting um = v/ ||vmllp, , this gives lim,, o0 [|[Pp,, uml|, = +oco. But

[uml|lp, = 1 for all m € N and the compactness of the sequence of gradi-
ent discretisations therefore implies that (Pp, tm)men is relatively compact
in L, which is a contradiction. [






B

Discrete functional analysis

Because the GDM encompasses non-conforming schemes, the functional spaces
where the approximate solutions live are not included in the classical Sobolev
spaces. Therefore, the usual Poincaré inequalities, Sobolev embeddings or
trace inequalities cannot be directly used. This chapter introduces a num-
ber of tools, referred to as “discrete functional analysis tools”, which are the
equivalent of the aforementioned inequalities/embeddings in discrete spaces
(made of vectors gathering cell and face unknowns). These tools are combined,
in Section 7.2, with the notion of polytopal toolbox to establish the coerciv-
ity, limit-conformity and compactness of sequences of gradient discretisations
that are controlled by such toolboxes. As shown in Chapters 8-14, many con-
forming and non-conforming schemes can be analysed through controls by
polytopal toolboxes and thus, indirectly, through the discrete functional anal-
ysis tools presented here.

In Section B.1, technical results on polytopal meshes and related recon-
struction operators are presented. The three subsequent sections are devoted
to discrete functional analysis results for diffusion problems with, respec-
tively, Dirichlet, Neumann/Fourier, and mixed boundary conditions. Some
of the tools developed here are inspired by previous works; this is in par-
ticular the case for discrete Poincaré and Sobolev inequalities, see, e.g.,
[52, 92, 107, 97, 111, 112, 26, 71] to cite a few.

In this chapter, unless otherwise specified we take p € (1, 00) and {2 is an open
bounded connected subset of R? (d € N*) with Lipschitz-continuous boundary
o12.

B.1 Preliminary results

We state here a few technical results on polytopal meshes and associated
discrete elements.
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B.1.1 Geometrical properties of cells

The lemmas in this section state simple geometrical properties and formulas
associated with a cell.

Lemma B.1. Let T be a polytopal mesh in the sense of Definition 7.2. Take
K € M and let o = minyer, di,». Then, the open ball B(xk, 0x) of centre
xr and radius o is contained in K, and K is star-shaped with respect to all
points in this ball.

Proof. For o € Fi we let H, be the affine hyperplane generated by ¢ and
Hy ={x eR?: (x—2) nk, <0 for all z € H,} be the half space, opposite
to nk -, corresponding to o (see Figure B.1).

Fig. B.1. Illustration of the proof of Lemma B.1.

By definition, dk , is the (usual) distance from xx to H,. Hence B(zk, 0K )
is contained in H_ ; otherwise, we would have a point in this ball which is at
a greater distance from xx than dg ,, which contradicts ox < di . Hence
B(xk,0x) C Nper H; =: H. The proof is concluded if we show that K is
star-shaped with respect to any point in H.

Let * € H and y € K. If [x,y] is not contained in K, then by convexity
of [x,y] we have (x,y) N OK # 0. Let z be the last point, towards y, in
(z,y) N OK. Then (z,y) C K and, if o is the face of K on which z lies,
(z—vy) nkgo, >0 But € — 2z = a(z — y) for some positive « since z lies
between « and y, and thus (z — 2) - nx . = a[(z — yY) - Nk, > 0. On the
other hand, since ® € H C H; and z € 0, (x — 2) - ng,, < 0. This is a
contradiction and the proof is complete. [
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Lemma B.2. Let ¥ be a polytopal mesh in the sense of Definition 7.2, K € M
and o € Fi. Then

1
|Drco| = Sloldico and > Joldk o = dK]. (B.1)
cEFK

Proof. We first compute |Dg ,| = fDK | dtdz. Since the integral is invariant
by translation and change of orthonormal axis system, there is no loss of
generality in supposing that ¢ lies on the hyperplane z(!) = 0, and that xx
on the line orthogonal to it. Then x = (dk 0,0, ..,0), see Figure B.2.

@ 2@

Fig. B.2. Illustration of the proof of Lemma B.2

Consider the change of variable (¢,y) € (0,1) x ¢ — & € Dk, defined by
z=(1-txr +ty = (1 —t)dgo,ty?,... ty'?) (note that y") = 0). Tts
Jacobian determinant is J(¢,y) = dx , x t471 so

1
1
|DK,0| = / /td_ldK,adtd'Y(y) = gdK,o U|;
0 o

as announced in the lemma. The second equation in (B.1) follows immediately
from the fact that (Dk »)ocry forms a partition of K (up to a set of zero
measure). L]

The following lemma and corollary are extremely useful to construct P;-exact
gradient reconstructions.
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Lemma B.3. Let K be a polytopal subset of R% with faces Fx and, for o €
Fi, denote by T, the centre of mass of 0. Let & be any point of R?. Then,

Z lo|nK (o —xx)’ = |K|1d, (B.2)
oceFK

where (€, — )T is the transpose of T, — T € R, and 1d is the d x d

identity matrix.

Proof. Since T, is the centre of mass of o, for any i = 1,...,d,
, 1 ,
W = —/m(’)ds(:c)
o Jo
(where () denotes the i-th component of z), and therefore

Z lo[Z ) ng , = Z :c(i)nK7(,ds(m).

o€FK o€FK VY

The divergence (or Stokes’) formula then gives

> Iolfﬁ,")nm=/ V(zM)de = |Kle:
K

ceFK
where e; is the i-th vector of the canonical basis of R?. Since ELe; = T,
this shows that
> |0|nK7g;c?;> e; = (|K|Id)e;.
cEFK
This relation being valid for any ¢ = 1,...,d, we infer that
> Jolnk®l = |K1d. (B.3)
o€ FK

Apply now divergence formula to a constant field £ € R¢:

(Z Ialnx,a> =Y [ & ngody(x) :/Kdiv(g)dm =0.

cEFK c€FK VY

Since this relation is true for any & € R?, it shows that

> Jolnko =0. (B.4)

cEFK

(B.2) is proved by adding (B.3) and (B.4) multiplied on the right by —x%..
"

For simplicial meshes, the next lemma shows that the regularity factor x<
defined by (7.10) controls all the other ones.
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Lemma B.4. Let K be a simplex of R?, Ty be the centre of mass of K, and
pk be the maximum radius of the balls centred at Tx and contained in K. For
o € Fk, let dx o be defined by (7.4) with xx = Tx. Then

PK = 0'12}:1}( di,o (B.5)
. 1
Vsg # 81 in Vi, pr < ir 1dlst(so,sl)7 (B.6)
1
Vo € Fx, pr < e 1diaum(cr). (B.7)

As a consequence, if T is a conforming simplicial mesh with P the centres of
mass of the cells, then, recalling the definitions (7.8)—(7.10),

2

Kz
d+1

Ne < and Oz < kx +d+ 1.

Proof. The inequality > in (B.5) is a consequence of Lemma B.1. The other
inequality actually only relies on the convexity of K. If ¢ € Fk, as in the
proof of Lemma B.1 denote by H, the affine hyperplane containing o, and by
H_ the half space H, + R™ng . Since K is convex, K C H; and dg , is the
(positive) distance from Zx to H,. We have B(ZTk,prx) C K C H, and pk
must therefore be less than dist(Tx, H,) = di,o-

Let us now prove (B.6). Let o be the face of K opposite to s1. Write Ty =

1
741 Doscyy S» SO that

1
Sg— T = —— Z (s0 — 8)
d + 1 s€EVk
1 1
= — Z (so —s)+m(so—sl). (B.8)
sEVk, 8#8,

If s # s1 then s, 89 € 7 and thus (sg—$)-nk,, = 0. Taking the scalar product
of (B.8) with ng , therefore gives, since sy € 7,

1

1 .
m(so —81) MK < ﬁdlst(so,sl).

drxo = (S0 —Tk) Nk, =

Equation (B.6) follows since px < dk,, by (B.5). Estimate (B.7) is a conse-
quence of (B.6) since, for any face o € Fi and any two vertices sg # s; of o,
dist(sg, s1) < diam(o).

Let us turn to the upper bound on 7. For any neighbouring cells K and L,
denoting by o their common face, by (B.5) applied to K and (B.7) applied to
L,
dx,o > pr > kg hi > kg diam(o) > k3 (d+ 1)pr,
> kg (d+ V)hg > kg2 (d+ 1)dr, o
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dL,U I‘Q?E
dK,a é d+1
bound on 7.

The bound on fz is trivial since any simplex K has d+ 1 faces and, by (B.5),

Hence which gives, by reversing the roles of K and L, the upper

S KRg. (Bg)

Remark B.5 (Generalisation to x not located at the centre of mass)

The proof shows that (B.5) holds with Tx replaced by any xx € K. Writing xx =
ZsevK a8 as a convex combination and reproducing the previous proof with these
coefficients as € [0, 1] instead of 1/(d + 1), we see that (B.6) and (B.7) holds with
1 instead of 1/(d + 1).

B.1.2 Interpolant on X+

For ¥ a polytopal mesh of (2 in the sense of Definition 7.2 and p € [1, 00),
define the interpolant Is : W1P(2) — X< by

Yo € Wl,p(9)7 Isp = ((@K)KEMa (‘PJ)UE}') with

1
VK e M, pg = m/}(gp(m)da}, (B.10)
1
Vo eF, ¢o = m/gp(az)d’y(m).

This interpolant enjoys essential stability and approximation properties. Be-
fore establishing them, let us start with a preliminary lemma.

Lemma B.6. Let T be a polytopal mesh of {2 in the sense of Definition 7.2,
p € [1,00) and 0 be such that

max{ ¢ c KeM, aefK}ge.
dK,a'

Then there exists Cy, depending only on d, p and 0, such that, for any K € M
and any p € WHP(K), with the notations in (B.10),

ChP 1
oo = rl? < /K Vo(@)Pdz (B.11)

and
I = ekllLery < Crhi Vol o xya - (B.12)
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Proof. Let us assume the existence of C5 depending only on d, p and 6 such
that, for all K € M and all o0 € Fg, setting Bx = B(xzk,0 thy/2),

1 p hpfl

0~ 1B Jy $BIE| <O / V()P de, (B.13)
[Bicl o o Jx

1 p h;[)(

‘|BK|/B pl@)de = x| < CZK|/K Vo(z)[Pde, (B.14)
K
and .
HSO ~1Bxl Js p(x)dz < Cohk IVl poxeya - (B.15)
K Lr ()

Then (B.11) follows from (B.13) and (B.14) by using the triangle inequal-
ity, the power-of-sums inequality (D.12), and, in (B.14), the estimate |K| >
Dk o| = lgld% > 07 'd~o|hg. Similarly, Estimate (B.12) follows from
(B.14), (B.15) and the triangle inequality.

To prove the existence of Cy such that (B.13)—(B.15) hold, notice first that,
since the restrictions to K of functions in C°°(R?) are dense in WP (K) (K is
a polytopal set), these estimates only need to be established for ¢ € C*°(R9).

PROOF OF (B.13)

For z € Bi and y € o, write ¢(y) — p(2z) = fol Vo(z+tly —2)) - (z —y)dt.
Taking the mean value for z € B and y € ¢ and using Jensen’s inequality
yields

he 1
Ly < K / / / Vo(z +t(y — 2))Pdzdy(y)dt,  (B.16)
|0||BK| 0 JoJBg

where Lg 13 is the left-hand side of (B.13). Since 0~ hi/2 < dk,, for all
o € Fk, by Lemma B.1 the cell K is star-shaped with respect to all points
in Bg. Hence, for all z € By the change of variable ¢ : (t,y) € (0,1) x
o — x = z+ t(y — z) has values in K. By the same reasoning as in the
proof of Lemma B.2, the Jacobian determinant of this change of variable is
J =t (y — 2) - nk ,|. Since |z — z| = tly — z| < thg, we have t > |$h;z|
Moreover,

0*1hK > GilhK'
2 - 2

(y —2) nko| > (y — k) nKol — |z —2x| > dio —

Hence,

z— 2]\ ot —1;2-d d—1

Jp > —hi > (20)" hi e — 2|
hi 2

Using ¢ in (B.16) therefore leads to

20hht4=2 1d
L < —"=— [ |[Ve(z)? |z — z|'"%dzde. (B.17)
lol1Bk| Jx Bx
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Since Bk C K C B(x,hk) for any « € K, denoting by wy the surface of the
unit sphere in R?,

hk
/ |z — 2|7 dz < / |z — z|'~4dz :wd/ p' "t dp = weh.
Bg B(m,hK) 0

Plugged into (B.17), this estimate gives (B.13) since | Bk | = | B(0,1)|(20) ~¢h%.

Proor oF (B.14)
We follow similar ideas as in the proof of Lemma 7.59. For all (z,y) € Bx X K,
we have

(@) — ply) = / Veltz+(1-ty) - (z - y)dt.  (B.18)

Taking the mean values for ¢ € Bx and y € K and denoting by L 14) the
left-hand side of (B.14), Jensen’s inequality gives

hP !
L <7K/ // Vo(te + (1 — t)y)[Pdtdyde. B.19
a0 < g [, [ Vet + (1= ty)rdudy (B.19)

Applying the change of variable € Bg — z = tx + (1 — t)y, which has
values in K since K is star-shaped with respect to all points in By, we have

1
/ // |[Vo(te + (1 —t)y)|Pdtdyde
Bi JK J0O
< / |Vip(2)|P / / t~dtdydz (B.20)
K K JI(z,y)

where, as in the proof of Lemma 7.59 with V = Bg, I(z,y) = {t € (0,1) :
Jx € Bk, te + (1 —t)y = z}. Using Bx C K and following estimates (7.73)
and (7.74), we arrive at

hd
/ / t~ddtdy < —L-w,. (B.21)
K J1(z,) d—1

Substituting this inequality into (B.20) and coming back to (B.19) completes
the proof of (B.14), since |Bx| = |B(0,1)|(20)~¢h%.

PROOF OF (B.15)
This estimate follows immediately from Lemma 7.59 since V = K is star-
shaped with respect to B = By, and diam(V) = hx = 6diam(B). L]

The following stability property of I is useful to check the condition (2.96) in
Lemma 2.52. It enabled us (in Section 9.5 and in the proof of Theorem 13.14)
to establish the GD-consistency of non-conforming P; GDs and of HMM GDs
in the case of non-homogeneous Dirichlet boundary conditions.
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Proposition B.7 (Stability of the interpolant Iz). Let ¥ be a polytopal
mesh of (2 in the sense of Definition 7.2, let I be defined by (B.10), and let
0 > 0 (see (7.8)). Then, there exists Cs depending only on d, p and 6 such
that, for all p € WHP(02),

HU‘Z(ITSD)HLP(Q) < H‘PHLP(Q) 5 ||TT(I‘I<P)||LP(8()) < ||’Y<PHLP(5~Q)

(B.22)
and  |Izpls, < Cs ||V<P||Lp(rz)d :

Proof. Using the notations in (B.10), by Jensen’s inequality,

1
ol < o [ lel@)Pda
K| Jx
Multiplying this inequality by |K| and summing over K € M gives

s @) o) < 19l o) -

A similar reasoning gives the estimate on Tz (Iz¢). To estimate |Iz |z p, we
apply (B.11) in Lemma B.6 to find Cy depending only on d, p and 6 such that

Cyhb!
| — oK [P < 4| K / |Vo(z)[Pde.
o K

Multiply this inequality by \U|d}55 and sum over o € Fg and K € M. Since,
for all K € M, Card(Fk) < 0 and hg/dk o, < 0 for all 0 € F, this yields
|IT<P|%Z, < Cy6P Hvﬁollip(_o)m u

To prove the approximation properties of Iz (Proposition B.9 below), let us
first state a preliminary lemma. We establish this lemma in the context of
partitions of {2, but it actually holds in a more general setting of measurable
spaces; in particular, it is also valid if we replace {2 with 92 (endowed with
its (d — 1)-dimensional measure).

Lemma B.8 (Approximation properties of projections on partitions).
Let (M) men be a sequence of families of measurable subsets of 2 such that,
for each m € N,

o N\ (Ukerr, K) has a zero measure,
e cach K € M,, has a non-zero measure,
e if K and L are two distinct elements of M,,, then K N L = .

For m € N, define Prpyq,, : LP(£2) — LP(£2) as the projection on piecewise
constant functions on M,,, that is,

1
Vi € LP(£2), VK € My, (Prap,, )k = |K/ p(x)dx. (B.23)
K

Assume that maxgep,, diam(K) — 0 as m — oco. Then, for all ¢ € LP(12),
Prag,, o — ¢ in LP(£2) as m — oo.
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Proof. Take £ > 0 and let p. € C'(R?) be such that || — Pellpooy) <€ A
triangle inequality yields

”Pr/\/lm@ - SOHLP(Q) < ||PrMm(<P - ‘PE)HLP(Q) + ”PrMmSOE - ‘PEHLP(Q)

+ llpe — @l o) -
(B.24)
By Jensen’s inequality, for all ¢ € LP(£2) and K € M,,,

|(Prp,, ) kP < %/KW(:B)F’d:B.

Multiply this by |K| and sum over K € M,, to obtain ||PI‘Mm1/}HLP(_Q) <
[l 16 (2)- Using this estimate in (B.24) with 1) = ¢ — ¢. and recalling that
I = @ell Loy < € leads to

IPrpm,, ¢ — ‘P”Lp(g) < 2e + ||Pra,, e — ‘PEHLP(Q) . (B.25)
Then, for all K € M,, and = € K,

Prag, e (@) — o) = ]ul(' [ G- %(m))dy’

< diam(K) [[Veel| poo (gaya -

Using Holder’s inequality and taking the supremum of the above inequality
over x € K and K € M,,, we obtain

IPTM,, P — ‘Pe”Lp(Q) < IQ\”” [Prat,, e — SDe”Loo(Q)
1/p i
<1017 (s dioma () ) 1930 e
Plugged into (B.25), this gives
P, — @l o) < 26+ |Q|/P <K%%i<m diam(K)> Vel poo maya -

Take now the superior limit as m — oo and use maxgea,, diam(K) — 0 to
get limsup,,, o [Pra,, ¢ — ¢llpo(o) < 2¢. Letting € — 0 concludes the proof
that Prag,, 0 — ¢ in LP(£2) as m — oo. ]

We can now state the approximation properties of Is.

Proposition B.9 (Approximation properties of the interpolant Iz).
Let (T1n)men be a sequence of polytopal meshes of {2 in the sense of Definition
7.2, such that haq,, — 0 as m — oo. Then, for all o € WHP(£2), as m — oo,

Iz, (Is,,) = ¢ in LP(£2), (B.26)
Tz, (Is,,¢) = v¢ in LP(092), (B.27)
Vs, (Is, ¢) = Ve in LP(2)". (B.28)
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Proof. Let Praq,, be the projection on M,, as defined by (B.23). By defi-
nitions (B.10) and (7.7¢) of I, and %, , Iz, (Iz, ) = Prag,, ¢ and the
convergence (B.26) follows from Lemma B.8. The convergence (B.27) of the
reconstructed traces follows by the same argument, using a variant of Lemma
B.8 for partitions of 942 instead of (2.

By Stokes’ formula, the definition (B.10) of I
Vs,,, for all K € M,,,

(ﬁ‘s (Iz,,¢)) Z/ x)dvy(x nKa=|K|/V<p x)dx

UGJ:

and the definition (7.7¢) of

m?

Hence, Vg, (Iz,,¢) = Pry,, (Vg), where Pryy,, acts on Vi component-by-
component. Hence, Lemma B.8 shows that Vz, (Iz, ¢) — Vo in LP(2)¢ as
m — oo, and the proof is complete. ]

B.1.3 Approximation properties of V¢

The following result is the key to proving that several classical gradient dis-
cretisations are LLE GDs.

Lemma B.10 (P;-exactness of Vi and stability). Under Hypothesis
(7.2), let p € [1,+00) and T be a polytopal mesh of £2 in the sense of Definition
7.2. Define Xz, Vg, Vi and |-|5 , as in (7.7). Then

1. Vi is a Py-exact gradient reconstruction on K upon (Tx, (To)scry ), in
the sense of Definition 7.28. In other words, if A is an affine function
and u = (A(x k), (A(Ty))ocr,) are the values at xx and (Ty)ocr, of A,
then Vigu = VA.

2. For all v € X«,

V0]l e < A7 Jols - (B.29)

Proof. The proof of Item 1 follows by multiplying both sides of (B.2) by the
constant vector VA, and by noticing that, since A is affine,

(T — ) VA= (T, —xx) VA= AT,) - AlTk) = uy — uk.

To prove Item 2, write, for © € K,

|0|dKU
|Vav(x lo|jve — vk | < d d
|K| > 2. uk

ceFK oceFK

UUUK’

dK7O'

By (B.1) we have } - “’d“d;;l’” = 1 and the convexity of s — sP for s > 0
therefore gives

|lo|dr o P

K|

Vo — UK

Vso(@)P < Y

ocEFK

dK,O’
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!
K]

Z |U|dK,0

cEFK

Vo — VK ’p

B.
s (B.30)

Integrate this estimate over & € K, sum over K € M and recall the definition
(7.7f) of ||5, to obtain (B.29). m

The following lemma helps proving the limit-conformity of a GD controlled
by a polytopal toolbox.

Lemma B.11 (Discrete Stokes’ formula). Let ¥ be a polytopal mesh of 2
in the sense of Definition 7.2, p € [1,400) and 6 > Oz (see (7.8)). We define
Xz, IIz, T, Vg and |-|3’p as in (7.7). Then, there exists Cs depending only

on d, p and 0 such that, for all ¢ € Wl’p/(Q)d and all v € X<,
‘ /Q (Vzu(z) - p(x) + Hzv(x)dive(x)) deo
- [ Trulapate)@dr@)] < 1196l L o lvle, e, (B3
where (@) = ¥(P) - nogn is the normal trace of .

Remark B.12 (Broken whr' estimate)
The proof actually shows that the result still holds if we take ¢ € VVdZ::,(Q) N
whe’ (M), where the broken space Wl’p/(./\/t)d is defined by

WP (M) ={y e L (2) : VK € M, € W' (K)}.

In (B.31), the factor “|| [Ve|||,p ;) hrm” must simply be replaced with

1/p’

KeM

or |‘P|W1,oo(M) = maxkem(|| [Ve| HLOO(K) hi)ifp=1.

Proof. Set p, = |71| fg p(x)dy(x). Since ni , = —nr , whenever o is a face
between K and L, gathering by faces shows that

Z Z UU‘O—|<PU ‘MK,o

KeMoeFg

= Z UU|0‘(900'TLK,0+900 'nL,U)
0€Fint, Mo={K,L}

+ Z UU/ULP(JJ) ‘ng o dy(x)

0EFeoxt, Mo={K}

:/ Tzv(z)p(x) - noo(x)dy(x).
o0
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By Stokes’ formula, [, divp(x)de =Y 7 |0]@, - 1k o Therefore,

[ Hzv@dve@iz= Y v Y loles i
2

KeM oceFK
= 3 3 k- vlloles mio+ [ Trv@ha(e)@)di@). (B:32)
KeMoEFk 002

1

Introduce px = 17 [ p(x)dx and write, since Y_ . 7 |[0](ve — vK)NK o =

|K|§Kva
| Hxv@yivp(@de - [ Tsu@pale)@ide)
(%} [oX0]

= > > lollvk —vo)nKs - oK

KeMoeFk

+ Z Z lo|(vk = vo)(Po — PK) MK ,o

KeMoeFk
AL ORI
2
+ 3 Y Jol(wk = ve) (9o — oK) Ko (B.33)
KeMoeFk

Let T be the left-hand side of (B.31). Equation (B.33) and Holder’s inequality
(D.3) show that, for p > 1,

Vo — VK
< 5 Y loldia| T igr - oxd (B.31)
KeMoeFk Ko
Vg — VK P %
S <Z Z loldrk o dKU‘ )
KeMoeFg ’

1
7

P
x <Z > IUIdK,UI%—saKI”) :

KeMoeFk

Apply (B.11) in Lemma B.6 to each component of ¢, with p’ instead of p.
Since di » < hg, this gives Cg depending only on d, p and 6 such that

1
7

T < Cslvlg, ( Z Z hﬁ’;/K Vgo(zc)|p/d.’1:>

KeMoeFk
1
< Ceb?" vl , ham [ IVl 2o () -

This completes the proof in the case p > 1. If p = 1, simply write [px — | <
191l () Bt i (B.34). .
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B.2 Discrete functional analysis for Dirichlet boundary
conditions

We establish discrete functional analysis results in the case of Dirichlet bound-
ary conditions. We first consider discrete Sobolev embeddings, starting with
the case p = 1 and then generalising to the case p > 1. Then we study a Rel-
lich compactness result, also looking at the case p = 1 first. All these results
apply to functions reconstructed, through Ils, from elements in X« .

B.2.1 Discrete Sobolev embeddings

Let us first recall the Sobolev embedding, due to L. Nirenberg, of W11(R%)

into L'" (R%), where 1* = 4

d
1
Vw € WHRY) , [l poe gy < % > 10wl gy - (B.35)
1=1

Recall that the BV (R?) norm of functions in L!(R9) is defined by

ol 5y :sup{/Rdw(a:)divga(:c)da: . p € C®(RY,RY),
Il sy < 1}

with ¢ = (¢1,...,¢q) and ||‘PHL°c(Rd)d = SUPj=1,....d ||90i||Loo(Rd)~ The space
BV (R?) is defined as the set of functions w € L(£2) such that lwll gy gay <
oo. The Sobolev embedding (B.35) can be extended to BV (R?), by using a
regularisation technique.

Precisely, let w € BV(RY) and take (p,),>1 a smoothing kernel, that is,
p1 € C*(B(0,1)), p1 >0, fB(o,l) pi(z)dx = 1, and p,(x) = n?p; (nx). Then,
wy, = w * p, belongs to WH1(R?), and w,, — w in L'(RY) as n — oo (and
thus a.e. up to a subsequence). Moreover, Z?Zl 10iwn |l L1 ey < 1wl v (gay-
Apply then (B.35) to w = w,, to obtain

d
1 1
||w’n||L1*(]Rd) < 2 Z ”aiwn”Ll(]R'i) < 2 ”wHBV(Rd) :
i=1

Taking now the inferior limit and using Fatou’s lemma in the left-hand side

yields that

1
Vw € BV(Rd) , ||w||L1*(Rd) < 2 ”wHBV(Rd) : (B.36)

Let us now state the discrete Sobolev embedding for p = 1.
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Lemma B.13 (Discrete embedding of W' (2) in L' (£2)). Let T be a
polytopal mesh of §2. Setting 1* = % and recalling the notations (7.7), we
have

Vu € Xz, HH‘IUHLI*(Q) = (B.37)

1
— U .
2\/&| |3,1

Proof. Let u € Xz, and extend IIzu by 0 outside (2. We have IlIzu €
LY(RY). Let ¢ € C°(R?,R?) such that |||« gay < 1. This implies || < V/d.
Write (B.32) for v = u and take into account the boundary conditions u, =0
for all o € Fexy (which implies Tgu = 0) to obtain

ng(m)divcp(a:)d:c:/Qﬂgu(m)divcp(m)dw

= Z Z |0’|(UK—UU);_|/Sa(x)'nK,ad'y(w)

Rd

KeMoeFk
<SVAd Y D olluk —uo| = Vi lulg, - (B.38)
KeMoeFk
Hence, [1Izul| gy (gay < \/E|u|‘:’1 and (B.36) leads to (B.37). L]

Lemma B.14 (Discrete embedding of W, ”(£2) in L?" (), 1 < p < d).
Let T be a polytopal mesh of 2, p € (1,d) and p* = dp—jp. Then, there exists
C, depending only on d, p and n > n< (see (7.9)), such that

Vu € X‘I,Ov ||HTU||LP*(_Q) < C7 |u|$7p . (B39)

*

Proof. We follow again L. Nirenberg’s ideas. Let a be such that al* =
that is, « = p(d — 1)/(d — p) > 1. Take u € Xz and define u
((‘uK|a)K6Ma (aa)oe]:) with

p

9

1
Uy = §(|uK|O‘ + |ug|®) for all o € Fipy with M, = {K, L},

ﬂ(,:OifUEfcxt.

Since |H¢ﬂ|ﬁ = |IIsul?", applying (B.37) to @ and gathering the sums by
edges gives

o) T 1 o
(/Q|H¢u(a:)\ dz) <= 3 Y lolllund ~ ] (B.40)

KeMoeFk

1 1
Sm Z |0||UK|O‘+27\/& Z o] [Jur|® = |ur]®.

0EFext, Mo={K} 0€Fint, Mo={K,L}

Since f : s+ s* is differentiable on [0, 00) and sup(, ;) | f'| < a(a®"! +b*71)
for all 0 < a < b, the mean value theorem yields
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|| = Jur|*] < alfux |+ Jur|* ™Y ux —url. (B.41)

Hence, setting d,u = |ug| if 0 € Foxt and dpu = |ug — ur| if 0 € Fine,
gathering back by cells,

([ izuta)paz) N

[0
<57 2 2 Lol T iou
2\/& KeMoeFg
« 0ol
== > > loldgolux|* .
2\/3 KeMoeFk dKﬁ

The Holder inequality (D.3) then yields

.
7

d—1
N —d o S\ P
Hzu(x)|P dx < — dre o lug|@ 1P
([ e ae) < 2 (32 oo

KeMoeFk
1
p) P

X (Z > loldx.o
loldk,o = d| K| (see (B.1)),

(B.42)

0ol
dK,o’

KeMoeFk

Since (a —1)p" =p* and ) .~

Yo > loldrolux| @ = 3 dIK| fuxl”

KeMoeFk KeM

_q / | Teu(e)”" da.
(9]

Plugging this into (B.42) and noticing that % — i = p%, this shows that
) 1
ad!/?' dyu [P\7
11 oy < ——— dg o |— . B.43
[ TUHLP (2) = 2/d (Z Z |o| K, drc > ( )

KeMoeFk

For M, = {K, L}, using the definition of 7,

S,u |? »
dio || < 1 ([ — uo| +ug —url)
K,o dK,a
—1 -1
< gr1 (luK U |) dico + i,
= =1 =1 -1
di o 7 d 5
. P . P
Szl)—l <dK,o' 1”;7% +dL’U u[;liu” )(1+7]p_1).
K,o L,o

The same holds, with ur, = 0, if 0 € Fx N Fext. Hence,

2. 2 loldro

KeM oceFg

p

Ot
dx

)
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P P
e DI I e R )
KeMoeFk Ko Lo
_ ug — g |”
<P+ Y Y loldro | — (B.44)
KeMoeFg Ko

To write the last line, we noticed that each contribution involving ux — u, ap-
pears twice for interior edges (once when summing over o € Fg, and another
one when summing over o € Fr,). The Sobolev inequality (B.39) is deduced
from (B.43), (B.44) and the definition of |ulg ,. L]

To prove the final result of this section, we first need to establish a natural

inequality on discrete Sobolev norms. Let 1 < ¢ < p < 4o00. Using Holder’s

inequality (D.3) with exponents 2 > 1 and £, we have

1
Uy — U ‘q !
dK,a

(Z > loldk o

|u|‘5,q:
KeMoeFg
o —uge|? g i
< (% 5 e [ ) (S5 o)
KEM oEFK Ko KEM o€eFK

= lulg,, (d2])a"7. (B.45)
In the last line, we invoked (B.1).

Lemma B.15 (Discrete embedding of Wol’p(ﬂ) in LI(£2), for some ¢ >
p). Let T be a polytopal mesh of 2, p € [1,+00) and n > n<. Then, there
exists ¢ > p, depending only on p and d, and there exists Cs, depending only
on 2, p, ¢ and n, such that

Yu € sz)o s ||ng||Lq(Q) < Cy |’U,|§’p . (B46)

If p < d we can take ¢ = p* = dpfdp and, if p > d, we can take any q < +00.

Remark B.16 (Discrete Poincaré inequality). Combining (B.46) and the
Holder inequality (D.7) yields the discrete Poincaré inequality

1_1
Izt L) < Csl 2777 Julg ), -

This has been established here for polytopal meshes, using in particular the
assumption that each cell is star-shaped with respect to a ball. For some
numerical methods, appropriate discrete Poincaré inequalities can be proved
with a milder assumption [139, 87].

Proof. If p = 1, take ¢ = 1* and the result follows from Lemma B.13 (in
this case, Cg does not depend on 7). If 1 < p < d, take ¢ = p* and the result
is given by Lemma B.14.
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If p > d, choose any g € (p,o0) and take p; < d such that pf = ¢ (this is
possible since py tends to +o0o as p; tends to d). The choice of p; depends
only on g and d, and Lemma B.14 gives

sl gy < Cs luls,

for some C7 depending only on p;, d and 7. Inequality (B.46) follows from
this estimate and (B.45) with ¢ = p;. m

B.2.2 Compactness of IIx

The continuous Rellich theorem states that bounded families in W, *(£2) are
relatively compact in LP({2). We prove here a discrete version of this result,
involving the discrete Wy (£2) norm |z, and the function reconstruction
operator IIz. As for Sobolev embeddings, with start with the case p = 1,
which requires less assumptions on the mesh and from which we deduce the
case p > 1.

Lemma B.17 (Estimates on the translates in L'). Let T be a polytopal
mesh of §2 in the sense of Definition 7.2. Let u € X< o and extend Ilsu to R?
by 0 outside §2. Then,

Vh € R, ||[ITcu(- + h) = Hxul| 1 ey < [AIVd |ulg, - (B.47)

Proof. Since p = 1, the proof can be done by following the technique in [92],
which yields (B.47) without Vd. A more direct proof based on the BV space
is chosen here, as in Lemma B.13.

Let w € C°(R?). For x, h € RY, write

1 1
(@ + h) — w(@)| = /O Vw(w+th)-hdt‘§|h/0 V(@ + th)|dt.

Integrating with respect to & € R? and using Fubini’s theorem gives the well
known result

d
i+ 1) =l < 1] [ [Vw(@)lda < 1D [0l s (B4
1=1

By density of C°(R?%) in WH(R?) | Inequality (B.48) is also true for
w € WH1(R?) and, proceeding as at the start of Section B.2.1, leads to the
following estimate for BV (R?) functions:

Vw € BV(R), Vh € R?, |w(- +h) — w1 ga) < [B |[w] gy gay - (B.49)
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Take now u € Xz ¢ and, as in the statement of the lemma, set IIzu = 0 outside
2. Then Ilzu € L'(R?) and it was proved in lemma B.13 that [ zul gy (ray <

Vd ul ;- The proof is therefore complete by applying (B.49) to w = Ilzu.
n

The following compactness result in L! results from Lemmas B.13 and B.17,
and the Kolmogorov compactness criterion.

Lemma B.18 (Discrete Rellich theorem, p = 1). Let (Tp)men be a
sequence of polytopal meshes of §2. Then, for any u, € Xz, o0 such that
(|umlg  1)men is bounded, the sequence (Ils,, um)men is relatively compact in
LY(0).

Proof. Lemma B.13 shows that (IIp, tm)men is bounded in L' (£2), and
thus also in L'(£2) since §2 is bounded. Extending the functions Is, u,, by
0 outside {2, they remain bounded in L!'(R%). The Kolmogorov compactness
theorem [34, Theorem 4.26] and Lemma B.17 then show that (ITp,, tm)men
is relatively compact in L!(2). "

As for discrete Sobolev embeddings, establishing a compactness result for
p > 1 requires some an additional hypothesis on the meshes.

Lemma B.19 (Discrete Rellich theorem, p > 1). Let p € [1,400) and
(T )men be a sequence of polytopal meshes of (2, such that sup,,cnnz,, <
+o0. Then, for any um € Xz,,0 such that ([um|z, ,)men is bounded, the

sequence (ITx, Um)men is relatively compact in LP(§2).

Proof. Using (B.45) with ¢ = 1 shows that (|um|g_;)men is bounded. By
Lemma B.18, (IIp,, U )men is thus relatively compact in L'(£2) and, up to a
subsequence denoted the same way, converges in this space. By Lemma B.15,
(IIp,, Um)men is also bounded by some Cy in L7(§2) for some g > p.

Recall now the interpolation inequality, consequence of Hélder’s inequality

(D.5) applied to | f|P = | f|*P|f|* =P with o = (qq__lp)p and exponents (r,7’) =

1 q .
(pa’ (1*a)p)'

1)
1fllzr o) < ||f||£q1(}§’“ ||fH£"q(}3§ :

Apply this estimate to f = I, uy, — Iz,u and use ||f||Lq(Q) < 2Cy. This
gives

1)
[, um — s, uell ooy < s, tm — HfseueH (209)“? Dr. (B.50)

Since ﬁ > 0 and (Ils,, U )men is a Cauchy sequence in L'(£2), (B.50)
shows that (I, um)men is also a Cauchy sequence in LP(§2), and thus that

it converges in this space. [
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B.3 Discrete functional analysis for Neumann and
Fourier BCs

We develop here discrete functional analysis results for Neumann and Fourier
boundary conditions.

B.3.1 Estimates involving the reconstructed trace

Let us start with discrete versions of classical trace estimates, stated for the
case p =1 in Lemma B.20 and for the case p > 1 in Lemma B.21.

Lemma B.20 (Discrete trace inequality, p = 1). Let ¥ be a polytopal
mesh of {2 in the sense of Definition 7.2, and o > 0= + nz (see (7.8) and
(7.9)). Then, there exists Cio > 0, depending only on £2, d and o, such that

Vu € X, ||TTU||L1(39) < Cuo (‘u|‘z,1 + ||H”£UHL1(Q)) : (B.51)

Proof.
Step 1: we prove the existence of a finite family (7;,&;);=1,... s such that:

1. fori=1,...,M, 7, C 92 is an open connected subset of an external face
of 2, with outward unit normal vector n,,,

2. & € R\ {0} and the cylinder C(7;,&;) = {x +t& : t € (0,1), ¢ € 7;} is
contained in 2,

3. there exists o > 0 such that —§; - n,, > a|&],

4. 002 CUimy uTi

To establish the existence of this family, recall that {2 can be defined as a finite
union of simplices of R?. Take one of these simplices S = S((#;)i=1..._a+1) (see
(7.1)), that touches the boundary of {2 and whose interior S° is contained in
2. Assume that the face F' = S((x¢)¢=1,....¢) of S is an external face of {2 and
define

d d
T = Zajmj : Zozj =1, a; > 0for all j, and oy

> PE—
=~ =~ d+1

For any family of real numbers («;);=1,... 4 such that 27:1 a; =1, by way of

contradiction we can find ¢ € {1,...,d} such that «; > ﬁ. Hence,

d
F =S8(xr)e=1,...a) = U T

Let n,, be the unit normal to 7; (that is, to F) outside S, and set & =
d%ﬂ(xd_ﬂ —x;). If € C(ry,&;) then there exists t € (0,1) and (o)i=1,....d;
with a; > 0 for all j and a; > ﬁ, such that
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d
t
T =) o+ m(ﬂ?dﬂ - )
j=1

4 t t
= ;T o — —— | T+ ——T gy
Z 7 J+( ‘ d+1) it
Jj=1,j#i
Since «; — diﬂ > 0, all the coefficients in this convex combination of the
vertices of S are strictly positive, so & € S° C (2. Hence, C(7;,&;) C (2.
Finally, since ¢, € F', —=§; -n,, = ﬁ(mZ —&441) M, s strictly positive, since
1

it is 77 times the orthogonal distance between x;41 and F'. We are working

with a global finite number (depending only on (2) of indices ¢ = 1,..., M, so
o =min;—1, . pm(—& - nr,/|&]|) is strictly positive.

Step 2: proof of the trace inequality (B.51).

’ C(Tiugi)

Fig. B.3. Illustration of Step 2 in the proof of Lemma B.20. Here, xx -(x) = 1,
XK,o' () = =1, Boy (x) = 1 and Bo, (z) = 0.

Fix i € {1,..., M} and denote by D(x,&;) the half line starting from x and
with direction &;. For K € M and o € Fg, take @ € 7; such that (see Figure
B.3 for an illustration):

e cither D(x,&;) does not intersect o, in which case set y,(x) = x and
XK,O‘(m) =0,

e or D(z,&;) intersect o at only one point, in which case set y,(x) as this
point and
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* XK,o(x) = 1 if, starting from @, D(x, ;) intersects ¢ while entering

into K,
* Xk,o(x) = —1 if, starting from x, D(x,§;) intersects o while exiting
K.
In other words, x k.o () = —sgn(&; - ko).

Note that a.e. € 7; fall into one or the other of these two categories. The
half line D(x, ;) always exits a cell after entering it and thus

VK e M, Y xkol@)=0. (B.52)
oceFK

Define

Vo € F, Bo(x) = max <1 _ W()) |
(zx —x)-& )
|&;|? 0

Let 0 € Fex be such that xx,(z) # 0. If & € o then y,(x) = = and thus
Bo(x) = 1. If & ¢ o, then the inclusion C(7;,&;) C 2 shows that y,(z) &
C(7i, &) and thus that (y,(x) — x) - & > |&;|?, which implies B, (x) = 0. If
0 € Finy with M, = {K,L} and D(z,§;) crosses o, then if it exits K (for
example) it must enter L and thus xx »(x) = —xL.o (). As a consequence of
this reasoning, for a.e. € 7; and for all o € F,

VK € M, Bk (x) = max (1—

If x ¢ o then Z XK,o(x)Bs () =0,

KeM,

If £ € 0 then Z XK.o(®)Bs(x) =1
KeM,

(B.53)

(note that the second situation only happens for a single o € Fext since
x € 012). Relations (B.52) and (B.53) show that

S Y v @) Gol@)us — Bre(@)ur)

KeM oceFg
= Zua Z XK,O'(:B)BU(:B)_ Z /BK(:B)UK Z XK,U(;B)
cEF KeM, KeM ocEFK
:uo_m

where 0, is the unique boundary edge that contains . We have Tzu(x) = u,,
and thus

Tsu(@) = | 3 37 v (@) (B @)us — Bic(@)u)

KeMoeFk
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> Y wwo(@) [Br(@) (e — ) + (B (@) = B (@)ux|

KeMoeFk

< 3D ko @) | Bo@)ltte — ] + |8 (@) — Bic (@) x|

KeMoeFk

Integrating over 7; gives

el < S Y Juo — usl / X0 (@) | (1) ()

KeMoeFi
S Y / o (@) 6o (@) — Bc(@)|dy(@).  (B54)
KeM ceFK

For any & € 7; such that |xx,(x)| > 0, there exists y € o such that €
D(y,—&;). The measure of {x € 7, : |xk,o(x)] > 0} is thus bounded by
the measure of the trace on 7; of the cylinder C(o,—§&;). This measure is

less that |o’|/|£A'z - N, |, where & = & /|&]. Since |&; - n.,| > «f€;|, we have

lo|/|& - nr,| < |o|/c. Hence, using B, (x) < 1,
| Mo @lp@pnta) < 2. (8.55)
Noticing that |3, (x) — Bk ()| < % \51-\ < £ ‘51‘ , we also have
/T, IXK.o(®)] |8 (x) — Bi (x)|dvy(z) < Tgfgr’. (B.56)

Plugging (B.55) and (B.56) into (B.54), and recalling (B.1), provides Ciy
depending only on «, o, &; and d such that

ITull 11 (ry < Crallulg g + Hzull 11 o))-

The trace inequality (B.51) follows by summing these estimates over i =
1,..., M. [

Lemma B.21 (Discrete trace inequality, p > 1). Let p € (1,+00), T be
a polytopal mesh of 2 in the sense of Definition 7.2, and o > 0% + n< (see
(7.8) and (7.9)). Then, there exists C1o > 0, depending only on §2, d, p and
0, such that

Vu € X, Tsul}yo0) < Ciz| lulg,, ITzullly (g, + 1 TTxull g,
(B.57)
o+l i

As a consequence, there exists Ci3 > 0, depending only on (2, d, p and g, such
that

Vu € Xg, HTTUHLP(GQ) <Cis (Mz,p + ||HTU||LP(Q)) : (B.58)
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Proof. To deduce (B.58) from (B.57), start by using in the latter estimate
the bounds hyy < diam(§2) and, owing to Young’s inequality (D.8),

o Ll
e Tzl < > e + = sl -

Take then the power 1/p of the resulting inequality and conclude by applying
the power-of-sums estimate (D.12) with a = p.

Let us now prove (B.57). Take u € X< and, in a similar way as in the proof
of Lemma B.14, apply (B.51) in Lemma B.20 to & = ((Jux|?) kem, (Us)ocr)
with

ﬂ(,:f(\uK|p+|uL|p) if 0 € Fine with MUZ{K,L},
'/LL\O-: |Uo-|p ifoe]:ext.
Since [zt = |IIzulP and T<u = |T<u|P, this gives
1Tl 00 < Crollle s + 1Tzt g): (B.59)

Suppose that we establish the existence of C4, depending only on (2, d, p and
0, such that

o -1
|U‘¢ 1 <Cu |u|¢p ( M ||T‘37U||Lp o) T ||HTU||Z[),P(Q)) : (B.60)
Then, by Young’s inequality (D.9),

|l
1 1 1
< Cut (o Iy 182"+ 5 Tl )+ ke Tl ) (B61)
Taking £ > 0 such that C1oCa5; = 1 and plugging the result in (B.59) gives

(B.57).
Let us now prove (B.60). If M, = {K, L}, owing to (B.41),

N N 1
Uk — Uo| = §’|UK|p ur [P < (|UK\p P Jur P fuke = ul.
Similarly, if M, = {K},
[ig —to| = | Jurl? — |uo[P| < p(Jurc|P~" + |uglP™)|uk — ol

Hence, setting d,u = |ug — uy| if M, = {K} and d,u = Jug —ur| if M, =
{K,L},

iy <p Y lolluolP " ooutp > D ol luxlPoou.  (B.62)

€ Fext KeMoeFk
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Let w;, F;,G; > 0 and H; > 0. Applying the Holder inequality (D.4) to
a; =Gy, by = FF ' and d; = H; P77 = H; "7 we find

> wiFPTG; < (Zw, Cj )p <szHFp> v

i€l el el

Applied with w; = |o|, H; = 1, F; = |uys| and G; = d,u in the first term of
(B.62), and with w; = |o|, H; = dk», F; = |uk| and G; = d,u in the second
term of (B.62), this gives

uls1 <p ( > |0|(5JU)”>

oEFext

p—1

P
( S o |)
O0E Fext

1 p—1

( > ) ( > |a|dK,auK|p)p

KeMoeFg KeMoeFg
=T+ T (B.63)

=

For 0 € Fexy with M, = {K}, write (d,u)? = d, 10(6 ") h]/”\jlldKJ(Z%{")p

N

to obtain .
o -1
T < phﬁ/t |U|‘z,p ||TTU||1£p(aQ) . (B-64)
To estimate T5, first use the triangle inequality to write, if 0 € Foyy with
M, ={K,L}, d,u < |ug — us| + |ur, — uy|. Then, by definition of o > n<
and invoking the power-of-sums inequality (D.12),

p p
T

dKﬂ dL,(T

This also holds, dropping the second addend, if o € Fexy with M, = {K}.
Using this estimate in the first factor in 75, the term dg a\diP” appears

twice, once with a factor 2P~! and another time with a factor 2P~1gP~! (when
summing on the faces of the cell L on the other side of K with respect to o).
Hence,

Dl | Lo "i+0r) DD Y loldke

KeMoeFg KeMoeFgk
= (14 o) uf?, |

U —u

,0

Invoke then (B.1) to re-write the second factor in T and obtain

1 1 _
Ty <p(2d)7 (1+ 0" )7 Julx , [ TTull7 g - (B.65)
Estimates (B.63), (B.64) and (B.65) complete the proof of (B.60). L]

The following lemma is particularly useful when dealing with Fourier bound-
ary conditions.
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Lemma B.22. Let p € [1,+00), T be a polytopal mesh of §2 in the sense of
Definition 7.2 and o > 0z + n<. Then, there exists Ci5 > 0, depending only
on §2, d, p and o, such that

Vu € Xz, |[lxul oy < Cus (|ulz,y + ITxtl oo -

Proof. Let e be a unit vector (say, for example, corresponding to the first co-
ordinate in R?). As in the proof of Lemma B.20, define x g, : 2 — {—1,0,+1}
by Xk.o() = sgn(e- ng, ) if the half-line D(x,e) = ¢ + R'e intersects o at
one point, and xx ,(x) = 0 otherwise. Contrary to the proof of Lemma B.20,
XK,o(x) is here defined for all & € {2. Since xk  is non-zero (and equal to
+1) only in the cylinder with base o and axis e,

/Q XK .o(x)|de < |o|diam((2). (B.66)

Drawing the half-line D(x,e) and writing IIzu(x) as the sum of jumps be-
tween x and the faces o € F that intersect D(x,e) leads to

H‘Zu Z Z XK, 0' uK - ua) + Z XK,O‘(:B),U’O"
KeMo€FK 0EFoxe, Mo={K}
Take the absolute value, integrate over € {2 and use (B.66) to deduce

Hsull (o) < diam(2) Y D ol lux —uo| +diam(2) D o] |uq|

KeMoeFk o€ Fext
= diam(£2)(Julz ; + [ITxull L1 (o0))- (B.67)

This concludes the proof in the case p = 1.
In the case p > 1, apply (B.67) to u defined as in the proof of Lemma B.21.
Using the estimate (B.60) on |u]; , and writing haq < diam(f2) then yields

[ Tzull70(m) < Cie (\u|¢p ITxull} 7o) + 1l [ T<ullbr o) + ||Tzu||ip(arz))
where C14 depends only on 2, d, p and o. The proof is concluded by using
Young’s inequalities (D.8) and (D.9) to write

|u|‘3:p HT‘IUHLP 8_(2) | | p ||TT“||Z£p(aQ) )

_ 1 €
p—1 P P

|“|‘z,p HHT“HLP(Q) < W lulz, + " ”H‘IUHLP(Q) )

by choosing ¢ such that Clﬁ; = %, and by using the power-of-sums estimate
(D.12) with o = p. ]
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B.3.2 Discrete Sobolev embeddings

Lemma B.23 (Discrete embedding of W11({2), with zero average, in
LY (2)). Let T be a polytopal mesh of 2 in the sense of Definition 7.2, and
recall the notations (7.7). There exists C17 depending only on 2 and d such
that

Vu € X, |[zu — Hzul|,,. o < Cirlulgy (B.68)

(£2)

where 1* = d%il and Izu = ﬁ Jo Hzu(x)de.

Proof. The Sobolev embedding and the Poincaré-Wirtinger inequality show
that [|w =1 o) < Cis VWl p1(g)a for all w € WH(£2), where Cis de-
pends only on £2. By approximating IIzu, strongly in L'(§2) and weakly in
BV (£2), by functions in WH1(£2), the “mean” Nirenberg inequality can be
deduced:

| Hzu — HrguHLl*(Q) < Cig|[Hzulgy g (B.69)

where
oy oy = { [ wleldivpl@lde : o € C2(@RN, el oo <1}

Write (B.32) with v = u. The integral term on 92 can be dropped since ¢
vanishes on the boundary. Reason then as in (B.38) in Lemma B.13 to obtain
Hzu|gy (o) < Vd |ul¢ ;, and the conclusion follows from (B.69). L]

Lemma B.24 (Discrete embedding of W1 ({2), with zero average, in
Lp*(Q), 1 < p<d). Let T be a polytopal mesh of §2 in the sense of Definition
7.2. Let p € (1,d) and ¢ > 0z + n<. Then, there exists Chg, depending only
on §2, d, p and o, such that

Vu € X,

|HT’LL - TTUHLP* (2) S C’19 |u“z7p ’

where p* = % and Tzu = ﬁ Jo Hzu(x)da.

Proof. Let v € Xs. Upon translating by IIsu all the values of v =
((ur)Kem; (uo)ser), which does not change |uls ,, we can assume that
IIzu = 0. In the following, A < B means that A < MB with M depend-
ing only on {2, d, p and p.

Let oo > 1 and consider @ = ((Jux|*)kem, (Us)oecr) With

1 .
- §(|U’K‘a + ‘uL‘u) if Mo’ - {K7L}7
T = uxc|® i M, = {K}.

IS
q
|

Since |Izu| < ﬁ HHTHH%“(Q)’ Inequality (B.68) applied to @ yields
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||HTUHZOA*(Q) = ||H§ﬂ||L1*(Q)
< Hﬂga—Hgﬂ‘ + 02| 7 [TT<a)
L (2)
S lulgq + HHTUH?,Q(Q) . (B.70)

The definition of &, ensures that the terms in [uls ; corresponding to bound-
ary faces vanish. Hence, for any r € (1, 00), a similar reasoning as in the proof
of Lemma B.14 (passage from (B.40) to (B.42)) shows that

‘(x—l‘

[lsy S luls | M5l | ) -

Plugging this estimate into (B.70) and taking the power 1/« (thanks to the
power-of-sums inequality (D.13)) yields

> 1=
Mzl e oy S 10l |1 Ezul® | Fs ) + sl oy - (BTD)
Take r > 1 such that (o —1)r" = al* (since al*/(av—1) > 1* > 1, this defines
r" € (1,00) and thus r € (1,00)). This choice gives

1
| Tul g = Il e

1
L' (£2)

Q)"

Use Young’s inequality (D.9) with exponent «, and & small enough (depending
only on the constants hidden in <), to deduce from (B.71) that

1 zull parr () S luls, + [Hzull pog) -
If r < p, that is if v/ = % > p/, then (B.45) shows that
||H‘IU||La1*(Q) S |U|ﬁ;,p + HHTUHLQ(Q) : (B.72)

The estimate (B.68) and the fact that Ilzu = 0 give |[IIzul| 11+ (o) S ulg; S
ulg - An induction based on (B.72) applied with o = 1*, (1%)%, ...then

establishes that, for any k € N such that ((11:))7:: >,

HUTuHL(l*)k‘H(Q) SJ |U"‘I,p' (B73)
Select k as the largest integer such that ((11:))% > p'. Such a k exists since

*\k
k = 0 satisfies this inequality and, as k — oo, ((11*))7,:11 = 1*=d > p (we

have p < d). Let o = ’i’—: > 1 and assume that

al* 1*p* ,
= > B.74
o s (B.74)

and
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_ ZL* *\k+1
o= <) (B.75)

Inequality (B.74) allows us to apply (B.72), which gives
[Mxull Lo (o) S lulg , + [Hzul| pog) -

By (B.75), [[zul fa(m) ||ng||L(1*)k+1(Q) and (B.73) then concludes the
proof. .
It remains to check (B.74) and (B.75). We have p = d(i% so (B.74) boils

down to pl**_pl** > dp*ipd*_p*, that is to say 1*(dp* — d — p*) > d(p* — 1*), or
1*(d — 1)p* > dp*. This last relation is obvious since 1*(d — 1) = d (we thus

even have equality in (B.74)). To check (B.75), we start by writing that, by

definition of k, (1(*1;2% < p’, which can be recast as 17% = 1% < 1%7(1*)%
Butp%z%—landl%zl—é,so

1 51 1 1 1

R L O R A (O )
which is equivalent to (B.75). L]

The proof of the following lemma is similar to the proof of Lemma B.15, using
Lemmas B.23 and B.24.

Lemma B.25 (Discrete embedding of W!?((2), with zero average, in
Li($2), for some g > p). Let p € [1,400), T be a polytopal mesh of §2 in the
sense of Definition 7.2, and o > O< 4+ n<. Then, there exists ¢ > p, depending
only on d and p, and there exists Cyg, depending only on §2, d, p and o, such
that

Vu € X, ||ng - H‘quLq(Q) < O lulg,,,

where Hzu = ﬁ Jo Hzu(x)da.

If p < d we can take g = p* = dpfdp and, if p > d, we can take any q < +o0.

B.3.3 Compactness of Il and Tg
Lemma B.26. Let ¥ be a polytopal mesh of §2 in the sense of Definition 7.2,
and 9 > Oz + nz. Then, there exists Ca1, depending only on §2 and o, such
that

Vu€ Xz, Vh e RY, | Hzu(- + h) — Hxul| 1 gay < [B|Cor (Julx; + [Tz ul),
where Ilzu has been extended by 0 outside §2, and Ilzu = ﬁ fQ Hzu(x)dex.

Proof. Writing (B.32) with v = u yields, for any ¢ € C°(R¢,R?) such that
Ill Lo raya < 1 (s0 that || < V),
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Hzu(x)dive(x)de
Rd
VA Y S lolluk —ual + Vi [ [Tsu(e)jd(a)
KeMoeFk 062
< \/g|u|$’1 + \/gHT‘SUHLl(an) :
Hence,

||H‘IU||BV(Rd) < \/gIU\m +Vd ||TTU||L1(8(2) .

Lemma B.20 and B.23 then provide Csy depending only on {2, d and g such
that
||H‘ZUHBV(Rd) < C22(|U|z,1 + [Isul).

The inequality (B.49) concludes the proof. n

We can now state the compactness of the function and trace reconstructions.

Lemma B.27 (Discrete Rellich theorem and compactness of the
trace from a bound on the mean value). Let (T,;)men be a sequence
of polytopal meshes of 2 and p € [1,+00). Assume that sup,,cy(Ox,, +
nz,,) < +4oo. Then, for any u, € Xz, such that (|um|,§m7p)meN and
([ I, um(x)dx) men are bounded, the sequence (Ilx, um)men is relatively
compact in LP((2).

Moreover, if p > 1 and haq,, — 0 as m — oo, then the sequence (Ts, Um )meN
is relatively compact in LP(012).

Proof. The relative compactness of (ITs, um)men follows from Lemmas B.25
and B.26 in a similar way as for Dirichlet boundary conditions. We now assume
that p > 1 and haq,, — 0, and we establish the relative compactness of the
traces. By (B.58) in Lemma B.21 and the boundedness of (Il tum)men in
LP(02), (Tx, wm)men is bounded in LP(9£2). The estimate (B.29) on Vg,
and the boundedness of (|um|g ,)men show that (Va,, Um)men is bounded
in LP(£2)4. Upon extracting subsequences, we can therefore assume that there
exists ¢ € LP(£2), x € LP(0R2) and & € LP(2)? such that Iz, uy — P
strongly in LP(2), Tz, um — x weakly in LP(92) and Vs, u,, — & weakly
in LP(£2)%.

Using the same ideas as for Lemma 2.15 (regularity of the limit), we analyse
. Take ¢ € C*(§2)¢ and apply the discrete Stokes formula (B.31) to T = T,
and v = u,,. The aforementioned convergences enable us to pass to the limit
m — 0o to see that

| @)l + v@pive(@)dz - [ s(@hnpl)dr@) 0. B.10
Applied to ¢ € C°(§2)¢ this shows that & = V), and thus that ¢ € Wl’p@).
Using then an integration-by-parts in (B.76) with a generic ¢ € C>(§2)¢
shows that vy = x.
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We now prove that Te, u,, — 1 strongly in L?(942), which will conclude the
proof of the lemma. Let Ig, : W1P(§2) — X<, be the interpolant defined by
(B.10). Applying (B.57) in Lemma B.21 to ¥ = %,,, and v = u,, — Iz, 1, and
using the boundedness of (|um|g, ,)men and (|Iz,, 9|5 Imen (see (B.22)),
we find Cy3 not depending on m such that

T, tm — T, (T, )1} 0 90y < Cas [, tim — I, (Ix,, )7 ()
+ Cog [T, i, — s, (I, )| ) + Cashliy. -

Since p > 1, ha,, — 0, and (Ilx,, Um)men and (Ix, (I, ©))men both con-
verge strongly to ¢ in LP({2) (see (B.26)), the right-hand side of the above
inequality tends to 0 as m — oo. Hence, Tg, u,, —Tx, (I, 1) — 0in LP(012).
The strong convergence of (Tg, m)men follows by using (B.27) to see that
T, (I, ) — v in LP(02) as m — oo. L]

B.4 Discrete functional analysis for mixed boundary
condition

We consider here that Assumption (7.2) on {2 and Assumption (3.60) on Iy
and I3, hold. If ¥ is a polytopal mesh of {2 in the sense of Definition 7.2, we
recall the notations in (7.7) and we additionally define

Xer, ={veXgp: v, =0for all 0 € Feyy such that
cnNly= @}7
(B.77)
Xz or, ={ve Xz : v, =0for all 0 € Fex, such that
oNIy#0}.

Note that Xe = X< o, @ X< ,, and that Tzu = 0 on I; for any u €
Xz,

B.4.1 Discrete Sobolev embeddings

Discrete functional analysis tools for mixed conditions are a consequence of
the two following lemmas, and of the techniques used in the previous sections
for Dirichlet and Neumann boundary conditions.

Lemma B.28. Let 2 be a bounded connected open subset of R? with Lipschitz
boundary and let A C {2 be a set of non-zero measure. Then, there exists
Cyy depending only on 2 and A such that, for all w € BV ({2) satisfying
[y w(z)de =0,

||wHL1*(!~2) < 024 |w‘Bv(f3) ) (B'78)

where we recall that

|w|BV(§) = sup {/ﬁ w(x)divep(z)dz : ¢ € C’é’o(ﬁ,Rd), \|go||Loo(§)d < 1} )
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Proof. Let us start by recalling the Sobolev embedding, which can be ob-

tained by passing to the limit on the similar embedding in W11(£2): there
exists Cy5 depending only on (2 such that

Yw € BV(£2), ||w||L1*((~2) < C25(|w|BV(ﬁ) + ||w||L1(§)).

Estimate (B.78) is proved if we establish the following Poincaré inequality:
there exists Cag depending only on 2 and A such that, for any w € BV (£2)
satisfying [, w(x)dz = 0,

The proof of (B.79) is done by way of contradiction, using a classical
compactness technique. If this inequality does not hold, there exists a se-

quence (wp)men in BV(£2) such that [, wy(z)de = 0 for all m and
lwmll g1z = mwmlgy(g)- Dividing throughout by [lwm|;.5) we can
assume that meHLl(ﬁ) = 1 for all m. Then (wm)men is bounded in

LY(2) N BV(£2) and therefore, up to a subsequence, converges strongly in

L'(£2) to some w such that lwll iz = 1. As |wm|Bv(ﬁ) < 1/m — 0, we

have Vw,, — 0 in the sense of distributions on {2 and therefore Vw = 0 on

2. Since 2 is connected, this shows that w is constant on {2, equal to —

92|
since its norm in L*(£2) is equal to 1.
But, passing to the limit in [, wy,(x)dz = 0 gives 0 = [, w(x)dx = %,
which is a contradiction with the fact that A has a non-zero measure. Hence
(B.79) holds and so does (B.78). L]

Under Assumptions (7.2) and (3.60), it is easy to construct a bounded con-
nected open set 2 with Lipschitz boundary which contains {2, such that
A = 2\ has a non-zero measure and A N 2 C I;. This can for example
be done by gluing to §2 a small hypercube A along a planar subset of Iy, see
Figure B.4. 2 and A depend only on {2 and [}y.

o

Q

Fig. B.4. Extension of f2.



B.4 Discrete functional analysis for mixed boundary condition 437

Lemma B.29. Under Assumptions (7.2) and (3.60), let £2 be constructed as
above. Take T a_polytopal mesh of 2 in the sense of Definition 7.2 and, if
u € Xp, define Ilsu € L'(§2) as the extension of IIzu by O outside 2. Then

Vu € Xz 0.1,

HDU‘BV(ﬁ) <Viluls,, . (B.80)

Proof. Let ¢ € C2°(£2,R%) be such that ||cp||LOC(§) < 1. We have

/yﬁgu(il:)divgo(l‘)dw:/ Hzu(x)dive(x)de.
17} 7

Since u, = 0 whenever o € Fuy is such that o N Iy # 0, and since ¢ = 0 on
O\ Iy, the boundary integral in (B.32) written for v = u vanishes, and the
same computations as in (B.38) lead to (B.80). m

The following Sobolev embeddings are a straightforward consequence of
Lemma B.28 and B.29.

Lemma B.30 (Discrete embedding of W' (£2) in L' (£2), mixed BCs).
Under Assumptions (7.2) and (3.60), let T be a polytopal mesh of §2 in the
sense of Definition 7.2. Then, there exists Cor depending only on 2 and Iy
such that

Vu € Xz o, , [Hzul i (o) < Corlulg ;-

The following results can be then proved from Lemma B.30 by using the same
trick as in the proof of Lemma B.14 and Lemma B.15.

Lemma B.31 (Discrete embedding of W'?(£2) in L?" (2), mixed BCs,
p € (1,d)). Under Assumptions (7.2) and (3.60), let T be a polytopal mesh
of £2 in the sense of Definition 7.2, p € (1,d) and n > n<. Then, there exists
Csg depending only on (2, I'y and n such that

Yu € X‘I,Q,Fn s ||H3u||Lp*(_Q) < Cog |U|g,p7

where p* = ddfpp.

Lemma B.32 (Discrete embedding of W?(£2) in L4(§2) for some ¢ >
p, mixed BCs). Under Assumptions (7.2) and (3.60), let T be a polytopal
mesh of {2 in the sense of Definition 7.2, p € [1,400) and n > n<. Then,
there exists ¢ > p, depending only on p and d, and Cag, depending only on (2,
d, p, I'; and n, such that

Vu € X0, , [Hzulpo) < Cooluls,

If p < d we can takeq:p*:dpfdp. If p > d, we can take any q < +oc0.
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B.4.2 Compactness of Ils and Ts

Lemma B.33 (Discrete Rellich theorem and compactness of the
traces, mixed BCs). Under Assumptions (7.2) and (3.60), let p € [1,+00)
and (Tp,)men be a sequence of polytopal meshes of §2, such that sup,,en(fs,, +
nz,.) < +oo. Then, for any wy, € Xs,, or, such that (|uml|s )men is
bounded, the sequence (Ils, U )men is relatively compact in LP((2).
Moreover, if p > 1 and hpaq,, — 0 as m — oo, then (Tx, um)men is relatively
compact in LP(012).

Proof. By Lemma B.32, the sequence (||IIz,,um| 1s(m))men is bounded.
Hence, the sequence ( [, IIs,, um (€)dex)men is also bounded and Lemma B.27
gives the relative compactness of (ITx U, )men in LP(£2), and of (Tx, tm)men
in LP(082) if p > 1 and hpg,, — 0 as m — oo. m
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Discrete functional analysis for time-dependent
problems

This chapter is devoted to compactness results for sequences of functions
with domain [0, 7] and abstract co-domains (generic vector spaces). We focus
on functions that are discrete-in-time, as they are classically encountered in
numerical methods for time-dependent problems. The results established here
apply to a range of numerical schemes for such problems, and are used in
Section 4.2 to establish specific compactness properties of space-time gradient
discretisations.

In Section C.1, we first consider compactness results based on the LP norm
on [0, T], with p < oo. There are called “averaged-in-time” because they only
apply to norms that involve a time integral. A number of such compactness
results, for piecewise-constant-in-time functions, can be found in the literature
— see, e.g., [12, 67, 46]. Much more scarce are uniform-in-time compactness
results for discontinuous functions, i.e., results that apply to the supremum
norm on [0, T]. The second section of this chapter, Section C.2, is devoted to
establishing such uniform-in-time compactness theorems.

C.1 Averaged-in-time compactness results

The first two theorems are generalisations to vector-valued Lebesgue spaces
of the classical Kolmogorov compactness theorem for L? spaces [34]. If E is a
measured space and B a Banach space, we denote by LP(F; B) the Lebesgue
space of p-integrable functions £ — B, see, e.g., [68, 89] for a definition and
some properties of these spaces.

Theorem C.1 (Kolmogorov (1)). Let B be a Banach space, 1 < p < 400,
T>0and A C LP(0,T;B). Then A is relatively compact in LP(0,T; B) if it
satisfies the following conditions:

1. For all f € A, there exists Pf € LP(R; B) such that Pf = [ a.e. on (0,T)
and |Pf|l 1o, 5y < €, where C depends only on A.
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2. For all ¢ € C°(R), the set { [,(Pf)pdt, f € A} is relatively compact in
B.
3NPf(-+h)— Pf||Lp(R;B) — 0 as h — 0, uniformly with respect to f € A.

Remark C.2 (Necessary conditions)
The conditions 1, 2 and 3 are actually also necessary for A to be relatively compact
in L?(0,T; B).

Proof. Let (pm)m>1 be a sequence of mollifiers constructed by scaling a
given smooth function p, that is:

p€CT(-1,1), / pdt =1, p>0, p(—t) = p(t) for all t € R

R (C.1)
and, for all m > 1 and t € R, p,,(t) = mp(mt).

Set K = [0,7] and A,, = {(Pf*pm)x : f € A}, where x denotes the
convolution product in R.

The proof is divided in two steps. In Step 1 we prove, using the Arzela—Ascoli
theorem and Assumption 2, that, for m > 1, the set A,, is relatively compact
in C(K; B) endowed with its usual topology of the supremum norm. This
easily gives the relative compactness of A,, in LP(0,T; B). In Step 2, we show
that Assumptions 1 and 3 give Pf % p,, — Pf in LP(R;B) as m — +o0,
uniformly with respect to f € A. This allows to conclude that the set A is
relatively compact in L?(0,T'; B).

Step 1. Let m > 1. In order to prove that A,, is relatively compact in
C(K;B), we use the Ascoli-Arzela theorem C.10. Hence, we need to prove
that:

(AA1) for all t € K, the set {Pf % pu(t), f € A} is relatively compact in
B;

(AA2) the sequence {Pf*pp,, f € A} is equicontinuous from K to B (i.e.
the continuity of Pf * p,,, : K — B is uniform with respect to f € A).

We first prove Property (AA1l). For t € K we have, with ¢y = p,(t — ) €
e (R),

Papu(t) = [ PIGou(t=s)ds = [ Prsya(s)as

Then, Assumption 2 applied to ¢ = ¢; gives Property (AA1).

We now prove Property (AA2). Let t1,to € K and recall that p’ = ﬁ. By
Holder’s inequality,

|Pf*pm(te)=Pf*pm(ti)ls

< / IPF)| g lom(tz — 5) — pa(ts — )| ds
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< ||Pf||Lp(R;B) ||Pm(t2 - ) - Pm(tl - ')HLp'(R) :

Since t1,ty € K = [0,T], the functions p,, (t2 —-) and p,, (t; —-) vanish outside
[-1,T +1]. Hence, using the mean value theorem and Assumption 3, we infer

1
7

125 punlt2) = PS5 (8]l < Clt = tl (sup oty (0]) (4 207

This shows that Pf x p,, is uniformly continuous on R, with a modulus of
continuity which does not depend on f. Hence, Property (AA2) is proved.

As a consequence, A, is indeed relatively compact in C'(K; B). This is equiva-
lent to saying that, for any € > 0, there exists a finite number of balls of radius
e (for the supremum norm of C(K; B)) whose union cover the set A,,. Then,
since ||| o015 < /P [lc(x; 5y, We also obtain the relative compactness
of A, in LP(0,T; B).

Step 2. Let ¢t € R, we have, using [ pm(s)ds = 1 and setting 5 = ms,

Pf % pu(t) — PF(1) = / (PA(t — 8) — PA(1)] pm(s)ds

_ /11 {Pf <t - ;) - Pf(t)] p(3)d5.

Then, by Holder’s inequality,

1 P
ds.
B

I1PFpt) = PIOW < ol [P (1= 2) = Preo)

—1

Integrating with respect to ¢ € R and using the Fubini-Tonelli theorem to
swap the integrals on ¢ and s leads to

[P f * pm — Pf”Z[),p((),T;B)
ds

1 _
S
< IIIOIIZ,J// Pf ( - ) — Pf
-1 m L?(0,T;B)

1
< 20pll s {IPFC+ ) = Pl 11 < -}

p

Using Assumption 3 then gives |[Pf * pp — P[00 1,5 — 0 as m — +o0,
uniformly with respect to f € A.

We can now conclude the proof. Let € > 0 and pick m(e) large enough such
that
||Pf*pm(8) — Pf||Lp(0’T;B) <g/2 forall feA. (C.2)

By Step 1, we can cover Ap,oy = {(Pf * pm(e))jjo,r) + f € A} by a finite
number of balls in L?(0,T; B) of radius /2. Property (C.2) then shows that
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{(Pfo : f € A} = A'is covered by the same finite number of balls of
radius e. This concludes the proof that A is relatively compact in LP(0,T; B).
n

Theorem C.3 (Kolmogorov (2)). Let B be a Banach space, 1 < p < 400,
T>0and AC LP(0,T;B). Then A is relatively compact in LP(0,T; B) if it
satisfies the following conditions:
1. A is bounded in L?(0,T; B).
2. For all ¢ € C*(R), the set {fOT fedt = f € A} is relatively compact in
B.
3. There exists a function n : (0,T) — [0,00) such that lim,_,o+ n(h) =0
and, for all h € (0,T) and f € A,

T—h
/0 1F(t+ ) — F@IL dt < ().

Proof.

The proof uses Theorem C.1 with P defined the following way: for f € A,
Pf = fon[0,T] and Pf = 0 on R\[0,T]. Owing to this definition and to
Assumption 1 in Theorem C.3, Items 1 and 2 of Theorem C.1 are clearly
satisfied.

We now prove, in two steps, Item 3 of Theorem C.1. Notice first that, replacing
n with 5(h) = sup(g ;7 (which still satisfies lim, o+ 77(h) = 0), we can assume
without loss of generality that 7 is non-decreasing.

Step 1. In this step, we prove that [ || f(¢)|; dt — 0 as 7 — 0%, uniformly
with respect to f € A.

Let 7,h € (0,T) such that 7+ h < T. For all t € (0,7) one has [|f(t)||z <
|f(t+h)lz+ | f(t+h) — f(t)|| 5 and thus, by the power-of-sums inequality
(D.12),

LFOI < 27+ B + 200 £+ 1) — £
Integrating this inequality for ¢ € (0,7) gives
| i@ ae< 2 [ nig i
0 0
w2t [ g n) - sl (€3)
0

Now let hg € (0,T) and 7 € (0,T — hg). For all h € (0, hg), Inequality (C.3)
gives, using n(h) < n(ho),

/ 1F(E) B dt < 201 / £+ R, dt + 20 (ho).
0 0
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Integrating this inequality over h € (0, hg) leads to

T ho T
o [ rolpar< e [ ( IIf(t+h)I%dt> dh+ 27 hon(ho). (C.4)

Using the Fubini-Tonelli Theorem,

ho T T ho
p _ p
/0 (/0 If(t+h)llet)dh—/O (/0 |f(t+h)||Bdh>dt
T T
S/O (/0 IIf(s)Il%ds)STIfH’zp(O,T;B),

from which one deduces, owing to (C.4),

T ropr-1 _
| 15Ol @t < Em 11 7,5+ 2 o)

We can now conclude this step. Let ¢ > 0 and choose hy € (0,T") such that
2P=1n(hg) < e. Then, with C = SUP fea ”f”]zp(o,T;B)v take 7 = min(7T —
ho,eho/(2P~1C)). This gives, for all f € A and all 7 <7,

| s <=
0

The proof that [ || f(¢)||; dt — 0 as 7 — 0T, uniformly with respect to f € A,
is complete.

A similar proof gives f;_T | f()|[% dt — 0 as 7 — 0, uniformly with respect
to f € A (this can for example be obtained by working on g(t) = f(T —t)
instead of f).

Step 2. We now prove that Item 3 in Theorem C.1 is satisfied, and thus
conclude the proof of Theorem C.3.
Recall that Pf(t) =0 if t ¢ [0,T] so that, for all h € (0,7) and f € A,

/R IPF(E+ 1) — PAE)|GAL

0 T—h
< [usenigaes [ e n - sothae [

T

h
< [ aenm+ [ o (c5)

Let ¢ > 0 and take h; > 0 such n(h1) < e. Owing to Step 1, there exists
hs > 0 such that, for all f € A and h < ha,

h T
/ If@)5dt<e and / 1F(E) B dt < e.
0 T—h
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Hence, by (C.5), for all f € A and h < min(hq, hs),

/ |Pf(t+h) — Pf()]% dt < 3e.
R

This concludes the proof that Assumption 3 in Theorem C.1 is satisfied.
m

We now turn to compactness theorems involving sequences of spaces as co-
domains of the functions. This typically occurs in numerical schemes, when we
consider sequences of functions that are piecewise constant on varying meshes.
We first state a notion of “compact embedding” of a sequence of spaces in a
fixed Banach space.

Definition C.4 (Compactly embedded sequence). Let B be a Banach
space and (Xom, ||I'||x, Jmen be a sequence of Banach spaces included in B.
The sequence (X, )men is compactly embedded in B if any sequence (U, )men
such that

Up, € Xy for allm € N, and (||umlx, Jmen is bounded,
is relatively compact in B.

The first compactness result for sequences of subspaces is a straightforward
translation in that setting of the second Kolmogorov theorem above.

Proposition C.5 (Time compactness with a sequence of subspaces).
Let 1 < p < 400, T > 0, B be a Banach space, and (Xm)men be compactly
embedded in B (see Definition C.4). Let (fm)men be a sequence in LP(0,T; B)
satisfying the following conditions:

1. The sequence (fm)men is bounded in LP(0,T; B).

2. The sequence (||fm||L1(o,T;xm))meN is bounded.

3. There exists a function n : (0,T) — [0,00) such that lim,_,o+ n(h) =0
and, for all h € (0,T) and m € N,

T—h
/0 Ll + 1) — F (D)% dt < n(R).

Then, the sequence (fm)men is relatively compact in LP(0,T; B).

Proof. We aim at applying Theorem C.3 with A = {f,,, : m € N}. We only
have to prove Assumption 2 in this theorem, the other two assumptions being
already stated as assumptions of the proposition.

Let ¢ € C°(R). We need to prove that the sequence ( fOT fm@dt)men is rela-
tively compact in B. We have, with ||¢|| . = sup,cg |¢(t)],

T
/ Jmpdt
0

< Mlelloo fmll L1 0:x,) -
KXm
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The sequence (| fmll11(0.7,x,,))men being bounded, this shows that the se-

quence
T
/ Jmepdt
0 Xm/ meN

is also bounded. Since (X,,)men is compactly embedded in B, this concludes

the proof that ( fOT fm@dt)men in relatively compact in B. [

We then turn to the statement and proof of a discrete Aubin—Simon theorem,
which was first used in [110] and generalised in [109], see also [108].

In the continuous setting, the Aubin—Simon compactness theorem establishes
a strong compactness property of sequences of functions in L?(0,T; B), based
on their boundedness in L9(0,T; A) and the boundedness of their derivatives
in L™(0,T;C), where A is compactly embedded in B and B is continuously
embedded in C. We first define a notion of triplets (A, B,C) having these
compact—continuous embedding properties, in the case where A and C are
replaced by sequences of spaces.

Definition C.6 (Compactly—continuously embedded sequence). Let
B be a Banach space, (X, || x, Jmen be a sequence of Banach spaces in-
cluded in B, and (Y, ||'Hym)meN, be a sequence of Banach spaces. We say
that the sequence (X, Yim)men 18 compactly—continuously embedded in B if
the following conditions are satisfied:

1. The sequence (X, )men s compactly embedded in B (see Definition C.4).
2. X C Y,y for allm € N and, for any sequence (Um)men such that
a) Uy € Xy for allm € N and (||um || x, )men is bounded,
b) ltmlly,, — 0 asn — 4o,
¢) (Um)menN converges in B,
it holds u,, — 0 in B.

Lemma C.7. Let B be a Banach space and (X, Ym)men be compactly-
continuously embedded in B (see Definition C.6). Then, for any e > 0, there
exists mg € N and C. > 0 such that, for any m > mg and w € X,,, one has

lwllp <ellwlx,, +Cellwly,, -

Proof. We prove the result by contradiction. Let us therefore assume the
existence of € > 0 such that, for any mg € N, we can find m = ¢(mg) > mg
and Wy (my) € Xp(me) such that

+mo stp(mo)HY

wa(mo) HB > € Hw%o(mo)HX o(mo)

»(mo)
There is no loss of generality in also selecting, by induction, each m = ¢(my)
greater than ¢(mg—1); then ¢ : N — N is a strictly increasing mapping. Since

Wy (me) 7 0, we can then set uy(my) = H::::;)HB € Xy(my)- We then have,

for any m € p(N),
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Y, (C.6)

where 1) = =1 : p(N) — N satisfies ¢)(m) — co as m — oo. To define u,y, for
all m € N, we let u,,, = 0 whenever n & p(N) and, defining ¥)(m) = m in that
case, we see that (C.6) still holds. This definition also preserves the property
Y(m) — 0o as m — 0.

The sequence (ty,)men is such that u,, € X, for all m € N and, owing
to (C.6), (llumllx, )men is bounded by 1/e. By the compact embedding
of (X;n)men In B, we infer that there exists a subsequence, still denoted
(4m)men, that converges in B. Then, using (C.6) again, [[un |y, < 1/¢(m) —
0 as m — 400, and thus, by Definition C.6, the limit of (u;,)men in B must
be 0. This contradicts (C.6) which states that, since each u,, has norm 1 in
B, the limit in this space of these vectors should also have norm 1. [

L= |lumllp = € llumllx,, + ¢ (m) [Juml]

m

We can now state a discrete Aubin—Simon theorem with sequences of spaces.

Theorem C.8 (Aubin—Simon with sequences of spaces and discrete
derivative). Let p € [1,400). Let B be a Banach space and (X, Yin)men
be compactly—continuously embedded in B (see Definition C.6). Let T > 0,
6 € 10,1], and (fm)men be a sequence of L¥(0,T; B) satisfying the following
properties:

1. For all m € N, there exists

o N € N*,
e 0=t <«tM <... <tM) =T and
° (’U(n))n:(]w,’N S XT]T\{JFI

such that, for alln € {0,...,N — 1} and a.e. t € (t0) 0+ f () =
Ov( D) (1 — 9)v™).

We then define almost everywhere the discrete derivative 0., fr, by setting,
with &"3) = (1) _ 4(n)

p (1) _ ()

Omfm(t) = ) forn e {0,...,N —1} and t € (t™), t(»+D),

stz

2. The sequence (fm)men 18 bounded in LP(0,T; B).
3. The sequence (|| fmll 1o 7,x,,))men is bounded.
4. The sequence (|[0m fmll 11 (0 1.v,,))men is bounded.

Then (fm)men is relatively compact in LP(0,T; B).

Proof. We apply Proposition C.5. The only assumption in this proposition
that needs to be established in order to conclude is the third one, that is

T—h
/ | fm(t +h) — fin(t)||5 dt — 0 as h — 0,
0

uniformly w.r.t. m € N.
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Note that, without the “uniformly with respect to m € N”, this convergence is
known since each f,,, belongs to LP(0,T; B). As a consequence, we only have
to prove that, for all 7 > 0, there exist mg € N and 0 < hg < T such that

T—h
Ym > mog, Yh € (0, h), / | fn (- +h) = finllf dt <. (C.7)
0

Indeed, once this is proved, upon reducing hy we can ensure that this estimate
also holds for fi,..., fio—1-

Let € > 0. Lemma C.7 gives the existence of mg € N and C. € R such that,
for all m > mg and u € X, [lullz <elullx, +Cclully, . Then, for m > my,
0<h<Tandte (0,T—h),

H.fm(t + h) - fm(t)”B
Sellfm(t+h) = fim®)llx,, + Cellfm(t+h) = fm(®)lly,,
SellfmE+n)llx, +ellfm®llx,, + Cellfm(t+h) = fm®)lly,, -

Take the power p of this inequality and use the power-of-sums inequality
(D.14) to obtain

1t + R) = fn (0)I[ < 3772P (| fm(t + M),
+ 37 e | fm (O, + 377 CE | fm(t+ h) = fm (I, -

Integrating this inequality with respect to ¢ € (0,7 — h) leads to

T—h
Lt = a0l at <253 U rix,

T—h
e / Mt 4 1) — Fm(O]% dt. (C8)

We now estimate the last term in this inequality by using the discrete deriva-
tive of f,,,. This function is piecewise constant in time so, for a.e. t € (0,7 —h),
writing fo, (¢t + h) — f,(t) as the sum of the jumps of f,, at its discontinuities
gives

fm(t + h) - fm(t) = Z (fm)|(t<n>,t(n+1)) - (fm)l(t(n—l)’t(n))
n: (M) e(t,t+h)
= Z (91}(n+1) + (1 — Q)U(n)) _ (ev(n) + (1 _ 9)1}(”_1))
n: t(W) €(t,t4+h)

= 3 [g(v(nﬂ) ™) 4 (1 — )™ — v(nfn)]
n: (") e(t,t+h)

N-1
= 3 (B0 <o) 4 (1 )0 o] 2 (1)
n=1
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N=1 (nt1) _ y(n)

n 1 n
:92 W&( +2)1(t,t+h)(t( ))

n=1

NZL (n) _ y(n=1)
v v no1 n
+(1-9) Z W&( 2)1(t,t+h)(t( ), (C.9)
n=1

where 1(; 1) (t™) = 1if t™ € (t,t + h) and 10 (™) = 0 if t™) &
(t,t+h). Let M be a bound of |6 fiml 11 (0,7,y,,), Which means that, for all
m €N,

N=Lj o (nt1) _ (0

snt3) &) = M.
ntsz

Y

n=0
Taking the Y;,-norm of (C.9), then the power p, and using the convexity of
s — sP gives

Hfm(t + h) - fm(t)”};fm

N1y yt1) _ ()
Sg(Z o) — ()

p
&(n+%)1(t,t+h)(t(n))>

n=1 &(TH'%) Yom
N1y (n) _ y(n—1) P
v v el n
+(1-10) <Z b att 2)1(t,t+h) (tt ))>
n=1 Y
N1y (n+1) _ ,(n)
_ v v 1 n
< oM <Z T gt ‘ Ly (1 ))>
n=1 Yo
NS Rl I ()
+ (1 - H)Mp Z W & 2 l(t,t-‘rh)(t ) . (CIO)
n=1 Y

Writing 1, 445 (™) = 1y —pmy(t) and integrating this inequality over
t € (0,7 — h) leads to

T—h
/0 1t + 1) — F (0% dt < MPh. (c.11)

Plugging this inequality into (C.8), we obtain

T—h
L Mt = a0l at <253 1o rix,
+ 3P 1CPMPh.  (C.12)
We can now conclude the proof. Let n > 0. Since (|[fmll10(07.x,,))men 18

bounded, we can fix € (and thus also mg) such that, for all m > my,

n

9 % 3p~1cp ||fm||1£p(o,:r;xm) < o

We can then select hg € (0,T) such that 3?"'CP MPhy < n/2. Estimate (C.12)
then shows that (C.7) holds, which proves the theorem. L]
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C.2 Uniform-in-time compactness

Solutions of numerical schemes for parabolic equations are usually piecewise
constant in time, and therefore not continuous. Their jumps nevertheless tend
to become small with the time step, and it is possible to establish some
uniform-in-time convergence results. These results, most of which were first
published in [73], are based on a generalisation to non-continuous functions of
the classical Arzela—Ascoli theorem for continuous functions, which is recalled
for the sake of completeness.

Definition C.9. If (K,dk) and (E,dg) are metric spaces, we denote by
F(K,E) the space of functions K — E, endowed with the uniform metric
dr(v,w) = sup,cx dr(v(s), w(s)) (note that this metric may take infinite val-
ues).

Theorem C.10 (Arzela—Ascoli). Let (K,dk) be a compact metric space,
(E,dg) be a complete metric space, and let C(K, E) be the set of continuous
functions from (K,dk) to (E,dg), endowed with its usual norm. Let (v, )men
be a sequence in C(K, E). The sequence (v )men is relatively compact if it is
pointwise bounded and equicontinuous, that is to say:

Va € K, the sequence (U, (x))men is bounded in E,
Ve K, ¥e>0,36>0 :
[y € K, dx(z,y) <, m € N] = [dg(vm(z),vm(y)) < £].

Theorem C.11 (Discontinuous Ascoli—Arzela’s theorem). Let (K, dy)
be a compact metric space, (E,dg) be a complete metric space, and let
(F(K,E),dx) be as in Definition C.9. Let (v )men be a sequence in F(K, E)
such that there exists a function w : K x K — [0,00] and a sequence
(Tm)men C [0,00) satisfying

lim  w(s,s)=0, lim 7, =0, (C.13)
dk (s,s")—0 m—00
V(s,s") € K, Ym €N, dg(vm(s),vm(s) < w(s,s) + Tm. (C.14)

We also assume that, for all s € K, {v.,(s) : m € N} is relatively compact in
Then (Um)men is relatively compact in (F(K,E),dr), and any adherence
value of (VU )men @n this space is continuous K — E.

Proof. The last conclusion of the theorem, i.e. that any adherence value v of
(Um)men 1in F(K, E) is continuous, is obtained by passing to the limit along
this subsequence in (C.14), showing that the modulus of continuity of v is
bounded above by w.

The proof of the compactness result is an easy generalisation of the proof of
the classical Ascoli-Arzela compactness result. We start by taking a countable
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dense subset {s; : | € N} in K (the existence of this set is ensured since K
is compact metric). Since each set {v,,(s;) : m € N} is relatively compact in
E, by diagonal extraction we can select a subsequence of (v, )men, denoted
the same way, such that for any I € N, (v,,,(8;1))men converges in E. We then
proceed in showing that (v,,)men is a Cauchy sequence in (F(K, E),dF).
Since this space is complete, this will show that this sequence converges in
this space and will therefore complete the proof.

Let £ > 0 and, using (C.13), take § > 0 and M € N such that w(s,s’") < e
whenever dg(s,s’) < § and 7,, < € whenever m > M. Select a finite set
{8145+, 81,5} such that any s € K is within distance ¢ of a s;,. Then, for any
m,m’ > M, by (C.14),

dg(Vm(s), vm(s)) < dp(vm(s), vm(si,)) + de(vm(si,), v (s1,))
+ d(Vny (s1;), vm (5))
<w(s,s1,) + Tm + de(Vm(sy,), v (81,)) + w(s, 81,) + Tone
<de +dp(vm(sy,), vm (s1;))- (C.15)

Leti € {1,..., N}. The sequence (v, (81;))men converges in E, and is therefore
a Cauchy sequence in this space. We can thus find M; € N such that

Vm,m' > M;,  dg(vm(s,),vm (s,)) < e. (C.16)

Take M’ = max(M, M, ..., My). Estimates (C.16) and (C.15) show that,
for all m,m’ > M and all s € K, dg(vin(s),vm/(s)) < be. This concludes the
proof that (v, )men is a Cauchy sequence in (F(K, E),dr). L]

Corollary C.12 (Uniform-in-time compactness from estimates on
discrete derivatives). Let T > 0, 6 € [0,1], B be a Banach space, and
(Xom, [l x, Jmen be a sequence of Banach spaces included in B. For any
m € N, we take

o N, € N*,

oO:tgﬂ) <t§$) < ...<t$flVM) =T, and

® Um = (usg))n:()w'wNm € Xn]\z]m-i_l'

Let (um)g : [0, T] = X, be the piecewise constant function in time defined by

(um)o(0) = ul® and, for alln =0,... Ny —1 and t € (£, ¢(+D)],
(wm)o(t) = Ouln ™) + (1 — O)ul.
(C.17)

n 1 n n .
Set (5t£n+2) = tsnﬂ) — tgn) forn =0,....N,, — 1, and define the discrete
derivative 0y, by:

ulp ™ — ()
Yn=0,...,Np—1, forae te ™ tmFD) 5§ un,(t) = i
B 2

We assume that
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(h1) The sequence (X )men s compactly embedded in B (see Definition C.4).
(h2) The sequence (||(wm)ol o< (0.7.x,,))men is bounded.
(h3) The sequence (|[0muml| 4 (0,7,5))men is bounded for some ¢ > 1.

.....

Then, there exists u € C([0,T]; B) such that, up to a subsequence,

lim  sup |[[(um)o(t) —u(t)|lp = 0. (C.18)
Mm=00 40,7
Proof. Let
(n+1) . (n)
u§3+0) — ngfrl) + (1 _ e)ugs) and 57(7?+%)Um — U, lum
&%H—E)

Take ny > ny in {0,..., N, — 1}, 81 € (") ¢+ D] and sy € (¢(72), ¢(n2+1)],
By writing a telescopic sum, we get

(um)o(s2) = (um)o(s1)

(2 t0) _ gy (m+0)
na
- 3 [ ag
n=ni+1
na
= 2 0t )+ (- ) - )]
n=ni+1
72 1 1 1 1
-y [9&2’5*5)55;”%,” +(1- 9)&%’*5)5782‘7)%} . (C.19)
n=ni+1
It can easily be checked that this relation extends to the case s; =0, n; = —1

and ng € {0,..., N,,, — 1} by defining &fﬁ) = 0 and 5,(,:%)um = 0; consider
for example ny = 0 and notice that

) ) = 0ull) ) = 0825 P

m

i+ 1
By the discrete Holder inequality (D.3) with w; = &Ef”, b; =1 and a; =

i+ 1 .
||(5,(,zI 2)um||B, since % =q-1,

ntd q
ot )
B

na 1
( &g:;if)
+1

n=ni
na i1 q—1 no 11 41 q
R B Y
n=ni1+1 n=ni1+l1 7
- [$2+%ﬂ:%) _t;?ﬁ%i%)r_lc‘a (C.20)
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where C' is a bound of (H‘sm“mHLq(o,T;B))meN Take the norm in B of (C.19),
use the triangle inequality, then take the power ¢ and use the convexity of
s — s9. Invoking finally the estimate (C.20) yields

[[(um)o(s2) = (um)o(s1)l5

< 0Ce [t;’;ﬁl) - tﬁgl“)}qfl +(1-6)CT [t,(]j?) - tS{;“]q :

where we set ts; D' — 0. This gives (1, that depends only on C and ¢, such
that, for all s1,s2 € [0,7] and all m € N,

q—1
q

[[(um)o(s1) = (um)o(s2)llp < Cills2 — s1| + 6tm)
< C1|82 — 81|qf;1 + 01&:”% (021)

In the last line, we used the power-of-sums inequality (D.13).

This relation and (h4) show that v, = (un)e satisfies Assumptions (C.13)—
(C.14) in the discontinuous Ascoli-Arzela theorem (Theorem C.11), with K =
[0,T] and E = B. The proof of Corollary C.12 is therefore complete if we can
establish that, for all s € [0, T,

{(um)e(s) : m € N} is relatively compact in B. (C.22)

Assume first that s > 0. Since (u,)p is piecewise constant on (0,77, the
L>(0,T; X,,) norm of (u,,)e is actually a supremum norm on (0, 7]. Hence,
[(wm)o(s)|lx,, < l(wm)oll o< (0,7;x,,) and Hypotheses (h1) and (h2) show that
((tm)o(8))men is indeed relatively compact in B.

Let us now consider the case s = 0. Since (C.22) holds for any s > 0, by diago-
nal extraction we can find a subsequence, still denoted by (t,)men, such that,
for any k € N satisfying k=1 € (0, T}, the sequence ((u)g(k™1))men converges
in B. We now prove that, along the same subsequence, ((4m)g(0))men is a
Cauchy sequence in B. This will conclude the proof that (C.22) holds for any
s =0.

Owing to (C.21) we have, for (m,m’) € N? and k € N such that k= < T,

[[(tm )6 (0) = (wm)o(0)[| B
< [ )o(0) = (um)o(k™H)|| g + [[(wm)o (k™) = (um)a(K1)|| 5
+ H(Um/)a(kfl) - (um/)G(O)HB

1

_ a=1 a-1

20T 4 Crltad 4 Cidt 4 || (um)o (k) = ()oY -
Given € > 0, fix k such that 2C T < /4. Using (h4) and the convergence
of ((Um)e(k™1))men, we can then find mg = mo(k) € N such that, if m, m’ >
mo,

—1

Crdtmt <

g—1

e
-, G, <
47 1%y =

= and [|(um)o (k™) = (um)a(k7)]| 5 < 7.
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This shows that |[(um)e(0) — (um)e(0)|| 5 < € whenever m,m’ > mq. The
sequence ((Um)g(0))men is therefore Cauchy in B, and the proof is complete.
"

The following lemma states an equivalent condition for the uniform conver-
gence of functions, which proves extremely useful to establish uniform-in-time
convergence of numerical schemes for parabolic equations when no smoothness
is assumed on the data.

Lemma C.13. Let (K,dg) be a compact metric space, (E,dg) be a metric
space and (F(K,E),dr) be as in Definition C.9. Let (vm)men be a sequence
in F(K,FE), and let v € F(K, E). The following properties are equivalent.

1.veC(K,E) and vy, — v for dr,
2. for any s € K and for any sequence (Sm)men C K converging to s for
dx, we have vy (Sm) — v(s) for dg.

Proof.
Step 1: Property 1 implies Property 2.
For any sequence (s,,)men converging to s,

A (Um(5m),0(5)) < dg (O (sm), V(sm)) + dip(0(5m), v(s))
< d]:(’l)m, ’U) + dE(U(Sm)a U(S))

The right-hand side tends to 0 by definition of v,,, — v for dz, and by conti-
nuity of v.

Step 2: Property 2 implies Property 1.

Let us first prove that v € C(K, E). Let ($;m)men C K be a sequence con-
verging to s for dgx. Since for any ¢ € K the sequence (v, (t))nen converges
to v(t), we can find ¢(0) € N such that dg(vy)(s0),v(s0)) < 1. Assuming
that, for n € N*, p(n — 1) € N is given, we can also find ¢(n) € N such that
@(n) > p(n —1) and de(ve@m)(sn), v(sn)) < 1/(n+1).

We define the sequence (8,,)men by 8m = sn if m = p(n) for some n € N,
and 8, = s if m € ¢(N). The sequence (§,,)men is constructed by inter-
lacing the sequence (s,,)men and the constant sequence equal to s. Hence,
$m — s as m — oo and, by assumption, (v, (8m))men converges to v(s). The
sequence (Vy(n)(Sn))nen is a subsequence of (v, (8m))men, and it therefore
also converges to v(s). A triangle inequality then gives

dp(v(sn), v(s)) < dp(v(sn), vo(m)(sn)) + dE (Vo) (sn), v(s))

< n+1 +dE(vga(n)(5n)aU(5))a

which shows that v(s,) — v(s). This completes the proof that v € C(K, E).

We now prove by way of contradiction that v,, — v for dg. If (Vs )men does
not converge to v for dz, then there exists ¢ > 0 and a subsequence (v, )ken,
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such that, for any k& € N, sup,cx dp(vm,(s),v(s)) > €. We can then find a
sequence (rg)reny C K such that, for any k € N,

dg(vm, (i), v(rg)) > €/2. (C.23)

K being compact, up to another subsequence, denoted the same way, we
can assume that r, — s in K as k — oo. As before, we then construct a
sequence (Sm)men converging to s, such that s,,, = ry for all & € N and
Sm = s if m & {r, : k € N}. By assumption, v,,(sm) — v(s) in E and, by
continuity of v, v(s,,) — v(s) in E. A triangle inequality then shows that
dE(Vm (8m),v(sm)) — 0, which contradicts (C.23) and concludes the proof.

m

Uniform-in-time convergence of numerical solutions to schemes for parabolic
equations often starts with a weak convergence with respect to the time vari-
able. This weak convergence is then used to prove a stronger convergence. The
following definition and proposition recall standard notions related to the weak
topology on L*(£2). The inner product in L?(£2) is denoted by (-,-)r2(0).

Definition C.14 (Uniform-in-time L?({2)-weak convergence).

Let (um)men and u be functions [0,T] — L%(£2). We say that (um)men con-
verges weakly in L?(82) uniformly on [0,T] to u if, for all ¢ € L*(£2), as
m — oo the sequence of functions t € [0,T] — (um(t),p)r2(0) converges
uniformly on [0,T] to the function t € [0,T] = (u(t), ¥)r2(0)-

Proposition C.15. Let E be a closed bounded ball in L*(£2) and let {p; : | €
N} be a dense set in L2(§2). Then, on E, the weak topology of L?(§2) is given
by the metric

min(1, |[{(v —w, 2
leN

Moreover, a sequence of functions uy, : [0,T] — E converges uniformly to
u:[0,T] = E for the weak topology of L*(£2) if and only if, as m — oo, the
sequence of functions dg(tum,u) : [0,T] — [0,00) converges uniformly to 0.

Proof. The sets E,. = {v € E : [(v,9)12()| < €}, for ¢ € L*(£2) and
e > 0, define a neighbourhood basis of 0 for the L?(§2)-weak topology on E.
A neighbourhood basis of any other points is obtained by translation of this
particular basis. If R is the radius of the ball E then, for any ¢ € L?({2),
leNandv e F,

(v, ) r2(2)l < Rl — @illp2(o) + (v, @) 220 |-

By density of {¢; : | € N} we can select [ € N such that [[¢ — ¢l 20 <

¢/(2R), and we then see that E,, .o C E, .. Hence, a neighbourhood basis
of 0 in E for the L?(£2)-weak topology is also given by (E, . )ien, e>0-
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From the definition of dr we see that, for any [ € N, min(1, [(v, p1)r2(2)]) <
2ldp(0,v). If dp(0,v) < 27 this shows that (v, o) 2 ()] < 2!d(0,v) and
therefore that

By, (0,min(27",e27) C E,, ..

Hence, any neighbourhood of 0 in E for the L?({2)-weak topology is a neigh-
bourhood of 0 for dg. Conversely, for any € > 0, selecting N € N such that
dISN1 27! < £/2 gives, from the definition (C.24) of dg,

N
() Eorera € Bag(0,6).
=1

Hence, any ball for dg centred at 0 is a neighbourhood of 0 for the L?(2)-
weak topology. Since dp and L?(§2)-weak neighbourhoods are invariant by
translation, this concludes the proof that this weak topology is identical to
the topology generated by dg.

The conclusion on weak uniform convergence of sequences of functions follows
from the preceding result, and more precisely by noticing that all previous
inclusions are, when applied to u, (t) —u(t), uniform with respect to ¢ € [0, T].

n






D

Technical results

D.1 Standard notations, inequalities and relations

We gather here a few notations and standard inequalities that are used
throughout the book, sometimes implicitly.

D.1.1 R% and measures

For £ and 7 vectors in R%, £ -7 is the Euclidean (dot) product of £ and 1, and
|&€| denotes the Euclidean norm of &. If M is a d x d matrix, we also denote
by |M| the norm of M induced by the Euclidean norm on R¢, that is,

M
|[M|= sup —| 5‘.
ccra\{o} €]

The Lebesgue measure of a measurable subset A of R? is written |A|. The
integral of a function f: A — R with respect to this measure is written

/Af(a:)doc.

If B is a measurable subset of an hyperplane of R?, then |B| denotes the
(d — 1)-dimensional Lebesgue measure of B in that hyperplane. The integral
of a function g : B — R with respect to this measure is written

/B g(@)d ().

D.1.2 Lebesgue and Sobolev spaces

For ¢ € [1,+0c] and A a measurable subset of RY, L9(A) is the Lebesgue
space with exponent ¢, that is the set of (class of) measurable functions from
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A to R such that [[ul|pq 4y < +oo, where ||| 144 is the usual norm defined
by

1/q
</ |u(:1:)|qda:> if ¢ < +o0,
HuHLq(A) = A
inf{M >0 : |u(z)] < M for a.e. x € A} if ¢ = +00.

For a vector-valued function u : A — R?, we sometimes write ||u|| Lo(aye for

Hul | 2o ay-
If A = (2 is an open set of R? and k € N, the standard Sobolev space is
denoted as usual by

Wha(02) = {u € LI(N) : 0% € LI(N) for all a = (ay,...,aq) € N?
such that |a| ==Y | a; < k},
and is endowed with the norm

1/q

Yo l0%ullfeg if g < +o0,
a€N? |a|<k

MaXqeNd, o<k ||80‘u|\LOO(Q) if ¢ = 4o00.

Hunwk,q(()) =

The space Wé“q(.()) is the closure in W*+4(£2) of the space C2°(2) of infinitely
differentiable functions with compact support in (2.

The space of vector-valued functions whose divergence (but not necessarily
all derivatives) belongs to LI({2) is

WL (02) = {p € LI(2)* : divep € LI(02)}.
It is endowed with the norm
||‘P||v1{,fv(_o) = ||‘P||Lq(9)d + ||diV<P||Lq(Q) :
In the particular case ¢ = 2, we use the standard notations H¥(£2) :=
Wk2(02), Hy(2) := W ?(2) and Hai (2) := W2, (92).
D.1.3 Holder inequalities
Let (a;)ier and (b;);es; be finite families of real numbers, and let (p,p’) €

(1,00)? be such that %4— z% =1 (p and p’ are conjugate exponents). Then the
Holder inequality for sums is

1 1
; 7

S Jaibil < (Dam’) (Zw’)p . (D.1)

i€l iel iel
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It is frequently used after the introduction of some non-zero real numbers
(d;)icr in the product a;b;. More precisely, writing a;b; = (aidi)(%) and
applying (D.1) to this new product, we have

1

> laibi| < (Z |ai|p|di|p> (Z ||ZZ||:'> o (D.2)

i€l el icl

Another frequent use is to evenly split an existing weight. If (w;);c; are non-

negative numbers, writing w;|a;b;| = (wg/p|ai|)(w3/p,|bi|) and using (D.1)
leads to
B o
}:uﬂwm|<<§:uu%p> (}:wimw> : (D.3)
iel i€l i€l

Using both weights and the introduction of non-zero numbers, we also have

1 1
I3 ‘bilpl »’
Jasbs N 1Pl ds P .
sz|azbl| < (szazl |d;| > (Zwldﬂ" . (D.4)
el el el

The Holder inequalities are also valid in Lebesgue spaces over a measurable

set (X, u). For example, the equivalent of (D.1) for integrals is: if f,g: X — R
are measurable functions, then

[ tsstan= ([ Ifl”du>;< / |g|p’du)”l'. (D.5)

In other words, [1£9l;x) < ) 19 (x- 1 X has a finite measure,
this is sometimes used with g =1 to give

/. flduﬁ( /. Ifl”dufu(X)Pl’:( /. Ifl”du);u(X)l

A variant consists in taking ¢ > r > 1 and in applying this to |f|", instead of
f, with the exponent p = ¢/r. This leads to

/]

o =

(D.6)

1

1_1
Lr(x) < p(X)r ||f||Lq(X) ‘ (D.7)

D.1.4 Young inequality

For a,b > 0 and (p,p’) conjugate exponents, the Young inequality reads
1 1
ab < —a? + S b". (D.8)
p p

As in the Hoélder inequality, it is standard to introduce a (usually small)
parameter when applying Young’s inequality. Taking ¢ > 0 and writing ab =
(e'/Pa)(e~1/Pb), we obtain

E.p 1
ab< Saf b (D.9)
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D.1.5 Jensen inequality

Let A be a measurable subset of R? with non-zero measure, and ¥ : R — R
be a convex function. If f is integrable on A, then the Jensen inequality states

- v (2 [ f@ydz) < = [ w(f(@)de. (D.10)
Al /4 Al /4

Although mostly used for integrals over subsets of R?, Jensen’s inequality is
of course also valid for sums. If w; > 0 are such that W = Ziel w; > 0, then

1 1
v (W ZwiaZ) < Zwﬂ/(ai). (D.11)
iel icl

D.1.6 Power of sums inequality

The last inequality we want to mention is a simple one for powers of a sum.
If « >0 and a,b > 0, a basic estimate is

(a+b)* <2%* 4 29D,

This generic inequality can be improved by looking separately at the cases
a <1 and a > 1. Using the convexity of s — s® if « > 1, we actually have
(2$2)> < $a* + 3b*, that is

VYa>1, (a+b)* <29 ta® 42971, (D.12)

If @ <1, the mapping s — (1 + s)® — s is non-increasing and takes value 1
at s = 0. Hence, (14 5)* <1+ s®. Applied to s = b/a, this gives

Va <1, (a+b)* <a”+b*. (D.13)

This inequality is often applied with o = 1/2.

An easy generalisation of the above inequalities can be obtained for sums of
more than two terms. For example, if & > 1 and (a;);=1,... ¢ are non-negative

numbers,
0 « 0
(Z a> <7y ag (D.14)
i=1 i=1

D.1.7 Discrete integration-by-parts (summation-by-parts)

Let (an)n=o,.,~ and (by)n=o,.. N be two families of real numbers. Splitting
the sum and re-indexing the first term (with j = n + 1), we have

N-1

N-1 N—-1
Z (anJrl - an)bn - Z an+lbn - Z anbn
n=0 n=0

n=0
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N-1 N-1
=) anirbn — (aobo + ) b — aNbN>
n=0

n=0
N-1
= > ant1(bp = bny1) + anby — agbo.
n=0

To summarise,

N-—1 N-—1
Z (ant1 — an)by = — Z Unt1(bng1 — bp) + anby — agbo. (D.15)
n=0 n=0

The quantities a,,+1 — a, and b,4+1 — b, can be seen as discrete derivatives of
(@n)n=0,....n and (by)n=o,... n. Relation (D.15) is therefore a form of discrete
integration-by-parts, with ayby and agby playing the role of the boundary
(integrated) terms.

Set, for eximple, byt+1 = 0 and let En = bpyq for n = 0,...,N. Applying
(D.15) to (byp)n=o,...,n instead of (by)pn=0,... N gives

N—1
Z (an+1 - a7L)bn+1 =
n=0
N-1
= =Y ant1(bng2 — bus1) — aohy
n=0
N
- - Z an(anrl - bn) - aObl
n=1
N-1
= - Ap (b1 — bn) +ao(bs — bo) —an(bn+1 — bn) — agbs.
n=0
In other words,
N-1 N—-1
> (ans1 = an)bnir ==Y an(bpsr — bn) + anby —agbo.  (D.16)
n=0 n=0

This is the equivalent of (D.15) with an offset of the second family (by,)n—o.... N

ceay

By creating a convex combination of (D.15) and (D.16) we arrive at a for-
mula that is instrumental when dealing with time terms in 6-schemes. If
(n)n=0,... N is a family of numbers and v € [0,1], for all n =0,...,N — 1 we
set Tpiy = VIpt1 + (1 — v)z,. Adding up v x (D.16) and (1 — v) x (D.15)
yields

N-1 N—1
Z (ant1 — an)bpty = — Z (van + (1 = v)ans1)(bpt1 — bn) + anby — apbo.

n=0 n=0
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In other words,

N-1 N-1
D (i1 = an)bniy = = Y Gnp (1) (bng1 — bn) + anby — aobp. (D.17)

n=0 n=0

D.2 Topological degree

The following theorem, which can be found in [89], is a consequence of the
theory of the topological degree [57].

Theorem D.1 (Application of the topological degree, finite dimen-
sional case). Let V be a finite dimensional vector space onR and & :V — V
be a continuous function. Assume that there exists a continuous function
UV x1[0,1] =V satisfying:

1.9(,1)=9.

2. There exists R > 0 such that, for any (v,p) € V x [0,1], if ¥(v,p) =0
then ||v]lv # R.

3. W (-,0) is affine and the equation ¥(v,0) = 0 has a solution v € V such
that [[v|v < R.

Then, there exists at least one v € V' such that (v) = 0 and ||v|]|v < R.

As an easy consequence of this, we have the Brouwer fixed point theorem.

Theorem D.2 (Brouwer fixed point). Let V be a finite dimensional vector
space on R, B a closed ball in'V and F' : B — B be continuous. Then F has
a fized point, i.e. there exists v € B such that F(v) = v.

Proof. Without loss of generality, we can assume that B is centred at 0
and has radius r > 0. Let 6, be the retraction of V' on B, that is 6,(v) = v
if v € B and 0,(v) = rv/|jv|, if v € B. Set &(v) = v — F(0,(v)) and
U(v,t) = v —tF(6.(v)). Then & : V — V is continuous, ¢ = ¥(-, 1), ¥(-,0) is
affine and the equation ¥(v,0) = 0 has the unique solution v =0 € B.
Moreover, if ¥(v,t) = 0 then v = tF(0r(v)) € tB C B, and thus ||v[|;, <r <
r + 1 =: R. Theorem D.1 then shows that ¢(v) = 0 has a solution in V, that
is that there exists v € V such that v = F(6,(v)). Since F' takes values in B,
v € B and thus v = F(v). ]

D.3 Derivation and convergence in the sense of
distributions

This section gives the generalisation of the notion of derivative that is used
in this book. We refer to, e.g., [108] for more details on this subject.
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Given an open set §2 of R?, the following lemma allows to merge the (class of)
function(s) f € L .(£2) with the linear mapping Ty : C°(§2) — R defined by

loc

Ty (p) = /Q f(@)p(x)dx for any ¢ € C°(12), (D.18)

Recall that f € Li (£2) means that for any compact subset K of {2, the

loc

restriction f|x of f to K belongs to L!(K).

Lemma D.3 (Almost everywhere equality). Let {2 be an open subset of
R, d>1, and let f and g € LL (£2). Then:

loc

o ccr@), [ f@pea = [ g@ene] < [ =g ac. on 2]

Let T be a linear mapping from CS°(£2) to R and ¢ € C°(£2), then the real
number T'(¢p) is called the action of T" on ¢. Lemma D.3 allows the definition

of a weak derivative of a L{. . function in the following way:

Definition D.4 (Derivatives in the sense of distributions, weak deriva-
tive). Let 2 be an open subset ofRd, d>1and1<i<d. Let T be a linear
form on C°(82); its i-th derivative D;T in the sense of distributions is defined
by:

DiT(p) =: =T(0ip), Yoo € CZ(£2), (D.19)
where 0;p is the classical partial derivative of @ with respect to its i-th variable.
Let f € L} .(92), and Ty is the related linear form on C°(2) defined by
(D.18); then identifying f and Ty, the i-th derivative D;f = D;Ty in the
sense of distributions is given by:

Dif(e) = = [ f@)drp(a)da (D.20)

Note that if f € CY(£2), then D;f is nothing but 0;f, merging 9;f and Tp,
(which is the linear form on C°(§2) induced by O;f). The derivative in the
sense of distributions is a gemeralisation of the notion of derivative. If the
linear form D;f can be identified as a locally integrable function in the sense
of Lemma D.3, then f is said to admit a weak derivative.

Definition D.5 (Convergence in the sense of distributions). Let 2 be
an open subset of RY, d > 1, (T,,)nen be a sequence linear forms on C°(£2)
and T a linear form on C°(§2). Then T,, converges to T pointwise in the set
of mappings from C°(£2) to R, as n — 400, if

To(p) = T(p) for any p € C°(£2). (D.21)

Such a converging sequence is said to converge in the sense of distributions.



464 D Technical results

Remark D.6 (Distribution theory)

In the framework of the distribution theory, the space C<°(£2) is equipped with a
(rather complicated) topology and usually denoted D({2). This topology is actually
not needed for most applications in PDEs. Even though the distribution theory
involves a smaller space consisting of the continuous linear mappings from Cg°(£2)
to R (usually denoted by D’(£2)), the notion of convergence is still given by (D.21).
Similarly, when Cg£°(£2) is equipped with its topology, the notion of derivative in the
sense of distribution coincides with that given by (D.19).

Lemma D.7 (Weak convergence and convergence of the derivatives).
Let £2 be an open subset of R, d > 1, p € (1,+00), (fn)nen C LP($2), and
f e Lr(R), such that f,, = f weakly in LP(§2) as n — +o0, that is:

/fn dw—)/f x)dx as n — +00, foranygELp(Q)

with 1/p + 1/p’ = 1. Then, identifying f, (resp. f) with a linear form Ty,
(resp. Ty) on C°(82), Ty, tends to Ty in the sense of distributions and D;T},
tends to D;Ty in the sense of distributions. Hence, identifying Ty, with f,
and Ty with f,

D;fn — D;f in the sense of distributions as n — +oc.

D.4 Weak and strong convergence results

Lemma D.8 (Weak-strong convergence). Let p € [1,00) and p’ = 1%

be the conjugate exponent of p. Let (X,u) be a measured space. If fr, — f
strongly in LP(X)¢ and g, — g weakly in LP (X)<¢, then

/an-gndu—>/xf-gdu-

Proof. By Banach-Steinhaus theorem, (g,)nen is bounded, say by C, in
LP (X)4. We therefore write, using Hélder’s inequality,

‘/an'gndﬂ'_ / f-gdu’
’/ gndu+/ I 9)du‘

< = Fllneye Mgl + \ |RR

A

< Ol Pligrys +| [ £+ (oo = ).
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The first term converges to 0 by strong convergence of (f,,)nen, and the second
term tends to 0 by weak convergence of (gn)nen- ]

We now state a lemma that is particularly useful to pass to the limit in terms
involving solution-dependent diffusion tensors.

Lemma D.9 (Non-linear strong convergence). Let (X, u) be a measure
space and A : X x R — My(R) be a Caratheodory function (i.e. A(x,-) is
continuous for a.e. © € X, and A(-,s) is measurable for all s € R), that is
bounded over X x R. Assume that, as n — oo, u, — u in L'(X) and that
H, — H in L?(X)?, for some p € [1,00). Then, A(-,u,)H, — A(-,u)H in
LP(X).

Proof. Up to a subsequence, we can assume that u,, — v a.e. on X. Then, by
continuity of A with respect to its second argument, A(-, u,) — A(-,u) a.e. on
X. Still extracting a subsequence, we have H,, — H a.e. on X, and |H,| <g
a.e. on X for some fixed g € LP(X).

Then, A(-,u,)H, — A(-,u)H a.e. on X and, denoting by C' an upper bound of
A A un)Hy| < ClH,| < Cg € LP(X). The dominated convergence theorem
therefore gives A(, u,)H, — A(-,u)H in LP(X).

This convergence is established up to a subsequence, but since the reasoning
can be made starting from any subsequence of (A(-, u,)H,)nen and since the
limit is unique, this shows that the whole sequence converges. L]

D.5 Minty trick and convexity inequality

The next lemma, whose proof is based on the so-called Minty trick [132], is
used to identify limits of non-linear functions of weakly convergent sequences.

Lemma D.10 (Minty trick). Let 3,¢( € C°(R) be two non-decreasing func-
tions such that 5(0) = ¢(0) = 0, 8+ is strictly increasing, and limg_, 1o, (5 +
¢)(8) = fo0. Let (X, ) be a measurable set and let (wy,)nen C L2(X) be such
that

(i) (B(wn))nen C L?(X) and there exists B € L*(X) such that B(w,) — B
weakly in L*(X) as n — oo;
(ii) (C(wn))nen € L*(X) and there exists ( € L*(X) such that ¢(w,) —
weakly in L*(X) as n — oo;
(ii) there holds:

lim inf n n)dpy < BCdp. D.22
mint [ (w,)cw,)an < [ G (D.22)
Then,

B = B(w) and { = ((w) a.e. in X, (D.23)
where

()05
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Proof. Notice first that the assumptions on 8 and ¢ ensure that % :R—>R
is an homeomorphism. Hence, w is well defined. Since 5(0) = ¢(0) = 0, the

two functions So (%)’1 and (o (%)’1 have the same sign (positive on R,

negative on R™) and their sum is equal to 2Id. The absolute value (Zf each one
of them is therefore bounded above by 2|Id|, and the property % € L*(X)

shows that o
B+C¢
2

&

both belong to L?(X). By monotony of 3 and ¢,

B(w) = ﬂ (5;4)

and

C(w) = c (5‘2“)

/X [Bluwm) — B(w)] [C(uwm) — ()] dpe > 0.

Develop this relation and use (D.22) and the weak convergences of 5(w,,) and
¢(wy,) to take the inferior limit as m — oco. This gives

[ =) [T~ cw)) =0, (D.24)
With w defined as in the lemma,

B+ _ pluw) +((w)
2 2 '

Hence, f(w) = ﬁ% + (%) (w) and ((w) = Bic _ (%) (w). Used in
(D.24), this leads to

_/X (ﬁQ‘C _ (BQ_C) (w)>2d,u20.

Therefore, ? = M a.e. in X and (D.23) follows from this latter
relation and (D.25). L]

> ‘

The proof of this lemma is classical, and only given for the convenience of the
reader.

Lemma D.11 (Weak Fatou for convex functions). Let I be an interval
of R and H : I — [0, 400] be a convex lower semi-continuous function. Denote
by L2(02;1) the convex set of functions in L?(§2) with values in I. Let v €
L2(82;1) and (v,)men be a sequence of functions in L%(§2; 1) which converges
weakly to v in L?(82). Then,

H(v(z))de < liminf [ H (v, (x))dz.

0 m—roo 0
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Proof.

Let @ : L*(£2;1) — [0,00] be defined by &(w) = [, H(w(x))dx. If (wi)ken
converges strongly to w in L?(§2; 1) then, up to a subsequence, w;, — w a.e.
on (2. H being lower semi-continuous, H(w) < liminfy_, . H(wy) a.e. on (2.
Since H > 0, Fatou’s lemma then show that @(w) < liminfg_,co P(wy).
Hence, @ is lower semi-continuous for the strong topology of L?(£2;1). Since
@ (as H) is convex, we deduce that this lower semi-continuity property is also
valid for the weak topology of L2(£2;I), see [83]. The result of the lemma is
just the translation of this weak lower semi-continuity of &. L]
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Some numerical examples

The numerical examples presented here illustrate theoretical convergence re-
sults proved in other chapters. Section E.1 is focused on gradient schemes for
a 3D linear elliptic equation of the form (2.100); two different GDs are consid-
ered: the HMM GD in its SUSHI version (Chapter 13), and the VAG scheme
(Section 8.5). The results show that these schemes yield a very good approx-
imation of a quite singular solution on complex meshes. In Section E.2, the
ADGGD scheme (see Section 11.3) is applied to the p-Laplace problem (Sec-
tion 2.1.5). Section E.3 contains numerical results based on the VAG scheme
for a degenerate parabolic problem as in Chapter 6.

E.1 A 3D elliptic problem

This numerical test is part of the 3D benchmark [105] and features an elliptic
linear problem with non-homogeneous Dirichlet boundary conditions arising
for instance in the exploitation of fluids in porous media through the use of a
slanted well. The goal is to approximate the solution w € H(§2) solution of
the problem

—divAVu = 0, (E.1)

in the domain 2 = P\W, where P is the parallelepiped (—15,15) x (=15, 15) x
(=7.5,7.5) and W is a slanted circular cylinder with radius r,, = 0.1. The
axis of this well is a straight line located in the x0z plane, passing through
the origin at an angle 6 = % with the x axis, as shown in Figure E.1.
The permeability tensor A is constant and anisotropic in the third coordinate

direction:

with 7 = 0.2. The solution %, inspired from [7], is equal to 0 on the well
boundary OW N2 and is strictly positive inside £2. It is defined by u(x,y, 2)
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Fig. E.1. The circular slanted well.

=v(Y(x,y,2), Z(x,y, z)), where the linear functions Y and Z are defined by

Y(2.y.2) =y and Z(2.9.2) = (sin o + "2

\/;

with 8 = arctan(%). We then define a = (%)2 —1, and we let a = ary,

and po = log (é + ,/é + 1). The function v is given by

(Y, Z) = log(VS + VS +1) — p,
with S > 0 such that a®S? 4 (a®> — Y2 — Z2)S — Y2 =0.

The simulation uses 3D meshes (meshl —mesh7) created for the 3D benchmark
of [105]. These meshes are refined around the well as can be seen in Figure
E.2. The first step of the meshing process is to create a radial mesh that is
exponentially refined down to the well boundary. This radial local refinement
implies a matching mesh between the radial grid and the reservoir Corner
Point Geometry grid using hexahedral cells.

Fig. E.2. Radial mesh without (left) and with transition zone (right).

We present in Table E.1 the results obtained on these grids using on one
hand the SUSHI scheme presented in Chapter 13 (see Remark 13.2 for the
particular choice of the discrete gradient), and on the other hand the VAG
scheme presented in Chapter 8, Section 8.5. The orders of convergence are
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computed with respect to the number of unknowns at the power 1/3, which
cannot put in evidence the effects of local refinement. The main observation
is that these two gradient discretisations are adapted to complex polytopal
meshes issued from a quite realistic situation (see Figure E.3 for a visualisation
of the approximate solution).

SUSHI VAG
u Vu u Vu
mesh1||3.79E-03]9.69E-02(6.22E-03| 5.73E-02
order 0.69 2.03 3.24 3.03
mesh2||3.07E-03|5.21E-02|(2.60E-03| 2.53E-02
order 2.42 2.29 3.46 [2.88E+00
mesh3||1.60E-03|2.81E-02|(1.10E-03| 1.24E-02
order 1.38 1.08 1.72 1.69
mesh4||1.10E-03|2.10E-02|(7.13E-04| 8.10E-03
order 1.45 1.19 2.64 1.05
mesh5||7.77E-04|1.57E-02|(3.85E-04| 6.35E-03
order 2.39 1.89 3.60 1.46
mesh6||4.78 E-04|1.07E-02|[1.90E-04| 4.77E-03
order 0.26 0.37 -0.16 -0.06
mesh7||4.56E-04]9.98E-03|[1.95E-04| 4.82E-03

Table E.1. L? error for the solution and its gradient in the case of the 3D slanted
well, using schemes SUSHI and VAG. “Order” represents the rate of convergence
from the line above to the line below.

Fig. E.3. Approximate solution using SUSHI on mesh3. Top left: slice in the plane
x = 0.2; bottom left: slice in the plane y = 0.2; right: slice in the plane z = 0.4.
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E.2 ADGGD for the p—Laplace problem

We consider the p-Laplace problem (2.61a) with Dirichlet boundary conditions
(2.61b). The aim of this section is to assess the accuracy of the error estimate
provided by Theorem 2.38.

E.2.1 The one-dimensional case

We consider the case where d = 1, £2 = (0,1) and f(z) = 1. The analytical
solution is then given by

u(x) = pp%l [(;)p/(p—u i

We consider a mesh with constant space step h = 1/N (with N € N*) and
we use Scheme (2.64) together with the Discontinuous Galerkin gradient dis-
cretisation given by Definition 11.1, with K = 1 and 8 = 1/2 (note that in the
one-dimensional case, the two definitions (11.4) and (11.40) for the discrete
gradient are identical, so the DGGD is identical to the ADGGD).

We see in Figure E.4 that the approximate solution matches quite well the
analytical solution for N = 6, considering the three cases p = 1.5, p = 2 and
p=4.

1
r— =

5 (E.2)

p/(P—l)]

p=15 p=2 p=4
u Vu u Vu u Vu
N =10 |5.51E-04|6.34E-03||9.65E-04|9.40E-03||1.48E-03|8.11E-03
order 1.85 1.55 1.96 1.50 1.62 1.33
N =20 |1.53E-04|2.17E-03||2.48E-04|3.32E-03||4.80E-04|3.23E-03
order 1.92 1.61 1.98 1.50 1.60 1.29
N =40 |4.02E-05|7.11E-04|(6.29E-05|1.18E-03||1.58 E-04 |1.33E-03
order 1.96 1.64 1.99 1.50 1.59 1.59
N =80 |1.03E-05|2.28 E-04||1.58E-05|4.15E-04||5.24E-05|5.51E-04
order 1.98 1.65 2.00 1.50 1.59 1.26
N = 160|2.62E-06|7.26E-05|3.97E-06|3.97E-06||1.74E-05|2.30E-04

Table E.2. Errors and rates of convergences, on the functions and the gradient,
for the ADGGD GS applied to the p-Laplace equation in dimension 1. “Order”
represents the rate of convergence from the line above to the line below.

Combining Remark 2.39 and Lemmas 11.14 and 11.15 (for £ = k = 1) shows
that, if the solution is smooth enough, the expected rates of convergence
in LP norms on both the function and gradient are O(hP~!) if p < 2 and
O(RY =1} if p > 2. Hence, for p = 1.5 (resp. 2, resp. 4), the expected order
would be O(h%®) (resp. O(h), resp. O(h'/?)). As seen in Table E.2, these
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oo — analytic — analytic
0005 | —DGGD o024 —DGGD

o 01 02 03 04 05 06 07 08 03 1 o 01 02 03 04 05 06 07 08 03 1

Fig. E.4. Exact and DGGD approximate solutions for the p-Laplace equation (k =
1, 3=0.5, N =6).

orders are pessimistic as, even for the non-smooth function given by (E.2),
the theoretical rates are beat by at least half an order. This was expected for
the LP norm of the function, as estimates that are common to the function
and the gradient, as in Theorem 2.38, are known to be sub-optimal for the
function (but, at least for linear problems, better estimates can be established
in the GDM framework [81]). This was less obvious for the gradient.

E.2.2 The two-dimensional case

We take here d = 2, 2 = (0,1) x (0,1) and f(x) = 2 for all x € 2. Set
xo = (1/2,1/2) and fix non-homogeneous Dirichlet boundary conditions in
agreement with the analytical solution

/(p—1)
— p—1 1 )p p/(p—1)
u(x) = —— — —lx—x . E.3

We apply the GS (2.64) together with the Average Discontinuous Galerkin
Gradient Discretisation given by Definition 11.1 and definition (11.40) for the
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discrete gradient, letting k = 1 and 8 = 4/5. Note that the discrete gradient
is piecewise constant, which leads to simple computations, in particular for
the p—Laplace problem. The triangular meshes from the family mesh1 of [117]
are used for the numerical tests.

— analytic
— ADGGD

(a) mesh1_1 (byp=1.5

— analytic ;n: — analytic
— ADGGD n: — ADGGD

Fig. E.5. Mesh mesh1_1 and exact and ADGGD approximate profiles along the line
xz2 = z1 + 0.01 for the p-Laplace equation (k =1, 8 = 0.8, using mesh1_1).

Figure E.5 presents the profile of the approximate solution along the line
x9 = x1 + 0.01, for the three cases p = 1.5, p = 2 and p = 4, on the coarsest
triangular mesh. We notice a rather good match of approximate solution on
this line.

Table E.3 shows that the practical rates of convergence are better than the
theoretical ones from Theorem 2.38; however, the rates for the gradient are
degraded with respect to the similar test case in dimension d = 1.
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p=15 p=2 p=4
u Vu u Vu U Vu
mesh1_1|0.944E-03]0.314E-02{{0.120E-02|0.423E-02(|0.138E-02{0.432E-02
order 1.96 1.48 1.95 1.42 1.32 1.41
mesh1_2|0.243E-03|0.113E-02|0.308E-03|0.158 E-02{|0.555E-03(0.162E-02
order 1.97 1.48 1.98 1.38 1.57 1.16
mesh1_3|0.621E-04]0.405E-03(|0.783E-04|0.608E-03(|0.187E-03|0.727E-03
order 1.98 1.40 1.99 1.31 1.67 0.93
mesh1_4|0.157E-04]0.154E-03({0.197E-04|0.245E-03||0.58 7E-04|0.381E-03
order 1.99 1.29 1.99 1.23 1.73 0.85
mesh1_5|0.396E-05|0.630E-04|/0.495E-05|0.105E-03({0.177E-04{0.211E-03

Table E.3. Errors and rates of convergences, on the functions and the gradient,
for the ADGGD GS applied to the p-Laplace equation in dimension 2. “Order”
represents the rate of convergence from the line above to the line below.

E.3 An example of the application of the GDM to a
degenerate parabolic problem

We consider the evolution problem (6.1) in 2D, letting 8(s) = s and A = I,
which means that we approximate the Stefan problem. The scheme used here
is the VAG scheme described in Section 8.5. The domain is §2 = (0,1)2, and
we use the following definition of {(),

u if 7 <0,
(=< u—-1ifu>1,
0 otherwise.
Dirichlet boundary conditions are given by @ = —1 on 92 and the initial

condition is u(x, 0) = 2. Four grids are used for the computations: a Cartesian
grid with 322 = 1024 cells, the same grid randomly perturbed, a triangular
grids with 896 cells, and a “Kershaw mesh” with 1089 cells as illustrated
in Figure E.8 (such meshes are standard in the framework of underground
engineering). The final time is 0.1 and the simulation is ran with a constant
time step of 0.001.

Figures E.8, E.9, E.10 and E.11 represent the discrete solution u(-,¢) on all
grids for t = 0.025,0.05,0.075 and 0.1. For a better comparison we have also
plotted the interpolation of u along two lines of the mesh. The first line is
horizontal and joins the two points (0,0.5) and (1,0.5). The second line is
diagonal and joins points (0,0) and (1,1). The results for these slices are
shown in Figures E.6 and E.7.

The numerical outputs are weakly dependent on the grid, and the interface
between the regions v < 0 and v > 1 are located at the same place for all
grids. It is worth noticing that this remains true even for the very irregular
Kershaw mesh (which presents high regularity factors < — see (7.8), that is

475



476 E Some numerical examples

high ratios for some cells between the radii of inscribed balls and the diameter
of the cell).

o o1 o2 o3 o4 05 o a7 08 op 1 G102 ©0a o4 o5 o0e o7 om a3

(a) t = 0.025 (b) ¢ = 0.050

o o1 o2 o5 04 05 o6 o7 08 op 1 G102 03 04 o5 06 o7 o8 oo 3

(c) t =0.075 (d) t=0.1

Fig. E.6. Interpolation of u along the line 2 = 0.5 of the mesh for each grids:
Cartesian in blue, perturbed Cartesian in red, triangular in green, and Kershaw in
black dashed.
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s e & e s 2 @

(a) t = 0.025 (b) ¢ = 0.050

(c) t =0.075 (d) t=0.1

Fig. E.7. Interpolation of u along a diagonal axe of the mesh for each grids: Carte-
sian in blue, perturbed Cartesian in red, triangular in green, and Kershaw in black

dashed.
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(a) Cartesian ) Perturbed Cartesian

f

=1

(¢) Triangular (d) Kershaw

Fig. E.8. Discrete solution u on all grids at ¢t = 0.025.

(a) Cartesian ) Perturbed Cartesian

(c) Triangular (d) Kershaw

Fig. E.9. Discrete solution u on all grids at ¢t = 0.050.
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(a) Cartesian ) Perturbed Cartesian

f

-0

(¢) Triangular (d) Kershaw

Fig. E.10. Discrete solution u on all grids at t = 0.075.

(a) Cartesian ) Perturbed Cartesian
. . :
¢) Triangular ) Kershaw

Fig. E.11. Discrete solution u on all grids at t = 0.1.
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BC Boundary Condition
CeVeFE  Cell-Vertex—Face/Edge
CDO Compatible Discrete Operator

DDFV Discrete Duality Finite Volume
DGGD  Discontinuous Galerkin gradient discretization

GD Gradient Discretisation

GDM Gradient Discretisation Method
GS Gradient Scheme

HFV Hybrid Finite Volume

hMFD hybrid Mimetic Finite Difference

HMM Hybrid Mimetic Mixed

LLE Local Linearly Exact

MFD Mimetic Finite Difference

MFE Mixed Finite Element

MPFA Multi-Point Flux Approximation

MPFA-O Multi-Point Flux Approximation O-scheme
nMFD nodal Mimetic Finite Difference

PDE Partial Differential Equation

SIPG Symmetric Interior Penalty Galerkin

SUSHI Scheme Using Stabilization and Hybrid Interfaces
TPFA Two-Point Flux Approximation

TPFA-CG Two-Point Flux Approximation for Cartesian Grids
VAG Vertex Approximate Gradient
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approximation space, 3-5
Arzela—Ascoli theorem, 115, 440,
449
discontinuous, 449
Aubin—Simon theorem, 107, 446

barycentric condensation, 202, 229,
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barycentric dual mesh, 272
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gradient, 5, 11, 207, 282
space, 251, 282, 416
Brouwer fixed point theorem, 43,
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