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C. Guichard and R. Herbin

The gradient discretisation
method

A framework for the discretisation and numerical

analysis of linear and non-linear elliptic and

parabolic problems

November 2, 2017





Preface

This monograph is dedicated to the presentation of the gradient discretisation
method (GDM) and to some of its applications. It is intended for masters
students, researchers and experts in the field of the numerical analysis of
partial differential equations.
The GDM is a framework which contains classical and recent discretisation
schemes for diffusion problems of different kinds: linear or non-linear, steady-
state or time-dependent. The schemes may be conforming or non-conforming,
low or high order, and may be built on very general meshes.
In this monograph, the core properties that are required to prove the conver-
gence of a GDM are stressed, and the analysis of the method is performed
on a series of elliptic and parabolic problems. As a result, for these models,
any scheme entering the GDM framework is known to converge. A key feature
of this monograph is the presentation of techniques and results which enable
a complete convergence analysis of the GDM on fully non-linear, and some-
times degenerate, models. The scope of some of these techniques and results
goes beyond the GDM, and makes them potentially applicable to numerical
schemes not (yet) known to fit into this framework.
Appropriate tools are also provided to easily check whether a given scheme
satisfies the core properties of a GDM. Using these tools, it is shown that a
number of methods are GDMs; some of these methods are classical, such as the
conforming finite elements, the non-conforming finite elements, and the mixed
finite elements. Others are more recent, such as the discontinuous Galerkin
methods, the hybrid mimetic mixed or nodal mimetic finite differences meth-
ods, some discrete duality finite volume schemes, and some multi-point flux
approximation schemes.

Marseille, Melbourne, Paris
the authors, 2017
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Introduction

The purpose of this book is the study of the gradient discretisation method
(GDM), which includes a large family of conforming or non-conforming numer-
ical methods for elliptic and parabolic partial differential equations (PDEs). A
gradient discretisation method is based on the choice of a set of discrete spaces
and operators, referred to as a “gradient discretisation” (GD). Replacing, in
the weak formulation of a diffusion problem, the continuous space and opera-
tors by the discrete elements provided by a particular GD yields a numerical
scheme called a “gradient scheme” (GS).

Considering here the case of homogeneous Dirichlet boundary conditions, the
stationary linear and non-linear diffusion problems under study can be written
under the form:

−div a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,

where

• Ω is an open bounded connected subset of Rd, d ∈ N∗, with boundary
∂Ω = Ω \Ω,

• a is a function from Rd × R× Rd to Rd.

The function a may be a general anisotropic heterogeneous linear operator,
that is a(x, s, ξ) = Λ(x)ξ, which yields a linear diffusion problem. Non-linear
problems with a solution-dependent diffusion matrix can be considered by
setting a(x, s, ξ) = Λ(x, s)ξ. Another possible choice for a is a Leray–Lions
operator such as the p-Laplacian a(x, s, ξ) = |ξ|p−2ξ with p > 1, which yields
a non-linear diffusion problem involving the gradient in the non-linearity, in-
stead of just the function.
Standard diffusion evolution problems of the form

∂tu− diva(x, u,∇u) = f in Ω × (0, T ),
u(·, 0) = uini in Ω,

u = 0 on ∂Ω × (0, T ),
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are treated, as well as degenerate evolution problems, such as the following:

∂tβ(u)−∆ζ(u) = f in Ω × (0, T ),
β(u(·, 0)) = β(uini) in Ω,

ζ(u) = 0 on ∂Ω × (0, T ),

where the functions ζ and β are assumed to be Lipschitz-continuous and non-
decreasing. This latter model includes both the Stefan problem, modelling a
melting material, and the Richards problem, modelling a two phase flow in a
porous medium under the assumption that the pressure of one of the phases
is given.

The above problems arise in various frameworks, such as underground engi-
neering (oil recovery, hydrology, nuclear waste disposals, etc.) and image pro-
cessing. In the case of underground engineering, numerical simulations have to
be performed on meshes adapted to the geological layers; complex geometries
such as faults, vanishing layers, inclined wells must therefore be accounted for,
along with highly heterogeneous permeability fields. Locally non-conforming
refined meshes are thus often used. Furthermore, the problems to be solved
can involve a coupled set of equations of various types (including coupling
by convection–reaction terms, changes of phase, or algebraic equations mod-
elling a chemical reaction). A large number of discretisation methods have
been developed in the past 30 years to deal with these problems, for which
conventional methods such as conforming finite elements are not well adapted.
One of the first schemes in this direction is probably the nine point finite vol-
ume scheme [104] developed at Institut Français du Pétrole; this scheme is con-
servative and features consistent fluxes, but is unfortunately non-symmetric.
A “diamond scheme” using a reconstructed gradient on diamond-shaped cells
was proven to converge [54] under restrictive conditions on the mesh. A num-
ber of so-called “multi point flux approximation” (MPFA) schemes were also
developed, and some of them were shown to be convergent, again under re-
strictive conditions on the mesh [1, 2, 3, 4, 5, 6, 8, 9]. Most of these schemes
are non-symmetric.

The seeds of the GDM as presented here originated when trying to find a finite
volume scheme with consistent fluxes for anisotropic problems on so-called
∆-admissible meshes, i.e., meshes for which there exists a set of points – one
point per cell – such that the lines joining the points of two neighbouring cells
are orthogonal to the interface between these cells; examples of ∆-admissible
meshes include triangles, rectangles, and Voronöı cells – see [90, chapter 3].
Denoting by K a cell of a ∆-admissible mesh, by FK the set of its edges, and
by |σ|, xσ and nK,σ, respectively, the measure, centre of mass and outward
unit normal to σ ∈ FK , a discrete gradient was constructed [91, 92] by noting
that for any vector v ∈ R2, one has |K|v =

∑
σ∈FK |σ|v · nK,σ(xσ − xK),

where xK is any point of the triangle K. This can also be written as the
matrix identity
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σ∈FK

|σ|(xσ − xK)nTK,σ = |K|Id. (0.1)

Stabilising this gradient by using it together with the two-point flux approx-
imation of [114] for an isotropic part of the diffusion matrix led to a consis-
tent and stable scheme (this idea is used in Section 13.4 to construct a GD
on ∆-admissible meshes, see Definition 13.40). However, the ∆-admissibility
property for the meshes was too restrictive to handle the variety of meshes
used in industry for the numerical simulation of flows in heterogeneous and
anisotropic porous media. A large gap was filled in the direction of general
polyhedral meshes thanks to the idea of transposing the formula (0.1), leading
to ∑

σ∈FK

|σ|nK,σ(xσ − xK)T = |K|Id.

Indeed, this new matrix identity (proven in Lemma B.3) is the key to the
construction of a consistent gradient on general polytopal meshes as intro-
duced in [93] and developed in [95]; it is also a main tool of the “polytopal
toolbox” that is used in the present book to analyse the GDM, see Chapter
7. This idea was simultaneously and independently used by the teams at the
origin of the mimetic family of schemes [129, 36, 35, 128, 34, 127] to construct
the normal fluxes at each face of the mesh by solving a local linear system
(for the method in [128], the invertibility of the local system is conditional
to some mesh properties). Inspired by the finite volume ideas, other meth-
ods were devised and studied simultaneously. Among them, let us mention
the discrete duality finite volume (DDFV) schemes introduced by Hermeline
[116, 117, 118, 119, 120, 121], and studied in the linear case [64], and in differ-
ent non-linear cases, see e.g. [28, 15, 14, 13, 44]. The DDFV scheme constructs
a discrete gradient by using two meshes (in 2D) and writing a finite volume on
each mesh. We refer to [69] for an introduction and review of all these finite
volume schemes.
The profusion of new methods for anisotropic problems and distorted meshes
led to the organisation of a benchmark whose results were presented at the
FVCA conference of 2008 in Aussois [115]. It was clear that some methods, in
particular the SUSHI scheme and the mixed-hybrid mimetic finite difference
methods produced extremely similar outputs. This triggered a closer analy-
sis which showed that these methods are in fact algebraically equivalent [75].
One disadvantage of these schemes is the use of interface unknowns in the
construction of the discrete gradient, which is quite costly; their elimination
is possible, as in the SUCCES scheme [95], but leads to wide stencils. This
motivated the construction of a vertex approximated gradient (VAG); the
resulting scheme was proved to be convergent [98] by identifying general ab-
stract properties which, when satisfied by a scheme, ensure its convergence.
These properties are called the “core properties” of GDs in this book, and
were later shown to yield the right tools for the study of a larger variety of



xii Contents

problems, including non-linear models [76]. The general theory of GDMs was
then set up [77].

We show in this book that several of the above mentioned recent methods as
well as a number of classical methods are GDMs, in particular:

1. the conforming finite element methods, including mass lumped versions,
2. the non-conforming finite element methods, again including mass lumped

versions,
3. the mixed finite element methods and in particular the Raviart–Thomas

ones,
4. the symmetric interior penalty Galerkin version of the discontinuous

Galerkin (DG) method,
5. the multi-point flux approximation (MPFA) schemes and the discrete du-

ality finite volume (DDFV) schemes on particular grids,
6. the hybrid mimetic mixed (HMM) family of schemes, which includes the

hybrid mimetic finite difference schemes, the SUSHI scheme and the mixed
finite volume scheme,

7. the nodal mimetic finite difference scheme.

This already long list is not exhaustive. For example, research is ongoing to
include recent high order methods in the GDM framework meshes, such as
high order mimetic finite difference (MFD) methods [126], virtual element
methods (VEM) [21, 38] and hybrid high order (HHO) methods [62]. It is
shown in [59] that the HHO method and the non-conforming versions of MFD
and VEM are gradient discretisation methods. Future work will certainly lead
to view other low or high order numerical methods as GDMs.
Recent research on numerical schemes for elliptic and parabolic problems has
led to other unification frameworks, like the Compatible Discrete Operator
schemes [26, 27, 40]. Contrary to the GDM, this framework relies on a specific
choice of unknowns on a mesh.

Organisation of the book.
Part I is an introduction to the GDM and its usage for elliptic equations.
Chapter 1 describes the basic concepts underlying this method.
The GDM is then formally introduced for elliptic PDEs with Dirichlet bound-
ary conditions in Chapter 2. For linear equations, error estimates are obtained.
For non-linear equations (including a Leray–Lions type model with a non-local
dependency of the operator), convergence is obtained by compactness tech-
niques.
The case of Neumann, Fourier and mixed Dirichlet/Neumann boundary con-
ditions is covered in Chapter 3.

Part II is devoted to the study of the GDM for linear and non-linear parabolic
problems.
Chapter 4 covers the definitions and main compactness results that are used
to analyse the GDM for non-linear parabolic problems.
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Chapter 5 deals with the linear and quasi-linear parabolic heat equations,
with a non-conservative parabolic problem coming from image processing,
and finally with a transient Leray–Lions type problem.
Chapter 6 covers the study of the GDM applied to degenerate parabolic prob-
lems, including the Stefan and Richards problems.

In Part III, examples of schemes that fit into the GDM framework are pre-
sented.
Some discrete analysis tools are first introduced in Chapter 7; these are used
later to establish that particular gradient discretisations satisfy the required
properties for the convergence analysis of Parts I and II to hold.
Chapters 8 to 14 then list some important examples of GDMs. It is shown
that the standard finite element method, the non-conforming Pk finite element
method, the mixed finite element method and the discontinuous Galerkin
method (in its symmetric interior penalty version) are GDMs. We then anal-
yse, in the framework of GDM, some particular finite volume methods (multi-
point flux approximation), the hybrid mimetic mixed family, and the nodal
mimetic finite difference method.

An appendix gathers four chapters of useful tools for the analysis in the other
parts of the book.
Chapter A provides an abstract setting covering a variety of boundary condi-
tions. The generic properties proved in this chapter are used in Chapter 3 for
Neumann, Fourier and mixed boundary conditions. They could also be used
in the case of Dirichlet boundary conditions in Chapter 2, but detailed direct
proofs were written in this initial chapter for pedagogical reasons.
The two next chapters are concerned with discrete functional analysis, a
mathematical setting for the convergence analysis of numerical schemes. Chap-
ter B establishes some discrete functional analysis tools for space discretisa-
tions based on polytopal meshes. These results are the discrete adaptations
of the standard Sobolev and Rellich embedding theorems, with also consid-
erations on discrete traces. Chapter C presents compactness results for time-
dependent functions with abstract co-domains, including a discrete Aubin–
Simon theorem and a discontinuous Ascoli–Arzelà theorem. It is worth notic-
ing that the discrete functional analysis for space- and/or time-dependent
functions developed in Appendices B and C is potentially applicable outside
the GDM, to schemes which are not necessarily written in the form of gradi-
ent schemes; this is also the case for the convergence analysis tools for fully
non-linear and degenerate models developed in Section 2.1.5 and Chapters 5
and 6.
In Chapter D, classical notations and results are gathered for the reader’s
convenience. Finally, in Chapter E, some numerical examples are proposed in
order to illustrate the theoretical notions and schemes previously presented.

User guide:
This book is written assuming that the reader is familiar with Sobolev spaces
and weak formulations of elliptic and parabolic partial differential equations
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(PDEs) . We refer to [33] for an introduction on this topic. The reader should
also have some notions of numerical analysis, in particular of the discretisa-
tion of elliptic and parabolic PDEs – for example the knowledge of one of
the aforementioned methods, such as the conforming P1 finite elements on
triangles.
Parts of this book are of easy access, others require more work. We recommend
that students or newcomers to the field follow the discovery track below, while
more advanced or expert researchers can follow the eponymous tracks.

• Discovery track: Read Chapter 1. Then read Section 2.1.1 in Chapter
2, focusing more on the definitions and their explanations than on the
proofs of the lemmas. Then read Sections 2.1.2 and 2.1.4, and the case of
non-conforming finite elements in Chapter 9, referring when needed to the
definitions and statements of Chapter 7. Appendix D presents some no-
tations and classical results used throughout the book; initially skimming
through this appendix and then coming back for specific details might
prove beneficial.

• Advanced track: In addition to the preceding track, read Chapter 5,
referring when needed to the definitions and results of Chapter 4. Consider
the case of mass-lumped conforming finite elements in Chapter 8, referring
to the definitions and statements of Chapter 7.

• Expert track: Welcome to the whole book.

Remark 0.1 (Shaded remarks)
Shaded remarks such as the present one contain notions, comments or results that
can be somewhat technical or very specific. In a first reading, these remarks can be
skipped.



Part I

Elliptic problems
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Motivation and basic ideas

Throughout this book, Ω – the physical domain over which PDEs are con-
sidered – is a connected open bounded subset of Rd, d ∈ N? is the space
dimension, and p ∈ (1,+∞) denotes a regularity index of the sought solu-
tion. For linear and quasi-linear problems, we take p = 2. In some abstract
theorems, p might be allowed to take the value 1.

1.1 Some well-known approximations of linear elliptic
problems

Let us consider the following simple elliptic problem:{
−∆u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where f ∈ L2(Ω). The weak formulation of (1.1) is:

Find u ∈ H1
0 (Ω) such that, for all v ∈ H1

0 (Ω),∫
Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx.
(1.2)

1.1.1 Galerkin approximations

A classical family of numerical methods to approximate this problem is given
by conforming Galerkin methods. Their main idea is to seek the approximate
solution in a finite dimensional subspace Vh of H1

0 (Ω). This is for example the
case for the well-known P1 finite element method, in which a partition of Ω
into simplices (e.g. triangles in dimension d = 2) is chosen and the space Vh is
made of the piecewise linear functions on this partition, which are continuous
over Ω and have a zero value on ∂Ω. In such a case, the index h denotes the
mesh size, see e.g. [49] for more on finite element approximations.
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Once a finite dimensional subspace Vh of H1
0 (Ω) has been chosen, the Galerkin

approximation of (1.2) is

Find uh ∈ Vh such that, for all vh ∈ Vh,∫
Ω

∇uh(x) · ∇vh(x)dx =

∫
Ω

f(x)vh(x)dx.
(1.3)

It is then easy to establish an error bound between the weak solution u to
(1.1) and the approximate solution uh. Using a generic v = vh ∈ Vh ⊂ H1

0 (Ω)
as a test function in (1.2) and subtracting (1.3) we see that∫

Ω

∇(u− uh)(x) · ∇vh(x)dx = 0. (1.4)

Taking vh = wh − uh, where wh is any function in Vh, and writing vh =
wh − u+ u− uh gives∫

Ω

∇(u− uh)(x) · ∇(u− uh)(x)dx =

∫
Ω

∇(u− uh)(x) · ∇(u− wh)(x)dx.

Using the Cauchy–Schwarz inequality (that is, (D.5) with p = p′ = 2) in the

right-hand side and recalling that ‖ϕ‖2H1
0 (Ω) =

∫
Ω
|∇ϕ(x)|2dx, it is inferred

that
‖u− uh‖2H1

0 (Ω) ≤ ‖u− uh‖H1
0 (Ω) ‖u− wh‖H1

0 (Ω) .

Finally, since this estimate is valid for any wh ∈ Vh,

‖u− uh‖H1
0 (Ω) ≤ min

wh∈Vh
‖wh − u‖H1

0 (Ω) . (1.5)

This result, which may be generalised to other problems than (1.1), is known
as Céa’s lemma [48, Theorem 2.4.1].
Assume that a family of subspaces (Vh)h>0 is “ultimately dense” in H1

0 (Ω) as
h→ 0, i.e., for all ϕ ∈ H1

0 (Ω),

min
wh∈Vh

‖wh − ϕ‖H1
0 (Ω) → 0 as h→ 0.

Then Estimate (1.5) shows that uh → u in H1
0 (Ω) as h→ 0.

The beauty of this analysis lies in its simplicity. It is however limited to meth-
ods for which the approximation space Vh is included in the space in which
the continuous solution lives. These methods are referred to as “conforming”.
Numerous numerical schemes for elliptic equations are “non-conforming” in
the sense that the provided approximate solutions do not belong to H1

0 (Ω).
This happens for instance in the case of the non-conforming P1 finite element,
which yields a piecewise affine approximation that is not necessarily contin-
uous across the edges, and in the case of cell-centred finite volume schemes,
which yield a piecewise constant approximation.
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1.1.2 Non-conforming P1 finite elements

Another well known method is the non-conforming finite element method, a
simple version of which is given here – see Chapter 9 for a more detailed and
general presentation. LetM be a conforming triangular mesh of Ω ⊂ R2, that
is, a mesh made of triangles and such that no edge of any triangle contains
a vertex other than its two endpoints. Let F be the finite set of the edges of
the mesh, Fext be the set of all σ ∈ F such that σ ⊂ ∂Ω, and Fint = F \Fext

be the set of interior edges. For any σ ∈ F , xσ is the centre of mass of σ.
The approximation space Vh of the non-conforming P1 finite element method
is the set of piecewise affine functions on the triangles of the mesh such that,
for all σ ∈ Fint between two cells K and L, denoting by dγ the measure on σ,∫

σ

(uh)|Kdγ(x) =

∫
σ

(uh)|Ldγ(x) (1.6)

and, for all σ ∈ Fext, if K is the cell whose σ is an edge,∫
σ

(uh)|Kdγ(x) = 0. (1.7)

A part of such a function is depicted in Figure 1.1. The space Vh is spanned
by the basis (ϕσ)σ∈Fint , where ϕσ is the piecewise affine function such that
ϕσ(xσ) = 1 and ϕσ(xσ′) = 0 for all σ′ ∈ F \ {σ}. The space Vh is clearly

uh

xσ

σK

Fig. 1.1. Non-conforming P1 finite element.

not a subspace of H1
0 (Ω); however, the restriction to any cell of a function

of Vh is piecewise affine, so its gradient is well defined and constant in each
cell. For K ∈ M, let ∇Kϕσ be the constant value of the gradient of the
function ϕσ, σ ∈ F , on K (note that ∇Kϕσ = 0 if σ is not an edge of K).
It is remarkable that (1.3) still makes sense if the gradient operator ∇ in this
formula is replaced by the “broken” gradient operator ∇M defined by
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For any uh =
∑
σ∈Fint

uσϕσ ∈ Vh,

∀K ∈M ,∀x ∈ K , ∇Muh(x) =
∑
σ∈Fint

uσ∇Kϕσ
(1.8)

(in other words, the gradients are computed without taking into account the
jumps along the edges). Then the following norm is defined on H1

0 (Ω) + Vh:

∀uh ∈ H1
0 (Ω) + Vh , ‖uh‖2h =

∑
K∈M

∫
K

|∇uh(x)|2dx.

Let us check that ‖·‖h is indeed a norm. It is clearly a semi-norm and, if
‖uh‖h = 0 then uh is constant in each cell K. Since uh ∈ H1

0 (Ω) + Vh, by
(1.6) (also valid for functions in H1

0 (Ω)) (uh)|K = (uh)|L whenever K and L
are neighbouring cells. Working from neighbour to neighbour, uh is then seen
to be constant over the connected domain Ω; the relation (1.7) written for
one boundary edge finally shows that uh = 0 in Ω.
Let ah : (H1

0 (Ω) + Vh)2 → R be the bilinear form defined by

∀(uh, vh) ∈ (H1
0 (Ω) + Vh)2 , ah(uh, vh) =

∑
K∈M

∫
K

∇uh(x) · ∇vh(x)dx.

The approximate problem to Problem (1.1) is defined by

Find uh ∈ Vh such that, ∀vh ∈ Vh, ah(uh, vh) =

∫
Ω

f(x)vh(x)dx. (1.9)

There exists one and only one solution to (1.9), and it satisfies the following
error estimate [48, Theorem 4.2.2], based on the second Strang Lemma [131]:
for some C > 0, depending only on the regularity of M but not on h,

‖u− uh‖h

≤ C

 inf
vh∈Vh

‖u− vh‖h + sup
wh∈Vh\{0}

∣∣∣∣ah(u,wh)−
∫
Ω

f(x)wh(x)dx

∣∣∣∣
‖wh‖h

 . (1.10)

This estimate can be written as

‖u− uh‖h ≤ C(SM(u) +WM(∇u)), (1.11)

where SM(ϕ) is defined, for any ϕ ∈ H1
0 (Ω), by

SM(ϕ) = inf
vh∈Vh

‖ϕ− vh‖h, (1.12)

and WM(ϕ) is defined, for any sufficiently regular function ϕ : Ω → Rd, by



1.1 Some well-known approximations of linear elliptic problems 7

WM(ϕ) = sup
wh∈Vh\{0}

∣∣∣∣∫
Ω

(ϕ(x) · ∇Mwh(x) + divϕ(x)wh(x))dx

∣∣∣∣
‖wh‖h

. (1.13)

To relate WM(∇u) in (1.11) with the last term in (1.10), notice simply that
div(∇u) = ∆u = −f . Under regularity assumptions on the mesh, the quan-
tities SM(ϕ) and WM(ϕ) tend to zero as the size of the mesh tends to zero
[49, 84].

1.1.3 Two-point flux approximation finite volumes on Cartesian
meshes

A second example of non-conforming scheme is given by the “two-point flux
approximation” (TPFA) finite volume scheme [90]. The TPFA scheme is
widely used in petroleum engineering: constant values are considered in con-
trol volumes over which a discrete mass balance of the various components
is established. The particular case of the TPFA scheme for Cartesian grids
is considered here and denoted by TPFA-CG. Let M be a rectangular mesh
of a rectangle Ω ⊂ R2. In addition to the notations K, σ and xσ defined in
Section 1.1.2, we introduce the following (see Figure 1.2):

• for each K ∈M, xK is the intersection of the bisectors of the edges of K
(since K is a rectangle, xK is also the centre of mass of K) and FK is the
set of edges of K,

• V is the set of vertices of the mesh and, for K ∈ M, VK is the set of
vertices of K,

• for each K ∈M and each s ∈ VK , VK,s is the rectangle defined by xσ, s,
xσ′ and xK , where σ and σ′ are the edges of K touching s,

• uK (resp. uσ) represents an approximate value of the unknown u at xK
(resp. xσ).

The idea of finite volume schemes consists in finding approximate values FK,σ
of the exact fluxes −

∫
σ
∇u ·nK,σdγ(x) (nK,σ is the normal to σ outward K),

and in writing the following discrete flux balance in each cell

∀K ∈M ,
∑
σ∈FK

FK,σ =

∫
K

f(x)dx, (1.14)

and the flux conservativity across each interior edge:

∀σ ∈ Fint common face of K and L , FK,σ + FL,σ = 0. (1.15)

Relation (1.14) simply mimicks the Stokes formula applied to the continuous
problem (1.1):

−
∑
σ∈FK

∫
σ

∇u · nK,σdγ(x) =

∫
K

f(x)dx.
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uK
σ

nK,σ

L

uσ

VK,s

xK xσ xL

suσ′

K

σ′

Fig. 1.2. Notation for a rectangular mesh.

The TPFA-CG finite volume scheme consists in substituting, in the previous
equations,

FK,σ = −|σ| uσ − uK
dist(xσ,xK)

. (1.16)

The boundary condition is imposed by setting

uσ = 0 if σ ⊂ ∂Ω. (1.17)

There is no clear way to see the TPFA-CG scheme method as a non-
conforming finite element method. However, it can be recast into a variational
form. Consider a family ((vK)K∈M, (vσ)σ∈F ) such that vσ = 0 if σ ⊂ ∂Ω.
Multiplying (1.14) by vK and summing over K ∈M yields∑

K∈M

∑
σ∈FK

vKFK,σ =
∑
K∈M

vK

∫
K

f(x)dx. (1.18)

Notice then that∑
K∈M

∑
σ∈FK

vKFK,σ =
∑
K∈M

∑
σ∈FK

(vK − vσ)FK,σ. (1.19)

Indeed, if σ ⊂ ∂Ω, then (vK − vσ)FK,σ = vKFK,σ and, if σ is the common
face between two control volumes K and L, then vσ is multiplied in (1.19) by
FK,σ + FL,σ, which vanishes thanks to (1.15). Thus, using (1.19) into (1.18)
and invoking (1.16) leads to∑
K∈M

∑
σ∈FK

|σ|
dist(xσ,xK)

(vσ − vK)(uσ − uK) =
∑
K∈M

vK

∫
K

f(x)dx. (1.20)

Conversely, assuming the boundary conditions (1.17) and the expression (1.16)
for the fluxes, Relations (1.14) and (1.15) can be deduced from (1.20) with
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appropriate choices of the family ((vK)K∈M, (vσ)σ∈F ) (namely, selecting only
one value equal to 1 and all the other values equal to 0). Moreover, Relation
(1.20) can be expressed in terms of reconstructed functions and gradients,
using the discrete values defined on K and σ.

• Define XD,0 as the space of real families uD = ((uK)K∈M, (uσ)σ∈F ) sa-
tisfying the boundary conditions (1.17).

• For uD ∈ XD,0, let ΠDuD be the piecewise constant function equal to uK
on the cell K.

• If K ∈ M and s ∈ VK is such that σ and σ′ are the edges of K sharing

the vertex s, reconstruct a gradient by setting ∇K,suD = ∇(σ)
K,suD nK,σ +

∇(σ′)
K,suD nK,σ′ with

∇(σ)
K,suD =

uσ − uK
dist(xσ,xK)

and ∇(σ′)
K,suD =

uσ′ − uK
dist(xσ′ ,xK)

.

Denote then by ∇DuD the piecewise constant function equal to ∇K,suD
on VK,s, for any cell K and any vertex s ∈ VK .

The following properties arise, for (uD, vD) ∈ X2
D,0:

∑
K∈M

vK

∫
K

f(x)dx =

∫
Ω

f(x)ΠDvD(x)dx,

and, using the orthogonality of nK,σ and nK,σ′ when σ and σ′ are two edges
of K sharing a vertex s,∑
K∈M

∑
σ∈FK

|σ|
dist(xσ,xK)

(vσ − vK)(uσ − uK) =

∫
Ω

∇DuD(x) · ∇DvD(x)dx.

As a result, (1.20) can be recast in the form of a discrete variational problem:

Find uD ∈ XD,0 such that, for all vD ∈ XD,0,∫
Ω

∇DuD(x) · ∇DvD(x)dx =

∫
Ω

f(x)ΠDvD(x)dx.
(1.21)

The study of the TPFA-CG scheme was performed in [90] using finite volume
techniques, and the following results were obtained: if the size of the mesh
tends to 0 while the ratio height/width of each cell remains bounded above
and below, then ΠDuD converges to u in L2(Ω) and an error estimate holds,
which depends on the regularity of u.

Remark 1.1 (TPFA on unstructured meshes)
The TPFA scheme can also be analysed on unstructured meshes, provided an

orthogonality condition holds (see [90, Definition 9.1]). However, in the unstructured
case, it does not seem in general possible to write the scheme under the form (1.21),
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and the TPFA scheme is not known to be a GDM as described in this book (but it
can be included in an asymmetric version of the GDM [73]).
One case, though, where the TPFA scheme can be written as (1.21) is that of “super-
admissible” meshes, that is, when the point xK in each cell K is the intersection of
the orthogonal bisectors of the faces of K. Besides the case of rectangular meshes
as studied above, this is the case for instance in two space dimensions if the cells
of the mesh are acute triangles. Indeed, in that case the HMM method described in
Chapter 13 contains the TPFA scheme, see Section 13.3.

Now, could the TPFA-CG scheme be studied using the non-conforming tech-
niques of Section 1.1.2? There are unfortunately a series of objections to this
approach:

1. Comparing the right-hand sides of (1.9) and (1.21), the natural space Vh
would be

Vh = {ΠDvD : vD ∈ XD,0}.

However, this space “forgets” about the edge unknowns (vσ)σ∈F of vD ∈
XD,0, and there is therefore no way to compute ∇DvD solely from ΠDvD.

2. Partially as a consequence of the previous item, there does not seem to
exist any bilinear form ah, defined on Vh+H1

0 (Ω), which would be equal to∫
Ω
∇DuD(x) ·∇DvD(x)dx for (uD, vD) ∈ V 2

h , and to
∫
Ω
∇u(x) ·∇v(x)dx

for (u, v) ∈ H1
0 (Ω)2.

3. The same problem arises for the definition of the norm ‖ · ‖h.

Although the technique from non-conforming finite elements schemes cannot
be directly used on the TPFA-CG scheme, there is however a way of merging
these two kinds of schemes into on common framework, which also covers
conforming finite element methods. The next section presents an introduction
to this framework.

1.2 Towards the gradient discretisation method

What does it take to design a unified convergence analysis framework covering
the preceding three examples, as well as other conforming and non-conforming
methods?
A numerical method obviously starts from selecting a finite number of discrete
unknowns describing the finite dimensional space in which the approximate
solution is sought. This finite dimensional space was called XD,0 in the pre-
vious section (“D” for “discretisation”, and the 0 to indicate that, in some
way, this space accounts for the homogeneous boundary condition in (1.1)).
The two linear operators ΠD and ∇D, which respectively reconstruct, from
the discrete unknowns, a function on Ω and its “gradient”, are such that

ΠD : XD,0 → L2(Ω) and ∇D : XD,0 → L2(Ω)d.
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All the schemes presented in the previous section can be written as

Find uD ∈ XD,0 such that, for all vD ∈ XD,0,∫
Ω

∇DuD(x) · ∇DvD(x)dx =

∫
Ω

f(x)ΠDvD(x)dx
(1.22)

for suitable choices of (XD,0, ΠD,∇D). Indeed,

• For conforming P1 finite elements, each vD ∈ XD,0 is a vector of values at
the vertices of the mesh, ΠDvD ∈ C(Ω) is the piecewise linear function on
the mesh that takes these values at the vertices, and ∇DvD = ∇(ΠDvD).

• For non-conforming P1 elements, each vD ∈ XD,0 is a vector of values at
the centres of mass of the edges, ΠDvD is the piecewise linear function on
the mesh which takes these values at these centres of mass, and ∇DvD =
∇M(ΠDvD) is the broken gradient defined in (1.8).

• The space and operators for the TPFA-CG scheme have already been
given under the form (XD,0, ΠD,∇D) in Section 1.1.3.

The question now is to understand which properties the triplet (XD,0, ΠD,∇D)
must satisfy to enable some error estimates between the solution u to (1.2)
and the solution uD to (1.22) (assuming for the time being that it exists). The
main issue is that, contrary to Problem (1.2) and its conforming discretisa-
tion (1.3), Problem (1.2) and its general discretisation (1.22) do not appear
to have any common test functions. Hence, no equation equivalent to (1.4)
seems attainable. There is however a way to write an approximate version
of this relation in the same spirit as in the analysis of the non-conforming
finite element method. Contrary to the non-conforming finite element where
the broken gradient is computed from the approximate function uh, in the
general GDM framework, the approximate function ΠDu does not always al-
low the computation of ∇Du (indeed, ΠDu does not necessarily involve all
the components of the discrete unknown vector u). For instance, in the simple
case of the Laplace operator (1.1), the left hand side of the numerical scheme
involves only∇Du while the right-hand-side involves only ΠDu. The operators
∇D and ΠD are not deduced from one another, but they are not completely
independent: a compatibility condition between the operators ΠD and ∇D is
enforced through a so-called limit-conformity relation, see (1.28)-(P3) below.
As already mentioned, this is mandatory for the TPFA-CG scheme to be part
of this framework.

By noticing that (1.2) implies that −∆u = f in the sense of distributions, we
get from (1.22) that, for any vD ∈ XD,0,∫

Ω

∇DuD(x) · ∇DvD(x)dx =

∫
Ω

−∆u(x)ΠDvD(x)dx. (1.23)

If ΠDvD were a classical regular function, the Stokes formula would allow
us to replace the integrand in the right-hand side with ∇u(x) · ∇(ΠDvD)(x).
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Except in some particular cases, the discrete operators ΠD, ∇D of a numerical
scheme do not satisfy an exact discrete Stokes formula, only an approximate
one. We measure the resulting defect of conformity of the method, in the spirit
of (1.13), by a function WD(ϕ) such that, for any sufficiently regular function
ϕ : Ω → Rd and for all vD ∈ XD,0,

WD(ϕ) = sup
vD∈XD,0\{0}

∣∣∣∣∫
Ω

(ϕ(x) · ∇DvD(x) + divϕ(x)ΠDvD(x)dx)dx

∣∣∣∣
‖∇DvD‖L2(Ω)d

.

(1.24)

Here, we assume that ‖∇DvD‖L2(Ω)d 6= 0 if vD 6= 0, which is somewhat

natural given the homogeneous boundary conditions. The quantity WD(ϕ) is
expected to be small if the discretisation is “fine enough” (e.g., the underlying
mesh size is small). Then, considering ϕ = ∇u in (1.24) and using (1.23) to
compute

∫
Ω

div(ϕ)(x)ΠDvD(x)dx =
∫
Ω
∆u(x)ΠDvD(x)dx, an approximate

version of (1.4) is obtained:∫
Ω

(∇u(x)−∇DuD(x)) · ∇DvD(x)dx ≤ ‖∇DvD‖L2(Ω)dWD(∇u).

Take now a generic wD ∈ XD,0, apply this estimate to vD = wD − uD, and
write ∇u−∇DuD = ∇u−∇DwD +∇DwD −∇DuD to find∫

Ω

(∇DwD(x)−∇DuD(x)) · (∇DwD(x)−∇DuD(x))dx

≤
∫
Ω

(∇DwD(x)−∇u(x)) · (∇DwD(x)−∇DuD(x))dx

+ ‖∇D(wD − uD)‖L2(Ω)dWD(∇u).

Using the Cauchy–Schwarz inequality on the first term in the right-hand side,
we infer

‖∇DwD −∇DuD‖L2(Ω)d ≤ ‖∇DwD −∇u‖L2(Ω)d +WD(∇u). (1.25)

Define the “best interpolation error” (in the spirit of (1.12)) by

SD(u) := min
wD∈XD,0

(
‖ΠDwD − u‖L2(Ω) + ‖∇DwD −∇u‖L2(Ω)d

)
and pick wD that realises this minimum. Since

‖∇DuD −∇u‖L2(Ω)d ≤ ‖∇DuD −∇DwD‖L2(Ω)d + ‖∇DwD −∇u‖L2(Ω)d

≤ ‖∇DuD −∇DwD‖L2(Ω)d + SD(u),

Equation (1.25) gives



1.2 Towards the gradient discretisation method 13

‖∇DuD −∇u‖L2(Ω)d ≤ 2SD(u) +WD(∇u). (1.26)

The question is now to check howΠDuD approximates u. Assume the following
discrete Poincaré inequality:

There exists CD > 0 such that, ∀vD ∈ XD,0 ,
‖ΠDvD‖L2(Ω) ≤ CD ‖∇DvD‖L2(Ω)d .

Then, with the same wD selected above,

‖ΠDuD − u‖L2(Ω) ≤ ‖ΠDuD −ΠDwD‖L2(Ω) + ‖ΠDwD − u‖L2(Ω)

≤ CD ‖∇DuD −∇DwD‖L2(Ω)d + SD(u).

Estimate (1.25) then shows that

‖ΠDuD − u‖L2(Ω) ≤ (CD + 1)SD(u) + CDWD(∇u). (1.27)

Equations (1.26) and (1.27) are error estimates between u and ΠDuD and
between ∇u and ∇DuD.
In particular, if a sequence (XDm,0, ΠDm ,∇Dm)m∈N is selected such that

(P1) (CDm)m∈N is bounded,
(P2) SDm(u)→ 0 as m→∞,
(P3) WDm(∇u)→ 0 as m→∞,

(1.28)

then (1.26) and (1.27) show that, as m → ∞, ΠDmuDm → u in L2(Ω) and
that ∇DmuDm → ∇u in L2(Ω)d.

Properties (P1-(P3) are thus the core properties that (XD,0, ΠD,∇D) must
satisfy to provide a proper approximation of (1.1) under the form (1.22).

• Property (P1) is related to some coercivity property of this triplet, since
this uniform Poincaré inequality is also what ensures an estimate of the
form ‖∇DuD‖L2(Ω) ≤ C ‖f‖L2(Ω) if uD is a solution to (1.22).

• Property (P2) states that ΠD and ∇D are consistent reconstructions of
functions and their gradient; it enables the approximation of u and its
gradient by using elements in XD,0.

• As already discussed,WD measures the error in the discrete Stokes formula
and (P3) therefore relates to the limit-conformity of (ΠD,∇D), stating
that these two operators should, in the limit, satisfy the exact Stokes for-
mula (as in the conforming case). Note that, in fact, the limit-conformity
property (P3) implies the coercivity property (P1) (see e.g. Lemma 2.7
below).
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1.3 Generalisation to non-linear problems

Non-linear equations are ubiquitous in real-world modelling, and a framework
for the convergence analysis of numerical schemes should be able to handle
such equations. Consider here the following example of a non-linear problem:{

β(u)−∆u = f in Ω,
u = 0 on ∂Ω,

(1.29)

with the same notations as in Section 1.1, and where the function β : R→ R
is continuous, sβ(s) ≥ 0 and |β(s)| ≤ C(1 + |s|) for all s ∈ R, where C does
not depend on s. The weak formulation of (1.29) is:

Find u ∈ H1
0 (Ω) such that, for all v ∈ H1

0 (Ω),∫
Ω

(β(u(x))v(x) +∇u(x) · ∇v(x))dx =

∫
Ω

f(x)v(x)dx.
(1.30)

It can be shown that there exists at least one solution to (1.30). Using, say, the
conforming P1 finite element method and denoting by Vh the space of contin-
uous piecewise linear functions on a triangular mesh of Ω, an approximation
of (1.30) is

Find uh ∈ Vh such that, for all vh ∈ Vh,∫
Ω

(β(uh(x))vh(x) +∇uh(x) · ∇vh(x))dx =

∫
Ω

f(x)vh(x)dx.
(1.31)

Although this approximate problem has at least one solution, its analysis
presents three major difficulties. The first one lies in the computation, if uh =∑
s′∈Vint us′ϕs′ , of the quantity

∫
Ω

β

( ∑
s′∈Vint

us′ϕs′(x)

)
ϕs(x)dx (1.32)

for a given interior vertex s of the mesh; due to the non-linearity of β, the
integrand may not be a piecewise polynomial and thus exact quadrature rules
may not exist for this integral term. The second difficulty is to define an
algorithm to approximate the solution of the non-linear system of equations
provided by (1.31). The third one is to prove that the numerical method
converges to the solution of the initial problem.
A classical answer to the first issue is to use the so-called “mass-lumping”
method. This method consists in replacing, in (1.31) with vh = ϕs, the term
(1.32) with ωsβ(us) where ωs is some weight to be defined. The framework
introduced above provides a natural way of analysing the stability and con-
vergence of this mass-lumped scheme, with weights defined as the measure
of some “dual cells” denoted by Ks (see Figure 1.3). The set of discrete un-
knownsXD,0 is, as for the conforming P1 method, the space of vectors with one
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s

∂Ω

Ks

Fig. 1.3. Definition of Ks

component per interior vertex of the mesh. For u ∈ XD,0, the reconstructed
function ΠDu and gradient ∇Du are defined by

ΠDu =
∑
s∈Vint

us1Ks (piecewise constant reconstruction),

∇Du =
∑
s∈Vint

us∇ϕs (as for conforming P1 finite elements),
(1.33)

where 1Ks is the characteristic function of Ks. Then the scheme (1.31) is
replaced with

Find u ∈ XD,0 such that, for all v ∈ XD,0,∫
Ω

(β(ΠDu(x))ΠDv(x) +∇Du(x) · ∇Dv(x))dx

=

∫
Ω

f(x)ΠDv(x)dx.

(1.34)

Since ΠDu and ΠDv are piecewise constant, all integral terms here are very
easy to compute, which facilitates the implementation of the scheme. Another
major interest of dealing with these piecewise constant reconstructions ΠD is
that they satisfy

β(ΠDu) = ΠD(β(u)) =
∑
s∈Vint

β(us)1Ks .

This property is sometimes crucial to obtain a priori estimates (see Section
6.3).
If (XDm,0, ΠDm ,∇Dm)m∈N is a sequence of spaces and operators associated
as above with mass-lumped P1 finite elements on regular meshes whose size
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tends to zero, one can show that properties (P1), (P2) and (P3) hold. Then,
only using these properties, it is possible to prove that:

1. The scheme (1.34) has at least one solution, denoted by um ∈ XDm,0,
2. Up to a subsequence, as m → ∞, ΠDmum converges weakly in L2(Ω) to

some function u ∈ H1
0 (Ω), ∇Dmum converges weakly in L2(Ω)d to ∇u,

and β(ΠDmum) converges weakly in L2(Ω) to some function β.

It is however not possible in general to deduce from Properties (P1)–(P3) that
β = β(u). An additional compactness property of the sequence (XDm,0, ΠDm ,
∇Dm)m∈N is required to establish this equality, and thus complete the con-
vergence analysis of the scheme. This property reads

(P4) for any um ∈ XDm,0 such that (∇Dmum)m∈N is bounded in L2(Ω)d,
(ΠDmum)m∈N is relatively compact in L2(Ω).

(1.35)
This property can be established for spaces and operators coming from the
mass-lumped P1 finite element method.

The discrete elements (XD,0, ΠD,∇D) and Properties (P1), (P2), (P3), (P4)
are at the core of the definition and properties of the gradient discretisation
method (GDM) (with (P3) in fact implying (P1)). A piecewise constant re-
construction ΠD, as in (1.33), is a fifth property that is instrumental for some
non-linear problems.



2

Dirichlet boundary conditions

The gradient discretisation method (GDM) is a design and analysis framework
for numerical schemes for elliptic and parabolic partial differential equations.
As suggested by its name, the GDM relies on a gradient discretisation (GD),
denoted by D, which contains at least the three following discrete entities:

• a discrete space of unknowns XD, which is a finite dimensional space
of discrete unknowns – e.g., the values at the nodes of a mesh (as in the
conforming P1 finite element method), at particular point in the mesh
cells (as in the TPFA-CG scheme), or at particular points on the mesh
faces (as in the non-conforming P1 finite element method),

• a function reconstruction operator ΠD, which creates from an element
of XD a function defined a.e. on the physical domain Ω.

• a gradient reconstruction operator ∇D, which builds a “discrete gra-
dient” (vector-valued function) defined a.e. on Ω from the discrete un-
knowns.

The idea of the GDM is to construct a scheme by replacing, in the weak
formulation of the problem to be solved, the continuous space and operators
by discrete ones coming from a GD. The scheme thus obtained is called a
gradient scheme (GS).

The convergence analysis of the GDM depends, of course, on the nature of
the PDE to be solved. The definition of the GD, on the other hand, depends
to a large extent only on the boundary conditions (but a common abstract
framework can be designed to cover various BCs at once, see Appendix A).
The present chapter deals with Dirichlet boundary conditions, and is split in
two sections. Section 2.1 covers homogeneous Dirichlet boundary conditions,
and Section 2.2 considers non-homogeneous Dirichlet boundary conditions. In
each section, the concept of gradient discretisation is defined, along with a
list of the properties of the spaces and mappings that are important for the
convergence analysis of the GDM. The corresponding GSs for linear and some
non-linear elliptic PDEs are then described, and their convergence analysis is
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performed. Error estimates are provided in the linear case. In the non-linear
case, the convergence is proved thanks to compactness arguments.
The GDM for boundary conditions other than Dirichlet BCs is detailed in
Chapter 3, and Part II analyses the GDM for linear, non-linear and degenerate
parabolic problems.
In this chapter, we let p ∈ (1,+∞) be given.

2.1 Homogeneous Dirichlet boundary conditions

This section is devoted to the notion and the various required properties of a
gradient discretisation for homogeneous Dirichlet boundary conditions. Then,
the corresponding gradient schemes for linear and non-linear elliptic PDEs
are presented and their convergence is analysed.

2.1.1 Gradient discretisations

Definition 2.1 (GD, homogeneous Dirichlet BCs).
A gradient discretisation D for homogeneous Dirichlet conditions is defined
by D = (XD,0, ΠD,∇D), where:

1. the set of discrete unknowns XD,0 is a finite dimensional real vector space,
2. the function reconstruction ΠD : XD,0 → Lp(Ω) is a linear mapping that

reconstructs, from an element of XD,0, a function over Ω,
3. the gradient reconstruction ∇D : XD,0 → Lp(Ω)d is a linear mapping

which reconstructs, from an element of XD,0, a “gradient” (vector-valued
function) over Ω,

4. the gradient reconstruction is such that ‖ · ‖D := ‖∇D · ‖Lp(Ω)d is a norm
on XD,0.

The following sections present gradient schemes for several problems, start-
ing from such a gradient discretisation. In order to show the convergence of
the scheme, we use some properties of consistency and stability. As in the
framework of the finite element method, stability is obtained through some
uniform coercivity of the discrete operator which relies on a discrete Poincaré
inequality.

Definition 2.2 (Coercivity, Dirichlet BCs)

If D is a gradient discretisation in the sense of Definition 2.1, define
CD as the norm of the linear mapping ΠD:

CD = max
v∈XD,0\{0}

‖ΠDv‖Lp(Ω)

‖v‖D
. (2.1)
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A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 2.1 is coercive if there exists CP ∈ R+ such that CDm ≤ CP for
all m ∈ N.

Remark 2.3 (Discrete Poincaré inequality). Equation (2.1) yields the discrete
Poincaré inequality ‖ΠDv‖Lp(Ω) ≤ CD ‖∇Dv‖Lp(Ω)d for all v ∈ XD,0.

The consistency properties that we need indicate how a regular function (and
its gradient) are more or less well approximated by some function and gradient
which are reconstructed from the space XD,0. The function SD which we
introduce hereafter is often called “interpolation error” in the framework of
finite elements.

Definition 2.4 (GD-consistency, homogeneous Dirichlet BCs)

If D is a gradient discretisation in the sense of Definition 2.1, define
SD : W 1,p

0 (Ω)→ [0,+∞) by

∀ϕ ∈W 1,p
0 (Ω) ,

SD(ϕ) = min
v∈XD,0

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
.

(2.2)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 2.1 is GD-consistent, or consistent for short, if

∀ϕ ∈W 1,p
0 (Ω), lim

m→∞
SDm(ϕ) = 0. (2.3)

Remark 2.5 (Definition of the interpolant ID). Since the Lp(Ω) and Lp(Ω)d

norms are strictly convex, for each ϕ ∈W 1,p
0 (Ω) there is a unique IDϕ ∈ XD,0

that realises the minimum in SD(ϕ), that is, such that

SD(ϕ) = ‖ΠDIDϕ− ϕ‖Lp(Ω) + ‖∇DIDϕ−∇ϕ‖Lp(Ω)d .

We will write

IDϕ = argmin
v∈XD,0

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
.

Note that ID , even though uniquely defined, is not necessarily a linear map.

In the case p = 2, a linear interpolant I
(2)
D : W 1,p

0 (Ω)→ XD,0 can be defined
by setting

I
(2)
D ϕ = argmin

v∈XD,0

(
‖ΠDv − ϕ‖2L2(Ω) + ‖∇Dv −∇ϕ‖2L2(Ω)d

)1/2

.
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This interpolant will be used to establish error estimates for linear parabolic
equations (see the proof of Theorem 5.3, which also contains a proof of the

linearity of I
(2)
D and of its approximation properties).

A well-known property of the gradient operator in H1
0 is the so-called grad-div

duality; the Stokes formula gives:∫
Ω

(∇u ·ϕ+ u divϕ)dx = 0, ∀u ∈ H1
0 (Ω),∀ϕ ∈ Hdiv(Ω). (2.4)

where Hdiv(Ω) = {ϕ ∈ L2(Ω)d : divϕ ∈ L2(Ω)}. When dealing with non-
conforming methods, this property is no longer exact at the discrete level.
The concept of limit-conformity which we now introduce states that the dis-
crete gradient and divergence operator satisfy this property asymptotically.
Since we shall be dealing with non-linear problems, we introduce, for any
q ∈ (1,+∞), the space W q

div(Ω) of functions in (Lq(Ω))d with divergence in
Lq(Ω):

W q
div(Ω) = {ϕ ∈ Lq(Ω)d : divϕ ∈ Lq(Ω)}. (2.5)

We recall that the space W 1,2
0 (Ω) is commonly denoted by H1

0 (Ω) and that
W 2

div(Ω) = Hdiv(Ω) (see notations for Sobolev spaces in Section D.1.2).

Definition 2.6 (Limit-conformity, Dirichlet BCs)

If D is a gradient discretisation in the sense of Definition 2.1, let p′ =
p
p−1 and define WD: W p′

div(Ω)→ [0,+∞) by

∀ϕ ∈W p′

div(Ω) ,

WD(ϕ) = sup
u∈XD,0\{0}

∣∣∣∣∫
Ω

(∇Du(x) ·ϕ(x) +ΠDu(x)divϕ(x)) dx

∣∣∣∣
‖u‖D

.

(2.6)
A sequence (Dm)m∈N of gradient discretisations is limit-conforming
if

∀ϕ ∈W p′

div(Ω), lim
m→∞

WDm(ϕ) = 0. (2.7)

It is clear from its definition that the quantity WD measures how well the
reconstructed function and gradient satisfy the divergence (Stokes) formula
(2.4). If the method is conforming in the sense that ΠD(XD,0) ⊂ W 1,p

0 (Ω)
and ∇Du = ∇(ΠDu) for all u ∈ XD,0, then WD ≡ 0. In general, WD measures
the defect of conformity of the method, and must vanish in the limit – hence
the name “limit-conformity” for the above property.

The following lemma shows that the coercivity is actually a consequence of
the limit-conformity.



2.1 Homogeneous Dirichlet boundary conditions 21

Lemma 2.7 (Limit-conformity implies coercivity, Dirichlet BCs).
Any sequence of gradient discretisations that is limit-conforming in the sense
of Definition 2.6 is also coercive in the sense of Definition 2.2.

Proof. Let (Dm)m∈N be a limit-conforming sequence of GDs, and define

E =

{
ΠDmv

‖v‖Dm
∈ Lp(Ω) : m ∈ N , v ∈ XDm,0\{0}

}
.

Proving the coercivity of (Dm)m∈N consists in proving that E is bounded
in Lp(Ω). Let ` ∈ (Lp(Ω))′. There is f ∈ Lp

′
(Ω) such that, for all w ∈

Lp(Ω), `(w) =
∫
Ω
f(x)w(x)dx. Let ϕ ∈ W p′

div(Ω) be such that divϕ = f

(for example, take ϕ = −|∇u|p−2∇u where u is the solution in W 1,p
0 (Ω) of

−div(|∇u|p−2∇u) = f). For z ∈ E, take m ∈ N and v ∈ XDm,0\{0} such that

z =
ΠDmv
‖v‖Dm

and write

|`(z)| = 1

‖v‖Dm

∣∣∣∣∫
Ω

ΠDmv(x)f(x)dx

∣∣∣∣
≤ 1

‖v‖Dm

∣∣∣∣∫
Ω

(ΠDmv(x)divϕ(x) +∇Dmv(x) ·ϕ(x)) dx

∣∣∣∣
+

1

‖∇Dmv‖Lp(Ω)d

∣∣∣∣∫
Ω

∇Dmv(x) ·ϕ(x)dx

∣∣∣∣
≤WDm(ϕ) + ‖ϕ‖Lp′ (Ω)d . (2.8)

In the last line, Hölder’s inequality (D.5) was used. Since (Dm)m∈N is limit-
conforming, (WDm(ϕ))m∈N converges to 0, and is therefore bounded. Estimate
(2.8) thus shows that {`(z) : z ∈ E} is bounded by some constant depending
on `. Since this is valid for any ` ∈ (Lp(Ω))′, the Banach–Steinhaus theorem
[33, Theorem 2.2] (sometimes called “Uniform Boundedness Principle”) en-
ables us to conclude that E is bounded in Lp(Ω).

The following equivalent condition for the limit-conformity property facilitates
the proof of the regularity of a possible limit (Lemma 2.16 below).

Lemma 2.8 (On limit-conformity, Dirichlet BCs). Let D be a gradient

discretisation in the sense of Definition 2.1. Set p′ = p
p−1 and define W̃D:

W p′

div(Ω)×XD,0 → [0,+∞) by

∀(ϕ, u) ∈W p′

div(Ω)×XD,0 ,

W̃D(ϕ, u) =

∫
Ω

(∇Du(x) ·ϕ(x) +ΠDu(x)divϕ(x)) dx.
(2.9)

A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1
is limit-conforming if and only if, for any sequence um ∈ XDm,0 such that
(‖um‖Dm)m∈N is bounded,
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∀ϕ ∈W p′

div(Ω), lim
m→∞

W̃Dm(ϕ, um) = 0. (2.10)

Proof. Let us remark that

WD(ϕ) = sup
u∈XD,0\{0}

|W̃D(ϕ, u)|
‖u‖D

.

The proof that (2.7) implies (2.10) is then straightforward, since |W̃D(ϕ, u)| ≤
‖u‖DWD(ϕ). Let us prove the converse by way of contradiction. If (2.7) does

not hold then there exists ϕ ∈W p′

div(Ω), ε > 0 and a subsequence of (Dm)m∈N,
still denoted by (Dm)m∈N, such that WDm(ϕ) ≥ ε for all m ∈ N. We can then
find um ∈ XDm,0 \ {0} such that

|W̃D(ϕ, um)| ≥ 1

2
ε‖um‖Dm .

Considering the bounded sequence (um/‖um‖Dm)m∈N, we get a contradiction
with (2.10).

Dealing with generic non-linearity often requires additional compactness prop-
erties on the scheme.

Definition 2.9 (Compactness, Dirichlet BCs)

A sequence (Dm)m∈N of gradient discretisations in the sense of Def-
inition 2.1 is compact if, for any sequence um ∈ XDm,0 such that
(‖um‖Dm)m∈N is bounded, the sequence (ΠDmum)m∈N is relatively
compact in Lp(Ω).

Remark 2.10 (Compactly embedded sequence). Let (Dm)m∈N be a sequence of
gradient discretisations in the sense of Definition 2.1, and define the space
Xm = ΠDm(XDm,0) with norm

‖w‖Xm = min{‖u‖Dm : u ∈ XDm,0 such that ΠDmu = w}.

Then the sequence (Dm)m∈N is compact in the sense of Definition 2.9 if and
only if the sequence (Xm)m∈N is compactly embedded in Lp(Ω) in the sense
of Definition C.4.

Compactness is stronger than coercivity, as stated in the following lemma; in
fact, coercivity is required in linear problems, whereas compactness is not (see
Corollary 2.32 and Remark 2.33).

Lemma 2.11 (Compactness implies coercivity, Dirichlet BCs). Any
sequence of gradient discretisations that is compact in the sense of Definition
2.9 is also coercive in the sense of Definition 2.2.
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Proof. Let (Dm)m∈N be a compact sequence of GDs, and assume that it is
not coercive. Then there exists a subsequence of (Dm)m∈N (denoted in the
same way) such that, for all m ∈ N, there exists um ∈ XDm,0 \ {0} with

lim
m→∞

‖ΠDmum‖Lp(Ω)

‖um‖Dm
= +∞.

Setting vm = um/‖um‖Dm , this gives limm→∞ ‖ΠDmvm‖Lp(Ω) = +∞. But
‖vm‖Dm = 1 and the compactness of the sequence of discretisations therefore
implies that the sequence (ΠDmvm)m∈N is relatively compact in Lp(Ω). This
gives a contradiction.

Remark 2.12 (Existence of GD-consistent, limit-conforming and compact se-
quence of GDs). Part III provides examples of GD-consistent, limit-conforming
and compact sequence of GDs. One of the simplest of them is Galerkin gradient
discretisations (see Section 8.1), which only uses the existence of a countable
dense family of elements in W 1,p

0 (Ω).

Let us turn to a property that we shall often require on the function recon-
struction ΠD. Indeed, it is very often handy to obtain piecewise constant
functions as approximate functions, the reason being that piecewise constant
functions commute with any non-linearity. This is a key argument for non-
linear degenerate parabolic problems.

Definition 2.13 (Piecewise constant reconstruction)

Let D = (XD,0, ΠD,∇D) be a gradient discretisation in the sense of
Definition 2.1. The operator ΠD : XD,0 → Lp(Ω) is a piecewise con-
stant reconstruction if there exists a basis (ei)i∈B of XD,0 and a family
of disjoint subsets (Ωi)i∈B of Ω such that ΠDu =

∑
i∈B ui1Ωi for all

u =
∑
i∈B uiei ∈ XD,0, where 1Ωi is the characteristic function of Ωi.

In other words, ΠDu is the piecewise constant function equal to ui on
Ωi, for all i ∈ B.

The set B is usually the natural set of (geometrical entities attached to the)
discrete unknowns of the scheme. Moreover, ‖ΠD · ‖Lp(Ω) is not requested to
be a norm on XD,0. Indeed, all unknowns are involved in the definition of
the reconstructed gradients, but in several examples some unknowns are not
used to reconstruct the functions itself. Hence some of the subsets Ωi may be
empty, which prevents ‖ΠD · ‖Lp(Ω) from being a norm.

Remark 2.14. If ΠD is a piecewise constant reconstruction and g : R 7→ R we
have

g(ΠDu(x)) = ΠDg(u)(x) for a.e. x ∈ Ω , ∀u ∈ XD,0
where, for u =

∑
i∈B uiei, we set g(u) =

∑
i∈B g(u)iei ∈ XD,0 with g(u)i =

g(ui). We also have
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ΠDu(x)ΠDv(x) = ΠD(uv)(x) for a.e. x ∈ Ω , ∀u, v ∈ XD,0,

where uv ∈ XD,0 is defined by (uv)i = uivi for all i ∈ B.
Note that these definitions of g(u) or uv depend on the choice of the discrete
unknowns B in XD,0. We should therefore denote gB(u) or (uv)B to emphasise
the dependency on B but, in practice, we will remove this superscript B as
the discrete unknowns are usually canonically chosen and fixed throughout
the whole study of a gradient scheme.

Remark 2.15 (Independence of the notions of GD-consistency, limit-conformity and
compactness)
Lemmata 2.7 and 2.11 show that the coercivity property is a consequence of the

limit-conformity and of the compactness property. This raises the questions of fur-
ther links between the properties of gradient discretisations. The following examples
show that no such general link exists between the limit-conformity, the compactness
and the GD-consistency.

• Limit-conforming and compact, but not GD-consistent. Let E be a finite-
dimensional subspace of W 1,p

0 (Ω), and consider the sequence (Dm)m∈N of GDs
defined, for all m ∈ N, by: XDm,0 = E, ΠDmu = u and ∇Dmu = ∇u. Functions
in E satisfy the Stokes formula, so WDm(ϕ) = 0 for all m. Since E is finite di-
mensional, the compactness of (Dm)m∈N is trivial. However, no function outside
E can be approximated by elements of XDm,0, so limm→∞ SDm(ϕ) 6= 0 if ϕ 6∈ E
and (Dm)m∈N is not consistent.

• GD-consistent and limit-conforming, but not compact. Consider m ∈ N?, h =
1/(2m), and the P1 finite element basis (ϕi)i=1,...,2m−1 associated with the nodes
(ih)i=1,...,2m−1. Let XDm,0 = {u = (ui)i=1,...,2m−1}, û =

∑2m−1
i=1 uiϕi, ∇Dmu =

û′, and ΠDmu(x) = û(x) + û′(x)− û′(x+ ε(x)), with

∀k = 0, . . . ,m− 1 ,

{
ε(x) = h if x ∈ (2kh, (2k + 1)h),
ε(x) = −h if x ∈ ((2k + 1)h, (2k + 2)h).

To see that (Dm)m∈N is limit-conforming, write, for ψ ∈W p′

div(Ω),∫ 1

0

ΠDmu(x)ψ′(x)dx =

∫ 1

0

û(x)ψ′(x)dx+

∫ 1

0

û′(x)(ψ′(x)− ψ′(x+ ε(x)))dx,

and notice that the second term tends to 0 by continuity in means of ψ′ in
Lp
′
((0, 1)). The standard interpolation of a regular function ϕ, defined by ui =

ϕ(ih), gives an element of W 1,p
0 ((0, 1)) that converges in this space to ϕ; this

shows the GD-consistency. Considering the sequence (um)m∈N defined by um2k =
0 and um2k+1 = h for all k = 0, . . . ,m−1, we obtain a sequence such that ‖um‖Dm
is constant, but ΠDmu

m − ûm oscillates between 2 and −2 with ûm uniformly
converging to 0, showing that (Dm)m∈N is not compact.

• GD-consistent and compact, but not limit-conforming. Consider m ∈ N?, h =
1/m, and the P1 finite element basis (ϕi)i=1,...,m associated with the nodes
(ih)i=1,...,m. Set XDm,0 = {u = (ui)i=1,...,m}, ΠDmu =

∑m
i=1 uiϕi and ∇Dmu =

(ΠDmu)′. Note that only the left Dirichlet boundary condition is satisfied. The
sequence (Dm)m∈N is GD-consistent and compact, but not limit-conforming in
W 1,p

0 ((0, 1)), since
∫ 1

0
(ΠDu(x)ϕ′(x) +∇Du(x)ϕ(x))dx = ϕ(1)uN .
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The convergence analysis of sequences of approximate solutions to a partial
differential equation (PDE) usually starts by finding a priori estimates on the
solutions to the schemes. In the framework of gradient schemes, this means
proving that ‖uD‖D remains bounded. Lemma 2.16 below states that, if such
a bound holds, we can find a weak limit to the reconstructed functions and
their gradients. Combined if necessary with the compactness of the gradient
discretisations, this opens the way to the last stage of the convergence analysis,
which consists in showing that this limit is a solution to the PDE.

Lemma 2.16 (Regularity of the limit, homogeneous Dirichlet BCs).
Let (Dm)m∈N be a limit-conforming sequence of gradient discretisations, in
the sense of Definition 2.6. Let um ∈ XDm,0 be such that (‖um‖Dm)m∈N is
bounded. Then there exist a subsequence of (Dm, um)m∈N, denoted in the same
way, and u ∈W 1,p

0 (Ω) such that ΠDmum converges weakly in Lp(Ω) to u and
∇Dmum converges weakly in Lp(Ω)d to ∇u.

Proof. Owing to Lemma 2.7, (Dm)m∈N is coercive and thus the sequence
(ΠDmum)m∈N is bounded in Lp(Ω). Therefore, there exists a subsequence
of (Dm, um)m∈N, denoted in the same way, and there exist u ∈ Lp(Ω) and
v ∈ Lp(Ω)d such that ΠDmum converges weakly in Lp(Ω) to u and ∇Dmum
converges weakly in Lp(Ω)d to v. Extend ΠDmum, u, ∇Dmum and v by 0
outside Ω; the previous convergence results hold respectively in Lp(Rd) and
Lp(Rd)d. Using the limit-conformity of (Dm)m∈N and the bound on ‖um‖Dm ,
passing to the limit in (2.10) gives

∀ϕ ∈W p′

div(Rd) ,
∫
Rd

(v(x) ·ϕ(x) + u(x)divϕ(x)) dx = 0.

Being valid for any ϕ ∈ C∞c (Rd)d, this relation proves both that v = ∇u and
that u ∈W 1,p

0 (Ω).

Let us now present some equivalent or sufficient conditions for the GD-
consistency, limit-conformity and compactness of a sequence of gradient dis-
cretisations.

Lemma 2.17 (Equivalent condition for GD-consistency, homogene-
ous Dirichlet BCs). A sequence (Dm)m∈N of gradient discretisations is GD-
consistent in the sense of Definition 2.4 if and only if there exists a dense
subset Ws in W 1,p

0 (Ω) such that

∀ψ ∈Ws , lim
m→∞

SDm(ψ) = 0. (2.11)

Proof. Let us assume that (2.11) holds and let us prove (2.3) (the converse
is straightforward, take Ws = W 1,p

0 (Ω)). Let ϕ ∈ W 1,p
0 (Ω) and ε > 0. Take

ψ ∈ Ws such that ‖ϕ − ψ‖W 1,p
0 (Ω) ≤ ε. For v ∈ XD,0, the triangle inequality

yields
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‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

≤ ‖ΠDv − ψ‖Lp(Ω) + ‖∇Dv −∇ψ‖Lp(Ω)d

+ ‖ϕ− ψ‖Lp(Ω) + ‖∇ϕ−∇ψ‖Lp(Ω)d .

Hence, SDm(ϕ) ≤ SDm(ψ)+‖ϕ− ψ‖W 1,p
0 (Ω) ≤ SDm(ψ)+ε, we get from (2.11)

that lim supm→∞ SDm(ϕ) ≤ ε. The proof is then completed by letting ε→ 0.

Lemma 2.18 (Equivalent condition for limit-conformity, Dirichlet
BCs). Let (Dm)m∈N be a sequence of gradient discretisations. Then (Dm)m∈N
is limit-conforming in the sense of Definition 2.6 if and only if it is coercive

in the sense of Definition 2.2, and there exists a dense subset Ww in W p′

div(Ω)
(endowed with the norm ‖ϕ‖

Wp′
div(Ω)

= ‖ϕ‖Lp′ (Ω)d + ‖divϕ‖Lp′ (Ω)) such that

∀ψ ∈Ww, lim
m→∞

WDm(ψ) = 0. (2.12)

Remark 2.19. If Ω is locally star-shaped, then Ww = C∞c (Rd)d is dense in

W p′

div(Ω) (this can be established by following the technique in the proof of
[132, Theorem 1.1] or [74, Lemma A.1]) and can therefore be used in Lemma
2.18.
We recall that Ω is locally star-shaped if, for any x ∈ ∂Ω, there is a neigh-
bourhood Ox of x such that Ox ∩ Ω is star-shaped with respect to some yx
(i.e. for all z ∈ Ox ∩Ω, [yx, z] ⊂ Ox ∩Ω). In particular, polytopal open sets
as in Section 7.1.1 are locally star-shaped.

Proof. Let us first assume that (Dm)m∈N is limit-conforming. Lemma 2.7
shows that (Dm)m∈N is coercive, and (2.12) is implied by (2.7). Reciprocally,
let us assume that (Dm)m∈N is coercive (that is, there is CP ∈ R+ such

that CDm ≤ CP ) and that (2.12) holds. To prove (2.7), let ϕ ∈ W p′

div(Ω),
ε > 0 and take ψ ∈ Ww such that ‖ϕ − ψ‖

Wp′
div(Ω)

≤ ε. This means that

‖ϕ−ψ‖Lp′ (Ω)d ≤ ε and ‖divϕ− divψ‖Lp′ (Ω) ≤ ε. We have

WDm(ϕ) ≤WDm(ψ) + ‖ϕ−ψ‖Lp′ (Ω)d + CP ‖divϕ− divψ‖Lp′ (Ω)

≤WDm(ψ) + (1 + CP )ε.

Using (2.12) we deduce that lim supm→∞WDm(ϕ) ≤ (1 +CP )ε and the proof
is completed by letting ε→ 0.

Remark 2.20 (Condition (2.12) alone does not imply limit-conformity)
Without the coercivity property, (2.12) alone is not sufficient to ensure the limit-
conformity. This is illustrated by the following example, a modification of one of the
examples in Remark 2.15.
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Let Ω = (0, 1) and take m ∈ N?, h = 1/(2m), and (ϕi)i=1,...,2m−1 the P1 fi-
nite element basis associated with the nodes (ih)i=1,...,2m−1. Let XDm,0 = {u =
(ui)i=1,...,2m−1 , ui ∈ R}, û =

∑2m−1
i=1 uiϕi, ∇Dmu = û′, and ΠDmu(x) =

û(x) + 1√
h

(û′(x)− û′(x+ ε(x))) for all x ∈ (0, 1), with

∀k = 0, . . . ,m− 1 ,

{
ε(x) = h if x ∈ (2kh, (2k + 1)h),
ε(x) = −h if x ∈ ((2k + 1)h, (2k + 2)h).

Then, on one hand, (Dm)m∈N is GD-consistent (consider the natural P1 interpolation
of functions belonging to Ws = C2([0, 1]) ∩W 1,p

0 (Ω), and apply Lemma 2.17) and,
on the other hand, it satisfies (2.12) with Ww = C2([0, 1]). Indeed, if ψ ∈ C2([0, 1])
and u ∈ XDm,0 then∫ 1

0

ΠDmu(x)ψ′(x)dx+

∫ 1

0

∇Dmu(x)ψ(x)dx

=

∫ 1

0

û(x)ψ′(x)dx+

∫ 1

0

û′(x)ψ(x)dx+

∫ 1

0

û′(x)
1√
h

(ψ′(x)− ψ′(x+ ε(x)))dx.

Since û ∈ W 1,p
0 (Ω), the first two integrals in the right-hand side cancel out.

Moreover, 1√
h
|ψ′(x) − ψ′(x + ε(x))| ≤

√
h ‖ψ′′‖L∞(Ω) and thus WDm(ψ) ≤

√
h ‖ψ′′‖L∞(Ω) → 0 as m→∞.

The sequence (Dm)m∈N is however not coercive and thus, by Lemma 2.7, not limit-
conforming. To see this, define um ∈ XDm,0 by um2k = 0 and um2k+1 = h for all
k = 0, . . . ,m− 1. We have ‖∇Dmum‖Lp(Ω) = 1 for all m ∈ N. However, |ΠDmum −
ûm| = 2/

√
h → ∞ and |ûm| → 0, which shows that (ΠDmu

m)m∈N is not bounded
in Lp(Ω) and thus that the coercivity property is not satisfied by (Dm)m∈N.

Remark 2.21 (Abstract setting for GDs)
In Appendix A, an abstract setting allows the simultaneous analysis of all boundary
conditions in the GDM; abstract spaces and operators are introduced (see Section
A.1.1), enabling to recover some of the definitions and results given above, namely:
Definitions 2.2, 2.4, 2.6 and 2.9 (of GDs and of their coercivity, consistency, limit-
conformity and compactness) and Lemmas 2.7, 2.8, 2.11, 2.16, 2.17 and 2.18. How-
ever, for the sake of legibility, the theory of GDs for homogeneous Dirichlet boundary
conditions is fully developed here without reference to this abstract setting.

Lemma 2.22 (Equivalent condition for compactness, Dirichlet BCs).
Let D be a gradient discretisation in the sense of Definition 2.1 and let
TD : Rd → R+ be defined by

∀ξ ∈ Rd , TD(ξ) = max
v∈XD,0\{0}

‖ΠDv(·+ ξ)−ΠDv‖Lp(Rd)

‖v‖D
, (2.13)

where ΠDv has been extended by 0 outside Ω.
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The sequence (Dm)m∈N is compact in the sense of Definition 2.9 if and only
if

lim
|ξ|→0

sup
m∈N

TDm(ξ) = 0.

Proof.
This lemma is a consequence of Kolmogorov’s compactness theorem in Lebes-
gue spaces.

Step 1: we prove that the compactness of (Dm)m∈N in the sense of Definition
2.9 is equivalent to the relative compactness in Lp(Ω) of the set A = ∪m∈NAm,
where

Am = ΠDm
(
{u ∈ XDm,0, ‖u‖Dm = 1}

)
.

Indeed, any sequence in A is either contained in a finite union of Am, which
means that it remains bounded in a finite dimensional space, or has a sub-
sequence which can be written ΠDm(k)

um(k) for some increasing sequence

(m(k))k∈N ⊂ N and some um(k) ∈ XDm(k),0 with
∥∥um(k)

∥∥
Dm(k)

= 1. Hence,

the compactness of (Dm)m∈N gives the relative compactness of A in Lp(Ω).
Moreover, any sequence um ∈ XDm,0 such that ‖um‖Dm is bounded can be
written um = λmu

′
m with (λm)m∈N bounded and ‖u′m‖Dm = 1. We have then

ΠDmum = λmvm for some vm ∈ A and the relative compactness of A in Lp(Ω)
therefore shows that (Dm)m∈N is compact in the sense of Definition 2.9.

Step 2: a statement of Kolmogorov’s theorem.
Let w̃ ∈ Lp(Rd) be the extension of w ∈ Lp(Ω) by 0 outside Ω. A classical
statement of Kolmogorov’s compactness theorem is: A is relatively compact
in Lp(Ω) if and only it is bounded in Lp(Ω) and if

τA(ξ) := sup
w∈A
‖w̃(·+ ξ)− w̃‖Lp(Rd) → 0 as |ξ| → 0.

But τA is sub-additive. Indeed, for all ξ, ξ′ ∈ Rd we have

‖w̃(·+ ξ + ξ′)− w̃‖Lp(Rd)

≤ ‖w̃(·+ ξ + ξ′)− w̃(·+ ξ′)‖Lp(Rd) + ‖w̃(·+ ξ′)− w̃‖Lp(Rd)

= ‖w̃(·+ ξ)− w̃‖Lp(Rd) + ‖w̃(·+ ξ′)− w̃‖Lp(Rd) ,

and therefore τA(ξ + ξ′) ≤ τA(ξ) + τA(ξ′). Hence, if lim|ξ|→0 τA(ξ) = 0, then

τA is finite on a neighbourhood of 0 in Rd and its sub-additivity shows that
it is in fact finite on Rd.
Now, taking ξ0 ∈ Rd such that |ξ0| > diam(Ω), for all w ∈ A we see that
w̃(·+ ξ) and w̃ have disjoint supports and therefore

τA(ξ0) ≥
(∫

Rd
|w̃(x+ ξ0)|p dx+

∫
Rd
|w̃(x)|p dx

)1/p

= 21/p ‖w‖Lp(Ω) .
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The finiteness of τA(ξ0) then ensures that A is bounded in Lp(Ω). Kol-
mogorov’s theorem can therefore be re-stated as: A is relatively compact in
Lp(Ω) if and only if lim|ξ|→0 τA(ξ) = 0.

Step 3: conclusion.
We have

A =
⋃
m∈N

ΠDm

({
v

‖v‖Dm
, v ∈ XDm,0 \ {0}

})
and thus, since

TDm(ξ) = max
v∈XDm,0\{0}

∥∥∥∥∥ΠDm
(

v

‖v‖Dm

)
(·+ ξ)−ΠDm

(
v

‖v‖Dm

)∥∥∥∥∥
Lp(Rd)

(the functions being extended by 0 outside Ω), we deduce supm∈N TDm(ξ) =
τA(ξ). The conclusion then follows from Steps 1 and 2.

When used to establish error estimates in the GDM framework, the con-
sistency measure SD is applied to the solution of the PDE, and the limit-
conformity measure WD is applied to some function of this solution’s gradient.
Oftentimes, specific regularity properties are known on this solution, and SD
and WD are thus of particular interest on subspaces Ws and Ww of W 1,p

0 (Ω)

and W p′

div(Ω), respectively. Then Ws is continuously embedded in W 1,p
0 (Ω),

which means that ‖·‖W 1,p(Ω) ≤ Cs ‖·‖Ws
and thus, for ϕ ∈Ws,

SD(ϕ) ≤ ‖ΠD0− ϕ‖Lp(Ω) + ‖∇D0−∇ϕ‖Lp(Ω)d

≤ 2 ‖ϕ‖W 1,p(Ω) ≤ 2Cs ‖ϕ‖Ws
.

Similarly, Ww is continuously embedded in W p′

div(Ω), so that ‖·‖
Wp′

div(Ω)
≤

Cw ‖·‖Ww
and, for ϕ ∈Ww, using Hölder’s inequality (D.5) and the definition

(2.1) of CD,

WD(ϕ) = sup
v∈XD,0\{0}

1

‖∇Dv‖Lp(Ω)d

∫
Ω

(divϕ(x)ΠDv(x) +ϕ(x) · ∇Dv(x))dx

≤ sup
v∈XD,0\{0}

1

‖∇Dv‖Lp(Ω)d

(
(CD + 1) ‖∇Dv‖Lp(Ω)d ‖ϕ‖Wp′

div(Ω)

)
≤ (CD + 1)Cw ‖ϕ‖Ww

.

These considerations justify the following notion of space size of a GD.

Definition 2.23 (Space size of a GD with respect to continuously
embedded spaces). Let Ws (resp. Ww) be a Banach space continuously

embedded in W 1,p
0 (Ω) (resp. W p′

div(Ω)). Let D be a gradient discretisation in the
sense of Definition 2.1, and let sD(Ws) ≥ 0 and wD(Ww) ≥ 0 be respectively
defined by
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sD(Ws) = sup

{
SD(ϕ)

‖ϕ‖Ws

: ϕ ∈Ws \ {0}
}
, (2.14)

wD(Ww) = sup

{
WD(ϕ)

‖ϕ‖Ww

: ϕ ∈Ww \ {0}
}
. (2.15)

The space size of D with respect to Ws and Ww is then defined by

hD(Ws;Ww) = max(sD(Ws), wD(Ww)). (2.16)

Remark 2.24. Under the hypotheses of Definition 2.23, if Ŵs (resp. Ŵw) is
a Banach space continuously embedded in Ws (resp. Ww) with ‖·‖Ws

≤
Ĉs ‖·‖Ŵs

and ‖·‖Ww
≤ Ĉw ‖·‖Ŵw

, then

hD(Ŵs; Ŵw) ≤ max(Ĉs, Ĉw)hD(Ws;Ww)

Remark 2.25 (Link between hD(Ws;Ww) and the mesh size for mesh-based gradient
discretisations)
For the mesh-based examples of GDs given in Part III, the following results are

established (here, hM is the mesh size defined by (7.6)):

• There exists C > 0 depending only on regularity factors of the mesh such that

hD(W 2,∞(Ω) ∩W 1,p
0 (Ω);W 1,∞(Ω)d) ≤ ChM.

• In the case p > d/2, there exists C > 0 depending only on regularity factors of
the mesh such that

hD(W 2,p(Ω) ∩W 1,p
0 (Ω);W 1,p′(Ω)d) ≤ ChM.

• For some particular GDs of higher order (see Chapters 8, 9, 10 and 11), there
exists C > 0 depending only on regularity factors of the mesh such that, for
some k ≥ 2,

hD(Ck+1(Ω) ∩W 1,p
0 (Ω);Ck(Ω)d) ≤ ChkM.

Lemma 2.26 (Necessary and sufficient conditions for consistency
and limit-conformity, homogeneous Dirichlet BCs). Let Ws be a Ba-
nach space compactly and densely embedded in W 1,p

0 (Ω), and let Ww be a

Banach space continuously and densely embedded in W p′

div(Ω), such that Ww

is compactly embedded in Lp
′
(Ω)d.

Assume that (Dm)m∈N is a compact sequence of gradient discretisations in the
sense of Definition 2.9. Then (Dm)m∈N is GD-consistent and limit-conforming
if and only if hDm(Ws;Ww)→ 0 as m→∞, where hDm(Ws;Ww) is defined
by (2.16).



2.1 Homogeneous Dirichlet boundary conditions 31

Remark 2.27 (Classical Ws and Ww satisfy the hypotheses of the lemma)
The hypotheses on Ws and Ww in Lemma 2.26 hold in the cases in Remark 2.25,
for which, respectively,

• Ws = W 2,∞(Ω) ∩W 1,p
0 (Ω) and Ww = W 1,∞(Ω)d,

• Ws = W 2,p(Ω) ∩W 1,p
0 (Ω) and Ww = W 1,p′(Ω)d,

• Ws = Ck+1(Ω) ∩W 1,p
0 (Ω) and Ww = Ck(Ω)d.

In all these examples, Ω is a polytopal open set, so the Rellich compactness embed-
dings apply.

Proof. Let us first consider a GD-consistent sequence (Dm)m∈N and let us
prove, by way of contradiction, that sDm(Ws) defined by (2.14) tends to 0
as m → ∞. Assume therefore that there exists C > 0 and a subsequence of
(Dm)m∈N, again denoted by (Dm)m∈N, such that for all m ∈ N, we can find
ϕm ∈Ws \ {0} satisfying SDm(ϕm) ≥ C ‖ϕm‖Ws

. Hence, for all v ∈ XDm,0,

‖ΠDmv − ϕm‖Lp(Ω) + ‖∇Dmv −∇ϕm‖Lp(Ω)d ≥ C ‖ϕm‖Ws
.

Divide this relation by ‖ϕm‖Ws
and set ϕ̃m = ϕm/ ‖ϕm‖Ws

and w =
v/ ‖ϕm‖Ws

. The vector v being any vector in XDm,0, w is also free to be
any vector in this space. Hence, for all w ∈ XD,0,

‖ΠDmw − ϕ̃m‖Lp(Ω) + ‖∇Dmw −∇ϕ̃m‖Lp(Ω)d ≥ C.

Since ‖ϕ̃m‖Ws
= 1, the compact embedding of Ws in W 1,p

0 (Ω) gives the
existence of a subsequence of (Dm, ϕm)m∈N, again denoted by (Dm, ϕm)m∈N,
such that ϕ̃m → ψ in W 1,p(Ω) for some ψ ∈W 1,p

0 (Ω). The triangle inequality
then yields, for all w ∈ XDm,0,

‖ΠDmw − ψ‖Lp(Ω) + ‖∇Dmw −∇ψ‖Lp(Ω)d

≥ C − (‖ψ − ϕ̃m‖Lp(Ω) + ‖∇ψ −∇ϕ̃m‖Lp(Ω)d), (2.17)

which implies

SDm(ψ) ≥ C − (‖ψ − ϕ̃m‖Lp(Ω) + ‖∇ψ −∇ϕ̃m‖Lp(Ω)d).

This shows that lim infm→∞ SDm(ψ) ≥ C, which is a contradiction with the
GD-consistency of (Dm)m∈N that gives SDm(ψ)→ 0 as m→∞.

We now take a limit-conforming sequence (Dm)m∈N and prove, still by con-
tradiction, that wDm(Ww) defined by (2.15) tends to 0 as m → ∞. Assume
that there exists C > 0 and a subsequence of (Dm)m∈N, again denoted by
(Dm)m∈N, such that, for all m ∈ N, we can find ϕm ∈ Ww \ {0} satisfying
WD(ϕm) ≥ C ‖ϕm‖Ww

. Setting ϕ̃m = ϕm/ ‖ϕm‖Ww
, we then have

WD(ϕ̃m) ≥ C. (2.18)
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Since ‖ϕ̃m‖Ww
= 1 and Ww is compactly embedded in Lp

′
(Ω)d, there exists

ψ ∈ Ww such that, up to a subsequence denoted the same way, ϕ̃m → ψ
strongly in Lp

′
(Ω)d and divϕ̃m → divψ weakly in Lp

′
(Ω). Relation (2.18)

gives vm ∈ XDm,0 \ {0} such that∫
Ω

(divϕ̃m(x)ΠDmvm(x) + ϕ̃m(x) · ∇Dmvm(x))dx ≥ C

2
‖∇Dmvm‖Lp(Ω)d .

The rescaling ṽm = vm/ ‖∇Dmvm‖Lp(Ω)d then enables us to write∫
Ω

(divϕ̃m(x)ΠDm ṽm(x) + ϕ̃m(x) · ∇Dm ṽm(x))dx ≥ C

2
. (2.19)

Since ‖ṽm‖Dm = 1, Lemma 2.16 and the compactness hypothesis on (Dm)m∈N
give a subsequence of (Dm,ϕm, vm)m∈N, again denoted by (Dm,ϕm, vm)m∈N,
such that ΠDm ṽm → v strongly in Lp(Ω) and ∇Dm ṽm → ∇v weakly in
Lp(Ω)d, for some v ∈ W 1,p

0 (Ω). Using the weak–strong convergence property

(Lemma D.8) and Stokes’ formula between functions in W 1,p
0 (Ω) and W p′

div(Ω),
we infer

lim
m→∞

∫
Ω

(divϕ̃m(x)ΠDm ṽm(x) + ϕ̃m(x) · ∇Dm ṽm(x))dx

=

∫
Ω

(divψ(x)v(x) +ψ(x) · ∇v(x))dx = 0.

This is a contradiction with (2.19), and the proof that hDm(Ws;Ww)→ 0 as
m→∞ is complete.

Finally, if we assume that hDm(Ws;Ww) → 0 as m → ∞, then the GD-
consistency and limit-conformity follow directly from Lemmas 2.17 and 2.18.

2.1.2 Gradient schemes for linear problems

In this section, linear problems are considered, so that p = 2 is chosen in all
the definitions of Section 2.1.1. We consider the following problem:

−div(Λ∇u) = f + div(F ) in Ω, (2.20a)

with boundary conditions
u = 0 on ∂Ω, (2.20b)

under the following assumptions:

• Ω is an open bounded connected subset of Rd (d ∈ N?), (2.21a)

• Λ is a measurable function from Ω to the set of d× d
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symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (2.21b)

• f ∈ L2(Ω) , F ∈ L2(Ω)d. (2.21c)

The assumptions on f and F include both the case of a right hand side of
(2.20a) in L2(Ω) (taking F = 0) and the case of a right hand side in H−1(Ω),
since H−1(Ω) = {divv : v ∈ L2(Ω)d}. Note also that the symmetry as-
sumption on Λ(x) is not mandatory to study the convergence of the GDM for
(2.20a), but it is commonly satisfied in applications. Under these hypotheses,
the weak solution of (2.20) is the unique function u satisfying:

u ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω),∫
Ω

Λ(x)∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx−
∫
Ω

F (x) · ∇v(x)dx.
(2.22)

Let us now introduce an approximation of Problem (2.22) by the GDM.

Definition 2.28 (GS, homogeneous Dirichlet BCs).
If D = (XD,0, ΠD,∇D) is a GD in the sense of Definition 2.1, then the related
gradient scheme for Problem (2.22) is defined by

Find u ∈ XD,0 such that for any v ∈ XD,0,∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =∫
Ω

f(x)ΠDv(x)dx−
∫
Ω

F (x) · ∇Dv(x)dx. (2.23)

Let (ξ(i))i=1,...,N be a basis of the space XD,0; the scheme (2.23) is equivalent
to solving the linear square system AU = B, where

u =

N∑
j=1

Ujξ
(j),

Aij =

∫
Ω

Λ(x)∇Dξ(j)(x) · ∇Dξ(i)(x)dx, (2.24)

Bi =

∫
Ω

f(x)ΠDξ
(i)(x)dx−

∫
Ω

F (x) · ∇Dξ(i)(x)dx.

The following theorem was first proved in [98] in the case F = 0. It provides
an upper bound for the approximation error of Problem (2.22) in terms of
the measures of GD-consistency and conformity defect, in the spirit of the
second Strang lemma [131]. This theorem also shows the optimality of this
upper bound as, up to a multiplicative constant, it is also a lower bound of
the approximation error.
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Theorem 2.29 (Control of the approximation error, homogeneous
Dirichlet BCs). Under Assumptions (2.21), let u ∈ H1

0 (Ω) be the solution of
Problem (2.22) (which implies that in the distribution sense −div(Λ∇u+F ) =
f ∈ L2(Ω) and therefore Λ∇u + F ∈ Hdiv(Ω)). Let D be a GD in the sense
of Definition 2.1. Then there exists one and only one uD ∈ XD,0 solution to
the GS (2.23); this solution satisfies the following inequalities:

‖∇u−∇DuD‖L2(Ω)d ≤
1

λ

[
WD(Λ∇u+ F ) + (λ+ λ)SD(u)

]
, (2.25)

‖u−ΠDuD‖L2(Ω) ≤
1

λ

[
CDWD(Λ∇u+ F ) + (CDλ+ λ)SD(u)

]
, (2.26)

where CD, SD and WD are respectively the norm of the reconstruction operator
ΠD, the GD-consistency defect and the conformity defect, defined by (2.1)–
(2.6).
Moreover, there holds

WD(Λ∇u+ F ) ≤ λ‖∇u−∇DuD‖L2(Ω)d , (2.27)

SD(u) ≤ ‖u−ΠDuD‖L2(Ω) + ‖∇u−∇DuD‖L2(Ω)d , (2.28)

which shows the existence of C1 > 0 and C2 > 0, only depending on λ and λ,
such that

C1 [SD(u) +WD(Λ∇u+ F )]

≤ ‖u−ΠDuD‖L2(Ω) + ‖∇u−∇DuD‖L2(Ω)d

≤ C2(1 + CD) [SD(u) +WD(Λ∇u+ F )] . (2.29)

Remark 2.30 (Error estimate with respect to the space size of the GD).
Under the hypotheses of Theorem 2.29, assume moreover that the coefficients
of Λ are Lipschitz-continuous, that F ∈ H1(Ω)d and that u ∈ H2(Ω)∩H1

0 (Ω)
(this regularity on u follows from the assumptions on Λ and F if d ≤ 3 and Ω
is convex or has a regular boundary). Let hD := hD(H2(Ω)∩H1

0 (Ω);H1(Ω)d)
be the space size of the GD, given by Definition 2.23. Then Theorem 2.29 gives
the existence of C3, depending only on CP ≥ CD, λ and λ, such that

‖u−ΠDuD‖L2(Ω) + ‖∇u−∇DuD‖L2(Ω)d

≤ C3(‖Λ∇u+ F ‖H1(Ω)d + ‖u‖H2(Ω))hD. (2.30)

For all the mesh-based GDs presented in this book, this provides an O(hM)
error estimate, where hM is the maximum of the diameters of the mesh cells.
Assume now that, for some k ∈ N?, Λ ∈ Ck(Ω)d×d, F ∈ Ck(Ω)d and u ∈
Ck+1(Ω) ∩ H1

0 (Ω). Let hD,k := hD(Ck+1(Ω) ∩ H1
0 (Ω);Ck(Ω)d). Then, by

Theorem 2.29, there exists C4, depending only on CP ≥ CD, λ and λ, such
that
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‖u−ΠDuD‖L2(Ω) + ‖∇u−∇DuD‖L2(Ω)d

≤ C4(‖Λ∇u+ F ‖Ck(Ω)d + ‖u‖Ck+1(Ω))hD,k. (2.31)

Some GDs described in Part III are of high order. This is the case of the Pk
conforming method of Chapter 8, the Pk non-conforming methods of Chapter
9, the RTk mixed methods of Chapter 10, and the Pk discontinuous Galerkin
methods of Chapter 11. For these methods, it is shown that there exists some
C > 0 depending only on the regularity factors of the mesh, such that hD,k ≤
ChkM, in which case (2.31) yields an O(hkM) error estimate.
Other high order methods are known to be GDMs, see for example the recent
work [59] concerning non-conforming virtual element methods [19, 38], non-
conforming mimetic finite differences [126], and hybrid high order schemes
[62].

Remark 2.31 (Super-convergence)
As noticed in Remark 2.30 above, the L2 estimate in Theorem 2.29 only provides
an O(hM) rate of convergence for low-order schemes. It is well known that several
of these schemes, e.g., conforming and non-conforming P1 finite elements, enjoy a
higher rate of convergence in L2 norm [84, 32, 30]. This phenomenon is known as
super-convergence. It is possible to establish, in the framework of gradient schemes,
an improved L2 estimate that provides such super-convergence results for various
schemes, including some for which super-convergence was previously not proved. See
[80].

Proof of Theorem 2.29. Let us first prove that, if (2.25) holds for any
solution uD ∈ XD,0 to Scheme (2.23), then the solution to Scheme (2.23) exists
and is unique. Indeed, let us prove that, assuming (2.25), the matrix denoted
by A of the linear system (2.24) is non-singular. This will be completed if we
prove AU = 0 implies U = 0. Thus, we consider the particular case where
f = 0 and F = 0 which gives a zero right-hand side. In this case the solution
u of (2.22) is equal a.e. to zero. Then from (2.25), we get that any solution
to the scheme satisfies ‖uD‖D = 0. Since ‖·‖D is a norm on XD,0 this leads
to uD = 0. Therefore (2.24) (as well as (2.23)) has a unique solution for any
right-hand side f and F .
Let us now prove that any solution uD ∈ XD,0 to Scheme (2.23) satisfies
(2.25) and (2.26). As noticed in the statement of the theorem, we can take
ϕ = Λ∇u+F ∈ Hdiv(Ω) in the definition (2.6) of WD. We then obtain, for a
given v ∈ XD,0,∣∣∣∣∫

Ω

∇Dv(x) · (Λ(x)∇u(x) + F (x)) +ΠDv(x)div(Λ∇u+ F )(x)dx

∣∣∣∣
≤ ‖v‖D WD(Λ∇u+ F ),

which leads, since f = −div(Λ∇u+ F ) a.e., to
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Ω

∇Dv(x) · (Λ(x)∇u(x) + F (x))−ΠDv(x)f(x)dx

∣∣∣∣
≤ ‖v‖D WD(Λ∇u+ F ). (2.32)

Since uD is a solution to (2.23), we get∣∣∣∣∫
Ω

Λ∇Dv(x) · (∇u(x)−∇DuD(x))dx

∣∣∣∣ ≤ ‖v‖D WD(Λ∇u+ F ). (2.33)

Define

IDu = argmin
w∈XD,0

(‖ΠDw − u‖L2(Ω) + ‖∇Dw −∇u‖L2(Ω)d) (2.34)

and notice that, by definition (2.2) of SD,

‖ΠDIDu− u‖L2(Ω) + ‖∇DIDu−∇u‖L2(Ω)d = SD(u). (2.35)

Recalling the definition of ‖·‖D in Definition 2.1, by (2.33) we get∣∣∣∣ ∫
Ω

Λ∇Dv(x) · (∇DIDu(x)−∇DuD(x))dx

∣∣∣∣
≤ ‖∇Dv‖L2(Ω)d WD(Λ∇u+ F )

+

∣∣∣∣∫
Ω

Λ(x)∇Dv(x) · (∇DIDu(x)−∇u(x))dx

∣∣∣∣ (2.36)

≤ ‖∇Dv‖L2(Ω)d

(
WD(Λ∇u+ F ) + λ ‖∇DIDu−∇u‖L2(Ω)d

)
≤ ‖∇Dv‖L2(Ω)d

(
WD(Λ∇u+ F ) + λSD(u)

)
.

Choosing v = IDu− uD yields

λ‖∇D(IDu− uD)‖L2(Ω)d ≤WD(Λ∇u+ F ) + λSD(u) (2.37)

and (2.25) follows by writing

‖∇u−∇DuD‖L2(Ω)d

≤ ‖∇u−∇DIDu‖L2(Ω)d + ‖∇D(IDu− uD)‖L2(Ω)d

≤ SD(u) +
1

λ

(
WD(Λ∇u+ F ) + λSD(u)

)
.

(2.38)

Using (2.1) and (2.37), we get

λ ‖ΠDIDu−ΠDuD‖L2(Ω) ≤ CD(WD(Λ∇u+ F ) + λSD(u)), (2.39)

which yields (2.26) by using, as in (2.38), a triangle inequality and the estimate
‖u−ΠDIDu‖L2(Ω)d ≤ SD(u).
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Let us now turn to the proof of (2.27). From (2.23), we get for any v ∈
XD,0 \ {0},∫

Ω

f(x)ΠDv(x)dx−
∫
Ω

(F (x) + Λ(x)∇u(x)) · ∇Dv(x)dx

=

∫
Ω

Λ(x)(∇Du(x)−∇u(x)) · ∇Dv(x)dx.

The Cauchy–Schwarz inequality then implies∣∣∣∣∫
Ω

f(x)ΠDv(x)dx−
∫
Ω

(F (x) + Λ(x)∇u) · ∇Dv(x)dx

∣∣∣∣
‖∇Dv‖L2(Ω)d

≤ λ ‖∇Du−∇u‖L2(Ω)d .

Taking the supremum over v on the left hand side yields (2.27). Inequality
(2.28) is an immediate consequence of the definition of SD(u).

Let us conclude this section by stating the convergence of the GS, which
follows easily from Theorem 2.29 (notice that, by Lemma 2.7, the sequence
of GDs considered in the corollary is also coercive in the sense of Definition
2.2).

Corollary 2.32 (Convergence, homogeneous Dirichlet BCs). Under
Hypotheses (2.21), let (Dm)m∈N be a sequence of GDs in the sense of Defini-
tion 2.1, which is GD-consistent and limit-conforming in the sense of Defini-
tions 2.4 and 2.6.
Then, for any m ∈ N, there exists a unique solution um ∈ XDm,0 to the
gradient scheme (2.23) and, if u is the solution of (2.22) then, as m → ∞,
ΠDmum converges to u in L2(Ω) and ∇Dmum converges to ∇u in L2(Ω)d.

Remark 2.33 (On the compactness assumption). Note that, in the linear case,
the compactness of the sequence of GDs is not required to obtain the con-
vergence. This compactness assumption is in general only needed for some
non-linear problems (see also Remark 2.47).

Remark 2.34 (GD-consistency and limit-conformity are necessary conditions)
We state here a kind of reciprocal property to Corollary 2.32. Let us assume that,
under Assumptions (2.21a)–(2.21b), a sequence (Dm)m∈N of GDs is such that, for
all f ∈ L2(Ω) and F ∈ L2(Ω)d and for all m ∈ N, there exists um ∈ XDm,0 which
is solution to the gradient scheme (2.23) and which satisfies that ΠDmum (resp.
∇Dmum) converges in L2(Ω) to the solution u of (2.22) (resp. in L2(Ω)d to ∇u).
Then (Dm)m∈N is GD-consistent and limit-conforming in the sense of Definitions
2.4 and 2.6.
Indeed, for ϕ ∈ H1

0 (Ω), let us consider f = 0 and F = −Λ∇ϕ in (2.22). Since in
this case, u = ϕ, the assumption that ΠDmum (resp. ∇Dmum) converges in L2(Ω)
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to the solution ϕ of (2.22) (resp. converges in L2(Ω)d to ∇ϕ), inequality (2.28)
proves that SDm(ϕ) tends to 0 as m→∞, and therefore the sequence (Dm)m∈N is
GD-consistent.
For ϕ ∈ Hdiv(Ω), let us set f = divϕ and F = −ϕ in (2.22). In this case, the
solution u is equal to 0 a.e., since the right-hand side of (2.22) vanishes for any
v ∈ H1

0 (Ω). Then inequality (2.27) implies

WDm(ϕ) ≤ λ‖∇Dmum‖L2(Ω)d → 0 as m→ 0,

hence concluding that the sequence (Dm)m∈N is limit-conforming.
Note that, if we now assume that∇Dmum converges only weakly (instead of strongly)
in L2(Ω)d to ∇u, the same conclusion holds. Indeed, the other hypotheses on
(Dm)m∈N are sufficient to prove that ∇Dmum actually converges strongly in L2(Ω)d

to ∇u. It suffices to observe that

lim
m→∞

∫
Ω

(f(x)ΠDmum(x)− F (x) · ∇Dmum(x))dx

=

∫
Ω

(f(x)u(x)− F (x) · ∇u(x))dx.

Then we take v = u in (2.22) and v = um in (2.23), this leads to

lim
m→∞

∫
Ω

Λ(x)∇Dmum(x) · ∇Dmum(x)dx =

∫
Ω

Λ(x)∇u(x) · ∇u(x)dx.

In addition to the assumed weak convergence property of ∇Dmum, this proves

lim
m→∞

∫
Ω

Λ(x)(∇Dmum(x)−∇u(x)) · (∇Dmum(x)−∇u(x))dx = 0,

and the convergence of ∇Dmum to ∇u in L2(Ω)d follows.

2.1.3 On the notions of consistency and stability

Theorem 2.29 gives a control of the approximation error thanks to the GD-
consistency indicator SD, the limit-conformity indicator WD and the coer-
civity indicator CD. This theorem yields the convergence of the GDM for
sequences of GDs that are GD-consistent and limit-conforming, as stated in
Corollary 2.32 below. Can this be re-stated as the usual

Consistency and Stability =⇒ Convergence (2.40)

statement, well-known in the context of finite difference schemes? The answer
to this question is yes, provided a correct definition of consistency is chosen.
In the classical finite difference setting, the consistency error measures (roughly
speaking) how well the exact solution “fits” into the scheme. Formally, assume
that the equation to be discretised is written under the form Lu = f , and that
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the scheme is under the form Lhuh = fh = Πhf where h denotes the discreti-
sation step and, for a given function g, Πhg is the vector whose components
are the values (g(xi))i=1,...,N of g at the discretisation points (xi)i=1,...,N .
Then the consistency error for the finite difference scheme is defined by

ch = LhΠhu− fh = LhΠhu−Πh(Lu).

In this context, it is well-known that (2.40) holds: indeed, consistency (i.e.
ch → 0 as h → 0) and stability (i.e. L−1

h bounded) imply convergence (i.e.
maxi=1,...,N |Πh(u)− uh|(xi)→ 0 as h→ 0).
In the finite element context, (2.40) no longer holds under these terms, al-
though the spirit remains the same. The reason for the failure of (2.40) is
that consistency no longer refers to how the exact solution fits into the com-
plete scheme, but only into the discrete equation of the scheme. To be more
explicit, consider the following elliptic problem:

u ∈ V, (2.41)

a(u, v) = (f, v) , ∀v ∈ V, (2.42)

where V = H1
0 (Ω), f ∈ L2(Ω), and a is a continuous coercive bilinear form on

V . Consider a finite element scheme for the discretisation of Problem (2.42),
which reads

uh ∈ Vh, (2.43)

ah(uh, v) = (f, v) , ∀v ∈ Vh, (2.44)

where Vh is a finite dimensional space. In order to measure “how well the
exact solution fits into the scheme”, the consistency error should measure

(i) how far Vh is from V ,
(ii) how far κh is from 0, with

κh = max
v∈Vh\{0}

|ah(Πhu, v)− (f, v)|
‖v‖V

, (2.45)

where Πhu is either u itself, or some kind of interpolant of u. In most finite
element textbooks, these two notions have been separated: Property (i) is
measured by the so-called interpolation error, while the term “consistency”
(or asymptotic consistency) only refers to the fact that κh = 0 (or κh → 0 as
h → 0). We shall call this latter property “FEM-consistency” for the sake of
clarity. For the conforming P1 finite element for instance, ah = a, Πhu can
be taken equal to u, and κh = 0, in which case the finite element scheme is
said to be consistent. However, there are cases where the solution to the PDE
itself cannot be plugged into the scheme’s equation (for instance when using
numerical quadrature), but when an interpolant of this solution needs to be
used; for more on this, see, e.g., [48, Chapter 4] or [85, Chapter 20]. Hence in
the FEM context, (2.40) still holds provided
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Consistency = FEM-consistency and interpolation error control. (2.46)

For the stability issue in the FEM context, we also refer to [85].
Let us now view a finite element method as a GDM. In this context, the
GD-consistency (see Definition 2.4) together with the limit-conformity (see
Definition 2.2) is sufficient to ensure the consistency of the scheme in sense
(2.46). Indeed, in the context of the GDM, the equivalent of the term κh
defined by (2.45) reads (for F = 0)

κD =

∫
Ω

Λ(x)∇D(IDu)(x) · ∇Dv(x)dx−
∫
Ω

Λ(x)∇u(x) · ∇Dv(x)dx

‖∇Dv‖L2(Ω)d︸ ︷︷ ︸
Controlled by SD(ū), see (2.36)

+

∫
Ω

Λ(x)∇u(x) · ∇Dv(x)dx−
∫
Ω

f(x)ΠDv(x)dx

‖∇Dv‖L2(Ω)d︸ ︷︷ ︸
Controlled by WD(λ∇ū), see (2.32)

.

Note that GD-consistency and stability (or coercivity) are not sufficient to
prove the convergence of a general GDM. The limit-conformity (which is in-
herent to all conforming finite element methods) is needed to ensure that the
discrete function reconstruction and the discrete gradient reconstruction are
chosen in a coherent way. Hence for the GDM, we may also write

Consistency and Stability =⇒ Convergence, (2.47)

provided

Consistency = GD-consistency and Limit-conformity. (2.48)

There is an additional twist. In (2.47), the stability of a sequence of GDs
amounts to its coercivity, since a bound on CD and the consistency (as de-
fined by (2.48)) are sufficient to prove the convergence by Theorem 2.29.
However, by Lemma 2.7 the limit-conformity implies the coercivity and thus
the stability. Hence, (2.47) can actually be recast, in the context of the GDM
and with the definition (2.48),

Consistency =⇒ Convergence.

The trick, that does not seem to be explicit in FEM books, is that the con-
sistency hides a stability requirement.

2.1.4 Gradient schemes for quasi-linear problems

Here, and in the other sections on quasi-linear problems, we consider the
quasi-linear operator1 u 7→ −div(Λ(x, u(x))∇u), which is often used to model

1 Recall that a partial differential operator is said to be quasi-linear if it is linear
with respect to all the highest order derivatives of the unknown function.



2.1 Homogeneous Dirichlet boundary conditions 41

non-linear heterogeneous materials. For such an operator, we remain in the
functional framework of the linear case, taking again p = 2 in the definitions
and results of Section 2.1.1.

We consider the following problem:

−div(Λ(x, u)∇u) = f in Ω, (2.49a)

with boundary conditions
u = 0 on ∂Ω, (2.49b)

under the following assumptions:

• Ω is an open bounded connected subset of Rd, d ∈ N?, (2.50a)

• Λ is a Caratheodory function from Ω × R to Md(R),

Λ(x, s) is measurable w.r.t. x and continuous w.r.t. s,

there exists λ, λ > 0 such that, for a.e. x ∈ Ω, for all s ∈ R
Λ(x, s) is symmetric with eigenvalues in [λ, λ], (2.50b)

• f ∈ L2(Ω). (2.50c)

Under these hypotheses, a weak solution of (2.49a) is a function u (not nec-
essarily unique) satisfying:

u ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω),∫
Ω

Λ(x, u(x))∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx.
(2.51)

Then Problem (2.51) is approximated under Assumptions (2.50) by the fol-
lowing gradient scheme.

Definition 2.35 (GS, quasi-linear problem, homogeneous Dirichlet
BCs). If D = (XD,0, ΠD,∇D) is a GD in the sense of Definition 2.1, then
we define the related gradient scheme for (2.22) by

Find u ∈ XD,0 such that, for any v ∈ XD,0,∫
Ω

Λ(x, ΠDu(x))∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx.
(2.52)

Note that, considering a basis (ξ(i))i=1,...,N of the space XD,0, Scheme (2.52) is
equivalent to solving the system of N non-linear equations with N unknowns
A(u)U = B with

u =

N∑
j=1

Ujξ
(j),
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Aij(u) =

∫
Ω

Λ(x, ΠDu(x))∇Dξ(j)(x) · ∇Dξ(i)(x)dx, (2.53)

Bi =

∫
Ω

f(x)ΠDξ
(i)(x)dx.

Standard methods for the approximation of a solution of this system can be
considered, such as the fixed point method A(u(k))U (k+1) = B or the Newton-
Raphson method.

An error estimate between an approximate solution and a weak solution to
(2.52) cannot be stated, since the uniqueness of the solution to neither (2.53)
nor (2.52) is known in the general case. We can nonetheless establish a con-
vergence result on the GDM for quasi-linear models.

Theorem 2.36 (Convergence, quasi-linear problem, homogeneous Di-
richlet BCs). Under assumptions (2.50), take a sequence (Dm)m∈N of GDs
in the sense of Definition 2.1, which is GD-consistent, limit-conforming and
compact in the sense of Definitions 2.4, 2.6 and 2.9.
Then, for any m ∈ N, there exists at least one um ∈ XDm,0 solution to the
gradient scheme (2.52) and, up to a subsequence, ΠDmum converges strongly
in L2(Ω) to a solution u of (2.51) and ∇Dmum converges strongly in L2(Ω)d

to ∇u as m→∞.
In the case where the solution u of (2.51) is unique, then the whole sequence
converges to u as m→∞ in the senses above.

Proof.
By Lemma 2.11, (Dm)m∈N is coercive in the sense of Definition 2.2.
Step 1: existence of a solution to the scheme.
Let D = (XD,0, ΠD,∇D) be a GD in the sense of Definition 2.1. Let w ∈ XD,0
be given, and let u ∈ XD,0 be such that

Find u ∈ XD,0 such that, ∀v ∈ XD,0,∫
Ω

Λ(x, ΠDw(x))∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx.
(2.54)

Therefore, u is solution to the square linear system A(w)U = B, where A(w)
and B are defined in (2.53). Let us prove that the matrix A(w) is invertible.
Letting v = u in (2.54), and applying the Cauchy–Schwarz inequality and
Hypothesis (2.50b), we get

λ‖∇Du‖2L2(Ω)d ≤ ‖f‖L2(Ω)‖ΠDu‖L2(Ω) ≤ CD‖f‖L2(Ω)‖∇Du‖L2(Ω)d ,

where CD is defined by (2.1) in Definition 2.2. This shows that

‖∇Du‖L2(Ω)d ≤
CD
λ
‖f‖L2(Ω). (2.55)

This completes the proof that A(w) is invertible, since (2.55) shows that
A(w)U = 0 implies U = 0. We then can define the mapping F : RN → RN ,
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by F (w) = U , with U is the solution of the linear system A(w)U = B. This
mapping is continuous, thanks to the continuity of the coefficients of the in-
verse of a matrix with respect to its coefficients. Moreover, we get from (2.55)
that some norm of U remains bounded, which means that F maps RN into
some closed ball B if RN . Therefore the Brouwer fixed point theorem (Theo-
rem D.2) proves that the equation F (U) = U has at least one solution. This
proves the existence of at least one discrete solution to (2.52).
We note that the previous estimates easily show that any solution to this
scheme satisfies (2.55).

Step 2: convergence of ΠDmum and ∇Dmum.
Thanks to the coercivity hypothesis and (2.55), we have

‖∇Dmum‖L2(Ω)d ≤
CP
λ
‖f‖L2(Ω). (2.56)

We may then apply Lemma 2.16, which states that there exists a subsequence
of (Dm, um)m∈N, denoted in the same way, and there exists u ∈ H1

0 (Ω) such
that∇Dmum converges weakly in L2(Ω)d to∇u and ΠDmum converges weakly
in L2(Ω) to u. Thanks to the compactness hypothesis, there exists again a
subsequence of the preceding one, denoted in the same way, such that ΠDmum
converges in L2(Ω) to u.

Step 3: proof that u is a solution to Problem (2.51).
This proof is done by passing to the limit in the gradient scheme (2.52),
considering as test function the following interpolation of a given function
ϕ ∈ H1

0 (Ω).
Let us define, for a given GD D, ID : H1

0 (Ω)→ XD,0 by

IDϕ = argmin
v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)
.

We have

‖ΠD(IDϕ)− ϕ‖L2(Ω) + ‖∇D(IDϕ)−∇ϕ‖L2(Ω)d ≤ SD(ϕ)

and therefore, by GD-consistency of the sequence (Dm)m∈N, ΠDm(IDmϕ)→ ϕ
strongly in L2(Ω) and ∇Dm(IDmϕ)→ ∇ϕ strongly in L2(Ω)d.
Using Lemma D.9 page 465 (non-linear strong convergence), we infer that
Λ(·, ΠDmum)∇Dm(IDmϕ) → Λ(·, u)∇ϕ strongly in L2(Ω)d. By symmetry of
Λ and the weak-strong convergence property (Lemma D.8), this shows that∫

Ω

Λ(x, ΠDmum(x))∇Dmu(x) · ∇Dm(IDmϕ)(x)dx

=

∫
Ω

∇Dmu(x) · [Λ(x, ΠDmum(x))∇Dm(IDmϕ)(x)] dx

→
∫
Ω

∇u(x) · [Λ(x, u(x))∇ϕ(x)] dx as m→∞



44 2 Dirichlet boundary conditions

=

∫
Ω

Λ(x, u(x))∇u(x) · ∇ϕ(x)dx. (2.57)

Moreover, since ΠDm(IDmϕ)→ ϕ in L2(Ω) as m→∞,∫
Ω

f(x)ΠDm(IDmϕ)(x)dx→
∫
Ω

f(x)ϕ(x)dx as m→∞. (2.58)

Letting v = IDmϕ in (2.52), we can use (2.57) and (2.58) to pass to the limit
and see that u is a solution to (2.51).

Step 4: strong convergence of ∇Dmum.
Let now prove that ∇Dmum converges to ∇u in L2(Ω)d. We let v = um in
(2.52) and we pass to the limit in the right-hand side. Since u is a solution to
(2.51), we obtain

lim
m→∞

∫
Ω

Λ(x,ΠDmum(x))∇Dmum(x) · ∇Dmum(x)dx

=

∫
Ω

f(x)u(x)dx =

∫
Ω

Λ(x, u(x))∇u(x) · ∇u(x)dx.

(2.59)

We have∫
Ω

Λ(x,ΠDmum(x))(∇Dmum(x)−∇u(x)) · (∇Dmum(x)−∇u(x))dx

=

∫
Ω

Λ(x, ΠDmum(x))∇Dmum(x) · ∇Dmum(x)dx

−
∫
Ω

Λ(x, ΠDmum(x))∇Dmum(x) · ∇u(x)dx

−
∫
Ω

Λ(x, ΠDmum(x))∇u(x) · (∇Dmum(x)−∇u(x))dx. (2.60)

By (2.59), the weak convergence of ∇Dmum, the strong convergence of
Λ(·, ΠDmum)∇u (obtained by non-linear strong convergence property, see
Lemma D.9 page 465), and the weak-strong convergence lemma (Lemma D.8),
we infer that∫

Ω

Λ(x, ΠDmum(x))(∇Dmum(x)−∇u(x)) · (∇Dmum(x)−∇u(x))dx

→ 0 as m→∞.

The coercivity of Λ shows that the left-hand side is larger than

λ

∫
Ω

|∇Dmum(x)−∇u(x))|2dx.

This quantity therefore converges to 0 and the proof of the strong L2(Ω)
convergence of the gradients is complete.
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2.1.5 Gradient schemes for p-Laplace type problems: p ∈ (1,+∞)

This section is concerned with PDEs involving non-linearities with respect to
the gradient of the unknown function, not just the unknown function itself
as in Section 2.1.4. The p-Laplace problem is first considered, for which error
estimates in terms of WD and SD are established in the same way as error
estimates are provided in Section 2.1.2. Then, in Section 2.1.5, the case of a
Leray–Lions type operator is considered, and the convergence of the GDM is
proved for this model.
As mentioned in the introduction of this monograph, some of the techniques
developed for the GDM are applicable outside this framework. As an illus-
tration of this, the techniques used here to analyse the GDM for p-Laplace
type problems have been adapted in [57, 58] to a high order numerical scheme
not presented under the form of a gradient scheme. These two articles also
develop discrete functional analysis results for this high order scheme, similar
to the ones developed in Chapter B in the appendix.

An error estimate for the p-Laplace problem

We consider in this section the so-called p-Laplace equation:

−div(|∇u|p−2∇u) = f + div(F ) in Ω, (2.61a)

with boundary conditions
u = 0 on ∂Ω, (2.61b)

under the following assumptions:

• Ω is an open bounded connected subset of Rd (d ∈ N?), (2.62a)

• p ∈ (1,+∞) (2.62b)

• f ∈ Lp
′
(Ω) and F ∈ Lp

′
(Ω)d with p′ =

p

p− 1
. (2.62c)

Under these hypotheses, the weak solution of (2.61) is the unique function u
satisfying:

u ∈W 1,p
0 (Ω) and, for all v ∈W 1,p

0 (Ω),∫
Ω

|∇u|p−2∇u(x) · ∇v(x)dx

=

∫
Ω

f(x)v(x)dx−
∫
Ω

F (x) · ∇v(x)dx.

(2.63)

Definition 2.37 (GS, p-Laplace problem). Let D = (XD,0, ΠD,∇D) be
a GD in the sense of Definition 2.1. The corresponding gradient scheme for
Problem (2.63) is defined by
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Find u ∈ XD,0 such that, for any v ∈ XD,0,∫
Ω

|∇Du(x)|p−2∇Du(x) · ∇Dv(x)dx

=

∫
Ω

f(x)ΠDv(x)dx−
∫
Ω

F (x) · ∇Dv(x)dx.

(2.64)

The following lemma establishes the existence and uniqueness of the solutions
to (2.63) and (2.64), as well as estimates on these solutions.

Lemma 2.38. Under Hypotheses (2.62), there exists one and only one so-
lution to each of the problems (2.63) and (2.64). These solutions moreover
satisfy

‖∇u‖Lp(Ω)d ≤ (CP,p‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)
1
p−1 (2.65)

and
‖∇DuD‖Lp(Ω)d ≤ (CD‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)

1
p−1 , (2.66)

where CP,p is the continuous Poincaré’s constant in W 1,p
0 (Ω), and CD is

defined by (2.1).

Proof. The existence and uniqueness of u and uD are obtained by noticing
that (2.63) and (2.64) are respectively equivalent to the minimisation problems

u ∈ argmin
v∈W 1,p

0 (Ω)

(
1

p

∫
Ω

|∇v|pdx−
∫
Ω

f(x)v(x)dx+

∫
Ω

F (x) · ∇v(x)dx

)
(2.67)

and

uD ∈ argmin
v∈XD,0

(1

p

∫
Ω

|∇Dv(x)|pdx−∫
Ω

f(x)ΠDv(x)dx+

∫
Ω

F (x) · ∇Dv(x)dx
)
. (2.68)

This equivalence is a consequence of the inequality

∀χ, ξ ∈ Rd, |χ+ ξ|p − |χ|p − p|χ|p−2χ · ξ ≥ 0,

which follows by writing that the convex mapping H : ζ 7→ |ζ|p lies above
its tangent at χ, and by noting that ∇H(χ) = p|χ|p−2χ. The existence and
uniqueness of the solutions to (2.67) and (2.68) are classical consequence of
standard convex minimisation theorems, see, e.g., [18].
Then inequalities (2.65) and (2.66) follow by taking, in each corresponding
problem, the solution itself as a test function.

Theorem 2.39 (Control of the approximation error, p-Laplace prob-
lem). Under Hypotheses (2.62), let u ∈ W 1,p

0 (Ω) be the solution of Problem
(2.63), let D be a GD in the sense of Definition 2.1, and let uD ∈ XD,0 be the
solution to the gradient scheme (2.64). Then there exists C5 > 0, depending
only on p such that:
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1. If p ∈ (1, 2],

‖∇u−∇DuD‖Lp(Ω)d ≤ SD(u) +C5

[
WD(|∇u|p−2∇u+F ) + SD(u)p−1

]
×
[
SD(u)p +

[
(CD + CP,p)‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d

] p
p−1

] 2−p
2

. (2.69)

2. If p ∈ (2,+∞),

‖∇u−∇DuD‖Lp(Ω)d ≤ SD(u) + C5

[
WD(|∇u|p−2∇u+ F )

+ SD(u)
[
(CP,p‖f‖Lp′ (Ω) + ‖F ‖Lp′ (Ω)d)

1
p−1 + SD(u)

]p−2
] 1
p−1

. (2.70)

As a consequence of (2.69)–(2.70), we have the following error estimate:

‖u−ΠDuD‖Lp(Ω) ≤ SD(u) + CD(SD(u) + ‖∇u−∇DuD‖Lp(Ω)d). (2.71)

Remark 2.40 (Link with space size of gradient schemes and lower bound).
As in Remark 2.30 (for the case p = 2 and d ≤ 3), if u ∈ W 2,p(Ω) and
|∇u|p−2∇u + F ∈ W 1,p′(Ω)d, Theorem 2.39 gives an error estimate of the
form

O(hp−1
D ) if p ∈ (1, 2],

O(h
1
p−1

D ) if p > 2,

where hD := hD(W 2,p(Ω) ∩W 1,p
0 (Ω);W 1,p′(Ω)d) is the space size of the GD

in the sense of Definition 2.23. Note that a lower bound in the spirit of (2.29)
can also be derived.

Proof. Notice that, since f ∈ Lp′(Ω), the equation (2.61a) in the sense of
distributions (i.e. taking v ∈ C∞c (Ω) in (2.63)) shows that ϕ = |∇u|p−2∇u+F

belongs to W p′

div(Ω) defined by (2.5), with divϕ = −f . The function ϕ is
therefore valid in the definition (2.6) of WD and we obtain, for any v ∈ XD,0,
setting W = WD(|∇u|p−2∇u+ F ),∣∣∣∣∫

Ω

∇Dv(x) · (|∇u(x)|p−2∇u(x) + F (x))−ΠDv(x)f(x)dx

∣∣∣∣
≤ ‖∇Dv‖Lp(Ω)d W.

Use the fact that uD satisfies (2.64) to replace the term ΠDv f :∣∣∣∣∫
Ω

∇Dv(x) ·
[
|∇u(x)|p−2∇u(x)− |∇Du(x)|p−2∇Du(x)

]
dx

∣∣∣∣
≤ ‖∇Dv‖Lp(Ω)d W.

Defining
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IDu = argmin
w∈XD,0

(‖ΠDw − u‖Lp(Ω) + ‖∇Dw −∇u‖Lp(Ω)d),

we obtain

A(v):=∣∣∣∣∫
Ω

∇Dv(x) ·
[
|∇DIDu(x)|p−2∇DIDu(x)− |∇Du(x)|p−2∇DuD(x)

]
dx

∣∣∣∣
≤ ‖∇Dv‖Lp(Ω)d W

+

∣∣∣∣∫
Ω

∇Dv(x) ·
[
|∇DIDu(x)|p−2∇DIDu(x)− |∇u(x)|p−2∇u(x)

]
dx

∣∣∣∣
≤ ‖∇Dv‖Lp(Ω)d

[
W + ‖ |∇DIDu|p−2∇DIDu− |∇u|p−2∇u‖Lp′ (Ω)

]
.

Case p ∈ (1, 2].
Thanks to (2.75) in Lemma 2.41 below, we get the existence of C6 depending
only on p such that

‖ |∇DIDu|p−2∇DIDu− |∇u|p−2∇u‖p
′

Lp′ (Ω)d
≤ C6‖∇DIDu−∇u‖pLp(Ω)d

.

Setting S = SD(u) defined by (2.2), this leads to

A(v) ≤ ‖∇Dv‖Lp(Ω)d

[
W + Cp−1

6 S
p−1
]
. (2.72)

We then apply (2.77) in Lemma 2.41 with ξ = ∇DIDu and χ = ∇DuD, and
use Hölder’s inequality with exponents 2/p and 2/(2−p). Taking v = IDu−uD,
we get C7 depending only on p such that

‖∇DIDu−∇DuD‖pLp(Ω)d

≤ C7A(IDu− uD)
p
2 (‖∇DIDu‖pLp(Ω)d

+ ‖∇DuD‖pLp(Ω)d
)

2−p
2 ,

and thus

‖∇DIDu−∇DuD‖2Lp(Ω)d

≤ C
2
p

7 A(IDu− uD)(‖∇DIDu‖pLp(Ω)d
+ ‖∇DuD‖pLp(Ω)d

)
2−p
p .

Plugging (2.72) into this estimate gives C8 depending only on p such that

‖∇DIDu−∇DuD‖Lp(Ω)d ≤ C8

[
W + S

p−1]
×
[
‖∇DIDu‖pLp(Ω)d

+ ‖∇DuD‖pLp(Ω)d

] 2−p
2 .

We have ‖∇u−∇DuD‖Lp(Ω)d ≤ S + ‖∇DIDu−∇DuD‖Lp(Ω)d , and Estimate

(2.69) therefore follows from (2.65) and (2.66).
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Case p ∈ (2,+∞).
We use (2.74) in Lemma 2.41, Hölder’s inequality with exponents p/p′ = p−1
and p−1

p−2 , and (a + b)θ ≤ 2θ(aθ + bθ) with θ = p
p−2 , a = |∇DIDu|p−2 and

b = |∇u|p−2. This gives C9 depending only on p such that

‖ |∇DIDu|p−2∇DIDu− |∇u|p−2∇u‖Lp′ (Ω)d

≤ C9‖∇DIDu−∇u‖Lp(Ω)d(‖∇DIDu‖Lp(Ω)d + ‖∇u‖Lp(Ω)d)p−2.

This leads to

A(v) ≤

‖∇Dv‖Lp(Ω)d

[
W + C9S

[
‖∇DIDu‖Lp(Ω)d + ‖∇u‖Lp(Ω)d

]p−2
]
. (2.73)

As before, we take v = IDu − uD. Thanks to (2.78) in Lemma 2.41, we get
the existence of C10 depending only on p such that

‖∇DIDu−∇DuD‖pLp(Ω)d
≤ C10A(IDu− uD).

Using (2.73) we infer

‖∇DIDu−∇DuD‖p−1
Lp(Ω)d

≤ C10

[
W + C9S

[
‖∇u‖Lp(Ω)d + S

]p−2
]
,

and the proof of (2.70) is complete by invoking (2.65).

In the following lemma, we gather a few useful estimates.

Lemma 2.41. Let p ∈ (1,+∞) and d ∈ N?. Then

∀ξ, χ ∈ Rd,∣∣|ξ|p−2ξ − |χ|p−2χ
∣∣ ≤ max(1, p− 1)|ξ − χ| (|ξ|p−2 + |χ|p−2), (2.74)

which implies

∀p ∈ (1, 2], ∀ξ, χ ∈ Rd,
∣∣|ξ|p−2ξ − |χ|p−2χ

∣∣ ≤ 5|ξ − χ|p−1. (2.75)

Moreover, setting C0(p) = 2
p−1 for p ∈ (1, 2] and C0(p) = 2p−1 for p > 2,

there holds

∀ξ, χ ∈ Rd,
C0(p)(|ξ|p−2ξ − |χ|p−2χ) · (ξ − χ) ≥ |ξ − χ|2 (|ξ|+ |χ|)p−2, (2.76)

which implies

∀p ∈ (1, 2], ∀ξ, χ ∈ Rd,
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|ξ − χ|p ≤
(

2

p− 1
(|ξ|p−2ξ − |χ|p−2χ) · (ξ − χ)

) p
2

×(2p−1(|ξ|p + |χ|p))
2−p
2 ,

(2.77)

and

∀p ≥ 2, ∀ξ, χ ∈ Rd, |ξ − χ|p ≤ 2p−1(|ξ|p−2ξ − |χ|p−2χ) · (ξ − χ). (2.78)

Proof. Estimates (2.74) and (2.75) originally appeared in [20]. Let H(ξ) =
|ξ|p−2ξ. If p ≥ 2 then H ∈ C1(Rd)d and |DH(ξ)| ≤ (p− 1)|ξ|p−2 (where DH
is the differential of H and |DH| the norm induced by the Euclidean norm).
Hence, for all ξ, χ ∈ Rd,

|H(ξ)−H(χ)| ≤ |ξ − χ|(p− 1) max
ζ∈[ξ,χ]

|ζ|p−2. (2.79)

The proof of (2.74) is complete in the case p ≥ 2 since the mapping s 7→ sp−2 is
non-decreasing, and thus maxζ∈[ξ,χ] |ζ|p−2 = max(|ξ|p−2, |χ|p−2) ≤ (|ξ|p−2 +
|χ|p−2).
If p < 2, (2.79) remains valid but does directly lead to (2.74). Without loss
of generality, we can assume that 0 < |χ| ≤ |ξ| (the case where χ = 0 is

trivial since the right-hand side of (2.74) is then equal to +∞). Let ξ̃ be the
point in Rd at the intersection of the segment (ξ, χ) and of the ball of centre

0 and radius |χ| (see Figure 2.1). Since |ξ̃| = |χ| we have |H(ξ̃ ) − H(χ)| =

|χ|p−2|ξ̃ − χ|. Hence, by the triangle inequality and (2.79) between ξ and ξ̃,

|H(ξ)−H(χ)| ≤ |H(ξ)−H(ξ̃)|+ |χ|p−2|ξ̃ − χ|

≤ |ξ − ξ̃|(p− 1) max
ζ∈[ξ,ξ̃]

|ζ|p−2 + |χ|p−2|ξ̃ − χ|.

Since p < 2, maxζ∈[ξ,ξ̃] |ζ|
p−2 = |ξ̃|p−2 = |χ|p−2 and therefore

|H(ξ)−H(χ)| ≤
[
|ξ − ξ̃|+ |ξ̃ − χ|

]
|χ|p−2.

The proof of (2.74) in the case p < 2 is complete by noticing that |ξ − ξ̃| +
|ξ̃ − χ| = |ξ − χ|.
Let us now prove (2.75). Let η > 0. If |ξ| and |χ| belong to [η,+∞), by (2.74)
we have ∣∣|ξ|p−2ξ − |χ|p−2χ

∣∣ ≤ 2ηp−2|ξ − χ|. (2.80)

Otherwise, assume that |χ| ∈ (0, η]. We have∣∣|ξ|p−2ξ − |χ|p−2χ
∣∣ ≤ |ξ|p−1 + ηp−1 ≤ (|ξ − χ|+ η)p−1 + ηp−1. (2.81)

Combining (2.80) and (2.81) we see that, for all ξ, χ ∈ Rd and all η > 0,∣∣|ξ|p−2ξ − |χ|p−2χ
∣∣ ≤ 2ηp−2|ξ − χ|+ (|ξ − χ|+ η)p−1 + ηp−1.
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Fig. 2.1. Definition of the additional variable ξ̃ for the case p ∈ (1, 2).

Estimate (2.75) follows by choosing η = |ξ − χ|.
We now turn to the proof of (2.76). Set A = (|ξ|p−2ξ − |χ|p−2χ) · (ξ − χ). By
developing both sides we see that

A = (|ξ|p−1 − |χ|p−1)(|ξ| − |χ|) + (|ξ|p−2 + |χ|p−2)(|ξ| |χ| − ξ · χ). (2.82)

Let us prove that the function f(x) = xp−1 − yp−1 − 2
C0(p) (x + y)p−2(x − y)

satisfies f ′(x) ≥ 0 for all x ≥ y ≥ 0. We have

f ′(x) = (p− 1)xp−2 − 2

C0(p)
(p− 2)(x+ y)p−3(x− y)− 2

C0(p)
(x+ y)p−2.

• If 1 < p ≤ 2, we write, since C0(p) = 2/(p− 1),

f ′(x) ≥ (p− 1)xp−2 − 2

C0(p)
xp−2 = 0.

• If p > 2,

f ′(x) ≥ (p− 1)xp−2 − 2

C0(p)
(p− 2)(x+ y)p−3(x+ y)− 2

C0(p)
(x+ y)p−2,

and therefore, since x ≥ y and C0(p) = 2p−1,

f ′(x) ≥ (p− 1)(xp−2 − 2

C0(p)
(2x)p−2) = 0.

In either case, since f(y) = 0, this shows that, if x ≥ y ≥ 0,

xp−1 − yp−1 ≥ 2

C0(p)
(x+ y)p−2(x− y).

Assuming (without loss of generality) that |ξ| ≥ |χ| and applying the previous
inequality to x = |ξ| and y = |χ| gives

(|ξ|p−1 − |χ|p−1)(|ξ| − |χ|) ≥ 1

C0(p)
(|ξ|+ |χ|)p−2(|ξ| − |χ|)2. (2.83)
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Let us again take generic numbers x ≥ y ≥ 0. If 1 < p ≤ 2 we can write

xp−2 + yp−2 ≥ yp−2 ≥ (x+ y)p−2 ≥ (p− 1)(x+ y)p−2 =
2

C0(p)
(x+ y)p−2.

If p > 2 we have

xp−2 + yp−2 ≥ xp−2 ≥ 22−p(x+ y)p−2 =
2

C0(p)
(x+ y)p−2.

Applying these inequalities with x = |ξ| and y = |χ|, plugging the result in
(2.82) and using (2.83) leads to

A ≥ 1

C0(p)
(|ξ|+ |χ|)p−2

[
(|ξ| − |χ|)2 + 2(|ξ| |χ| − ξ · χ)

]
.

The proof of (2.76) is complete by writing

(|ξ| − |χ|)2 + 2(|ξ| |χ| − ξ · χ) = |ξ|2 − 2|ξ| |χ|+ |χ|2 + 2|ξ| |χ| − 2ξ · χ
= |ξ|2 − 2ξ · χ+ |χ|2 = |ξ − χ|2.

Estimate (2.77) is obtained by raising (2.76) to the power p/2 and by using
(|ξ|+ |χ|)p ≤ 2p−1(|ξ|p + |χ|p). Estimate (2.78) follows by writing |ξ − χ|p =
|ξ − χ|2|ξ − χ|p−2 ≤ |ξ − χ|2(|ξ|+ |χ|)p−2 and by using (2.76).

Convergence of gradient schemes for Leray–Lions type problems

We now study the convergence of gradient schemes for the non-linear problem

−div a(x, u,∇u) = f in Ω,
u = 0 on ∂Ω,

(2.84)

under the following assumptions:

• p ∈ (1,∞) and a : Ω × Lp(Ω)× Rd → Rd is a Caratheodory

function (2.85a)

(i.e. for a.e. x ∈ Ω the function (u, ξ) 7→ a(x, u, ξ) is continuous, and for any
(u, ξ) ∈ Lp(Ω)× Rd the function x 7→ a(x, u, ξ) is measurable),

• ∃a ∈ (0,+∞) such that a(x, u, ξ) · ξ ≥ a|ξ|p for a.e. x ∈ Ω,
∀u ∈ Lp(Ω), ∀ξ ∈ Rd, (2.85b)

• (a(x, u, ξ)− a(x, u,χ)) · (ξ − χ) ≥ 0 for a.e. x ∈ Ω,
∀u ∈ Lp(Ω), ∀ξ,χ ∈ Rd, (2.85c)

• ∃a ∈ Lp
′
(Ω) , ∃µ ∈ (0,+∞) such that |a(x, u, ξ)| ≤ a(x) + µ|ξ|p−1

for a.e. x ∈ Ω, ∀u ∈ Lp(Ω), ∀ξ ∈ Rd, (2.85d)

• f ∈ Lp
′
(Ω) , where p′ =

p

p− 1
. (2.85e)
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Remark 2.42 (Leray–Lions operator [125]). Note that the dependence of a
on u is assumed to be non-local: a(x, u, ·) depends on all the values of u ∈
Lp(Ω), not only on u(x). These assumptions cover for example the case where
a(x, u,∇u(x)) = Λ[u](x)∇u(x) with Λ : Lp(Ω) → L∞(Ω;Sd(R)) as in [42,
65, 136].
These assumptions (in particular (2.85a)) do not cover the usual local depen-
dencies a(x, u(x),∇u(x)) as in the non-monotone operators studied in [125].
However, the adaptation of the following results to this case is quite easy and
more classical, see, e.g., [68, 15, 29, 57] for adaptations of the original Leray–
Lions techniques to the convergence analysis of various schemes (some of them
based the HMM method of Chapter 13, or the DDFV method presented in
Section 14.2) for local non-monotone operators.

If a function a satisfies (2.85), then the mapping u 7→ −div a(·, u,∇u) is called
a Leray–Lions type operator. Such operators contain the p-Laplace operator
as a particular case, obtained by setting a(x, u, ξ) = |ξ|p−2ξ. The existence of
at least one solution to (2.84) is shown in [125] under hypotheses (2.85) in the
case where a does not depend on u. In our framework, we say that a function
u is a weak solution to (2.84) if:

u ∈W 1,p
0 (Ω), ∀v ∈W 1,p

0 (Ω),∫
Ω

a(x, u,∇u(x)) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx.
(2.86)

Remark 2.43. Note that, even if a does not depend on u ∈ Lp(Ω), the solution
to (2.86) is not necessarily unique. Consider the case where d = 1, Ω = (−1, 2),
f(x) = 0 for x ∈ (−1, 0) ∪ (1, 2), f(x) = 2 for x ∈ (0, 1) and

a(x, u, ξ) = (min(|ξ|, 1) + max(|ξ| − 2, 0))
ξ

|ξ|
, ∀ξ ∈ R, ∀u ∈ L2(Ω).

Then (2.85b) is satisfied with a = 1
2 , (2.85c) is satisfied since a is non-

decreasing with respect to ξ and (2.85d) is satisfied with a(x) = 0 and µ = 1.
Then the function u(x) = α(x+ 1) for x ∈ (−1, 0), α+x(1−x) for x ∈ (0, 1),
α(2− x) for x ∈ (1, 2) is solution to (2.86) for any value α ∈ [1, 2].

The hypothesis that a is strictly monotone, which may be expressed by

(a(x, u, ξ)− a(x, u,χ)) · (ξ − χ) > 0,
for a.e. x ∈ Ω, ∀u ∈ Lp(Ω), ∀ξ,χ ∈ Rd with ξ 6= χ,

(2.87)

is only used to prove the strong convergence of the reconstructed gradient (see
theorem below). We now define the gradient scheme for Problem (2.84).

Definition 2.44 (GS, Leray–Lions type problems). If D = (XD,0, ΠD,∇D)
is a GD, then we define the related gradient scheme for (2.84) by

Find u ∈ XD,0 such that, ∀v ∈ XD,0,∫
Ω

a(x, ΠDu,∇Du(x)) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx.
(2.88)
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Theorem 2.45 (Convergence, Leray–Lions type problems). Under
Assumptions (2.85), take a sequence (Dm)m∈N of GDs in the sense of Defini-
tion 2.1, which is GD-consistent, limit-conforming and compact in the sense
of Definitions 2.4, 2.6 and 2.9.
Then, for any m ∈ N, there exists at least one uDm ∈ XDm,0 solution to the
gradient scheme (2.88). Moreover, there exists u solution of (2.86) such that,
up to a subsequence, ΠDmuDm converges strongly in Lp(Ω) to u and ∇DmuDm
converges weakly in Lp(Ω)d to ∇u as m→∞.
If we assume that the Leray–Lions type operator a is strictly monotone in
the sense of (2.87), then ∇DmuDm converges strongly in Lp(Ω)d to ∇u as
m→∞.
In the case where the solution u of (2.86) is unique, then the whole sequence
converges to u as m→∞ in the above senses.

Remark 2.46 (Existence of a solution to (2.86)). Since there exists at least one
sequence of GDs which satisfies the assumptions above (see Remark 2.12), a
by-product of this theorem is the existence of a solution u to (2.86).

Remark 2.47 (Non-linearity without a lower order term)
In the case where a does not depend on u ∈ Lp(Ω), the proof of the weak convergence
of ΠDmu to a solution of (2.86) does not require the compactness of the sequence
of GDs. In this case the strong convergence results from (2.87) (which gives the
strong convergence of the reconstructed gradients) and from the coercivity and the
GD-consistency of the sequence (Dm)m∈N.

Proof.
This proof follows the same ideas as in [68, 94]. We start by noticing that, by
Lemma 2.11, (Dm)m∈N is coercive in the sense of Definition 2.2.

Step 1: existence of a solution to the scheme.

Let D be a GD in the sense of Definition 2.1. We endow the finite dimensional
space XD,0 with an inner product 〈 , 〉 and we denote by | · | its related norm.
We define F : XD,0 → XD,0 as the function such that, if u ∈ XD,0, F (u) is
the unique element in XD,0 which satisfies

∀v ∈ XD,0 , 〈F (u), v〉 =

∫
Ω

a(x, ΠDu,∇Du(x)) · ∇Dv(x)dx.

Likewise, we denote by w ∈ XD,0 the unique element such that

∀v ∈ XD,0 , 〈w, v〉 =

∫
Ω

f(x)ΠDv(x)dx.

The assumptions on a show that F is continuous and that, for all u ∈ XD,0,
〈F (u), u〉 ≥ a ‖∇Du‖pLp(Ω)d . By equivalence of the norms | · | and ‖∇D·‖Lp(Ω)d

on XD,0, we deduce that 〈F (u), u〉 ≥ C11|u|p with C11 not depending on u.
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This shows that lim|u|→∞
〈F (u),u〉
|u| = +∞ and thus that F is surjective (see

[125] or [56, Theorem 3.3, page 19]). Note that we could as well use Theorem
D.1, consequence of the topological degree. There exists therefore uD ∈ XD,0
such that F (uD) = w, and this uD is a solution to (2.88).

Step 2: convergence to a solution of the continuous problem.

Letting v = uDm in (2.88) with D = Dm and using (2.1) and Hypothesis
(2.85b), we get

a ‖∇DmuDm‖
p−1
Lp(Ω)d

≤ CDm‖f‖Lp′ (Ω).

Thanks to the coercivity of the sequence of GDs, this provides an estimate
on ∇DmuDm in Lp(Ω)d and on ΠDmuDm in Lp(Ω). Lemma 2.16 then gives
u ∈W 1,p

0 (Ω) such that, up to a subsequence, ΠDmuDm → u weakly in Lp(Ω)
and ∇DmuDm → ∇u weakly in Lp(Ω)d. By compactness of the sequence of
GDs, we can also assume that the convergence of ΠDmuDm to u is strong in
Lp(Ω) (this strong convergence property is only necessary for coping with the
dependence of a with respect to u).
By Hypothesis (2.85d), the sequence of functions

ADm(x) = a(x, ΠDmuDm ,∇DmuDm(x))

remains bounded in Lp
′
(Ω)d and converges therefore, up to a subsequence, to

some A weakly in Lp
′
(Ω)d, as m→∞.

Let us now show that u is solution to (2.86), using the well-known Minty trick
[130]. For a given ϕ ∈W 1,p

0 (Ω) and for any GD D belonging to the sequence
(Dm)m∈N, we introduce

IDϕ = argmin
v∈XD,0

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
as a test function in (2.88). By the GD-consistency of (Dm)m∈N, letting m→
∞ we get∫

Ω

A(x) · ∇ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx, ∀ϕ ∈W 1,p
0 (Ω). (2.89)

On the other hand, we may let m→∞ in (2.88) with uDm as a test function.
Using (2.89) with ϕ = u, this leads to

lim
m→∞

∫
Ω

a(x, ΠDmuDm ,∇DmuDm(x)) · ∇DmuDm(x)dx

=

∫
Ω

f(x)u(x)dx =

∫
Ω

A(x) · ∇u(x)dx.
(2.90)

Hypothesis (2.85c) gives, for any G ∈ Lp(Ω)d,∫
Ω

(a(x, ΠDmuDm ,∇DmuDm(x))− a(x, ΠDmuDm ,G(x)))
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· (∇DmuDm(x)−G(x))dx ≥ 0.

Developing the preceding inequality, using Lemma D.8 for the weak-strong
convergences and (2.90) for the convergence of the sole term involving a prod-
uct of two weak convergences, we may let m→∞ and we get∫

Ω

(A(x)− a(x, u,G(x))) · (∇u(x)−G(x))dx ≥ 0, ∀G ∈ Lp(Ω)d.

We then set G = ∇u + αϕ in the preceding inequality, where ϕ ∈ C∞c (Ω)d

and α > 0. Dividing by α, we get

−
∫
Ω

(A(x)−a(x, u,∇u(x) +αϕ(x))) ·ϕ(x)dx ≥ 0, ∀ϕ ∈ C∞c (Ω)d, ∀α > 0.

We then let α→ 0 and use the dominated convergence theorem, which leads
to

−
∫
Ω

(A(x)− a(x, u,∇u(x))) ·ϕ(x)dx ≥ 0, ∀ϕ ∈ C∞c (Ω)d.

Changing ϕ into −ϕ, we deduce that∫
Ω

(A(x)− a(x, u,∇u(x))) ·ϕ(x)dx = 0, ∀ϕ ∈ C∞c (Ω)d,

and therefore that

A(x) = a(x, u,∇u(x)), for a.e. x ∈ Ω. (2.91)

In addition to (2.89), this shows that u is a solution to (2.86). This concludes
the proof of the convergence of ΠDmuDm to u in Lp(Ω) and of ∇DmuDm to
∇u weakly in Lp(Ω)d as m→∞.

Step 3: Assuming now Hypothesis (2.87), strong convergence of the recon-
structed gradients.

We follow here the ideas of [125]. Thanks to (2.90) and (2.91), we get

lim
m→∞

∫
Ω

[
a(x, ΠDmuDm(x),∇DmuDm(x))− a(x, ΠDmuDm(x),∇u(x))

]
·
[
∇DmuDm(x)−∇u(x)

]
dx = 0.

Since the integrand is non-negative, this shows that

[a(·, ΠDmuDm ,∇DmuDm)− a(·, ΠDmuDm ,∇u)]

· [∇DmuDm −∇u]→ 0 in L1(Ω), (2.92)

and therefore a.e. for a sub-sequence. Then, thanks to the strict monotonic-
ity assumption (2.87), we may use Lemma 2.48 given below to show that
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∇DmuDm → ∇u a.e. as m → ∞, at least for the same sub-sequence. This
shows the a.e. convergence of a(·, ΠDmuDm ,∇DmuDm) · ∇DuD to a(·, u,∇u) ·
∇u. We next recall that, by (2.90) and (2.91),

lim
m→∞

∫
Ω

a(x, ΠDmuDm ,∇DmuDm(x)) · ∇DmuDm(x)dx

=

∫
Ω

a(x, u,∇u(x)) · ∇u(x)dx. (2.93)

Since a(·, ΠDmuDm ,∇DmuDm) · ∇DmuDm ≥ 0, we can apply Lemma 2.49 to
get a(·, ΠDmuDm ,∇DmuDm)·∇DmuDm → a(·, u,∇u)·∇u in L1(Ω) asm→∞.
This L1-convergence gives the equi-integrability of the sequence of functions
a(·, ΠDmuDm ,∇DmuDm)·∇DmuDm , which gives in turn, thanks to (2.85b), the
equi-integrability of (|∇DmuDm |p)m∈N. The strong convergence of ∇DmuDm
to ∇u in Lp(Ω)d is then a consequence of Vitali’s theorem.

Lemma 2.48. Let B be a metric space, let b be a continuous function from
B × Rd to Rd such that

(b(u, δ)− b(u,γ)) · (δ − γ) > 0, ∀δ 6= γ ∈ Rd, ∀u ∈ B.

Let (um,βm)n∈N be a sequence in B × Rd and (u,β) ∈ B × Rd be such that
(b(um,βm) − b(um,β)) · (βm − β) → 0 and um → u as m → ∞. Then,
βm → β as m→∞.

Proof. We begin the proof with a preliminary remark. Let δ ∈ Rd\{0}.
We define, for all m ∈ N, the function hδ,m from R to R by hδ,m(s) =
(b(um,β + sδ) − b(um,β)) · δ. The hypothesis on b gives that hδ,m is an
increasing function since, for s > s′,

hδ,m(s)− hδ,m(s′) = (b(um,β + sδ)− b(um,β + s′δ)) · δ > 0.

We prove now, by contradiction, that limm→∞ βm = β. If the sequence
(βm)m∈N does not converge to β, there exists ε > 0 and a subsequence,
still denoted by (βm)m∈N, such that sm := |βm − β| ≥ ε, for all m ∈ N. Set
δm = βm−β

|βm−β| . We can assume that, up to a subsequence, that δm → δ as

m→∞, for some δ ∈ Rd with |δ| = 1. Then, since sm ≥ ε,

(b(um,βm)− b(um,β)) · βm − β
sm

= hδm,m(sm) ≥ hδm,m(ε)

= (b(um,β + εδm)− b(um,β)) · δm.

Then, passing to the limit as m→∞,

0 = lim
m→∞

1

sm
(b(um,βm)− b(um,β)) · (βm − β)
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≥ (b(u,β + εδ)− b(u,β)) · δ > 0,

which is impossible.

The following result is classical (see [125]). Its proof is given for the sake of
completeness.

Lemma 2.49. Let (Fm)m∈N be a sequence non-negative functions in L1(Ω).
Let F ∈ L1(Ω) be such that Fm → F a.e. in Ω and

∫
Ω
Fm(x)dx →∫

Ω
F (x)dx, as m→∞. Then, Fm → F in L1(Ω) as m→∞.

Proof. The proof of this lemma is very classical. Applying the Domi-
nated Convergence Theorem to the sequence (F − Fm)+ leads to

∫
Ω

(F (x)−
Fm(x))+dx→ 0 as m→∞. Then, since |F −Fm| = 2(F −Fm)+− (F −Fm),
we conclude that Fm → F in L1(Ω) as m→∞.

2.2 Non-homogeneous Dirichlet boundary conditions

We now present GDs and GSs for non-homogeneous Dirichlet boundary condi-
tions. To handle non-homogeneous boundary conditions, we need the concept
of trace of functions in W 1,p(Ω), for p ∈ (1,+∞). The existence of the trace

operator γ : W 1,p(Ω) → W 1− 1
p ,p(∂Ω) requires more regularity on Ω than in

Section 2.1, and this open set is therefore assumed here to have a Lipschitz
boundary.

2.2.1 Gradient discretisations

Definition 2.50 (GD, non-homogeneous Dirichlet BCs).
A gradient discretisation D for non-homogeneous Dirichlet conditions is de-
fined by D = (XD, ID,∂ , ΠD,∇D) where:

1. the set of discrete unknowns XD = XD,0 ⊕XD,∂ is the direct sum of two
finite dimensional spaces on R, corresponding respectively to the interior
unknowns and to the boundary unknowns,

2. the linear mapping ID,∂ : W 1− 1
p ,p(∂Ω) → XD,∂ is an interpolation ope-

rator for the traces γu of the elements u ∈W 1,p(Ω),
3. the function reconstruction ΠD : XD → Lp(Ω) is linear,
4. the gradient reconstruction ∇D : XD → Lp(Ω)d is linear,
5. the operator ∇D is such that ‖·‖D := ‖∇D·‖Lp(Ω)d is a norm on XD,0.

Remark 2.51 (Domain of ID,∂). The interpolation operator ID,∂ does not

necessarily need to be defined on the whole space W 1− 1
p ,p(∂Ω). If g is the

boundary condition of the considered problem (e.g., in (2.98b)), we only need

to define ID,∂g. Hence, if g has a better regularity than W 1− 1
p ,p(∂Ω), we can
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take advantage of this to find a simpler definition of ID,∂g, see for example
Remark 13.4.
In that case, the GD-consistency (Definition 2.52) is required only for func-
tions ϕ ∈W 1,p(Ω) such that γϕ has the additional regularity supposed when
constructing ID,∂ .

Coercivity, limit-conformity, compactness and piecewise constant re-
constructions are defined as in the homogeneous case, by considering Def-
initions 2.2, 2.6, 2.9 and 2.13 on the spaces XD,0. The definition of GD-
consistency needs to be modified and implicitly imposes assumptions on the
interpolation operator.

Definition 2.52 (GD-consistency, non-homogeneous Dirichlet
BCs)

If D is a gradient discretisation in the sense of Definition 2.50, define
SD : W 1,p(Ω)→ [0,+∞) by

∀ϕ ∈W 1,p(Ω),

SD(ϕ) = min
{
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d :

v ∈ XD such that v − ID,∂γϕ ∈ XD,0
}
.

(2.94)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 2.50 is GD-consistent if

∀ϕ ∈W 1,p(Ω), lim
m→∞

SDm(ϕ) = 0. (2.95)

Since coercivity, limit-conformity and compactness are the same as for homo-
geneous Dirichlet conditions, the characterisation Lemmas 2.8, 2.18 and 2.22
may also be used in the context of non-homogeneous Dirichlet conditions.
Likewise, the limit-conformity or compactness of a sequence of GDs implies
its coercivity, by Lemmata 2.7 and 2.11.
It will be useful, as in the homogeneous case, to also have a characterisation
of the GD-consistency using dense subsets of W 1,p(Ω). This characterisation
however requires an additional assumption on the trace interpolation operator,
stating that for any given trace on ∂Ω, we can find elements in XD which
interpolate this trace and have a norm controlled by this trace.

Lemma 2.53 (Equivalent condition for GD-consistency, non-homo-
geneous Dirichlet BCs). Let (Dm)m∈N be a sequence of gradient discreti-
sations in the sense of Definition 2.50. We assume that there exists C12 such
that, for any m ∈ N and any ϕ ∈W 1,p(Ω),

min{‖ΠDmv‖Lp(Ω) + ‖∇Dmv‖Lp(Ω)d : v − IDm,∂γϕ ∈ XD,0}

≤ C12 ‖ϕ‖W 1,p(Ω) .
(2.96)
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Then (Dm)m∈N is GD-consistent in the sense of Definition 2.52 if and only if
there exists a dense subset Ws in W 1,p(Ω) such that

∀ψ ∈Ws , lim
m→∞

SDm(ψ) = 0. (2.97)

Remark 2.54. Note that (2.96) is almost a requirement to GD-consistency in
the sense of Definition 2.52. Indeed, for any ϕ ∈W 1,p(Ω), taking and element
in XD + ID,∂γϕ ∈ XD,0 which realises the minimum SD(ϕ), we see that

min{‖ΠDv‖Lp(Ω) + ‖∇Dv‖Lp(Ω)d , v − ID,∂γϕ ∈ XD,0}
≤ SD(ϕ) + ‖ϕ‖W 1,p(Ω) .

Hence, if (Dm)m∈N is GD-consistent in the sense of Definition 2.52, estimate
(2.96) is asymptotically true as m→∞ since SDm(ϕ)→ 0.

Proof. The proof is very similar to the proof of Lemma 2.17 and we obviously
only have to prove the “if” direction (the “only if” holds with Ws = W 1,p(Ω)).
Let ϕ ∈ W 1,p(Ω) and ε > 0. Take ψ ∈ Ws such that ‖ϕ − ψ‖W 1,p(Ω) ≤ ε.
Let v ∈ XDm,0 + IDm,∂γψ which realises the minimum in SDm(ψ) and let
w ∈ XDm,0 + IDm,∂γ(ϕ − ψ) which realises the minimum for ϕ − ψ in the
left-hand side of (2.96). Then v + w ∈ XDm,0 + IDm,∂γϕ and, therefore,

SDm(ϕ) ≤ ‖ΠDm(v + w)− ϕ‖Lp(Ω) + ‖∇Dm(v + w)−∇ϕ‖Lp(Ω)d

≤ ‖ΠDmv − ψ‖Lp(Ω) + ‖∇Dmv −∇ψ‖Lp(Ω)d

+ ‖ΠDmw‖Lp(Ω) + ‖∇Dmw‖Lp(Ω)d

+ ‖ϕ− ψ‖Lp(Ω) + ‖∇ϕ−∇ψ‖Lp(Ω)d

≤ SDm(ψ) + (C12 + 1) ‖ϕ− ψ‖W 1,p(Ω)

≤ SDm(ψ) + (C12 + 1)ε.

The conclusion follows as in the proof of Lemma 2.17.

The convergence properties imposed on the interpolant ID,∂ are somewhat
hidden in the definition of GD-consistency. The following lemma shows that
the formulation (2.101) of gradient schemes for non-homogeneous Dirichlet
conditions make sense (for linear as well as non-linear problems): sequences
of solutions to the gradient schemes indeed converge, up to a subsequence, to
a function that has the required trace on the boundary of Ω.

Lemma 2.55 (Regularity of the limit, non-homogeneous Dirichlet
BCs). Let (Dm)m∈N be a sequence of gradient discretisations in the sense of
Definition 2.50, that is limit-conforming (Definition 2.6) and GD-consistent

(Definition 2.52). Let g ∈ W 1− 1
p ,p(∂Ω). Let um ∈ XDm be such that

um − IDm,∂g ∈ XDm,0 and (‖∇Dmum‖Lp(Ω)d)m∈N remains bounded. Then

there exist a subsequence of (Dm, um)m∈N, denoted in the same way, and
u ∈W 1,p(Ω) such that γu = g and, as m→∞, ΠDmum converges weakly in
Lp(Ω) to u and ∇Dmum converges weakly in Lp(Ω)d to ∇u.



2.2 Non-homogeneous Dirichlet boundary conditions 61

Proof. Notice first that, by Lemma 2.7, (Dm)m∈N is coercive in the sense of
Definition 2.2.
Let g̃ ∈ W 1,p(Ω) such that γg̃ = g. By GD-consistency of (Dm)m∈N, we can
find vm ∈ XDm,0+IDm,∂g such that ΠDmvm → g̃ in Lp(Ω) and∇Dmvm → ∇g̃
in Lp(Ω)d.
By assumption, um−vm = (um−IDm,∂g)+(IDm,∂g−vm) belongs to XDm,0,
and ‖∇Dm(um − vm)‖Lp(Ω)d remains bounded. Hence, by recalling that the

coercivity and limit-conformity of (Dm)m∈N are identical to the coercivity
and limit-conformity of the underlying gradient discretisations for homoge-
neous Dirichlet conditions (i.e. with XDm,0 instead of XDm), Lemma 2.16
shows that, up to a subsequence, ΠDm(um − vm) → ũ weakly in Lp(Ω) and
∇Dm(um − vm)→ ∇ũ weakly in Lp(Ω)d, where ũ ∈W 1,p

0 (Ω).
The properties of (vm)m∈N then show that ΠDmum = ΠDm(um − vm) +
ΠDmvm → ũ+ g̃ =: u in Lp(Ω), and ∇Dmum = ∇Dm(um − vm) +∇Dmvm →
∇ũ +∇g̃ = ∇u in Lp(Ω)d. The function u = ũ + g̃ belongs to W 1,p(Ω) and
has trace γu = γũ+ γg̃ = 0 + g = g.

2.2.2 Gradient schemes for linear problems

Here, we take p = 2 in all the definitions of the previous section. We consider
the linear problem defined in its strong form by:

−div(Λ∇u) = f + div(F ) in Ω, (2.98a)

with boundary conditions
u = g on ∂Ω, (2.98b)

under similar assumptions as in Section 2.1.2, adapted to the non-homogeneous
BCs:

• Ω is an open bounded connected subset of Rd (d ∈ N?),
with Lipschitz boundary, (2.99a)

• Λ is a measurable function from Ω to the set of d× d
symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (2.99b)

• f ∈ L2(Ω) , F ∈ L2(Ω)d , g ∈ H1/2(∂Ω). (2.99c)

Under these hypotheses, the weak solution of (2.98) is the unique function u
satisfying:

u ∈ {w ∈ H1(Ω), γ(w) = g}, ∀v ∈ H1
0 (Ω),∫

Ω

Λ(x)∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx−
∫
Ω

F (x) · ∇v(x)dx.
(2.100)

The GDM applied to Problem (2.100) yields the following gradient scheme.
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Definition 2.56 (GS, non-homogeneous Dirichlet BCs). If D = (XD =
XD,0 ⊕XD,∂ , ID,∂ , ΠD,∇D) is a gradient discretisation in the sense of Defi-
nition 2.50, then we define the related gradient scheme for (2.100) by

Find u ∈ ID,∂g +XD,0 such that, for any v ∈ XD,0,∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx

=

∫
Ω

f(x)ΠDv(x)dx−
∫
Ω

F (x) · ∇Dv(x)dx.

(2.101)

The following theorem states error estimates for the GS for non-homogeneous
Dirichlet boundary conditions. This theorem yields a convergence result (not
explicitly stated) similar to Corollary 2.32.

Theorem 2.57 (Control of the approximation error, non-homogene-
ous Dirichlet BCs). Under Hypotheses (2.99), let u ∈ H1(Ω) be the solution
of (2.100) (remark that since f ∈ L2(Ω), one has Λ∇u+ F ∈ Hdiv(Ω)).
Let D be a GD in the sense of Definition 2.50. Then there exists one and
only one uD ∈ XD solution to the GS (2.101), and it satisfies the following
inequalities:

‖∇u−∇DuD‖L2(Ω)d ≤
1

λ

[
WD(Λ∇u+ F ) + (λ+ λ)SD(u)

]
, (2.102)

‖u−ΠDuD‖L2(Ω) ≤
1

λ

[
CDWD(Λ∇u+ F ) + (CDλ+ λ)SD(u)

]
, (2.103)

where CD, SD and WD are defined by Definitions 2.2, 2.52 and 2.6.

Remark 2.58. A lower bound in the spirit of (2.29) could also be stated.

Proof. Reasoning as in the proof of Theorem 2.29, we arrive at (2.33) for
any v ∈ XD,0. We then define

IDu = argmin
w∈ID,∂g+XD,0

(‖ΠDw − u‖L2(Ω) + ‖∇Dw −∇u‖L2(Ω)d),

and we notice that, by definition (2.94) of SD, (2.35) is still valid. Moreover,
the vector v = IDu− uD belongs to ID,∂g+XD,0 + (−ID,∂g+XD,0) = XD,0
and can therefore be used in (2.33). The rest of the proof is then exactly as
in the proof of Theorem 2.29.

2.2.3 Gradient schemes for quasi-linear problems

We still consider p = 2 in the definitions and results of Section 2.2.1, and we
deal with (2.49a) with non-homogeneous Dirichlet boundary conditions, that
is:

−div(Λ(x, u)∇u) = f in Ω,

u = g on ∂Ω.
(2.104)
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We consider the same assumptions as in Section 2.1.4, adapted to the non-
homogeneous boundary conditions:

• Ω is an open bounded connected subset of Rd (d ∈ N?),
with Lipschitz boundary, (2.105a)

• Λ is a Caratheodory function from Ω × R to Md(R),

Λ(x, s) is measurable w.r.t. x and continuous w.r.t. s,

there exists λ, λ > 0 such that, for a.e. x ∈ Ω, for all s ∈ R
Λ(x, s) is symmetric with eigenvalues in [λ, λ], (2.105b)

• f ∈ L2(Ω) , g ∈ H1/2(∂Ω). (2.105c)

Under these hypotheses, a weak solution to (2.104) is a function u (not nec-
essarily unique) satisfying:

u ∈ {w ∈ H1(Ω), γ(w) = g}, ∀v ∈ H1
0 (Ω),∫

Ω

Λ(x, u(x))∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx.
(2.106)

This problem is approximated by the following gradient scheme.

Definition 2.59 (GS, quasi-linear problem, non-homogeneous Dirich-
let BCs). If D = (XD = XD,0 ⊕XD,∂ , ID,∂ , ΠD,∇D) is a GD in the sense
of Definition 2.50, then we define the related gradient scheme for (2.106) by

Find u ∈ ID,∂g +XD,0 such that, for any v ∈ XD,0,∫
Ω

Λ(x, ΠDu(x))∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx.
(2.107)

This scheme leads to a non-linear system of equations under the form A(u)U =
B, similar to (2.53). We then have the following convergence result.

Theorem 2.60 (Convergence, quasi-linear problem, non-homogene-
ous Dirichlet BCs). Under Assumptions (2.105), let (Dm)m∈N be a se-
quence of GDs in the sense of Definition 2.50, which is GD-consistent, limit-
conforming and compact in the sense of Definitions 2.52, 2.6 and 2.9.
Then, for any m ∈ N, there exists at least one um ∈ XDm solution to the
gradient scheme (2.107) and, up to a subsequence, ΠDmum converges strongly
in L2(Ω) to a solution u of (2.106) and ∇Dmum converges strongly in L2(Ω)d

to ∇u as m→∞.
In the case where the solution u of (2.106) is unique, then the whole sequence
converges to u as m→∞ in the senses above.

Proof. Take a lifting ḡ ∈ H1(Ω) of g, that is, ḡ is such that γḡ = g. For a
gradient discretisation D in the sense of Definition 2.50, define
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ID ḡ = argmin
v∈ID,∂g+XD,0

(
‖ΠDv − ḡ‖L2(Ω) + ‖∇Dv −∇ḡ‖L2(Ω)d

)
.

Thanks to Definition 2.52, as m→∞, ΠDmIDm ḡ converges strongly in L2(Ω)
to ḡ and∇DmIDm ḡ converges strongly in L2(Ω)d to∇ḡ. Then, for any solution
u to (2.107), writing w = u− ID ḡ ∈ XD,0, we have

∀v ∈ XD,0,∫
Ω

Λ(x, ΠD(w + ID ḡ)(x))∇Dw(x) · ∇Dv(x)dx

=

∫
Ω

f(x)ΠDv(x)dx−
∫
Ω

Λ(x, ΠD(w + ID ḡ)(x))∇DID ḡ(x) · ∇Dv(x)dx.

The remaining of the proof is then similar to that of Theorem 2.36, reasoning
on w instead of u.
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Neumann, Fourier and mixed boundary
conditions

The previous chapter presents the concepts of GDM for Dirichlet boundary
conditions. Here, we show how these concepts must be modified and/or ex-
panded to deal with other kinds of boundary conditions, namely Neumann,
Fourier (or Robin), and mixed Dirichlet/Neumann. Each section is concerned
with one particular form of boundary condition, and its structure is similar
to the presentation adopted for Dirichlet boundary conditions: the notion of
GD for the considered boundary conditions is first presented; it is followed by
an analysis of the convergence of the corresponding GSs for some (linear or
quasi-linear) elliptic PDEs.
The particular choices of definitions, and some of the resulting lemmas, are
consequences of the abstract setting presented in Appendix A. Assimilating
this appendix beforehand is however not mandatory, unless the reader wants
complete proofs of all the results presented here. Since these proofs follow
the same ideas as for homogeneous Dirichlet boundary conditions, the inter-
ested reader can alternatively attempt to write self-contained proofs, without
reference to the results in Appendix A.

In all this chapter, Ω is assumed to have a Lipschitz-continuous boundary,
and p ∈ (1,+∞).

3.1 Neumann boundary conditions

3.1.1 Gradient discretisations

Homogeneous Neumann boundary conditions

With the choice of spaces and operators described in Section A.1.2, the defi-
nitions and results of Section A.2 lead, with PD = ΠD and GD = ∇D, to the
following concept of GDs for homogeneous Neumann boundary conditions.

Definition 3.1 (GD, homogeneous Neumann BCs). A gradient discreti-
sation D for homogeneous Neumann conditions is D = (XD, ΠD,∇D) where:
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1. the set of discrete unknowns XD is a finite dimensional vector space on
R,

2. the function reconstruction ΠD : XD → Lp(Ω) is linear,
3. the gradient reconstruction ∇D : XD → Lp(Ω)d is linear,
4. the operators ∇D and ΠD are such that

‖v‖D :=

(
‖∇Dv‖pLp(Ω)d +

∣∣∣∣∫
Ω

ΠDv(x)dx

∣∣∣∣p)1/p

(3.1)

is a norm on XD.

Remark 3.2. The choice of ‖v‖D, involving the integral of ΠDv rather that its
Lp(Ω) norm, is justified by the way GSs for Neumann problems are written,
and by the a priori estimates that can be established on the approximate
solution (cf Section 3.1.3).

The discrete properties of gradient discretisations for Neumann problems, that
ensure the convergence of the associated gradient schemes, are the following.

Definition 3.3 (Coercivity, homogeneous Neumann BCs)

If D is a gradient discretisation in the sense of Definition 3.1, define

CD = max
v∈XD\{0}

‖ΠDv‖Lp(Ω)

‖v‖D
. (3.2)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 3.1 is coercive if there exists CP ∈ R+ such that CDm ≤ CP for
all m ∈ N.

Definition 3.4 (GD-consistency, Neumann BCs)

If D is a gradient discretisation in the sense of Definition 3.1, define
SD : W 1,p(Ω)→ [0,+∞) by

∀ϕ ∈W 1,p(Ω) ,

SD(ϕ) = min
v∈XD

(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
.

(3.3)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 3.1 is GD-consistent if

∀ϕ ∈W 1,p(Ω), lim
m→∞

SDm(ϕ) = 0. (3.4)
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Definition 3.5 (Limit-conformity, homogeneous Neumann
BCs)

For p ∈ (1,+∞), let p′ = p
p−1 and

W p′

div,0(Ω) = {ϕ ∈ Lp
′
(Ω)d : divϕ ∈ Lp

′
(Ω) , γn(ϕ) = 0},

where γn(ϕ) is the normal trace of ϕ on ∂Ω (see Section 3.1.2). If D
be a gradient discretisation in the sense of Definition 3.1, define WD:

W p′

div,0(Ω)→ [0,+∞) by

∀ϕ ∈W p′

div,0(Ω) ,

WD(ϕ) = max
v∈XD\{0}

1

‖v‖D

∣∣∣∣∫
Ω

∇Dv(x) ·ϕ(x)dx

+

∫
Ω

ΠDv(x)divϕ(x)dx

∣∣∣∣ .
(3.5)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 3.1 is limit-conforming if

∀ϕ ∈W p′

div,0(Ω), lim
m→∞

WDm(ϕ) = 0. (3.6)

Definition 3.6 (Compactness, homogeneous Neumann BCs)

A sequence (Dm)m∈N of gradient discretisations in the sense of Def-
inition 3.1 is compact if, for any sequence um ∈ XDm such that
(‖um‖Dm)m∈N is bounded, the sequence (ΠDmum)m∈N is relatively
compact in Lp(Ω).

Note that the definition of piecewise constant reconstruction for a gradi-
ent discretisation for homogeneous Neumann boundary conditions is the same
as Definition 2.13, replacing the space XD,0 by XD.

As in the case of Dirichlet boundary conditions (see Lemma 2.17), the GD-
consistency (resp. the limit-conformity) of sequences of gradient discretisa-
tions in the case of homogeneous Neumann conditions needs only be checked

on a dense subset of W 1,p(Ω) (resp. W 1,p′

0 (Ω)).

Lemma 3.7 (Equivalent condition for GD-consistency, Neumann BCs).
A sequence (Dm)m∈N of gradient discretisations is GD-consistent in the sense
of Definition 3.4 if and only if there exists a dense subset Ws in W 1,p(Ω) such
that

∀ϕ ∈Ws , lim
m→∞

SDm(ϕ) = 0.
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Proof. Apply Lemma A.13 with the choices in Section A.1.2.

As for Dirichlet BCs, the limit-conformity or compactness of a sequence of
gradient discretisations imply its coercivity.

Lemma 3.8 (Limit-conformity implies coercivity, homogeneous Neu-
mann BCs). Any sequence of gradient discretisations that is limit-conform-
ing in the sense of Definition 3.5 is also coercive in the sense of Definition
3.3.

Proof. Apply Lemma A.8 with the choices in Section A.1.2.

Lemma 3.9 (Compactness implies coercivity, homogeneous Neumann
BCs). Any sequence of gradient discretisations that is compact in the sense
of Definition 3.6 is also coercive in the sense of Definition 3.3.

Proof. Apply Lemma A.16 with the choices in Section A.1.2.

Lemma 2.22 states a compactness criterion in the case of Dirichlet boundary
conditions; we state below a similar criterion for the case of Neumann bound-
ary conditions, which holds under an additional regularity property on the
domain Ω. Contrary to the case of Dirichlet boundary conditions, we may no
longer extend the functions by 0 outside of Ω, and therefore the criterion can
only involve “interior” translations

Lemma 3.10 (A criterion for compactness). Let Ω be an open subset of
Rd satisfying the “segment condition”: there exist open sets (Ui)i=1,...,k and
non-zero vectors (ξi)i=1,...,k such that ∂Ω ⊂ ∪ki=1Ui and, for all i = 1, . . . , k
and all t ∈ (0, 1], Ω ∩ Ui + tξi ⊂ Ω.
Let p ≥ 1 be given and (um)m∈N be a bounded sequence in Lp(Ω) such that

lim|ξ|→0 supm∈N ‖um(·+ ξ)− um‖Lp(Ωξ) = 0
(where Ωξ = {x ∈ Ω, [x,x+ ξ] ⊂ Ω}).

(3.7)

Then (um)m∈N is relatively compact in Lp(Ω).

Proof.
Let us first notice that, for any ω relatively compact in Ω, we have ω ⊂ Ωξ for
|ξ| small enough. Hence, by the classical Kolmogorov compactness theorem,
there exists u ∈ Lploc(Ω) and a subsequence, still denoted by (um)m∈N, such
that um → u in Lploc(Ω). Since (um)m∈N is bounded in Lp(Ω), Fatou’s lemma
shows that u belongs in fact to Lp(Ω). We infer that (um−u)m∈N is bounded
in Lp(Ω) and satisfies (3.7). Reasoning on um − u rather than u, we can
therefore assume that u = 0 and we have to prove that um → 0 in Lp(Ω).
The main issue is of course to estimate this convergence on a neighbourhood
of ∂Ω.
Let (Ui)i=1,...,k and (ξi)i=1,...,k be given by the segment condition for Ω. For
any i ∈ {1, . . . , k} and any r ∈ (0, 1], Ki,r = Ω ∩Ui + rξi is a compact subset
of Ω. Moreover, for any m ∈ N, by the change of variable y = x+ rξi, we get
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Ω∩Ui

|um(x)|pdx ≤
∫
Ω∩Ui+rξi

|um(y − rξi)|pdy

≤ 2p−1

∫
Ω∩Ui+rξi

|um(y − rξi)− um(y)|pdy

+2p−1

∫
Ki,r

|um(y)|pdy.

For any z ∈ Ω ∩ Ui and any s ∈ [0, 1] we have (z + rξi) − srξi = z + (1 −
s)rξi ∈ Ω, by definition of z if s = 1 and by definition of ξi if s < 1. Hence,
Ω ∩ Ui + rξi ⊂ Ω−rξi and the preceding inequality gives∫

Ω∩Ui
|um(x)|pdx ≤ 2p−1η(−rξi) + 2p−1

∫
Ki,r

|um(y)|pdy

where η(ξ) = supm∈N ‖um(·+ ξ)−um‖pLp(Ωξ)
tends to 0 as |ξ| → 0. Summing

all these inequalities on i = 1, . . . , k and defining the open set U = ∪ki=1Ui,
neighbourhood of ∂Ω in Rd, we obtain∫

Ω∩U
|um(x)|pdx ≤ 2p−1

k∑
i=1

η(−rξi) + 2p−1
k∑
i=1

∫
Ki,r

|um(y)|pdy.

Let us now take ε > 0 and fix r ∈ (0, 1] such that, for all i = 1, . . . , k,
η(−rξi) ≤ ε. Since, for any i, Ki,r is a compact subset of Ω we have∫
Ki,r
|um(y)|pdy → 0 as m→∞ and therefore

lim sup
m→∞

∫
Ω∩U

|um(x)|pdx ≤ 2p−1kε.

The proof is completed by letting ε→ 0.

Non-homogeneous Neumann boundary conditions

The framework of gradient discretisations for diffusion problems with non-
homogeneous Neumann boundary conditions is now presented. It corresponds
to the abstract setting of Appendix A with the choice of spaces and operators
described in Section A.1.3, provided that PDu = (ΠDu,TDu) and GDu =
∇Du.
We recall that Ω is a connected open bounded subset of Rd with Lipschitz
boundary, and that p ∈ (1,+∞).

Definition 3.11 (GD, non-homogeneous Neumann BCs). A gradient
discretisation D for non-homogeneous Neumann conditions D is defined by
D = (XD, ΠD,TD,∇D) where:

1. the set of discrete unknowns XD is a finite dimensional vector space on
R,



70 3 Neumann, Fourier and mixed boundary conditions

2. the function reconstruction ΠD : XD → Lp(Ω) is linear,
3. the trace reconstruction TD : XD → Lp(∂Ω) is linear; it provides, from

an element of XD, a function over ∂Ω,
4. the gradient reconstruction ∇D : XD → Lp(Ω)d is linear,
5. the operators ∇D and ΠD are such that

‖v‖D :=

(
‖∇Dv‖pLp(Ω)d +

∣∣∣∣∫
Ω

ΠDv(x)dx

∣∣∣∣p)1/p

(3.8)

is a norm on XD.

The discrete properties of gradient discretisations for Neumann problems,
that ensures the the convergence of the associated gradient schemes, are the
following. The GD-consistency and piecewise constant reconstruction
are still defined by Definitions 3.4 and 2.13 (replacing XD,0 with XD in the
latter definition).

Remark 3.12 (Variant of the GD-consistency for non-homogeneous Neumann BCs)
Following the abstract setting in Appendix A, with the choices made in Section

A.1.3 the definition A.12 of GD-consistency would lead us to consider a different
SD than in Definition 3.4; namely, SD would be defined by (3.52), as for Fourier
BCs. Keeping the same definition (3.3) of SD for non-homogeneous Neumann BCs
as for homogeneous Neumann BCs offers a variant to the choice made in Appendix
A. Note that Lemma A.13 (checking the GD-consistency using a dense subset of
W 1,p(Ω)) is still valid with this variant, upon minor modifications in the proof.
If approximating the trace is not a necessity, this definition (3.3) of SD is sufficient
to analyse gradient schemes for non-homogeneous Neumann problems. To recover
a strong approximation of the trace, SD needs to be changed into (3.52) – see
Proposition 3.25.

Definition 3.13 (Coercivity, non-homogeneous Neumann
BCs)

If D is a gradient discretisation in the sense of Definition 3.11, define

CD = max
v∈XD\{0}

(
max

{‖ΠDv‖Lp(Ω)

‖v‖D
,
‖TDv‖Lp(∂Ω)

‖v‖D

})
. (3.9)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defi-
nition 3.11 is coercive if there exists CP ∈ R+ such that CDm ≤ CP
for all m ∈ N.
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Definition 3.14 (Limit-conformity, non-homogeneous Neu-
mann BCs)

For p ∈ (1,+∞), let p′ = p
p−1 and

W p′

div,∂(Ω) = {ϕ ∈ Lp
′
(Ω)d : divϕ ∈ Lp

′
(Ω), γn(ϕ) ∈ Lp

′
(∂Ω)},

(3.10)
where γn(ϕ) is the normal trace of ϕ on ∂Ω (see Section 3.1.2). If D
is a gradient discretisation in the sense of Definition 3.11, define WD:

W p′

div,∂(Ω)→ [0,+∞) by

∀ϕ ∈W p′

div,∂(Ω),

WD(ϕ) = max
v∈XD\{0}

1

‖v‖D

∣∣∣∣∫
Ω

(∇Dv(x) ·ϕ(x) +ΠDv(x)divϕ(x)) dx

−
∫
∂Ω

TDv(x)γn(ϕ)(x)dγ(x)

∣∣∣∣ . (3.11)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 3.11 is limit-conforming if

∀ϕ ∈W p′

div,∂(Ω), lim
m→∞

WDm(ϕ) = 0. (3.12)

Remark 3.15. This definition of limit-conformity ensure both that the dual
operator to ∇Dm approximates the continuous divergence operator, and that
TDm approximates the continuous trace operator (see Lemma 3.22).

Definition 3.16 (Compactness, non-homogeneous Neumann
BCs)

A sequence (Dm)m∈N of gradient discretisations in the sense of Def-
inition 3.11 is compact if, for any sequence um ∈ XDm such
that (‖um‖Dm)m∈N is bounded, the sequences (ΠDmum)m∈N and
(TDmum)m∈N are relatively compact in Lp(Ω) and Lp(∂Ω), respec-
tively.

Remark 3.17 (Alternative definition of compactness)
As for Dirichlet problems, compactness of the sequence of gradient discretisations is
only useful when dealing with non-linearities in the PDE. If these non-linearities do
not involve the trace of the solution, then the compactness property can be relaxed
by only requesting the weak relative compactness of (TDmum)m∈N in Lp(∂Ω); see,
e.g., the proof of Theorem 3.36.
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As for other boundary conditions, the limit-conformity or compactness imply
the coercivity in the case of non-homogeneous Neumann BCs.

Lemma 3.18 (Limit-conformity implies coercivity, non-homogeneous
Neumann BCs). Any sequence of gradient discretisations that is limit-
conforming in the sense of Definition 3.14 is also coercive in the sense of
Definition 3.13.

Proof. Apply Lemma A.8 with the choices in Section A.1.3.

Lemma 3.19 (Compactness implies coercivity, non-homogeneous Neu-
mann BCs). Any sequence of gradient discretisations that is compact in the
sense of Definition 3.16 is also coercive in the sense of Definition 3.13.

Proof. Apply Lemma A.16 with the choices in Section A.1.3.

Lemma 3.20 (Equivalent condition for limit-conformity, non-homo-
geneous Neumann BCs). Let (Dm) be a sequence of sequence of gradient
discretisations. Then (Dm)m∈N is limit-conforming in the sense of Definition
3.14 if and only if it is coercive in the sense of Definition 3.13, and there

exists a dense subset Ww in W p′

div,∂(Ω) (endowed with the norm ‖ϕ‖
Wp′

div,∂(Ω)
=

‖ϕ‖Lp′ (Ω)d + ‖divϕ‖Lp′ (Ω) + ‖γn(ϕ)‖Lp′ (∂Ω)) such that

∀ϕ ∈Ww, lim
m→∞

WDm(ϕ) = 0. (3.13)

Remark 3.21. Lemma 3.28 shows that the set Ww = C∞(Rd)d is dense in

W p′

div,∂(Ω).

Proof. Apply Lemma A.9 with the choices in Section A.1.3.

The following lemma is the equivalent of Lemma 2.16 for non-homogeneous
Neumann conditions.

Lemma 3.22 (Regularity of the limit, non-homogeneous Neumann
BCs). Let (Dm)m∈N be a limit-conforming sequence of gradient discretisa-
tions in the sense of Definition 3.14. Let um ∈ XDm be such that (‖um‖Dm)m∈N
is bounded. Then there exists u ∈W 1,p(Ω) such that, up to a subsequence,

ΠDmum → u weakly in Lp(Ω), (3.14)

TDmum → γu weakly in Lp(∂Ω), (3.15)

∇Dmum → ∇u weakly in Lp(Ω)d. (3.16)

Remark 3.23. This lemma shows in particular that if um ∈ XDm is such that,
for some u ∈ W 1,p(Ω), ΠDmum → u weakly in Lp(Ω) and ∇Dmum → ∇u
weakly in Lp(Ω)d, then TDmum → γu weakly in Lp(∂Ω).
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Remark 3.24. In the case of gradient discretisations for homogeneous Neu-
mann conditions, which do not involve a trace reconstruction, Lemma 3.22 is
still valid with (3.15) removed.

Proof. Apply Lemma A.11 with the choices in Section A.1.3.

We complete this section by stating an approximation property of TD. This
property is useful to deduce error estimates on the traces of gradient scheme
approximations to linear elliptic problems (see Remark 3.32).

Proposition 3.25 (Approximation property of TD – Neumann BCs).
Let D be a gradient discretisation in the sense of Definition 3.11. We define,
for ϕ ∈W 1,p(Ω),

SD(ϕ) = min
w∈XD

(
‖ΠDw − ϕ‖Lp(Ω) + ‖TDw − γϕ‖Lp(∂Ω)

+ ‖∇Dw −∇ϕ‖Lp(Ω)d

)
.

(3.17)

Then, for any v ∈ XD and any ϕ ∈W 1,p(Ω),

‖TDv − γϕ‖Lp(∂Ω) ≤ CD
(
|Ω|

1
p′ ‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
+ max

(
1, CD, CD|Ω|

1
p′
)
SD(ϕ).

Remark 3.26. The quantity SD in (3.17) is actually the measure of the GD-
consistency for Fourier boundary conditions, see (3.52).

Proof. We introduce

IDϕ = argmin
w∈XD

(
‖ΠDw − ϕ‖Lp(Ω) + ‖TDw − γϕ‖Lp(∂Ω)

+ ‖∇Dw −∇ϕ‖Lp(Ω)d

)
and we notice that

‖ΠDIDϕ− ϕ‖Lp(Ω) + ‖TDIDϕ− γϕ‖Lp(∂Ω)

+ ‖∇DIDϕ−∇ϕ‖Lp(Ω)d ≤ SD(ϕ). (3.18)

By definition of CD and of ‖·‖D, Hölder’s inequality gives, for all w ∈ XD,

‖TDw‖Lp(∂Ω) ≤ CD
(
‖∇Dw‖Lp(Ω)d + |Ω|

1
p′ ‖ΠDw‖Lp(Ω)

)
. (3.19)

A triangle inequality therefore provides

‖TDv − γϕ‖Lp(∂Ω)
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≤ ‖TD(v − IDϕ)‖Lp(∂Ω) + ‖TDIDϕ− γϕ‖Lp(∂Ω)

≤ CD
(
|Ω|

1
p′ ‖ΠDv −ΠDIDϕ‖Lp(Ω) + ‖∇Dv −∇DIDϕ‖Lp(Ω)d

)
+ ‖TDIDϕ− γϕ‖Lp(∂Ω) .

We then use the triangle inequality again in the first two terms in the right-
hand side, to introduce ϕ in the first one and ∇ϕ in the second one, and we
apply (3.18) to conclude the proof.

3.1.2 Complements on trace operators

Dealing with Neumann or Fourier BCs often requires a specific knowledge of
the trace operators in Sobolev spaces. We recall here the main properties used
in this monograph.
Let Ω be a bounded open subset of Rd with Lipschitz boundary. The trace

operator γ : W 1,p(Ω)→W 1− 1
p ,p(∂Ω) is well defined and surjective, and there

exists a linear continuous lifting operator L∂ : W 1− 1
p ,p(∂Ω)→W 1,p(Ω) such

that γL∂g = g for any g ∈ W 1− 1
p ,p(∂Ω). We recall that in the case p = 2,

W
1
2 ,2(∂Ω) is generally denoted by H

1
2 (∂Ω) and the set W 1,2(Ω) is denoted

H1(Ω).

We can then define the normal trace γn(ϕ) ∈ (W 1− 1
p ,p(∂Ω))′ of ϕ ∈W p′

div(Ω)
(where p′ = p

p−1 ) the following way. Denoting by 〈·, ·〉∂ the duality product

between (W 1− 1
p ,p(∂Ω))′ and W 1− 1

p ,p(∂Ω), we let, for any g ∈W 1− 1
p ,p(∂Ω),

〈γn(ϕ), g〉∂ =

∫
Ω

(ϕ(x) · ∇L∂g(x) + L∂g(x)divϕ(x)) dx. (3.20)

The linearity and continuity of L∂ ensure that γn(ϕ) is indeed an element of

(W 1− 1
p ,p(∂Ω))′. Moreover, for any ϕ ∈ W 1,p(Ω) such that γϕ = g we have

L∂g − ϕ ∈W 1,p
0 (Ω) and thus, by Stokes’ formula,∫

Ω

(∇(L∂g − ϕ)(x) ·ϕ(x) + (L∂g − ϕ)(x)divϕ(x)) dx = 0.

This shows that (3.20) is also valid if we replace L∂g with any ϕ ∈ W 1,p(Ω)
having trace g on ∂Ω.

Lemma 3.27 (Surjectivity of the normal trace). The normal trace

γn : W p′

div(Ω) → (W 1− 1
p ,p(∂Ω))′ is linear continuous surjective. More pre-

cisely, there exists C∂ > 0 depending only on Ω and p such that, for any

l ∈ (W 1− 1
p ,p(∂Ω))′, there exists ϕ ∈W p′

div(Ω) satisfying γn(ϕ) = l and

‖ϕ‖
Wp′

div(Ω)
≤ C∂ ‖l‖

(W
1− 1

p
,p

(∂Ω))′
, (3.21)

where we recall that ‖ϕ‖
Wp′

div(Ω)
= ‖ϕ‖Lp′ (Ω)d + ‖divϕ‖Lp′ (Ω).
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Proof. Since γ : W 1,p(Ω) → W 1− 1
p ,p(∂Ω), for any l ∈ (W 1− 1

p ,p(∂Ω))′ we
have γ∗l ∈ (W 1,p(Ω))′. There exists thus (h,ϕ) ∈ Lp′(Ω)×Lp′(Ω)d such that,
for all ϕ ∈W 1,p(Ω),

〈l, γϕ〉∂ = 〈γ∗l, ϕ〉(W 1,p(Ω))′,W 1,p(Ω)

=

∫
Ω

(ϕ(x) · ∇ϕ(x) + h(x)ϕ(x)) dx
(3.22)

and

‖ϕ‖Lp′ (Ω)d + ‖h‖Lp′ (Ω) ≤ ‖γ
∗l‖(W 1,p(Ω))′ ≤ C∂ ‖l‖(W 1− 1

p
,p

(∂Ω))′
(3.23)

where C∂ is the norm of γ (it is also the norm of γ∗). Testing (3.22) with

functions ϕ in C∞c (Ω) shows that h = divϕ and, therefore, that ϕ ∈W p′

div(Ω).

Taking then a generic g ∈ W 1− 1
p ,p(∂Ω) and applying (3.22) with ϕ = L∂g

gives γn(ϕ) = l and Estimate (3.23) gives (3.21).

Lemma 3.28 (Density of smooth functions in W p′

div,∂(Ω)). Let Ω be a

polytopal open set (see Definition7.2) and p ∈ (1,+∞). The space W p′

div,∂(Ω)
is defined by (3.10) and endowed with the norm ‖ϕ‖

Wp′
div,∂(Ω)

= ‖ϕ‖Lp′ (Ω)d +

‖divϕ‖Lp′ (Ω) + ‖γn(ϕ)‖Lp′ (∂Ω). Then

1. C∞c (Ω)d is dense in W p′

div,0(Ω) = {ϕ ∈W p′

div,∂(Ω) : γn(ϕ) = 0},
2. C∞c (Rd)d is dense in W p′

div,∂(Ω).

Remark 3.29. We only state the lemma for polytopal open sets Ω, but the
proof shows that the result is more general than this (in particular, it holds
for open sets with piecewise C1,1 boundary – since the normal n is then
Lipschitz continuous outside a set of zero (d− 1)-dimensional measure).

Proof.
Item 1: using the localisation techniques of [133, Ch. 1, Theorem 1.1, (iii)],
we can reduce the study to the case where Ω is strictly star-shaped, say with
respect to 0. This means that, for any λ ∈ (0, 1), λΩ ⊂ Ω.

Let ϕ ∈W p′

div,∂(Ω) such that γn(ϕ) = 0. Then the extension ϕ̃ of ϕ to Rd by

0 outside Ω belongs to W p′

div(Rd), since the normal traces of ϕ̃ is continuous
through ∂Ω. Let λ ∈ (0, 1) and define ϕ̃λ : x 7→ ϕ̃(x/λ). As λ → 1, we
have ϕ̃λ → ϕ̃ in Lp

′
(Ω)d and div(ϕ̃λ) = λ−1(divϕ̃)(·/λ) → divϕ̃ in Lp

′
(Ω).

Moreover, the support of ϕ̃λ is contained in λΩ, and is therefore compact in
Ω.
Let (ρε)ε>0 be a smoothing kernel. For ε small enough, ϕ̃λ ∗ ρε belongs to
C∞c (Ω)d. As ε→ 0, we also have ϕ̃λ ∗ ρε → ϕ̃λ in Lp

′
(Ω)d and div(ϕ̃λ ∗ ρε) =

div(ϕ̃λ) ∗ ρε → div(ϕ̃λ) in Lp
′
(Ω).
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Hence, letting in that order λ → 1 and ε → 0, the functions (ϕ̃λ ∗ ρε)|Ω give

an approximation in W p′

div,∂(Ω) of ϕ by functions in C∞c (Ω)d, and the proof
of Item 1 is complete.

Item 2: let ϕ ∈ W p′

div,∂(Ω) and ε > 0. In the following, C denotes a generic
constant, independent on ε but whose value can change from one occurrence
to the other.
Since Ω is polytopal, n is piecewise constant and thus smooth outside a set S
of 0 measure in ∂Ω. We can therefore find a function ψε that is C∞-smooth,
vanishes on a neighbourhood of S, and such that ‖γn(ϕ)− ψε‖Lp′ (∂Ω) ≤ ε.
Since ψε vanishes on a neighbourhood of the singularities S of n, we can
find a function ψε ∈ C∞c (Rd)d such that γn(ψε) = ψε (simply extend, on a
neighbourhood U of ∂Ω, the smooth function ψεn into a function that does
not depend on the coordinate orthogonal to n, and multiply this extension
by a function in C∞c (U) equal to 1 on a neighbourhood of ∂Ω).

Let us consider the function ϕ−ψε ∈W p′

div,∂(Ω). We have

‖γn(ϕ−ψε)‖Lp′ (∂Ω) = ‖γn(ϕ)− ψε‖Lp′ (∂Ω) ≤ ε. (3.24)

By Lemma 3.27 and since Lp
′
(∂Ω) is embedded in (W 1− 1

p ,p(∂Ω))′, we can

find ζε ∈W p′

div(Ω) such that

γn(ζε) = γn(ϕ−ψε) (3.25)

and
‖ζε‖Wp′

div(Ω)
≤ C ‖γn(ϕ−ψε)‖Lp′ (∂Ω) ≤ Cε. (3.26)

Property (3.25) shows that ζε ∈ W p′

div,∂(Ω) and, combined with (3.24) and
(3.26), that

‖ζε‖Wp′
div,∂(Ω)

= ‖ζε‖Wp′
div(Ω)

+ ‖γn(ζε)‖Lp′ (∂Ω) ≤ Cε. (3.27)

The function ϕ−ψε − ζε therefore belongs to W p′

div,∂(Ω) and satisfies γn(ϕ−
ψε − ζε) = 0. By Item 1 we can find ξε ∈ C∞c (Ω)d such that

‖(ϕ−ψε − ζε)− ξε‖Wp′
div,∂(Ω)

≤ ε. (3.28)

We now set ϕε = ψε + ξε. This function belongs to C∞c (Rd)d and

ϕ−ϕε = (ϕ−ψε − ζε − ξε) + ζε

so, by (3.27) and (3.28), ‖ϕ−ϕε‖Wp′
div,∂(Ω)

≤ Cε.
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3.1.3 Gradient schemes for linear problems

We consider here a linear elliptic problem with non-homogeneous Neumann
boundary conditions

−div(Λ∇u) = f + div(F ) in Ω,
Λ∇u · n + F · n = h on ∂Ω,

(3.29)

where n is the unit normal outward Ω to ∂Ω. We assume that

• Ω is an open bounded connected subset of Rd (d ∈ N?),
with a Lipschitz boundary, (3.30a)

• Λ is a measurable function from Ω to the set of d× d
symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (3.30b)

• f ∈ L2(Ω) , F ∈ L2(Ω)d , h ∈ L2(∂Ω),

and

∫
Ω

f(x)dx+

∫
∂Ω

h(x)dγ(x) = 0. (3.30c)

Under these hypotheses and defining

H1
? (Ω) =

{
ϕ ∈ H1(Ω) ,

∫
Ω

ϕ(x)dx = 0

}
,

the weak formulation of (3.29) is

u ∈ H1
? (Ω), ∀v ∈ H1

? (Ω),∫
Ω

Λ(x)∇u(x) · ∇v(x)dx

=

∫
Ω

f(x)v(x)dx−
∫
Ω

F (x) · ∇v(x)dx+

∫
∂Ω

h(x)γ(v)(x)dγ(x).

(3.31)

Owing to Hypothesis (3.30c), Problem (3.31) is equivalent to

u ∈ H1(Ω), ∀v ∈ H1(Ω),∫
Ω

Λ(x)∇u(x) · ∇v(x)dx+

(∫
Ω

u(x)dx

)(∫
Ω

v(x)dx

)
=

∫
Ω

f(x)v(x)dx−
∫
Ω

F (x) · ∇v(x)dx+

∫
∂Ω

h(x)γ(v)(x)dγ(x).

(3.32)

Indeed, letting v ≡ 1 in (3.32) implies that
∫
Ω
u(x)dx = 0. The approximation

of Problem (3.31) by the GDM is described now.

Definition 3.30 (GS, Neumann BCs). If D = (XD, ΠD,TD,∇D) is a GD
for Neumann problems in the sense of Definition 3.11, then we define the
related gradient scheme for (3.31) by
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Find u ∈ XD such that, for any v ∈ XD,∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx+

(∫
Ω

ΠDu(x)dx

)(∫
Ω

ΠDv(x)dx

)
=

∫
Ω

f(x)ΠDv(x)dx−
∫
Ω

F (x) · ∇Dv(x)dx

+

∫
∂Ω

h(x)TDv(x)dγ(x).

(3.33)

Fixing a basis (ξ(i))i=1,...,N of the space XD, Scheme (3.33) is equivalent to
solving the linear square system AU = B with

u =

N∑
j=1

Ujξ
(j),

Aij =

∫
Ω

Λ(x)∇Dξ(j)(x) · ∇Dξ(i)(x)dx

+

(∫
Ω

ΠDξ
(j)(x)dx

)(∫
Ω

ΠDξ
(i)(x)dx

)
,

Bi =

∫
Ω

f(x)ΠDξ
(i)(x)dx−

∫
Ω

F (x) · ∇Dξ(i)(x)dx

+

∫
∂Ω

h(x)TDξ(i)(x)dγ(x).

Contrary to the case of Dirichlet boundary conditions, the matrix A here
is full, due to the second term in the expression of Aij . There exist different
modifications of this system, aiming at recovering a sparse matrix. A standard
one consists in adding a new unknown µ =

∫
Ω
ΠDu(x)dx, and to rewrite

(3.33) as

Find u ∈ XD and µ ∈ R such that, for any v ∈ XD,∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx+ µ

∫
Ω

ΠDv(x)dx

=

∫
Ω

f(x)ΠDv(x)dx−
∫
Ω

F (x) · ∇Dv(x)dx

+

∫
∂Ω

h(x)TDv(x)dγ(x),∫
Ω

ΠDu(x)dx− µ = 0.

(3.34)

Assuming that the diameter of the supports of (∇Dξ(i))i=1,...,N is small com-
pared to diam(Ω), which is often the case for standard choices of spaces and
bases, the new linear system deduced from this reformulation is sparse, sym-
metric and invertible (though not positive).

The error estimates for Neumann boundary conditions are stated in the next
theorem. We do not explicitly state the convergence result, similar to Corollary
2.32, that stems from these error estimates.
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Theorem 3.31 (Control of the approximation error, Neumann BCs).
Under Hypotheses (3.30), let u ∈ H1

? (Ω) be the solution of (3.31) (remark that
f ∈ L2(Ω) and h ∈ L2(∂Ω) imply that in Λ∇u+ F ∈W 2

div,∂(Ω), see (3.10)).
Let D be a GD for a Neumann problem in the sense of Definition 3.11.
Then there exists one and only one uD ∈ XD solution to the GS (3.33), and
this element satisfies the following inequalities:

‖∇u−∇DuD‖L2(Ω)d ≤ Err + SD(u), (3.35)

‖u−ΠDuD‖L2(Ω) ≤ CDErr + SD(u), (3.36)

with Err :=
1

min(λ, 1)

[
WD(Λ∇u+ F ) + (λ+ |Ω|1/2CD)SD(u)

]
,

where CD, SD and WD are defined by (3.9), (3.3) and (3.11).

Remark 3.32 (Error estimate on the traces and lower bound). If we let SD be
the measure of GD-consistency for Fourier boundary conditions (i.e. (3.17)),
then Proposition 3.25 and Theorem 3.31 show that

‖γ(u)− TDuD‖L2(∂Ω) ≤ C13

(
WD(Λ∇u+ F ) + SD(u)

)
,

where C13 depends only on λ, λ, |Ω| and an upper bound of CD. Note that a
lower bound in the spirit of (2.29) could also be derived.

Proof. Proving (3.35) for any solution uD ∈ XD to Scheme (3.33) is sufficient
to establish the existence and uniqueness of this solution. Indeed, this estimate
shows that, whenever f = 0, h = 0 and F = 0 (in which case u = 0), ∇DuD
vanishes a.e.; then, letting v = uD in (3.33) implies

∫
Ω
ΠDu(x)dx = 0, and

therefore uD = 0 since (3.8) is a norm on XD.
To prove the estimates, we take ϕ = Λ∇u + F ∈ W 2

div,∂(Ω) in the definition
(3.11) of WD and using that u is the solution to (3.31). We then have, for any
v ∈ XD,∣∣∣∣∫

Ω

[
∇Dv(x) · (Λ(x)∇u(x) + F (x))−ΠDv(x)f(x)

]
dx

−
∫
∂Ω

h(x)TDv(x)dγ(x)

∣∣∣∣ ≤ ‖v‖D WD(Λ∇u+ F ).

Therefore, since uD is a solution to (3.33), we get∣∣∣∫
Ω

Λ∇Dv(x) · (∇u(x)−∇DuD(x))dx

−
∫
Ω

ΠDuD(x)dx

∫
Ω

ΠDv(x)dx
∣∣∣ ≤ ‖v‖D WD(Λ∇u+ F ).

We then introduce
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IDu = argmin
w∈XD

(‖ΠDw − u‖L2(Ω) + ‖∇Dw −∇u‖L2(Ω)d) (3.37)

in the above inequality. It leads to∣∣∣∣∣
∫
Ω

Λ∇Dv(x) · (∇DIDu(x)−∇DuD(x))dx

+

∫
Ω

(ΠDIDu(x)−ΠDuD(x))dx

∫
Ω

ΠDv(x)dx

∣∣∣∣∣
≤ ‖v‖D WD(Λ∇u+ F ) +

∣∣∣∣∣
∫
Ω

Λ∇Dv(x) · (∇DIDu(x)−∇u(x))dx

+

∫
Ω

ΠDIDu(x)dx

∫
Ω

ΠDv(x)dx

∣∣∣∣∣.
Observing that∣∣∣∣∫

Ω

ΠDIDu(x)dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(ΠDIDu(x)− u(x))dx

∣∣∣∣
≤ |Ω|1/2 ‖ΠDIDu− u‖L2(Ω) ,

we can write, using the definition (3.9) of CD,∣∣∣∣∣
∫
Ω

Λ∇Dv(x) · (∇DIDu(x)−∇DuD(x))dx

+

∫
Ω

(ΠDIDu(x)−ΠDuD(x))dx

∫
Ω

ΠDv(x)dx

∣∣∣∣∣
≤ ‖v‖D

[
WD(Λ∇u+ F ) + (λ+ |Ω|1/2CD)SD(u)

]
.

We now let v = IDu− uD. Recalling the definition (3.8) of ‖·‖D, we obtain

‖IDu− uD‖D ≤
WD(Λ∇u+ F ) + (λ+ |Ω|1/2CD)SD(u)

min(λ, 1)
.

The conclusion follows as in the proof of Theorem 2.29.

3.1.4 Gradient schemes for quasi-linear problems

Homogeneous Neumann BCs

We consider Problem (2.49a), replacing the homogeneous Dirichlet BCs by
homogeneous Neumann BCs:
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−div(Λ(x, u)∇u) = f in Ω,

Λ(x, u)∇u · n = 0 on ∂Ω.
(3.38)

We take usual assumptions:

• Ω is an open bounded connected subset of Rd (d ∈ N?),
with Lipschitz boundary, (3.39a)

• Λ is a Caratheodory function from Ω × R to Md(R),

Λ(x, s) is measurable w.r.t. x and continuous w.r.t. s,

there exists λ, λ > 0 such that, for a.e. x ∈ Ω, for all s ∈ R
Λ(x, s) is symmetric with eigenvalues in [λ, λ], (3.39b)

• f ∈ L2(Ω) such that

∫
Ω

f(x)dx = 0. (3.39c)

Under these hypotheses, again defining H1
? (Ω) = {ϕ ∈ H1(Ω) :

∫
Ω
ϕ(x)dx =

0}, a weak solution to (3.38) is a function u (not necessarily unique) satisfying:

u ∈ H1
? (Ω), ∀v ∈ H1

? (Ω),∫
Ω

Λ(x, u(x))∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx.
(3.40)

This weak formulation is approximated by the following gradient scheme.

Definition 3.33 (GS, quasi-linear problem, homogeneous Neumann
BCs). If D = (XD, ΠD,∇D) is a GD in the sense of Definition 3.1, then we
define the related gradient scheme for (3.40) by

Find u ∈ XD such that for any v ∈ XD,∫
Ω

Λ(x, ΠDu(x))∇Du(x) · ∇Dv(x)dx

+

(∫
Ω

ΠDu(x)dx

)(∫
Ω

ΠDv(x)dx

)
=

∫
Ω

f(x)ΠDv(x)dx.

(3.41)

This scheme leads to a non-linear system of equations of the form A(u)U = B,
similar to the system (2.53) obtained in the case of Dirichlet BCs. As in the
linear case, the matrix A(u) corresponding to (3.41) is in general not sparse,
but algebraic methods can be used to compute the solution of (3.41) by solving
linear systems with better sparsity properties (see (3.34)).

The next theorem states a convergence result for the gradient scheme (3.41).

Theorem 3.34 (Convergence, quasi-linear problem, homogeneous Neu-
mann BCs). Assume (3.39), and let (Dm)m∈N be a sequence of GDs in the
sense of Definition 3.1, which is GD-consistent, limit-conforming and compact
in the sense of Definitions 3.4, 3.5 and 3.6.
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Then, for any m ∈ N, there exists at least one um ∈ XDm solution to the
gradient scheme (3.41) and, up to a subsequence, ΠDmum converges strongly
in L2(Ω) to a solution u of (3.40) and ∇Dmum converges strongly in L2(Ω)d

to ∇u as m→∞.
In the case where the solution u of (3.40) is unique, then the whole sequence
converges to u as m→∞ in the senses above.

Proof. We proceed as in the proof of Theorem 2.36.
For any GD D in the sense of Definition 3.11, let w ∈ XD be given, and let
u ∈ XD be such that∫

Ω

Λ(x, ΠDw(x))∇Du(x) · ∇Dv(x)dx

+

∫
Ω

ΠDu(x)dx

∫
Ω

ΠDv(x)dx =

∫
Ω

f(x)ΠDv(x)dx , ∀v ∈ XD.
(3.42)

Then, letting v = u in (3.42), and applying the Cauchy–Schwarz inequality
and the coercivity property in the sense of Definition 3.3, we get

min(λ, 1)‖u‖2D ≤ ‖f‖L2(Ω)‖ΠDu‖L2(Ω) ≤ CD‖f‖L2(Ω)‖u‖D.

This shows that

‖u‖D ≤
CD

min(λ, 1)
‖f‖L2(Ω). (3.43)

Therefore, u is obtained by the resolution of an invertible square linear system
(since a null right hand side implies u = 0). The mapping w → u is continuous,
by continuity of the coefficients of the inverse of a matrix with respect to its
coefficients. Applying the Brouwer theorem (Theorem D.2), we see that this
mapping w → u has at least one fixed point. This shows the existence of at
least one discrete solution to (3.41). It is clear that any solution to this scheme
satisfies (3.43).
We denote by um ∈ XDm such a solution for D = Dm. The estimate (3.43)
shows that (‖um‖Dm)m∈N is bounded and thus, up to a subsequence still

denoted by (um)m∈N, we find u ∈ H1(Ω) such that ΠDmum converges strongly
in L2(Ω) and a.e. to u and ∇Dmum converges weakly in L2(Ω)d to ∇u. We
used here Remark 3.24 and the compactness of the sequence of GDs.
We define ID : H1(Ω)→ XD by

IDϕ = argmin
v∈XD

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)
. (3.44)

By GD-consistency of the sequence of GDs, for any ϕ ∈ H1(Ω) we have
ΠDm(IDmϕ) → ϕ strongly in L2(Ω) and ∇Dm(IDmϕ) → ∇ϕ strongly in
L2(Ω)d.
Since 1Ω (the characteristic function of Ω) belongs to H1(Ω), we can take
v = IDm1Ω in (3.41) and pass to the limit. We get, thanks to Hypothesis
(3.39c), that
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0 = lim
m→∞

(∫
Ω

ΠDmum(x)dx

)(∫
Ω

ΠDm(IDmϕ)(x)dx

)
=

(∫
Ω

u(x)dx

)
|Ω|.

This shows that u ∈ H1
? (Ω) and that

lim
m→∞

∫
Ω

ΠDmum(x)dx = 0. (3.45)

Let ϕ ∈ H1
? (Ω) be given. Using the non-linear strong convergence property

of Lemma D.9 page 465, Λ(·, ΠDmum)∇Dm(IDmϕ) → Λ(·, u)∇ϕ strongly in
L2(Ω)d. Lemma D.8 (weak-strong convergence property) enables us to pass
to the limit in (3.41) with v = IDmϕ, which proves that u is a solution to
(3.40).
By passing to the limit in the left-hand side of (3.41) with v = um and using
(3.45), we get

lim
m→∞

∫
Ω

Λ(x, ΠDmum(x))∇Dmum(x) · ∇Dmum(x)dx

=

∫
Ω

f(x)u(x)dx =

∫
Ω

Λ(x, u(x))∇u(x) · ∇u(x)dx

and the strong convergence of ∇Dmum to ∇u follows from this as in the proof
of Theorem 2.36.

Non-homogeneous Neumann boundary conditions

We consider Problem (3.38) in which the boundary condition is replaced with
a non-homogeneous condition:

Λ(x, u)∇u · n = h on ∂Ω,

under the assumptions (3.39a)–(3.39b) and

f ∈ L2(Ω) , h ∈ L2(∂Ω),

∫
Ω

f(x)dx+

∫
∂Ω

h(x)dγ(x) = 0. (3.46)

Under these hypotheses, recalling that

H1
? (Ω) =

{
ϕ ∈ H1(Ω) :

∫
Ω

ϕ(x)dx = 0

}
,

a weak solution of this problem is a function u (not necessarily unique) satis-
fying:
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u ∈ H1
? (Ω), ∀v ∈ H1

? (Ω),∫
Ω

Λ(x, u(x))∇u(x) · ∇v(x)dx

=

∫
Ω

f(x)v(x)dx+

∫
∂Ω

h(x)γ(v)(x)dγ(x).

(3.47)

As for homogeneous Neumann BCs, owing to Hypothesis (3.46), Problem
(3.47) is equivalent to

u ∈ H1(Ω), ∀v ∈ H1(Ω),∫
Ω

Λ(x, u(x))∇u(x) · ∇v(x)dx+

(∫
Ω

u(x)dx

)(∫
Ω

v(x)dx

)
=

∫
Ω

f(x)v(x)dx+

∫
∂Ω

h(x)γ(v)(x)dγ(x).

(3.48)

This problem is therefore approximated by the following gradient scheme.

Definition 3.35 (GS, quasi-linear problem, non-homogeneous Neu-
mann BCs). If D = (XD, ΠD,TD,∇D) is a GD in the sense of Definition
3.11, then we define the related gradient scheme for (3.47) by

Find u ∈ XD such that, for any v ∈ XD,∫
Ω

Λ(x, ΠDu(x))∇Du(x) · ∇Dv(x)dx+

(∫
Ω

ΠDu(x)dx

)(∫
Ω

ΠDv(x)dx

)
=

∫
Ω

f(x)ΠDv(x)dx+

∫
∂Ω

h(x)TD(v)(x)dγ(x). (3.49)

We then have the following convergence result.

Theorem 3.36 (Convergence, quasi-linear problem, non-homogene-
ous Neumann BCs). Under Assumptions (3.39a)–(3.39b) and (3.46), let
(Dm)m∈N be a sequence of GDs in the sense of Definition 3.11, which is GD-
consistent, limit-conforming and compact in the sense of Definitions 3.4, 3.14
and 3.16.
Then, for any m ∈ N, there exists at least one um ∈ XDm solution to the
gradient scheme (3.49) and, up to a subsequence as m → ∞, ΠDmum con-
verges strongly in L2(Ω) to a solution u of (3.47), TDmum converges strongly
in L2(∂Ω) to γu, and ∇Dmum converges strongly in L2(Ω)d to ∇u.
In the case where the solution u of (3.47) is unique, then the whole sequence
converges to u as m→∞ in the senses above.

Proof. We follow the same ideas as in the proof of Theorem 3.34. Note that,
by Lemma 3.19, (Dm)m∈N is coercive.
Brouwer’s fixed point theorem yields the existence of at least one discrete
solution um ∈ XDm to (3.49) with D = Dm. Plug v = um in this scheme. The
coercivity property (Definition 3.13), which involves the discrete trace, then
yields
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‖um‖Dm ≤
CP

min(λ, 1)
(‖f‖L2(Ω) + ‖h‖L2(∂Ω)). (3.50)

Then the compactness of (Dm)m∈N (Definition 3.16) and similar arguments
as in the proof of Theorem 3.34 give the existence of u ∈ H1

? (Ω) and of
a subsequence of (Dm, um)m∈N, denoted the same way, such that ∇Dmum
converges weakly in L2(Ω)d to ∇u, ΠDmum converges strongly in L2(Ω) to
u and TDmum converges strongly in L2(∂Ω) to γu. Moreover, if ϕ ∈ H1

? (Ω)
and vm = IDmϕ is the interpolant defined by (3.44), Remark 3.23 shows that
TDmvm → γϕ weakly in L2(∂Ω) (actually, by the compactness property of
(Dm)m∈N, this convergence is strong, but this is not required to pass to the
limit). The conclusion then follows as for Theorem 3.34.

3.2 Fourier boundary conditions

The general case of non-homogeneous Fourier (or Robin) (also known as
Robin) boundary conditions is considered here; it also covers, of course, ho-
mogeneous Fourier BCs. The notions and results in this section correspond to
those in Appendix A with the choices in Section A.1.4.
Here Ω is again a connected open bounded subset of Rd with Lipschitz bound-
ary, and p ∈ (1,+∞).

3.2.1 Gradient discretisations

Except for the choice of the norm ‖ · ‖D, the definition of a gradient discreti-
sation for Fourier boundary conditions is the same as for Neumann boundary
conditions.

Definition 3.37 (GD, non-homogeneous Fourier BCs). A gradient dis-
cretisation D for non-homogeneous Fourier conditions D is defined by D =
(XD, ΠD,TD,∇D) where:

1. the set of discrete unknowns XD is a finite dimensional vector space on
R,

2. the function reconstruction ΠD : XD → Lp(Ω) is linear,
3. the trace reconstruction TD : XD → Lp(∂Ω) is linear,
4. the gradient reconstruction ∇D : XD → Lp(Ω)d is linear,
5. the operators ∇D and TD are such that

‖v‖D :=
(
‖∇Dv‖pLp(Ω)d + ‖TDv‖pLp(∂Ω)

)1/p

(3.51)

is a norm on XD.
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The coercivity, limit-conformity, compactness and piecewise constant
reconstruction for gradient discretisations for non-homogeneous Fourier
conditions are defined exactly as for non-homogeneous Neumann conditions,
i.e. Definitions 3.13, 3.14, 3.16 and 2.13 (with XD,0 replaced by XD in the
latter, and using the norm (3.51) in all these definitions). The GD-consistency,
however, must take into account the trace reconstruction.

Definition 3.38 (GD-consistency, non-homogeneous Fourier
BCs)

If D is a gradient discretisation in the sense of Definition 3.37, define
SD : W 1,p(Ω)→ [0,+∞) by

∀ϕ ∈W 1,p(Ω) ,
SD(ϕ) = min

v∈XD

(
‖ΠDv − ϕ‖Lp(Ω) + ‖ TDv − γϕ‖Lp(∂Ω)

+‖∇Dv −∇ϕ‖Lp(Ω)d
)
.

(3.52)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 3.37 is GD-consistent if

∀ϕ ∈W 1,p(Ω), lim
m→∞

SDm(ϕ) = 0. (3.53)

We notice that Lemma 3.7 (characterisation of GD-consistency using a dense
set of W 1,p(Ω)), Lemma 3.20 (characterisation of limit-conformity using a

dense subset of W p′

div,∂(Ω)) and Lemma 3.22 (regularity of the limit) still hold
in the framework of gradient schemes for non-homogeneous Fourier boundary
conditions. Similarly, the equivalent of Lemma 3.18 (limit-conformity implies
coercivity) and Lemma 3.19 (compactness implies coercivity) are satisfied for
sequences of GDs for Fourier boundary conditions.

For Fourier boundary conditions, the reconstructed trace has been included in
the definition of SD, and we can therefore expect an approximation property
as in Proposition 3.25. However, the norm is different and actually already
includes the reconstructed trace. For this reason, an additional assumption
must be introduced which states that the reconstructed trace can be controlled
by the reconstructed function and gradients, see (3.54). In practice, for many
gradient discretisation this assumption is easy to check by using Lemma B.21
and the notion of control by a polytopal toolbox (cf. Section 7.2.2).
The proof of this proposition is identical to the proof of Proposition 3.25, the
assumption (3.54) playing the role of (3.19).

Proposition 3.39 (Approximation property of TD – Fourier BCs).
Let D be a gradient discretisation in the sense of Definition 3.37. We assume
that there exists θ > 0 such that

∀v ∈ XD : ‖TDv‖Lp(∂Ω) ≤ θ
(
‖ΠDv‖Lp(Ω) + ‖∇Dv‖Lp(Ω)d

)
. (3.54)
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Then, for any v ∈ XD and any ϕ ∈W 1,p(Ω),

‖TDv − γϕ‖Lp(∂Ω) ≤ θ
(
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d

)
+ max(1, θ)SD(ϕ).

3.2.2 Gradient schemes for quasi-linear problems

We consider Problem (2.49a) with Fourier boundary conditions, that is

−div(Λ(x, u)∇u) = f in Ω,

Λ(x, u)∇u · n+ bu = h on ∂Ω,
(3.55)

• Ω is an open bounded connected subset of Rd, d ∈ N?, (3.56a)

• Λ is a Caratheodory function from Ω × R to Md(R),

Λ(x, s) is measurable w.r.t. x and continuous w.r.t. s,

there exists λ, λ > 0 such that, for a.e. x ∈ Ω, for all s ∈ R
Λ(x, s) is symmetric with eigenvalues in [λ, λ], (3.56b)

• f ∈ L2(Ω) , h ∈ L2(∂Ω) , b ∈ L∞(∂Ω) and

there exists b > 0 such that b(x) ≥ b for a.e. x ∈ ∂Ω. (3.56c)

A weak solution of this problem is:

u ∈ H1(Ω), ∀v ∈ H1(Ω),∫
Ω

Λ(x, u(x))∇u(x) · ∇v(x)dx+

∫
∂Ω

b(x)γ(u)(x)γ(v)(x)dγ(x)

=

∫
Ω

f(x)v(x)dx+

∫
∂Ω

h(x)γ(v)(x)dγ(x).

(3.57)

The gradient scheme for this model is given in the following definition.

Definition 3.40 (GS, quasi-linear problem, Fourier BCs). If D =
(XD, ΠD,TD,∇D) is a GD in the sense of Definition 3.37, then we define
the related gradient scheme for (3.57) by

Find u ∈ XD such that, for any v ∈ XD,∫
Ω

Λ(x, ΠDu(x))∇Du(x) · ∇Dv(x)dx+

∫
∂Ω

b(x)TDu(x)TDv(x)dγ(x)

=

∫
Ω

f(x)ΠDv(x)dx+

∫
∂Ω

h(x)TD(v)(x)dγ(x). (3.58)

The convergence result is similar to the previous ones.
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Theorem 3.41 (Convergence, quasi-linear problem, Fourier BCs).
Under assumptions (3.56), let (Dm)m∈N be a sequence of GDs in the sense of
Definition 3.37, which is GD-consistent, limit-conforming and compact in the
sense of Definitions 3.38, 3.14 and 3.16.
Then, for any m ∈ N, there exists at least one um ∈ XDm solution to the
gradient scheme (3.58) and, up to a subsequence, ΠDmum converges strongly
in L2(Ω) to a solution u of (3.57), ∇Dmum converges strongly in L2(Ω)d to
∇u, and TDmum converges strongly in L2(∂Ω) to γu as m→∞.
In the case where the solution u of (3.57) is unique, then the whole sequence
converges to u as m→∞ in the senses above.

Proof. The proof is very similar to the proofs of Theorems 2.36 and 3.34,
we only indicate here the elements which differ.
Letting u = v in (3.58), by assumption on Λ and b and Definition 3.51 of ‖·‖D
we obtain

min(λ, b) ‖u‖2D ≤
∫
Ω

Λ(x, ΠDu(x))∇Du(x) · ∇Du(x)dx

+

∫
∂Ω

b(x)TDu(x)TDu(x)dγ(x)

=

∫
Ω

f(x)ΠDu(x)dx+

∫
∂Ω

h(x)TD(u)(x)dγ(x)

≤ ‖f‖L2(Ω) ‖ΠDu‖L2(Ω) + ‖h‖L2(∂Ω) ‖TD(u)‖L2(∂Ω)

≤ CD(‖f‖L2(Ω) + ‖h‖L2(∂Ω)) ‖u‖D .

This gives an estimate on ‖u‖D which allows us, as in the proof of Theorem
2.36, to use Brouwer’s fixed point theorem to prove the existence of a solution
to (3.58).
Noticing that (Dm)m∈N is coercive (Lemma 3.19), this estimate also shows
that the solution um for D = Dm is such that ‖um‖Dm remains bounded and
therefore, using Lemma 3.22 and the compactness of the sequence of GDs,
that, for some u ∈ H1(Ω),

ΠDmum → u strongly in L2(Ω) and a.e.,

TDmum → γu strongly in L2(∂Ω) and

∇Dmum → ∇u weakly in L2(Ω)d.

(3.59)

Defining then ID : H1(Ω)→ XD by

IDϕ = argmin
v∈XD

(
‖ΠDw − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

+‖TDv − γϕ‖L2(Ω)d
)
,

the GD-consistency of the sequence of GDs shows that, for any ϕ ∈ H1(Ω),
ΠDm(IDmϕ) → ϕ strongly in L2(Ω), ∇Dm(IDmϕ) → ∇ϕ strongly in L2(Ω)d

and TDm(IDmϕ)→ γϕ strongly in L2(∂Ω).



3.3 Mixed boundary conditions 89

We can then, as in the proof of Theorem 2.36, use v = IDmϕ in (3.58) and
pass to the limit, thanks to these strong convergences and to (3.59), to see
that u is a solution to (3.57).
We then take v = um in (3.58) and pass to the limit, using the convergences
(3.59) and the fact that u satisfies (3.57), to obtain

lim
m→∞

∫
Ω

Λ(x, ΠDmum(x))∇Dmum(x) · ∇Dmum(x)dx

=

∫
Ω

f(x)u(x)dx+

∫
∂Ω

h(x)γu(x)dγ(x)−
∫
∂Ω

b(x)γu(x)2dγ(x)

=

∫
Ω

Λ(x, u(x))∇u(x) · ∇u(x)dx.

By developing the following expression, this limit and (3.59) yield∫
Ω

Λ(x, ΠDmum(x))(∇Dmum(x)−∇u(x)) · (∇Dmum(x)−∇u(x))dx→ 0.

By Assumptions (2.50b) on Λ, the left-hand side of this limit is greater than

λ ‖∇Dmum −∇u‖
2
L2(Ω)d and the strong convergence of the reconstructed gra-

dients therefore follows.

Remark 3.42. In the linear case (Λ independent of u), error estimates for (3.58)
similar to the ones in Theorem 2.29 can be obtained, with an additional error
estimate on the the traces.

3.3 Mixed boundary conditions

3.3.1 Gradient discretisations

From the framework of non-homogeneous Dirichlet and Neumann boundary
conditions, it is very easy to construct a gradient scheme discretisation for
mixed boundary conditions. We consider here p ∈ (1,∞), Ω a connected open
bounded subset of Rd with Lipschitz boundary and we assume that

Γd, Γn are two disjoint relatively open subsets of ∂Ω
such that |∂Ω\(Γd ∪ Γn)| = 0 and |Γd| > 0

(3.60)

(| · | denotes here the (d− 1)-dimensional measure).

Definition 3.43 (GD, mixed BCs). Under Assumption (3.60), a gradi-
ent discretisation D for mixed boundary conditions D is defined by D =
(XD, ID,Γd , ΠD,TD,Γn ,∇D) where:

1. the set of discrete unknowns XD = XD,Ω,Γn ⊕XD,Γd is the direct sum of
two finite dimensional vector spaces on R, corresponding respectively to
the unknowns in Ω and on Γn and to the unknowns on Γd,
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2. the linear mapping ID,Γd : W 1− 1
p ,p(∂Ω) → XD,Γd is an interpolation

operator for the restrictions (γu)|Γd of traces of elements u ∈W 1,p(Ω),
3. the function reconstruction ΠD : XD → Lp(Ω) is linear,
4. the trace reconstruction TD,Γn : XD → Lp(Γn) is linear, and reconstructs

from an element of XD a function over Γn,
5. the gradient reconstruction ∇D : XD → Lp(Ω)d is linear,
6. the operator ∇D is such that ‖v‖D := ‖∇Dv‖Lp(Ω)d is a norm on XD,Ω,Γn .

Definition 3.44 (Coercivity, mixed BCs)

Under Assumption (3.60), if D is a gradient discretisation in the sense
of Definition 3.43, define

CD = max
v∈XD,Ω,Γn\{0}

(
max

{‖ΠDv‖Lp(Ω)

‖v‖D
,
‖TD,Γnv‖Lp(Γn)

‖v‖D

})
.

(3.61)
A sequence (Dm)m∈N of gradient discretisations in the sense of Defi-
nition 3.43 is coercive if there exists CP ∈ R+ such that CDm ≤ CP
for all m ∈ N.

Definition 3.45 (GD-consistency, mixed BCs)

Under Assumption (3.60), if D is a gradient discretisation in the sense
of Definition 3.43, define SD : W 1,p(Ω)→ [0,+∞) by

∀ϕ ∈W 1,p(Ω) ,

SD(ϕ) = min
{
‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d :

v ∈ XD such that v − ID,Γdγϕ ∈ XD,Ω,Γn
}
.

(3.62)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 3.43 is GD-consistent if

∀ϕ ∈W 1,p(Ω), lim
m→∞

SDm(ϕ) = 0. (3.63)

Definition 3.46 (Limit-conformity, mixed BCs)

For p ∈ (1,+∞), let p′ = p
p−1 and

W p′

div,Γn
(Ω) = {ϕ ∈ Lp

′
(Ω)d : divϕ ∈ Lp

′
(Ω) , γn(ϕ) ∈ Lp

′
(Γn)},

(3.64)
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where γn(ϕ) is the normal trace of ϕ on ∂Ω. Under Assumption (3.60),
if D is a gradient discretisation in the sense of Definition 3.43, define

WD: W p′

div,Γn
(Ω)→ [0,+∞) by

∀ϕ ∈W p′

div,Γn
(Ω) ,

WD(ϕ) = max
v∈XD,Ω,Γn\{0}

1

‖v‖D

∣∣∣∣∫
Ω

(∇Dv(x) ·ϕ(x) +ΠDv(x)divϕ(x)) dx

−
∫
Γn

TD,Γnv(x)γn(ϕ)(x)dγ(x)

∣∣∣∣ . (3.65)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defini-
tion 3.43 is limit-conforming if

∀ϕ ∈W p′

div,Γn
(Ω), lim

m→∞
WDm(ϕ) = 0. (3.66)

Remark 3.47. Note that “γn(ϕ) ∈ Lp′(Γn)” makes sense because Γn is a rel-
atively open subset of ∂Ω. Indeed, when ϕ ∈ Lp

′
(Ω)d and divϕ ∈ Lp

′
(Ω)

then γn(ϕ) ∈ (W 1− 1
p ,p(∂Ω))′ and saying that this linear form belongs to

Lp
′
(Γn) means by definition that there exists g ∈ Lp′(Γn) such that, for any

w ∈W 1− 1
p ,p(∂Ω) with support in Γn,

〈γn(ϕ), w〉
(W

1− 1
p
,p

(∂Ω))′,W
1− 1

p
,p

(∂Ω)
=

∫
Γn

g(x)w(x)dγ(x).

Definition 3.48 (Compactness, mixed BCs)

Under Assumption (3.60), a sequence (Dm)m∈N of gradient discreti-
sations in the sense of Definition 3.43 is compact if, for any se-
quence um ∈ XDm such that (‖um‖Dm)m∈N is bounded, the sequences
(ΠDmum)m∈N and (TDm,Γnum)m∈N are relatively compact in Lp(Ω)
and Lp(Γn), respectively.

The definition of piecewise constant reconstruction for a gradient dis-
cretisation for mixed boundary conditions is the same as Definition 2.13, re-
placing the space XD,0 by XD.

The equivalent of Lemmas 2.16, 2.55 and 3.22 is the following lemma.

Lemma 3.49 (Regularity of the limit, mixed BCs). Under Assumption
(3.60), let (Dm)m∈N be a coercive, GD-consistent and limit-conforming se-
quence of gradient discretisations in the sense of Definitions 3.44, 3.45 and
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3.46. Let g ∈ W 1− 1
p ,p(∂Ω) and, for m ∈ N, let um ∈ XDm be such that

um − IDm,Γdg ∈ XD,Ω,Γn and (‖∇Dmum‖Lp(Ω)d)m∈N is bounded. Then, there

exists u ∈ W 1,p(Ω) such that γu = g on Γd and, up to a subsequence, as
m→∞,

ΠDmum → u weakly in Lp(Ω),

∇Dmum → ∇u weakly in Lp(Ω)d.
(3.67)

If we assume moreover that g = 0, or that there exists ϕg ∈ W 1,p(Ω) such
that γϕg = g and, as m→∞,

min
{
‖ΠDmv − ϕg‖Lp(Ω) + ‖TDm,Γnv − γϕg‖Lp(Γn)

+ ‖∇Dmv −∇ϕg‖Lp(Ω)d : v − IDm,Γdγϕg ∈ XDm,Ω,Γn
}
→ 0, (3.68)

then we also have

TDm,Γnum → (γu)|Γn weakly in Lp(Γn). (3.69)

Remark 3.50. Assumption (3.68), if satisfied for all ϕg ∈W 1,p(Ω), is similar to
the GD-consistency of (Dm)m∈N in the sense of Fourier boundary conditions
(but with a trace reconstruction only on Γn).

Proof.
Step 1: we suppose that g = 0.
Since um = um−IDm,Γdg ∈ XDm,Ω,Γn , by coercivity of (Dm)m∈N the bound on
‖um‖Dm shows that ‖ΠDmum‖Lp(Ω), ‖TDm,Γnum‖Lp(Γn) and ‖∇Dmum‖Lp(Ω)d

are bounded. There exists therefore u ∈ Lp(Ω), w ∈ Lp(Γn) and v ∈ Lp(Ω)d

such that, up to a subsequence as m → ∞, ΠDmum → u weakly in Lp(Ω),
TDm,Γnum → w weakly in Lp(Γn), and ∇Dmum → v weakly in Lp(Ω)d.

Let ϕ ∈W p′

div,Γn
(Ω). By Definition (3.65) of WD, passing to the limit in

||um||DmWDm(ϕ) ≥
∣∣∣∣∫
Ω

(∇Dmum(x) ·ϕ(x) +ΠDmu(x)divϕ(x))dx

−
∫
Γn

TDm,Γnum(x)γn(ϕ)(x)dγ(x)

∣∣∣∣
yields∫

Ω

(v(x) ·ϕ(x) + u(x)divϕ(x))dx−
∫
Γn

w(x)γn(ϕ)(x)dγ(x) = 0.

Selecting ϕ ∈ C∞c (Ω)d gives v = ∇u, and therefore u ∈ W 1,p(Ω). Taking
then ϕ smooth that does not vanish on ∂Ω and using an integration-by-parts,
we obtain ∫

∂Ω

γn(ϕ)(x)γu(x)dγ(x) =

∫
Γn

w(x)γn(ϕ)(x)dγ(x).
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This shows that γu = w on Γn and that γu = 0 on Γd, which concludes the
proof of (3.67) and (3.69) if g = 0.

Step 2: we consider a general g ∈W 1− 1
p ,p(∂Ω).

As in the proof of Lemma 2.55, we take an extension g̃ ∈ W 1,p(Ω) of g and
we use the GD-consistency to find vm ∈ XDm such that vm − IDm,Γdg ∈
XDm,Ω,Γn , ΠDmvm → g̃ in Lp(Ω) and ∇Dmvm → ∇g̃ in Lp(Ω)d. Then um −
vm ∈ XDm,Ω,Γn and we can apply the reasoning in Step 1 to this function. We
therefore find U ∈W 1,p(Ω) such that γU = 0 on Γd and, up to a subsequence,

ΠDm(um − vm)→ U weakly in Lp(Ω) ,
∇Dm(um − vm)→ ∇U weakly in Lp(Ω)d ,
TDm,Γn(um − vm)→ γU weakly in Lp(Γn).

(3.70)

We then let u = U + g̃ ∈ W 1,p(Ω), so that γu = g on Γd. The convergence
properties of (vm)m∈N and (3.70) then show that (3.67) holds.

Step 3: we consider a general g ∈ W 1− 1
p ,p(∂Ω), and we assume that (3.68)

holds.
Then we can take vm ∈ XDm such that vm−IDm,Γdg ∈ XDm,Ω,Γn , ΠDmvm →
g̃ in Lp(Ω), TDm,Γnvm → γg̃ = g in Lp(Γn), and ∇Dmvm → ∇g̃ in Lp(Ω)d.
We can then reproduce Step 2 with this vm. Since TDm,Γnvm → g in Lp(Ω),
the convergence TDm,Γn(um−vm)→ γU = γu−g in Lp(Γn)-weak (see (3.70))
ensures that (3.69) holds.

3.3.2 Gradient schemes for linear problems

We only present gradient schemes for mixed BCs on the linear model

−div(Λ∇u) = f + div(F ) in Ω,

u = g on Γd,

Λ∇u · n + F · n = h on Γn,

(3.71)

under Assumption (3.60) and

• Ω is an open bounded connected subset of Rd (d ∈ N?),
with Lipschitz boundary, (3.72a)

• Λ is a measurable function from Ω to the set of d× d
symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (3.72b)

• f ∈ L2(Ω) , F ∈ L2(Ω)d , g ∈ H1/2(∂Ω) , h ∈ L2(Γn). (3.72c)

Denoting by H1
Γd

(Ω) the set of functions in H1(Ω) whose trace on Γd vanishes,
the weak formulation of (3.71) is
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u ∈ {w ∈ H1(Ω) : γ(w) = g on Γd}, ∀v ∈ H1
Γd

(Ω),∫
Ω

Λ(x)∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx

−
∫
Ω

F (x) · ∇v(x)dx+

∫
Γn

h(x)γ(v)(x)dγ(x).

(3.73)

The GDM applied to this mixed problem yields the following scheme.

Definition 3.51 (GS, mixed BCs). If D = (XD, ID,Γd , ΠD,TD,Γn ,∇D) is
a GD for mixed problems in the sense of Definition 3.43, then the related
gradient scheme for (3.73) is defined by:

Find u ∈ ID,Γdg +XD,Ω,Γn such that, for any v ∈ XD,Ω,Γn ,∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx

−
∫
Ω

F (x) · ∇Dv(x)dx+

∫
Γn

h(x)TD,Γnv(x)dγ(x).

(3.74)

The proof of the following error estimates for mixed boundary conditions is
similar to the proofs made in the case of other boundary conditions (see The-
orems 2.29, 2.57 and 3.31). Likewise, a convergence result similar to Corollary
2.32 follows from these error estimates.

Theorem 3.52 (Control of the approximation error, mixed BCs). Un-
der Hypotheses (3.72), let u ∈ H1(Ω) be the solution of (3.73) (remark that
since f ∈ L2(Ω) and h ∈ L2(Γn), we have Λ∇u+F ∈W 2

div,Γn
(Ω), see (3.64)).

Let D be a GD for mixed boundary conditions in the sense of Definition 3.43.
Then there exists one and only one uD ∈ XD solution to the gradient scheme
(3.74), and this element satisfies the following inequalities:

‖∇u−∇DuD‖L2(Ω)d ≤
1

λ

[
WD(Λ∇u+ F ) + (λ+ λ)SD(u)

]
,

‖u−ΠDuD‖L2(Ω) ≤
1

λ

[
CDWD(Λ∇u+ F ) + (CDλ+ λ)SD(u)

]
,

where CD, SD and WD are defined by (3.61), (3.62) and (3.65).

Remark 3.53. In this case again, a lower bound in the spirit of (2.29) could
be derived.

Remark 3.54 (Other linear and non-linear models)
In [79], the notion of GD for mixed boundary conditions is extended to cover linear
and non-linear elasticity models. It is also proved that several schemes designed
for these models, including schemes built to be accurate in the near-incompressible
limit, are GDMs. The time-dependent poro-elasticity model is covered in [124].
As other examples of models with mixed BCs that are covered by the GDM, we can
mention linear and non-linear variational inequalities [10, 11].



Part II

Parabolic problems





4

Time-dependent problems

In this chapter, the definition of gradient discretisations (GDs) for time-
dependent problems is first given; it is followed by compactness results for
the analysis of such problems. These results include discrete Ascoli–Arzelà
and Aubin–Simon theorems, and are presented first in a general setting, be-
fore their consequences for gradient discretisations are discussed.
To deal with all kinds of boundary conditions at once, the notation XD,•
stands for XD,0 in the case of homogeneous Dirichlet boundary conditions, and

for XD in the case of other boundary conditions. Similarly, we write W 1,p
• (Ω)

for W 1,p
0 (Ω) in the case of homogeneous Dirichlet boundary conditions, and

W 1,p(Ω) in the case of other boundary conditions.

4.1 Space–time gradient discretisation

To fix ideas, let us consider a general time-dependent problem under the form
∂tu + A(u) = f , over a domain Ω × (0, T ) with T > 0. Adequate boundary
conditions and initial conditions are also assumed. If θ ∈ [0, 1] and t(0) = 0 <
t(1) < · · · < t(N) = T is a set of time points, then the θ-scheme reads: for all
n = 0, . . . , N − 1,

u(n+1) − u(n)

t(n+1) − t(n)
+A(θu(n+1) + (1− θ)u(n)) = f (n). (4.1)

For θ = 1, the scheme is Euler implicit (or “backward”), for θ = 0 it is Euler
explicit (or “forward”); both choices are of order 1 in time. For θ = 1

2 and A

linear, A(θu(n+1) +(1−θ)u(n)) = A(u(n+1))+A(u(n))
2 and we recover the Crank-

Nicolson time-stepping, which is of order 2; numerical experiments show that,
for many non-linear models, the scheme (4.1) with θ = 1

2 is usually more
accurate than with θ = 1 or θ = 0. Values θ ∈ [ 1

2 , 1] (which, as we show in
our analysis, yield an L2 stability for several non-linear models) are the most
frequently considered in this book due to the parabolic nature of the equations
under study.
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Definition 4.1 (GD for time-dependent problems). Let p ∈ (1,+∞),
Ω be an open subset of Rd (with d ∈ N?), T > 0 and θ ∈ [0, 1]. We say that
DT = (D, ID, (t(n))n=0,...,N ) is a space–time gradient discretisation if

• D = (XD,•, ΠD,∇D, . . .) is a GD in the sense of Definition 2.1 (resp.
Definition 2.50, 3.1, 3.11, 3.37 or 3.43 – depending on the considered
boundary conditions), which satisfies ΠD(XD,•) ⊂ Lmax(p,2)(Ω),
• ID : L2(Ω)→ XD,• is an interpolation operator,
• t(0) = 0 < t(1) . . . < t(N) = T .

The gradient discretisation D is called the underlying spatial discretisation

of DT . We then set δt(n+ 1
2 ) = t(n+1) − t(n), for n = 0, . . . , N − 1, and

δtD = maxn=0,...,N−1 δt
(n+ 1

2 ). To a family v = (v(n))n=0,...,N ∈ XN+1
D,•

we associate the piecewise-constant-in-time functions vθ ∈ L∞(0, T ;XD,•),

Π
(θ)
D v ∈ L∞(0, T ;Lmax(p,2)(Ω)), ∇(θ)

D v ∈ L∞(0, T ;Lp(Ω)d) and T(θ)
D v ∈

L∞(0, T ;Lp(∂Ω)) defined by:

∀n = 0, . . . , N − 1, for all t ∈ (t(n), t(n+1)],

vθ(t) = v(n+θ) := θv(n+1) + (1− θ)v(n) and, for a.e. x ∈ Ω,

Π
(θ)
D v(x, t) = ΠD[vθ(t)](x) , ∇(θ)

D v(x, t) = ∇D[vθ(t)](x) and

T(θ)
D v(x, t) = TD[vθ(t)](x).

(4.2)

To state uniform-in-time convergence results, we also need to extend the def-

inition of Π
(θ)
D v up to t = 0:

For a.e. x ∈ Ω, Π
(θ)
D v(x, 0) = ΠDv

(0)(x). (4.3)

If v ∈ XN+1
D,• , we define δDv ∈ L∞(0, T ;Lmax(p,2)(Ω)) by

∀n = 0, . . . , N − 1, for a.e. t ∈ (t(n), t(n+1)),

δDv(t) = δ
(n+ 1

2 )

D v :=
ΠDv

(n+1) −ΠDv(n)

δt(n+ 1
2 )

.
(4.4)

Remark 4.2. The iterative definition (4.1) requires the initialisation step, a
way to compute u(0). The interpolation operator ID applied to the initial
condition describes this initialisation of u(0) (cf., e.g., (5.5) in Section 5.1).

Definition 4.3 (Space–time-consistency for space–time GD)

For T > 0 and θ ∈ [0, 1], if DT is a space–time GD in the sense of

Definition 4.1, we define ŜD by (2.2), (2.94), (3.3), (3.52) or (3.62)
(depending on the considered boundary conditions), where W 1,p

• (Ω) is
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replaced with W 1,p
• (Ω) ∩L2(Ω) and ‖ΠDv − ϕ‖Lp(Ω) is replaced with

‖ΠDv − ϕ‖Lmax(p,2)(Ω).

A sequence ((DT )m)m∈N of space–time GDs in the sense of Defini-
tion 4.1, with underlying spatial discretisations (Dm)m∈N, is said to be
space–time-consistent if

∀ϕ ∈W 1,p
• (Ω) ∩ L2(Ω), lim

m→∞
ŜDm(ϕ) = 0,

∀u ∈ L2(Ω), lim
m→∞

‖u−ΠDmIDmu‖L2(Ω) = 0, (4.5)

δtDm → 0 as m→∞.

Remark 4.4 (A generic definition of ID)
Given a spatial gradient discretisation D such that ΠD(XD,•) ⊂ L2(Ω), we can
define an interpolator ID : L2(Ω)→ XD,• by

∀u ∈ L2(Ω) ,

IDu = argmin {‖v‖D : v ∈ XD,• , ΠDv = PrΠD(XD,•)u},
(4.6)

where PrΠD(XD,•) : L2(Ω) → ΠD(XD,•) is the L2(Ω)-orthogonal projector on
ΠD(XD,•). Since the norm ‖·‖D is uniformly convex (see the definitions in Chapters
2 and 3, depending on the various boundary conditions), the argmin in (4.6) is
indeed unique, and we can even check that ID : L2(Ω)→ XD,• is linear continuous
(although this is not required in Definition 4.1).
Consider now a sequence (Dm)m∈N of spatial GDs, such that, as m → ∞,

ŜDm(u)→ 0 for all u ∈W 1,p
• (Ω)∩L2(Ω) (this is an improved consistency property

of (Dm)m∈N). This shows that, for such an u, there exists um ∈ XDm,• such that
‖ΠDmum − u‖L2(Ω) → 0. The definition (4.6) yields ΠDmIDm = PrΠDm (XDm,•)

,
and thus, by the properties of the orthogonal projector,

‖u−ΠDmIDmu‖L2(Ω) =
∥∥∥u− PrΠDm (XDm,•)

u
∥∥∥
L2(Ω)

≤ ‖u−ΠDmum‖L2(Ω) → 0 as m→∞.

Hence, (4.5) holds for u ∈ W 1,p
• (Ω) ∩ L2(Ω). Since the mapping ΠDmIDm =

PrΠDm (XDm,•)
: L2(Ω) → L2(Ω) has norm 1, reasoning by density of W 1,p

• (Ω) ∩
L2(Ω) into L2(Ω) shows that (4.5) actually holds for all u ∈ L2(Ω).

Remark 4.5. To illustrate the definition of ŜD, here is how it looks for Fourier
boundary conditions:

∀ϕ ∈W 1,p(Ω) ∩ L2(Ω) ,

ŜD(ϕ) = min
v∈XD

(
‖ΠDv − ϕ‖Lmax(p,2)(Ω) + ‖TDv − γϕ‖Lp(∂Ω)

+ ‖∇Dv −∇ϕ‖Lp(Ω)d

)
.
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The notions of coercivity, limit-conformity and compactness for sequences of
space–time GDs boil down to the corresponding notion for the sequence of
underlying spatial discretisations.

Definition 4.6 (Coercivity, limit-conformity and compactness
for space–time GDs)

Let T > 0 and ((DT )m)m∈N be a sequence of space–time GDs in
the sense of Definition 4.1, with underlying spatial discretisations
(Dm)m∈N.
The sequence ((DT )m)m∈N is coercive (resp. limit-conforming, resp.
compact) if the sequence (Dm)m∈N is coercive (resp. limit-conforming,
resp. compact) for the corresponding boundary conditions.

Remark 4.7 (One GD per time step)
In some instances, such as when using time-varying meshes or for coupled sys-
tems (see, e.g., [47, Section 4.1.1]), it might be required to consider one spatial GD
for each time step. In this case, a space-time GD is DT = (DS , ID, (t(n))n=0,...,N )
where DS = (Dn)n=1,...,N is a family of spatial GDs for the considered bound-
ary conditions. The coercivity, GD-consistency and limit-conformity of a sequence
(DSm)m∈N = ((Dnm)n=1,...,Nm)m∈N of such families of GDs should then be defined by
using

CDSm = max
n=1,...,Nm

CDnm , SDSm = max
n=1,...,Nm

SDnm and WDSm = max
n=1,...,Nm

WDnm .

The compactness of (DSm)m∈N is defined as the compactness of the function re-
constructions (and possibly the trace reconstructions, depending on the boundary
conditions) of any family ((unm)n=1,...,Nm)m∈N with unm ∈ Dnm such that, for some C
not depending on n or m, ‖unm‖Dnm ≤ C.

After modifying the time-space reconstructions (4.2)–(4.4) by using the GD appro-
priate to each time step, the analysis carried out here and in Chapters 5 and 6 can
easily be adapted to this setting of space–time GDs with time-varying spatial GDs.

The following lemma is the counterpart of Lemma 2.16 and Lemma 3.22.
We could as easily state counterparts of the regularity of the limit for non-
homogeneous Dirichlet boundary conditions or mixed boundary conditions (as
in Lemma 2.55 or Lemma 3.49).

Lemma 4.8 (Regularity of the limit, space–time problems). Let p ∈
(1,∞) and ((DT )m)m∈N be a limit-conforming sequence of space–time GDs,
in the sense of Definition 4.6, for homogeneous Dirichlet or non-homogeneous
Neumann boundary conditions. Let θ ∈ [0, 1], q ∈ (1,+∞) and take, for any
m ∈ N, um ∈ XNm+1

Dm,• such that (‖(um)θ‖Lq(0,T ;XDm,•)
)m∈N is bounded.
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Then there exists u ∈ Lq(0, T ;W 1,p
• (Ω)) such that, up to a subsequence,

Π
(θ)
Dmum → u weakly in Lq(0, T ;Lp(Ω)) and ∇(θ)

Dmum → ∇u weakly in

Lq(0, T ;Lp(Ω))d.
In the case of non-homogeneous Neumann boundary conditions, we also have,

up to a subsequence, T(θ)
Dmum → γu weakly in Lq(0, T ;Lp(∂Ω)).

The same conclusions hold in the case q = +∞, provided that the weak con-
vergences are replaced with weak-∗ convergences.

Remark 4.9. Note that each space XDm,• is endowed with its natural norm
‖·‖Dm , i.e. ‖∇Dm ·‖Lp(Ω)d for Dirichlet boundary conditions and (3.1) for Neu-

mann boundary conditions. For q < +∞, a bound on ‖(um)θ‖Lq(0,T ;XDm,•)
is

therefore a bound on (∫ T

0

‖(um)θ(t)‖qDm dt

)1/q

.

Proof of Lemma 4.8. We only consider the case of homogeneous Dirich-
let boundary conditions; the case of non homogeneous Neumann boundary
conditions can handled similarly by following the proof of Lemma 3.22.
By Lemma 2.7 or 3.18 (depending on the considered boundary conditions),
the sequence of space–time GDs ((DT )m)m∈N is coercive and thus

‖(um)θ‖Lq(0,T ;XDm,•)
=
∥∥∥∇(θ)
Dmum

∥∥∥
Lq(0,T ;Lp(Ω))d

≥ 1

CP

∥∥∥Π(θ)
Dmum

∥∥∥
Lq(0,T ;Lp(Ω))

.

The sequences (Π
(θ)
Dmum)m∈N and (∇(θ)

Dmum)m∈N are therefore bounded in

Lq(0, T ;Lp(Ω)) and Lq(0, T ;Lp(Ω))d, respectively. Up to a subsequence, they
converge weakly (or weakly-∗ if q = +∞) in these spaces towards u and v,
respectively. Extending all the functions by 0 outside Ω, these convergences
still hold weakly in Lq(0, T ;Lp(Rd)) and Lq(0, T ;Lp(Rd))d. The proof is com-
plete if we show that v = ∇u in the sense of distributions on Rd × (0, T ). To
this purpose, let ϕ ∈ C∞c (Rd)d and ψ ∈ C∞c (0, T ). Dropping the indices m
for the sake of legibility, we have, for t ∈ (0, T ), by definition (2.6) of WD,∣∣∣∣∫

Ω

[
∇D[uθ(t)](x) ·ϕ(x) +ΠD[uθ(t)](x)divϕ(x)

]
dx

∣∣∣∣ ≤ ‖uθ(t)‖DWD(ϕ).

Hence, using Hölder’s inequality:∣∣∣∣∣
∫ T

0

∫
Ω

[
∇(θ)
D u(x, t) · (ψ(t)ϕ(x)) +Π

(θ)
D u(x, t)div(ψ(t)ϕ)(x)

]
dxdt

∣∣∣∣∣
≤
∫ T

0

∣∣∣∣ψ(t)

∫
Ω

[
∇(θ)
D u(x, t) ·ϕ(x) +Π

(θ)
D u(x, t)divϕ(x)

]
dx

∣∣∣∣dt
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≤WD(ϕ)

∫ T

0

‖uθ(t)‖D |ψ(t)|dt ≤WD(ϕ) ‖uθ‖Lq(0,T ;XD,0) ‖ψ‖Lq′ (0,T ) .

As m → ∞, ‖(um)θ‖Lq(0,T ;XDm,0) is bounded and WDm(ϕ) → 0 by limit-
conformity. We can thus pass to the limit and see that∫ T

0

∫
Ω

[
v(x, t) · (ψ(t)ϕ(x)) + u(x, t)div(ψ(t)ϕ)(x)

]
dxdt = 0.

This relation holds true for linear combinations of functions of the form
(x, t) → ψ(t)ϕ(x), that is for all tensorial smooth functions. These tensorial
functions are dense (e.g., for the C1(Ω × [0, T ])d norm) in C∞c (Rd × (0, T ))d,
see [63] or [67, Appendix D]. This shows that, for all Φ ∈ C∞c (Rd × (0, T ))d,∫ T

0

∫
Ω

[
v(x, t) ·Φ(x, t) + u(x, t)div(Φ(·, t))(x)

]
dxdt = 0.

Hence, v = ∇u in the sense of distributions on Rd × (0, T ), as required.

The following result shows that functions depending on time and space can
be approximated, along with their gradient, by reconstructed functions and
gradients built from space–time-consistent GDs.

Lemma 4.10 (Interpolation of space–time functions). For p ∈ [1,∞),
T > 0 and θ ∈ [0, 1], let ((DT )m)m∈N be a sequence of space–time GDs in the
sense of Definition 4.1, that is space–time-consistent in the sense of Definition
4.3. Let v ∈ Lp(0, T ;W 1,p

• (Ω)). Then:

1. There exists a sequence (vm)m∈N such that vm = (v
(n)
m )n=0,...,Nm ∈

XNm+1
Dm,• for all m ∈ N, and, as m→∞,

Π
(θ)
Dmvm → v strongly in Lp(Ω × (0, T )), (4.7a)

∇(θ)
Dmvm → ∇v strongly in Lp(Ω × (0, T ))d. (4.7b)

2. In the case of non-homogeneous Neumann boundary conditions, if the
sequence of underlying spatial discretisations is limit–conforming in the
sense of Definition 3.14, then the sequence (vm)m∈N in Item 1 also satis-
fies

T(θ)
Dmvm → γv weakly in Lp(∂Ω × (0, T )) as m→∞. (4.8)

3. In the case of non-homogeneous Fourier boundary conditions, the sequence
(vm)m∈N in Item 1 can be chosen such that

T(θ)
Dmvm → γv strongly in Lp(∂Ω × (0, T )) as m→∞. (4.9)
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4. If moreover v ∈ C([0, T ];L2(Ω)), ∂tv ∈ L2(Ω × (0, T )) and v(·, T ) = 0,
then the sequence (vm)m∈N in Item 1 can be chosen such that, in addition
to (4.7),

∀m ∈ N , v(Nm−1)
m = v(Nm)

m = 0

(and thus Π
(θ)
Dmv

m = 0 on Ω × (t(Nm−1), t(Nm)]), (4.10a)

Π
(θ)
Dmvm(·, 0)→ v(·, 0) strongly in L2(Ω) as m→∞, (4.10b)

δDmvm → ∂tv strongly in L2(Ω × (0, T )) as m→∞. (4.10c)

Proof.
Step 1: proof of Item 1.
Define the set T (0, T ;W 1,p

• (Ω)) of space–time tensorial functions the follow-
ing way: v ∈ T (0, T ;W 1,p

• (Ω)) if there exist ` ∈ N, a family (ϕi)i=1,...,` ⊂
C∞([0, T ]) and a family (wi)i=1,...,` ⊂W 1,p

• (Ω) such that

v(x, t) =
∑̀
i=1

ϕi(t)wi(x) for a.e. x ∈ Ω and all t ∈ (0, T ). (4.11)

By [67, Corollary 1.3.1], T (0, T ;W 1,p
• (Ω)) is dense in Lp(0, T ;W 1,p

• (Ω)) and
we can therefore reduce the proof of (4.7) to the case v ∈ T (0, T ;W 1,p

• (Ω))
(the proof of this reduction is similar to the proof of Lemma 2.17).
Given the structure (4.11) of functions in T (0, T ;W 1,p

• (Ω)), we actually only
need to prove the result for v(x, t) = ϕ(t)w(x) with ϕ ∈ C∞([0, T ]) and

w ∈ W 1,p
• (Ω). Let vm ∈ XNm+1

Dm,• be defined by v
(n)
m = ϕ(t(n))IDmw for n =

0, . . . , Nm, where

IDmw = argmin
z∈XDm,•

(
‖ΠDmz − w‖Lmax(p,2)(Ω) + ‖∇Dmz −∇w‖Lp(Ω)d

)
. (4.12)

Define Φm : (0, T ]→ R as the piecewise constant function equal to θϕ(t(n+1))+
(1 − θ)ϕ(t(n)) on (t(n), t(n+1)] for all n = 0, . . . , Nm − 1. Then, by definition

(4.2) of the space–time reconstruction operator Π
(θ)
Dm , for all t ∈ (0, T ) and

a.e. x ∈ Ω,

v(x, t)−Π(θ)
Dmvm(x, t) = ϕ(t)w(x)− Φm(t)ΠDm(IDmw)(x) (4.13)

= [ϕ(t)− Φm(t)]w(x) + Φm(t)[w(x)−ΠDm(IDmw)(x)].

Using the definitions of ŜDm and IDm , we infer that

‖v−Π(θ)
Dmvm‖Lp(Ω×(0,T ))

≤ ‖ϕ− Φm‖Lp(0,T ) ‖w‖Lp(Ω) + ‖Φm‖Lp(0,T ) ‖w −ΠDm(IDmw)‖Lp(Ω)

≤ ‖ϕ− Φm‖Lp(0,T ) ‖w‖Lp(Ω) + ‖Φm‖Lp(0,T ) ŜDm(w). (4.14)
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As m → ∞, the space–time-consistency of ((DT )m)m∈N gives ŜDm(w) → 0
and the smoothness of ϕ shows that Φm → ϕ uniformly (and thus in Lp(0, T )).
Hence, (4.7a) follows from (4.14). The proof of (4.7b) is obtained by the same

argument starting from (4.13) and replacing v with ∇v, w with ∇w, and Π
(θ)
Dm

with ∇(θ)
Dm .

Step 2: proof of Items 2 and 3.
In the case of Neumann boundary conditions, applying Lemma 4.8 to (vm)m∈N
yields (4.8).
In the case of Fourier boundary conditions, the definition (4.12) can be re-
placed with

IDmw = argmin z∈XDm

(
‖ΠDmz − w‖Lmax(p,2)(Ω) + ‖∇Dmz −∇w‖Lp(Ω)d

+ ‖TDmz − γw‖Lp(∂Ω)

)
and the reasoning starting from (4.13) can be done with (γv,T(θ)

Dmvm) instead

of (v,Π
(θ)
Dmvm), since ‖TDm(IDmw)− γw‖Lp(∂Ω) ≤ ŜDm(w). This shows that

(4.9) holds.

Step 3: proof of Item 4.
Assume that v ∈ Lp(0, T ;W 1,p

• (Ω)) ∩ C([0, T ];L2(Ω)), ∂tv ∈ L2(Ω × (0, T ))
and v(·, T ) = 0. By [67, Theorem 2.3.1], we can find a sequence (vn)n∈N ⊂
C∞([0, T ];W 1,p

• (Ω) ∩ L2(Ω)) such that, as n→∞,

vn → v in Lp(0, T ;W 1,p
• (Ω)) ∩ C([0, T ];L2(Ω)), and

∂tvn → ∂tv in L2(0, T ;L2(Ω)).

The proof of [67, Theorem 2.3.1] is based on an even extension of v at t = T ,
required to preserve the continuity of the extended function. Since v(·, T ) = 0,
we can actually use an extension by 0 on [T,∞) and, by selecting in [67,
Theorem 2.3.1] a smoothing kernel with support in (−T, 0), we ensure that
each vn vanishes on [T − εn,∞) for some εn > 0.
Having approximated v by these vn, we just need to prove the result for
each vn instead of v. Let us drop the index n and write v for vn. We have
v ∈ C∞([0, T ];W 1,p

• (Ω) ∩L2(Ω)) and v = 0 on Ω × [T − ε, T ] for some ε > 0.
Let τ ∈ (0, ε/4), `τ = dT/τe and take (ψi)i=1,...,`τ ⊂ C∞([0, T ]) a partition of
unity on [0, T ] subordinate to the open covering ((iτ − 2τ, iτ + 2τ)i=1,...,`τ ).
Set

vτ (x, t) = v(x, T ) +

`τ∑
i=1

(∫ t

T

ψi(s)ds

)
∂tv(x, iτ)

=

`τ∑
i=1

(∫ t

T

ψi(s)ds

)
∂tv(x, iτ).
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Since v = 0 on Ω × [T − ε, T ] ⊃ Ω × [T − 4τ, T ], the terms corresponding to
i = `τ − 3, . . . , `τ in the previous sum vanish (since iτ ≥ `ττ − 3τ ≥ T − 4τ).
For i ≤ `τ − 4, the support of ψi is contained in [0, T − 2τ ]. This shows that
vτ (·, t) = 0 for all t ∈ [T − 2τ, T ].
We write

∂tvτ (x, t) =

`τ∑
i=1

ψi(t)∂tv(x, iτ).

Since
`τ∑
i=1

ψi(t) = 1 for all t ∈ (0, T ), (4.15)

we have ∂tv(x, t) =
∑`τ
i=1 ψi(t)∂tv(x, t) and thus

‖∂tvτ (·, t)− ∂tv(·, t)‖W 1,p
• (Ω)∩L2(Ω)

≤
`τ∑
i=1

ψi(t) ‖∂tv(·, iτ)− ∂tv(·, t)‖W 1,p
• (Ω)∩L2(Ω) .

Using the fact that ψi(t) 6= 0 only if |t− iτ | < 2τ (that is, iτ ∈ (t−2τ, t+2τ)),
and invoking (4.15), we infer

‖∂tvτ (·, t)− ∂tv(·, t)‖W 1,p
• (Ω)∩L2(Ω)

≤ sup
r∈(t−2τ,t+2τ)

‖∂tv(·, r)− ∂tv(·, t)‖W 1,p
• (Ω)∩L2(Ω) .

By smoothness of v, this shows that ∂tvτ → ∂tv in L∞(0, T ;W 1,p
• (Ω)∩L2(Ω))

as τ → 0. Integrating and using vτ (·, T ) = v(·, T ) = 0, we obtain vτ → v in
C([0, T ];W 1,p

• (Ω) ∩ L2(Ω)). Hence, we only need to find approximations in
the sense (4.7) and (4.10) for each vτ instead of v. Given the structure of vτ ,
this amounts to finding such approximations when v(x, t) = ϕ(t)w(x) with
w ∈ W 1,p

• (Ω) ∩ L2(Ω) and ϕ ∈ C∞([0, T ]) having support in [0, T − ν] for
some ν > 0.
We set, as before, v

(n)
m = ϕ(t(n))IDmw for n = 0, . . . , Nm. The proof of (4.7)

is done exactly as in Step 1.

If m is large enough so that t(Nm−1) ≥ T − ν, then v
(Nm−1)
m = v

(Nm)
m = 0 and

(4.10a) is satisfied. We can modify vm for the remaining m (for example by
setting vm = 0) to ensure that this property holds for any m.

By definition (4.3) of Π
(θ)
Dmvm at t = 0,

u(x, 0)−Π(θ)
Dmvm(x, 0) = ϕ(0)w(x)− ϕ(t(0))ΠDm(IDmw)(x)

= ϕ(0)[w(x)−ΠDm(IDmw)(x)].

Then, by definition of IDm and ŜDm ,
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Dmvm(0)

∥∥∥
L2(Ω)

= |ϕ(0)| ‖w −ΠDm(IDmw)‖L2(Ω) ≤ |ϕ(0)|ŜDm(w)

and (4.10b) follows from the space–time-consistency of ((DT )m)m∈N.
To establish (4.10c), we define Ψm : (0, T ] → R as the piecewise constant

function equal to ϕ(t(n+1))−ϕ(t(n))

δt(n+1
2
)

on (t(n), t(n+1)], for all n = 0, . . . , Nm − 1.

Then, by definition (4.4) of δDmvm, for all t ∈ (0, T ) and a.e. x ∈ Ω,

∂tv(x, t)− δDmvm(x, t) = ϕ′(t)w(x)− Ψm(t)ΠDm(IDmw)(x).

By smoothness of ϕ we have Ψm → ϕ′ uniformly on [0, T ] as m → ∞, and
the proof of (4.10c) therefore follows by using the same sequence of esti-
mates as in Step 1, starting from (4.13) and replacing (v,ΠDmvm, ϕ, Φm)
with (∂tv, δDmvm, ϕ

′, Ψm), and the Lp norms with L2 norms (note that

ŜDm(w) ≥ ‖w −ΠDm(IDmw)‖L2(Ω) by definition of ŜD).

4.2 Compactness results for space-time gradient
discretisations

The compactness results established here are consequences of the generic time-
DFA results in Appendix C.

4.2.1 Averaged-in-time compactness for space-time GDs

Aubin–Simon theorem

In the context of GDs, the spaces Ym in Definition C.6 (compactly–continuous-
ly embedded sequence) and Theorem C.8 (Aubin–Simon with sequences of
spaces and discrete derivative) are often ΠDm(XDm,•) with the dual norm
‖w‖?,Dm as defined below.

Definition 4.11 (Dual norm on ΠD(XD,•)). Let DT be a space–time GD
in the sense of Definition 4.1. The dual norm ‖·‖?,D on ΠD(XD,•) ⊂ L2(Ω)
is defined by:

∀w ∈ ΠD(XD,•),

‖w‖?,D = sup

{∫
Ω

w(x)ΠDv(x)dx : v ∈ XD,• , ‖v‖D = 1

}
.

(4.16)

A straightforward consequence of this definition is

∀w ∈ ΠD(XD,•) , ∀v ∈ XD,• ,
∣∣∣∣∫
Ω

w(x)ΠDv(x)dx

∣∣∣∣ ≤ ‖w‖?,D ‖v‖D . (4.17)
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This relation shows that ‖·‖?,D is a norm (not just a semi-norm). Indeed, if

‖w‖?,D = 0 then
∫
Ω
w(x)ΠDv(x)dx = 0 for all v ∈ XD,•. Taking then v such

that ΠDv = w shows that w = 0.
The norm ‖·‖?,D will mostly be used on δDv(t) for v ∈ XN+1

D,• . Recalling the
notation (4.4), it is clear that δDv(t) ∈ ΠD(XD,•) for a.e. t ∈ (0, T ), and thus
‖δDv(t)‖?,D is well-defined.

Remark 4.12 (Boundary conditions)
It is also worth noticing that ‖w‖?,D takes into account the considered boundary
conditions, through the norm ‖v‖D on XD,• (see, e.g., Definitions 2.1 and 3.1).

Remark 4.13 (‖·‖?,D is a discrete H−1 norm)
Let us consider the case of homogeneous Dirichlet boundary conditions and
p = 2. Then Definition 2.1 shows that (XD,0, ‖·‖D) is a discrete version of
(H1

0 (Ω), ‖·‖H1
0 (Ω)), where ‖·‖H1

0 (Ω) = ‖∇·‖L2(Ω)d is the standard norm on H1
0 (Ω).

In the continuous setting, (4.16) therefore reads: for w ∈ L2(Ω),

‖w‖? := sup

{∫
Ω

w(x)v(x)dx : v ∈ H1
0 (Ω) , ‖v‖H1

0 (Ω) = 1

}
. (4.18)

Identifying w as an element of H−1(Ω), we have∫
Ω

w(x)v(x)dx = 〈w, v〉H−1,H1
0
.

Hence, (4.18) turns out to be the standard dual norm on H−1(Ω), that is the norm
of linear continuous functions H1

0 (Ω)→ R.
The norm ‖·‖?,D can thus be considered as a discrete version of the standard dual

norm on H−1(Ω).

The next result is a consequence of the discrete Aubin–Simon theorem (The-
orem C.8).

Theorem 4.14 (Aubin–Simon theorem for GDs). Let T > 0, p ∈
(1,+∞) and θ ∈ [0, 1]. Assume that ((DT )m)m∈N is a compact sequence
of space–time GDs in the sense of Definition 4.6. For any m ∈ N, let
vm ∈ XNm+1

Dm,• be such that there exists C > 0 satisfying

∀m ∈ N,
∫ T

0

‖(vm)θ(t)‖pDm dt ≤ C (4.19)

and

∀m ∈ N,
∫ T

0

‖δDmvm(t)‖?,Dm dt ≤ C. (4.20)

Then the sequence (Π
(θ)
Dmvm)m∈N is relatively compact in Lp(Ω × (0, T )).
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Proof. To apply Theorem C.8, let B = Lp(Ω), Xm = ΠDm(XDm,•), and
define the norm on Xm by

‖u‖Xm = min{‖w‖Dm : w ∈ XDm,• such that ΠDmw = u}. (4.21)

Set Ym = Xm = ΠDm(XDm,•) and ‖·‖Ym = ‖·‖?,Dm .

Let us prove that the sequence (Xm, Ym)m∈N is compactly–continuously em-
bedded in B, in the sense of Definition C.6. First, the compactness hypothesis
on (Dm)m∈N is showing that (Xm)m∈N is compactly embedded in B, in the
sense of Definition C.4 (see, e.g., Remark 2.10 in the case of Dirichlet BCs).
Then, by construction, Xm = Ym for all m ∈ N. Assume now that (um)m∈N
is such that um ∈ Xm for all m ∈ N, (‖um‖Xm)m∈N bounded, ‖um‖Ym → 0 as
m → +∞, and (um)m∈N converges in Lp(Ω). Take Rmum ∈ XDm,• a lifting
of um with minimal norm, i.e. ΠDmRmum = um and ‖Rmum‖Dm = ‖um‖Xm
A use of (4.17) yields∫

Ω

um(x)2dx =

∫
Ω

um(x)ΠDmRmum(x)dx

≤ ‖um‖?,Dm ‖Rmum‖Dm = ‖um‖Ym ‖um‖Xm .

The assumptions on (um)m∈N thus ensure that limm→∞
∫
Ω
um(x)2dx = 0.

This shows that, up to a subsequence, um → 0 a.e. in Ω, and hence that
the limit in Lp(Ω) of (um)m∈N must be 0. The proof that (Xm, Ym)m∈N is
compactly–continuously embedded in B = Lp(Ω) is complete.

The relative compactness of (Π
(θ)
Dmvm)m∈N in Lp(0, T ;Lp(Ω)) follows from

Theorem C.8 with fm = Π
(θ)
Dmvm if we can check the four assumptions stated

in this theorem.
The first of these assumptions is obviously satisfied by the definition of Π

(θ)
Dm

in (4.2).
Since the sequence of underlying spatial discretisations is compact, it is also
coercive (see, e.g., Lemma 2.11 for homogeneous Dirichlet boundary condi-

tions). The definition of CDm combined with (4.19) and the definition of Π
(θ)
Dm

then shows that (Π
(θ)
Dmvm)m∈N is bounded in Lp(0, T ;Lp(Ω)). This takes care

of the second assumption in Theorem C.8.
The third assumption follows immediately from (4.19) and the fact that∥∥∥Π(θ)

Dmvm(t)
∥∥∥
Xm

= ‖ΠDm((vm)θ(t))‖Xm ≤ ‖(vm)θ(t)‖Dm .

To prove the fourth assumption in Theorem C.8, we notice that∥∥∥δmΠ(θ)
Dmvm(t)

∥∥∥
Ym

= ‖δDmvm(t)‖Ym = ‖δDmvm(t)‖?,Dm

and we use (4.20).
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Convergence of a weak–strong product, and identification of
non-linear weak limits

Dealing with degenerate parabolic equations often requires fine results to iden-
tify non-linear limits of weakly converging sequences. The main result in this
section, Theorem 4.17, is one of these fine results. We consider here the partic-
ular case p = 2 and we restrict ourselves to homogeneous Dirichlet boundary
conditions. The adaptation to other boundary conditions is rather simple,
but establishing the equivalent of Theorem 4.17 for p 6= 2 requires a different
approach; see [72, Theorem 5.4] for details.

The inverses of the discrete and continuous Laplace operators with homoge-
neous Dirichlet boundary conditions now need to be introduced.

Definition 4.15 (Inverse of discrete and continuous Laplace opera-
tor). Let D = (XD,0, ΠD,∇D) be a GD in the sense of Definition 2.1, for
p = 2. We define the operator ∆i

D : XD,0 → XD,0 such that, for all v ∈ XD,0,

∀w ∈ XD,0 ,
∫
Ω

∇D(∆i
Dv)(x) · ∇Dw(x)dx =

∫
Ω

ΠDv(x)ΠDw(x)dx. (4.22)

We also define ∆i : L2(Ω)→ H1
0 (Ω) such that, for all v ∈ L2(Ω),

∀w ∈ H1
0 (Ω) ,

∫
Ω

∇(∆iv)(x) · ∇w(x)dx =

∫
Ω

v(x)w(x)dx. (4.23)

Theorem 4.16 (Compactness of ∆i). Let p = 2, T > 0, θ ∈ [0, 1] and

((DT )m)m∈N = (Dm, IDm , (t
(n)
m )n=0,...,Nm)m∈N be a space–time-consistent,

limit-conforming and compact sequence of space–time GDs for homogeneous
Dirichlet boundary conditions, in the sense of Definitions 4.3 and 4.6. For any
m ∈ N, let vm ∈ XNm+1

Dm,0 be such that there exists C > 0 and q ≥ 1 satisfying

∀m ∈ N,
∫ T

0

∥∥∥Π(θ)
Dmvm(t)

∥∥∥2

L2(Ω)
dt ≤ C (4.24)

and

∀m ∈ N,
∫ T

0

‖δDmvm(t)‖q?,Dm dt ≤ C. (4.25)

We also assume that Π
(θ)
Dmvm converges weakly in L2(0, T ;L2(Ω)) as m→∞

to some v ∈ L2(0, T ;L2(Ω)).
Then, as m→∞,

Π
(θ)
Dm(∆i

Dmvm)→ ∆iv in L2(0, T ;L2(Ω)), and

∇(θ)
Dm(∆i

Dmvm)→ ∇(∆iv) in L2(0, T ;L2(Ω))d.
(4.26)

Moreover, if q > 1 then

δDm(∆i
Dmvm)→ ∂t(∆

iv) weakly in Lq(0, T ;L2(Ω)) as m→∞. (4.27)
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Proof.
Step 1: we prove, using Proposition C.5 with p = 2, that (Π

(θ)
Dm(∆i

Dmvm))m∈N
is relatively compact in L2(0, T ;L2(Ω)).
Let um = ∆i

Dmvm. Since the sequence of underlying spatial discretisations
is compact, it is coercive (Lemma 2.11). Denote by CP a coercivity constant
of this sequence. Using the definition (4.22) of ∆i

Dm with v = (vm)θ(t) and
w = (um)θ(t), the Cauchy–Schwarz inequality in the right-hand side, the
definition of CP ≥ CDm , raising to the power 2 and integrating over t ∈ (0, T ),
we see that∫ T

0

‖(um)θ(t)‖2Dm ≤ C
2
P

∫ T

0

∥∥∥Π(θ)
Dmvm(t)

∥∥∥2

L2(Ω)
≤ C2

PC. (4.28)

Set B = L2(Ω) and Xm = ΠDm(XDm,0), endowed with the norm

‖w‖Xm = inf{‖z‖Dm : ΠDmz = w}.

The compactness of (Dm)m∈N ensures that (Xm)m∈N is compactly embedded
in B as per Definition C.4. Estimate (4.28) and the coercivity of (Dm)m∈N
prove that items 1 and 2 of the hypotheses of Proposition C.5 hold for fm =

Π
(θ)
Dmum. Let us now observe that, for all z ∈ XDm,0,

‖ΠDmz‖?,Dm

= sup

{∫
Ω

∇Dm(∆i
Dmz)(x) · ∇Dmw(x)dx : w ∈ XDm , ‖w‖Dm = 1

}
=
∥∥∆i
Dmz

∥∥
Dm

. (4.29)

Therefore, since δDmum(t) =
ΠDu

(n+1)
m −ΠDu(n)

m

δt(n+1
2
)

, Hypothesis (4.25) and the

coercivity property (with constant CP ) imply

∀m ∈ N,
∫ T

0

‖δDmum(t)‖qL2(Ω) dt ≤ (CP )qC. (4.30)

Apply the same computation as in (C.9), followed by (C.10) with Ym replaced
by L2(Ω). Using (4.30), this proves that (C.11) holds (still with L2(Ω) instead
of Ym). Hence, item 3 of the hypotheses of Proposition C.5 holds with η(h) =
h. Note that, contrary to the proof of Theorem C.8, we do not use an inequality
similar to (C.8), which is the discrete equivalent of the Lions lemma.
Therefore, Proposition C.5 provides the existence of u ∈ L2(0, T ;L2(Ω)) such

that, up to a subsequence as m→∞, Π
(θ)
Dmum → u in L2(0, T ;L2(Ω)).

Step 2: we prove that u = ∆iv.

By Lemma 4.8, u belongs to L2(0, T ;H1
0 (Ω)) and ∇(θ)

Dmum → ∇u weakly

in L2(0, T ;L2(Ω)d). Let w ∈ L2(0, T ;H1
0 (Ω)) and consider the sequence

(wm)m∈N given by Lemma 4.10 for w. Writing (4.22) with v = (vm)θ(t) and
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w = (wm)θ(t) and integrating over t ∈ (0, T ), we can pass to the limit to see
that u satisfies∫ T

0

∫
Ω

∇u(x, t) · ∇w(x, t)dxdt =

∫ T

0

∫
Ω

v(x, t)w(x, t)dxdt. (4.31)

This precisely shows that u = ∆iv.

Step 3: proof of (4.26).
Write now (4.22) with v = (vm)θ(t) and w = (um)θ(t), and integrate over

t ∈ (0, T ). By the strong convergence of Π
(θ)
Dmum to u, we can pass to the

limit in the left-hand side and, using (4.31) with w = u, we find

lim
m→∞

∫ T

0

∫
Ω

|∇(θ)
Dmum(x, t)|2dxdt

=

∫ T

0

∫
Ω

v(x)u(x)dxdt =

∫ T

0

∫
Ω

|∇u(x, t)|2dxdt.

This convergence of L2 norms shows that the convergence of (∇(θ)
Dmum)m∈N

to ∇u is actually strong. The proof of (4.26) is thus complete.

Step 4: assuming that q > 1, proof of (4.27).
We proved in Step 1 that (

∥∥δDm(∆i
Dmvm)

∥∥
Lq(0,T ;Ym)

)m∈N is bounded (recall

that ∆i
Dmvm = um). By coercivity of the sequence of GDs, this shows that

δDm(∆i
Dmvm) is bounded in Lq(0, T ;L2(Ω)) and therefore converges, up to a

subsequence, to some V weakly in this space.
Take γ ∈ C∞c (0, T ) and ψ ∈ C∞c (Ω). Multiply δDm(∆i

Dmvm)(t) by [νγ(t(n) +

(1− ν)γ(t(n+1))]ψ, where ν = 1− θ and n is such that t ∈ (t(n), t(n+1)), inte-
grate over (x, t) ∈ Ω× (0, T ) and use the discrete integration-by-part formula
(D.17) to transfer the δDm operator onto (γ(t(n)))n=0,...,N . By smoothness of
γ, passing to the limit shows that∫ T

0

∫
Ω

V (x, t)γ(t)ψ(x)dxdt = −
∫ T

0

∫
Ω

u(x, t)γ′(t)ψ(x)dxdt.

We infer that V = ∂tu = ∂t(∆
iv) and the proof is complete.

The next result is characterised as “weak–strong space–time” because it deals
with the product of two sequences of functions, one of them being strongly
compact in time and weakly in space (estimates on the time derivative), the
other one being weakly compact in time and strongly in space (estimate on
the spatial derivatives).

Theorem 4.17 (Weak-strong space–time convergence of a product).
Take T > 0, θ ∈ [0, 1], p = 2 and a space–time-consistent, limit-conforming

and compact sequence ((DT )m)m∈N of space–time GDs for homogeneous Diri-
chlet boundary conditions, in the sense of Definitions 4.3 and 4.6. For any
m ∈ N, let βm, ζm ∈ XNm+1

Dm,0 be such that
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• The sequences

(
∫ T

0
‖δDmβm(t)‖?,Dm)m∈N and (‖∇(θ)

Dmζm‖L2(0,T ;L2(Ω)d))m∈N are bounded,

• As m→∞, Π
(θ)
Dmβm → β and Π

(θ)
Dmζm → ζ weakly in L2(Ω × (0, T )).

Then it holds

lim
m→∞

∫ T

0

∫
Ω

Π
(θ)
Dmβm(x, t)Π

(θ)
Dmζm(x, t)dxdt

=

∫ T

0

∫
Ω

β(x, t) ζ(x, t)dxdt. (4.32)

Proof. The sequence (βm)m∈N satisfies the hypotheses of Theorem 4.16.

Hence, ∇(θ)
Dm(∆i

Dmβm) converges strongly to ∇(∆iβ) in L2(0, T ;L2(Ω)d). By

definition of ∆i
Dm , we have

∫ T

0

∫
Ω

Π
(θ)
Dmβm(x, t)Π

(θ)
Dmζm(x, t)dxdt

=

∫ T

0

∫
Ω

∇(θ)
Dm(∆i

Dmβm)(x, t) · ∇(θ)
Dmζm(x, t)dxdt. (4.33)

By assumption on (ζm)m∈N, the sequence (‖ζm‖L2(0,T ;XDm,0
)m∈N is bounded

and thus, by Lemma 4.8, ∇(θ)
Dmζm → ∇ζ weakly in L2(0, T ;L2(Ω)d). Passing

to the limit in the right-hand side of (4.33), we infer

lim
m→∞

∫ T

0

∫
Ω

Π
(θ)
Dmβm(x, t)Π

(θ)
Dmζm(x, t)dxdt

=

∫ T

0

∫
Ω

∇(∆iβ)(x, t) · ∇ζ(x, t)dxdt.

The definition of ∆i concludes the proof of (4.32).

4.2.2 Uniform-in-time compactness for space-time GDs

We now consider applications to space-time gradient discretisations (for
generic BCs, as described in Section 4.1) of the results in Section C.2. The
following theorem is a consequence of Corollary C.11.

Theorem 4.18 (L∞(0, T ;Lp(Ω)) compactness). Let p ∈ (1,+∞), T > 0,
θ ∈ [0, 1], and ((DT )m)m∈N be a space–time-consistent, limit-conforming and
compact sequence of space–time GDs in the sense of Definitions 4.3 and 4.6.
For each m ∈ N, let vm ∈ XNm+1

Dm,• . Assume that there exist C > 0 and q > 1
satisfying

∀m ∈ N , ‖(vm)θ‖L∞(0,T ;XDm,•)
≤ C, (4.34)
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and
∀m ∈ N , ‖δDmvm‖Lq(0,T ;Lp(Ω)) ≤ C. (4.35)

Then, there exists u ∈ C([0, T ];Lp(Ω)) ∩ L∞(0, T ;W 1,p
• (Ω)) and a subse-

quence, again denoted by ((DT )m, vm)m∈N, such that

lim
m→∞

sup
t∈[0,T ]

∥∥∥Π(θ)
Dmvm(t)− u(t)

∥∥∥
Lp(Ω)

= 0. (4.36)

Moreover, ∂tu ∈ Lq(0, T ;Lp(Ω)) and, along the same subsequence, δDmvm →
∂tu weakly in Lq(0, T ;Lp(Ω)).

Proof. We apply Corollary C.11 with B = Lp(Ω), Xm = ΠDm(XDm,•)

endowed with the norm (4.21), and u
(n)
m = ΠDmv

(n)
m .

The compactness hypothesis on (Dm)m∈N states that (Xm)m∈N is compactly
embedded in B in the sense of Definition C.4, which yields Hypothesis (h1)
in Corollary C.11. Hypothesis (h2) is satisfied owing to (4.34) and

‖(um)θ(t)‖Xm = ‖ΠDm [(vm)θ(t)]‖Xm ≤ ‖(vm)θ(t)‖Dm .

Hypothesis (h3) of Corollary C.11 is obtained by (4.35) since δmum = δDmvm.
Hypothesis (h4) is included in the definition of space–time-consistency of
((DT )m)m∈N (Definition 4.3).

By Corollary C.11, we obtain u ∈ C([0, T ];Lp(Ω)) such that, up to a subse-
quence, (4.36) holds. The fact that u belongs to L∞(0, T ;W 1,p

• (Ω)) follows by
Lemma 4.8.

It remains to prove the convergence of the discrete time derivative. By (4.35)
we can assume, upon extraction of a new subsequence, that δDmvm → U
weakly in Lq(0, T ;Lp(Ω)). The proof is complete by showing that U = ∂tu
in the sense of distributions on Ω × (0, T ) (this also proves in particular that
no further extraction was necessary). Take ψ ∈ C∞c (Ω× (0, T )) and write, by
definition (4.4) of δDmvm,∫ T

0

∫
Ω

δDmvm(x, t)ψ(x, t)dxdt

=

Nm−1∑
n=1

1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

(
ΠDmv

(n+1)
m (x)−ΠDmv(n)

m (x)
)
ψ(x, t)dxdt.

(4.37)

Set ψn(x) = 1

δt(n+1
2
)

∫ t(n+1)

t(n) ψ(x, t)dt and, for ν = 1 − θ, ψn+ν = νψn+1 +

(1− ν)ψn. Since ψ is smooth, |ψn(x)− ψn+ν(x)| ≤ CψδtDm for some Cψ not
depending on x or n. Using the discrete integration-by-parts formula (D.17),
(4.37) yields, for m large enough so that ψ0 = ψNm = 0 (which is possible due
to ψ vanishing on a neighbourhood of 0 and T ),
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0

∫
Ω

δDmvm(x, t)ψ(x, t)dxdt (4.38)

=

Nm−1∑
n=1

∫
Ω

(
ΠDmv

(n+1)
m (x)−ΠDmv(n)

m (x)
)
ψn(x)dx

=

Nm−1∑
n=1

∫
Ω

(
ΠDmv

(n+1)
m (x)−ΠDmv(n)

m (x)
)
ψn+ν(x)dx+Rm

= −
Nm−1∑
n=1

∫
Ω

ΠDmv
(n+θ)
m (x) (ψn+1(x)− ψn(x)) dx+Rm

= −
Nm−1∑
n=1

∫ t(n+1)

t(n)

∫
Ω

ΠDmv
(n+θ)
m (x)

ψn+1(x)− ψn(x)

δt(n+ 1
2 )

dx+Rm (4.39)

where, owing to (4.35),

|Rm| ≤ CψδtDm ‖δDmvm‖L1(Ω×(0,T )) → 0 as m→∞.

The term (4.38) converges to∫ T

0

∫
Ω

U(x, t)ψ(x, t)dxdt (4.40)

and, owing to the smoothness of ψ and the convergence of Π
(θ)
Dmvm, the term

(4.39) converges to

−
∫ T

0

∫
Ω

u(x, t)∂tψ(x, t)dxdt. (4.41)

The proof that U = ∂tu is complete by equating (4.40) and (4.41).

The uniform-in-time weak-in-space compactness result provided by the next
theorem is an essential step to proving a uniform-in-time strong-in-space con-
vergence result for gradient scheme approximations of parabolic equations
(see, e.g., the proof of Theorem 5.19).

Theorem 4.19 (Uniform-in-time L2(Ω)-weak compactness). Let T >
0, θ ∈ [0, 1] and ((DT )m)m∈N be a sequence of space–time-consistent space–
time GDs in the sense of Definition 4.3. For each m ∈ N, let vm ∈ XNm+1

Dm,• .
Assume that there exists C > 0 and q > 1 such that, for all m ∈ N,

sup
t∈[0,T ]

∥∥∥Π(θ)
Dmvm(t)

∥∥∥
L2(Ω)

≤ C and

∫ T

0

‖δDmvm(t)‖q?,Dm dt ≤ C (4.42)

(see Definition 4.11 of ‖·‖?,D).
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Then, the sequence (Π
(θ)
Dmvm)m∈N is relatively compact weakly in L2(Ω) uni-

formly on [0, T ], that is, it has a subsequence which converges in the sense of
Definition C.13 in page 454.
Moreover, any limit of such a subsequence is continuous [0, T ] → L2(Ω) for
the weak topology.

Proof. Theorem 4.19 is a consequence of the discontinuous Ascoli–Arzelà
theorem (Theorem C.10), with K = [0, T ] and E the ball of radius C in
L2(Ω), endowed with the weak topology. Let {ϕl : l ∈ N} ⊂ C∞c (Ω) be a
dense set in L2(Ω) and endow E with the metric (C.24) from these ϕl. By
Proposition C.14, this metric defines the weak L2(Ω) topology.

The set E is metric compact and therefore complete, and the functionsΠ
(θ)
Dmvm

have values in E. It remains to estimate dE(Π
(θ)
Dmvm(s), Π

(θ)
Dmvm(s′)). We drop

the index m in D for legibility.
Let 0 ≤ s ≤ s′ ≤ T and take n1, n2 ∈ {0, . . . , N − 1} such that s ∈
(t(n1), t(n1+1)] and s′ ∈ (t(n2), t(n2+1)]. If s = 0 we let n1 = −1 and t(−1) = 0.
In a similar way as (C.19), we write

Π
(θ)
D vm(s′)−Π(θ)

D vm(s)

= θ

n2∑
n=n1+1

δt(n+ 1
2 )δ

(n+ 1
2 )

D vm + (1− θ)
n2∑

n=n1+1

δt(n−
1
2 )δ

(n− 1
2 )

D vm,

where δt(−
1
2 ) = 0 and δ

(− 1
2 )

D vm = 0. Take IDϕl ∈ XD,• that realises the
minimum defining SD(ϕl), multiply the previous relation by by ΠDIDϕl and
integrate over Ω. Estimates (4.17), (4.42) and the Hölder inequality (D.3)
(used as in (C.20)) yield∣∣∣∣∫

Ω

(
Π

(θ)
D vm(x, s′)−Π(θ)

D vm(x, s)
)
ΠDIDϕl(x)dx

∣∣∣∣
≤

∣∣∣∣∣θ
n2∑

n=n1+1

δt(n+ 1
2 )

∫
Ω

δ
(n+ 1

2 )

D vm(x)ΠDIDϕl(x)dx

∣∣∣∣∣
+

∣∣∣∣∣(1− θ)
n2∑

n=n1+1

δt(n−
1
2 )

∫
Ω

δ
(n− 1

2 )

D vm(x)ΠDIDϕl(x)dx

∣∣∣∣∣
≤ θ ‖IDϕl‖D

n2∑
n=n1+1

δt(n+ 1
2 )
∥∥∥δ(n+ 1

2 )

D vm

∥∥∥
?,D

+ (1− θ) ‖IDϕl‖D
n2∑

n=n1+1

δt(n−
1
2 )
∥∥∥δ(n− 1

2 )

D vm

∥∥∥
?,D

≤ C1/q
[
θ(t(n2+1) − t(n1+1))1/q′

+ (1− θ)(t(n2) − t(n1))1/q′
]
‖IDϕl‖D . (4.43)
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By definition of ID and of ‖·‖D (depending on the specific boundary condi-
tions), we have

‖ΠDIDϕl − ϕl‖L2(Ω) ≤ ŜD(ϕl)

and, using a triangle inequality,

‖IDϕl‖D ≤ ŜD(ϕl) +Dϕl ≤ Cϕl

where Dϕl and Cϕl do not depend on D (and therefore on m). Since t(n2+1)−
t(n1+1) ≤ |s′ − s|+ δt and t(n2) − t(n1) ≤ |s′ − s|+ δt, the estimate on Π

(θ)
Dmvm

in (4.42) gives, owing to (4.43),∣∣∣∣∫
Ω

(
Π

(θ)
D vm(x, s′)−Π(θ)

D vm(x, s)
)
ϕl(x)dx

∣∣∣∣
≤
∣∣∣∣∫
Ω

(
Π

(θ)
D vm(x, s′)−Π(θ)

D vm(x, s)
)
ΠDIDϕl(x)dx

∣∣∣∣+ 2CŜD(ϕl)

≤ C1/qCϕl |s′ − s|1/q
′
+ C1/qCϕlδt

1/q′ + 2CŜD(ϕl). (4.44)

Plugged into the definition (C.24) of the distance in E, this yields

dE

(
Π

(θ)
D vm(s′), Π

(θ)
D vm(s)

)
≤
∑
l∈N

min(1, C1/q′Cϕl |s′ − s|1/q
′
)

2l

+
∑
l∈N

min(1, 2CŜDm(ϕl) + C1/q′Cϕlδt
1/q′

m )

2l
=: ω(s, s′) + τm.

Using the dominated convergence theorem for series, we see that ω(s, s′)→ 0
as s − s′ → 0, and that τm → 0 as m → ∞ (we invoke the space–time-

consistency of ((DT )m)m∈N to see that limm→∞ ŜDm(ϕl)→ 0 for any l).
Hence, the assumptions of Theorem C.10 are satisfied and the proof is com-
plete.
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Parabolic problems

In this chapter, we consider time-dependent problems and their approximation
by the gradient discretisation method (GDM).
First, in Section 5.1, we study a quasi-linear problem, which is the transient
version of the quasi-linear problem studied in Section 2.1.4. An error estimate
for the GDM approximation of the linear version of this problem is first proved,
under additional regularity hypotheses. For the complete non-linear problem,
the mathematical arguments used in the convergence analysis of the GDM
come from Section 4.2. The convergence of the gradient schemes (GS) for this
problem is proved under minimal regularity on the solution.
In Section 5.2, we analyse the convergence of the GDM applied to a non-
conservative parabolic equation, which includes the regularised level-set equa-
tions. For this model, additional regularity on the initial condition must be
assumed.
Finally, in Section 5.3, we turn to (non-local) Leray–Lions type parabolic
problems with Neumann boundary conditions. These problems arise in par-
ticular from image processing models. Using again the results of Section 4.2,
several convergence results for the GDM are obtained, including a uniform-
in-time strong-in-space convergence result. We stress that such a convergence
implies in particular the pointwise-in-time convergence, which is of high prac-
tical interest. Indeed, users of numerical techniques are often more interested
in approximating a quantity of interest at a given time, rather than averaged
over a time span.

5.1 The gradient discretisation method for a quasilinear
parabolic problem

In this whole section, we let p = 2.
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5.1.1 The continuous problem

We consider the following problem: approximate the solution u of

∂tu− div (Λ(x, u)∇u) = f + div(F ), in Ω × (0, T ) (5.1a)

with initial condition
u(·, 0) = uini, on Ω, (5.1b)

and homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω × (0, T ). (5.1c)

The following hypotheses are assumed:

• Ω is an open bounded connected subset of Rd, d ∈ N?,
and T > 0, (5.2a)

• Λ : Ω × R→Md(R) is a Caratheodory function

(i.e. Λ(x, s) is measurable w.r.t. x and continuous w.r.t. s),

and there exists λ, λ > 0 such that, for a.e. x ∈ Ω,

for all s ∈ R, Λ(x, s) is symmetric with eigenvalues in [λ, λ], (5.2b)

• f ∈ L2(Ω × (0, T )) , F ∈ L2(Ω × (0, T ))d, (5.2c)

• uini ∈ L2(Ω). (5.2d)

Under Hypotheses (5.2), a function u is a weak solution of (5.1) if

u ∈ L2(0, T ;H1
0 (Ω)) and, for all v ∈ L2(0, T ;H1

0 (Ω))
such that ∂tv ∈ L2(Ω × (0, T )) and v(·, T ) = 0,

−
∫ T

0

∫
Ω

u(x, t)∂tv(x, t)dxdt−
∫
Ω

uini(x)v(x, 0)dx

+

∫ T

0

∫
Ω

Λ(x, u(x, t))∇u(x, t) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

(f(x, t)v(x, t)− F (x, t) · ∇v(x, t))dxdt.

(5.3)

Taking v ∈ C∞c (Ω × (0, T )) in this equation shows that (5.1a) then holds in
the sense of distributions. Since Λ(x, u)∇u and F both belong to L2(Ω ×
(0, T ))d, this implies that ∂tu ∈ L2(0, T ;H−1(Ω)). As a consequence, u ∈
C([0, T ];L2(Ω)) and, integrating by parts the first term in (5.3) and using the
density of C∞c ([0, T ];H1

0 (Ω)) in L2(0, T ;H1
0 (Ω)) (see [67, Corollary 1.3.1]), we

see that u satisfies



5.1 The gradient discretisation method for a quasilinear parabolic problem 119

u ∈ L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) , ∂tu ∈ L2(0, T ;H−1(Ω)) ,

u(·, 0) = uini and, for all w ∈ L2(0, T ;H1
0 (Ω)),∫ T

0

〈∂tu(·, t), w(·, t)〉H−1,H1
0
dt

+

∫ T

0

∫
Ω

Λ(x, u(x, t))∇u(x, t) · ∇w(x, t)dxdt

=

∫ T

0

∫
Ω

(f(x, t)w(x, t)− F (x, t) · ∇w(x, t))dxdt.

(5.4)

Remark 5.1. The existence of at least one solution u to (5.3), and therefore
to (5.4), will be a consequence of the convergence analysis of the GDM (see
Remark 5.5).
In the linear case, that is Λ(x, u) = Λ(x), estimates on the continuous solution
show that this solution u is also unique.

5.1.2 The gradient scheme

Recalling that p = 2, let DT = (XD,0, ΠD,∇D, ID, (t(n))n=0,...,N ) and θ ∈
[ 1
2 , 1] be a space–time GD for homogeneous Dirichlet boundary conditions

in the sense of Definition 4.1. Using a θ-scheme for the time stepping, the
GDM applied to Problem (5.4) leads to the following GS: find a family
(u(n))n=0,...,N ∈ XN+1

D,0 such that, recalling the notations (4.2) and (4.4),

u(0) = IDuini and, for all n = 0, . . . , N − 1, u(n+1) satisfies∫
Ω

δ
(n+ 1

2 )

D u(x)ΠDv(x)dx

+

∫
Ω

Λ(x, ΠDu
(n+θ)(x))∇Du(n+θ)(x) · ∇Dv(x)dx

=
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

(f(x, t)ΠDv(x)− F (x, t) · ∇Dv(x))dxdt,

∀v ∈ XD,0.

(5.5)

Here, of course, u(n) is expected to provide an approximation of u at time tn.

Remark 5.2 (Practical implementation of the GS (5.5))
For any n = 0, . . . , N − 1, taking u(n+θ) as unknown, and using

u(n+1) =
u(n+θ) − (1− θ)u(n)

θ
,

the implementation of the GS (5.5) is similar to that of the GS (2.52) for the steady
quasilinear problem.
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5.1.3 Error estimate in the linear case

We now consider Problem (5.1) under Hypotheses (5.2) and the following
additional hypotheses.

F = 0 and Λ(·, s) = Id. (5.6)

The equation considered here is therefore ∂tu −∆u = f , with homogeneous
Dirichlet boundary conditions. The following theorem states, under some reg-
ularity assumptions, an error estimate based on the notion of space size of a
GD as in Definition 2.23 page 29.

Theorem 5.3 (Error estimate, linear case and regular solution).
Under Hypotheses (5.2) and (5.6), let DT be a space–time GD for homo-
geneous Dirichlet boundary conditions, in the sense of Definition 4.1. Let
hD := hD(W 2,∞(Ω) ∩W 1,p

0 (Ω);W 1,∞(Ω)d) > 0 be given by Definition 2.23.
Assume that the solution u to (5.4) is Lipschitz-continuous [0, T ]→W 2,∞(Ω),
and let u be the solution to the GS (5.5) with θ = 1. The error due to the
interpolation of the initial condition is denoted by

eini
D = ‖uini −ΠDIDuini‖L2(Ω) . (5.7)

Let CP ≥ CD. Then there exists C > 0, depending only on u, Ω, T and CP ,
such that

max
t∈[0,T ]

∥∥∥Π(1)
D u(·, t)− u(·, t)

∥∥∥
L2(Ω)

≤ C(δtD + hD + eini
D )

and ∥∥∥∇(1)
D u−∇u

∥∥∥
L2(Ω×(0,T ))d

≤ C(δtD + hD + eini
D ).

Proof. In the following proof, we denote by Ci various quantities depending
only on u, Ω, T and CP . For the sake of brevity, if n ∈ {0, . . . , N − 1} and
g = f , u or ∂tu, we set

g(n+1)(x) =
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

g(x, t)dt.

We also let u(0) = u(0).

Step 1: a linear spatial interpolator.
The interpolator ID defined by (2.34) enables us to “plug” the exact solu-
tion into the scheme, which is an essential process in establishing error esti-
mates. However, this ID is not necessarily linear, which becomes a problem
for parabolic equations. We therefore need a slightly modified version of this

interpolator. We define I
(2)
D : H1

0 (Ω)→ XD,0 by: for ϕ ∈ H1
0 (Ω),

I
(2)
D ϕ = argmin

w∈XD,0

(
‖ΠDw − ϕ‖2L2(Ω) + ‖∇Dw −∇ϕ‖2L2(Ω)d

)
. (5.8)
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Let V = {(ΠDw,∇Dw) : w ∈ XD,0} and P : L2(Ω) × L2(Ω)d → V be
the orthogonal projection. Since ‖∇D·‖L2(Ω)d is a norm on XD,0, for any

z ∈ V there exists a unique Rz ∈ XD,0 such that (ΠDRz,∇DRz) = z. This
defines a linear continuous mapping R : V → XD,0, and (5.8) shows that

I
(2)
D ϕ = R◦P(ϕ,∇ϕ) for all ϕ ∈ H1

0 (Ω). Hence, I
(2)
D ϕ is uniquely defined and

I
(2)
D is linear continuous. The characterisation of the orthogonal projection P

also shows that, for all ϕ ∈ H1
0 (Ω) and w ∈ XD,0,∫

Ω

ΠDI
(2)
D ϕ(x)ΠDw(x) +∇DI(2)

D ϕ(x) · ∇Dw(x)dx

=

∫
Ω

ϕ(x)ΠDw(x) +∇ϕ(x) · ∇Dw(x)dx.

Let ϕ ∈ H1
0 (Ω). Taking v ∈ XD,0 that realises the minimum defining SD(ϕ)

and using the definition of I
(2)
D shows that(∥∥∥ΠDI(2)

D ϕ− ϕ
∥∥∥2

L2(Ω)
+
∥∥∥∇DI(2)

D ϕ−∇ϕ
∥∥∥2

L2(Ω)d

)1/2

≤
(
‖ΠDv − ϕ‖2L2(Ω) + ‖∇Dv −∇ϕ‖2L2(Ω)d

)1/2

≤
√

2SD(ϕ). (5.9)

Since u ∈ C([0, T ];W 2,∞(Ω)), (5.9) can be applied to ϕ = u(t(n+1)). The
regularity on u shows that ∇u : [0, T ] → L2(Ω)d is Lipschitz-continuous.
Hence, using (2.14) and (2.16) in Definition 2.23,∥∥∥∇u(n+1) −∇DI(2)

D u(t(n+1))
∥∥∥
L2(Ω)d

≤
∥∥∥∇u(n+1) −∇u(t(n+1))

∥∥∥
L2(Ω)d

+ SD(u(t(n+1)))

≤ C1(δtD + hD). (5.10)

By regularity assumption on u, the quantity
∥∥∂tu(n+1)

∥∥
W 2,∞(Ω)

is bounded

independently of n. Applying (5.9) to ϕ = ∂tu
(n+1) = u(t(n+1))−u(t(n))

δt(n+1
2
)

, using

the linearity of I
(2)
D and invoking (2.14), we obtain∥∥∥∥∥ΠDI

(2)
D u(t(n+1))−ΠDI(2)

D u(t(n))

δt(n+ 1
2 )

− ∂tu(n+1)

∥∥∥∥∥
L2(Ω)

≤ C2hD. (5.11)

Step 2: proof of the error estimates.
Since ∇u(n+1) ∈ Hdiv(Ω) we can write, for all v ∈ XD,0,∫

Ω

(
ΠDv(x)div(∇u(n+1))(x) +∇u(n+1)(x) · ∇Dv(x)

)
dx
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≤WD(∇u(n+1)) ‖v‖D .

Owing to the regularity of u, the equation ∂tu−f = div(∇u) is satisfied a.e. in
space and time. Averaging over time in (t(n), t(n+1)) gives ∂tu

(n+1)−f (n+1) =
div(∇u(n+1)) a.e. in space, and thus∫

Ω

(
ΠDv(x)

(
∂tu

(n+1)(x)− f (n+1)(x)
)

+∇u(n+1)(x) · ∇Dv(x)
)

dx

≤WD(∇u(n+1)) ‖v‖D .

Use the GS (5.5) to replace the term f (n+1) in the left-hand side. Since
u ∈ C([0, T ];W 2,∞(Ω)), the quantity ‖∇u(n+1)‖W 1,∞(Ω)d is bounded inde-
pendently on n and thus, using (2.15)–(2.16) in Definition 2.23,∫

Ω

ΠDv(x)
(
∂tu

(n+1)(x)− δ
(n+ 1

2 )

D u(x)
)

dx

+

∫
Ω

(
∇u(n+1)(x) −∇Du(n+1)

)
· ∇Dv(x)dx ≤ C3hD ‖v‖D . (5.12)

For k = 0, . . . , N , set e(k) = I
(2)
D u(t(k))− u(k). We have

δ
(n+ 1

2 )

D e =

[
ΠDI

(2)
D u(t(n+1))−ΠDI(2)

D u(t(n))

δt(n+ 1
2 )

− ∂tu(n+1)

]
+
[
∂tu

(n+1) − δ(n+ 1
2 )

D u
]
.

and

∇De(n+1) =
[
∇DI(2)

D u(t(n+1))−∇u(n+1)
]

+
[
∇u(n+1) −∇Du(n+1)

]
Then (5.12), (5.11), (5.10) and the definition of CD give∫

Ω

ΠDv(x)δ
(n+ 1

2 )

D e(x)dx+

∫
Ω

∇De(n+1)(x) · ∇Dv(x)dx

≤ C4(δtD + hD) ‖v‖D .

Take v = δt(n+ 1
2 )e(n+1), and sum over n = 0, . . . ,m − 1 for some m ∈

{1, . . . , N}. Recalling the definition of ‖·‖D,

m−1∑
n=0

∫
Ω

ΠDe
(n+1)(x)

[
ΠDe

(n+1)(x)−ΠDe(n)(x)
]

dx

+

m−1∑
n=0

δt(n+ 1
2 )

∫
Ω

|∇De(n+1)(x)|2dx
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≤
m−1∑
n=0

C4(δtD + hD)δt(n+ 1
2 )

(∫
Ω

|∇De(n+1)(x)|2dx

)1/2

. (5.13)

We now apply the relation

∀a, b ∈ R, b(b− a) =
1

2
b2 − 1

2
a2 +

1

2
(b− a)2 ≥ 1

2
b2 − 1

2
a2 (5.14)

to a = ΠDe
(n)(x) and b = ΠDe

(n+1)(x). Using the Young inequality (D.8)
with p = p′ = 2 in the right-hand side of (5.13), this leads to

1

2

∫
Ω

(ΠDe
(m)(x))2dx+

m−1∑
n=0

δt(n+ 1
2 )

∫
Ω

|∇De(n+1)(x)|2dx

≤ 1

2

∫
Ω

(ΠDe
(0)(x))2dx+

1

2

m−1∑
n=0

δt(n+ 1
2 )

∫
Ω

|∇De(n+1)(x)|2dx

+
1

2

m−1∑
n=0

C2
4 (δtD + hD)2δt(n+ 1

2 ). (5.15)

Owing to (2.15)–(2.16), (5.7) and Estimate (5.9), since u(0) = IDuini =
IDu(0),∥∥∥ΠDe(0)

∥∥∥
L2(Ω)

≤
∥∥∥ΠDI(2)

D u(0)− u(0)
∥∥∥
L2(Ω)

+ ‖u(0)−ΠDIDu(0)‖L2(Ω)

≤ C5hD + eini
D .

Hence, recalling the definition of ∇(1) and using
∑m−1
n=0 δt

(n+ 1
2 ) ≤ T , Equation

(5.15) yields

1

2

∫
Ω

(ΠDe
(m)(x))2dx+

1

2

∫ t(m)

0

∫
Ω

|∇(1)
D e(x, t)|2dxdt

≤ C6(δtD + hD + eini
D )2. (5.16)

Using a triangle inequality, (5.9), and the power-of-sums inequality (D.13)
with α = 1/2, Equation (5.16) leads on one hand to: for all m = 1, . . . , N ,∥∥∥ΠDu(m) − u(t(m))

∥∥∥
L2(Ω)

≤ C7(δtD + hD + eini
D ) +

√
2SD(u(t(m)))

≤ C8(δtD + hD + eini
D ). (5.17)

On the other hand, using again (5.9) and a triangle inequality, Equation (5.16)
with m = N − 1 and the power-of-sums inequality (D.12) with α = 2 lead to

N−1∑
n=0

δt(n+ 1
2 )
∥∥∥∇Du(n+1) −∇u(t(n+1))

∥∥∥2

L2(Ω)
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≤ 4C6(δtD + hD + eini
D )2 + 4

N−1∑
n=0

δt(n+ 1
2 )SD(u(t(n+1)))2

≤ C9(δtD + hD + eini
D )2. (5.18)

The conclusion follows from (5.17), (5.18) and the Lipschitz-continuity of
u : [0, T ] → H1(Ω) to compare u(t) (resp. ∇u(t)) with u(t(n+1)) (resp.
∇u(t(n+1))) when t ∈ (t(n), t(n+1)].

5.1.4 Convergence analysis in the non-linear case

We come back to the generic quasilinear model (5.1). The convergence result
we intend to prove is the following.

Theorem 5.4 (Convergence of the GDM). Under Assumptions (5.2), let
θ ∈ [ 1

2 , 1] and ((DT )m)m∈N be a sequence of space–time GDs for homogeneous
Dirichlet boundary conditions in the sense of Definition 4.1, which is space–
time-consistent, limit-conforming and compact in the sense of Definitions 4.3
and 4.6. For any m ∈ N, let um be a solution to (5.5) with DT = (DT )m.
Then, up to a subsequence as m→∞,

sup
t∈[0,T ]

∥∥∥Π(θ)
Dmum(t)− u(t)

∥∥∥
L2(Ω)

→ 0 (5.19a)

∇(θ)
Dmum → ∇u in L2(Ω × (0, T ))d, (5.19b)

where u is a solution to (5.3) (and thus also (5.4)).

Remark 5.5. We do not assume the existence of a solution u to the continuous
problem. The convergence analysis establishes this existence.

The analysis of any GDM for non-linear models starts by establishing a priori
estimates on the solution to the GS. These estimates are useful to establish
the existence of this solution, and to invoke the compactness results of Section
4.2.

Lemma 5.6 (L∞(0, T ;L2(Ω)) estimate and discrete L2(0, T ;H1
0 (Ω)) es-

timate). Under Assumptions (5.2), let θ ∈ [ 1
2 , 1] and DT be a space–time GD

for homogeneous Dirichlet boundary conditions, in the sense of Definition 4.1.
Let u be a solution to the corresponding GS (5.5). Then, for any k = 0, . . . , N ,

1

2

∫
Ω

(ΠDu
(k)(x))2dx

+

∫ t(k)

0

∫
Ω

Λ(x, Π
(θ)
D u(x, t))∇(θ)

D u(x, t) · ∇(θ)
D u(x, t)dxdt

≤ 1

2

∫
Ω

(ΠDIDuini(x))2dx

+

∫ t(k)

0

∫
Ω

(f(x, t)Π
(θ)
D u(x, t)− F (x, t) · ∇(θ)

D u(x, t))dxdt.

(5.20)



5.1 The gradient discretisation method for a quasilinear parabolic problem 125

Consequently, there exists C10 > 0 depending only on CP ≥ CD (see Definition
2.2), Cini ≥ ‖ΠDIDuini‖L2(Ω), f , F , and λ such that

sup
t∈[0,T ]

∥∥∥Π(θ)
D u(t)

∥∥∥
L2(Ω)

≤ C10 and
∥∥∥∇(θ)
D u

∥∥∥
L2(Ω×(0,T ))d

≤ C10. (5.21)

Moreover, there exists at least one solution u to the GS (5.5).

Proof. Relation (5.14) is generalised to the following: for all a, b ∈ R,

(a− b)(θa+ (1− θ)b) = (a− b)
[(
θ − 1

2

)
a+

(
1

2
− θ
)
b

]
+

1

2
(a− b)(a+ b)

=

(
θ − 1

2

)
(a− b)2 +

1

2
(a2 − b2) ≥ 1

2
(a2 − b2).

Let n ∈ {0, . . . , N − 1}. Applying the above relation to a = ΠDu
(n+1) and

b = ΠDu
(n) yields

δt(n+ 1
2 )δ

(n+ 1
2 )

D u ΠDu
(n+θ) ≥ 1

2

(
(ΠDu

(n+1))2 − (ΠDu
(n))2

)
. (5.22)

Setting v = δt(n+ 1
2 )u(n+θ) in (5.5) and summing over n = 0, . . . , k − 1 (we

assume here that k ≥ 1, the case k = 0 in (5.20) is trivial) therefore leads to

1

2

k−1∑
n=0

(∫
Ω

(ΠDu
(n+1)(x))2dx−

∫
Ω

(ΠDu
(n)(x))2dx

)

+

k−1∑
n=0

δt(n+ 1
2 )

∫
Ω

Λ(x, ΠDu
(n+θ)(x))∇Du(n+θ)(x) · ∇Du(n+θ)(x)dx

≤
k−1∑
n=0

∫ t(n+1)

t(n)

∫
Ω

(f(x, t)ΠDu
(n+θ)(x)− F (x, t) · ∇Du(n+θ)(x))dxdt. (5.23)

The first sum is telescopic and reduces to∫
Ω

(ΠDu
(k)(x))2dx−

∫
Ω

(ΠDu
(0)(x))2dx

=

∫
Ω

(ΠDu
(k)(x))2dx−

∫
Ω

(ΠDIDuini(x))2dx.

Recalling that Π
(θ)
D u(x, t) = ΠDu

(n+θ)(x) and ∇(θ)
D u(x, t) = ∇Du(n+θ)(x)

whenever t ∈ (t(n), t(n+1)], Equation (5.23) can then be recast as (5.20).
Using the Cauchy–Schwarz inequality (i.e. (D.5) with p = p′ = 2), the Young
inequality (D.9) and the definition (2.1) of CD, we write∫ t(k)

0

∫
Ω

(f(x, t)Π
(θ)
D u(x, t)− F (x, t) · ∇(θ)

D u(x, t))dxdt
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≤ ‖f‖L2(Ω×(0,t(k)))

∥∥∥Π(θ)
D u

∥∥∥
L2(Ω×(0,t(k)))

+ ‖F ‖L2(Ω×(0,t(k)))d

∥∥∥∇(θ)
D u

∥∥∥
L2(Ω×(0,t(k)))d

≤ C2
D
λ
‖f‖2L2(Ω×(0,t(k))) +

λ

4C2
D

∥∥∥Π(θ)
D u

∥∥∥2

L2(Ω×(0,t(k)))

+
1

λ
‖F ‖2L2(Ω×(0,t(k)))d +

λ

4

∥∥∥∇(θ)
D u

∥∥∥2

L2(Ω×(0,t(k)))d

≤ C2
D
λ
‖f‖2L2(Ω×(0,t(k))) +

1

λ
‖F ‖2L2(Ω×(0,t(k)))d

+
λ

2

∥∥∥∇(θ)
D u

∥∥∥2

L2(Ω×(0,t(k)))d
. (5.24)

Plugged into (5.20) and using the coercivity of Λ, this gives

1

2

∫
Ω

(ΠDu
(k)(x))2dx+ λ

∥∥∥∇(θ)
D u

∥∥∥2

L2(Ω×(0,t(k)))d

≤ 1

2
C2

ini +
C2
D
λ
‖f‖2L2(Ω×(0,t(k))) +

1

λ
‖F ‖2L2(Ω×(0,t(k)))d

+
λ

2

∥∥∥∇(θ)
D u

∥∥∥2

L2(Ω×(0,t(k)))d
.

Hence,

1

2
max

k=0,...,N

∥∥∥ΠDu(k)
∥∥∥2

L2(Ω)
+
λ

2

∥∥∥∇(θ)
D u

∥∥∥2

L2(Ω×(0,T )d

≤ 1

2
C2

ini +
C2
D
λ
‖f‖2L2(Ω×(0,T )) +

1

λ
‖F ‖2L2(Ω×(0,T ))d .

The estimates in (5.21) follow from this inequality and from the fact that, by

definition (4.2) of Π
(θ)
D ,

‖ΠDu(n+θ)‖L2(Ω) ≤ θ‖ΠDu(n+1)‖L2(Ω) + (1− θ)‖ΠDu(n)‖L2(Ω).

Following the same arguments as in the proof of Theorem 2.36, it is easy to
establish by induction that, for each n = 0, . . . , N − 1, there is a solution
u(n+1) to the equation in (5.5). This shows that this GS has at least one
solution u.

Lemma 5.7 (Estimate on the dual norm of the discrete time deriva-
tive). Under Assumptions (5.2), let θ ∈ [ 1

2 , 1] and DT be a space–time GD
for homogeneous Dirichlet boundary conditions, in the sense of Definition 4.1.
Let u be a solution to the corresponding GS (5.5). Then there exists C11, de-
pending only on CP ≥ CD, Cini ≥ ‖ΠDIDuini‖L2(Ω), f , F , λ and λ, such
that



5.1 The gradient discretisation method for a quasilinear parabolic problem 127∫ T

0

‖δDu(t)‖2?,D dt ≤ C11, (5.25)

where the dual norm ‖·‖?,D is defined by (4.16).

Proof. In (5.5), choose v ∈ XD,0 which realises the supremum in the def-

inition (4.16) of ‖δ(n+ 1
2 )

D u‖?,D. Recalling that ‖v‖D = 1 and applying the
Cauchy–Schwarz inequality as well as the definition (2.1) of CD, we get∥∥∥δ(n+ 1

2 )

D u
∥∥∥
?,D
≤ λ

∥∥∥∇Du(n+θ)
∥∥∥
L2(Ω)

+
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

(CD ‖f(·, t)‖L2(Ω) + ‖F (·, t)‖L2(Ω)d)dt

=
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

[
λ
∥∥∥∇(θ)
D u(t)

∥∥∥
L2(Ω)

+ CD ‖f(·, t)‖L2(Ω)

+ ‖F (·, t)‖L2(Ω)d

]
dt

Square, use the Jensen inequality (D.10), multiply by δt(n+ 1
2 ) and apply the

power-of-sums inequality (D.14). Recalling the definition (4.4) of δDu, this
yields

∫ t(n+1)

t(n)

‖δDu(t)‖2?,D dt ≤

3

∫ t(n+1)

t(n)

[
λ

2
∥∥∥∇(θ)
D u(t)

∥∥∥2

D
+ C2

P ‖f(·, t)‖2L2(Ω) + ‖F (·, t)‖2L2(Ω)d

]
dt.

We conclude the proof of (5.25) by summing over n = 0, . . . , N − 1 and by
invoking Estimates (5.21).

We are now ready to prove the convergence of the GS (5.5).
Proof of Theorem 5.4.
We note that since ((DT )m)m∈N is compact, it is also coercive (see Lemma
2.11).
Step 1: Application of compactness results.
By Estimates (5.21), Lemma 4.8 gives the existence of some u ∈ L2(0, T ;

H1
0 (Ω)) such that, up to a subsequence as m → ∞, Π

(θ)
Dmum → u weakly

in L2(Ω × (0, T )) and ∇(θ)
Dmum → ∇u weakly in L2(Ω × (0, T ))d. Estimate

(5.25) and Theorem 4.14 show that, in fact, Π
(θ)
Dmum converges strongly to u

in L2(Ω × (0, T )).

Step 2: u is a solution to (5.3) (and thus also (5.4)).
Let v ∈ L2(0, T ;H1

0 (Ω)) be such that ∂tv ∈ L2(Ω × (0, T )) and v(T, ·) = 0.
Let (vm)m∈N be given for v by Lemma 4.10 (with 1− θ instead of θ).
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In the following, we drop the index m in Dm, Nm and vm for legibility reasons.

Introduce v(n+(1−θ)) as test function in (5.5), multiply by δt(n+ 1
2 ), and sum

the result on n = 0, . . . , N − 1. Recalling the definitions (4.2), this gives

T
(m)
1 + T

(m)
2 = T

(m)
3 with

T
(m)
1 =

N−1∑
n=0

∫
Ω

[
ΠDu

(n+1)(x)−ΠDu(n)(x)
]
ΠDv

(n+(1−θ))(x)dx,

T
(m)
2 =

∫ T

0

∫
Ω

Λ(x, Π
(θ)
D u(x, t))∇(θ)

D u(x, t) · ∇(1−θ)
D v(x, t)dxdt,

and

T
(m)
3 =

∫ T

0

∫
Ω

(
f(x, t)Π

(1−θ)
D v(x, t)− F (x, t) · ∇(1−θ)

D v(x, t)
)

dxdt.

Applying the discrete integration-by-parts (D.17), with ν = 1 − θ, to T
(m)
1

and using the fact that v(N) = 0, we write

T
(m)
1 = −

N−1∑
n=0

∫
Ω

ΠDu
(n+θ)(x)

[
ΠDv

(n+1)(x)−ΠDv(n)(x)
]

dx

−
∫
Ω

ΠDu
(0)(x)ΠDv

(0)(x)dx

= −
N−1∑
n=0

∫ t(n+1)

t(n)

∫
Ω

Π
(θ)
D u(x, t)δDv(x, t)dxdt

−
∫
Ω

ΠDu
(0)(x)ΠDv

(0)(x)dx

= −
∫ T

0

∫
Ω

Π
(θ)
D u(x, t)δDv(x, t)dxdt

−
∫
Ω

ΠDIDuini(x)Π
(1−θ)
D v(x, 0)dx.

Recall that Π
(θ)
D u → u in L2(Ω × (0, T )) and, by space–time-consistency of

((DT )m)m∈N, that ΠDIDuini → uini in L2(Ω). The convergence properties of
(vm)m∈N stated in (4.10c) and (4.10b) (with 1− θ instead of θ) show that

lim
m→∞

T
(m)
1 = −

∫ T

0

∫
Ω

u(x, t)∂tv(x, t)dxdt−
∫
Ω

uini(x)v(x, 0)dx. (5.26)

Since Π
(θ)
D u→ u in L2(Ω×(0, T )), Lemma D.9 (non-linear strong convergence

property) shows that Λ(·, Π(θ)
D u)∇(1−θ)

D v converges to Λ(·, u)∇v in L2(Ω ×
(0, T ))d as m → ∞. Hence, using the symmetry of Λ and the weak-strong
convergence result of Lemma D.8,
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lim
m→∞

T
(m)
2 = lim

m→∞

∫ T

0

∫
Ω

∇(θ)
D u(x, t) · Λ(x, Π

(θ)
D u(x, t))∇(1−θ)

D v(x, t)dxdt

=

∫ T

0

∫
Ω

Λ(x, u(x, t))∇u(x, t) · ∇v(x, t)dxdt. (5.27)

The convergences of Π
(1−θ)
D v and ∇(1−θ)

D v readily give

lim
m→∞

T
(m)
3 =

∫ T

0

∫
Ω

(f(x, t)v(x, t)− F (x, t) · ∇v(x, t)) dxdt. (5.28)

Using (5.26), (5.27) and (5.28) to pass to the limit m→∞ in T
(m)
1 + T

(m)
2 =

T
(m)
3 shows that u satisfies the equation in (5.3).

Step 3: Uniform-in-time convergence of Π
(θ)
Dmum.

Let s ∈ [0, T ] and (sm)m≥1 be a sequence in [0, T ] that converges to s.
Assume first that sm > 0 and let k(m) ∈ {0, . . . , Nm − 1} be such that
sm ∈ (t(k(m)), t(k(m)+1)]. By convexity of the square function and by Defini-

tion (4.2) of Π
(θ)
D ,

(Π
(θ)
Dmum(x, sm))2 =

(
θΠDmu

(k(m)+1)
m + (1− θ)ΠDmu(k(m))

m

)2

≤ θ(ΠDmu(k(m)+1)
m )2 + (1− θ)(ΠDmu(k(m))

m )2. (5.29)

Set s
(−)
m := t(k(m)) and s

(+)
m := t(k(m)+1), which both converge to s as m→∞.

Write (5.20) for k = k(m) + 1, multiply by θ, write (5.20) with k = k(m),
and multiply by 1− θ. Summing the two inequalities thus obtained and using
(5.29) yields

1

2

∫
Ω

(Π
(θ)
Dmu(x, sm))2dx

+

∫ s(−)
m

0

∫
Ω

Λ(x, Π
(θ)
Dmu(x, t))∇(θ)

Dmu(x, t) · ∇(θ)
Dmu(x, t)dxdt

+

[
θ

∫ s(+)
m

s
(−)
m

∫
Ω

Λ(x, Π
(θ)
Dmu(x, t))∇(θ)

Dmu(x, t) · ∇(θ)
Dmu(x, t)dxdt

]

≤ 1

2

∫
Ω

(ΠDmIDmuini(x))2dx

+

∫ s(−)
m

0

∫
Ω

(f(x, t)Π
(θ)
Dmu(x, t)− F (x, t) · ∇(θ)

Dmu(x, t))dxdt

+ θ

∫ s(+)
m

s
(−)
m

∫
Ω

(f(x, t)Π
(θ)
Dmu(x, t)− F (x, t) · ∇(θ)

Dmu(x, t))dxdt. (5.30)

Inequality (5.30) also obviously holds if sm = 0 (with, in this case, s
(+)
m =

s
(−)
m = 0). Our aim is to take the superior limit of (5.30). We first analyse the

behaviour of all the terms, except the first one.
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The Cauchy–Schwarz inequality for the semi-definite positive symmetric form

W ∈ L2(Ω × (0, T ))d →
∫ s(−)

m

0

∫
Ω

Λ(x, Π
(θ)
Dmum(x, t))W (x, t) ·W (x, t)dxdt

shows that(∫ s(−)
m

0

∫
Ω

Λ(x, Π
(θ)
Dmum(x, t))∇(θ)

Dmum(x, t) · ∇u(x, t)dxdt

)2

≤

(∫ s(−)
m

0

∫
Ω

Λ(x, Π
(θ)
Dmum(x, t))∇(θ)

Dmum(x, t) · ∇(θ)
Dmum(x, t)dxdt

)

×

(∫ s(−)
m

0

∫
Ω

Λ(x, Π
(θ)
Dmum(x, t))∇u(x, t) · ∇u(x, t)dxdt

)
. (5.31)

As m→∞, we have

Π
(θ)
Dmum → u strongly in L2(Ω × (0, T )), and

1
[0,s

(−)
m ]
∇u→ 1[0,s]∇u strongly in L2(Ω × (0, T ))d.

Here, 1[a,b] is the function of time such that 1[a,b](t) = 1 if t ∈ [a, b], and
1[a,b](t) = 0 otherwise. The non-linear strong convergence property stated in
Lemma D.9 page 465 then shows that, as m→∞,

1
[0,s

(−)
m ]

Λ(·, Π(θ)
Dmum)∇u→ 1[0,s]Λ(·, u)∇u strongly in L2(Ω × (0, T ))d.

Owing to Lemma D.8 (weak-strong convergence property) and to the weak

convergence in L2(Ω × (0, T ))d of ∇(θ)
Dmum to ∇u, the left-hand side of (5.31)

and the second term in the right-hand side of (5.31) pass to the limit. Taking
the inferior limit of this inequality and dividing by

∫ s
0

∫
Ω
Λ(x, u)∇u · ∇u, we

deduce that∫ s

0

∫
Ω

Λ(x, u(x, t))∇u(x, t) · ∇u(x, t)dxdt

≤ lim inf
m→∞

∫ s(−)
m

0

∫
Ω

Λ(x, Π
(θ)
Dmum(x, t))∇(θ)

Dmum(x, t) · ∇(θ)
Dmum(x, t)dxdt.

(5.32)

The space–time-consistency of ((DT )m)m∈N (Definition 4.3) gives∫
Ω

(ΠDmIDmuini(x))2dx→
∫
Ω

(uini(x))2dx as m→∞. (5.33)

Still considering m → ∞, we have 1
[0,s

(−)
m ]

f → 1[0,s]f in L2(Ω × (0, T )) and

1
[0,s

(−)
m ]
F → 1[0,s]F in L2(Ω × (0, T ))d. The weak convergences of Π

(θ)
Dmum

and ∇(θ)
Dmum thus give, as m→∞,
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m

0

∫
Ω

(f(x, t)Π
(θ)
Dmu(x, t)− F (x, t) · ∇(θ)

Dmu(x, t))dxdt

→
∫ s

0

∫
Ω

(f(x, t)u(x, t)− F (x, t) · ∇u(x, t))dxdt. (5.34)

Finally, since 1
[s

(−)
m ,s

(+)
m ]

f → 0 in L2(Ω × (0, T )) and 1
[s

(−)
m ,s

(+)
m ]
F → 0 in

L2(Ω × (0, T ))d,∫ s(+)
m

s
(−)
m

∫
Ω

(f(x, t)Π
(θ)
Dmu(x, t)− F (x, t) · ∇(θ)

Dmu(x, t))dxdt→ 0. (5.35)

We now come back to (5.30), drop the non-negative term in brackets, move
the second term from the left-hand side to the right-hand side, and take the
superior limit. The convergences (5.32), (5.33), (5.34) and (5.35) yield

lim sup
m→∞

1

2

∫
Ω

(Π
(θ)
Dmum(x, sm))2dx

≤ 1

2

∫
Ω

uini(x)2dx+

∫ s

0

∫
Ω

(f(x, t)u(x, t)− F (x, t) · ∇u(x, t))dxdt

− lim inf
m→∞

∫ s(−)
m

0

∫
Ω

Λ(x, Π
(θ)
Dmum(x, t))∇(θ)

Dmum(x, t) · ∇(θ)
Dmum(x, t)dxdt

≤ 1

2

∫
Ω

uini(x)2dx+

∫ s

0

∫
Ω

(f(x, t)u(x, t)− F (x, t) · ∇u(x, t))dxdt

−
∫ s

0

∫
Ω

Λ(x, u(x, t))∇u(x, t) · ∇u(x, t)dxdt. (5.36)

Since u ∈ L2(0, T ;H1
0 (Ω)) and ∂tu ∈ L2(0, T ;H−1(Ω)), the following integra-

tion by parts is justified (see [67, Section 2.5.2]):∫ s

0

〈∂tu(t), u(t)〉H−1,H1
0
dt =

1

2

∫
Ω

u(x, s)2dx− 1

2

∫
Ω

u(x, 0)2dx.

Making w = u1[0,s](t) in (5.4), we therefore see that

1

2

∫
Ω

u(x, s)2dx+

∫ s

0

∫
Ω

Λ(x, u(x, t))∇u(x, t) · ∇u(x, t)dxdt

=
1

2

∫
Ω

uini(x)2dx+

∫ s

0

∫
Ω

(f(x, t)u(x, t)− F (x, t) · ∇u(x, t))dxdt.

(5.37)

Used in (5.36), this relation gives

lim sup
m→∞

∫
Ω

(Π
(θ)
Dmum(x, sm))2dx ≤

∫
Ω

u(x, s)2dx, (5.38)
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Owing to Theorem 4.19 and to Estimates (5.21) and (5.25), (Π
(θ)
Dmum)m∈N

converges to u weakly in L2(Ω) uniformly in [0, T ] (in the sense of Definition

C.13). Hence, Π
(θ)
Dmum(·, sm)→ u(·, s) weakly in L2(Ω) as m→∞. Estimate

(5.38) and a standard reasoning in Hilbert spaces then show that this con-
vergence is actually strong in L2(Ω). By Lemma C.12, we infer that (5.19a)
holds.

Step 4: Strong convergence of ∇(θ)
Dmum.

Note that, by (5.19a), Π
(θ)
Dmum(·, T ) → u(·, T ) in L2(Ω). Write (5.30) with

sm = T (so that s
(−)
m = t(Nm−1) and s

(+)
m = T ), move the first term to the

right-hand side and take the superior limit. We can pass, as in the previous
step, to the limit in all the terms on the right-hand side. Let gm : [0, T ]→ R
be the function such that gm = 1 on [0, s

(−)
m ] and gm = θ on (s

(−)
m , T ]. Using

(5.37) with s = T , we obtain

lim sup
m→∞

∫ T

0

∫
Ω

gm(t)Λ(x, Π
(θ)
Dmum(x, t))∇(θ)

Dmum(x, t) · ∇(θ)
Dmum(x, t)dxdt

≤ 1

2

∫
Ω

uini(x)2dx+

∫ T

0

(f(x, t)u(x, t)− F (x, t) · ∇u(x, t))dxdt

− 1

2

∫
Ω

u(x, T )2dx

=

∫ T

0

∫
Ω

Λ(x, u(x, t))∇u(x, t) · ∇u(x, t)dxdt.

Using this estimate, the strong convergence in L2(Ω× (0, T )) of Π
(θ)
Dmum to u,

Lemma D.9, the strong convergence in L2(Ω × (0, T ))d of gm∇u to ∇u, the

weak convergence in L2(Ω × (0, T ))d of ∇(θ)
Dmum to ∇u, and developing the

following expression in a similar fashion as (2.60), we infer that

lim sup
m→∞

∫ T

0

∫
Ω

gm(t)Λ(x, Π
(θ)
Dmum(x, t))(∇(θ)

Dmum(x, t)−∇u(x, t))

· (∇(θ)
Dmum(x, t)−∇u(x, t))dxdt ≤ 0.

By coercivity of Λ and since gm ≥ θ ≥ 1
2 , this shows that, as m→∞,∫ T

0

∫
Ω

∣∣∣∇(θ)
Dmum(x, t)−∇u(x, t)

∣∣∣2 dxdt→ 0.

This concludes the proof that ∇(θ)
Dmum → ∇u strongly in L2(Ω × (0, T ))d as

m→∞.
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Remark 5.8 (About the discrete IBP formula (D.17))
The usage in Step 2 of the “ν”-discrete integration by parts formula (D.17) is non-
standard. A usual way of proceeding, see, e.g., [76] or the proof of Theorem 5.19, is

to analyse in this proof the convergence of Π
(1)
Dmum towards u. Using this analysis,

the test function v(n+1), instead of v(n+(1−θ)), can be used in Step 2, and the more
standard discrete integration-by-parts formula (D.15) can then be applied.
Thanks to (D.17), we can however fully analyse in the proof of Theorem 5.4 the

convergence of Π
(θ)
Dmum without having to analyse at the same time Π

(1)
Dmum, which

is a less natural reconstruction for θ-schemes.

5.2 Non-conservative problems

5.2.1 The continuous problem

We focus in this section on the approximation of some non-linear problems
under the following non-conservative form:

ν(x, t, u(x, t),∇u(x, t))∂tu(x, t)− div(µ(|∇u(x, t)|)∇u(x, t))

= f(x, t), for a.e. (x, t) ∈ Ω × (0, T )
(5.39a)

with the initial condition

u(x, 0) = uini(x), for a.e. x ∈ Ω, (5.39b)

and boundary conditions

u(x, t) = 0, for a.e. (x, t) ∈ ∂Ω × (0, T ). (5.39c)

The hypotheses are as follows:

• Ω is an open bounded connected subset of Rd (d ∈ N?)
and T > 0, (5.40a)

• uini ∈ H1
0 (Ω) (5.40b)

• f ∈ L2(Ω × (0, T )), (5.40c)

• ν : Ω × (0, T )× R× Rd → R is a Caratheodory function and

there exists νmax ≥ νmin > 0 such that ν(x, t, s, ξ) ∈ [νmin, νmax]

for a.e. x, t and for all s, ξ, (5.40d)

(Caratheodory means that, for all (s, ξ) ∈ R × Rd, the function (x, t) →
ν(x, t, s, ξ) is measurable and, for a.e. (x, t) ∈ Ω×(0, T ), the function (s, ξ)→
ν(x, t, s, ξ) it is continuous)
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• µ : R+ → R is Lipschitz-continuous, non-increasing, and

there exists µmax ≥ µmin > 0 and α > 0 such that

µ(s) ∈ [µmin, µmax] and (sµ(s))′ ≥ α for all s ∈ R+. (5.40e)

One specific choice of µ and ν is of particular interest. For given real numbers
0 < a ≤ b, using the functions

µ(s) = max

(
1√

s2 + a2
,

1

b

)
, ∀s ∈ R+,

ν(x, t, z, ξ) = µ(|ξ|) , ∀(x, t) ∈ Ω × (0, T ) , z ∈ R , ∀ξ ∈ Rd

in (5.39a) lead to the regularised level set equation [88]. These functions satisfy
(5.40d)–(5.40e) with α = a2/b3.

Let us now give the precise mathematical meaning of a solution to Problem
(5.39) under Hypotheses (5.40).

Definition 5.9 (Weak solution of (5.39)). Under Hypotheses (5.40), we
say that u is a weak solution of (5.39) if

1. u ∈ L2(0, T ;H1
0 (Ω)) and ∂tu ∈ L2(Ω × (0, T )) (which implies u ∈

C([0, T ];L2(Ω))),
2. u(·, 0) = uini,
3. the following holds∫ T

0

∫
Ω

ν(x, t, u(x, t),∇u(x, t))∂tu(x, t)v(x, t)dxdt

+

∫ T

0

∫
Ω

µ(|∇u(x, t)|)∇u(x, t) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt , ∀v ∈ L2(0, T ;H1
0 (Ω)). (5.41)

The third item shows that a weak solution to (5.39) satisfies (5.39a) in the
sense of distributions. In particular, for such a solution, div(µ(|∇u|)∇u) ∈
L2(Ω × (0, T )).

Our aim is to use the GDM to construct gradient schemes for (5.41), and to
prove their convergence to a weak solution of (5.39). As usual for non-linear
models, convergence proofs start with a priori estimates. Let us formally show
the kind of estimates that can be obtained on (5.39).
Defining F by

∀s ∈ R+, F (s) =

∫ s

0

zµ(z)dz ∈
[
µmin

s2

2
, µmax

s2

2

]
, (5.42)

any sufficiently regular function u satisfies
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d

dt

∫
Ω

F (|∇u(x, t)|)dx =

∫
Ω

µ(|∇u(x, t)|)∇u(x, t) · ∇∂tu(x, t)dxdt. (5.43)

Therefore, assuming that u is solution of (5.39a) with f = 0 (for the sake of
simplicity of this brief presentation) and taking v = ∂tu in (5.41), we see that

∫ T

0

∫
Ω

ν(u,∇u)∂tu(x, t)2dxdt+

∫
Ω

F (|∇u(x, t)|)dx

=

∫
Ω

F (|∇uini(x)|)dx. (5.44)

The discrete equivalent of this essential estimate is established in Lemma 5.10
for the fully-implicit scheme (using that s 7→ sµ(s) is strictly increasing), and
in Lemma 5.14 for the semi-implicit scheme (using that µ is decreasing). For
both schemes, the hypothesis that s 7→ sµ(s) is instrumental to proving that
the reconstructed gradients converge strongly.

5.2.2 Fully implicit scheme

Let DT = (XD,0, ΠD,∇D, ID, (t(n))n=0,...,N ) be a space–time GD, for homoge-
neous Dirichlet boundary conditions, in the sense of Definition 4.1 with p = 2
and θ = 1. Using a fully implicit time-stepping, the GDM applied to Problem
(5.41) leads to the following GS: find a family u = (u(n))n=0,...,N ∈ XN+1

D,0
such that

u(0) = IDuini and, for n = 0, . . . , N − 1, u(n+1) satisfies∫ t(n+1)

t(n)

∫
Ω

ν(x, t,ΠDu
(n+1),∇Du(n+1))δ

(n+ 1
2 )

D u(x)ΠDv(x)dxdt

+δt(n+ 1
2 )

∫
Ω

µ(|∇Du(n+1)(x)|)∇Du(n+1)(x) · ∇Dv(x)dx

=

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt , ∀v ∈ XD,0.

(5.45)

We recall the notations (4.2) and (4.4), and that θ = 1 here. The operators

Π
(1)
D and ∇(1)

D will therefore be our natural space–time function and gradient
reconstructions.

Estimates and existence of a solution to the fully implicit scheme

Lemma 5.10 (L2(Ω × (0, T )) estimate on δDu and L∞(0, T ;XD,0) es-
timate on u, fully implicit scheme). Under Hypotheses (5.40), let DT
be a space–time GD for homogeneous Dirichlet boundary conditions, in the
sense of Definition 4.1. Then, for any solution u to the GS (5.45) and for all
m = 1, . . . , N ,
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νmin

∫ t(m)

0

∫
Ω

δDu(x, t)2dxdt+ µmin

∥∥∥∇Du(m)
∥∥∥2

L2(Ω)d

≤ µmax ‖∇DIDuini‖2L2(Ω)d +
1

νmin
‖f‖2L2(Ω×(0,T )) . (5.46)

As a consequence, there exists at least one solution u to the GS (5.45).

Proof. Setting v = u(n+1)−u(n)

δt(n+1
2
)

in (5.45) and summing over n = 0, . . . ,m− 1

leads to

νmin

∫ t(m)

0

∫
Ω

δDu(x, t)2dxdt

+

m−1∑
n=0

∫
Ω

µ(|∇Du(n+1)(x)|)∇Du(n+1)(x) ·
[
∇Du(n+1)(x)−∇Du(n)(x)

]
dx

≤
∫ t(m)

0

∫
Ω

f(x, t)δDu(x, t)dxdt. (5.47)

Hypothesis (5.40e) implies the convexity of F , defined by (5.42), and thus

∀c1, c2 ∈ R+ , F (c2)− F (c1) =

∫ c2

c1

zµ(z)dz ≤ c2µ(c2)(c2 − c1).

This gives in particular

F (|∇Du(n+1)(x)|)− F (|∇Du(n)(x)|)

≤ µ(|∇Du(n+1)(x)|)|∇Du(n+1)(x)|
[
|∇Du(n+1)(x)| − |∇Du(n)(x)|

]
. (5.48)

The Cauchy–Schwarz inequality implies

|∇Du(n+1)(x)|
[
|∇Du(n+1)(x)| − |∇Du(n)(x)|

]
= ∇Du(n+1)(x) · ∇Du(n+1)(x)− |∇Du(n+1)(x)||∇Du(n)(x)|

≤ ∇Du(n+1)(x) ·
[
∇Du(n+1)(x)−∇Du(n)(x)

]
. (5.49)

Combining (5.48) and (5.49) and plugging the result into (5.47) yields

νmin

∫ t(m)

0

∫
Ω

δDu(x, t)2dxdt

+

m−1∑
n=0

∫
Ω

[
F (|∇Du(n+1)(x)|)− F (|∇Du(n)(x)|)

]
dx

≤
∫ t(m)

0

∫
Ω

f(x, t)δDu(x, t)dxdt. (5.50)
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The sum in the left-hand side is telescopic and reduces to∫
Ω

[
F (|∇Du(m)(x)|)− F (|∇Du(0)(x)|)

]
dx.

The right-hand side of (5.50) can be estimated by means of the Cauchy–
Schwarz inequality and the Young inequality (D.9). Since the range of F is in
[µmins

2/2, µmaxs
2/2], this gives

νmin

∫ t(m)

0

∫
Ω

δDu(x, t)2dxdt+
µmin

2

∫
Ω

|∇Du(m)(x)|2dx

≤ µmax

2

∫
Ω

|∇Du(0)(x)|2dx+ ‖f‖L2(Ω×(0,T )) ‖δDu‖L2(Ω×(0,t(m)))

≤ µmax

2

∫
Ω

|∇DIDuini(x)|2dx+
1

2νmin
‖f‖2L2(Ω×(0,T ))

+
νmin

2
‖δDu‖2L2(Ω×(0,t(m))) .

Moving the last term to the left-hand side yields Estimate (5.46).
To prove the existence of at least one solution to the GS, we create an homo-
topy between the model (5.39) and a linear PDE. By induction, it suffices to
show that, for a given u(n) ∈ XD,0, there exists u(n+1) ∈ XD,0 satisfying the
integral relation in (5.45). For λ ∈ [0, 1], define µλ and νλ by

µλ(s) = µmax(1− λ) + λµ(s) , and

νλ(x, t, s, ξ) = νmin(1− λ) + λν(x, t, s, ξ).

Let (vi)i=1,...,M be a basis of XD,0 and define Φ : XD,0 × [0, 1] → XD,0 by
its components (Φ(w, λ)i)i=1,...,M on (vi)i=1,...,M :

Φ(w, λ)i =

∫ t(n+1)

t(n)

∫
Ω

νλ(x, t,ΠDw(x),∇Dw(x))

× ΠDw(x)−ΠDu(n)(x)

δt(n+ 1
2 )

ΠDvi(x)dxdt

+ δt(n+ 1
2 )

∫
Ω

µλ(|∇Dw(x)|)∇Dw(x) · ∇Dvi(x)dx

−
∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDvi(x)dxdt.

Then u(n+1) satisfies the integral equation in (5.45) if and only if Φ(u(n+1), 1) =
0.
The mapping Φ is clearly continuous. If Φ(w, λ) = 0 then, since µλ (resp.
νλ) has its range in [µmin, µmax] (resp. [νmin, νmax]), similar estimates to the
ones established above give a bound on ‖∇Dw‖L2(Ω)d = ‖w‖D that does
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not depend on λ ∈ [0, 1]. Finally, for λ = 0, Φ(·, 0) is affine and therefore
invertible since, by the previous bound, its kernel is bounded (and thus neces-
sarily reduced to a single point). As a consequence, for some R large enough,
Φ(·, 0) = 0 has a solution in the ball of radius R in XD,0.
A topological degree argument (see Theorem D.1 page 462) can therefore be
applied and show that Φ(·, 1) = 0 has at least one solution, i.e. that there
exists u(n+1) solution to the integral equation in (5.45).

Convergence of the fully implicit scheme

For u ∈ XN+1
D,0 , define wD and GD by, for a.e. (x, t) ∈ Ω × (0, T ),

wD(x, t) = f(x, t)− ν
(
x, t,Π

(1)
D u(x, t),∇(1)

D u(x, t)
)
δDu(x, t), (5.51)

GD(x, t) = µ
(
|∇(1)
D u(x, t)|

)
∇(1)
D u(x, t). (5.52)

With these definitions, (5.45) can be recast as

u ∈ XN+1
D,0 and, for all v ∈ XN+1

D,0 ,∫ T

0

∫
Ω

GD(x, t) · ∇(1)
D v(x, t)dxdt

=

∫ T

0

∫
Ω

wD(x, t)Π
(1)
D v(x, t)dxdt.

(5.53)

The following lemma is an initial step towards establishing the convergence
of the fully implicit GS for (5.39).

Lemma 5.11 (A convergence property of the fully implicit scheme).
Under Hypotheses (5.40), let ((DT )m)m∈N be a sequence of space–time GDs

for homogeneous Dirichlet boundary conditions (with p = 2). Assume that the
sequence ((DT )m)m∈N is space–time-consistent, limit-conforming and compact
in the sense of Definitions 4.3 and 4.6. Also assume that (∇DmIDmuini)m∈N
is bounded in L2(Ω)d.
For any m ∈ N, take um a solution to the GS (5.45) and define wDm and
GDm from um by (5.51)–(5.52). Then there exist functions

u ∈ L∞(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) with ∂tu ∈ L2(Ω × (0, T ))

and u(·, 0) = uini ,

G ∈ L2(Ω × (0, T ))d , and

w ∈ L2(Ω × (0, T ))

such that, along a subsequence as m→∞,

• supt∈[0,T ] ‖Π
(1)
Dmum(t)− u(t)‖L2(Ω) → 0,
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• ∇(1)
Dmum converges weakly in L2(Ω × (0, T ))d to ∇u,

• δDmum converges weakly in L2(Ω × (0, T )) to ∂tu,
• GDm converges weakly to G in L2(Ω × (0, T ))d,
• wDm converges weakly to w in L2(Ω × (0, T )),
• it holds ∫ T

0

∫
Ω

GDm(x, t) · ∇(1)
Dmum(x, t)dxdt

−→
∫ T

0

∫
Ω

G(x, t) · ∇u(x, t)dxdt.

(5.54)

Remark 5.12. At this stage, we do not identify G and w, respectively, with
µ(|∇u|)∇u and ν(u,∇u). This is done later, in the proof of Theorem 5.13, by
using (5.54).

Proof. Owing to (5.46), (GDm)m∈N is bounded in L∞(0, T ;L2(Ω)d) and
(wDm)m∈N is bounded in L2(Ω × (0, T )). Hence, there exists G ∈ L2(Ω ×
(0, T ))d and w ∈ L2(Ω × (0, T )) such that, up to a subsequence as m → ∞,
GDm → G weakly in L2(Ω× (0, T ))d and wDm → w weakly in L2(Ω× (0, T )).
By Lemma 5.10, the sequence ((um)1)m∈N (see notation (4.2) with θ = 1)
is bounded in L∞(0, T ;XDm,0) and the sequence (δDmum)m∈N is bounded
in L2(0, T ;L2(Ω)). Theorem 4.18 thus provides u ∈ L∞(0, T ;H1

0 (Ω)) ∩
C([0, T ];L2(Ω)) such that ∂tu ∈ L2(Ω × (0, T )) and, up to a subsequence as

m → ∞, supt∈[0,T ] ‖Π
(1)
Dmum(t) − u(t)‖L2(Ω) → 0 and δDmum → ∂tu weakly

in L2(Ω × (0, T )). The weak convergence of ∇(1)
Dmum to ∇u is a consequence

of Lemma 4.8.
The definition (4.3) gives Π

(1)
Dmum(0) = ΠDmu

(0)
m = ΠDmIDmuini. The space–

time-consistency of ((DT )m)m∈N then yields Π
(1)
Dmum(0) → uini in L2(Ω) as

m → ∞. By the uniform convergence of (Π
(1)
Dmum)m∈N to u, we infer that

u(·, 0) = uini.
We now aim to prove (5.54). Since u ∈ L2(0, T ;H1

0 (Ω)) we can take (vm)m∈N
given by Lemma 4.10 for v = u. Using vm as a test function in (5.53) with
DT = (DT )m and passing to the limit yields∫ T

0

∫
Ω

G(x, t) · ∇u(x, t)dxdt =

∫ T

0

∫
Ω

w(x, t)u(x, t)dxdt. (5.55)

Putting v = um in (5.53), the weak-strong convergence lemma (Lemma
D.8 page 464) enables us to pass to the limit in the right-hand side, since

(wDm)m∈N converges weakly in L2(Ω × (0, T )) and (Π
(1)
Dmum)m∈N converges

strongly in L2(Ω × (0, T )). Owing to (5.55), this gives

lim
m→∞

∫ T

0

∫
Ω

GDm(x, t) · ∇(1)
Dmum(x, t)dxdt =

∫ T

0

∫
Ω

w(x, t)u(x, t)dxdt
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=

∫ T

0

∫
Ω

G(x, t) · ∇u(x, t)dxdt

and the proof of (5.54) is complete.

We now state and prove the convergence of the fully implicit GS for (5.39).

Theorem 5.13.
Assume (5.40) and let ((DT )m)m∈N be a sequence of space–time GDs for ho-
mogeneous Dirichlet boundary conditions (with p = 2). Assume that the se-
quence ((DT )m)m∈N is space–time-consistent, limit-conforming and compact
in the sense of Definitions 4.3 and 4.6.
We also suppose that (∇DmIDmuini)m∈N is bounded in L2(Ω)d and, for any
m ∈ N, we let um be a solution to the GS (5.45).
Then there exists a weak solution u of (5.39) in the sense of Definition 5.9
such that, up to a subsequence as m→∞,

• supt∈[0,T ] ‖Π
(1)
Dmum(t)− u(t)‖L2(Ω) → 0, and

• ∇(1)
Dmum → ∇u in L2(Ω × (0, T ))d.

Proof.
Let u, G and w be given by Lemma 5.11. Then, supt∈[0,T ] ‖Π

(1)
Dmum(t) −

u(t)‖L2(Ω) → 0 along a subsequence (not explicitly indicated below).

Step 1: a strong monotonicity property.
We aim to prove here that, for all V,W ∈ L2(Ω × (0, T ))d,∫ T

0

∫
Ω

[µ(|W |)W − µ(|V |)V ] · [W − V ] dxdt

≥ α ‖|W | − |V |‖2L2(Ω×(0,T ))d . (5.56)

Use first the Cauchy–Schwarz inequality for the dot product of Rd to get∫ T

0

∫
Ω

µ(|W |)W · V dxdt ≤
∫ T

0

∫
Ω

µ(|W |)|W | |V |dxdt.

Writing the same properties with W and V swapped leads to∫ T

0

∫
Ω

(µ(|W |)W − µ(|V |)V ) · (W − V ) dxdt

≥
∫ T

0

∫
Ω

(µ(|W |)|W | − µ(|V |)|V |) (|W | − |V |) dxdt.

By Property (5.40e) on µ, (5.56) follows.

Step 2: Proof that G = µ(|∇u|)∇u.
We use Minty’s trick. For V ∈ L2(Ω × (0, T ))d, set
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Tm(V ) =

∫ T

0

∫
Ω

[
µ(|∇(1)

Dmum|)∇
(1)
Dmum − µ(|V |)V

]
·
[
∇(1)
Dmum − V

]
dxdt.

Recall that µ(|∇(1)
Dmum|)∇

(1)
Dmum = GDm . Together with (5.54), the weak con-

vergences of GDm and ∇(1)
Dmum therefore yield

lim
m→∞

Tm(V ) =

∫ T

0

∫
Ω

[
G− µ(|V |)V

]
· [∇u− V ] dxdt. (5.57)

By (5.56), Tm(V ) ≥ 0 and thus∫ T

0

∫
Ω

[
G− µ(|V |)V

]
· [∇u− V ] dxdt ≥ 0.

Take W ∈ L2(Ω × (0, T ))d and set V = ∇u+ λW for λ ∈ R. This gives

λ

∫ T

0

∫
Ω

[
G− µ(|∇u+ λW |)(∇u+ λW )

]
·Wdxdt ≥ 0.

Since λ is any real number, this shows that the integral term is equal to zero.
The dominated convergence theorem justifies letting λ→ 0 in this term, which
shows that ∫ T

0

∫
Ω

[
G− µ(|∇u|)∇u

]
·Wdxdt = 0.

Taking W = G− µ(|∇u|)∇u yields

G = µ(|∇u|)∇u a.e. on Ω × (0, T ). (5.58)

Step 3: strong convergence of ∇(1)
Dmum, and proof that u is a solution to

(5.39).

Making W = ∇(1)
Dmum and V = ∇u in (5.56) gives∥∥∥|∇(1)

Dmum| − |∇u|
∥∥∥2

L2(Ω×(0,T ))d
≤ 1

α
Tm(∇u).

By (5.57), limm→∞ Tm(∇u) = 0 and thus |∇(1)
Dmum| → |∇u| in L

2(Ω× (0, T ))

as m→∞. This entails the convergences of the L2 norms of these functions,
that is ∥∥∥∇(1)

Dmum

∥∥∥
L2(Ω×(0,T ))d

→ ‖∇u‖L2(Ω×(0,T ))d as m→∞.

This latter convergence shows that the weak convergence of (∇(1)
Dmum)m∈N to

∇u in L2(Ω × (0, T )) is actually strong.
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By a form of non-linear strong convergence property similar to Lemma D.9

page 465, the strong convergences of (Π
(1)
Dmum)m∈N and (∇(1)

Dmum)m∈N show
that, as m→∞,

ν(·, ·, Π(1)
Dmum,∇

(1)
Dmum)→ ν(·, ·, u,∇u) strongly in L2(Ω × (0, T )).

The weak convergence of δDmum towards ∂tu and the weak-strong convergence
property in Lemma D.8 page 464 then enable us to identify the limit of wDm
(defined by (5.51)):

w = f − ν(·, ·, u,∇u)∂tu a.e. in Ω × (0, T ). (5.59)

Let v ∈ L2(0, T ;H1
0 (Ω)) and take (vm)m∈N provided by Lemma 4.10 for v.

Write (5.53) for DT = (DT )m and v = vm. Passing to the limit m → ∞ in
this relation is justified by the weak convergences of GDm and wDm , and the

strong convergences of Π
(1)
Dmvm and ∇(1)

Dmvm. This leads to∫ T

0

∫
Ω

G(x, t) · ∇v(x, t)dxdt =

∫ T

0

∫
Ω

w(x, t)v(x, t)dxdt.

Then (5.58) and (5.59) show that u satisfies (5.41). Since the regularity prop-
erties of u required in Definition 5.9 are ascertained in Lemma 5.11, the proof
that u is a solution to (5.39) is complete.

5.2.3 Semi-implicit scheme

Given a space–time gradient discretisation DT and using a semi-implicit time-
stepping, the GDM applied to (5.41) gives the following GS: seek a family
u = (u(n))n=0,...,N ∈ XN+1

D such that

u(0) = IDuini and, for n = 0, . . . , N − 1, u(n+1) satisfies∫ t(n+1)

t(n)

∫
Ω

ν(x, t,ΠDu
(n),∇Du(n))δ

(n+ 1
2 )

D u(x)ΠDv(x)dxdt

+δt(n+ 1
2 )

∫
Ω

µ(|∇Du(n)|)∇Du(n+1) · ∇Dv(x)dx

=

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt , ∀v ∈ XD,0.

(5.60)

Quite naturally, the analysis of this semi-implicit implicit scheme uses both

Π
(1)
D , ∇(1)

D and Π
(0)
D , ∇(0)

D . Recall that the definition of these latter operators
(see (4.2)):

Π
(0)
D u(x, t) = ΠDu

(n)(x) and ∇(0)
D u(x, t) = ∇Du(n)(x),

for a.e. (x, t) ∈ Ω × (t(n), t(n+1)), ∀n = 0, . . . , N − 1.
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Estimates and existence of a solution to the semi-implicit scheme

Lemma 5.14 (L2(Ω × (0, T )) estimate on δDu and L∞(0, T ;XD,0) esti-
mate on u, semi-implicit scheme.). Under Hypotheses (5.40), let DT be
a space–time GD in the sense of Definition 4.1. Then the GS (5.60) has a
unique solution u, and it satisfies, for all m = 1, . . . , N ,

νmin

∫ t(m)

0

∫
Ω

δDu(x, t)2dxdt+ µmin

∥∥∥∇Du(m)
∥∥∥2

L2(Ω)d

+ µmin

m−1∑
n=0

∫
Ω

∣∣∣∇Du(n+1)(x)−∇Du(n)(x)
∣∣∣2 dx

≤ µmax ‖∇DIDuini‖2L2(Ω)d +
1

νmin
‖f‖2L2(Ω×(0,T )) .

(5.61)

Proof. First notice that, by Hypothesis (5.40e),

∀ξ, χ ∈ Rd ,
∫ |χ|
|ξ|

zµ(z)dz +
1

2
|χ− ξ|2µ(|ξ|) ≤ µ(|ξ|)χ · (χ− ξ). (5.62)

To prove this property, simply remark by developing |χ− ξ|2 that it simplifies
into

∀ξ, χ ∈ Rd ,
1

2
µ(|ξ|)(|χ|2 − |ξ|2)−

∫ |χ|
|ξ|

zµ(z)dz ≥ 0.

Set, for a, b ∈ R+,

Φ(b) =
1

2
µ(a)(b2 − a2)−

∫ b

a

zµ(z)dz.

Then Φ′(b) = b(µ(a)−µ(b)), whose sign is that of b−a since µ is non-increasing.
Hence Φ(b) is non-increasing for b ≤ a and non-decreasing for b ≥ a. Since
Φ(a) = 0, this shows that Φ(b) ≥ 0 for all b ∈ R+ and the proof of (5.62) is
complete.
Applying this relation to ξ = ∇Du(n)(x) and χ = ∇Du(n+1)(x) and recalling
the definition (5.42) of F leads to

F (|∇Du(n+1)(x)|)− F (|∇Du(n)(x)|)

+
µmin

2

∣∣∣∇Du(n+1)(x)−∇Du(n)(x)
∣∣∣2

≤ µ(|∇Du(n)(x)|)∇Du(n+1)(x) ·
[
∇Du(n+1)(x)−∇Du(n)(x)

]
. (5.63)

Estimate (5.61) is then established as the proof of Lemma 5.10, by plugging

v = u(n+1)−u(n)

δt(n+1
2
)

in (5.60), summing over n = 0, . . . ,m− 1, and using (5.63) in

lieu of (5.48).
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Convergence of the semi-implicit scheme

If u is the solution to the GS (5.60), let

w̃D = f − ν(Π
(0)
D uD,∇(0)

D uD)δDuD , (5.64)

G̃D = µ(|∇(0)
D uD|)∇(1)

D uD , (5.65)

ĜD = µ(|∇(0)
D uD|)∇(0)

D uD. (5.66)

Note that the GS (5.60) can be recast as:

u ∈ XN+1
D,0 and, for all v ∈ XN+1

D,0 ,∫ T

0

∫
Ω

G̃D(x, t) · ∇(1)
D v(x, t)dxdt

=

∫ T

0

∫
Ω

w̃D(x, t)Π
(1)
D v(x, t)dxdt.

(5.67)

The following lemma is the equivalent, for the semi-implicit scheme, of Lemma
5.11.

Lemma 5.15 (A convergence property of the semi-implicit scheme).
Under Hypotheses (5.40), let ((DT )m)m∈N be a sequence of space–time GDs
for homogeneous Dirichlet boundary conditions (with p = 2). Assume that this
sequence is space–time-consistent, limit-conforming and compact in the sense
of Definitions 4.3 and 4.6. Assume also that (∇DmIDmuini)m∈N is bounded in
L2(Ω)d.

For m ∈ N, let um be the solution to the GS (5.60), and define w̃Dm , G̃Dm
and ĜDm from um by, respectively, (5.64), (5.65) and (5.66).
Then there exist functions

u ∈ L∞(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) with ∂tu ∈ L2(Ω × (0, T ))

and u(·, 0) = uini ,

G ∈ L2(Ω × (0, T ))d , and

w ∈ L2(Ω × (0, T ))

such that, along a subsequence as m→∞,

• supt∈[0,T ] ‖Π
(1)
Dmum(t)− u(t)‖L2(Ω) → 0,

• ∇(0)
Dmum and ∇(1)

Dmum converge weakly in L2(Ω × (0, T ))d to ∇u,

• δDmum converges weakly in L2(Ω × (0, T )) to ∂tu,

• G̃Dm and ĜDm both converge weakly to G in L2(Ω × (0, T ))d, and∫ T

0

∫
Ω

(G̃Dm(x, t)− ĜDm(x, t)) · ∇(0)
D um(x, t)dxdt→ 0, (5.68)
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• w̃Dm converges weakly to w in L2(Ω × (0, T )),
• it holds ∫ T

0

∫
Ω

ĜDm(x, t) · ∇(0)
Dmum(x, t)dxdt

−→
∫ T

0

∫
Ω

G(x, t) · ∇u(x, t)dxdt.

(5.69)

Proof. The proof is similar to the proof of Lemma 5.11. The a priori estimate

(5.61) provide the existence of u such that (Π
(1)
Dmum)m∈N, (∇(1)

Dmum)m∈N and
(δDmum)m∈N converge as stated in the lemma. The same estimates show that

(G̃Dm)m∈N and (ĜDm)m∈N are bounded in L2(Ω×(0, T ))d, and therefore have
weak limits in this space (up to a subsequence). Likewise, (w̃Dm)m∈N has a
weak limit in L2(Ω × (0, T )) up to a subsequence.

Let us now prove that ∇(0)
Dmum converges weakly to ∇u, that the weak limits

of (G̃Dm)m∈N and (ĜDm)m∈N are the same, and that (5.68) holds. Since∥∥∥∇(1)
Dmum−∇

(0)
Dmum

∥∥∥2

L2(Ω×(0,T ))d

=

N−1∑
n=0

δt(n+ 1
2 )

∫
Ω

∣∣∣∇Dmu(n+1)
m (x)−∇Dmu(n)

m (x)
∣∣∣2 dx

≤ δtDm
N−1∑
n=0

∫
Ω

∣∣∣∇Dmu(n+1)
m (x)−∇Dmu(n)

m (x)
∣∣∣2 dx , (5.70)

the estimate (5.61) shows that∥∥∥∇(1)
Dmum −∇

(0)
Dmum

∥∥∥
L2(Ω×(0,T ))d

→ 0 as m→∞. (5.71)

This proves in particular that ∇(0)
Dmum → ∇u weakly in L2(Ω× (0, T ))d. Take

now (ψm)m∈N bounded in L2(Ω × (0, T ))d and write∣∣∣∣∣
∫ T

0

∫
Ω

(G̃Dm(x, t)− ĜDm(x, t)) · ψm(x, t)dxdt

∣∣∣∣∣
≤
∫ T

0

∫
Ω

µ(|∇(0)
Dmum(x, t)|)

∣∣∣∇(1)
Dmum(x, t)−∇(0)

Dmum(x, t)
∣∣∣ |ψm(x, t)|dxdt

≤ µmax

∥∥∥∇(1)
Dmum −∇

(0)
Dmum

∥∥∥
L2(Ω×(0,T ))d

‖ψm‖L2(Ω×(0,T ))d .

Use then (5.71) to infer∫ T

0

∫
Ω

(G̃Dm(x, t)− ĜDm(x, t)) · ψm(x, t)dxdt→ 0 as m→∞. (5.72)
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Applied to ψm = ψ for a fixed ψ, this relation that the weak limits of
(G̃Dm)m∈N and (ĜDm)m∈N are the same function G. The same relation (5.72)

with ψm = ∇(0)
Dmum provides (5.68).

Let us conclude by proving (5.69). Relation (5.55) is established as in the
proof of Lemma 5.11. The GS (5.67) applied to D = Dm and v = um and the

strong convergence of Π
(1)
Dmum then show that∫ T

0

∫
Ω

G̃Dm(x, t) · ∇(1)
Dmum(x, t)dxdt =

∫ T

0

∫
Ω

w̃Dm(x, t)Π
(1)
Dmum(x, t)dxdt

→
∫ T

0

∫
Ω

w(x, t)u(x, t)dxdt

=

∫ T

0

∫
Ω

G(x, t) · ∇u(x, t)dxdt.

Since ∇(1)
Dmum −∇

(0)
Dmum → 0 in L2(Ω × (0, T ))d and (G̃Dm)m∈N is bounded

in L2(Ω × (0, T ))d, this gives∫ T

0

∫
Ω

G̃Dm(x, t) · ∇(0)
Dmum(x, t)dxdt→

∫ T

0

∫
Ω

G(x, t) · ∇u(x, t)dxdt.

We conclude the proof of (5.69) by using (5.68).

The following theorem states the convergence of the semi-implicit scheme.
The proof is omitted, as it is identical to the proof of Theorem 5.13, replacing

GDm by ĜDm and ∇(1)
Dmum by ∇(0)

D um in the definition of Tm(V ) in Step 2
(use of Minty trick).

Theorem 5.16.
Assume (5.40) and let ((DT )m)m∈N be a sequence of space–time GDs for ho-
mogeneous Dirichlet boundary conditions (with p = 2).
Assume that ((DT )m)m∈N is space–time-consistent, limit-conforming and com-
pact in the sense of Definitions 4.3 and 4.6.
We also suppose that (∇DmIDmuini)m∈N is bounded in L2(Ω)d and, for any
m ∈ N, we let um be the solution to the GS (5.60).
Then there exists a weak solution u of (5.39) in the sense of Definition 5.9
such that, up to a subsequence as m→∞,

• supt∈[0,T ] ‖Π
(1)
Dmum(t)− u(t)‖L2(Ω) → 0, and

• ∇(1)
Dmum → ∇u and ∇(0)

Dmum → ∇u in L2(Ω × (0, T ))d.



5.3 Non-linear time-dependent Leray–Lions type problems 147

5.3 Non-linear time-dependent Leray–Lions type
problems

5.3.1 Model

We consider here an evolution problem based on a Leray–Lions type operator,
with non-homogeneous Neumann boundary conditions and non-local depen-
dency on the lower order terms. The model reads

∂tu− div(a(x, u,∇u)) = f in Ω × (0, T ),

u(x, 0) = uini(x) in Ω,

a(x, u,∇u) · n = g on ∂Ω × (0, T ),

(5.73)

where a satisfies (2.85a)–(2.85d) and

• T ∈ (0,+∞),

• uini ∈ L2(Ω),

• f ∈ Lp
′
(Ω × (0, T )) and g ∈ Lp

′
(∂Ω × (0, T )) , where p′ = p

p−1 .

(5.74)

The non-linear equation (5.73) covers a number of models, including semi-
linear ones appearing in image processing [42, 46]. The analysis of the GDM
applied to (5.73) with homogeneous Dirichlet boundary conditions is done in
[76]. In the quasi-linear case, that is a(x, u,∇u(x)) = G(x, u)∇u(x) with G
a matrix-valued function having a non-local dependency on u as in (2.85a),
the convergence of the GDM was established in [102].
The precise notion of solution to (5.73) is the following:

u ∈ Lp(0, T ;W 1,p(Ω)) ∩ C([0, T ];L2(Ω)) , u(·, 0) = uini,

∂tu ∈ Lp
′
(0, T ; (W 1,p(Ω))′) and∫ T

0

〈∂tu(·, t), v(·, t)〉(W 1,p(Ω))′,W 1,p(Ω)dt

+

∫ T

0

∫
Ω

a(x, u(·, t),∇u(x, t)) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt+

∫ T

0

∫
∂Ω

g(x, t)γv(x, t)dγ(x)dt ,

∀v ∈ Lp(0;T ;W 1,p(Ω)).

(5.75)

Remark 5.17. The derivative ∂tu is understood in the sense of distributions on
(0, T ) with values in L2(Ω). Stating that it belongs to Lp

′
(0, T ; (W 1,p(Ω))′) =

(Lp(0, T ;W 1,p(Ω)))′ amounts to asking that the linear form defined by
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C∞c (0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p(Ω))→ R
ϕ 7→ 〈∂tu, ϕ〉D′(0,T ;L2(Ω)),D(0,T ;L2(Ω))

:= −
∫ T

0

〈u(·, t), ∂tϕ(·, t)〉L2(Ω),L2(Ω)dt

= −
∫ T

0

∫
Ω

u(x, t)∂tϕ(x, t)dxdt

(5.76)

is continuous for the norm of Lp(0, T ;W 1,p(Ω)). Since the set of tensorial
functions S = {

∑q
i=1 ϕi(t)βi(x) : q ∈ N , ϕi ∈ C∞c (0, T ) , βi ∈ C∞(Ω)}

is dense in Lp(0, T ;W 1,p(Ω)) (see [67, Corollary 1.3.1]), the derivative ∂tu
belongs to Lp

′
(0, T ; (W 1,p(Ω))′) if and only if (5.76) is continuous on S for

the Lp(0, T ;W 1,p(Ω))-norm.

Remark 5.18. Using regularisation and integration-by-parts techniques [67,
Section 2.5.2], it is possible to see that any solution u to (5.75) also satis-
fies, for any s ∈ [0, T ],

1

2
‖u(s)‖2L2(Ω) +

∫ s

0

∫
Ω

a(x, u(·, τ),∇u(x, τ)) · ∇u(x, τ)dxdτ

=
1

2
‖uini‖2L2(Ω) +

∫ s

0

∫
Ω

f(x, τ)u(x, τ)dxdτ

+

∫ s

0

∫
∂Ω

g(x, τ)γu(x, τ)dγ(x)dτ. (5.77)

With a reasoning similar to the one employed to establish the equivalence of
(5.3) and (5.4), we can see that (5.75) is equivalent to:

u ∈ Lp(0, T ;W 1,p(Ω)) ∩ L∞(0, T ;L2(Ω)) and,
for all v ∈ C1([0, T ];W 1,p(Ω) ∩ L2(Ω)) such that v(·, T ) = 0,

−
∫ T

0

∫
Ω

u(x, t)∂tv(x, t)dxdt−
∫
Ω

uini(x)v(x, 0)dx

+

∫ T

0

∫
Ω

a(x, u(·, t),∇u(x, t)) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt+

∫ T

0

∫
∂Ω

g(x, t)γv(x, t)dγ(x)dt.

(5.78)

To prove this equivalence, we use [67, Section 2.5.2] to see that if u ∈
Lp(0, T ;W 1,p(Ω) ∩ L2(Ω)) satisfies ∂tu ∈ Lp

′
(0, T ; (W 1,p(Ω) ∩ L2(Ω))′),

then u ∈ C([0, T ];L2(Ω)). We also use the density in Lp(0, T ;W 1,p(Ω)) of
C1([0, T ];W 1,p(Ω)∩L2(Ω)), which is for example a consequence of [67, Corol-
lary 1.3.1].

5.3.2 Gradient scheme and main results

Let DT = (XD, ΠD,TD,∇D, ID, (t(n))n=0,...,N ) be a space–time GD for non-
homogeneous Neumann conditions in the sense of Definition 4.1, and let θ ∈



5.3 Non-linear time-dependent Leray–Lions type problems 149

[ 1
2 , 1]. The GDM applied to Problem (5.73) yields the following GS: find a

family (u(n))n=0,...,N ∈ XN+1
D such that

u(0) = IDuini ∈ XD and, for all n = 0, . . . , N − 1, u(n+1) satisfies∫
Ω

δ
(n+ 1

2 )

D u(x)ΠDv(x)dx

+

∫
Ω

a
(
x, ΠDu

(n+θ),∇Du(n+θ)(x)
)
· ∇Dv(x)dx

=
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt

+
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
∂Ω

g(x, t)TDv(x)dγ(x)dt , ∀v ∈ XD.

(5.79)

The choice θ ≥ 1
2 is required for stability reasons. As explained in Section

4.1, θ = 1 leads to the classical Euler time implicit discretisation, while θ = 1
2

corresponds to the Crank–Nicolson time discretisation.
Recalling the notations in (4.2), we now state our initial convergence results
for this GS.

Theorem 5.19 (Convergence of the GS for transient Leray–Lions
type problem). Under Assumptions (2.85a)–(2.85d) and (5.74), let ((DT )m)m∈N
be a sequence of space–time GDs for non-homogeneous Neumann boundary
conditions, in the sense of Definition 4.1. Assume that this sequence is space–
time-consistent, limit-conforming and compact in the sense of Definitions 4.3
and 4.6. Let θ ∈ [ 1

2 , 1] be given.
Then, for any m ∈ N, there exists a solution um to the GS (5.79) with D = Dm
and, along a subsequence as m→∞,

• Π(θ)
Dmum converges to u strongly in Lp(Ω × (0, T )),

• Π(1)
Dmum converges to u weakly in L2(Ω) uniformly on [0, T ] (see Definition

C.13),

• ∇(θ)
Dmum converges to ∇u weakly in Lp(Ω × (0, T ))d,

where u is a solution to (5.75).

Remark 5.20. As for the stationary problem (see Remark 2.46), the existence
of a solution to (5.75) is a by-product of the proof of convergence of the
GDM. Moreover, in the case where the solution u of (5.75) is unique, the
whole sequence (um)m∈N converges to u in the senses above.

The convergence of the function reconstructions is actually much better than
in the initial result above. It is uniform-in-time and strong in space.

Theorem 5.21 (Uniform-in-time convergence of the GS). Under the
assumptions and notations of Theorem 5.19, and along the same subsequence
as in this theorem, we have
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• supt∈[0,T ] ‖Π
(θ)
Dmum(t)− u(t)‖L2(Ω) → 0,

• supt∈[0,T ] ‖Π
(1)
Dmum(t)− u(t)‖L2(Ω) → 0.

If the Leray–Lions type operator a is strictly monotone, then a strong con-
vergence result can also be stated on the gradients.

Theorem 5.22 (Strong convergence of the gradients in the strictly
monotone case). Let us assume the hypotheses of Theorem 5.19, and that a
is strictly monotone in the sense of (2.87). Then, with the same notations and

along the same subsequence as in Theorem 5.19, ∇(θ)
Dmum converges strongly

to ∇u in Lp(Ω × (0, T ))d.

5.3.3 A priori estimates

We begin by establishing a priori estimates.

Lemma 5.23 (L∞(0, T ;L2(Ω)) estimate, discrete Lp(0, T ;W 1,p(Ω)) es-
timate, and existence of a solution to the GS). Under Hypotheses
(2.85a)–(2.85d) and (5.74), let DT be a space–time GD for non-homogeneous
Neumann conditions in the sense of Definition 4.1. Then there exists at least
one solution to the GS (5.79), and there exists C12 > 0, depending only on p,
CP ≥ CD, Cini ≥ ‖ΠDIDuini‖L2(Ω), f , g and a such that, for any solution u
to this scheme,

sup
t∈[0,T ]

∥∥∥Π(1)
D u(t)

∥∥∥
L2(Ω)

≤ C12 , sup
t∈[0,T ]

∥∥∥Π(θ)
D u(t)

∥∥∥
L2(Ω)

≤ C12

and
∥∥∥∇(θ)
D u

∥∥∥
Lp(Ω×(0,T ))d

≤ C12.
(5.80)

Proof. Let us first prove the estimates. Recall (5.22), that is

δt(n+ 1
2 )δ

(n+ 1
2 )

D u ΠDu
(n+θ) ≥ 1

2

(
(ΠDu

(n+1))2 − (ΠDu
(n))2

)
,

choose v = δt(n+ 1
2 )u(n+θ) in (5.79), and sum over n = 0, . . . , k − 1 for a given

k ∈ {1, . . . , N}. This yields

1

2

∥∥∥ΠDu(k)
∥∥∥2

L2(Ω)
+

∫ t(k)

0

∫
Ω

a
(
x, Π

(θ)
D u(·, t),∇(θ)

D u(x, t)
)
· ∇(θ)
D u(x, t)dxdt

≤ 1

2

∥∥∥ΠDu(0)
∥∥∥2

L2(Ω)
+

∫ t(k)

0

∫
Ω

f(x, t)Π
(θ)
D u(x, t)dxdt

+

∫ t(k)

0

∫
∂Ω

g(x, t)T(θ)
D u(x, t)dγ(x)dt. (5.81)

In particular, owing to the coercivity property (2.85b) of a, and using Hölder’s
inequality and Young’s inequality (D.9) (the latter with ε = pa

4CpD
),
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1

2

∥∥∥ΠDu(k)
∥∥∥2

L2(Ω)
+ a

∫ t(k)

0

∥∥∥∇(θ)
D u(·, t)

∥∥∥p
Lp(Ω)d

dt

≤ 1

2

∥∥∥ΠDu(0)
∥∥∥2

L2(Ω)
+

41/(p−1)Cp
′

D
(pa)1/(p−1) p′

‖f‖p
′

Lp′ (Ω×(0,t(k)))

+
a

4CpD

∥∥∥Π(θ)
D u

∥∥∥p
Lp(Ω×(0,t(k)))

+
41/(p−1)Cp

′

D
(pa)1/(p−1) p′

‖g‖p
′

Lp′ (∂Ω×(0,t(k)))

+
a

4CpD

∥∥∥T(θ)
D u

∥∥∥p
Lp(∂Ω×(0,t(k)))

.

Apply the definition (3.9) of CD and recall that u(0) = IDuini to deduce

1

2

∥∥∥ΠDu(k)
∥∥∥2

L2(Ω)
+
a

2

∥∥∥∇(θ)
D u

∥∥∥p
Lp(Ω×(0,t(k)))d

≤ 1

2
‖ΠDIDuini‖2L2(Ω) +

41/(p−1)Cp
′

D
(pa)1/(p−1) p′

‖f‖p
′

Lp′ (Ω×(0,t(k)))

+
41/(p−1)Cp

′

D
(pa)1/(p−1) p′

‖g‖p
′

Lp′ (∂Ω×(0,t(k)))
.

This establishes the estimates on Π
(1)
D u and ∇(θ)

D u. The estimate on Π
(θ)
D u

follows from the inequality∥∥∥ΠDu(n+θ)
∥∥∥
L2(Ω)

≤ θ
∥∥∥ΠDu(n+1)

∥∥∥
L2(Ω)

+ (1− θ)
∥∥∥ΠDu(n)

∥∥∥
L2(Ω)

.

The existence of at least one solution to (5.79) is done as in the proof of
Theorem 2.45, reasoning on u(n+θ) and using the above estimates.

The following estimate will be useful to apply the Aubin–Simon theorem for
GD (Theorem 4.14).

Lemma 5.24 (Estimate on the dual norm of the discrete time deriva-
tive). Under Hypotheses (2.85a)–(2.85d) and (5.74), let DT be a space–time
GD for non-homogeneous Neumann conditions in the sense of Definition 4.1.
Let u be a solution to the GS (5.79). Then there exists C13, depending only
on p, µ, a, a, Cini ≥ ‖ΠDIDuini‖L2(Ω), f , g, T and CP ≥ CD, such that∫ T

0

‖δDu(t)‖p
′

?,D dt ≤ C13, (5.82)

where the dual norm ‖·‖?,D is given by Definition 4.11.

Proof. Let us take a generic v ∈ XD as a test function in (5.79). We have,
thanks to Assumption (2.85d) on a,
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Ω

δ
(n+ 1

2 )

D u(x)ΠDv(x)dx

≤
∫
Ω

(
a(x) + µ|∇Du(n+θ)(x)|p−1

)
|∇Dv(x)|dx

+
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt

+
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
∂Ω

g(x, t)TDv(x)dγ(x)dt.

This leads, by definition (3.9) of CD, to the existence of C14 > 0 depending
only on p, µ such that∫

Ω

δ
(n+ 1

2 )

D u(x)ΠDv(x)dx

≤ C14


‖a‖Lp′ (Ω) +

∥∥∥∇Du(n+θ)
∥∥∥p−1

Lp(Ω)d

+
CD

δt(n+ 1
2 )

∫ t(n+1)

t(n)

‖f(·, t)‖Lp′ (Ω) dt

+
CD

δt(n+ 1
2 )

∫ t(n+1)

t(n)

‖g(·, t)‖Lp′ (∂Ω) dt

 ‖v‖D .

Taking the supremum on v ∈ XD such that ‖v‖D = 1 gives∥∥∥δ(n+ 1
2 )

D u
∥∥∥
?,D
≤ C14 ‖a‖Lp′ (Ω) + C14

∥∥∥∇Du(n+θ)
∥∥∥p−1

Lp(Ω)d

+
C14CD

δt(n+ 1
2 )

∫ t(n+1)

t(n)

‖f(·, t)‖Lp′ (Ω) dt+
C14CD

δt(n+ 1
2 )

∫ t(n+1)

t(n)

‖g(·, t)‖Lp′ (∂Ω) dt.

The proof is concluded by raising this estimate to the power p′, distribut-
ing this power to each term on the right-hand side thanks to the power-
of-sums inequality (D.14), using Jensen’s inequality for the integral terms,

multiplying by δt(n+ 1
2 ), summing on n and invoking Lemma 5.23 to estimate

‖∇(θ)
D u‖p

Lp(Ω×(0,T ))d
.

5.3.4 Proof of the convergence results

We now prove the convergence of the GDM for the transient Leray–Lions type
model (5.73).

Proof of Theorem 5.19.

Step 1: Application of compactness results.
The definition (3.8) of ‖·‖Dm and Estimates (5.80) and (5.82) show that
the hypotheses of Lemma 4.8 (regularity of the limit) and Theorem 4.14
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(Aubin–Simon for GD) are satisfied by (um)m∈N. There exists therefore u ∈
Lp(0, T ;W 1,p(Ω)) such that, up to a subsequence as m → ∞, Π

(θ)
Dmum → u

strongly in Lp(Ω × (0, T )), ∇(θ)
Dmum → ∇u weakly in Lp(Ω × (0, T ))d, and

T(θ)
Dmum → γu weakly in Lp(∂Ω × (0, T )). Moreover, since (Π

(θ)
Dmum)m∈N

is bounded in L∞(0, T ;L2(Ω)), the convergence Π
(θ)
Dmum → u also holds in

L∞(0, T ;L2(Ω)) weak-∗.
Estimates (5.80) and (5.82) show that (um)m∈N satisfies the assumptions
of Theorem 4.19 with θ = 1. Hence, up to a subsequence as m → ∞,

(Π
(1)
Dmum)m∈N converges to some ũ uniformly-in-time for the weak topology

of L2(Ω) (as per Definition C.13).
Estimates (5.80) and Assumption (2.85d) show that the functionsADm(x, t) =

a(x, Π
(θ)
Dmum(·, t),∇(θ)

Dmum(x, t)) remain bounded in Lp
′
(Ω× (0, T ))d. Up to a

subsequence, ADm therefore converges to some A weakly in Lp
′
(Ω × (0, T ))d

as m→∞.

Step 2: Proof that u = ũ.

First notice that the convergence of (Π
(1)
Dmum)m∈N towards ũ also holds for the

weak topology of L2(Ω×(0, T )) (this is an easy consequence of its convergence
uniformly-in-time and weakly in L2(Ω)).
Take ϕ ∈ C∞c (Ω × (0, T )) and let

IDmϕ(t) = argmin
w∈XDm

(
‖ΠDmw − ϕ(t)‖Lmax(p,2)(Ω)

+ ‖∇Dmw −∇ϕ(t)‖Lp(Ω)d

)
.

Since 0 ∈ XDm , a triangle inequality shows that

‖ΠDmIDmϕ(t)‖Lmax(p,2)(Ω) + ‖∇DmIDmϕ(t)‖Lp(Ω)d

≤ 2 ‖ϕ(t)‖Lmax(p,2)(Ω) + 2 ‖∇ϕ(t)‖Lp(Ω)d . (5.83)

In particular, by definition of ‖·‖Dm and smoothness of ϕ, ‖IDmϕ‖Lp(0,T ;XDm )

remains bounded. Moreover, the space–time-consistency of ((DT )m)m∈N en-
sures that, for all t ∈ (0, T ), ΠDmIDmϕ(t) → ϕ(t) in L2(Ω) as m → ∞.
Combined with the dominated convergence theorem and (5.83), this yields
ΠDmIDmϕ→ ϕ in L2(Ω × (0, T )) as m→∞.
For n ∈ {0, . . . , N − 1} and t ∈ (t(n), t(n+1)],

Π
(1)
Dmum(t)−Π(θ)

Dmum(t) = ΠDmu
(n+1)
m −ΠDmu(n+θ)

m

= (1− θ)(ΠDmu(n+1)
m −ΠDmu(n)

m )

= (1− θ)δt(n+ 1
2 )δDmum(t) (5.84)

and thus, by (4.17),
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∫ T

0

∫
Ω

(
Π

(1)
Dmum(x, t)−Π(θ)

Dmum(x, t)
)
ΠDm [IDmϕ(t)](x)dxdt

∣∣∣∣∣
≤ (1− θ)δtDm

∫ T

0

‖δDmu(t)‖?,Dm ‖IDmϕ(t)‖Dm dt.

Use Lemma 5.24 and Hölder’s inequality to see that the right-hand side of this

relation tends to 0 as m → ∞. Since Π
(1)
Dmum and Π

(θ)
Dmum converge weakly

in L2(Ω × (0, T )) towards ũ and u, respectively, we deduce∫ T

0

∫
Ω

(ũ(x, t)− u(x, t))ϕ(x, t)dxdt

= lim
m→∞

∫ T

0

∫
Ω

(Π
(1)
Dmum(x, t)−Π(θ)

Dmum(x, t))ΠDm [IDmϕ(t)](x)dxdt

= 0. (5.85)

This proves that ũ = u, and thus that Π
(1)
Dmum → u uniformly on [0, T ] weakly

in L2(Ω). In particular, Π
(1)
Dmum(T )→ u(T ) weakly in L2(Ω) and thus∫

Ω

u(x, T )2dx ≤ lim inf
m→∞

∫
Ω

Π
(1)
Dmum(x, T )2dx. (5.86)

Step 3: Proof that u is a solution to (5.75).
Let v ∈ C1([0, T ];W 1,p(Ω)∩L2(Ω)) such that v(·, T ) = 0, and let (vm)m∈N be
given by Lemma 4.10. Properties (4.7), (4.8) and (4.10) therefore hold, with
θ = 0.
We drop some indices m for legibility. Using δt(n+ 1

2 )v(n) as test function in

(5.79) yields T
(m)
1 + T

(m)
2 = T

(m)
3 + T

(m)
4 with

T
(m)
1 =

N−1∑
n=0

∫
Ω

[
ΠDu

(n+1)(x)−ΠDu(n)(x)
]
ΠDv

(n)(x)dx,

T
(m)
2 =

∫ T

0

∫
Ω

a
(
x, Π

(θ)
D u(·, t),∇(θ)

D u(x, t)
)
· ∇(0)
D v(x, t)dxdt,

T
(m)
3 =

∫ T

0

∫
Ω

f(x, t)Π
(0)
D v(x, t)dxdt,

and

T
(m)
4 =

∫ T

0

∫
∂Ω

g(x, t)T(0)
D v(x, t)dγ(x)dt.

Accounting for v(N) = 0, the discrete integrate-by-parts formula (D.15) gives

T
(m)
1 = −

N−1∑
n=0

∫
Ω

ΠDu
(n+1)(x)

[
ΠDv

(n+1)(x)−ΠDv(n)(x)
]
dx
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−
∫
Ω

ΠDu
(0)(x)ΠDv

(0)(x)dx

= −
∫ T

0

∫
Ω

Π
(1)
D u(x, t)δDv(x, t)dxdt−

∫
Ω

ΠDIDuini(x)Π
(0)
D v(x, 0)dx.

The strong convergences (4.10c) and (4.10b) of vm and the weak convergence

in L2(Ω × (0, T )) of Π
(1)
Dmum thus ensure that, as m→∞,

T
(m)
1 → −

∫ T

0

∫
Ω

u(x, t)∂tv(x, t)dxdt−
∫
Ω

uini(x)v(x, 0)dx. (5.87)

Owing to the weak convergence of ADm and the strong convergence (4.7b) of

∇(0)
Dmvm, as m→∞,

T
(m)
2 →

∫ T

0

∫
Ω

A(x, t) · ∇v(x, t)dxdt. (5.88)

Finally, by (4.7a) and (4.8), as m→∞,

T
(m)
3 →

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt, and

T
(m)
4 →

∫ T

0

∫
∂Ω

g(x, t)γv(x, t)dγ(x)dt.

(5.89)

Using (5.87)–(5.89) we can pass to the limit in T
(m)
1 +T

(m)
2 = T

(m)
3 +T

(m)
4 to

see that

−
∫ T

0

∫
Ω

u(x, t)∂tv(x, t)dxdt−
∫
Ω

uini(x)v(x, 0)dx

+

∫ T

0

∫
Ω

A(x, t) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt+

∫ T

0

∫
∂Ω

g(x, t)γv(x, t)dγ(x)dt.

This holds for all v ∈ C1([0, T ];W 1,p(Ω) ∩ L2(Ω)) such that v(·, T ) = 0.
By a density argument similar to the one used to prove the equivalence of
(5.3) and (5.4), or of (5.75) and (5.78), we infer that u ∈ Lp(0, T ;W 1,p(Ω))∩
C([0, T ];L2(Ω)), ∂tu ∈ Lp

′
(0, T ; (W 1,p(Ω))′), u(·, 0) = uini and, for all v ∈

Lp(0, T ;W 1,p(Ω)),∫ T

0

〈∂tu(·, t), v(·, t)〉(W 1,p(Ω))′,W 1,p(Ω)dt+

∫ T

0

∫
Ω

A(x, t) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt+

∫ T

0

∫
∂Ω

g(x, t)γv(x, t)dγ(x)dt. (5.90)
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It remains to prove that

A(x, t) = a(x, u(·, t),∇u(x, t)), for a.e. (x, t) ∈ Ω × (0, T ). (5.91)

The formula∫ T

0

〈∂tu(·, t), u(·, t)〉(W 1,p(Ω))′,W 1,p(Ω)dt

=
1

2

∫
Ω

u(x, T )2dx− 1

2

∫
Ω

u(x, 0)2dx

is justified by [67, Section 2.5.2] since u ∈ Lp(0, T ;W 1,p(Ω) ∩ L2(Ω)) and
∂tu ∈ Lp

′
(0, T ; (W 1,p(Ω))′). Writing (5.90) with v = u thus yields

1

2

∫
Ω

u(x, T )2dx− 1

2

∫
Ω

uini(x)2dx+

∫ T

0

∫
Ω

A(x, t) · ∇u(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)u(x, t)dxdt+

∫ T

0

∫
∂Ω

g(x, t)γu(x, t)dγ(x)dt. (5.92)

Relation (5.81) with k = N yields

1

2

∫
Ω

(Π
(1)
D u(x, T ))2dx

+

∫ T

0

∫
Ω

a
(
x, Π

(θ)
D u(·, t),∇(θ)

D u(x, t)
)
· ∇(θ)
D u(x, t)dxdt

≤ 1

2

∫
Ω

(ΠDIDuini(x))2dx+

∫ T

0

∫
Ω

f(x, t)Π
(θ)
D u(x, t)dxdt

+

∫ T

0

∫
∂Ω

g(x, t)T(θ)
D u(x, t)dγ(x)dt.

(5.93)

Recall that Π
(θ)
Dmum → u strongly in Lp(Ω×(0, T )), that T(θ)

Dmum → γu weakly
in Lp(∂Ω × (0, T )) and, by space–time consistency, that ΠDmIDmuini → uini

in L2(Ω). Moving the first term of (5.93) into the right-hand side, taking the
superior limit of the resulting inequality and using (5.86) therefore leads to

lim sup
m→∞

∫ T

0

∫
Ω

a
(
x, Π

(θ)
D u(·, t),∇(θ)

D u(x, t)
)
· ∇(θ)
D u(x, t)dxdt

≤ − lim inf
m→∞

1

2

∫
Ω

(Π
(1)
D u(x, T ))2dxdt+

1

2

∫
Ω

uini(x)2dx

+

∫ T

0

∫
Ω

f(x, t)u(x, t)dxdt+

∫ T

0

∫
∂Ω

g(x, t)γu(x, t)dγ(x)dt

≤ − 1

2

∫
Ω

u(x, T )2dxdt+
1

2

∫
Ω

uini(x)2dx
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+

∫ T

0

∫
Ω

f(x, t)u(x, t)dxdt+

∫ T

0

∫
∂Ω

g(x, t)γu(x, t)dγ(x)dt.

Relation (5.92) then yields

lim sup
m→∞

∫ T

0

∫
Ω

a
(
x, Π

(θ)
Dmum(·, t),∇(θ)

Dmum(x, t)
)
· ∇(θ)
Dmum(x, t)dxdt

≤
∫ T

0

∫
Ω

A(x, t) · ∇u(x, t)dxdt. (5.94)

It is now possible to apply Minty’s trick. Consider, for G ∈ Lp(0, T ;Lp(Ω))d,
the quantity∫ T

0

∫
Ω

[
a
(
x, Π

(θ)
D u(·, t),∇(θ)

D u(x, t)
)
− a

(
x, Π

(θ)
D u(·, t),G(x, t)

)]
·
[
∇(θ)
D u(x, t)−G(x, t)

]
dxdt ≥ 0. (5.95)

Since Π
(θ)
Dmum → u strongly in Lp(0, T ;Lp(Ω)), up to a subsequence we can

assume that Π
(θ)
Dmum(t) → u(t) strongly in Lp(Ω) for a.e. t ∈ (0, T ). As-

sumptions (2.85a) and (2.85d) and the dominated convergence theorem then

show that a(·, Π(θ)
D u,G)→ a(·, u,G) strongly in Lp

′
(Ω×(0, T ))d. Developing

(5.95), all the terms except one pass to the limit by “weak-strong” conver-
gence (cf. Lemma D.8). For the only “weak-weak” limit, apply (5.94) and,
taking the superior limit as m→∞, write∫ T

0

∫
Ω

[A(x, t)− a (x, u(·, t),G(x, t))] · [∇u(x, t)−G(x, t)]dxdt ≥ 0.

In a similar way as in Step 2 of the proof of Theorem 2.45, take then G =
∇u + αϕ for α ∈ R and ϕ ∈ Lp(0, T ;Lp(Ω))d, divide by α and let α → 0.
This gives ∫ T

0

∫
Ω

[A(x, t)− a (x, u(·, t),∇u(x, t))] ·ϕ(x, t)dx = 0,

which shows that (5.91) holds. The proof that u is a weak solution to (5.75)
is therefore complete.

Proof of Theorem 5.21.
Step 1: a preliminary result.

Take (sm)m∈N ⊂ [0, T ] that converges to some s ∈ [0, T ]. Since Π
(θ)
Dmum → u

strongly in Lp(Ω×(0, T )), as in Step 3 of the proof of Theorem 5.19, Assump-

tions (2.85a) and (2.85d) show that (1[0,sm]a(x, Π
(θ)
Dmum,∇u))m∈N converges

strongly in Lp
′
(Ω × (0, T ))d. The weak convergence of (∇(θ)

Dmum)m∈N to ∇u
in Lp(Ω × (0, T ))d then yields
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0

∫
Ω

a
(
x, Π

(θ)
Dmum(·, t),∇u(x, t)

)
·
[
∇(θ)
Dmum(x, t)−∇u(x, t)

]
dxdt→ 0. (5.96)

Write (5.95) with sm instead of T and∇u instead of G, and develop the terms.

Using (5.96), the weak convergence a(·, Π(θ)
Dmum,∇

(θ)
Dmum) → a(·, u,∇u) in

Lp
′
(Ω× (0, T )) (see (5.91)), and the strong convergence 1[0,sm]∇u→ 1[0,s]∇u

in Lp(Ω × (0, T )), we obtain

lim inf
m→∞

∫ sm

0

∫
Ω

a
(
x, Π

(θ)
Dmum(·, t),∇(θ)

Dmum(x, t)
)
· ∇(θ)
Dmum(x, t)dxdt

≥
∫ s

0

∫
Ω

a (x, u(·, t),∇u(x, t)) · ∇u(x, t)dxdt. (5.97)

Step 2: proof of the uniform-in-time strong in L2(Ω) convergences.
Let s ∈ [0, T ] and k(s) such that s ∈ (t(k(s)), t(k(s)+1)]. Apply (5.81) to k =
k(s) + 1 to write

1

2

∥∥∥Π(1)
Dmum(s)

∥∥∥2

L2(Ω)

+

∫ s

0

∫
Ω

a(x, Π
(θ)
Dmum(·, t),∇(θ)

Dmum(x, t)) · ∇(θ)
Dmum(x, t)dxdt

≤ 1

2
‖ΠDmIDmuini‖2L2(Ω) +

∫ s

0

∫
Ω

f(x, t)ΠDmum(x, t)dxdt

+

∫ s

0

∫
∂Ω

g(x, t)TDmum(x, t)dγ(x)dt+ ρ(δtDm) (5.98)

where ρ(δtDm) → 0 as δtDm → 0 (all time integrals should be up to t(k(s)+1),
but we used the non-negativity of the integrand involving a to limit its integral
to s, and ρ is the quantity that includes the remaining parts of the integrals
in the right-hand side, estimated using to (5.80)).

The proof of the uniform convergence of (Π
(1)
Dmum)m∈N is done by invoking

Lemma C.12. As in Step 1, take (sm)m∈N ⊂ [0, T ] that converges to some s ∈
[0, T ]. We want to show that Π

(1)
Dmum(sm)→ u(s) in L2(Ω). Apply (5.98) with

s = sm, move the second term to the right-hand side, and take the superior
limit as m → ∞. Relation (5.97) and the strong (resp. weak) convergence of

Π
(θ)
Dmum (resp. T(θ)

Dmum) enable us to pass to the limit in all the terms except
the first one. Owing to (5.77), this gives

lim sup
m→∞

1

2

∥∥∥Π(1)
Dmum(sm)

∥∥∥2

L2(Ω)

≤ −
∫ s

0

∫
Ω

a(x, u(·, t),∇u(x, t)) · ∇u(x, t)dxdt
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+
1

2
‖uini‖2L2(Ω) +

∫ s

0

∫
Ω

f(x, t)u(x, t)dxdt

+

∫ s

0

∫
∂Ω

g(x, t)γu(x, t)dγ(x)dt =
1

2
‖u(s)‖2L2(Ω) . (5.99)

The uniform-in-time weak L2(Ω) convergence of (Π
(1)
Dmum)m∈N towards u and

Lemma C.12 show that Π
(1)
Dmum(sm)→ u(s) in L2(Ω) weak. Owing to (5.99),

this convergence is actually strong in L2(Ω). Invoke again Lemma C.12 to

conclude that supt∈[0,T ] ‖Π
(1)
Dmum(t)− u(t)‖L2(Ω) → 0.

The strong convergence of (Π
(θ)
Dmum)m∈N in the same sense follows imme-

diately from the definition of these functions, the strong convergence of

(Π
(1)
Dmum)m∈N, and the continuity of u : [0, T ]→ L2(Ω). Indeed, Π

(θ)
Dmum(·, t)

is a convex combination of values of Π
(1)
Dmum at two times within distance

δtDm of t.

Proof of Theorem 5.22.
Using (5.94) and (5.96) with sm = T ,

lim sup
m→∞

∫ T

0

∫
Ω

[
a
(
x, Π

(θ)
Dmum,∇

(θ)
Dmum

)
− a

(
x, Π

(θ)
Dmum,∇u

) ]
·
[
∇(θ)
Dmum −∇u

]
dxdt ≤ 0.

This relation and the strict monotonicity of a enable us to conclude, as in

Step 3 of the proof of Theorem 2.45, that ∇(θ)
Dmum → ∇u a.e. on Ω × (0, T ).

From (5.94) and (5.91) we also infer

lim sup
m→∞

∫ T

0

∫
Ω

a
(
x, Π

(θ)
Dmum,∇

(θ)
Dmum

)
· ∇(θ)
Dmumdxdt

≤
∫ T

0

∫
Ω

a (x, u,∇u) · ∇udxdt.

Together with (5.97) (with sm = T ), this proves that this relation holds with
a limit instead of a superior limit, and an equality instead of an inequality.
The same technique as in Step 3 of the proof of Theorem 2.45 then yields the
strong convergence of ∇Dmum to ∇u in Lp(Ω × (0, T ))d.

Remark 5.25 (Navier–Stokes equations)
The GDM has been adapted to the Stokes and Navier–Stokes equations in [74, 89],
with similar convergence results as for the transient Leray–Lions type model.





6

Degenerate parabolic problems

In this chapter, we study the following generic non-linear parabolic model

∂tβ(u)− div (Λ(x)∇ζ(u)) = f in Ω × (0, T ),

β(u)(x, 0) = β(uini)(x) in Ω,

ζ(u) = 0 on ∂Ω × (0, T ),

(6.1)

where β and ζ are non-decreasing. This model arises in various frameworks
(see next section for precise hypotheses on the data). This model includes

1. Richards’ model, setting ζ(s) = s, which describes the flow of water in a
heterogeneous anisotropic underground medium,

2. Stefan’s model [23], setting β(s) = s, which arises in the study of a sim-
plified heat diffusion in a melting medium.

The purpose of this chapter is to study the convergence of gradient schemes for
(6.1). Although Richards’ and Stefan’s models are formally equivalent when β
and ζ are strictly increasing (consider β = ζ−1 to pass from one model to the
other), they change nature when these functions are allowed to have plateaux.
Stefan’s model can degenerate to an ODE (if ζ is constant on the range of the
solution), and Richards’ model can become a non-transient elliptic equation
(if β is constant on this range).

Remark 6.1. The techniques developed in this chapter also apply to the fol-
lowing more general non-linear PDE, which mixes (6.1) and Leray–Lions type
operators as in Section 5.3:

∂tβ(u)− diva (x, ν(u),∇ζ(u)) = f, (6.2)

where ν′ = β′ζ ′. We refer to [72] for the analysis of gradient schemes for (6.2).

The chapter is organised as follows. Section 6.1 is devoted to the assumptions
and the notion of weak solution for the problem (6.1), which is reformulated
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using the notion of maximal monotone graph. Section 6.2 presents the gradi-
ent schemes (GSs) obtained by applying the gradient discretisation method
(GDM) to the generic model (6.1). Based on estimates proved in Section 6.3,
Section 6.4 contains the convergence proof of these GSs. Section 6.5 is fo-
cused on a uniform-in-time convergence result. A uniqueness result, based on
the existence of a solution to the adjoint problem, is given in Section 6.7.

6.1 The continuous problem

6.1.1 Hypotheses and notion of solution

We consider the evolution problem (6.1) under the following hypotheses.

• Ω is an open bounded connected subset of Rd (d ∈ N?)
and T > 0, (6.3a)

• ζ : R→ R is non-decreasing, Lipschitz continuous with Lipschitz

constant Lζ > 0 , ζ(0) = 0 and, for some M0,M1 > 0,

|ζ(s)| ≥M0|s| −M1 for all s ∈ R, (6.3b)

• β : R→ R is non-decreasing, Lipschitz continuous with Lipschitz

constant Lβ > 0, and β(0) = 0, (6.3c)

• β + ζ is strictly increasing, (6.3d)

• Λ : Ω →Md(R) is measurable and there exists λ ≥ λ > 0 such that,

for a.e. x ∈ Ω, Λ(x) is symmetric with eigenvalues in [λ, λ]. (6.3e)

• uini ∈ L2(Ω) , f ∈ L2(Ω × (0, T )). (6.3f)

Remark 6.2 (Common plateaux of ζ and β)
Hypothesis (6.3d) does not restrict the generality of the model. Indeed, if we only
assume (6.3b)–(6.3c), and if there exist s1 < s2 such that (β + ζ)(s1) = (β + ζ)(s2),

then [s1, s2] is a common plateau of β and ζ. Denoting by β̃, ζ̃ and ν̃ the functions
obtained from β and ζ by removing this common plateau (by a contraction of the
s-ordinate), we see that u is a solution to (6.1) if and only if u is a solution of the

same problem with β and ζ replaced with β̃ and ζ̃.

The precise notion of solution to (6.1) that we consider is the following:
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ζ(u) ∈ L2(0, T ;H1
0 (Ω)) ,

−
∫ T

0

∫
Ω

β(u)(x, t)∂tv(x, t)dxdt−
∫
Ω

β(uini(x))v(x, 0)dx

+

∫ T

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt,

∀v ∈ L2(0;T ;H1
0 (Ω)) such that ∂tv ∈ L2((0, T )×Ω)

and v(·, T ) = 0.

(6.4)

Remark 6.3 (All the terms in (6.4) make sense). If v and ∂tv belong to
L2(0, T ;L2(Ω)), then v ∈ C([0, T ];L2(Ω)) (see [67]), and we can therefore
impose the pointwise-in-time value of v(·, T ). Moreover, Assumptions (6.3b)
and (6.3c) ensure that, if ζ(u) ∈ L2((0, T )×Ω), then u and β(u) also belong
to L2((0, T )×Ω). Hence, all the terms in (6.4) are well-defined.

The existence of a solution to this problem follows from the proof of conver-
gence of the GS (see Remark 6.14). The uniqueness of this solution is proved
in Section 6.7.

Theorem 6.4 (Existence and uniqueness of the weak solution). Under
Hypotheses (6.3), there exists a unique solution to (6.4).

Remark 6.5. We will see in Corollary 6.16 that the solution to (6.4) enjoys
additional regularity properties, and that (6.4) can be recast in a stronger
form.

6.1.2 A maximal monotone operator viewpoint

Following [78], we show here that (6.1) can be recast in a maximal monotone
operator framework.

Lemma 6.6 (Maximal monotone operator). Let T : R → R be a multi-
valued operator, that is a function from R to the set P(R) of all subsets of R.
The following properties are equivalent:

1. T is a maximal monotone operator with domain R, 0 ∈ T (0) and T is
sublinear in the sense that there exist T1, T2 ≥ 0 such that, for all x ∈ R
and all y ∈ T (x), |y| ≤ T1|x|+ T2;

2. There exist ζ and β satisfying (6.3b) and (6.3c) such that the graph of T
is given by Gr(T ) = {(ζ(s), β(s)), s ∈ R}.

Proof. (2)⇒(1). Clearly 0 = (ζ(0), β(0)) ∈ T (0). The monotonicity of T
follows from the fact that ζ and β are non-decreasing. We now have to prove
that T is maximal, that is, if x, y satisfy (ζ(s)−x)(β(s)− y) ≥ 0 for all s ∈ R
then (x, y) ∈ Gr(T ). By (6.3b) and (6.3c), the mapping β+ζ : R→ R is onto,
so there exists s ∈ R such that
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β(s) + ζ(s) = x+ y. (6.5)

Then ζ(s)−x = y−β(s) and therefore −(β(s)−y)2 = (ζ(s)−x)(β(s)−y) ≥ 0.
This implies β(s) = y and, combined with (6.5), ζ(s) = x. Hence (x, y) ∈
Gr(T ). The sub-linearity of T follows from |β(s)| ≤ Lβ |s| ≤ Lβ(|ζ(s)| +
M2)/M1.
(1)⇒(2). Recall that the resolvent[33] R(T ) = (Id + T )−1 of the maximal
monotone operator T is a single-valued function R→ R that is non-decreasing
and Lipschitz continuous with Lipschitz constant 1. Set ζ = R(T ) and β =
Id − ζ. These functions are non-decreasing and Lipschitz continuous with
constant 1. By definition of the resolvent,

(x, y) ∈ Gr(T )⇔ (x, x+y) ∈ Gr(Id+T )⇔ (x+y, x) ∈ Gr(ζ)⇔ x = ζ(x+y).

Since β = Id − ζ, setting s = x + y shows that (x, y) ∈ Gr(T ) is equivalent
to (x, y) = (ζ(s), β(s)). Since 0 ∈ T (0) this gives β(0) = ζ(0) = 0. Finally,
the existence of M1 and M2 in (6.3b) follows from the sublinearity of T . If
(x, y) ∈ Gr(T ) then |y| ≤ T1|x|+ T2 and x = ζ(x+ y), which gives |x+ y| ≤
((1 + T1)|ζ(x+ y)|+ T2).

Using this lemma, we recast (6.1) as
∂tT (z)− div (Λ(x)∇z) = f in Ω × (0, T ),

T (z)(·, 0) = bini in Ω,

z = 0 on ∂Ω × (0, T )

(6.6)

where bini = β(uini) ∈ L2(Ω). Hypotheses (6.3c) and (6.3b) are translated
into:

T : R→ P(R) is a maximal monotone operator, 0 ∈ T (0)

and T is sublinear: ∃T1, T2 ≥ 0 such that, for all x ∈ R
all y ∈ T (x), |y| ≤ T1|x|+ T2.

(6.7)

Definition 6.7. Let us assume (6.3a), (6.3e), (6.3f) and (6.7). Let zini ∈
L2(Ω) and bini : Ω → R such that, for a.e. x ∈ Ω, bini(x) ∈ T (zini(x)). A
solution to (6.6) is a pair of functions (z, b) satisfying

z ∈ L2(0, T ;H1
0 (Ω)) ,

b(x, t) ∈ T (z(x, t)) for a.e. (x, t) ∈ Ω × (0, T ),

−
∫ T

0

∫
Ω

b(x, t)∂tv(x, t)dxdt−
∫
Ω

bini(x)v(x, 0)dx

+

∫ T

0

∫
Ω

Λ(x)∇z(x, t) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt

∀v ∈ L2(0;T ;H1
0 (Ω)) such that ∂tv ∈ L2((0, T )×Ω)

and v(·, T ) = 0.

(6.8)
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Remark 6.8. The sublinearity of T ensures that b ∈ L2(0, T ;L2(Ω)) and bini ∈
L2(Ω), since z ∈ L2(0, T ;L2(Ω)) and zini ∈ L2(Ω).

Given (zini, bini) as in Definition 6.7 and fixing ζ = R(T ) and β = Id − ζ
(as in the proof of Item 2 of Lemma 6.6), we can find a measurable uini such
that zini = ζ(uini) and bini = β(uini). the estimate |zini| ≥ M0|uini| − M1

ensures that uini ∈ L2(Ω). These ζ, β and uini being fixed, the existence
and uniqueness of the solution to (6.4) (Theorem 6.4) gives the existence and
uniqueness of the solution to (6.8). This solution satisfies that z = ζ(u) and
b = β(u), where u is the unique solution to (6.4).

6.2 Gradient scheme

Let p = 2 and DT = (D, ID, (t(n))n=0,...,N ) be a space–time gradient discreti-
sation for homogeneous Dirichlet boundary conditions, in the sense of Defini-
tion 4.1. Assume that D has the piecewise constant reconstruction property
in the sense of Definition 2.13. We take θ = 1 in (4.2), which means that an
implicit time-stepping is considered. We recall the corresponding notations

Π
(1)
D and ∇(1)

D .

Formally integrating (6.4) by parts in time, we obtain a new formulation of
(6.1) (see (6.25)). The GDM applied to (6.4) leads to a GS which merely
consists in using, in this new formulation, the discrete space and mappings of
the GD. The GS is therefore: seek a family (u(n))n=0,...,N ⊂ XD,0 such that

u(0) = IDuini and, for all v = (v(n))n=1,...,N ⊂ XD,0,∫ T

0

∫
Ω

[
δDβ(u)(x, t)Π

(1)
D v(x, t) + Λ(x)∇(1)

D ζ(u)(x, t) · ∇(1)
D v(x, t)

]
dxdt

=

∫ T

0

∫
Ω

f(x, t)Π
(1)
D v(x, t)dxdt.

(6.9)
We recall the definition, in Remark 2.14, of ζ(u) and β(u), which is coherent
with ΠD since this reconstruction is piecewise constant.

6.3 Estimates on the approximate solution

As it is usual in the study of numerical methods for PDE with strong non-
linearities or without regularity assumptions on the data, everything starts
with a priori estimates.

Lemma 6.9 (L∞(0, T ;L2(Ω)) estimate and discrete L2(0, T ;H1
0 (Ω)) es-

timate). Under Assumptions (6.3), let DT be a space–time GD for homoge-
neous Dirichlet boundary conditions, in the sense of Definition 4.1. Assume
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that the underlying spatial discretisation has a piecewise constant reconstruc-
tion in the sense of Definition 2.13, and that u is a solution to the correspond-
ing GS (6.9). Let η : R→ R be defined by

∀s ∈ R , η(s) =

∫ s

0

ζ(q)β′(q)dq. (6.10)

Let T0 ∈ (0, T ] and denote by k = 1, . . . , N the index such that T0 ∈
(t(k−1), t(k)]. Then∫

Ω

Π
(1)
D η(u)(x, T0)dx+

∫ T0

0

∫
Ω

Λ(x)∇(1)
D ζ(u)(x, t) · ∇(1)

D ζ(u)(x, t)dxdt

≤
∫
Ω

ΠDη(IDuini)(x)dx+

∫ t(k)

0

∫
Ω

f(x, t)Π
(1)
D ζ(u)(x, t)dxdt. (6.11)

Consequently, there exists C1 > 0, depending only on Lβ, Lζ , CP ≥ CD (see
Definition 2.2), Cini ≥ ‖ΠDIDuini‖L2(Ω), f and λ such that

sup
t∈[0,T ]

∥∥∥Π(1)
D η(u)(t)

∥∥∥
L1(Ω)

≤ C1 ,
∥∥∥∇(1)
D ζ(u)

∥∥∥
L2(Ω×(0,T ))d

≤ C1

and sup
t∈[0,T ]

∥∥∥Π(1)
D β(u)(t)

∥∥∥
L2(Ω)

≤ C1.
(6.12)

Proof. Let us first remark that, for all a, b ∈ R, an integration by parts gives

η(b)− η(a) =

∫ b

a

ζ(q)β′(q)dq = ζ(b)(β(b)− β(a))−
∫ b

a

ζ ′(q)(β(q)− β(a))dq.

Since
∫ b
a
ζ ′(q)(β(q)− β(a))dq ≥ 0 (as ζ and β are non-decreasing), we get

η(b)− η(a) ≤ ζ(b)(β(b)− β(a)). (6.13)

Using Remark 2.14 (consequence of the definition 2.13 of piecewise constant
reconstruction) and (6.13), we infer that for any n = 0, . . . , N − 1, any t ∈
(t(n), t(n+1)],

δDβ(u)(t)ΠDζ(u(n+1)) =
1

δt(n+ 1
2 )

(
β(ΠDu

(n+1))− β(ΠDu
(n))
)
ζ(ΠDu

(n+1))

≥ 1

δt(n+ 1
2 )

(
η(ΠDu

(n+1))− η(ΠDu
(n))
)
.

Hence, taking v = (ζ(u(0)), ζ(u(1)), . . . , ζ(u(k)), 0, . . . , 0) ⊂ XD,0 in (6.9), we
find∫

Ω

η(Π
(1)
D u(x, t(k)))dx+

∫ t(k)

0

∫
Ω

Λ(x)∇(1)
D ζ(u)(x, t) · ∇(1)

D ζ(u)(x, t)dxdt
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≤
∫
Ω

η(ΠDu
(0)(x))dx+

∫ t(k)

0

∫
Ω

f(x, t)Π
(1)
D ζ(u)(x, t)dxdt. (6.14)

Equation (6.11) is a straightforward consequence of this estimate, of the rela-

tion Π
(1)
D u(·, T0) = Π

(1)
D u(·, t(k)) (see (4.2)) and of the fact that the integrand

involving Λ is non-negative on [T0, t
(k)].

Using the Young inequality (D.9), we write

∫ t(k)

0

∫
Ω

f(x, t)Π
(1)
D ζ(u)(x, t)dxdt

≤ C2
D

2λ
‖f‖2L2(Ω×(0,t(k))) +

λ

2C2
D
‖Π(1)
D ζ(u)‖2L2(Ω×(0,t(k))). (6.15)

We also notice that

0 ≤ η(s) ≤ LβLζ
∫ s

0

qdq = LβLζ
s2

2
, (6.16)

so that ∥∥∥η(Π
(1)
D u(·, T0))

∥∥∥
L1(Ω)

=

∫
Ω

η(Π
(1)
D u(x, T0))dx

and∥∥∥η(ΠDu
(0))
∥∥∥
L1(Ω)

= ‖η(ΠDIDuini)‖L1(Ω) ≤
LβLζ

2
‖ΠDIDuini‖2L2(Ω) .

The first two estimates in (6.12) therefore follow from (6.14), (6.15), Assump-
tion (6.3e) on Λ, and the definition (2.1) of CD.

Let us now prove that the uniform-in-time L1(Ω) estimate on Π
(1)
D η(u) im-

plies the uniform-in-time L2(Ω) estimate on Π
(1)
D β(u) = β(Π

(1)
D u). Owing to

(6.3b), for all s ≥ 0 there holds ζ(s) ≥ M0s −M1 ≥ M0

Lβ
β(s) −M1. Hence,

using the Young inequality,

η(s) =

∫ s

0

ζ(q)β′(q)dq ≥ M0

Lβ

∫ s

0

β(q)β′(q)dq −M1

∫ s

0

β′(q)dq

=
M0

2Lβ
β(s)2 −M1β(s)

≥ M0

2Lβ
β(s)2 − M0

4Lβ
β(s)2 − LβM

2
1

M0
.

For s ≤ 0, we use −ζ(s) ≥ −M0s −M1 ≥ −M0

Lβ
β(s) −M1 to infer the same

estimate. Therefore,

∀s ∈ R ,
M0

4Lβ
β(s)2 − LβM

2
1

M0
≤ η(s). (6.17)



168 6 Degenerate parabolic problems

Making s = Π
(1)
D u in this inequality and using the uniform-in-time L1(Ω) esti-

mate on η(Π
(1)
D u), we deduce the uniform-in-time L2(Ω) estimate on β(Π

(1)
D u)

stated in (6.12).

Corollary 6.10 (Existence of a solution to the GS). Under Assump-
tions (6.3), let DT be a space–time GD for homogeneous Dirichlet boundary
conditions, in the sense of Definition 4.1. Assume that the underlying spatial
discretisation has a piecewise constant reconstruction in the sense of Defini-
tion 2.13. Then there exists at least a solution to the GS (6.9).

Proof. For ρ ∈ [0, 1] we let βρ(u) = ρu+ (1− ρ)β(u) and ζρ(u) = ρu+ (1−
ρ)ζ(u). It is clear that βρ and ζρ satisfy the same assumptions as β and ζ for
some Lβ and M0, M1 not depending on ρ. We can therefore apply Lemma 6.9
to see that there exists C2, not depending on ρ, such that any solution uρ to
(6.9) with β = βρ and ζ = ζρ satisfies∥∥∥∇(1)

D ζρ(uρ)
∥∥∥
L2((0,T )×Ω)d

≤ C2.

Since ‖∇D·‖L2(Ω)d is a norm on XD,0, this shows that (ζρ(uρ))ρ∈[0,1] re-
mains bounded in this finite dimensional space. In particular, for all i ∈ I,
(ζρ(uρ)i)ρ∈[0,1] is bounded. Using Assumption (6.3b) for ζρ with constants not
depending on ρ, we deduce that ((uρ)i)ρ∈[0,1] remains bounded for any i ∈ I,
and thus that (uρ)ρ∈[0,1] is bounded in XD,0.
If ρ = 0 then (6.9) is a square linear system. Any solution to this system being
bounded in XD,0, this shows that the underlying linear system is invertible.
A topological degree argument (see Theorem D.1) combined with the uniform
bound on (uρ)ρ∈[0,1] then shows that the scheme corresponding to ρ = 1, that
is (6.9), possesses at least one solution.

Lemma 6.11 (Uniqueness of the solution to the GS). Under Assump-
tions (6.3), let DT be a space–time GD for homogeneous Dirichlet boundary
conditions, in the sense of Definition 4.1. Assume that the underlying spatial
discretisation has a piecewise constant reconstruction in the sense of Defini-
tion 2.13. Let u, ũ be solutions to the GS (6.9). Then, for all n = 0, . . . , N ,
ΠDu

(n) = ΠDũ
(n) in L2(Ω), and ζ(u(n)) = ζ(ũ(n)) in XD,0.

Proof. The proof is done by induction on n. The result is clearly true for
n = 0, since u(0) = ũ(0) = IDuini. Let us now assume that, for some n ≤
N − 1, ΠDu

(n)(x) = ΠDũ
(n)(x) for a.e. x ∈ Ω. Subtracting the equation

corresponding to ũ(n+1) to the equation corresponding to u(n+1), we get∫
Ω

[ΠD(β(u(n+1))− β(ũ(n+1)))(x)

δt(n+ 1
2 )

ΠDv(x)

+∇D(ζ(u(n+1))− ζ(ũ(n+1)))(x) · ∇Dv(x)
]
dx = 0, ∀v ∈ XD,0. (6.18)
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Using (6.3b)–(6.3c) we have

ΠD

[
β(u(n+1))− β(ũ(n+1))

]
×ΠD

[
ζ(u(n+1))− ζ(ũ(n+1))

]
=[

β(ΠDu
(n+1))− β(ΠDũ

(n+1))
] [
ζ(ΠDu

(n+1))− ζ(ΠDũ
(n+1)))

]
≥ 0.

Hence, making v = ζ(u(n+1))− ζ(ũ(n+1)) in (6.18),∫
Ω

|∇D(ζ(u(n+1))− ζ(ũ(n+1)))(x)|2dx = 0.

Since ‖∇·‖L2(Ω) is a norm on XD,0, this shows that ζ(u(n+1)) = ζ(ũ(n+1)).

We then get, from (6.18), that∫
Ω

[
ΠD(β(u(n+1))− β(ũ(n+1)))(x)

]
ΠDv(x)dx = 0, ∀v ∈ XD,0.

Letting v = β(u(n+1)) − β(ũ(n+1)) gives ΠDβ(u(n+1)) = ΠDβ(ũ(n+1)) a.e.
on Ω. Since ΠDζ(u(n+1)) = ΠDζ(ũ(n+1)) a.e. on Ω, Assumption (6.3d) and
the fact that ΠD(β(w) + ζ(w)) = β(ΠDw) + ζ(ΠDw) for all w ∈ XD,0 imply
ΠDu

(n+1) = ΠDũ
(n+1) a.e. on Ω.

Lemma 6.12 (Estimate on the dual norm of the discrete time deriva-
tive). Under Assumptions (6.3), let DT be a space–time GD for homogeneous
Dirichlet boundary conditions, in the sense of Definition 4.1. Assume that the
underlying spatial discretisation has a piecewise constant reconstruction in the
sense of Definition 2.13. Let u be a solution to Scheme (6.9). Then there ex-
ists C3, depending only on Lβ, Lζ , CP ≥ CD, Cini ≥ ‖ΠDIDuini‖L2(Ω), f , λ,

λ and T , such that ∫ T

0

‖δDβ(u)(t)‖2?,D dt ≤ C3, (6.19)

where the dual norm ‖·‖?,D is given by Definition 4.11.

Proof. Let us take a generic v = (v(n))n=1,...,N ⊂ XD,0 as test function in
(6.9). We have

∫ T

0

∫
Ω

δDβ(u)(x, t)Π
(1)
D v(x, t)dxdt ≤

λ

∫ T

0

∫
Ω

|∇(1)
D ζ(u)(x, t)| |∇(1)

D v(x, t)|dxdt+

∫ T

0

∫
Ω

f(x, t)Π
(1)
D v(x, t)dxdt.

Using the Cauchy–Schwarz inequality, the definition 2.2 of CD, and Estimates
(6.12), this gives C4 > 0 depending only on Lβ , CP , Cini, f , λ and λ such
that
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0

∫
Ω

δDβ(u)(x, t)Π
(1)
D v(x, t)dxdt ≤ C4‖∇(1)

D v‖L2(0,T ;L2(Ω))d .

The proof of (6.19) is completed by selecting

v =

(∥∥∥δ(n+ 1
2 )

D β(u)
∥∥∥
?,D

z(n)

)
n=0,...,N

with (z(n))n=0,...,N ⊂ XD,0 such that, for any n = 0, . . . , N −1, z(n+1) realises

the supremum in (4.16) with w = δ
(n+ 1

2 )

D β(u).

6.4 A first convergence theorem

The following theorem states initial convergence properties of the GS for (6.1).

Theorem 6.13 (Convergence of the GS). Under Assumptions (6.3), let
((DT )m)m∈N be a space–time-consistent, limit-conforming and compact se-
quence of space–time GDs, for homogeneous Dirichlet boundary conditions, in
the sense of Definitions 4.3 and 4.6. We assume that the sequence of under-
lying spatial discretisations has the piecewise constant reconstruction property
(Definition 2.13). Let ν : R→ R be defined by

∀s ∈ R , ν(s) =

∫ s

0

ζ ′(q)β′(q)dq. (6.20)

For any m ∈ N, let um be a solution to (6.9) with D = Dm. Then, as m→∞,

Π
(1)
Dmβ(um)→ β(u) weakly in L2(Ω) uniformly on [0, T ]

(see Definition C.13),

Π
(1)
Dmζ(um)→ ζ(u) weakly in L2(Ω × (0, T )),

Π
(1)
Dmν(um)→ ν(u) in L2(Ω × (0, T )),

∇(1)
Dmζ(um)→ ∇ζ(u) weakly in L2(Ω × (0, T ))d,

(6.21)

where u is the unique solution to (6.4).

Remark 6.14. We do not assume the existence of a solution u to the continuous
problem, the convergence analysis establishes this existence, which proves part
of Theorem 6.4.

Proof.
Note that, since ((DT )m)m∈N is compact, it is also coercive (Lemma 2.11).

Step 1: Application of compactness results.



6.4 A first convergence theorem 171

Thanks to Theorem 4.19 and Estimates (6.12) and (6.19), we first extract

a subsequence, without changing the notations, such that (Π
(1)
Dmβ(um))m∈N

converges weakly in L2(Ω) uniformly in [0, T ] (in the sense of Definition
C.13) to some function β ∈ C([0, T ];L2(Ω)-w). By space–time-consistency

of ((DT )m)m∈N, Π
(1)
Dmβ(um)(·, 0) = ΠDmβ(IDmuini) = β(ΠDmIDmuini) →

β(uini) in L2(Ω). Hence, the uniform-in-time weak L2(Ω) convergence of

(Π
(1)
Dmβ(um))m∈N shows that β(·, 0) = β(uini) in L2(Ω). Using again Esti-

mates (6.12) and applying Lemma 4.8, we extract another subsequence such

that, for some ζ ∈ L2(0, T ;H1
0 (Ω)), Π

(1)
Dmζ(um)→ ζ weakly in L2(Ω× (0, T ))

and ∇(1)
Dmζ(um)→ ∇ζ weakly in L2(Ω × (0, T ))d.

Estimates (6.12) and (6.19) also show that βm = β(um) and ζm = ζ(um)
satisfy the assumptions of Theorem 4.17 (weak-strong time-space convergence
of a product theorem). Hence,

lim
m→∞

∫ T

0

∫
Ω

β
(
Π

(1)
Dmum(x, t)

)
ζ
(
Π

(1)
Dmum(x, t)

)
dxdt

=

∫ T

0

∫
Ω

β(x, t)ζ(x, t)dxdt. (6.22)

Assumptions (6.3b)–(6.3d) allow us to apply Lemma D.10 to wm = Π
(1)
Dmum.

This gives the existence of a measurable function u such that β = β(u) and
ζ = ζ(u) a.e. on Ω × (0, T ). Since ζ ∈ L2(Ω × (0, T )), the growth assumption
(6.3b) on ζ ensures that u ∈ L2(Ω × (0, T )).
Since 0 ≤ ζ ′(q)β′(q) ≤

√
LζLβ

√
ζ ′(q)β′(q), the following inequality holds for

all a, b ∈ R:

(ν(a)− ν(b))2 =

(∫ b

a

ζ ′(q)β′(q)dq

)2

≤

(√
LζLβ

∫ b

a

√
β′(q)ζ ′(q)dq

)2

≤ LζLβ

(∫ b

a

β′(q)dq

)(∫ b

a

ζ ′(q)dq

)
= LζLβ [β(b)− β(a)][ζ(b)− ζ(a)].

It can therefore be deduced that∫ T

0

∫
Ω

[
ν(Π

(1)
Dmum(x, t))− ν(u(x, t))

]2
dxdt

≤ LζLβ
∫ T

0

∫
Ω

[
β(Π

(1)
Dmum(x, t))− β(u(x, t))

]
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×
[
ζ(Π

(1)
Dmum(x, t))− ζ(u(x, t))

]
dxdt. (6.23)

Developing the right-hand side of this inequality, using (6.22) and the weak

convergences β(Π
(1)
Dmum) → β = β(u) and ζ(Π

(1)
Dmum) → ζ = ζ(u), we see

that this right-hand side goes to 0 as m → ∞. Hence, taking the superior

limit as m→∞ in (6.23) shows that ν(Π
(1)
Dmum)→ ν(u) in L2(Ω × (0, T )).

Step 2: u is a solution to (6.4).
We drop some indices m for legibility. Let v ∈ L2(0, T ;H1

0 (Ω)) such that
∂tv ∈ L2(Ω × (0, T )) and v(·, T ) = 0. Let (vm)m∈N be given by Lemma 4.10
(for θ = 0) and introduce (0, v(0), . . . , v(N−1)) as test function in (6.9). This

gives T
(m)
1 + T

(m)
2 = T

(m)
3 with

T
(m)
1 =

N−1∑
n=0

∫
Ω

[
ΠDβ(u(n+1))(x)−ΠDβ(u(n))(x)

]
ΠDv

(n)(x)dx,

T
(m)
2 =

∫ T

0

∫
Ω

Λ(x)∇(1)
D ζ(u)(x, t) · ∇(0)

D v(x, t)dxdt,

and

T
(m)
3 =

∫ T

0

∫
Ω

f(x, t)Π
(0)
D v(x, t)dxdt.

Use the discrete integration-by-parts formula (D.15) in T
(m)
1 :

T
(m)
1 = −

∫ T

0

∫
Ω

Π
(1)
D β(u)(x, t)δDv(x, t)dxdt

−
∫
Ω

β(ΠDIDuini)(x)ΠDv
(0)dx.

Hence, by the convergence properties (4.10c) and (4.10b) of (vm)m∈N, as m→
∞ we have

T
(m)
1 → −

∫ T

0

∫
Ω

β(u)(x, t)∂tv(x, t)dxdt−
∫
Ω

β(uini)(x)v(x, 0)dx. (6.24)

Using the convergence (4.7b) and (4.7a) of (vm)m∈N, we have, as m→∞,

T
(m)
2 →

∫ T

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇v(x, t)dxdt,

T
(m)
3 →

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt.

Plugged alongside (6.24) in T
(m)
1 + T

(m)
2 = T

(m)
3 , these convergences show

that u satisfies (6.4).
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Remark 6.15 (Convergence of Π
(1)
D um?)

We do not prove here that u is a weak limit of Π
(1)
Dmum. Such a limit is not stated

in (6.21) and can actually be considered as irrelevant for the model (6.1) since, in
this model, the quantities of interest (physically relevant when this PDE models a
natural phenomenon) are β(u) and ζ(u).

As a corollary to this convergence analysis and to the uniqueness of the solu-
tion (Theorem 6.4), an equivalent form of (6.4) can be stated.

Corollary 6.16 (Equivalent from of (6.4)). Under Hypotheses (6.3), Prob-
lem (6.4) is equivalent to

u ∈ L2(0, T ;L2(Ω)) , ζ(u) ∈ L2(0, T ;H1
0 (Ω)) ,

β(u) ∈ C([0, T ], L2(Ω)-w) , ∂tβ(u) ∈ L2(0, T ;H−1(Ω)) ,
β(u)(·, 0) = β(uini) in L2(Ω),∫ T

0

〈∂tβ(u)(·, t), v(·, t)〉H−1,H1
0
dt

+

∫ T

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇v(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt, ∀v ∈ L2(0;T ;H1
0 (Ω)),

(6.25)

where C([0, T ];L2(Ω)-w) denotes the space of continuous functions [0, T ] 7→
L2(Ω) for the weak-∗ topology of L2(Ω).

Proof. Let us prove that (6.4) implies (6.25). There is a unique solution to
(6.4) (Theorem 6.4), so it must be the u constructed in the proof of Theorem
6.13. We saw in Step 1 of this proof that β(u) = β ∈ C([0, T ];L2(Ω)-w) and
that β(u)(0, ·) = β(0, ·) = β(uini). Using C∞c ((0, T ) × Ω) test functions in
(6.4), we see that

∂tβ(u) = div(Λ∇ζ(u)) + f

in the sense of distributions. Since ∇ζ(u) ∈ L2(0, T ;L2(Ω)), this shows that
∂tβ(u) ∈ L2(0, T ;H−1(Ω)). Let v ∈ C∞c ((0, T ) × Ω). By definition of the
distribution derivative,

−
∫ T

0

∫
Ω

β(u)(x, t)∂tv(x, t)dxdt =

∫ T

0

〈∂tβ(u)(t), v(t)〉H−1,H1
0
dt

and thus (6.4) shows that the equation in (6.25) is satisfied for such smooth
compactly supported v. Since these functions are dense in L2(0, T ;H1

0 (Ω))
(see [67]), we infer that (6.25) is fully satisfied.

Let us now assume that u satisfies (6.25). Then it clearly has all the regularity
properties expected in (6.4). To prove that it also satisfies the equation in this
latter problem, we start by taking v ∈ C∞c ((−∞, T ) × Ω). By smoothness



174 6 Degenerate parabolic problems

of this function and regularity assumptions on β(u) an integration-by-parts
gives∫ T

0

〈∂tβ(u)(t), v(t)〉H−1,H1
0
dt = −

∫ T

0

β(u)(x, t)∂tv(x, t)dxdt

−
∫
Ω

β(u)(x, 0)v(x, 0)dx.

Since β(u)(x, 0) = β(uini), (6.25) proves that (6.4) is satisfied for such v. As
discussed at the end of the proof of Theorem 6.13, this shows that (6.25) is
satisfied for all required test functions.

Remark 6.17 (The continuity property of β(u))
The continuity property of β(u) : [0, T ] → L2(Ω)-w is rather natural. Indeed, the
PDE in the sense of distributions shows that Tϕ : t 7→ 〈β(u)(t), ϕ〉L2 belongs to
W 1,1(0, T ), and is therefore continuous, for any ϕ ∈ C∞c (Ω). The density in L2(Ω)
of such ϕ, combined with the fact that β(u) ∈ L∞(0, T ;L2(Ω)), proves the continuity
of Tϕ for any ϕ ∈ L2(Ω), that is to say the continuity of β(u) : [0, T ]→ L2(Ω)-w.
This notion of β(u) as a function continuous in time is nevertheless a subtle one.
It is to be understood in the sense that the function (x, t) 7→ β(u(x, t)) has an
a.e. representative which is continuous [0, T ] 7→ L2(Ω)-w. In other words, there is
a function Z ∈ C([0, T ];L2(Ω)-w) such that Z(t)(x) = β(u(x, t)) for a.e. (x, t) ∈
Ω × (0, T ). We must however make sure, when dealing with pointwise values in
time to separate Z from β(u(·, ·)) as β(u(·, t1)) may not make sense for a particular
t1 ∈ [0, T ].
That being said, in order to adopt a simple notation, in the following we denote by
β(u)(·, ·) the function Z, and by β(u(·, ·)) the a.e.-defined composition of β and u.
Hence, it will make sense to talk about β(u)(·, t) for a particular t1 ∈ [0, T ], and we
will only write β(u)(x, t) = β(u(x, t)) for a.e. (x, t) ∈ Ω × (0, T ).

6.5 Uniform-in-time, strong L2 convergence results

We denote by Rβ the range of β and define the pseudo-inverse function βi :
Rβ → R of β by

∀s ∈ Rβ , βi(s) =

{
inf{t ∈ R |β(t) = s} if s ≥ 0,
sup{t ∈ R |β(t) = s} if s < 0,

= closest t to 0 such that β(t) = s.
(6.26)

See Figure 6.1 for an illustration of βi.
Since β(0) = 0, it holds βi ≥ 0 on Rβ ∩ R+ and βi ≤ 0 on Rβ ∩ R−. The
function B : Rβ → [0,∞] is defined by

B(z) =

∫ z

0

ζ(βi(s)) ds. (6.27)
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y = x

a

β

βi

a b

b

Fig. 6.1. An example of β (dashed line) and its pseudo-inverse function βi (contin-
uous line). Here, the range of β is [a, b).

The function βi is non-decreasing, and thus B(z) is always well-defined in
[0,∞). The signs of βi and ζ also ensure that that B is non-decreasing on
Rβ ∩R+ and non-increasing on Rβ ∩R−. B can therefore be extended to the
closure Rβ of Rβ , by defining B(a) = limz→aB(z) ∈ [0,+∞] at any endpoint
a of Rβ that does not belong to Rβ . Lemma 6.22 in Section 6.6 states a few
useful properties of B.

Remark 6.18 (Range of β(u))
The a.e. equality β(u)(x, t) = β(u(x, t)) (see Remark 6.17) ensures that β(u)(·, ·)
takes its values in Rβ .

The following theorem shows that the solutions to GSs for (6.1) actually enjoy
stronger convergence results than those established in Theorem 6.13.

Theorem 6.19 (Uniform-in-time convergence of the GS). Under the
assumptions of Theorem 6.13, the solution um to the GS (6.9) with DT =
(DT )m satisfies the following convergence results, as m→∞:
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sup
t∈[0,T ]

∥∥∥Π(1)
Dmν(um)(t)− ν(u)(t)

∥∥∥
L2(Ω)

→ 0,

Π
(1)
Dmζ(um)→ ζ(u) in L2(Ω × (0, T )),

∇(1)
Dmζ(um)→ ∇ζ(u) in L2(Ω × (0, T ))d,

(6.28)

where u is the unique solution to (6.4), and ν is defined by (6.20).

Remark 6.20. For the Stefan model, β = Id and thus ν(u) = ζ(u) is the
temperature of the melting material. For the Richards model, ζ = Id and
thus ν(u) = β(u) is the water saturation. Hence, in both cases, ν(u) is the
quantity of interest to approximate.

Proof.
By (6.38) in Lemma 6.22, η = B ◦ β. The energy estimate (6.11) can thus be
written∫

Ω

B(β(Π
(1)
Dmum))(x, T0)dx

+

∫ T0

0

∫
Ω

Λ(x)∇(1)
Dmζ(um)(x, t) · ∇(1)

Dmζ(um)(x, t)dxdt

≤
∫
Ω

B(β(ΠDmIDmuini))(x)dx

+

∫ t(k)

0

∫
Ω

f(x, t)Π
(1)
Dmζ(um)(x, t)dxdt. (6.29)

Here, we recall that t(k) is the time such that T0 ∈ (t(k−1), t(k)].

Step 1 Uniform-in-time convergence of Π
(1)
Dmν(um).

Let us take T0 ∈ [0, T ] and (Tm)m≥1 a sequence in [0, T ] which converges to
T0. The Cauchy–Schwarz inequality for the semi-definite positive symmetric
form

W ∈ L2((0, T )×Ω)d →
∫ Tm

0

∫
Ω

Λ(x)W (t,x) ·W (t,x)dxdt

shows that(∫ Tm

0

∫
Ω

Λ(x)∇(1)
Dmζ(um)(t,x) · ∇ζ(u)(t,x)dxdt

)2

≤

(∫ Tm

0

∫
Ω

Λ(x)∇(1)
Dmζ(um)(t,x) · ∇(1)

Dmζ(um)(t,x)dxdt

)

×

(∫ Tm

0

∫
Ω

Λ(x)∇ζ(u)(t,x) · ∇ζ(u)(t,x)dxdt

)
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By weak convergence in L2((0, T ) × Ω)d of ∇(1)
Dmζ(um) to ∇ζ(u) and strong

convergence in the same space of 1[0,Tm]∇ζ(u) to ∇ζ(u), we can pass to the
limit in the left-hand side (by weak-strong convergence, see Lemma D.8 page
464) and in the second term in the right-hand side. Hence, taking the inferior

limit of this inequality and dividing by
∫ T0

0

∫
Ω
Λ∇ζ(u) ·∇ζ(u), we deduce that

lim inf
m→∞

∫ Tm

0

∫
Ω

Λ(x)∇(1)
Dmζ(um)(x, t) · ∇(1)

Dmζ(um)(x, t)dxdt

≥
∫ T0

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇ζ(u)(x, t)dxdt. (6.30)

By space–time-consistency of ((DT )m)m∈N (Definition 4.3) and quadratic
growth (6.16) of η = B ◦ β, it holds

B(β(ΠDmIDmuini))→ B(β(uini) in L1(Ω) as m→∞. (6.31)

We then write (6.29) with Tm instead of T0. The time t(k(m)) such Tm ∈
(t(k(m)−1), t(k(m))] satisfies t(k(m)) → T0 as m → ∞. Hence, using (6.30) and

the weak convergence of Π
(1)
Dmζ(um) to ζ(u),

lim sup
m→∞

∫
Ω

B(β(Π
(1)
Dmum(x, Tm)))dx

≤ lim sup
m→∞

(∫
Ω

B(β(ΠDmIDmuini))(x)dx

+

∫ t(k(m))

0

∫
Ω

f(x, t)Π
(1)
Dmζ(um)(x, t)dxdt

−
∫ Tm

0

∫
Ω

Λ(x)∇(1)
Dmζ(um)(x, t) · ∇(1)

Dmζ(um)(x, t)dxdt

)

≤
∫
Ω

B(β(uini))(x)dx+

∫ T0

0

∫
Ω

f(x, t)ζ(u)(x, t)dxdt

− lim inf
m→∞

∫ Tm

0

∫
Ω

Λ(x)∇Dmζ(um)(x, t) · ∇Dmζ(um)(x, t)dxdt

≤
∫
Ω

B(β(uini))(x)dx+

∫ T0

0

∫
Ω

f(x, t)ζ(u)(x, t)dxdt

−
∫ T0

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇ζ(u)(x, t)dxdt.

Corollary 6.25 therefore gives

lim sup
m→∞

∫
Ω

B(β(Π
(1)
Dmum(x, Tm)))dx ≤

∫
Ω

B(β(u)(x, T0))dx. (6.32)
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By Lemma C.12, the uniform-in-time weak L2 convergence of β(Π
(1)
Dmum) to

β(u) and the continuity of β(u) : [0, T ] → L2(Ω)-w (see Corollary 6.16), we
have

β(Π
(1)
Dmum)(Tm)→ β(u)(T0) weakly in L2(Ω) as m→∞. (6.33)

Therefore, for any (sm)m∈N converging to T0,

β(Π
(1)
Dmum(Tm)) + β(u)(sm)

2
→ β(u)(T0) weakly in L2(Ω) as m→∞.

Lemma D.11 then gives, by convexity of B,∫
Ω

B(β(u)(x, T0))dx

≤ lim inf
m→∞

∫
Ω

B

(
β(Π

(1)
Dmum(x, Tm)) + β(u)(x, sm)

2

)
dx. (6.34)

Property (6.40) of B and the two inequalities (6.32) and (6.34) allow us to
conclude the proof. Let T be the set of τ ∈ [0, T ] such that β(u(·, τ)) =
β(u)(·, τ) and ν(u(·, τ)) = ν(u)(·, τ) a.e. on Ω (see Remarks 6.17 and 6.26),
and let (sm)m∈N be a sequence in T which converges to T0. Since ν(u) ∈
C([0, T ];L2(Ω)) by Corollary 6.25, we have

ν(u(·, sm))→ ν(u)(·, T0) in L2(Ω) as m→∞. (6.35)

Inequality (6.40) gives∥∥∥ν(Π
(1)
Dmum(·, Tm))− ν(u)(·, T0)

∥∥∥2

L2(Ω)

≤ 2
∥∥∥ν(Π

(1)
Dmum(·, Tm))− ν(u(·, sm))

∥∥∥2

L2(Ω)

+ 2 ‖ν(u(·, sm))− ν(u)(·, T0))‖2L2(Ω)

≤ 8LβLζ

∫
Ω

[
B(β(Π

(1)
Dmum(x, Tm))) +B(β(u(x, sm)))

]
dx

− 16LβLζ

∫
Ω

B

(
β(Π

(1)
Dmum(x, Tm)) + β(u(x, sm))

2

)
dx

+ 2 ‖ν(u(·, sm))− ν(u)(·, T0))‖2L2(Ω) .

We then take the lim sup as m → ∞ of this expression. Thanks to (6.32)
and to the boundedness of B : t ∈ [0, T ] 7→

∫
Ω
B(β(u)(x, t))dx ∈ [0,∞) (see

Corollary 6.25), the first term in the right-hand side has a finite lim sup. We
can therefore split the lim sup of this right-hand side without risking writing
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∞−∞ and we get, thanks to (6.32), (6.34), (6.35) and to the continuity of
B (Corollary 6.25),

lim sup
m→∞

∥∥∥ν(Π
(1)
Dmum(·, Tm))− ν(u)(·, T0)

∥∥∥2

L2(Ω)
≤ 0.

Thus, ν(Π
(1)
Dmum(·, Tm))→ ν(u)(T0) strongly in L2(Ω). By Lemma C.12, this

concludes the proof that supt∈[0,T ] ‖ν(Π
(1)
Dmum)(t)− ν(u)(t)‖L2(Ω) → 0.

Step 2: Strong convergence of ∇(1)
Dmζ(um).

Since B is convex, the convergence property (6.33) (with Tm = T0 = T ) and
Lemma D.11 give∫

Ω

B(β(u)(x, T ))dx ≤ lim inf
m→∞

∫
Ω

B(β(Π
(1)
Dmum)(x, T ))dx.

Writing (6.29) with T0 = T , taking the lim sup as m → ∞, using (6.31) and
the continuous integration-by-part formula (6.49), we therefore find

lim sup
m→∞

∫ T

0

∫
Ω

Λ(x)∇(1)
Dmζ(um)(x, t) · ∇(1)

Dmζ(um)(x, t)dxdt

≤
∫ T0

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇ζ(u)(x, t)dxdt.

Combined with (6.30) with Tm = T0 = T , this shows that

lim
m→∞

∫ T

0

∫
Ω

Λ(x)∇(1)
Dmζ(um)(x, t) · ∇(1)

Dmζ(um)(x, t)dxdt

=

∫ T0

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇ζ(u)(x, t)dxdt. (6.36)

Developing all the terms and using the weak convergence of ∇(1)
Dmζ(um) to

∇ζ(u), we deduce

lim
m→∞

∫ T

0

∫
Ω

Λ(x)
[
∇(1)
Dmζ(um)(x, t)−∇ζ(u)(x, t)

]
·
[
∇(1)
Dmζ(um)(x, t)−∇ζ(u)(x, t)

]
dxdt = 0.

The coercivity of Λ therefore implies ∇(1)
Dmζ(um)→ ∇ζ(u) strongly in L2(Ω×

(0, T ))d as m→∞.

Step 3: Strong convergence of Π
(1)
Dmζ(um).

Apply Lemma 4.10 to v = ζ(u). This gives (vm)m∈N such that Π
(1)
Dmvm → ζ(u)

in L2(Ω × (0, T )) and ∇(1)
Dmvm → ∇ζ(u) in L2(Ω × (0, T ))d. The coercivity

definition 2.2 gives
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Dmζ(um)−Π(1)

Dmvm

∥∥∥
L2(Ω×(0,T ))

≤ CP
∥∥∥∇(1)
Dmζ(um)−∇(1)

Dmvm

∥∥∥
L2(Ω×(0,T ))d

.

By strong convergence of ∇(1)
Dmζ(um), letting m→∞ in this estimate proves

that Π
(1)
Dmζ(um)→ ζ(u) in L2(Ω × (0, T )) follows.

Remark 6.21 (Convergence of B(β(Π
(1)
Dmum(Tm))))

Let Tm → T0. The convergence property (6.33), the convexity of B and Lemma
D.11 show that∫

Ω

B(β(u)(x, T0))dx ≤ lim inf
m→∞

∫
Ω

B(β(Π
(1)
Dmum)(x, Tm))dx.

Combined with (6.32), this gives

lim
m→∞

∫
Ω

B(β(Π
(1)
Dmum(x, Tm)))dx =

∫
Ω

B(β(u)(x, T0))dx. (6.37)

6.6 Auxiliary results

We state here a family of technical lemmas, starting with a few properties on
ν and B.

Lemma 6.22. Under Assumptions (6.3b) and (6.3c), let ν be defined by
(6.20), B be defined by (6.27), and η be defined by (6.10). Then the function
B is convex lower semi-continuous on Rβ, the function B ◦ β : R→ [0,∞) is
continuous,

∀s ∈ R , η(s) = B(β(s)) =

∫ s

0

ζ(q)β′(q)dq , (6.38)

∀a ∈ R ,∀r ∈ Rβ , B(r)−B(β(a)) ≥ ζ(a)(r − β(a)), (6.39)

and

∀s, s′ ∈ R , (ν(s)− ν(s′))2 ≤ 4LβLζ

[
B(β(s)) +B(β(s′))

− 2B

(
β(s) + β(s′)

2

)]
. (6.40)
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Proof.
Let us first notice that, since β ≥ 0 on R+ and β ≤ 0 on R−, βi(s) is a
real number for all s ∈ Rβ . Moreover, since β is non-decreasing, βi is also
non-decreasing on Rβ and therefore locally bounded on Rβ . Hence, B is well
defined and locally Lipschitz-continuous, with an a.e. derivative B′ = ζ(βi).
B′ is therefore non-decreasing and B is convex. Since B is continuous on Rβ
and extended by its (possibly infinite) limit at the endpoints of this interval,
B is lower semi-continuous on Rβ .
To prove (6.38), we denote by P ⊂ Rβ the countable set of plateaux values of
β, i.e. the numbers y ∈ R such that β−1({y}) is not reduced to a singleton (P
is countable since (β−1({y}))y∈P is a family of disjoint intervals of positive
lengths, and can therefore be counted by associating to each interval a rational
number in it). If s 6∈ β−1(P ) then β−1({β(s)}) is the singleton {s} and there-
fore βi(β(s)) = s. Moreover, βi is continuous at β(s) and thus B is differen-
tiable at β(s). Since β is differentiable a.e., we deduce that, for a.e. s 6∈ β−1(P ),
(B(β))′(s) = B′(β(s))β′(s) = ζ(βi(β(s)))β′(s) = ζ(s)β′(s). The set β−1(P )
is a union of intervals on which β, and thus B(β), are locally constant; hence,
for a.e. s in this set, (B(β))′(s) = 0 and ζ(s)β′(s) = 0. As a consequence,
the locally Lipschitz-continuous functions B(β) and s→

∫ s
0
ζ(q)β′(q)dq have

identical derivatives a.e. on R. Since they have the same value at s = 0, they
are thus equal on R and the proof of (6.38) is complete. The continuity of
B ◦ β follows from this relation.
We now prove (6.39), which states that ζ(a) belongs to the convex sub-
differential of B at β(a). We first start with the case r ∈ Rβ , that is r = β(b)
for some b ∈ R. If βi is continuous at β(a) then B is differentiable at β(a),
with B′(β(a)) = ζ(βi(β(a))) = ζ(a), and (6.39) is an obvious consequence of
the convexity of B. Otherwise, a plain reasoning also does the job as

B(r)−B(β(a)) = B(β(b))−B(β(a))

=

∫ b

a

ζ(q)β′(q)dq

=

∫ b

a

(ζ(q)− ζ(a))β′(q)dq + ζ(a)(β(b)− β(a))

≥ ζ(a)(r − β(a)).

Here, the inequality comes from the fact that β′ ≥ 0 and that ζ(q)− ζ(a) has
the same sign as b − a if q is between a and b. The general case r ∈ Rβ is
obtained by passing to the limit on bn such that β(bn)→ r, and by using the
fact that B has limits (possibly +∞) at the endpoints of Rβ .

Let us now take s, s′ ∈ R, and let s̄ ∈ R be such that β(s̄) = β(s)+β(s′)
2 . We

have ∫ s

s̄

β′(q)dq +

∫ s′

s̄

β′(q)dq = β(s) + β(s′)− 2β(s̄) = 0.

Hence, using (6.38),
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B(β(s))+B(β(s′))− 2B(β(s̄))

=

∫ s

0

ζ(q)β′(q)dq +

∫ s

0

ζ(q)β′(q)dq − 2

∫ s̄

0

ζ(q)β′(q)dq

=

∫ s

s̄

ζ(q)β′(q)dq +

∫ s′

s̄

ζ(q)β′(q)dq

=

∫ s

s̄

(ζ(q)− ζ(s̄))β′(q)dq +

∫ s′

s̄

(ζ(q)− ζ(s̄))β′(q)dq. (6.41)

We then use |ζ(q)− ζ(s̄)| ≥ 1
Lβ
|ν(q)− ν(s̄)| and β′(q) ≥ β′(q) ζ

′(q)
Lζ

= ν′(q)
Lζ

to

write ∫ s

s̄

(ζ(q)− ζ(s̄))β′(q)dq ≥ 1

LβLζ

∫ s

s̄

ν′(q)(ν(q)− ν(s̄))dq

=
1

2LβLζ
(ν(s)− ν(s̄))2.

The same relation holds with s replaced by s′. Owing to

(ν(s)− ν(s′))2 ≤ 2(ν(s)− ν(s̄))2 + 2(ν(s′)− ν(s̄))2,

the inequality (6.40) follows from (6.41).

The following property states an expected integration-by-parts result, which
can be formally obtained by writing (∂tβ(v))ζ(v) = β′(v)ζ(v)∂tv = ∂tB(β(v))
(owing to (6.38)). The rigorous proof of this result is however a bit technical,
due to the lack of regularity on u and to the non-linearities involved.

Lemma 6.23. Let us assume (6.3b) and (6.3c). Let v : Ω × (0, T ) → R be
measurable such that

ζ(v) ∈ L2(0, T ;H1
0 (Ω)) , B(β(v)) ∈ L∞(0, T ;L1(Ω)) ,

β(v) ∈ C([0, T ];L2(Ω)-w) , ∂tβ(v) ∈ L2(0, T ;H−1(Ω)).

Then t ∈ [0, T ] →
∫
Ω
B(β(v)(x, t))dx ∈ [0,∞) is continuous and, for all

t1, t2 ∈ [0, T ],∫ t2

t1

〈∂tβ(v)(t), ζ(v(t))〉H−1,H1
0
dt

=

∫
Ω

B(β(v)(x, t2))dx−
∫
Ω

B(β(v)(x, t1))dx. (6.42)

Remark 6.24 (Continuity of β(v))
Since η = B ◦ β satisfies (6.17), the condition B(β(v)) ∈ L∞(0, T ;L1(Ω))
ensures that β(v) ∈ L∞(0, T ;L2(Ω)). Combined with the condition ∂tβ(v) ∈
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L2(0, T ;H−1(Ω)), this shows that β(v) ∈ C([0, T ];L2(Ω)-w). Hence, this continuity
property on β(v) is actually a consequence of the other assumptions on v.
We also point out that, as in Remark 6.17, it is important to keep in mind the
separation between β(v(·, ·)) and its continuous representative β(v)(·, ·).

Proof.
We obviously only need to make the proof when t1 < t2.
Step 1: truncation, extension and approximation of β(v).
We define β(v) : R→ L2(Ω) by setting

β(v)(t) =

β(v)(t) if t ∈ [t1, t2],
β(v)(t1) if t ≤ t1,
β(v)(t2) if t ≥ t2.

By continuity property of β(v), we have β(v) ∈ C(R;L2(Ω)-w) and ∂tβ(v) =
1(t1,t2)∂tβ(v) ∈ L2(R;H−1(Ω)) (no Dirac masses have been introduced at

t = t1 or t = t2). This regularity of ∂tβ(v) ensures that the function

t ∈ R→ Dhβ(v) :=
1

h

∫ t+h

t

∂tβ(v)(s)ds (6.43)

=
β(v)(t+ h)− β(v)(t)

h
∈ H−1(Ω) (6.44)

tend to ∂tβ(v) in L2(R;H−1(Ω)) as h→ 0.

Step 2: we prove that ‖B(β(v)(t)‖L1(Ω) ≤ ‖B(β(v))‖L∞(0,T ;L1(Ω)) for all

t ∈ R (not only for a.e. t).
Let t ∈ [t1, t2]. Since β(v)(·, ·) = β(v(·, ·)) a.e. on Ω × (t1, t2), there exists a
sequence tn → t such that, for all n, β(v)(·, tn) = β(v(·, tn)) in L2(Ω) and
‖B(β(v)(·, tn))‖L1(Ω) ≤ ‖B(β(v))‖L∞(0,T ;L1(Ω)). Using the continuity of β(v)

with values in L2(Ω)-w, we have β(v)(·, tn)→ β(v)(·, t) weakly in L2(Ω). We
then use the convexity of B and Lemma D.11 to write, thanks to our choice
of tn,∫
Ω

B(β(v)(x, t))dx ≤ lim inf
n→∞

∫
Ω

B(β(v)(x, tn))dx ≤ ‖B(β(v))‖L∞(0,T ;L1(Ω)) .

The estimate on B(β(v))(t) is thus complete for t ∈ [t1, t2]. The result for
t ≤ t1 or t ≥ t2 is obvious since β(v)(t) is then either β(v)(t1) or β(v)(t2).

Step 3: We prove that for all τ ∈ R and a.e. t ∈ (t1, t2),

〈β(v)(τ)− β(v)(t), ζ(v(·, t))〉H−1,H1
0

≤
∫
Ω

B(β(v)(x, τ))−B(β(v)(x, t))dx. (6.45)
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Let t such that β(v)(·, t) = β(v(·, t)) a.e. on Ω. Almost every t satisfies this
property. By Remark 6.18, for a.e. x ∈ Ω we have β(v)(x, τ) ∈ Rβ and we

can therefore write, by (6.39) with r = β(v)(x, τ) and a = v(x, t),

B(β(v)(x, τ))−B(β(v(x, t))) ≥ ζ(v(x, t))(β(v)(x, τ)− β(v(x, t))).

Integrating this relation over x ∈ Ω, Property (6.45) follows since the H−1–
H1

0 duality product in (6.45) can be replaced with an L2 inner product, as all
terms in this product belong to L2(Ω).

Step 4: proof of (6.42)
By convergence of Dhβ(v) to ∂tβ(v) in L2(0, T ; H−1(Ω)) and since 1(t1,t2)ζ(v)
∈ L2(R; H1

0 (Ω)), we have∫ t2

t1

〈∂tβ(v)(t), ζ(v(t))〉H−1,H1
0
dt

=

∫
R
〈∂tβ(v)(t),1(t1,t2)(t)ζ(v(·, t))〉H−1,H1

0
dt

= lim
h→0

∫
R
〈Dhβ(v)(t),1(t1,t2)(t)ζ(v(·, t))〉H−1,H1

0
dt

= lim
h→0

1

h

∫ t2

t1

〈β(v)(s+ h)− β(v)(t), ζ(v(·, t)〉H−1,H1
0
dt. (6.46)

We then use (6.45) for a.e. t ∈ (t1, t2) to obtain, for h small enough such that
t1 + h < t2,

1

h

∫ t2

t1

〈β(v)(t+ h)− β(v)(t), ζ(v(·, t))〉H−1,H1
0
dt

≤ 1

h

∫ t2

t1

∫
Ω

B(β(v)(x, t+ h))−B(β(v)(x, t))dxdt

=
1

h

∫ t2+h

t2

∫
Ω

B(β(v)(x, t))dxdt− 1

h

∫ t1+h

t1

∫
Ω

B(β(v)(x, t))dxdt

=

∫
Ω

B(β(v)(x, t2))dx− 1

h

∫ t1+h

t1

∫
Ω

B(β(v)(x, t))dxdt. (6.47)

In the last line, we used β(v)(t) = β(v)(t2) for all t ≥ t2. We then take the
superior limit of (6.47), and use the fact that B(β(v)(·, t2)) is integrable (Step
2) to take its integral out of the lim sup. Coming back to (6.46) we obtain∫ t2

t1

〈∂tβ(v)(t), ζ(v(t))〉H−1,H1
0
dt

≤
∫
Ω

B(β(v)(x, t2))dx− lim inf
h→0

1

h

∫ t1+h

t1

∫
Ω

B(β(v)(x, t))dxdt. (6.48)
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But since β(v) ∈ C([0, T ];L2(Ω)-w), as h → 0 we have 1
h

∫ t1+h

t1
β(v)(t)dt →

β(v)(t1) weakly in L2(Ω). Hence, the convexity of B, Lemma D.11 and
Jensen’s inequality give∫

Ω

B(β(v)(x, t1))dx ≤ lim inf
h→0

∫
Ω

B

(
1

h

∫ t1+h

t1

β(v)(x, t)dt

)
dx

≤ lim inf
h→0

∫
Ω

1

h

∫ t1+h

t1

B(β(v)(x, t))dtdx.

Plugged into (6.48), this inequality shows that (6.42) holds with ≤ instead of
=. The reverse inequality is obtained by reversing time. We consider ṽ(t) =
v(t1 + t2 − t). Then ζ(ṽ), B(β(ṽ)) and β(ṽ) have the same properties as ζ(v),
B(β(v)) and β(v), and β(ṽ) takes values β(v)(t1) at t = t2 and β(v)(t2) at
t = t1. Applying (6.42) with “≤” instead of “=” to ṽ and using the fact that
∂tβ(ṽ)(t) = −∂tβ(v)(t1 + t2 − t), we obtain (6.42) with “≥” instead of “=”
and the proof of (6.42) is complete.
The continuity of t ∈ [0, T ] 7→

∫
Ω
B(β(v)(x, t))dx is straightforward from

(6.42), since the left-hand side of this relation is continuous with respect to
t1 and t2.

The following corollary states continuity properties and an essential formula
on the solution to (6.4).

Corollary 6.25. Under Assumption (6.3), if u is a solution of (6.4) then:

1. The function t ∈ [0, T ] 7→
∫
Ω
B(β(u)(x, t))dx ∈ [0,∞) is continuous (and

thus bounded);
2. For any T0 ∈ [0, T ],∫

Ω

B(β(u)(x, T0))dx+

∫ T0

0

∫
Ω

Λ(x)∇ζ(u)(x, t) · ∇ζ(u)(x, t)dxdt

=

∫
Ω

B(β(uini(x)))dx+

∫ T0

0

∫
Ω

f(x, t)ζ(u)(x, t)dxdt; (6.49)

3. ν(u) is continuous [0, T ]→ L2(Ω).

Remark 6.26 (Continuity of ν(u))
The continuity of ν(u) has to be understood in the same sense as the continuity of
β(u) (see Remark 6.17), that is, ν(u) is a.e. on Ω × (0, T ) equal to a continuous
function [0, T ] → L2(Ω). We use in particular a similar notation ν(u)(·, ·) for the
continuous representative of ν(u(·, ·)) as we did for the continuous representative of
β(u).

Proof.
We first notice that Corollary 6.16 was established using Theorems 6.4 and
6.13, which do not make use of Corollary 6.25. Hence, we invoke Corollary
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6.16, which tells us that u is also a solution to (6.25). The continuity of
t ∈ [0, T ] 7→

∫
Ω
B(β(u)(x, t))dx ∈ [0,∞) and Formula (6.49) therefore follow

from Lemma 6.23 applied to v = u, by using v = ζ(u)1[0,T0] in (6.25).

Let us prove the strong continuity of ν(u) : [0, T ] 7→ L2(Ω). Let T be the set
of τ ∈ [0, T ] such that β(u(·, τ)) = β(u)(·, τ) a.e. on Ω. The set [0, T ]\T has
zero measure. Let (sl)l∈N and (tk)k∈N be two sequences in T that converge to
the same value s. Owing to (6.40),∫

Ω

[ν(u(x, sl))− ν(u(x, tk))]2dx

≤ 4LβLζ

(∫
Ω

B(β(u(x, sl)))dx+

∫
Ω

B(β(u(x, tk)))dx

)
− 8LβLζ

∫
Ω

B

(
β(u(x, sl)) + β(u(x, tk))

2

)
dx

= 4LβLζ

(∫
Ω

B(β(u)(x, sl))dx+

∫
Ω

B[β(u)(x, tk))dx

)
− 8LβLζ

∫
Ω

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx.

(6.50)

Since β(u)(·,sl)+β(u)(·,tk)
2 → β(u)(·, s) weakly in L2(Ω) as l, k → ∞, Lemma

D.11 and the convexity of B (Lemma 6.22) give∫
Ω

B (β(u)(x, s)) dx ≤ lim inf
l,k→∞

∫
Ω

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx.

Taking the superior limit as l, k → ∞ of (6.50) and using the continuity of
t 7→

∫
Ω
B(β(u)(x, t))dx thus shows that

‖ν(u(·, sl))− ν(u(·, tk))‖L2(Ω) → 0 as l, k →∞. (6.51)

The existence of an a.e. representative of ν(u(·, ·)) that is continuous [0, T ] 7→
L2(Ω) is a direct consequence of this convergence.
Let s ∈ [0, T ] and (sl)l∈N ⊂ T that converges to s. Applied with tk = sk, (6.51)
shows that (ν(u(·, sl)))l∈N is a Cauchy sequence in L2(Ω), and therefore that
liml→∞ ν(u(·, sl)) exists in L2(Ω). Relation (6.51) also shows that this limit,
that we can call ν(u)(·, s), does not depend on the Cauchy sequence in T
which converges to s. With tk = s, we also see that whenever s ∈ T we have
ν(u(·, s)) = ν(u)(·, s) a.e. on Ω, and ν(u)(·, ·) is therefore equal to ν(u(·, ·))
a.e. on Ω × (0, T ).
It remains to establish that ν(u) thus defined is continuous [0, T ] 7→ L2(Ω).
For any (τr)r∈N ⊂ [0, T ] which converges to τ ∈ [0, T ], we can pick sr ∈
T ∩ (τr − 1

r , τr + 1
r ) and tr ∈ T ∩ (τ − 1

r , τ + 1
r ) such that

‖ν(u)(·, τr)− ν(u(·, sr))‖L2(Ω) ≤
1

r
,
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‖ν(u)(·, τ)− ν(u(·, tr))‖L2(Ω) ≤
1

r
.

We therefore have

sup
t∈[0,T ]

‖ν(u)(·, τr)− ν(u)(·, τ)‖L2(Ω)

≤ 2

r
+ sup
t∈[0,T ]

‖ν(u(·, sr))− ν(u(·, tr))‖L2(Ω) .

By (6.51) with l = k = r, this proves that ν(u)(·, τr)→ ν(u)(·, τ) in L2(Ω) as
r →∞.

6.7 Proof of the uniqueness of the solution to the model

We give here a proof of the uniqueness of the solution to (6.4) (and thus also to
the solution to (6.6)). The uniqueness of entropy solutions to ∂tβ(u)−∆ζ(u) =
f (with an additional convective term, and a merely integrable f) has been
established in [41], using the doubling variable technique. Although this proof
could be extended to our framework, we rather provide here a much shorter
proof, following the idea due to J. Hadamard [112]. This idea consists in using
the solution to an approximate dual problem. It was successfully applied to
the one-dimensional Stefan problem in [24], and subsequently generalised to
the higher dimensional case in [111].
The proof provided here was originally developed in [78] and applies the ap-
proximate duality technique to the doubly degenerate model (6.1), which con-
tains both Richards’ and Stefan’s models as particular case.

Proof of uniqueness of the solution to (6.4).
Set ud = β(u1) + ζ(u1)− β(u2)− ζ(u2), and for all (x, t) ∈ Ω × [0, T ], define

q(x, t) =

{
ζ(u1(x,t))−ζ(u2(x,t))

ud(x,t) if ud(x, t) 6= 0,

0 otherwise.

Take ψ ∈ L2(0, T ;H1
0 (Ω)) with ∂tψ ∈ L2(Ω × (0, T )), ψ(·, T ) = 0 and

div(Λ∇ψ) ∈ L2(Ω × (0, T )). Subtract the two equations (6.4) satisfied by
u1 and u2, and use ψ as a test function. The assumed regularity div(Λ∇ψ) ∈
L2(Ω × (0, T )) enables us to integrate by parts the term involving Λ∇u · ∇ψ,
and we obtain∫ T

0

∫
Ω

ud(x, t)
(

(1− q(x, t))∂tψ(x, t) + q(x, t)div(Λ∇ψ)(x, t)
)

dxdt = 0.

(6.52)
For ε ∈ (0, 1/2) set qε = (1−2ε)q+ ε. Since 0 ≤ q ≤ 1 we have ε ≤ qε ≤ 1− ε,
and
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(qε − q)2

qε
≤ ε and

(qε − q)2

1− qε
≤ ε. (6.53)

Let ψε be given by Lemma 6.27 below, with g = qε and some w ∈ C∞c (Ω ×
(0, T )). Making ψ = ψε in (6.52) and using (6.56),∣∣∣∣∣
∫ T

0

∫
Ω

ud(x, t)w(x, t)dxdt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω

ud(x, t)(qε(x, t)− q(x, t))(div(Λ∇ψε)(x, t)− ∂tψε(x, t))dxdt

∣∣∣∣∣ .
(6.54)

The Cauchy–Schwarz inequality, (6.57) and (6.53) imply[∫ T

0

∫
Ω

ud(x, t)(qε(x, t)− q(x, t))(div(Λ∇ψε)(x, t)− ∂tψε(x, t))dxdt

]2

≤ 2

(∫ T

0

∫
Ω

ud(x, t)
2 (q(x, t)− qε(x, t))2

qε(x, t)
dxdt

)

×

(∫ T

0

∫
Ω

qε(x, t)
(

div(Λ∇ψε)(x, t)
)2

dxdt

)

+ 2

(∫ T

0

∫
Ω

ud(x, t)
2 (q(x, t)− qε(x, t))2

1− qε(x, t)
dxdt

)

×

(∫ T

0

∫
Ω

(1− qε(x, t))
(
∂tψε(x, t)

)2

dxdt

)
≤ 2εC0 ‖ud‖L2(Ω×(0,T ))

×
(
‖∇w‖2L2(Ω×(0,T ))d + ‖w‖2L2(Ω×(0,T )) + ‖∂tw‖2L2(Ω×(0,T ))

)
. (6.55)

Letting ε→ 0 and using (6.54) gives∫ T

0

∫
Ω

ud(x, t)w(x, t)dxdt = 0.

Since this holds for any function w ∈ C∞c (Ω × (0, T )), we deduce that ud = 0
a.e. on Ω × (0, T ). Hence β(u1) + ζ(u1) = β(u2) + ζ(u2), and the proof is
complete since β + ζ is one-to-one.

The following lemma ensures the existence of the function ψ, used in the proof
above.

Lemma 6.27. Let T > 0, and let Ω be a bounded open subset of Rd (d ∈ N).
Assume Hypothesis (6.3e). Let w ∈ C∞c (Ω × (0, T )) and g ∈ L∞(Ω × (0, T ))
such that g(x, t) ∈ [gmin, 1− gmin] for a.e. (x, t) ∈ Ω × (0, T ), where gmin is a
fixed number in (0, 1

2 ). Then there exists a function ψ such that:
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1. ψ ∈ L∞(0, T ;H1
0 (Ω)), ∂tψ ∈ L2(Ω × (0, T )), div(Λ∇ψ) ∈ L2(Ω × (0, T ))

(this implies ψ ∈ C([0, T ];L2(Ω)));
2. ψ(·, T ) = 0;
3. For a.e. (x, t) ∈ Ω × (0, T ),

(1− g(x, t))∂tψ(x, t) + g(x, t)div(Λ∇ψ)(x, t) = w(x, t); (6.56)

4. There exists C0 > 0, depending only on T , diam(Ω), λ and λ (and not
on gmin), such that

∫ T

0

∫
Ω

(
(1− g(x, t))

(
∂tψ(x, t)

)2

+ g(x, t)
(

div(Λ∇ψ)(x, t)
)2
)

dxdt

≤ C0

(
‖∇w‖2L2(Ω×(0,T ))d + ‖w‖2L2(Ω×(0,T )) + ‖∂tw‖2L2(Ω×(0,T ))

)
. (6.57)

Proof.

Step 1: existence of ψ satisfying 1, 2 and 3.
After dividing through by g, observe that (6.56) is equivalent to

For a.e. (x, t) ∈ Ω × (0, T ) ,

Φ(x, t)∂tψ(x, t) + div(Λ(x)∇ψ(x, t)) = f(x, t), (6.58)

where f ∈ L∞(Ω × (0, T )), Φ ∈ L∞(Ω × (0, T )) and, for some fixed numbers
ϕ∗ ≥ ϕ∗ > 0, ϕ∗ ≤ Φ(x, t) ≤ ϕ∗ for a.e. (x, t) ∈ Ω × (0, T ). The parabolic
equation (6.58) is slightly non-standard because of the time-dependent coef-
ficient Φ in front of ∂tψ. However, as we shall now see, a standard Galerkin
approximation provides the existence of a solution to this equation.
Let (Vk)k∈N be a non-decreasing family of finite-dimensional subspaces of
H1

0 (Ω) such that
⋃
k∈N Vk = H1

0 (Ω). We look for ψk : [0, T ]→ Vk solution to
the following Galerkin approximation of (6.58), with final condition:

ψk(T ) = 0 and ∀t ∈ [0, T ] ,∀v ∈ Vk ,
(Φ(·, t)ψ′k(t), v)L2 − (Λ∇ψk(t),∇v)(L2)d = (f(·, t), v)L2 .

(6.59)

Here, (·, ·)L2 is the L2(Ω) inner product. Choosing an orthonormal (for this

inner product) basis (ei)i=1,...,Nk of Vk and writing ψk(t) =
∑Nk
i=1 θi(t)ei,

(6.59) can be re-cast as

Θ(T ) = 0 and, for all t ∈ [0, T ], M(t)Θ′(t)− S(t)Θ(t) = F (t) (6.60)

where Θ(t) = (θi(t))i=1,...,Nk , M(t) and S(t) are the symmetric matrices with
respective entries Mi,j(t) = (Φ(·, t)ei, ej)L2 and Si,j(t) = (Λ∇ei,∇ej)(L2)d ,
and F (t) = ((f(·, t), ej))j=1,...,Nk . Since Φ ≥ ϕ∗ and (ei)i=1,...,Nk is orthonor-
mal for (·, ·)L2 , it holds M(t) ≥ ϕ∗Id. M(t)−1 is therefore well defined and
measurable bounded over [0, T ]. Hence, the initial value problem (6.60) can be
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put in standard form, with bounded measurable coefficients, and it therefore
has a unique solution Θ such that Θ′ is bounded.
There exists thus a unique solution ψk to (6.59), with ψk ∈W 1,∞(0, T ;Vk) ⊂
W 1,∞(0, T ;H1

0 (Ω)). Let us now prove some a priori estimates on ψk. We
make, for a.e. t ∈ (0, T ), w = ψ′k(t) in (6.59) and we integrate over t ∈ (τ, T ),
for some τ ∈ (0, T ). Since Λ is symmetric and does not depend on t,

(Λ∇ψk(t),∇ψ′k(t))(L2)d =
1

2

d

dt
(Λ∇ψk(t),∇ψk(t))(L2)d

and we therefore obtain, using ψk(·, T ) = 0 and the Young inequality (D.9),∫ T

τ

∫
Ω

Φ(x, t)|∂tψk(x, t)|2dxdt+
1

2

∫
Ω

Λ(x)∇ψk(x, τ) · ∇ψk(x, τ)dx

≤ ‖f‖L2(Ω×(0,T )) ‖∂tψk‖L2(Ω×(τ,T )

≤ 1

2ϕ∗
‖f‖L2(Ω×(0,T )) +

ϕ∗
2
‖∂tψk‖2L2(Ω×(τ,T ) .

This estimate holds for any τ ∈ (0, T ). Given that Λ is uniformly coercive
and that Φ ≥ ϕ∗, we deduce that (ψk)k∈N is bounded in L∞(0, T ;H1

0 (Ω))
and that (∂tψk)k∈N is bounded in L2(Ω × (0, T )). Hence, there exists ψ ∈
L∞(0, T ;H1

0 (Ω)) such that ∂tψ ∈ L2(Ω × (0, T )) and, up to a subsequence
as k → ∞, ψk → ψ weakly-∗ in L∞(0, T ;H1

0 (Ω)) and ∂tψk → ∂tψ weakly in
L2(Ω × (0, T )). Using Aubin–Simon’s theorem, we also see that the conver-
gence of (ψk)k∈N holds in C([0, T ];L2(Ω)), which ensures that ψ(·, T ) = 0.
We then take θ ∈ C∞c (0, T ) and v ∈ V` for some ` ∈ N, and apply (6.59) for
k ≥ ` to θ(t)v instead of v. Integrating the resulting equation over t ∈ (0, T ),
we can take the limit and see that ψ satisfies, with ρ(x, t) = θ(t)v(x),

∫ T

0

∫
Ω

Φ(x, t)∂tψ(x, t)ρ(x, t)dxdt−
∫ T

0

∫
Ω

Λ(x)∇ψ(x, t) · ∇ρ(x, t)dxdt

=

∫ T

0

∫
Ω

f(x, t)ρ(x, t)dxdt. (6.61)

Any function ρ in L2(0, T ;H1
0 (Ω)) can be approximated in this space by finite

sums of functions (x, t) → θ(t)v(x), with θ ∈ C∞c (0, T ) and v ∈ ∪`∈NV`
(see [67]). Hence, (6.61) also holds for any ρ ∈ L2(0, T ;H1

0 (Ω)). Considering
smooth compactly supported functions ρ, (6.61) shows that div(Λ∇ψ) = f −
Φ∂tψ in the sense of distributions. This proves that div(Λ∇ψ) ∈ L2(Ω×(0, T ))
and thus, by (6.61), that (6.58) is satisfied.
Note that Lemma 6.28 below provides an additional regularity property and
an integration-by-part formula on ψ.

Step 2: proof of (6.57).
Taking s, τ ∈ [0, T ], we have
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s

∫
Ω

w(x, t)div(Λ∇ψ)(x, t)dxdt = −
∫ τ

s

∫
Ω

Λ(x)∇w(x, t) · ∇ψ(x, t)dxdt,

and∫ τ

s

∫
Ω

w(x, t)∂tψ(x, t)dxdt =

∫
Ω

(w(x, τ)ψ(x, τ)− w(x, s)ψ(x, s))dx

−
∫ τ

s

∫
Ω

ψ(x, t)∂tw(x, t)dxdt.

Multiplying (6.56) by ∂tψ(x, t) + div(Λ∇ψ)(x, t), integrating over Ω × (s, T )
for s ∈ [0, T ], using (6.65) in Lemma 6.28, and recalling that ψ(·, T ) = 0, we
obtain

1

2

∫
Ω

Λ(x)∇ψ(x, s) · ∇ψ(x, s)dx

+

∫ T

s

∫
Ω

(
(1− g(x, t))

(
∂tψ(x, t)

)2

+ g(x, t)
(

div(Λ∇ψ)(x, t)
)2
)

dxdt

= −
∫ T

s

∫
Ω

Λ(x)∇w(x, t) · ∇ψ(x, t)dxdt−
∫
Ω

w(x, s)ψ(x, s)dx

−
∫ T

s

∫
Ω

ψ(x, t)∂tw(x, t)dxdt. (6.62)

Integrating (6.62) with respect to s ∈ (0, T ) leads to

1

2

∫ T

0

∫
Ω

Λ(x)∇ψ(x, s) · ∇ψ(x, s)dxds

≤ T
∫ T

0

∫
Ω

|Λ(x)∇w(x, t) · ∇ψ(x, t)|dxdt+

∫ T

0

∫
Ω

|w(x, s)ψ(x, s)|dxds

+ T

∫ T

0

∫
Ω

|ψ(x, t)∂tw(x, t)|dxdt. (6.63)

Apply the Cauchy–Schwarz and Poincaré inequalities to obtain

λ

2
‖∇ψ‖L2(Ω×(0,T ))d ≤ Tλ ‖∇w‖L2(Ω×(0,T ))

+ diam(Ω)
(
‖w‖L2(Ω×(0,T )) + T ‖∂tw‖L2(Ω×(0,T ))

)
. (6.64)

Letting s = 0 in (6.62), recalling that w(·, 0) = 0, and using (6.64) gives∫ T

0

∫
Ω

(
(1− g(x, t))

(
∂tψ(x, t)

)2

+ g(x, t)
(

div(Λ∇ψ)(x, t)
)2
)

dxdt

≤
(
λ ‖∇w‖L2(Ω×(0,T )) + diam(Ω) ‖∂tw‖L2(Ω×(0,T ))

)
‖∇ψ‖L2(Ω×(0,T ))d .

Combined with (6.64), this shows that (6.57) holds.
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Lemma 6.28. Assume that Ω, T and Λ satisfy (6.3a) and (6.3e). Let ψ ∈
L∞(0, T ;H1

0 (Ω)) such that ∂tψ and div(Λ∇ψ) belong to L2(Ω× (0, T )). Then
ψ ∈ C([0, T ];H1

0 (Ω)) and, for all s, τ ∈ [0, T ],∫ τ

s

∫
Ω

∂tψ(x, t)div(Λ∇ψ)(x, t)dxdt = −1

2

∫
Ω

Λ(x)∇ψ(x, τ) · ∇ψ(x, τ)dx

+
1

2

∫
Ω

Λ(x)∇ψ(x, s) · ∇ψ(x, s)dx. (6.65)

Proof.
Step 1: ψ ∈ C([0, T ];L2(Ω)) and ψ : [0, T ] → H1

0 (Ω) is continuous for the
weak topology of H1

0 (Ω).
Since ψ ∈ L∞(0, T ;H1

0 (Ω)) ⊂ L2(0, T ;L2(Ω)) and ∂tψ ∈ L2(0, T ;L2(Ω)), we
have ψ ∈ H1(0, T ;L2(Ω)) ⊂ C([0, T ];L2(Ω)).
Let M = ‖ψ‖L∞(0,T ;H1

0 (Ω)) and let t ∈ [0, T ]. There exists (tn)n∈N converging

to t such that ‖ψ(tn)‖H1
0 (Ω) ≤M . Since ψ is continuous with values in L2(Ω),

we have ψ(tn) → ψ(t) in L2(Ω). Given the bound on ‖ψ(tn)‖H1
0 (Ω), this

convergence also holds in H1
0 (Ω), and ‖ψ(t)‖H1

0 (Ω) ≤ M . In other words, M

is not just an essential bound of ‖ψ(·)‖H1
0 (Ω), but actually a pointwise bound.

Let us now prove the weak continuity of ψ. Let t ∈ [0, T ] and tn → t. If
γ ∈ C∞c (Ω) we have

(ψ(tn), γ)H1
0

=

∫
Ω

∇ψ(x, tn) · ∇γ(x)dxdt = −
∫
Ω

ψ(x, tn)∆γ(x)dxdt

and thus, as n→∞, since ψ ∈ C([0, T ];L2(Ω)),

(ψ(tn), γ)H1
0
→ −

∫
Ω

ψ(x, t)∆γ(x)dxdt

=

∫
Ω

∇ψ(x, t) · ∇γ(x)dxdt = (ψ(t), γ)H1
0
. (6.66)

If γ ∈ H1
0 (Ω) then we take γε ∈ C∞c (Ω) such that ‖γ − γε‖H1

0 (Ω) ≤ ε and we

classically write∣∣∣(ψ(tn), γ)H1
0
−(ψ(t), γ)H1

0

∣∣∣
≤
∣∣∣(ψ(tn), γ)H1

0
− (ψ(tn), γε)H1

0

∣∣∣+
∣∣∣(ψ(tn), γε)H1

0
− (ψ(t), γε)H1

0

∣∣∣
+
∣∣∣(ψ(t), γε)H1

0
− (ψ(t), γ)H1

0

∣∣∣
≤Mε+

∣∣∣(ψ(tn), γε)H1
0
− (ψ(t), γε)H1

0

∣∣∣+Mε.

Taking the superior limit as n → ∞ (using (6.66) with γε instead of γ), and
then the limit as ε → 0, we deduce that that (ψ(tn), γ)H1

0
→ (ψ(t), γ)H1

0
as

n→∞. This concludes the proof of the continuity of ψ : [0, T ]→ H1
0 (Ω)-w.
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Step 2: proof of (6.65).
We only have to consider the case s < τ . We truncate ψ to [s, τ ] and extend
it by its constant values at the endpoints of this interval, which consists in
defining ψ on R by

ψ(t) =

ψ(s) if t ≤ s,
ψ(t) if t ∈ (s, τ),
ψ(τ) if t ≥ τ .

Since ψ ∈ C([0, T ];L2(Ω)) ∩ C([0, T ];H1
0 (Ω)-w), this definition makes sense

and we have ψ ∈ C(R;L2(Ω)) ∩ C(R;H1
0 (Ω)-w). By these continuity prop-

erties, we have ∂tψ = 1(s,τ)∂tψ since no Dirac masses are introduced at

s or τ . We also have, on (s, τ), div(Λ∇ψ) = div(Λ∇ψ) ∈ L2(Ω × (s, τ)).
However, because we cannot ensure that div(Λ∇ψ(τ)) and div(Λ∇ψ(s)) be-
longs to L2(Ω), we cannot say that div(Λ∇ψ) ∈ L2(Ω × R). We only have
div(Λ∇ψ) ∈ C(R;H−1(Ω)-w), owing to ψ ∈ C(R;H1

0 (Ω)-w).

Let (ρn)n∈N be a smoothing kernel in time, such that supp(ρn) ⊂ (−(τ−s), 0).
We set ψn(x, t) = (ψ(x, ·) ∗ ρn)(t). Then ψn ∈ C∞(R;H1

0 (Ω)) and we can
write, since Λ is symmetric and does not depend on time,∫ τ

s

〈∂tψn(t),div(Λ∇ψn)(t)〉H1
0 ,H

−1dt

= −
∫ τ

s

∫
Ω

∂t∇ψn(x, t) · Λ(x)∇ψn(x, t)dxdt

= − 1

2

∫ τ

s

d

dt

∫
Ω

Λ(x)∇ψn(x, t) · ∇ψn(x, t)dxdt

= − 1

2

∫
Ω

Λ(x)∇ψn(x, τ) · ∇ψn(x, τ)dx

+
1

2

∫
Ω

Λ(x)∇ψn(x, s) · ∇ψn(x, s)dx. (6.67)

We aim at passing to the limit n→∞ in this relation. By choice of supp(ρn)
and by definition of ψ,

ψn(x, τ) =

∫
R
ψ(x, q)ρn(τ − q)dq

=

∫ ∞
τ

ψ(x, q)ρn(τ − q)ds = ψ(x, τ)

∫ ∞
τ

ρn(τ − q)dq = ψ(x, τ).

Hence, for all n ∈ N,

1

2

∫
Ω

Λ(x)∇ψn(x, τ) · ∇ψn(x, τ)dx

=
1

2

∫
Ω

Λ(x)∇ψ(x, τ) · ∇ψ(x, τ)dx. (6.68)
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Since ψ ∈ C(R;H1
0 (Ω)-w), as n → ∞ we have ψn(s) → ψ(s) = ψ(s) weakly

in H1
0 (Ω). The bilinear form (Λ∇·,∇·)(L2)d being a Hilbert norm in H1

0 (Ω),
we infer that

lim inf
n→∞

1

2

∫
Ω

Λ(x)∇ψn(x, s) · ∇ψn(x, s)dx

≥ 1

2

∫
Ω

Λ(x)∇ψ(x, s) · ∇ψ(x, s)dx. (6.69)

Dealing with the left-hand side of (6.67) is a bit more challenging, due to the
lack of regularity of div(Λ∇ψ) outside (s, τ). By definition of ψ, we have

div(Λ∇ψ(t)) = 1(−∞,s](t)div(Λ∇ψ(s)) + 1(s,τ)(t)(div(Λ∇ψ(t))

+ 1[τ,+∞)(t)(div(Λ∇ψ(τ)).

The choice of the support of ρn ensures that, whenever t > s, 1(−∞,s]∗ρn(t) =
0. Hence, for t ∈ (s, τ),

div(Λ∇ψn(t)) =
[
div(Λ∇ψ(·))1(s,τ)

]
∗ ρn(t) + (1[τ,+∞) ∗ ρn)(t)(div(Λ∇ψ(τ)).

Since div(Λ∇ψ)1(s,τ) ∈ L2(Ω × R), the left-hand side of (6.67) can therefore
be re-cast as∫ τ

s

〈∂tψn(t),div(Λ∇ψn)(t)〉H1
0 ,H

−1dt

=

∫ τ

s

∫
Ω

∂tψn(x, t)
[
div(Λ∇ψ)(x, ·)1(s,τ)

]
∗ ρn(t)dxdt

+

∫ τ

s

〈∂tψn(t),div(Λ∇ψ(τ))〉H1
0 ,H

−1(1[τ,∞) ∗ ρn)(t)dt

=

∫ τ

s

∫
Ω

∂tψn(x, t)
[
div(Λ∇ψ)(x, ·)1(s,τ)

]
∗ ρn(t)dxdt+ Tn, (6.70)

where Tn =
∫ τ
s
F ′n(t)(1[τ,∞) ∗ ρn)(t)dt with

Fn(t) = F ∗ ρn(t) , F (t) = 〈ψ(t),div(Λ∇ψ(τ)〉H1
0 ,H

−1 .

Integrating-by-parts, we have

Tn = Fn(τ)(1[τ,∞) ∗ ρn)(τ)− Fn(s)(1[τ,∞) ∗ ρn)(s)

−
∫ τ

s

Fn(t)(1[τ,∞) ∗ ρn)′(t)dt.

The choice of support of ρn ensures that (1[τ,∞)∗ρn)(s) = 0 and that (1[τ,∞)∗
ρn)(τ) = 1. We also notice that (1[τ,∞) ∗ ρn)′ = δτ ∗ ρn has support in (s, τ)
and converges weakly in the sense of measures toward the Dirac mass δτ . Since
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ψ ∈ C(R;H1
0 (Ω)-w), we have F ∈ C(R) and thus Fn → F locally uniformly

on R. Hence, as n→∞,

Tn = Fn(τ)−
∫ τ

s

Fn(t)(1[τ,∞) ∗ ρn)′(t)dt→ F (τ)− F (τ) = 0. (6.71)

The functions ∂tψ and div(Λ∇ψ)(x, ·)1(s,τ) belong to L2(Ω × R), so

∂tψn = (∂tψ) ∗ ρn → ∂tψ in L2(Ω × R)

and [
div(Λ∇ψ)(x, ·)1(s,τ)

]
∗ ρn → div(Λ∇ψ)(x, ·)1(s,τ) in L2(Ω × R).

Using (6.71), we can therefore pass to the limit in (6.70) and we see, since
∂tψ = ∂tψ on Ω × (s, τ),

lim
n→∞

∫ τ

s

〈∂tψn(t),div(Λ∇ψn)(t)〉H1
0 ,H

−1dt

=

∫ τ

s

∫
Ω

∂tψ(x, t)div(Λ∇ψ)(x, t)dxdt.

Combined with (6.67), (6.68) and (6.69), this gives (6.65) with “≥” instead of
“=”. The converse inequality is obtained by re-doing the previous reasoning
with smoothing kernels ρn having support in (0, τ − s), or by reversing the
time as at the end of the proof of Lemma 6.23.

Step 3: proof that ψ : [0, T ] → H1
0 (Ω) is continuous for the strong topology

of H1
0 (Ω).

Since the left-hand side of (6.65) is continuous with respect to s, the mapping
s→ (Λ∇ψ(s),∇ψ(s))(L2)d is continuous. Assume that sn → s in [0, T ]. Owing
to ψ ∈ C([0, T ];H1

0 (Ω)-w) we have ψ(sn)→ ψ(s) weakly in H1
0 (Ω). Moreover,

(Λ∇ψ(sn),∇ψ(sn))(L2)d → (Λ∇ψ(s),∇ψ(s))(L2)d . Since (Λ∇·,∇·)(L2)d is a
Hilbert norm on H1

0 (Ω), we conclude that ψ(sn)→ ψ(s) strongly in H1
0 (Ω).





Part III

Examples of gradient discretisation methods
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In this part several classical and popular numerical methods are shown to fit
in the gradient discretisation method (GDM).
Chapter 7 introduces the concept of polytopal meshes, on which most schemes
considered in the subsequent chapters are built, and presents discrete tools to
analyse the properties of various gradient discretisations (GDs). The notions
of “control by polytopal toolboxes”, of “local linearly exact (LLE) GDs”, of
“mass lumping”, and of “barycentric condensation” provide very easy and
short proofs of the consistency, coercivity, limit-conformity and compactness
of the considered GDs.
Chapters 8 to 14 are devoted to specific well-known classes of methods,
namely:

• Methods based on Galerkin and polynomial interpolations: conforming
Galerkin methods, non-conforming finite element methods and derived
methods, mixed finite element schemes, discontinuous Galerkin methods;

• Methods derived from the finite volume framework: the multi-point flux
approximation (MPFA)-O scheme, hybrid mimetic mixed schemes and
nodal mimetic finite difference methods, the discrete duality finite volume
“CeVeFE-DDFV” method.

For each of these methods, a gradient discretisation is constructed such that
the corresponding gradient scheme (GS) (2.23) for the standard linear diffu-
sion model (2.20) corresponds to the considered numerical method applied to
this model.
The properties (defined in Part I) of each of these GDs thus constructed are
then analysed. Once these known numerical methods are recast as GDMs
through the choice of appropriate GDs, the analysis developed for various
models in Parts I and II directly applies to these methods. A by-product is
the convergence of say, the non-conforming P1, HMM and nMFD schemes, for
the Leray–Lions, Stefan and Richards models.
It is worth mentioning that some ideas underlying the methods in Chapters
8 to 14 have been adapted to other models than those covered in Parts I
and II, including for instance advection terms: see e.g. [22, 37, 39, 40, 61,
122] and references therein. Although not necessarily amenable to a direct
GDM analysis, such adaptations could still benefit from some of the tools
developed in this monograph. The GDM itself can be coupled with specific
treatments of non diffusive terms; this is the case in [47], which introduces
and analyses a scheme coupling the GDM for the diffusion terms and the
Eulerian–Lagrangian Localized Adjoint Method (ELLAM) for the convection
term.

In all the following chapters in this part, p ∈ (1,∞) is an index referring to the
regularity of the solution of the considered problem and Ω is an open bounded
connected subset of Rd (d ∈ N?) with Lipschitz-continuous boundary ∂Ω.
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Analysis tools for gradient discretisations

Polytopal meshes are often used in real applications, for instance in the nu-
merical simulation of complex flows in porous media. The design of numerical
methods on such meshes is at the origin of the GDM. Most of the examples
of GDs reviewed in this part of the book are based on such meshes. These
meshes can be very generic, non-conforming and with possibly non-convex
cells.
The convergence analysis of one of the “historical” gradient schemes built
upon such polytopal meshes, namely the SUSHI scheme, relies upon a number
of discrete functional analysis results which are described in detail in [95,
Appendix], see also chapter B in the Appendix below. These results rely on
some “polytopal tools”, detailed in Section 7.1:

• the polynomial mesh itself (see Definition 7.2 below),
• the set of discrete unknowns on the cells and faces of the mesh,
• piecewise constant reconstruction operators on the cells and faces using

these unknowns,
• the (non stabilised) discrete gradient based upon the geometrical property

(B.2) and defined by (7.7e) below,
• a discrete W 1,p norm defined by (7.7f) below,
• some parameters referring to the regularity of the mesh.

In Section 7.2, these tools are organised in “polytopal toolboxes”, consist-
ing of some of the above tools, chosen according to the type of boundary
condition. Hence each polytopal toolbox is associated to a given boundary
condition. The control of a GD by a polytopal toolbox consists in mapping
the discrete unknowns of a GD onto cell- and face-unknowns on a polytopal
mesh; if the mapping satisfies three core properties, this control is shown to
give the coercivity, compactness and limit-conformity of numerous mesh-based
GDs, thanks to the discrete functional analysis results of Appendix B. Precise
estimates on the coercivity measure CD and the limit-conformity WD are also
established.
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The notion of local linearly exact (LLE) gradient discretisation is then intro-
duced and analysed in Section 7.3. The linear exactness ensures the consis-
tency of sequences of GDs. Section 7.4 extends this analysis to provide explicit
estimates on SD(ϕ), when ϕ ∈W 2,p with p > d/2.
The notion of LLE GD is also used to describe a generic elimination process
of unknowns in gradient schemes, replacing them with barycentric combina-
tions of other unknowns. This process, called “barycentric condensation” is
standard in the construction of numerous schemes (e.g., SUSHI [95], VAG
[98, 100]), but was always performed on a case-by-case basis. In the context
of LLE GDs, such barycentric condensations are described without referring
to the specificities of each GD, and are shown to preserve the LLE property
– and thus the GD-consistency.
A general way to mass-lump any GD is finally presented. Mass-lumping hides
various processes which are not always well defined nor justified, and whose
purpose is to modify a scheme so as to obtain piecewise constant approxima-
tions. In the GDM framework, a rigorous way for performing mass-lumping
is set up so that, under a single easily-checked assumption, the mass-lumped
GDs enjoy the same properties as the initial GDs.

As a conclusion to this chapter, Section 7.5 presents tracks for further research:
a generalised notion of discrete unknowns (Section 7.5.1), and non-linearly
exact barycentric combinations (Section 7.5.2) – such combinations may arise
in the case of heterogeneous diffusion problems.

Example 7.1 (Illustration of the notions)
Boxes such as the present one one provide illustrative examples of the
concepts introduced in this chapter (control by a polytopal toolbox, LLE
GDs, etc.). These examples are all based on the non-conforming P1 finite
element method, covered in detail in Chapter 9.

7.1 Polytopal tools

7.1.1 Polytopal meshes

We recall that a 0-polytope is a vertex, a 1-polytope is a segment or an edge,
a 2-polytope is a polygon, a 3-polytope is a polyhedron. In order to give
a precise definition of a polytope, we first define the k-simplices of Rd for
k = 0, . . . , d. For any family (xi)i=1,...,k+1 of points of Rd such that the family
of vectors (xi − xk+1)i=1,...,k is linearly independent, the k-simplex denoted
by S((xi)i=1,...,k+1) is defined by the convex hull of the points (xi)i=1,...,k+1,
that is
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S((xi)i=1,...,k+1) =

{
k+1∑
i=1

αixi : αi ≥ 0, i = 1, . . . , k + 1,

k+1∑
i=1

αi = 1

}
. (7.1)

An open d-polytope Ω is defined as the interior of the union of a finite number
of d-simplices (Sj)j=1,...,M , such that the intersection Sm∩Sn of two different
simplices Sm and Sn of the family is either empty or equal to a d′-simplex
with d′ < d. In particular, we have

Ω =
⋃

j=1,...,M

Sj

and Ω is the interior of Ω. The boundary of Ω is then the union of the faces
of the simplices (Sj)j=1,...,M which are not common to two different simplices.
∂Ω is therefore the union of d− 1-simplices.
In this section, we work with the following conditions and notations:

d ∈ N \ {0} denotes the space dimension,
Ω is a d-polytopal bounded connected open subset of Rd,
with boundary ∂Ω.

(7.2)

Definition 7.2 (Polytopal mesh). Let Ω ⊂ Rd satisfy Assumption (7.2);
a polytopal mesh of Ω is a quadruplet T = (M,F ,P,V), where:

1.M is a finite family of non-empty connected polytopal open disjoint subsets
of Ω (the “cells”) such that Ω = ∪K∈MK. For any K ∈ M, let ∂K =
K \K be the boundary of K, |K| > 0 is the measure of K and hK denote
the diameter of K, that is the maximum distance between two points of
K.

2. F = Fint ∪ Fext is a finite family of disjoint subsets of Ω (the “faces”
of the mesh – “edges” in 2D), such that any σ ∈ Fint is contained in
Ω and any σ ∈ Fext is contained in ∂Ω. Each σ ∈ F is assumed to
be a non-empty open subset of a hyperplane of Rd, with a strictly positive
(d−1)-dimensional measure |σ|, and a relative interior σ\σ of zero (d−1)-
dimensional measure. Furthermore, for all K ∈ M, there exists a subset
FK of F such that ∂K = ∪σ∈FKσ. We set Mσ = {K ∈ M : σ ∈ FK}
and assume that, for all σ ∈ F , either Mσ has exactly one element and
then σ ∈ Fext, or Mσ has exactly two elements and then σ ∈ Fint. The
centre of mass of σ is denoted by xσ and, for K ∈M and σ ∈ FK , nK,σ
is the (constant) unit vector normal to σ outward to K.
For all K ∈M, NK is the set of the neighbours of K:

NK = {L ∈M \ {K} : ∃σ ∈ Fint, Mσ = {K,L}}. (7.3)

3. P is a family of points of Ω indexed by M and F , denoted by P =
((xK)K∈M, (xσ)σ∈F ), such that for all K ∈ M, xK ∈ K and for all
σ ∈ F , xσ ∈ σ. We then denote by dK,σ the signed orthogonal distance
between xK and σ ∈ FK (see Figure 7.1), that is:
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dK,σ = (x− xK) · nK,σ, for all x ∈ σ. (7.4)

(Note that (x − xK) · nK,σ is constant for x ∈ σ.) We then assume that
each cell K ∈M is strictly star-shaped with respect to xK , that is dK,σ > 0
for all σ ∈ FK . This implies that for all x ∈ K, the line segment [xK ,x]
is included in K.
For all K ∈M and σ ∈ FK , we denote by DK,σ the cone with vertex xK
and basis σ, that is

DK,σ = {txK + (1− t)y : t ∈ (0, 1), y ∈ σ}. (7.5)

We denote, for all σ ∈ F , Dσ =
⋃
K∈Mσ

DK,σ (this set is called the
“diamond” associated to the face σ, and for obvious reasons DK,σ is also
referred to as an “half-diamond”).

4. V is a set of points (the vertices of the mesh). For K ∈ M, the set of
vertices of K, i.e. the vertices contained in K, is denoted by VK . Similarly,
the set of vertices of σ ∈ F is Vσ.

The size of the polytopal mesh is defined by:

hM = sup{hK : K ∈M}. (7.6)

dK,σ′

nK,σ′

nK,σ

σ′

σ

dK,σ

K
DK,σxK

Fig. 7.1. A cell K of a polytopal mesh

Remark 7.3. Definition 7.2 covers a large variety of meshes. In particular,
the cells are not assumed to be convex, and the common boundary of two
neighbouring cells can include more than one face.
A classical geometry that can be handled through this definition is that of
“generalised hexahedron” (see Figure 7.2). This 3D-cell is made of 8 vertices,
but the corresponding “physical faces” are not necessarily planar. In that case,
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by cutting each of these faces in two triangles, we recover a polyhedron with
planar faces. This polyhedron has 8 vertices, up to 12 triangular faces (in the
case where all physical faces are non-planar and need to be cut in half), but
only 6 neighbouring cells.

Fig. 7.2. A “generalised hexahedron” with one (non-planar) physical face cut in
two (planar and triangular) faces.

A number of finite element methods require the notion of simplicial mesh.

Definition 7.4 (Conforming simplicial mesh). A conforming simplicial
mesh of Ω is a polytopal mesh T = (M,F ,P,V) in the sense of Definition
7.2, such that for each K ∈ M we have Card(FK) = d + 1. Most often, for
these polytopal meshes, P will be the set of centres of mass of the cells.

In a conforming simplicial mesh, each cell is therefore a d-simplex (triangle if
d = 2, tetrahedron if d = 3), and there are no hanging nodes, i.e. the vertices
of the mesh are exactly the “physical” vertices of the cells.

7.1.2 Operators, norm and regularity factors associated with a
polytopal mesh

Under Hypothesis (7.2), if T = (M,F ,P,V) is a polytopal mesh of Ω in the
sense of Definition 7.2, we define the space of cell and face unknowns by

XT = {v = ((vK)K∈M, (vσ)σ∈F ) : vK ∈ R, vσ ∈ R}, (7.7a)

and the subspace of vectors with a zero value on the boundary by

XT,0 = {v ∈ XT : vσ = 0 for all σ ∈ Fext}. (7.7b)

The function reconstruction ΠT : XT → L∞(Ω), trace reconstruction TT :
XT → L∞(∂Ω) and gradient reconstruction ∇T : XT → L∞(Ω)d are defined
by
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∀v ∈ XT, ∀K ∈M, for a.e. x ∈ K, ΠTv(x) = vK , (7.7c)

∀v ∈ XT, ∀σ ∈ Fext, for a.e. x ∈ σ, TTv(x) = vσ, (7.7d)

∀v ∈ XT, ∀K ∈M, for a.e. x ∈ K,
∇Tv(x) = ∇Kv :=

1

|K|
∑
σ∈FK

|σ|(vσ − vK)nK,σ

=
1

|K|
∑
σ∈FK

|σ|vσnK,σ.
(7.7e)

The gradient defined by (7.7e) is consistent thanks to the geometrical property
(B.2), see lemma B.10; it is however not stable since it only involves the face
unknowns (uσ)σ∈F and not the cell unknowns (uK)K∈T (see also Remark
7.8). The last equality in (7.7e) is a consequence of Stokes’ formula, which
ensures that

∑
σ∈FK |σ|nK,σ = 0 (see the proof of Lemma B.3). Finally, for

p ∈ [1,+∞) a discrete W 1,p semi-norm on XT is defined by

∀v ∈ XT, |v|pT,p =
∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p . (7.7f)

The semi-norm |·|T,p is in fact a norm when restricted to XT,0.

Remark 7.5 (Cell-centred schemes)
For cell-centred schemes, whose unknowns are v = (vK)K∈M, a more natural norm
than (7.7f) is

|v|pT,p,c =
∑
σ∈F

|σ|dK,L
∣∣∣∣vL − vKdK,L

∣∣∣∣p
where, in this sum, K and L are the cells around σ and dK,L = dK,σ + dL,σ if σ is
an interior face, or vL = 0 and dK,L = dK,σ if σ ∈ FK ∩ Fext. Switching from cell
unknowns to cell and face unknowns as in (7.7a) and (7.7f) is quite easy. It suffices
to extend u = (uK)K∈M into ṽ = ((vK)K∈M, (vσ)σ∈F ) with vσ = vK+vL

2
if σ is an

interior face and K, L are the cells around σ, or vσ = 0 if σ is a boundary face.
Then, the norms v 7→ |ṽ|T,p and v 7→ |v|T,p,c are equivalent, with constants involving
ηT given in (7.9) below, and all the results presented in this section can therefore
be applied provided that ηT is bounded independently of the mesh size. Note that
the converse (adding cell unknowns to a method with face unknowns only, in order
to use the results of this section) is also easy – see the analysis of non-conforming
finite elements in Chapter 9.

Finally, two numbers are introduced to measure the regularity properties of a
polytopal mesh, namely:

θT = max
K∈M

(
max
σ∈FK

hK
dK,σ

+ Card(FK)

)
, (7.8)

ηT = max
σ∈Fint ,Mσ={K,L}

(
dK,σ
dL,σ

+
dL,σ
dK,σ

)
. (7.9)
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A number of results involving sequences (Tm)m∈N of polytopal meshes will
require one or the other, or both, of these corresponding regularity factors to
be bounded along the sequence of meshes.
For simplicial meshes, only the following simpler regularity factor is needed:

κT = max
K∈M

hK
ρK

, (7.10)

where, for K ∈ M, ρK is the radius of the largest ball included in K and
centred at the centre of mass xK of K. It is proved in Lemma B.4 page 409
that, for simplicial meshes, κT controls θT and ηT.

7.2 Control of a GD by a polytopal toolbox

Example 7.6 (GD for the non-conforming P1 finite elements)
The non-conforming P1 finite element is used to illustrate notions intro-
duced below; the corresponding gradient discretisation is briefly recalled: a
simplicial mesh T (see Definition 7.4) is used; the set of discrete unknowns,
located on the faces of the mesh, is denoted by

XD,0 = {v = (vσ)σ∈FK : vσ ∈ R for all σ ∈ Fint ,

vσ = 0 for all σ ∈ Fext}.
(7.11)

The function reconstruction ΠD : XD,0 → Lp(Ω) is defined by: for
v ∈ XD,0, ΠDv is the function on Ω that is linear on each K ∈ M,
continuous at the face centres (xσ)σ∈F , and takes the values (vσ)σ∈F
at these centres. The gradient reconstruction ∇D : XD,0 → Lp(Ω)d is the
“broken” gradient: ∇Dv is constant equal to ∇[(ΠDv)|K ] in each K ∈M.

7.2.1 Dirichlet boundary conditions

Definition 7.7 (Polytopal toolbox for homogeneous Dirichlet BCs).
Let Ω satisfy Assumption (7.2), and let T be a polytopal mesh in the sense of
Definition 7.2. The quadruplet (XT,0, ΠT,∇T, |·|T,p) is a polytopal toolbox for
Dirichlet boundary conditions if:

1. The set XT,0 is defined by (7.7b):

XT,0 = {v ∈ XT : vσ = 0 for all σ ∈ Fext}.

2. The function reconstruction ΠT : XT,0 → L∞(Ω) is defined by (7.7c):

∀v ∈ XT,0, ∀K ∈M, for a.e. x ∈ K, ΠTv(x) = vK .
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3. The gradient reconstruction ∇T : XT,0 → L∞(Ω)d is defined by (7.7e):

∀v ∈ XT,0, ∀K ∈M, for a.e. x ∈ K,
∇Tv(x) =

1

|K|
∑
σ∈FK

|σ|(vσ − vK)nK,σ =
1

|K|
∑
σ∈FK

|σ|vσnK,σ.

4. The space XT,0 is endowed with the norm (7.7f):

∀v ∈ XT,0, |v|pT,p =
∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p .
Remark 7.8. Note that (XT,0, ΠT,∇T) is not a GD since

∥∥∇T·
∥∥
Lp(Ω)d

is not

a norm on XT,0: if v ∈ XT,0 has zero values at all the faces but not in the
cells, ∇Tv = 0 but v 6= 0 in XT,0. The original SUSHI scheme [95] combines
the gradient ∇Tv with a stabilisation on half diamond cells (see Chapter 13).

Often, T refers to both the polytopal mesh and to the polytopal toolbox
(XT,0, ΠT,∇T, | |T,p). There is an abuse of notation here, since the polytopal
mesh does not depend on the considered boundary conditions (Dirichlet, Neu-
mann, etc.), whereas the polytopal toolbox does depend on these conditions
as seen in Section 7.2.2. However, the context will always make clear which
boundary conditions are considered, and thus which kind of polytopal toolbox
should be used.

Definition 7.9 (Control of a GD, hom. Dirichlet BCs). Let Ω satisfy
Assumption (7.2), let D be a GD in the sense of Definition 2.1, and let T be
a polytopal toolbox in the sense of Definition 7.7. A control of D by T is a
linear mapping Φ : XD,0 → XT,0. We then define

‖Φ‖D,T = max
v∈XD,0\{0}

|Φ(v)|T,p
‖v‖D

, (7.12)

ωΠ(D,T,Φ) = max
v∈XD,0\{0}

‖ΠDv −ΠTΦ(v)‖Lp(Ω)

‖v‖D
,

ω∇(D,T,Φ) =

max
v∈XD,0\{0}

1

‖v‖D

( ∑
K∈M

|K|1−p
∣∣∣∣∫
K

[
∇Dv(x)−∇TΦ(v)(x)

]
dx

∣∣∣∣p
) 1
p

.

Example 7.10 (Control of the non-conforming P1 GD)
Finding a control of a given gradient discretisation D by a polytopal tool-
box T consists in computing – often in the most natural way – face and
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cell values (which define an element of XT,0) from the discrete unknowns
of D.
Let us consider the case of the non-conforming P1 gradient discretisa-
tion. Recalling the definition (7.11) of XD,0, there is not need to actually
compute face unknowns since they are already in XD,0. Cell unknowns are
computed by creating equally weighted averages of the d+1 face unknowns
in each cell.
This leads us to defining the following control Φ : XD,0 → XT,0: for
v = (vσ)σ∈FK ∈ XD,0, the element Φ(v) = v̂ = ((v̂K)K∈M, (v̂σ)σ∈F ) of
XT,0 is given by

∀σ ∈ F , v̂σ = vσ and ∀K ∈M , v̂K =
1

d+ 1

∑
σ∈FK

vσ.

We prove in Lemma 9.3 that, for this control, ‖Φ‖D,T ≤ κTd
1/p,

ωΠ(D,T,Φ) ≤ hM and ω∇(D,T,Φ) = 0. Example 7.13 shows how such
bounds are used.

Theorem 7.11 (Estimates for a controlled GD, hom. Dirichlet BCs).
Let Ω satisfy Assumption (7.2), let D be a GD in the sense of Definition 2.1,
let T be a polytopal toolbox in the sense of Definition 7.7, and let Φ be a control
of D by T in the sense of Definition 7.9. We take % ≥ θT + ηT (see (7.8) and
(7.9)).
Then, there exists C1 depending only on Ω, p and % such that

CD ≤ ωΠ(D,T,Φ) + C1 ‖Φ‖D,T (7.13)

and, for all ϕ ∈W 1,p′(Ω)d,

WD(ϕ) ≤ ‖ϕ‖W 1,p′ (Ω)d

[
C1hM(1 + ‖Φ‖D,T) + ωΠ(D,T,Φ)

+ ω∇(D,T,Φ)
]
. (7.14)

Here, CD and WD are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. Using the triangle inequality, Lemma B.15 and the Hölder’s inequality
(D.7) we observe that, for any v ∈ XD,0,

‖ΠDv‖Lp(Ω) ≤ ω
Π(D,T,Φ) ‖v‖D + ‖ΠTΦ(v)‖Lp(Ω)

≤ ωΠ(D,T,Φ) ‖v‖D + C8|Ω|
1
p−

1
q |Φ(v)|T,p ,

with q and C8 given in Lemma B.15. The proof of Estimate (7.13) is concluded
by dividing by ‖v‖D and using the definition (7.12) of ‖Φ‖D,T.
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We turn to (7.14). Let ϕ ∈ W 1,p′(Ω)d and use the triangle inequality, the
definition of ωΠ(D,T,Φ) and (B.31) (notice that TDΦ(v) = 0 since Φ(v) ∈
XT,0) to obtain∣∣∣∣∣
∫
Ω

(
∇Dv(x) ·ϕ(x) +ΠDv(x)divϕ(x)

)
dx

∣∣∣∣∣
≤
∣∣∣∣∫
Ω

[∇Dv(x)−∇TΦ(v)(x)] ·ϕ(x)dx

∣∣∣∣+ ‖divϕ‖Lp′ (Ω) ω
Π(D,T,Φ) ‖v‖D

+

∣∣∣∣∫
Ω

(
∇TΦ(v)(x) ·ϕ(x) +ΠTΦ(v)(x)divϕ(x)

)
dx

∣∣∣∣
≤
∣∣∣∣∫
Ω

[∇Dv(x)−∇TΦ(v)(x)] ·ϕ(x)dx

∣∣∣∣+ ‖divϕ‖Lp′ (Ω) ω
Π(D,T,Φ) ‖v‖D

+ C5 ‖ |∇ϕ| ‖Lp′ (Ω)d |Φ(v)|T,p hM. (7.15)

Let ϕK = 1
|K|
∫
K
ϕ(x)dx. Assuming that p > 1 (so that p′ <∞) and applying

(B.12) in Lemma B.6 to p′ instead of p, we find C2 depending only on d, p and
% such that ‖ϕ−ϕK‖Lp′ (K) ≤ C2hK ‖ |∇ϕ| ‖Lp′ (K). Hence, using Hölder’s
inequality,∣∣∣∣∣

∫
Ω

[∇Dv(x)−∇TΦ(v)(x)] ·ϕ(x)dx

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈M

∫
K

[∇Dv(x)−∇TΦ(v)(x)] ·ϕ(x)dx

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈M

(∫
K

∇Dv(x) · [ϕ(x)−ϕK ]dx

+ϕK ·
∫
K

[∇Dv(x)−∇TΦ(v)(x)]dx
)∣∣∣∣∣

≤ C2hM ‖ |∇ϕ| ‖Lp′ (Ω) ‖∇Dv‖Lp(Ω)d

+
∑
K∈M

|ϕK |
∣∣∣∣∫
K

[∇Dv(x)−∇TΦ(v)(x)]dx

∣∣∣∣
By Hölder’s inequality |ϕK | ≤ |K|−1|K|1−

1
p′ ‖ϕ‖Lp′ (K)d = |K|

1
p−1 ‖ϕ‖Lp′ (K)d

and thus∣∣∣∣∣
∫
Ω

[∇Dv(x)−∇TΦ(v)(x)] ·ϕ(x)dx

∣∣∣∣∣
≤ C2hM ‖ |∇ϕ| ‖Lp′ (Ω) ‖∇Dv‖Lp(Ω)d

+ ‖ϕ‖Lp′ (Ω)d

( ∑
K∈M

|K|1−p
∣∣∣∣∫
K

[
∇Dv(x)−∇TΦ(v)(x)

]
dx

∣∣∣∣p
)1/p
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≤
(
C2hM + ω∇(D,T,Φ)

)
‖ϕ‖W 1,p′ (Ω)d ‖∇Dv‖Lp(Ω)d . (7.16)

Plugged into (7.15) and using the definition (7.12) of ‖Φ‖D,T this gives (7.14).
In the case p = 1 (and thus p′ = +∞), extend ϕ into a Lipschitz-continuous
function over Rd, with a Lipschitz constant bounded by C3 ‖ |∇ϕ| ‖L∞(Ω) for
some C3 depending only on d. The previous calculations can then be done by
using the estimate |ϕ(x)−ϕK | ≤ C3hK ‖ |∇ϕ| ‖L∞(Ω) for any x ∈ K.

An immediate consequence of Theorem 7.11 is the following corollary.

Corollary 7.12 (Properties of controlled GDs, hom. Dirichlet BCs).
Let Ω satisfy Assumption (7.2), let (Dm)m∈N be a sequence of GDs in the
sense of Definition 2.1, and let (Tm)m∈N be a sequence of polytopal toolboxes
in the sense of Definition 7.7. We assume that hMm

→ 0 as m→∞ and that
supm∈N(θTm + ηTm) < +∞ (see (7.8) and (7.9)).
For all m ∈ N we take a control Φm of Dm by Tm in the sense of Definition
7.9, and we assume that

sup
m∈N
‖Φm‖Dm,Tm < +∞,

lim
m→∞

ωΠ(Dm,Tm,Φm) = 0, and

lim
m→∞

ω∇(Dm,Tm,Φm) = 0.

Then (Dm)m∈N is coercive in the sense of Definition 2.2, limit-conforming in
the sense of Definition 2.6, and compact in the sense of Definition 2.9.

Example 7.13 (Properties of the non-conforming P1 GD)
Using the control Φ and the estimates on ‖Φ‖D,T, ωΠ(D,T,Φ) and

ω∇(D,T,Φ), from Example 7.10, the above corollary establishes the co-
ercivity, limit-conformity and compactness of the gradient discretisations
built on non-conforming P1 finite elements.

Proof. The coercivity and limit-conformity are trivial since (7.13) and (7.14)
ensure that supm∈N CDm < +∞ and that WDm(ϕ) → 0 as m → ∞, for all

ϕ ∈ W 1,p′(Ω)d (we use Lemma 2.18 and the fact that W 1,p′(Ω)d is dense in

W p′

div(Ω) – see Remark 2.19).
It remains to prove the compactness. If um ∈ XDm,0 is such that (‖um‖Dm)m∈N
is bounded, then the bound on ‖Φm‖Dm,Tm ensures that (|Φm(um)|Tm,p)m∈N
is bounded. By Lemma B.19, we infer that up to a subsequence ΠTmΦm(um)
converges to some u in Lp(Ω) as m→∞. Since

‖ΠDmum −ΠTmΦm(um)‖Lp(Ω) ≤ ω
Π(Dm,Tm,Φm) ‖um‖Dm → 0

as m→∞, we deduce that ΠDmum → u in Lp(Ω) and the proof is complete.
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Remark 7.14 (Non-homogeneous Dirichlet boundary conditions). The defini-
tions of coercivity, limit-conformity and compactness of GDs for non-homoge-
neous Dirichlet boundary conditions are identical to the definitions for ho-
mogeneous Dirichlet conditions. Hence, all results in this section (in particu-
lar, Corollary 7.12) can be used in the context of non-homogeneous Dirichlet
boundary conditions.

7.2.2 Neumann and Fourier boundary conditions

We define here the notions of polytopal toolboxes and control by polytopal
toolboxes for non-homogeneous Neumann boundary conditions, in a similar
way as what we did in Section 7.2.1 for Dirichlet boundary conditions. In
Remarks 7.19 and 7.20 we indicate the minor modifications that need to be
made to the following definitions and results for homogeneous Neumann and
Fourier boundary conditions.

Definition 7.15 (Polytopal toolbox for Neumann BCs). Let Ω satisfy
Assumption (7.2), and let T be a polytopal mesh in the sense of Definition
7.2. The family (XT, ΠT,TT,∇T, ‖ ‖T,p) is a polytopal toolbox for Neumann
boundary conditions if:

1. The set XT is defined by (7.7a):

XT = {v = ((vK)K∈M, (vσ)σ∈F ) : vK ∈ R, vσ ∈ R}.

2. The function reconstruction ΠT : XT → L∞(Ω) is defined by (7.7c):

∀v ∈ XT, ∀K ∈M, for a.e. x ∈ K, ΠTv(x) = vK .

3. The trace reconstruction TT : XT → L∞(∂Ω) is defined by (7.7d):

∀v ∈ XT, ∀σ ∈ Fext, for a.e. x ∈ σ, TTv(x) = vσ.

4. The gradient reconstruction ∇T : XT → L∞(Ω)d is defined by (7.7e):

∀v ∈ XT, ∀K ∈M, for a.e. x ∈ K,
∇Tv(x) =

1

|K|
∑
σ∈FK

|σ|(vσ − vK)nK,σ =
1

|K|
∑
σ∈FK

|σ|vσnK,σ.

5. Recalling the definition (7.7f) of the semi-norm | |T,p, the space XT is
endowed with the norm

‖v‖pT,p = |v|pT,p +

∣∣∣∣∫
Ω

ΠTv(x)dx

∣∣∣∣p . (7.17)

As mentioned in Section 7.2.1 on Dirichlet boundary conditions, we will of-
ten use T to denote both the polytopal mesh and the polytopal toolbox
(XT, ΠT,TT,∇T, ‖ ‖T,p).
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Definition 7.16 (Control of a GD by a polytopal toolbox – Neumann
BCs). Let Ω satisfy Assumption (7.2), let D be a GD in the sense of Defini-
tion 3.11, and let T be a polytopal toolbox in the sense of Definition 7.15. A
control of D by T is a linear mapping Φ : XD → XT. We then define

‖Φ‖D,T = max
v∈XD\{0}

‖Φ(v)‖T,p
‖v‖D

,

ωΠ(D,T,Φ) = max
v∈XD\{0}

‖ΠDv −ΠTΦ(v)‖Lp(Ω)

‖v‖D
,

ωT(D,T,Φ) = max
v∈XD\{0}

‖TDv − TTΦ(v)‖Lp(∂Ω)

‖v‖D
,

ω∇(D,T,Φ) = max
v∈XD\{0}

( ∑
K∈M

|K|1−p
∣∣∣∣∫
K

[
∇Dv(x)−∇TΦ(v)(x)

]
dx

∣∣∣∣p
) 1
p

‖v‖D
.

Theorem 7.17 (Estimates for a GD controlled by polytopal tool-
boxes – Neumann BCs). Let Ω satisfy Assumption (7.2), let D be a GD
in the sense of Definition 3.11, and let T be a polytopal toolbox in the sense
of Definition 7.15. We take Φ a control of D by T in the sense of Definition
7.16, and % ≥ θT + ηT (see (7.8) and (7.9)).
Then, there exists C4 depending only on Ω, p and % such that

CD ≤ max
(
ωΠ(D,T,Φ), ωT(D,T,Φ)

)
+ C4 ‖Φ‖D,T (7.18)

and, for all ϕ ∈W 1,p′(Ω)d,

WD(ϕ) ≤ ‖ϕ‖W 1,p′ (Ω)d

[
C4hM(1 + ‖Φ‖D,T) + ωΠ(D,T,Φ)

+ ω∇(D,T,Φ) + ωT(D,T,Φ)
]
. (7.19)

Here, CD and WD are the coercivity constant and limit-conformity measure
defined by (3.9) and (3.11).

Proof. The proof is similar to the case of Dirichlet boundary conditions
(Theorem 7.11). By Lemmas B.21 and B.25 we have ‖TTΦ(v)‖Lp(∂Ω) ≤
C5 ‖Φ(v)‖T,p for some C5 depending only on Ω, p and %. Hence, using the
triangle inequality,

‖TDv‖Lp(∂Ω) ≤ ω
T(D,T,Φ) ‖v‖D + ‖TTΦ(v)‖Lp(∂Ω)

≤ ωT(D,T,Φ) ‖v‖D + C5 ‖Φ(v)‖T,p
≤ ωT(D,T,Φ) ‖v‖D + C5 ‖Φ‖D,T ‖v‖D .

The proof of (7.18) is concluded by reproducing the same steps starting from
‖ΠDv‖Lp(∂Ω) and using Lemma B.25 to control ‖ΠTΦ(v)‖Lp(Ω) by ‖Φ(v)‖T,p.
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We turn to (7.19). Let ϕ ∈ W 1,p′(Ω)d and use the triangle inequality, the
definition of ωΠ(D,T,Φ) and ωT(D,T,Φ) and (B.31) to obtain∣∣∣∣∣
∫
Ω

(
∇Dv(x) ·ϕ(x) +ΠDv(x)divϕ(x)

)
dx−

∫
∂Ω

TDv(x)γn(ϕ)(x)dγ(x)

∣∣∣∣∣
≤
∣∣∣∣∫
Ω

[∇Dv(x)−∇TΦ(v)(x)] ·ϕ(x)

∣∣∣∣+ ‖divϕ‖Lp′ (Ω) ω
Π(D,T,Φ) ‖v‖D

+ ‖γn(ϕ)‖Lp′ (∂Ω) ω
T(D,T,Φ) ‖v‖D

+

∣∣∣∣∣
∫
Ω

(
∇TΦ(v)(x) ·ϕ(x) +ΠTΦ(v)(x)divϕ(x)

)
dx

−
∫
∂Ω

TTv(x)γn(ϕ)(x)dγ(x)dx

∣∣∣∣∣
≤
∣∣∣∣∫
Ω

[∇Dv(x)−∇TΦ(v)(x)] ·ϕ(x)

∣∣∣∣+ ‖divϕ‖Lp′ (Ω) ω
Π(D,T,Φ) ‖v‖D

+ ‖γn(ϕ)‖Lp′ (∂Ω) ω
T(D,T,Φ) ‖v‖D + C6 ‖ |∇ϕ| ‖Lp′ (Ω)d |Φ(v)|T,p hM,

where C6 depends only on d, p and %. The first term in the right-hand side
can be bounded above by using (7.16). Invoking the definition of ‖Φ‖D,T then
concludes the proof.

Corollary 7.18 (Properties of GDs controlled by polytopal toolboxes
– Neumann BCs). Let p > 1, Ω satisfy Assumption (7.2), (Dm)m∈N be a
sequence of GDs in the sense of Definition 3.11, and (Tm)m∈N be a sequence
of polytopal toolboxes in the sense of Definition 7.15. Assume that hMm

→ 0
as m→∞ and that supm∈N(θTm + ηTm) < +∞ (see (7.8) and (7.9)).
For all m ∈ N we take a control Φm of Dm by Tm in the sense of Definition
7.16, and we assume that

sup
m∈N
‖Φm‖Dm,Tm < +∞,

lim
m→∞

ωΠ(Dm,Tm,Φm) = 0,

lim
m→∞

ωT(Dm,Tm,Φm) = 0, and

lim
m→∞

ω∇(Dm,Tm,Φm) = 0.

Then (Dm)m∈N is coercive in the sense of Definition 3.13, limit-conforming
in the sense of Definition 3.14, and compact in the sense of Definition 3.16.

Proof. The coercivity and limit-conformity follow from Estimates (7.18)
and (7.19), from Lemma 3.20, and from the fact that W 1,p′(Ω)d is dense in

W p′

div,∂(Ω) (see Lemma 3.28).
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To establish the compactness, we notice that if vm ∈ XDm is such that
(‖vm‖Dm)m∈N is bounded, then so is (‖Φm(vm)‖Tm,p)m∈N since

‖Φm(vm)‖Tm ≤ ‖Φm‖Dm,Tm ‖vm‖Dm .

Hence, by Lemma B.27 and the definition (7.17) of ‖Φm(vm)‖Tm,p, some sub-
sequences of (ΠTmΦm(vm))m∈N and (TTmΦm(vm))m∈N converge strongly in
Lp(Ω) and Lp(∂Ω), respectively. The convergences of ωΠ(Dm,Tm,Φm) and
ωT(Dm,Tm,Φm) towards 0 then ensure that, along the same subsequences,
(ΠDmvm)m∈N converges in Lp(Ω) and (TDmvm)m∈N converges in Lp(∂Ω),
which completes the proof.

Remark 7.19 (Homogeneous Neumann boundary conditions). Homogeneous
Neumann conditions are a particular case of non-homogeneous Neumann con-
ditions, so all previous results also apply. However, if one is solely interested
in homogeneous Neumann conditions, some simplifications can be made. Pre-
cisely, there is no need to include TT in Definition 7.15, ωT in Definition 7.16
and Corollary 7.18, and Theorem 7.17 holds with ωT replaced with 0.

Remark 7.20 (Fourier boundary conditions). The only differences between
GDs for non-homogeneous Neumann conditions and Fourier conditions are
the definition of the norm ‖ ‖D, and the definition of the GD-consistency.
Since GD-consistency is not a notion covered by polytopal toolboxes, all pre-
vious results in this section apply to Fourier boundary conditions provided
that the norm (7.17) is replaced with the norm defined by

‖v‖pT,p = |v|pT,p + ‖TTv‖pLp(∂Ω) .

Estimating CD in Theorem 7.17 in the case of Fourier boundary conditions is
straightforward thanks to Lemma B.22.

7.2.3 Mixed boundary conditions

The definition of a polytopal toolbox for mixed boundary conditions is now
given; the associated results are presented without proofs; they can be estab-
lished quite similarly to the case of Dirichlet and Neumann boundary condi-
tions, using Lemma B.32 and B.33.

Definition 7.21 (Polytopal toolbox for mixed BCs). Under Assump-
tions (7.2) and (3.60), let T be a polytopal mesh in the sense of Definition
7.2. The family (XT,Ω,Γn , ΠT,TT,Γn ,∇T, | |T,p) is a polytopal toolbox for mixed
boundary conditions if:

1. The set XT,Ω,Γn is defined by (B.77).
2. The function reconstruction ΠT : XT → L∞(Ω) is defined by (7.7c).
3. The trace reconstruction TT,Γn : XT → L∞(Γn) is the restriction to Γn of

the discrete trace (7.7d).
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4. The gradient reconstruction ∇T : XT → L∞(Ω)d is defined by (7.7e).
5. The space XT,Ω,Γn is endowed with the norm | |T,p defined by (7.7f).

Definition 7.22 (Control of a GD by a polytopal toolbox – mixed
BCs). Under Assumptions (7.2) and (3.60), let D be a GD in the sense of
Definition 3.43, and let T be a polytopal toolbox in the sense of Definition
7.21. A control of D by T is a linear mapping Φ : XD,Ω,Γn → XT,Ω,Γn . We
then define

‖Φ‖D,T = max
v∈XD,Ω,Γn\{0}

|Φ(v)|T,p
‖v‖D

,

ωΠ(D,T,Φ) = max
v∈XD,Ω,Γn\{0}

‖ΠDv −ΠTΦ(v)‖Lp(Ω)

‖v‖D
,

ωT(D,T,Φ) = max
v∈XD,Ω,Γn\{0}

‖TD,Γnv − TT,ΓnΦ(v)‖Lp(Γn)

‖v‖D
,

ω∇(D,T,Φ) = max
v ∈ XD,Ω,Γn

v 6=0

[ ∑
K∈M

|K|1−p
∣∣∣∣∫
K

[
∇Dv(x)−∇TΦ(v)(x)

]
dx

∣∣∣∣p
] 1
p

‖v‖D
.

Theorem 7.23 (Estimates for a GD controlled by polytopal tool-
boxes – mixed BCs). Under Assumptions (7.2) and (3.60), let D be a GD
in the sense of Definition 3.43, and let T be a polytopal toolbox in the sense
of Definition 7.21. We take Φ a control of D by T in the sense of Definition
7.22, and % ≥ θT + ηT (see (7.8) and (7.9)).
Then, there exists C7 depending only on Ω, p and % such that

CD ≤ max
(
ωΠ(D,T,Φ), ωT(D,T,Φ)

)
+ C4 ‖Φ‖D,T

and, for all ϕ ∈W 1,p′(Ω)d,

WD(ϕ) ≤ ‖ϕ‖W 1,p′ (Ω)d

[
C4hM(1 + ‖Φ‖D,T) + ωΠ(D,T,Φ)

+ ω∇(D,T,Φ) + ωT(D,T,Φ)
]
.

Here, CD and WD are the coercivity constant and limit-conformity measure
defined by (3.61) and (3.65).

Corollary 7.24 (Properties of GDs controlled by polytopal toolboxes
– mixed BCs). Under Assumptions (7.2) and (3.60), let (Dm)m∈N be a
sequence of GDs in the sense of Definition 3.43, and let (Tm)m∈N be a sequence
of polytopal toolboxes in the sense of Definition 7.21. We assume that hMm

→
0 as m→∞ and that supm∈N(θTm + ηTm) < +∞ (see (7.8) and (7.9)).
For all m ∈ N we take a control Φm of Dm by Tm in the sense of Definition
7.22, and we assume that
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sup
m∈N
‖Φm‖Dm,Tm < +∞,

lim
m→∞

ωΠ(Dm,Tm,Φm) = 0,

lim
m→∞

ωT(Dm,Tm,Φm) = 0, and

lim
m→∞

ω∇(Dm,Tm,Φm) = 0.

Then (Dm)m∈N is coercive in the sense of Definition 3.44, limit-conforming
in the sense of Definition 3.46, and compact in the sense of Definition 3.48.

The only (slightly) non-trivial adaptation of the preceding proofs to establish

this corollary is the density of smooth functions in W p′

div,Γn
(Ω), endowed with

the norm ‖ϕ‖Lp′ (Ω)d +‖divϕ‖Lp′ (Ω) +‖γn(ϕ)‖Lp′ (Γn). This density is actually
established in a similar way as in Lemma 3.28, where in Item 2 we take ψε
such that

‖γn(ϕ)− ψε‖
(W

1− 1
p
,p

(∂Ω))′
+ ‖γn(ϕ)− ψε‖Lp′ (Γn) ≤ ε.

7.3 Local linearly exact GDs

7.3.1 P0-exact and P1-exact reconstructions

Most numerical methods for diffusion equations are based, either explicitly or
implicitly, on reconstructions of functions – or gradients – from discrete un-
knowns. These reconstructions are designed to match certain simple functions
(e.g., constant, or affine) – or their gradients – when the discrete unknowns
interpolate these functions at certain points. We give here a precise mean-
ing to these notions, and state some of their approximation properties of the
corresponding reconstructions.

Definition 7.25 (P0-exact function reconstruction). Let I be a finite set,
K be a bounded subset of Rd with non-zero measure, and p ∈ [1,+∞].
A P0-exact function reconstruction on K is a family πK = (πiK)i∈I of func-
tions in Lp(K) such that

for a.e. x ∈ K ,
∑
i∈I

πiK(x) = 1. (7.20)

The norm of πK is defined by (setting |K|−
1
p = 1 if p = +∞)

‖πK‖p = |K|−
1
p

∥∥∥∥∥∑
i∈I
|πiK |

∥∥∥∥∥
Lp(K)

. (7.21)

If v = (vi)i∈I is a family of real numbers, πKv denotes the function in Lp(K)
given by:

for a.e. x ∈ K , (πKv)(x) =
∑
i∈I

viπ
i
K(x).
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Property (7.20) shows that, if v = (vi)i∈I is such that there exists c ∈ R
with vi = c for all i ∈ I, then πKv = c a.e. on K. The reconstruction πK is
therefore exact on interpolants of constant functions.

Example 7.26 (Elementary basis functions for non-conforming
P1 finite element)
Let K be a simplex. For each σ ∈ FK , let πσK be the affine function in
K that has value 1 at xσ and 0 at xσ′ for all face σ′ 6= σ of K. Then∑
σ∈FK π

σ
K = 1 on K, that is, πK = (πσK)σ∈FK is a P0-exact function

reconstruction on K.

Since regular functions are locally close to constant functions, it is expected
that P0-exact function reconstructions enjoy some approximation properties
when computed on interpolants of regular functions.

Lemma 7.27 (Interpolation estimate for P0-exact function recon-
struction). Let I be a finite set, K be a bounded subset of Rd with non-zero
measure, p ∈ [1,+∞], πK = (πiK)i∈I be a P0-exact function reconstruction on
K, and (xi)i∈I be points in Rd.
Then, if ϕ ∈W 1,∞(Rd) and v = (ϕ(xi))i∈I ,

‖πKv − ϕ‖Lp(K)

≤
(

1 + max
i∈I

dist(xi,K)

diam(K)

)
‖πK‖p |K|

1
p diam(K) ‖|∇ϕ|‖L∞(Rd) .

Proof. For a.e. x ∈ K, using (7.20) yields

ϕ(x) = ϕ(x)
∑
i∈I

πiK(x) =
∑
i∈I

πiK(x)ϕ(x).

Moreover, for any i ∈ I and x ∈ K,

|ϕ(xi)− ϕ(x)| ≤ |xi − x| ‖|∇ϕ|‖L∞(Rd)

≤ (diam(K) + dist(xi,K)) ‖|∇ϕ|‖L∞(Rd) .

Hence, for a.e. x ∈ K,

|πKv(x)− ϕ(x)| =

∣∣∣∣∣∑
i∈I

πiK(x)(vi − ϕ(x))

∣∣∣∣∣ (7.22)

≤ max
i∈I
|ϕ(xi)− ϕ(x)|

∑
i∈I
|πiK(x)|

≤
(

1 + max
i∈I

dist(xi,K)

diam(K)

)
diam(K) ‖|∇ϕ|‖L∞(Rd)

∑
i∈I
|πiK(x)|.
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The proof is complete by taking the Lp(K) norm over x and by using the
definition of ‖πK‖p.

We now turn to the notion of gradient reconstructions that are exact on
interpolants of affine functions.

Definition 7.28 (P1-exact gradient reconstruction). Let I be a finite
set, K be a bounded subset of Rd with non-zero measure, p ∈ [1,+∞], and
S = (xi)i∈I be a family of points in Rd.
A P1-exact gradient reconstruction on K upon S is a family GK = (GiK)i∈I of
functions in Lp(K)d satisfying the following property:

for any affine A : Rd → R and a.e. x ∈ K ,
∑
i∈I

A(xi)GiK(x) = ∇A. (7.23)

The norm of GK is defined by (setting |K|−
1
p = 1 if p = +∞)

‖GK‖p = diam(K)|K|−
1
p

∥∥∥∥∥∑
i∈I
|GiK |

∥∥∥∥∥
Lp(K)

. (7.24)

If v = (vi)i∈I is a family of real numbers, GKv denotes the function in Lp(K)d

given by:

for a.e. x ∈ K , (GKv)(x) =
∑
i∈I

viGiK(x).

We notice from (7.23) that

for all affine function A, if v = (A(xi))i∈I then GKv = ∇A. (7.25)

This is the P1-exactness of the gradient reconstruction GK .

Example 7.29 (GK for non-conforming P1 finite element)
Let K be a simplex. Recalling the definition of πK = (πσK)σ∈FK in Remark
7.26, we let GσK = ∇πσK ∈ Lp(K)d. As proved in Lemma 9.12, the family
GK = (GσK)σ∈FK is a P1-exact gradient reconstruction on K upon S =
(xσ)σ∈FK .
This property that GiK is the gradient of πiK , which also holds for conform-
ing finite elements, is a very specific one. It is not satisfied by a number
of other schemes such as mixed finite elements, hybrid mimetic mixed
methods, etc. (see Chapters 10, 12, 13 and 14), or if performing mass-
lumping of conforming and non-conforming finite elements (see Example
7.46). Hence, for many methods, a full description cannot be given by
just describing the elementary functions πiK , but also requires a separate
definition of the local gradients GiK .
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Remark 7.30 (Why the factor diam(K)|K|−1/p in (7.24)?)
The scaling diam(K)|K|−1/p in ‖GK‖p is chosen to ensure that this norm provides
an intrinsic measure of GK , that does not explode or go to zero as the size of K goes
to zero.
To understand this, take xK ∈ K and consider A(x) = ξ ·(x−xK) for some ξ ∈ Rd.
Then (7.23) gives

ξ =
∑
i∈I

ξ · (xi − xK)GiK(x). (7.26)

The gradient reconstruction over K is expected to be done based on points xi not far
from K; in practice, this means that each xi is expected to remain within distance
O(diam(K)) of K. Hence, assuming that |ξ| = 1 and taking the Lp(K)d norm of
(7.26) yields

|K|
1
p ≤ Cdiam(K)

∥∥∥∥∥∑
i∈I

|GiK |

∥∥∥∥∥
Lp(K)

.

This shows that diam(K)|K|−1/p
∥∥∑

i∈I |G
i
K |
∥∥
Lp(K)

=: ‖GK‖p remains bounded

away from 0, independently of size of K. Any other scaling in ‖GK‖p would lead to
a quantity that could either goes to 0 or to +∞ as the size of K goes to 0.
A similar reasoning can be done to understand the need for the scaling factor |K|−1/p

in (7.21).

In a similar way as for P0-exact function reconstructions above, the fact that
any smooth function is locally close to an affine function ensures that P1-exact
gradient reconstructions enjoy approximation properties.

Lemma 7.31 (Interpolation estimate for P1-exact gradient recon-
structions). Let I be a finite set, K be a bounded subset of Rd with non-zero
measure, p ∈ [1,+∞], S = (xi)i∈I ⊂ Rd, and GK = (GiK)i∈I be a P1-exact
gradient reconstruction on K upon S.
Then, if ϕ ∈W 2,∞(Rd) and v = (ϕ(xi))i∈I ,

‖GKv −∇ϕ‖Lp(K)d ≤

(
1 +

1

2
‖GK‖p

[
1 + max

i∈I

dist(xi,K)

diam(K)

]2
)

× |K|
1
p diam(K)

∥∥|D2ϕ|
∥∥
L∞(Rd)

.

(7.27)

Proof. Let us first assume that ϕ ∈ C2
b (Rd). Take xK ∈ K and let

A(x) = ϕ(xK) + ∇ϕ(xK) · (x − xK) be the first order Taylor expansion
of ϕ around xK . If ξ = (A(xi))i∈I , by P1-exactness (7.25) of GK we have
GKξ = ∇A = ∇ϕ(xK) on K. Hence, since ∇ϕ is Lipschitz-continuous with a
Lipschitz constant bounded above by

∥∥|D2ϕ|
∥∥
L∞(Rd)

, we write

‖GKξ −∇ϕ‖Lp(K)d = ‖∇ϕ(xK)−∇ϕ‖Lp(K)d

≤ |K|
1
p ‖∇ϕ(xK)−∇ϕ‖L∞(K)d

≤ |K|
1
p diam(K)

∥∥|D2ϕ|
∥∥
L∞(Rd)

. (7.28)
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For any i ∈ I we have, by Taylor’s expansion,

vi − ξi = ϕ(xi)−A(xi) (7.29)

= ϕ(xi)− ϕ(xK)−∇ϕ(xK) · (xi − xK)

=

∫ 1

0

(1− s)D2ϕ(xK + s(xi − xK))(xi − xK) · (xi − xK)ds.

Using |xi − xK | ≤ diam(K) + dist(xi,K) yields

|vi − ξi| ≤
1

2
[diam(K) + dist(xi,K)]2

∥∥|D2ϕ|
∥∥
L∞(Rd)

. (7.30)

Hence, for a.e. x ∈ K,

|GKv(x)−GKξ(x)| =

∣∣∣∣∣∑
i∈I

(vi − ξi)GiK(x)

∣∣∣∣∣
≤ 1

2

[
diam(K) + max

i∈I
dist(xi,K)

]2 ∥∥|D2ϕ|
∥∥
L∞(Rd)

∑
i∈I
|GiK(x)|.

Taking the Lp(K) norm over x and recalling the definition of ‖GK‖p leads to

‖GKv − Gξ‖Lp(K)d

≤ |K|
1
p ‖GK‖p

diam(K)

1

2

[
diam(K) + max

i∈I
dist(xi,K)

]2 ∥∥|D2ϕ|
∥∥
L∞(Rd)

=
1

2
‖GK‖p

[
1 + max

i∈I

dist(xi,K)

diam(K)

]2

|K|
1
p diam(K)

∥∥|D2ϕ|
∥∥
L∞(Rd)

.

Combined with (7.28) and a triangle inequality, this completes the proof of
the lemma if ϕ ∈ C2

b (Rd).
If ϕ ∈W 2,∞(Rd), use convolution to construct a sequence (ϕn)n∈N ⊂ C2

b (Rd)
such that ϕn → ϕ and ∇ϕn → ∇ϕ uniformly on compact sets as n→∞, and∥∥|D2ϕn|

∥∥
L∞(Rd)

≤
∥∥|D2ϕ|

∥∥
L∞(Rd)

for all n ∈ N. Apply then (7.27) to ϕn and

pass to the limit n→∞ to prove the same estimate for ϕ.

Remark 7.32. For all functions and gradient reconstructions considered in
Chapters 8–14, the functions πiK (resp. GiK) have values in L∞(K) (resp.
L∞(K)d). In that case, by Hölder’s inequality,

‖πK‖p ≤ ‖πK‖∞ = esssup
x∈K

∑
i∈I
|πiK(x)|

(where esssup is the essential supremum) and

‖GK‖p ≤ ‖GK‖∞ ≤ diam(K)
∑
i∈I

∥∥GiK∥∥L∞(K)d
.



222 7 Analysis tools for gradient discretisations

These estimates will be used, when analysing specific GDs in Chapters 8–14,
to obtain upper bounds on ‖πK‖p and ‖GK‖p.

In a number of cases, estimating ‖πK‖∞ (and thus ‖πK‖p) is trivial. For
example, if for a.e. x ∈ K the value πKv(x) is computed as a convex
combination of the real numbers (vi)i∈I , then πiK ≥ 0 for all i ∈ I and∑
i∈I |πiK(x)| =

∑
i∈I π

i
K(x) = 1. This is for instance the case, e.g., if πKv is

linear on K, vi = πKv(xi) and (xi)i∈I are extremal points of K (this situation
appears in the conforming linear P1 finite element method).
Another example is the case where for a.e. x ∈ K there is exactly one i ∈ I
such that πiK(x) = 1, and πj(x) = 0 for all other j ∈ I. Then

∑
i∈I |πiK(x)| =

1 a.e. on K (and πKv is piecewise constant on K). This situation occurs in
the case of the mass-lumped P1 finite element method, see Section 8.4.

7.3.2 Definition and consistency of local linearly exact GDs for
Dirichlet boundary conditions

The previous concepts of P0/P1-exact function/gradient reconstructions are
useful to establish the GD-consistency, through the following notion of local
linearly exact gradient discretisation (LLE GD). This notion applies to the
vast majority of GDs analysed in the Chapters 8–14. LLE GDs are the gra-
dient discretisations whose function reconstructions are locally P0-exact and
whose gradient reconstructions are locally P1-exact, both reconstructions be-
ing computed locally. To measure this locality, a regularity parameter regLLE

is introduced; the boundedness of this parameter imposes that, at any given
point x, the reconstructed functions and gradients are computed by discrete
unknowns (or zero values) located not far from x.

Definition 7.33 (Local linearly exact gradient discretisation (LLE
GD)). A gradient discretisation D = (XD,0, ΠD,∇D) in the sense of Def-
inition 2.1 is a local linearly exact gradient discretisation (LLE GD) if:

1. There exists a finite set I of geometrical entities attached to the discrete
unknowns, where I is partitioned into IΩ (interior geometrical entities
attached to the discrete unknowns) and I∂ (boundary geometrical entities
attached to the discrete unknowns), such that

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ I , vi = 0 if i ∈ I∂}. (7.31)

2. There exists a family of approximation points S = (xi)i∈I ⊂ Rd, a mesh
M of Ω and, for each K ∈M, a subset IK ⊂ I and
a) a P0-exact function reconstruction πK = (πiK)i∈IK on K (see Defini-

tion 7.25) such that

∀v ∈ XD,0 , for a.e. x ∈ K ,

ΠDv(x) = πK [(vi)i∈IK ](x) =
∑
i∈IK

viπ
i
K(x), (7.32)
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b) a P1-exact gradient reconstruction GK = (GiK)i∈IK on K upon (xi)i∈IK
(see Definition 7.28) such that

∀v ∈ XD,0 , for a.e. x ∈ K ,

∇Dv(x) = GK [(vi)i∈IK ](x) =
∑
i∈IK

viGiK(x). (7.33)

Here, the mesh M is merely a finite family of open disjoint subsets of Ω
such that

⋃
K∈MK = Ω. Its size is hM = maxK∈M diam(K), and the LLE

regularity of D is defined by

regLLE(D) = max
K∈M

(
‖πK‖p + ‖GK‖p + max

i∈IK

dist(xi,K)

diam(K)

)
. (7.34)

Example 7.34 (LLE GD interpretation of the non-conforming
P1 gradient discretisation)
Example 7.6 defines the P1 gradient discretisation D in a global way. For
both the analysis and the practical implementation, a definition starting
from elementary basis functions is necessary. This gradient discretisation
is an LLE GD for which the set of geometrical entities attached to the
discrete unknowns are the faces of the mesh (that is, I = F), the elemen-
tary basis functions are the πσK described in Remark 7.26, and the local
gradients GσK are given in Remark 7.29.
It is proved in Lemma 9.12 that, under standard regularity assumptions
on T, regLLE(D) is bounded. Used in Proposition 7.37 below, this bound
yields the consistency of non-conforming P1 gradient discretisations.

Remark 7.35 (Geometrical entities attached to the discrete unknowns)
For most methods considered in Part III, the space XD,0 is defined by (7.31) with I
a certain set of elements associated with a mesh of Ω. For example, each i ∈ I can
correspond to a cell, a face or a vertex of the mesh. These mesh elements are what
we call “geometrical entities attached to the discrete unknowns”.
The discrete unknowns themselves are just the components vi of a vector v ∈ XD,0.

Definition 7.33 calls for a few comments. First, it is not required that the
mesh M satisfies Item 1 in Definition 7.2 of a polytopal mesh. Nevertheless,
in all the examples of LLE GDs encountered in Chapters 8–14, the mesh
M in Definition 7.33 is indeed the set of cells of some polytopal mesh T =
(M,F ,P,V). Note that the choice of hM in Definition 7.33 is the same as
(7.6) in Definition 7.2.

The set S in Definition 7.33 might be such that there exist i, j ∈ I with
i 6= j and xi = xj . This means that two different discrete unknowns may be
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located at the same point xi = xj . This happens for instance in the case of
the MPFA-O scheme, see Remark 12.1 in p.339.

Finally, the function reconstruction ΠD of an LLE GD is not necessarily
locally P1-exact; only the local P0-exactness is required. This enables us to
consider gradient discretisations with piecewise constant reconstructions (see
Definition 2.13), and in particular mass-lumped GDs (see Section 7.3.5 below).

Remark 7.36 (Generalisation of regLLE)
The term diam(K) in regLLE(D) could be replaced by any quantity ωK > 0: the
requirement to prove Proposition 7.37 below is that maxK∈Mm ωK → 0 as m→∞.

Proposition 7.37 (LLE GDs are consistent). Let (Dm)m∈N be a se-
quence of LLE GDs (in the sense of Definition 7.33), with associated meshes
(Mm)m∈N. If (regLLE(Dm))m∈N is bounded and hMm → 0 as m → ∞, then
(Dm)m∈N is GD-consistent in the sense of Definition 2.4, i.e. SDm(ϕ)→ 0 as
m→ +∞, for any ϕ ∈W 1,p

0 (Ω).

Proof. Lemma 2.17 states that the convergence of SDm(ϕ) to zero only needs
to be proved for functions in a dense subspace of W 1,p

0 (Ω). Having in mind
to use Lemmas 7.27 and 7.31, we take W 1,p

0 (Ω) ∩ W 2,∞(Rd) as the dense
subspace in W 1,p

0 (Ω) (the space C∞c (Ω) would also be adequate).
Let ϕ ∈ W 1,p

0 (Ω) ∩W 2,∞(Rd) and let vm = (ϕ(xmi ))i∈Im ∈ XDm,0, where
Sm = (xmi )i∈Im is the family of approximation points of Dm. Let K ∈ Mm

and denote by πK,m the P0-exact function reconstruction associated to K
for Dm. The definition (7.32) of ΠDm , Lemma 7.27 and the definition of
regLLE(Dm) give

‖ΠDmvm − ϕ‖Lp(K) =
∥∥πK,m[(vmi )i∈ImK ]− ϕ

∥∥
Lp(K)

≤
(

1 + max
i∈ImK

dist(xi,K)

diam(K)

)
‖πK,m‖p |K|

1
p diam(K) ‖ϕ‖W 1,∞(Rd)

≤ (1 + regLLE(Dm)) regLLE(Dm)|K|
1
phMm

‖ϕ‖W 1,∞(Rd) .

Raise to the power p, sum over K ∈Mm and take the power 1/p to obtain

‖ΠDmvm − ϕ‖Lp(Ω)

≤ (1 + regLLE(Dm)) regLLE(Dm)|Ω|
1
phMm

‖ϕ‖W 1,∞(Rd) . (7.35)

Let us now turn to the gradients. For K ∈ Mm, let GK,m be the P1-exact
gradient reconstruction associated to K for Dm. Owing to the definition (7.33)
of ∇Dm , to Lemma 7.31 and to the definition of regLLE(Dm),

‖∇Dmvm −∇ϕ‖Lp(K)d =
∥∥GK,m[(vmi )i∈ImK ]−∇ϕ

∥∥
Lp(K)d
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≤
(

1 +
1

2
regLLE(Dm)[1 + regLLE(Dm)]2

)
|K|

1
p diam(K) ‖ϕ‖W 2,∞(Rd) .

Again, raising to the power p, sum over K ∈Mm and take the power 1/p to
obtain

‖∇Dmvm −∇ϕ‖Lp(Ω)d

≤
(

1 +
1

2
regLLE(Dm)[1 + regLLE(Dm)]2

)
|Ω|

1
phMm

‖ϕ‖W 2,∞(Rd) . (7.36)

Since (regLLE(Dm))m∈N is bounded and SDm(ϕ) ≤ ‖ΠDmvm − ϕ‖Lp(Ω) +

‖∇Dmvm −∇ϕ‖Lp(Ω)d , we infer from (7.35) and (7.36) the existence of C8

not depending on m or ϕ such that

SDm(ϕ) ≤ C8hMm
‖ϕ‖W 2,∞(Rd) . (7.37)

Thus, SDm(ϕ)→ 0 as m→∞ and the proof is complete.

As demonstrated by (7.37), the notion of LLE GD provides order 1 approxi-
mation properties, which is expected when the local reconstructions are only
linearly exact. A number of numerical schemes are based on local reconstruc-
tions which enjoy a stronger form of exactness: they are exact on interpolants
of polynomial of higher order than 1. In that case, a better estimate than
(7.37) is expected. The following proposition makes this explicit. In the fol-
lowing, as expected, P` denotes the space of polynomials Rd → R of degree `
or less.

Proposition 7.38 (Estimate on SD for higher order LLE GDs). Let
k ∈ N \ {0} and D be an LLE GD (in the sense of Definition 7.33), that is
of order k in the following sense: for any cell K of the underlying mesh M of
D,

1. The family πK = (πiK)i∈IK is a Pk−1-exact function reconstruction on K
upon (xi)i∈IK , that is

∀q ∈ Pk−1 , for a.e. x ∈ K ,
∑
i∈IK

q(xi)π
i
K(x) = q(x). (7.38)

2. The family GK = (GiK)i∈IK is a Pk-exact gradient reconstruction on K
upon (xi)i∈IK , that is

∀q ∈ Pk , for a.e. x ∈ K ,
∑
i∈IK

q(xi)GiK(x) = ∇q(x). (7.39)

Let θ ≥ regLLE(D). Then there exists C9, depending only on θ, k and Ω, such
that

∀ϕ ∈W k+1,∞(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C9h

k
M ‖ϕ‖Wk+1,∞(Ω) . (7.40)
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Proof. Let v = (ϕ(xi))i∈I ∈ XD,0 be the same interpolant as in the proof of
Proposition 7.37, with Dm = D. Estimate (7.40) follows if we can prove that

‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d ≤ C9h
k
M ‖ϕ‖Wk+1,∞(Ω) . (7.41)

By standard extension and approximation techniques in Sobolev spaces, ϕ can
be approximated in Ck(Ω) by functions in Ck+1(Rd), in such a way that their
W k+1,∞(Ω)-norms remain bounded by C10 ‖ϕ‖Wk+1,∞(Ω) with C10 depending

only on Ω and k. Proving (7.41) for ϕ ∈ Ck+1(Ω) is therefore sufficient.
If K ∈ M, a Taylor expansion of order ` ≤ k about a fixed point in K gives
P`,K ∈ P` such that, for all y ∈ Rd,

|P`,i(y)− ϕ(y)| ≤ C11 (dist(y,K) + diam(K))
`+1 ‖ϕ‖Wk+1,∞(Ω) , (7.42)

|∇P`,i(y)−∇ϕ(y)| ≤ C11 (dist(y,K) + diam(K))
` ‖ϕ‖Wk+1,∞(Ω) , (7.43)

with C11 depending only on k and Ω. For any x ∈ K, the Pk−1-exactness
(7.38) of πK gives πK [(Pk−1,K(xi))i∈IK ](x) = Pk−1,K(x) and therefore

πKv(x)− ϕ(x) = πKv(x)− πK [(Pk−1,K(xi))i∈IK ](x) + Pk−1,K(x)− ϕ(x).

Using the bound (7.42) (with y = x and y = xi), and the fact that θ ≥
regLLE(D) ≥ dist(xi,K)/diam(K) for all i ∈ IK , we infer

|πKv(x)− ϕ(x)| ≤

∣∣∣∣∣∑
i∈IK

πiK(x)(vi − Pk−1,K(xi))

∣∣∣∣∣+ |Pk−1,K(x)− ϕ(x)|

≤ C11(θ + 1)kdiam(K)k ‖ϕ‖Wk+1,∞(Ω)

∑
i∈IK

|πiK(x)|

+ C11diam(K)k ‖ϕ‖Wk+1,∞(Ω) .

Taking the Lp(K) norm of this inequality and recalling the definition (7.21)
of ‖πK‖p yields C12, depending only on θ, k and Ω, such that

‖ΠDv − ϕ‖Lp(K) ≤ C12h
k
M|K|

1
p ‖ϕ‖Wk+1,∞(Ω) . (7.44)

Similarly, by (7.39), GK [(Pk,K(xi))i∈IK ](x) = ∇Pk,K(x) and thus

GKv(x)−∇ϕ(x) = GKv(x)− GK [(Pk,K(xi))i∈IK ](x) +∇Pk,K(x)−∇ϕ(x).

Using (7.42) and (7.43) with ` = k, this shows that

|GKv(x)−∇ϕ(x)|

≤

∣∣∣∣∣∑
i∈IK

GiK(x)(vi − Pk,K(xi))

∣∣∣∣∣+ |∇Pk,K(x)−∇ϕ(x)|

≤ C11(θ + 1)k+1diam(K)k ‖ϕ‖Wk+1,∞(Ω) diam(K)
∑
i∈IK

|GiK(x)|
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+ C11diam(K)k ‖ϕ‖Wk+1,∞(Ω) .

Taking the Lp(K)-norm of this inequality and recalling the definition (7.24)
of ‖GK‖p yields

‖∇Dv −∇ϕ‖Lp(K)d ≤ C13h
k
M|K|

1
p ‖ϕ‖Wk+1,∞(Ω) , (7.45)

where C13 depends only on θ, k and Ω. Estimate (7.41) follows by raising
(7.44) and (7.45) to the power p, summing over K ∈ M, taking the power

1/p, and writing |Ω|
1
p ≤ |Ω|+ 1.

Remark 7.39 (Estimate (7.40))
This estimate is particularly useful for problems in which SD participates in the
error estimates established for the GDM (cf. Theorems 2.29 and 2.39 for example).
At the cost of increased technicality, Estimate (7.40) can often be established if ϕ
merely belongs to W k+1,p(Ω)∩W 1,p

0 (Ω), instead of W k+1,∞(Ω)∩W 1,p
0 (Ω). We refer

to Section 7.4 for the case k = 1 and p > d/2.

7.3.3 From local to global basis functions, and matrix assembly

Let D = (XD,0, ΠD,∇D) be an LLE GD in the sense of Definition 7.33. The
functions (πiK)K∈M,i∈IK and (GiK)K∈M,i∈IK can be seen as elementary basis
functions, from which global basis functions can be constructed. Each of these
global basis functions is associated with one discrete unknown of the GD in
the following way. For i ∈ IΩ , define πi ∈ Lp(Ω) and Gi ∈ Lp(Ω)d by:

∀K ∈M such that i ∈ IK , (πi)|K = πiK and (Gi)|K = GiK ,
∀K ∈M such that i 6∈ IK , (πi)|K = 0 and (Gi)|K = 0.

Let (v(i))i∈IΩ be the canonical basis of XD,0, that is: for i ∈ IΩ , v
(i)
i = 1 and

v
(i)
j = 0 for all j ∈ I \ {i}. It can be checked that, for any i ∈ IΩ ,

πi = ΠDv
(i) and Gi = ∇Dv(i) on Ω.

From the definition of regLLE(D) it is expected that, for each i ∈ IΩ , the cells
K ∈ M such that i ∈ IK are close to xi. Hence, the global basis functions
πi and Gi have their support in a neighbourhood of xi, associated with the
discrete unknown vi of a generic v ∈ XD,0.

This construction is illustrated in Figure 7.3, for the special case of basis
functions from the P1 finite element method (for which I = V and IK = VK).
As can be seen, the elementary basis function πsK is only defined in K, whereas
the global basis function πs is defined over all of Ω, and is zero on the cells
K ′ that do not have s as a vertex (i.e., s 6∈ VK′).
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Ω

πs
K

Ks s
Ω

πs

Fig. 7.3. Elementary basis function (left) and global basis functions (right) for P1

finite elements

Let us now consider the problem (2.22) and its GS approximation (2.23). As
seen in Section 2.1.2, this scheme can be re-cast as a linear system AU = B
with

u =
∑
i∈IΩ

Uiv
(i),

Aij =

∫
Ω

Λ(x)∇Dv(j)(x) · ∇Dv(i)(x)dx,

Bi =

∫
Ω

f(x)ΠDv
(i)(x)dx−

∫
Ω

F (x) · ∇Dv(i)(x)dx.

As in finite element methods, for an LLE GD the matrix A and vector B
can be assembled by local computations. Define the elementary matrices and
vectors by

∀i ∈ IK , ∀j ∈ IK ,

AKij =

∫
K

Λ(x)GjK(x) · GiK(x)dx,

BKi =

∫
K

f(x)πiK(x)dx−
∫
K

F (x) · GiK(x)dx.

Then the global matrix and vectors are assembled by the following operations:

Aij =
∑

K∈M s.t. i,j∈IK

AKij and Bi =
∑

K∈M s.t. i∈IK

BKi .

7.3.4 Barycentric condensation

The construction of a numerical scheme often requires several interpolation
points, the approximation points S of an LLE GD, corresponding to as many
discrete unknowns of the scheme. The higher the number of discrete unknowns,
the larger the matrix will be and, very likely, the more expensive the scheme
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is. A classical way to reduce the computational cost of a scheme is to eliminate
some of these unknowns through barycentric combinations. This consists in
replacing (and thus, eliminating) certain unknowns by averages of other un-
knowns.
We describe here a way to perform this reduction in the general context of
LLE GDs, while preserving the required properties (coercivity, consistency,
limit-conformity and compactness). In the following definition, a subset IBa is
selected from the geometrical entities I associated with the discrete unknowns
of an LLE GD, and all other discrete unknowns (associated with I\IBa) are
eliminated from the GD space by being expressed as local barycentric combi-
nations of the discrete unknowns corresponding to IBa.

Definition 7.40 (Barycentric condensation of an LLE GD). Let D be
an LLE GD in the sense of Definition 7.33, S = (xi)i∈I ⊂ Rd be its family of
approximation points, and M be its mesh. A gradient discretisation DBa is a
barycentric condensation of D if there exists a strict subset IBa ⊂ I and, for
all i ∈ I\IBa, a set Hi ⊂ IBa and real numbers (βij)j∈Hi satisfying∑

j∈Hi

βij = 1 and
∑
j∈Hi

βijxj = xi, (7.46)

such that

• I∂ ⊂ IBa,
• XDBa,0 = {u = (ui)i∈IBa : ui ∈ R for all i ∈ IBa , ui = 0 for all i ∈ I∂},
• The function and gradient reconstructions ΠDBa and ∇DBa are given by:

∀v ∈ XDBa,0 , ΠDBav = ΠDṽ and ∇DBav = ∇Dṽ,

where ṽ ∈ XD,0 is defined by

∀i ∈ I , ṽi =


vi if i ∈ IBa,∑
j∈Hi

βijvj if i ∈ I \ IBa. (7.47)

(recall that XD,0 = {u = (ui)i∈I : ui ∈ R for all i ∈ I , ui = 0 for all i ∈
I∂}, and notice that ṽ indeed belongs to this space since I∂ ⊂ IBa and
vi = 0 if i ∈ I∂ .)

The regularity of the barycentric condensation DBa is

regBa(DBa) = max
i∈I\IBa

∑
j∈Hi

|βij |+ max
K∈M| i∈IK

max
j∈Hi

dist(xj ,xi)

diam(K)

 .

It is clear that DBa defined above is a GD. Indeed, if ∇DBav = 0 on Ω then
∇Dṽ = 0 on Ω and thus ṽi = 0 for all i ∈ I, since D is a GD and ‖∇D·‖Lp(Ω)d
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is a norm on XD,0. This shows that vi = 0 for all i ∈ IBa, and thus that
‖∇DBa ·‖Lp(Ω)d is a norm on XDBa,0.

Note that regBa(DBa) is always greater than or equal to 1 (take i ∈ I \ IBa

and write 1 =
∑
j∈Hi β

i
j ≤

∑
j∈Hi |β

i
j |). Let us, for a brief moment, confuse a

discrete unknown with the geometrical entity i ∈ I it is attached to, and with
the interpolation point xi it corresponds to (xi usually lies on or close to i).
Bounding the last term in regBa(DBa) consists in requiring that, if i ∈ I \ IBa

is involved in the definition (for D) of πK or GK for some K ∈M, then i lies
within distance O(diam(K)) of any j ∈ Hi used to eliminate i. This ensures
that, after barycentric condensation, πK and GK are still computed using only
discrete unknowns in a neighbourhood of K.

“Barycentric condensation” refers both to the operation consisting in replac-
ing some unknowns with combination of others, and to the resulting gradient
discretisation (called, as mentioned above, a barycentric condensation of the
initial GD). The combinations performed during a barycentric condensation
are linearly exact thanks to (7.46). The LLE property is therefore preserved
in the process, as formally stated in the lemma below.

Remark 7.41 (Barycentric condensation vs. static condensation)
A barycentric condensation is not quite the same as a static condensation. A static
condensation consists, after having written a linear scheme, in expressing some of
the unknowns in terms of others and of the source terms. Examples of static con-
densations are given in Remarks 8.19 and 13.9.
A barycentric condensation occurs before a scheme is even written, and can also
be performed for non-linear schemes; the replacement of discrete unknowns in a
barycentric condensation modifies the space and operators of the scheme indepen-
dently of the model to which it is applied.

Lemma 7.42 (Barycentric condensation preserves the LLE prop-
erty). Let D be an LLE GD in the sense of Definition 7.33, and let DBa

be a barycentric condensation of D in the sense of Definition 7.40. Then DBa

is an LLE GD on the same mesh as D, and

regLLE(DBa) ≤ regBa(DBa) regLLE(D) + regBa(DBa). (7.48)

Proof. Let M be the mesh corresponding to D, and let K ∈ M. Take
v ∈ XDBa,0 and let ṽ ∈ XD,0 be defined by (7.47). For any K ∈M, the values
(ṽi)i∈IK are computed as linear combinations of (vi)i∈IBa

K
, with

IBa

K = (IK ∩ IBa) ∪
⋃

i∈IK\IBa

Hi. (7.49)

By (7.32) in Definition 7.33 and the definition (7.47) of ṽ, for K ∈ M and
a.e. x ∈ K,
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ΠDBav(x) = ΠDṽ(x) =
∑
i∈IK

ṽiπ
i
K(x)

=
∑

i∈IK∩IBa

viπ
i
K(x) +

∑
i∈IK\IBa

( ∑
j∈Hi

βijvj

)
πiK(x) =

∑
j∈IBa

K

vj π̃
j
K(x), (7.50)

where, for j ∈ IBa

K , the function π̃jK ∈ Lp(K) is defined by

π̃jK =


πjK +

∑
i∈IK\IBa | j∈Hi

βijπ
i
K if j ∈ IK ∩ IBa,

∑
i∈IK\IBa | j∈Hi

βijπ
i
K if j 6∈ IK ∩ IBa.

Using (7.46) and (7.20) yields, for a.e. x ∈ K,∑
j∈IBa

K

π̃jK(x) =
∑

j∈IK∩IBa

πjK(x) +
∑
j∈IBa

K

∑
i∈IK\IBa | j∈Hi

βijπ
i
K(x)

=
∑

j∈IK∩IBa

πjK(x) +
∑

i∈IK\IBa

πiK(x)
∑
j∈Hi

βij (7.51)

=
∑

i∈IK∩IBa

πiK(x) +
∑

i∈IK\IBa

πiK(x)

=
∑
i∈IK

πiK(x) = 1.

In the first term of the penultimate line, we simply performed the change of
index j 7→ i. The family (π̃jK)j∈IBa

K
is therefore a P0-exact function reconstruc-

tion and, by (7.50), ΠDBav has the required form (7.32).
In a similar way as above, write

∇DBav(x) = ∇Dṽ(x) =
∑
i∈IK

ṽiGiK(x)

=
∑

i∈IK∩IBa

viGiK(x) +
∑

i∈IK\IBa

∑
j∈Hi

βijvj

GiK(x) =
∑
j∈IBa

K

vj G̃jK(x),

where the function G̃jK ∈ Lp(K)d is defined by

G̃jK =


GjK +

∑
i∈IK\IBa | j∈Hi

βijGiK if j ∈ IK ∩ IBa,

∑
i∈IK\IBa | j∈Hi

βijGiK if j 6∈ IK ∩ IBa.

Let A be an affine map. Reproduce similar computations as above for π̃jK and
write
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j∈IBa

K

A(xj)G̃jK(x)

=
∑

j∈IK∩IBa

A(xj)GjK(x) +
∑
j∈IBa

K

A(xj)
∑

i∈IK\IBa | j∈Hi

βijGiK(x)

=
∑

j∈IK∩IBa

A(xj)GjK(x) +
∑

i∈IK\IBa

∑
j∈Hi

A(xj)β
i
j

GiK(x). (7.52)

Since A is affine we have A(x) = A(xi) +∇A · (x− xi). Hence, (7.46) yields

∑
j∈Hi

βijA(xj) =
∑
j∈Hi

βijA(xi) +∇A ·

∑
j∈Hi

βijxj − xi

 = A(xi).

Plugged into (7.52) and using (7.23), this gives∑
j∈IBa

K

A(xj)G̃jK(x) =
∑

i∈IK∩IBa

A(xi)GiK(x) +
∑

i∈IK\IBa

A(xi)GiK(x)

=
∑
i∈IK

A(xi)GiK(x) = ∇A.

The family (G̃jK)j∈IBa
K

is therefore a P1-exact gradient reconstruction, and

∇DBav has the required form (7.33). This completes the proof that DBa is an
LLE GD.

Let us now establish the upper bound on regLLE(DBa). Reproducing the rea-
soning that leads to (7.51) but using absolute values and inequalities, we see
that for any K ∈M and a.e. x ∈ K∑

j∈IBa
K

|π̃jK(x)| ≤
∑

i∈IK∩IBa

|πiK(x)|+
∑

i∈IK\IBa

|πiK(x)|
∑
j∈Hi

|βij |

≤ regBa(DBa)
∑
i∈IK

|πiK(x)|. (7.53)

Take the Lp(K) norm, multiply by |K|−
1
p and recall the definition (7.21) of

the norm of P0-exact function reconstructions to obtain

‖π̃K‖p ≤ regBa(DBa) ‖πK‖p . (7.54)

The estimate on the gradient reconstructions is similar. Using the definition
of (G̃jK)j∈IBa

K
, we see that (7.53) still holds with “G” instead of “π” so that,

taking the Lp(K) norm and multiplying by diam(K)|K|−
1
p ,∥∥∥G̃K∥∥∥

p
≤ regBa(DBa) ‖GK‖p . (7.55)
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Finally, for j ∈ IBa

K we estimate
dist(xj ,K)
diam(K) by assuming first that j 6∈ IK . Then,

there exists ` ∈ IK\IBa such that j ∈ H`, and thus
dist(xj ,x`)
diam(K) ≤ regBa(DBa).

This gives

dist(xj ,K)

diam(K)
≤ dist(xj ,x`)

diam(K)
+

dist(x`,K)

diam(K)

≤ regBa(DBa) + max
i∈IK

dist(xi,K)

diam(K)
. (7.56)

This last inequality obviously also holds if j ∈ IK . The proof of (7.48) is
completed by recalling the definition (7.34) of regLLE, by combining (7.54),
(7.55) and (7.56), and by using regBa(DBa) ≥ 1.

The following theorem shows that barycentric condensations of sequences of
LLE GDs satisfy the same properties (coercivity, GD-consistency, compact-
ness, limit-conformity) as the original sequence of GDs. The GD-consistency
is a consequence of Lemma 7.42 and Proposition 7.37, and the other three
properties result from the fact that XDBa,0 is (roughly) a subspace of XD,0.

Theorem 7.43 (Properties of barycentric condensations of GDs). Let
(Dm)m∈N be a sequence of LLE GDs in the sense of Definition 7.33, that is
coercive, GD-consistent, limit-conforming and compact in the sense of Defi-
nitions 2.2, 2.4, 2.6 and 2.9. Let Mm be the mesh associated with Dm. We
assume that hMm

→ 0 as m → ∞, and that (regLLE(Dm))m∈N is bounded.
For any m ∈ N we take a barycentric condensation DBa

m of Dm in the sense of
Definition 7.40, such that (regBa(DBa

m))m∈N is bounded.
Then (DBa

m)m∈N is also coercive, GD-consistent, limit-conforming, and com-
pact. Moreover, we have

CDBa
m
≤ CDm and WDBa

m
≤WDm . (7.57)

Remark 7.44. Each of the property is transferred to the barycentric condensa-
tion independently of the others. This means, for example, that we only need
to know that (Dm)m∈N is coercive to deduce that (DBa

m)m∈N is also coercive.

Proof. For any v ∈ XDBa
m ,0

, with ṽ defined by (7.47) we have∥∥ΠDBa
m
v
∥∥
Lp(Ω)

= ‖ΠDm ṽ‖Lp(Ω)

≤ CDm ‖∇Dm ṽ‖Lp(Ω)d = CDm
∥∥∇DBa

m
v
∥∥
Lp(Ω)d

.

This shows that CDBa
m
≤ CDm and thus that (DBa

m)m∈N is coercive if (Dm)m∈N
is coercive.
To prove the compactness, we take (∇DBa

m
vm)m∈N = (∇Dm ṽm)m∈N bounded in

Lp(Ω)d, and we use the compactness of (Dm)m∈N to see that (ΠDm ṽm)m∈N =
(ΠDBa

m
vm)m∈N is relatively compact in Lp(Ω).
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The limit-conformity follows by writing, for v ∈ XDBa
m ,0

and ϕ ∈W p′

div(Ω),

1∥∥∇DBa
m
v
∥∥
Lp(Ω)d

∣∣∣∣∫
Ω

(
∇DBa

m
v(x) ·ϕ(x) +ΠDBa

m
v(x)divϕ(x)

)
dx

∣∣∣∣
=

1

‖∇Dm ṽ‖Lp(Ω)d

∣∣∣∣∫
Ω

(∇Dm ṽ(x) ·ϕ(x) +ΠDm ṽ(x)divϕ(x)) dx

∣∣∣∣ ,
which shows that WDBa

m
(ϕ) ≤WDm(ϕ)→ 0 as m→∞.

Finally, by Lemma 7.42 each DBa
m is an LLE GD and (regLLE(DBa

m))m∈N is
bounded, since (regLLE(Dm))m∈N and (regBa(DBa

m))m∈N are bounded. Proposi-
tion 7.37 then gives the GD-consistency of (DBa

m)m∈N.

7.3.5 Mass lumping

“Mass-lumping” is the generic name of the process applied (usually on a case-
by-case basis) to modify schemes that do not have a built-in piecewise constant
reconstruction, say for instance the P1 finite element scheme (see Chapter 8 in
Part III). In the GDM framework, a generic and rigorous way to perform mass-
lumping can be described. It simply consists in modifying the reconstruction
operator ΠD so that it becomes a piecewise constant reconstruction. Under
an assumption easy to verify in practice, this “mass-lumped” GD can be com-
pared with the original GD, which ensures that all properties are preserved.

Note that the notions and results in this section are not limited to LLE GDs,
they apply to any kind of gradient discretisation.

Definition 7.45 (Mass-lumped GD). Let D = (XD,0, ΠD,∇D) be a GD
in the sense of Definition 2.1. A mass-lumped version of D is a GD DML =
(XD,0, Π

ML

D ,∇D) such that ΠML

D is a piecewise constant reconstruction in the
sense of Definition 2.13.

Example 7.46 (Mass-lumped non-conforming P1 gradient dis-
cretisation)
Consider the special case of an LLE GD D, with I as set of geometrical
entities attached to the discrete unknowns. Recalling the notations in Defi-
nition 2.13, mass-lumping D first requires to select disjoint subsets (Ωi)i∈I
of Ω with each Ωi lying “around” i. Then, a new function reconstruction
ΠML

D is defined such that, if v = (vi)i∈I , for all i ∈ I we have ΠML

D v = vi on
Ωi. According to Theorem 7.49 below, this new reconstruction is a valid
choice if the (Ωi)i∈I are such that ΠDv ≈ vi on Ωi, for all i ∈ I.
For the non-conforming P1 finite element on a simplicial mesh T, since
I = F we need to find, for each σ ∈ F , a set Ωσ that lies “around” σ
and is disjoint from all the other sets (Ωσ′)σ′ 6=σ. There are many possible
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choice; one of them is presented in Figure 9.2 page 299, in which each Ωσ
is a diamond Dσ around σ. Then, (ΠML

D v)|Dσ = vσ for all σ ∈ F .

Remark 7.47 (Mass-lumping with respect to a canonical basis preserves the
LLE property). Let D be an LLE GD, with I as set of geometrical entities
attached to the discrete unknowns. Let DML be a mass-lumping of D with
respect to I, that is, ΠML

D is a piecewise constant reconstruction in the sense
of Definition 2.13 with B = I and (ei)j = δij . Then DML is also an LLE GD,
and regLLE(DML) ≤ regLLE(D).

Remark 7.48 (Mass lumping with respect to a non-canonical basis)
The basis (ei)i∈B of XD,0 used in Definition 2.13 to perform a mass-lumping of D
is usually a canonical basis, each vector in this basis corresponding to a natural
discrete unknown of D. Mass-lumping could be done with respect to a non-standard
basis, but this might lead to additional numerical cost if the computation of ∇D
in this non-standard basis is complex; the scheme implementation might require to
perform changes of basis, possibly with full transition matrices, to compute ΠML

D
and ∇D.

Theorem 7.49 (Properties of mass-lumped GDs). Let (Dm)m∈N be a
sequence of GDs in the sense of Definition 2.1, that is coercive, GD-consistent,
limit-conforming and compact in the sense of Definitions 2.2, 2.4, 2.6 and
2.9. For any m ∈ N we take DML

m a mass-lumped version of Dm. If there exists
(ωm)m∈N such that ωm → 0 as m→∞ and

∀m ∈ N , ∀v ∈ XDm,0 ,
∥∥ΠML

Dmv −ΠDmv
∥∥
Lp(Ω)

≤ ωm ‖v‖Dm , (7.58)

then (DML
m )m∈N is coercive, GD-consistent, limit-conforming, and compact.

The reconstruction ΠML

Dm is also piecewise constant.

This theorem is a direct consequence of Theorem 7.50 below, which gives
a general setting for proving the properties of a GD by comparing it with
another GD.

Theorem 7.50 (Comparison of function reconstructions).
Let (Dm)m∈N be a sequence of GDs in the sense of Definition 2.1. For any
m ∈ N, let D?m be a GD defined from Dm by D?m = (XDm,0, Π

?
Dm ,∇Dm),

where Π?
Dm is a linear operator from XDm,0 to Lp(Ω).

1. We assume that there exists a sequence (ωm)m∈N such that

lim
m→∞

ωm = 0 and, for all m ∈ N and all v ∈ XDm,0,∥∥Π?
Dmv −ΠDmv

∥∥
Lp(Ω)

≤ ωm ‖v‖Dm .
(7.59)
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If (Dm)m∈N is coercive (resp. GD-consistent, limit-conforming, or compact
– in the sense of Definitions 2.2, 2.4, 2.6 and 2.9), then (D?m)m∈N is also
coercive (resp. GD-consistent, limit-conforming, or compact).

2. Reciprocally, if (Dm)m∈N and (D?m)m∈N are both limit-conforming and
compact in the sense of Definitions 2.6 and 2.9, then there exists (ωm)m∈N
such that (7.59) holds.

Proof.
Step 1: proof of Item 1.
Coercivity: let us assume that (Dm)m∈N is coercive with constant CP . Set-
ting M = supm∈N ωm, using the triangle inequality and invoking (7.59), we
have, for any v ∈ XDm,0,∥∥Π?

Dmv
∥∥
Lp(Ω)

≤
∥∥Π?
Dmv −ΠDmv

∥∥
Lp(Ω)

+ ‖ΠDmv‖Lp(Ω)

≤M ‖∇Dmv‖Lp(Ω)d + CDm ‖∇Dmv‖Lp(Ω)d .

The coercivity of (D?m)m∈N follows, with CD?m ≤M + CDm ≤M + CP .

GD-consistency: let us assume that (Dm)m∈N is consistent. Using the tri-
angle inequality and (7.59), we write, for v ∈ XDm,0 and ϕ ∈W 1,p

0 (Ω),

SD?m(ϕ) ≤
∥∥ΠD?mv − ϕ∥∥Lp(Ω)

+ ‖∇Dmv −∇ϕ‖Lp(Ω)d

≤ ωm ‖∇Dmv‖Lp(Ω)d + ‖ΠDmv − ϕ‖Lp(Ω) + ‖∇Dmv −∇ϕ‖Lp(Ω)d

≤ ωm ‖∇ϕ‖Lp(Ω)d + ωm ‖∇Dmv −∇ϕ‖Lp(Ω)d

+ ‖ΠDmv − ϕ‖Lp(Ω) + ‖∇Dmv −∇ϕ‖Lp(Ω)d

≤ ωm ‖∇ϕ‖Lp(Ω)d

+ (1 +M)(‖ΠDmv − ϕ‖Lp(Ω) + ‖∇Dmv −∇ϕ‖Lp(Ω)d).

Hence SD?m(ϕ) ≤ ωm ‖∇ϕ‖Lp(Ω)d + (1 + M)SDm(ϕ) and the consistency of

(D?m)m∈N follows from the consistency of (Dm)m∈N and from limm→∞ ωm = 0.

Limit-conformity: let us now assume that (Dm)m∈N is limit-conforming.

By the triangle inequality and (7.59), for any ϕ ∈W p′

div(Ω),∣∣∣∣∣
∫
Ω

(
∇Dmv(x) ·ϕ(x) +Π?

Dmv(x)divϕ(x)
)

dx

∣∣∣∣∣
≤ ‖divϕ‖Lp′ (Ω) ωm ‖∇Dmv‖Lp(Ω)d

+

∣∣∣∣∫
Ω

(∇Dmv(x) ·ϕ(x) +ΠDmv(x)divϕ(x)) dx

∣∣∣∣ .
We infer that WD?m(ϕ) ≤ ωm ‖divϕ‖Lp′ (Ω) + WDm(ϕ) → 0 as m → ∞, and

the limit-conformity of (D?m)m∈N is established.
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Compactness: we now assume that (Dm)m∈N is compact. If (∇Dmvm)m∈N
is bounded in Lp(Ω)d, then the compactness of (Dm)m∈N ensures that
(ΠDmvm)m∈N is relatively compact in Lp(Ω). Since

∥∥Π?
Dmvm −ΠDmvm

∥∥
Lp(Ω)

tends to 0 as m → ∞ by (7.59), we deduce that (Π?
Dmvm)m∈N is relatively

compact in Lp(Ω).

Step 2: proof of Item 2.
We reason by way of contradiction, therefore assuming that (Dm)m∈N and
(D?m)m∈N are both compact and limit-conforming, and that

ωm := max
v∈XDm,0\{0}

‖ΠDmv −Π?
Dmv‖Lp(Ω)

‖∇Dmv‖Lp(Ω)d
6−→ 0 as m→∞. (7.60)

Then there exists ε0 > 0, a subsequence of (Dm,D?m)m∈N (not denoted
differently) and for each m ∈ N an element vm ∈ XDm,0\{0} such that∥∥Π?
Dmvm −ΠDmvm

∥∥
Lp(Ω)

≥ ε0 ‖∇Dmvm‖Lp(Ω)d . Since vm 6= 0, the element

ṽm = ‖∇Dmvm‖
−1
Lp(Ω)d vm ∈ XDm,0 is well defined. It satisfies ‖∇Dm ṽm‖Lp(Ω)d

= 1 and ∥∥Π?
Dm ṽm −ΠDm ṽm

∥∥
Lp(Ω)

≥ ε0. (7.61)

Extract another subsequence such that∇Dm ṽm weakly converges to some G in
Lp(Ω)d, and, using the compactness of (Dm)m∈N and (D?m)m∈N, ΠDm ṽm → v
in Lp(Ω) and Π?

Dm ṽm → v? in Lp(Ω). Passing to the limit in (7.61) we find
‖v − v?‖Lp(Ω) ≥ ε0. Extending the functions ∇Dm ṽm, ΠDm ṽm and Π?

Dm ṽm

by 0 outside Ω, we see that, for any ϕ ∈W p′

div(Ω),∣∣∣∣∫
Rd

(
∇Dm ṽm(x) ·ϕ(x) +Π?

Dm ṽm(x)divϕ(x)
)

dx

∣∣∣∣ ≤WD?m(ϕ),

and ∣∣∣∣∫
Rd

(∇Dm ṽm(x) ·ϕ(x) +ΠDm ṽm(x)divϕ(x)) dx

∣∣∣∣ ≤WDm(ϕ).

By limit-conformity of both sequences of GDs, let m→∞ to find∫
Rd

(G ·ϕ(x) + v?(x)divϕ(x)) dx =

∫
Rd

(G ·ϕ(x) + v(x)divϕ(x)) dx = 0.

This proves that v, v? ∈ W 1,p
0 (Ω) and that G = ∇v = ∇v?. Poincaré’s in-

equality then gives v = v?, which contradicts ‖v − v?‖Lp(Ω) ≥ ε0. Therefore

the sequence (ωm)m∈N defined by (7.60) satisfies (7.59).

Remark 7.51. Three estimates obtained in the course of this proof deserve to
be put forward. Under Assumption (7.59) and setting M = supm∈N ωm, we
saw that
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CD?m ≤M + CDm , (7.62)

that

∀ϕ ∈W 1,p
0 (Ω) , SD?m(ϕ) ≤ ωm ‖∇ϕ‖Lp(Ω)d + (1 +M)SDm(ϕ), (7.63)

and that

∀ϕ ∈W p′

div(Ω) , WD?m(ϕ) ≤ ωm ‖divϕ‖Lp′ (Ω) +WDm(ϕ). (7.64)

These estimates are particularly useful in the situation where rates of conver-
gence of SDm and WDm to 0 are known. Indeed, in this case, (7.63) and (7.64)
give some rates of convergence of SD?m and W ?

Dm to 0, which in turns provides
rates of convergence for D?m applied to linear, and some non-linear, problems
(see, e.g., Theorems 2.29 and 2.39).
An example of this is given for mass-lumped P1 gradient discretisations in
Remark 8.18.

7.3.6 Non-homogeneous Dirichlet, Neumann and Fourier
boundary conditions

The (minor) changes that must be made in the definitions and results in the
three previous sections in case of non-homogeneous Dirichlet conditions, Neu-
mann conditions or Fourier conditions are now introduced. Mixed boundary
conditions being deduced from Dirichlet and Neumann conditions, we do not
detail this last case.
Upon trivial changes of the space of discrete unknowns, the definition of a
mass-lumped GD (Definition 7.45) does not depend on the considered bound-
ary conditions since it only deals with the reconstruction ΠD.

Non-homogeneous Dirichlet boundary conditions

LLE gradient discretisation

Definition 7.52 (LLE GD for non-homogeneous Dirichlet BCs). A
gradient discretisation D = (XD, ID,∂ , ΠD,∇D) for non-homogeneous Diri-
chlet conditions in the sense of Definition 2.50 is an LLE GD if

• There exists a finite set I = IΩ t I∂ such that

XD = {v = (vi)i∈I : vi ∈ R for all i ∈ I} = XD,0 ⊕XD,∂

where

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ IΩ , vi = 0 for all i ∈ I∂},

and

XD,∂ = {v = (vi)i∈I : vi ∈ R for all i ∈ I∂ , vi = 0 for all i ∈ IΩ},
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• ΠD and ∇D satisfy Item 2 in Definition 7.33,

• ID,∂ : W 1− 1
p ,p(∂Ω)→ XD,∂ is a linear mapping.

The regularity factor regLLE(D) is defined by (7.34).

Proposition 7.53 (GD-consistency of LLE GDs for non-homogeneous
Dirichlet BCs). Let (Dm)m∈N be a sequence of LLE GDs for non-homoge-
neous Dirichlet boundary conditions, in the sense of Definition 7.52. Denote
byMm the mesh associated to Dm. Assume that (regLLE(Dm))m∈N is bounded,
that hMm

→ 0 as m→∞, that (2.96) holds, and that

∀ϕ ∈ C∞(Ω) ,

max
K∈Mm

max
i∈IK∩I∂

|(IDm,∂γ(ϕ))i − ϕ(xi)|
diam(K)

→ 0 as m→∞. (7.65)

Then (Dm)m∈N is GD-consistent in the sense of Definition 2.52.

Here and in the following, to simplify the notation we make the convention
that maxi∈IK∩I∂ Zi = 0 if IK ∩ I∂ = ∅.

Proof. The property (2.96) enables us to check the GD-consistency only
on smooth functions (see Lemma 2.53). Let ϕ ∈ C2(Rd). The function
vm = (ϕ(xmi ))i∈Im , defined as in the proof of Proposition 7.37, has good
approximation properties since ∇Dmvm → ∇ϕ in Lp(Ω)d and ΠDmv

m → ϕ
in L∞(Ω) as m→∞ (these properties were established in the proof of Propo-
sition 7.37 without using the zero boundary value of ϕ). However, vm does
not necessarily satisfy the requirement vm−IDm,∂γ(ϕ) ∈ XDm,0 in Definition
2.52.
Consider therefore wm ∈ XDm,0 + IDm,∂γ(ϕ) defined by wmi = vmi = ϕ(xi) if
i ∈ IΩ and wmi = (IDm,∂γ(ϕ))i if i ∈ I∂ . Let, for K ∈Mm,

ωm(K) = max
i∈IK

|wmi − vmi |
diam(K)

. (7.66)

By definition of ‖GK‖p (we do not explicitly denote the dependency with
respect to m of this P1-exact gradient reconstruction),

‖GK [(vmi )i∈IK ]− GK [(wmi )i∈IK ]‖Lp(K)d ≤

∥∥∥∥∥∑
i∈IK

|vmi − wmi | |GiK |

∥∥∥∥∥
Lp(K)d

≤ ωm(K)diam(K)

∥∥∥∥∥∑
i∈IK

|GiK |

∥∥∥∥∥
Lp(K)d

≤ ‖GK‖p |K|
1
pωm(K)

≤ regLLE(Dm)|K|
1
pωm(K). (7.67)
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Raising this estimate the power p and summing the result over K ∈Mm gives

‖∇Dmvm −∇Dmwm‖Lp(Ω)d ≤ regLLE(Dm)|Ω|
1
p max
K∈Mm

ωm(K).

Since (regLLE(Dm))m∈N is bounded, Assumption (7.65) shows that the right-
hand side of the previous inequality tends to 0 as m → ∞. Hence, the con-
vergence of (∇Dmvm)m∈N gives ∇Dmwm → ∇ϕ in Lp(Ω)d. The convergence
of (ΠDmw

m)m∈N is established similarly.

Barycentric condensation

The change to be made in Definition 7.40, besides considering an LLE GD for
non-homogeneous Dirichlet conditions, is the obvious replacement of XDBa,0 =
{v = (vi)i∈IBa : vi ∈ R for all i ∈ IBa; vi = 0 for all i ∈ I∂} with XDBa = {v =
(vi)i∈IBa : vi ∈ R for all i ∈ IBa}. Notice that the boundary unknowns are
not eliminated (I∂ ⊂ IBa).
Lemma 7.42, that is the preservation of the LLE property, still holds (the
proof did not use the zero boundary condition). The properties of barycentric
condensations, Theorem 7.43, is also valid provided that we assume (2.96)
and (7.65) – to establish the GD-consistency by invoking Proposition 7.53.

Mass-lumping

Since the interpolation operator ID,∂ is unchanged by the mass lumping of D,
it is easy to see that Theorem 7.50, and thus Theorem 7.49, still hold modulo
a trivial adjustment of the space of discrete unknowns.

Neumann boundary conditions

LLE gradient discretisation

Definition 7.54 (LLE GD for Neumann BCs). A gradient discretisa-
tion D = (XD, ΠD,∇D) (resp. a D = (XD, ΠD,TD,∇D)) for homogeneous
Neumann boundary conditions (resp. non-homogeneous Neumann boundary
conditions) is an LLE GD if

• There is a finite set I = IΩ t I∂ such that

XD = {v = (vi)i∈I : vi ∈ R for all i ∈ I} = XD,0 ⊕XD,∂ ,

where

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ IΩ , vi = 0 for all i ∈ I∂},

and

XD,∂ = {v = (vi)i∈I : vi ∈ R for all i ∈ I∂ , vi = 0 for all i ∈ IΩ},
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• ΠD and ∇D satisfy Item 2 in Definition 7.33,

The regularity factor regLLE(D) is defined by (7.34).

The proof of the following proposition is identical to the proof of Proposition
7.37, in which we actually did not use the boundary value of the functions.

Proposition 7.55 (GD-consistency of LLE GDs for Neumann BCs).
Let (Dm)m∈N be a sequence of LLE GDs for Neumann boundary conditions,
in the sense of Definition 7.54. We denote byMm the mesh associated to Dm.
If (regLLE(Dm))m∈N is bounded and hMm

→ 0 as m → ∞, then (Dm)m∈N is
GD-consistent in the sense of Definition 3.4.

Barycentric condensation

Starting from an LLE GD for Neumann conditions as defined above, a
barycentric condensation is defined as in Definition 7.40, with the addition
that, in the case of non-homogeneous conditions, the trace TDBa of DBa is de-
fined by TDBav = TDṽ, where ṽ is defined by (7.47). We note that, with the
norm (3.8) considered in a GD for Neumann boundary conditions, we have
‖v‖DBa = ‖ṽ‖D.
The preservation of the LLE property by barycentric condensation (Lemma
7.42) is still valid, as well as Theorem 7.43.

Mass-lumping

There is no change in the definition of a mass-lumped GD. Note that, if ΠD
and Π?

D are two function reconstructions on XD, by the Hölder inequality
(D.6),∣∣∣∣∫

Ω

Π?
Dv(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

ΠDv(x)dx

∣∣∣∣+ |Ω|1/p
′
‖Π?
Dv −ΠDv‖Lp(Ω) ,

and vice versa withΠD andΠ?
D switched. This enables to prove the equivalent,

for Neumann boundary conditions, of Theorem 7.50 in which the norm ‖v‖Dm
in (7.59) is defined by (3.8).
Theorem 7.49 then clearly holds, provided that we use the norm (3.8) in (7.58).

Remark 7.56 (Mass-lumping the trace reconstruction)
In the case of non-homogeneous Neumann conditions, one could also mass-lump
the trace reconstruction TD. This would be useful for problems that are non-linear
with respect to the trace, or that involve the trace in a time-stepping. If the trace
is mass-lumped, then for Theorems 7.50 and 7.49 to hold one must introduce this
trace in (7.59) and (7.58). This latter formula, for example, would therefore become∥∥ΠML

Dmv −ΠDmv
∥∥
Lp(Ω)

+
∥∥TML
Dmv − TDmv

∥∥
Lp(∂Ω)

≤ ωm ‖v‖Dm . (7.68)
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Fourier boundary conditions

LLE gradient discretisation

LLE GDs for Fourier boundary conditions are probably those that undergo
the major changes with respect to Definition 7.33. Because the consistency
of GDs for Fourier boundary condition involves the trace reconstruction, this
trace must be dealt with in a similar way as ΠD.

Definition 7.57 (LLE GD for Fourier BCs). A gradient discretisation
D = (XD, ΠD, TD,∇D) for Fourier boundary conditions is an LLE GD if

• There is a finite set I = IΩ t I∂ such that

XD = {v = (vi)i∈I : vi ∈ R for all i ∈ I} = XD,0 ⊕XD,∂ ,

where

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ IΩ , vi = 0 for all i ∈ I∂},

and

XD,∂ = {v = (vi)i∈I : vi ∈ R for all i ∈ I∂ , vi = 0 for all i ∈ IΩ},

• ΠD and ∇D satisfy Item 2 in Definition 7.33,
• There exists a finite mesh M∂ of ∂Ω and, for each K∂ ∈ M∂ , a subset
IK∂ ⊂ I and a P0-exact function reconstruction πK∂ = (πiK∂ )i∈IK∂ on K∂

such that

∀v ∈ XD , for a.e. x ∈ K∂ (for the (d− 1)-dimensional measure)

TDv(x) = πK∂ [(vi)i∈IK∂ ](x) =
∑
i∈IK∂

viπ
i
K∂

(x).

The LLE regularity of D is defined by

regLLE(D) = max
K∈M

(
‖πK‖p + ‖GK‖p + max

i∈IK

dist(xi,K)

diam(K)

)
+ max
K∂∈M∂

(
‖πK∂‖p + max

i∈IK∂

dist(xi,K∂)

diam(K∂)

)
.

(7.69)

The following proposition is then proved as Proposition 7.37, the estimate on
‖TDmvm − γ(ϕ)‖Lp(∂Ω) is obtained as the estimate on ‖ΠDmvm − ϕ‖Lp(Ω).

Proposition 7.58 (Consistency of LLE GDs for Fourier BCs). Let
(Dm)m∈N be a sequence of LLE GDs for Fourier boundary conditions, in the
sense of Definition 7.57. We denote by Mm the mesh associated to Dm. If
(regLLE(Dm))m∈N is bounded and hMm → 0 as m → ∞ then (Dm)m∈N is
consistent in the sense of Definition 3.38.
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Barycentric condensation

With the above definition of an LLE GD for Fourier boundary conditions, we
use the same definition of barycentric condensation as for non-homogeneous
Neumann conditions, i.e. Definition 7.40 to which we add the relation TDBav =
TDṽ. With the norm (3.51) of a GD for Fourier boundary conditions, we still
have ‖v‖DBa = ‖ṽ‖D.
The preservation of the LLE property (Lemma 7.42) is still valid, the trace
reconstruction TDBa being dealt with as ΠDBa . A barycentric condensation for
Fourier boundary conditions preserves the properties of a GD (Theorem 7.43
holds).

Mass-lumping

The definition of a mass-lumped GD for Fourier boundary conditions is not
different from Definition 7.45. In particular, if the trace reconstruction is not
mass-lumped, Theorems 7.50 and 7.49 hold. If the trace reconstruction trace
is mass-lumped, Assumption (7.58) must be replaced with (7.68).

7.4 W 2,p estimate of SD for local linearly exact GDs

Estimates on SD(ϕ) are useful to obtain rates of convergences of GSs for linear
(and some non-linear) problems, see, e.g., Theorem 2.29 and Theorem 2.39.
The estimate (7.37) on SD(ϕ) requires ϕ ∈ W 1,p

0 (Ω) ∩W 2,∞(Rd). Hence, to
use for example this estimate in the aforementioned theorems, the solution
to the corresponding problem ((2.20) or (2.61)) would need to have a W 2,∞

regularity, which is quite restrictive.
The purpose of this section is to write a consistency estimate similar to (7.37)
in the case ϕ ∈ W 2,p(Ω) for p > d/2 (this condition ensures the embedding
of W 2,p(Ω) into C(Ω)). This regularity property is much more likely to hold,
if ϕ is the solution of problems (2.20) or (2.61), than the W 2,∞ regularity.

7.4.1 Functional estimates in W 2,p

We start with a lemma that compares in the Lp(V ) norm a function ϕ ∈
W 1,p(V ) with its average value on a ball in V .

Lemma 7.59. Let V ⊂ Rd be an open bounded set that is star-shaped with
respect to all points in a ball B ⊂ V . Let p ∈ [1,+∞). There exists C14

depending only on d and p such that, for any ϕ ∈W 1,p(V ),∥∥∥∥ϕ− 1

|B|

∫
B

ϕ(x)dx

∥∥∥∥
Lp(V )

≤ C14
diam(V )

d
p+1

diam(B)
d
p

‖ |∇ϕ| ‖Lp(V ) . (7.70)
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Proof. Since C∞(V ) ∩W 1,p(V ) is dense in W 1,p(V ), we only need to prove
the result for ϕ ∈ C∞(V ) ∩W 1,p(V ), and the conclusion follows by density.
To simplify the notations we let hV = diam(V ). For all (x,y) ∈ V ×B, since
V is star-shaped with respect to y the segment [x,y] belongs to V and we
can write

ϕ(x)− ϕ(y) =

∫ 1

0

∇ϕ(tx+ (1− t)y) · (x− y)dt.

Taking the average value with respect to y ∈ B and writing |x − y| ≤ hV
gives∣∣∣∣ϕ(x)− 1

|B|

∫
B

ϕ(y)dy

∣∣∣∣ =

∣∣∣∣ 1

|B|

∫
B

∫ 1

0

∇ϕ(tx+ (1− t)y) · (x− y)dtdy

∣∣∣∣
≤ hV
|B|

∫
B

∫ 1

0

|∇ϕ(tx+ (1− t)y)|dtdy.

Taking the power p, using the Jensen inequality (D.10) with the convex func-
tion Ψ = | · |p and A = B × (0, 1), and integrating with respect to x ∈ V , we
get∫

V

∣∣∣∣ϕ(x)− 1

|B|

∫
B

ϕ(y)dy

∣∣∣∣p dx

≤
hpV
|B|

∫
V

∫
B

∫ 1

0

|∇ϕ(tx+ (1− t)y)|pdtdydx. (7.71)

We then apply the change of variable x ∈ V → z = tx+ (1− t)y, which has
values in V since V is star-shaped with respect to all points in B. This gives∫

V

∫
B

∫ 1

0

|∇ϕ(tx+ (1− t)y)|pdtdydx

≤
∫
V

|∇ϕ(z)|p
∫
B

∫
I(z,y)

t−ddtdydz, (7.72)

where I(z,y) = {t ∈ (0, 1) : ∃x ∈ V , tx+ (1− t)y = z}. For t ∈ I(z,y) we
have t(x − y) = z − y for some x ∈ V and therefore hV t ≥ |z − y|. Hence

I(z,y) ⊂ [ |z−y|hV
, 1] and we deduce that (for d > 1)∫
I(z,y)

t−ddt ≤
∫ 1

|z−y|
hV

t−ddt ≤ 1

d− 1

hd−1
V

|z − y|d−1
. (7.73)

Thus, denoting by ωd the area of the unit sphere in Rd, since B ⊂ V ⊂
B(z, hV ) for all z ∈ V ,∫

B

∫
I(z,y)

t−ddtdy ≤
hd−1
V

d− 1

∫
B

1

|z − y|d−1
dy
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≤
hd−1
V

d− 1

∫
B(z,hV )

|z − y|1−ddy

≤
hd−1
V

d− 1
ωd

∫ hV

0

ρ1−dρd−1dρ ≤ hdV
d− 1

ωd. (7.74)

The proof is complete by plugging this estimate into (7.72), by using the
resulting inequality in (7.71), and by recalling that

|B| = |B(0, 1)|
(

diam(B)

2

)d
.

Note that in the case d = 1, (7.73) is modified and involves ln( h
|z−y| ) but the

final estimate (7.74) is still in O(hd).

The following lemma is a simple technical result used in Lemma 7.61 below.

Lemma 7.60. Let h > 0, d ∈ N?, x ∈ Rd and let us define the function
Fx,h : B(x, h)→ R by

∀z ∈ B(x, h), Fx,h(z) =

∫ 1

|x−z|
h

s1−dds. (7.75)

Let q ∈ [1,+∞] if d = 1, q ∈ [1,+∞) if d = 2, and q ∈ [1, d
d−2 ) if d ≥ 3.

Then, there exists C15 > 0 depending only on d and q such that

‖Fx,h‖Lq(B(x,h)) ≤ C15h
d/q. (7.76)

Proof.
Case d = 1.
We have |Fx,h(z)| ≤ 1 and therefore (7.76) is satisfied with C15 = 21/q.

Case d = 2.
We have Fx,h(z) = ln

(
h

|x−z|

)
and therefore, since q < +∞, using a polar

change of coordinates,

‖Fx,h‖qLq(B(x,h)) = 2π

∫ h

0

ρ ln

(
h

ρ

)q
dρ.

The function ρ 7→ ρ ln
(
h
ρ

)q
reaches its maximum over [0, h] at ρ = e−qh and

thus

‖Fx,h‖qLq(B(x,h)) ≤ 2π

∫ h

0

e−qhqqdρ = qqe−qh2.

This proves (7.76) with C15 = (2π)1/qqe−1.

Case d ≥ 3.
We write
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Fx,h(z) =
1

d− 2

[(
h

|x− z|

)d−2

− 1

]
≤ 1

d− 2

(
h

|x− z|

)d−2

and, using again polar coordinates,

‖Fx,h‖qLq(B(x,h)) ≤
ωd

(d− 2)q
h(d−2)q

∫ h

0

ρ(2−d)q+d−1dρ

where ωd is the area of the unit sphere in Rd. The assumption q < d
d−2 ensures

that (2− d)q + d− 1 > −1 and therefore

‖Fx,h‖qLq(B(x,h)) ≤
ωd

(d− 2)q((2− d)q + d)
hd.

The proof is complete by choosing C15 =
ω

1/q
d

(d−2)[(2−d)q+d]1/q
.

The following lemma states, for a given ϕ ∈ W 2,p(V ) with p > d/2, the
existence of an affine function that approximates ϕ on V . This approximation
is constructed in the spirit of the “averaged Taylor polynomial” of [32].

Lemma 7.61 (First order polynomial approximation of elements of
W 2,p). Assume that p > d

2 , and let B ⊂ V be bounded subsets of Rd, such
that B is a ball and V is star-shaped with respect to all points of B. Let
θ ≥ diam(V )/diam(B).
Take ϕ ∈ W 2,p(V ) ∩ C(V ). Then there exists C16 > 0, depending only on d,
p and θ, and an affine function Aϕ : V → R such that

sup
x∈V
|ϕ(x)−Aϕ(x)| ≤ C16diam(V )2− dp

∥∥ |D2ϕ|
∥∥
Lp(V )

, (7.77)

‖∇Aϕ −∇ϕ‖Lp(V )d ≤ C16diam(V )
∥∥ |D2ϕ|

∥∥
Lp(V )

. (7.78)

Remark 7.62. If V is sufficiently regular, W 2,p(V ) ⊂ C(V ) and we only need
to assume that ϕ ∈W 2,p(V ).

Proof. To simplify the notations, set hB = diam(B) and hV = diam(V ). Let
us first assume that ϕ ∈ C2

c (Rd). For a given x ∈ V and any y ∈ B, write the
Taylor expansion

ϕ(x) = ϕ(y) +∇ϕ(y) · (x− y)

+

∫ 1

0

sD2ϕ(x+ s(y − x))(x− y) · (x− y)ds. (7.79)

Denote by y the centre of B, and set ϕ = 1
|B|
∫
B
ϕ(y)dy and ∇ϕ =

1
|B|
∫
B
∇ϕ(y)dy. Taking the average of (7.79) over y ∈ B gives ϕ(x) =

Aϕ(x) +R1(x) +R2(x) with
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Aϕ(x) = ϕ+∇ϕ · (x− y),

R1(x) =
1

|B|

∫
B

∫ 1

0

sD2ϕ(x+ s(y − x))(x− y) · (x− y)dsdy,

and

R2(x) =
1

|B|

∫
B

(∇ϕ(y)−∇ϕ) · (x− y)dy.

Hence,
|ϕ(x)−Aϕ(x)| ≤ |R1(x)|+ |R2(x)|. (7.80)

It remains to bound R1 and R2.

Bound on R1.
The change of variable y ∈ B → z = x + s(y − x) has values in V , since V
is star-shaped with respect to all points in B. This gives

|R1(x)| ≤ h2
V

|B|

∫
V

∫
I(x,z)

s1−d|D2ϕ(z)|dsdz,

where I(x, z) = {s ∈ (0, 1) : ∃y ∈ B , z = x+ s(y − x)}. If s ∈ I(x, z) then

|z − x| = s|y − x| ≤ shV for some y ∈ B, and thus s ≥ |z−x|hV
. Hence,

|R1(x)| ≤ h2
V

|B|

∫
V

|D2ϕ(z)|
∫ 1

|x−z|
hV

s1−ddsdz =
h2
V

|B|

∫
V

|D2ϕ(z)|Fx,hV (z)dz

where Fx,hV is defined by (7.75). Using Hölder’s inequality, the inclusion V ⊂
B(x, hV ) and Lemma 7.60 we infer

|R1(x)| ≤ h2
V

|B|
∥∥ |D2ϕ|

∥∥
Lp(V )

‖Fx,hV ‖Lp′ (B(x,hV )) ≤ C17
h

2+ d
p′

V

|B|
∥∥ |D2ϕ|

∥∥
Lp(V )

where C17 depends only on d and p (notice that p > d/2 implies p′ < d
d−2 if

d ≥ 2). Since d
p′ = d − d

p and |B| = |B(0, 1)|hdB ≥ |B(0, 1)|θ−dhdV , this gives
the existence of C18 depending only on θ, p and d such that

|R1(x)| ≤ C18h
2− dp
V

∥∥ |D2ϕ|
∥∥
Lp(V )

. (7.81)

Bound on R2.
By Hölder’s inequality and |B| = |B(0, 1)|hdB ,

|R2(x)| ≤ hB |B|
1
p′−1 ∥∥∇ϕ−∇ϕ∥∥

Lp(B)d

≤ |B(0, 1)|−
1
ph

1− dp
B

∥∥∇ϕ−∇ϕ∥∥
Lp(B)d

.

Apply Lemma 7.59 with V = B and ϕ replaced by ∂iϕ (for i = 1, . . . , d). This
gives C19 depending only on d and p such that
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|R2(x)| ≤ C19h
2− dp
B

∥∥ |D2ϕ|
∥∥
Lp(B)

. (7.82)

Conclusion.
Combining (7.80), (7.81) and (7.82) gives (7.77). To prove (7.78), notice that

∇Aϕ = ∇ϕ =
1

|B|

∫
B

∇ϕ(y)dy

and apply Lemma 7.59 with ϕ replaced by ∂iϕ, for all i = 1, . . . , d. This gives
C20 depending only on d an p such that

‖∇Aϕ −∇ϕ‖Lp(V )d ≤ C20
h
d/p+1
V

h
d/p
B

∥∥ |D2ϕ|
∥∥
Lp(V )

.

Since hB ≥ θ−1hV , this completes the proof of (7.78) if ϕ ∈ C2
c (Rd).

All quantities and norms involved in (7.77) and (7.78) are continuous with
respect to ϕ for the norm of W 2,p(V ) ∩ C(V ) (sum of the norms in both
spaces). Since V is star-shaped, a classical dilatation and regularisation ar-
gument shows that the restrictions of C2

c (Rd) functions to V are dense in
W 2,p(V )∩C(V ). This density ensures that (7.77) and (7.78) are still valid for
ϕ ∈W 2,p(V ) ∩ C(V ).

We can now state and prove a local W 2,p interpolation estimate for P1-exact
gradient reconstructions.

Lemma 7.63 (W 2,p estimates for P1-exact gradient reconstructions).
Assume that p > d

2 , and let B ⊂ K ⊂ V be bounded subsets of Rd, such
that B is a ball and V is star-shaped with respect to all points of B. Let S =
(xi)i∈I ⊂ V , and G = (Gi)i∈I ⊂ Lp(K)d be a P1-exact gradient reconstruction
on K upon S in the sense of Definition 7.28. Let θ ≥ diam(V )/diam(B).
Take ϕ ∈W 2,p(V )∩C(V ) and set v = (ϕ(xi))i∈I . Then, there exists C21 > 0,
depending only on d, p and θ such that

‖Gv −∇ϕ‖Lp(K)d ≤ C21diam(V )(1 + ‖G‖p)
∥∥ |D2ϕ|

∥∥
Lp(V )

. (7.83)

Proof. Take Aϕ given by Lemma 7.61 and define ξ = (Aϕ(xi))i∈I . Since G
is a P1-exact gradient reconstruction upon (xi)i∈I , we have Gξ = ∇Aϕ. The
definition of ‖G‖p show that

‖Gv − Gξ‖Lp(K)d =

∥∥∥∥∥∑
i∈I

(vi − ξi)Gi
∥∥∥∥∥
Lp(K)d

≤

∥∥∥∥∥∑
i∈I
|Gi|

∥∥∥∥∥
Lp(K)

max
i∈I
|vi − ξi|
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= ‖G‖p|K|
1
p diam(K)−1 max

i∈I
|ϕ(xi)−Aϕ(xi)|.

Using (7.77) and the inequality diam(K)−1 ≤ h−1
B ≤ θh

−1
V , we deduce

‖Gv − Gξ‖Lp(K)d ≤ C16 ‖G‖p θh
1− dp
V |K|

1
p

∥∥ |D2ϕ|
∥∥
Lp(V )

.

Since |K| ≤ |B(0, 1)|diam(K)d ≤ |B(0, 1)|hdV , this shows that there exists C22

depending only on θ, d and p such that

‖Gv − Gξ‖Lp(K)d ≤ C22 ‖G‖p hV
∥∥ |D2ϕ|

∥∥
Lp(V )

.

The proof of (7.83) is complete by recalling that Gξ = ∇Aϕ, by using the
triangle inequality, and by invoking (7.78).

7.4.2 Application to local linearly exact GDs

The next proposition states our main bound on SD(ϕ) for an LLE GD, in the
case of homogeneous Dirichlet boundary conditions and ϕ ∈ W 2,p(Ω) with
p > d/2. This is established under a slightly restrictive assumption on the
points xi, which holds for most of the LLE GDs presented in Chapters 8–14.

Proposition 7.64 (W 2,p estimates of SD for an LLE GD). Take p > d/2
and let D be an LLE GD in the sense of Definition 7.33. Let S = (xi)i∈I be
the family of approximation points of D, and M be the mesh associated with
D. Assume that

(i) For all K ∈M and all i ∈ IK , xi ∈ K,
(ii) For all K ∈M, there exists a ball BK ⊂ K such that

K is star-shaped with respect to all points in BK .

(7.84)

Take θ ≥ regLLE(D) + maxK∈M
diam(K)

diam(BK) . Then, there exists C23 > 0, depend-

ing only on p, d, Ω and θ, such that

∀ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C23hM ‖ϕ‖W 2,p(Ω) , (7.85)

where SD is defined by (2.2).

Remark 7.65 (Broken W 2,p estimates)
An inspection of the proof shows that Proposition 7.64 also holds if we only assume
that ϕ ∈ C(Ω) ∩W 1,p

0 (Ω) ∩W 2,p(M), where the broken space W 2,p(M) is defined
by

W 2,p(M) = {ψ ∈ Lp(Ω) : ∀K ∈M , ψ|K ∈W 2,p(K)}.
We just have to replace, in (7.85), the term “hM ‖ϕ‖W2,p(Ω)” with( ∑

K∈M

hpK
∥∥ϕ|K∥∥pW2,p(K)

)1/p

.
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Proof. Remember that, in all this part, Ω is assumed to have a Lipschitz-
continuous boundary. Hence, the choice of p ensure that ϕ ∈ C(Ω). The
vector v = (ϕ(xi))i∈I ∈ XD,0 is therefore well defined, and Lemma 7.63 can
be applied, for any K ∈ M, with V = K and G = GK . Estimate (7.83) then
yields, with hK = diam(K),

‖∇Dv −∇ϕ‖Lp(K)d ≤ C21hK(1 + ‖GK‖p)
∥∥ |D2ϕ|

∥∥
Lp(K)

(7.86)

where C21 depends only on p, d and θ. Raising to the power p and summing
over K ∈M leads to

‖∇Dv −∇ϕ‖Lp(Ω)d ≤ C21hM(1 + regLLE(D))
∥∥ |D2ϕ|

∥∥
Lp(Ω)

. (7.87)

To estimateΠDv−ϕ, we first establish a bound on ϕ(x)−ϕ(y) for all x,y ∈ K.
Using the affine function Aϕ given by Lemma 7.61, write

|ϕ(x)− ϕ(y)| ≤ |ϕ(x)−Aϕ(x)|+ |Aϕ(x)−Aϕ(y)|+ |Aϕ(y)− ϕ(y)|

≤ 2C16h
2− dp
K

∥∥ |D2ϕ|
∥∥
Lp(K)

+ |∇Aϕ|hK . (7.88)

Since ∇Aϕ is constant, (7.78) gives

|∇Aϕ| = |K|−
1
p ‖∇Aϕ‖Lp(K)d

≤ |K|−
1
p ‖∇ϕ‖Lp(K)d + |K|−

1
pC16hK

∥∥ |D2ϕ|
∥∥
Lp(K)

.

Plugged into (7.88), this yields

|ϕ(x)− ϕ(y)|

≤
(

2C16diam(Ω)h
1− dp
K + (1 + C16diam(Ω))hK |K|−

1
p

)
‖ϕ‖W 2,p(K) .

Since K ⊂ B(z, hK) for all z ∈ K, we have

|K| ≤ |B(z, hK)| = |B(0, 1)|2−dhdK .

Combined with the previous inequality, this provides C24 depending only on
Ω, p and θ such that

|ϕ(x)− ϕ(y)| ≤ C24hK |K|−
1
p ‖ϕ‖W 2,p(K) . (7.89)

Recalling the relation (7.32) between ΠD and the elementary basis functions
(πiK)i∈IK , (7.89) gives, for a.e. x ∈ K,

|ΠDv(x)− ϕ(x)| =

∣∣∣∣∣∑
i∈IK

πiK(x)(vi − ϕ(x))

∣∣∣∣∣
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≤ sup
i∈IK
|ϕ(xi)− ϕ(x)|

∑
i∈IK

|πiK(x)|

≤ C24hK ‖ϕ‖W 2,p(K) |K|
− 1
p

∑
i∈IK

|πiK(x)|.

Take the Lp(K) norm over x ∈ K and recall the definition (7.21) of ‖πK‖p to
deduce

‖ΠDv − ϕ‖Lp(K) ≤ C24hK ‖ϕ‖W 2,p(K) ‖πK‖p . (7.90)

As (7.86), this estimate in K translates into the global estimate

‖ΠDv − ϕ‖Lp(Ω) ≤ C24hM ‖ϕ‖W 2,p(Ω) regLLE(D). (7.91)

The proof is complete by combining (7.87) and (7.91).

Assumption (7.84) ensures that local errors estimates can be computed on
a mesh of the domain (with non-overlapping sets). This way, when added
together, the right-hand sides of these estimates directly produce an Lp(Ω)
norm. We can relax this assumption of non-overlapping sets if we impose a
control on the overlaps. The following result makes this broad reasoning ex-
plicit, and is required to establish W 2,p estimates for some methods described
in subsequent chapters, noticeably the condensed version of the SUSHI scheme
and the VAG scheme (and any other barycentric condensation of an LLE GD,
when some discrete unknowns in IK are eliminated by using other discrete
unknowns that lie outside K – see Definition 7.40).

Proposition 7.66 (W 2,p estimates of SD for an LLE GD – generalised
form). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.33. Let S = (xi)i∈I be the family of approximation points of D,
and M be the mesh associated with D.
For each K ∈M, take VK ⊃ K a bounded set such that

(i) For all i ∈ IK , xi ∈ VK ,
(ii) There exists a ball BK ⊂ K such that VK is star-shaped

with respect to all points of BK .

(7.92)

Let

θ ≥ regLLE(D) + max
K∈M

diam(VK)

diam(BK)
+ esssup

x∈Ω
Card({K ∈M : x ∈ VK}). (7.93)

Then, there exists C25 > 0, depending only on p, d, Ω and θ, such that

∀ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C25hM ‖ϕ‖W 2,p(Ω) ,

where SD is defined by (2.2).
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Remark 7.67. Imposing that θ ≥ esssupx∈Ω Card({K ∈ M : x ∈ VK}) is
equivalent to imposing that, almost everywhere on Ω, at most θ sets (VK)K∈M
overlap.

Proof. Introduce the same v ∈ XD,0 as in the proof of Proposition 7.64 and
use Lemma 7.63 with V = VK to arrive, in a similar way as for (7.86) and
(7.90), to

‖ΠDv − ϕ‖Lp(K) + ‖∇Dv −∇ϕ‖Lp(K)d ≤ C26diam(VK) ‖ϕ‖W 2,p(VK) ,

where C26 depends only on p, d, Ω and θ. Since diam(VK) ≤ θdiam(BK) ≤
θhM, raising to the power p gives C27 depending only on p, d, Ω and θ such
that

‖ΠDv − ϕ‖pLp(K) + ‖∇Dv −∇ϕ‖pLp(K)d ≤ C27h
p
M ‖ϕ‖

p
W 2,p(VK) .

Summing over K ∈M yields

‖ΠDv − ϕ‖pLp(Ω) + ‖∇Dv −∇ϕ‖pLp(Ω)d ≤ C
p
27h

p
M

∑
K∈M

‖ϕ‖pW 2,p(VK) . (7.94)

We now estimate the sum in this inequality. By the Fubini–Tonelli relation
and letting 1VK be the characteristic function of VK , for any g ∈ Lp(Ω),∑

K∈M
‖g‖pLp(VK) =

∑
K∈M

∫
Ω

1VK (x)|g(x)|pdx

=

∫
Ω

|g(x)|p
( ∑
K∈M

1VK (x)

)
dx.

The choice of θ ensures that
∑
K∈M 1VK (x) = Card({K ∈M : x ∈ VK}) ≤ θ

for a.e. x ∈ Ω. Hence,∑
K∈M

‖g‖pLp(VK) ≤ θ
∫
Ω

|g|pdx = θ ‖g‖pLp(Ω) .

The proof is complete by using this estimate in (7.94) with g = ϕ, g = |∇ϕ|
and g = |D2ϕ|.

We now turn to the adaptation of the previous results to other boundary
conditions than homogeneous Dirichlet conditions.

Proposition 7.68 (W 2,p estimates of SD for an LLE GD – non-
homogeneous Dirichlet BCs). Assume that p > d/2 and that D is an
LLE GD in the sense of Definition 7.52. Let S = (xi)i∈I be the family of ap-
proximation points of D, and M be the mesh associated with D. Assume that

(7.84) holds and take θ ≥ regLLE(D) + maxK∈M
diam(K)

diam(BK) . Take ϕ ∈ W 2,p(Ω)

and assume that
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∀i ∈ I∂ , (ID,∂γ(ϕ))i = ϕ(xi). (7.95)

Then, there exists C28 > 0, depending only on p, d, Ω and θ, such that

SD(ϕ) ≤ C28hM ‖ϕ‖W 2,p(Ω) , (7.96)

where SD is defined by (2.94).

Proof. Assumption (7.95) ensures that the vector v = (ϕ(xi))i∈I ∈ XD
satisfies v−ID,∂γ(ϕ) ∈ XD,0. This vector is therefore suited to the definition
(2.94) of SD. Since v satisfies the estimates (7.87) and (7.91) (which have
been established without using the boundary value of ϕ), this completes the
proof.

Proposition 7.69 (W 2,p estimates on SD for an LLE GD – non-
homogeneous Dirichlet BCs and relaxed assumption on ID,∂). Make
the same assumptions as in Proposition 7.68, except (7.95) which is replaced
by

∀K ∈M , there exists CK(ϕ) ≥ 0 s.t.

max
i∈IK∩I∂

|(ID,∂γϕ)i − ϕ(xi)| ≤ hMdiam(K)|K|−
1
pCK(ϕ).

(7.97)

Then, there exists C29 depending only on p, d, Ω, and θ, such that

SD(ϕ) ≤ C29hM

‖ϕ‖W 2,p(Ω) +

( ∑
K∈M

CK(ϕ)p

)1/p
 . (7.98)

By convention maxi∈∅ |Zi| = 0 and the quantity CK(ϕ) can thus be set to
0 if K is an interior cell (that is, IK ∩ I∂ = ∅). For a general K, CK(ϕ)
would usually be the norm on K (or a lower dimensional subset of K) of
some derivatives of ϕ, and the quantity

∑
K∈M CK(ϕ)p would be bounded

by some constant depending only on ϕ (not on M). Notice however that, in
practical situations, the regularity imposed on ϕ in Proposition 7.69 is such
that ID,∂γ(ϕ) is usually re-defined so that (7.95) holds. See Remarks 2.51 and
13.4.

Proof. The estimates established in the proof of Proposition 7.64 are inde-
pendent of the boundary conditions. Hence, if v = (ϕ(xi))i∈I ∈ XD is defined
as in that proof,

‖ΠDv − ϕ‖Lp(Ω) + ‖∇Dv −∇ϕ‖Lp(Ω)d ≤ C30hM ‖ϕ‖W 2,p(Ω) , (7.99)

where C30 depends only on d, p, Ω and θ.
Let us now consider w ∈ XD as in the proof of Proposition 7.53, that is
wi = vi if i ∈ IΩ and wi = (ID∂γ(ϕ))i if i ∈ I∂ . By (7.97) the quantity ω(K)

defined by (7.66) satisfies ω(K) ≤ hM|K|−
1
pCK(ϕ). Plug this estimate into

(7.67), raise the result to the power p and sum over K ∈M. This gives
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‖∇Dv −∇Dw‖Lp(Ω)d ≤ θhMCΩ(ϕ), (7.100)

where CΩ(ϕ) = (
∑
K∈M CK(ϕ)p)1/p. The term ΠDv − ΠDw is estimated

similarly. For K ∈M and a.e. x ∈ K,

|ΠDv(x)−ΠDw(x)| ≤
∑
i∈IK

|πiK(x)| |vi − wi|

≤ hMdiam(K)CK(ϕ)|K|−
1
p

∑
i∈IK

|πiK(x)|.

Taking the Lp(K) norm, recalling the definition (7.21) of ‖πK‖p, raising to the

power p and summing on K ∈M leads to ‖ΠDv −ΠDw‖Lp(Ω) ≤ θh2
MCΩ(ϕ).

The proof is complete by combining this estimate with (7.100) and (7.99).

Since the estimates (7.87) and (7.91) were obtained without referring to the
boundary values of ϕ, they immediately give the following result.

Proposition 7.70 (W 2,p estimates of SD for an LLE GD – Neumann
BCs). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.54. Let S = (xi)i∈I be the family of approximation points of D,
and M be the mesh associated with D. Assume that (7.84) holds and take

θ ≥ regLLE(D) + maxK∈M
diam(K)

diam(BK) . Then, there exists C, depending only on

p, d, Ω and θ, such that

∀ϕ ∈W 2,p(Ω) , SD(ϕ) ≤ ChM ‖ϕ‖W 2,p(Ω) ,

where SD is defined by (3.3).

The W 2,p estimates on SD for Fourier boundary conditions are notably harder
to establish than for the other boundary conditions, since the trace reconstruc-
tion TD also needs to be handled. The issue is that this trace has values in a
lower-dimensional space. If the mesh of ∂Ω is made of parts of hyperplanes
(which is natural if Ω is a polytopal open set) and satisfies the equivalent of
(7.84), then the estimates of TD can be obtained as the estimates on ΠD in
the proof of Proposition 7.64.

Proposition 7.71 (W 2,p estimates of SD for an LLE GD – Fourier
BCs). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.57. Let S = (xi)i∈I be the family of approximation points of D,
and M be the mesh associated with D. Assume that (7.84) holds and, with
H1, . . . ,Hr hyperplanes whose union covers ∂Ω, that

(i) For any K∂ ∈M∂ there is `K∂ ∈ {1, . . . , r} such that K∂ ⊂ H`K∂
,

(ii) For all K∂ ∈M∂ and all i ∈ IK∂ , xi ∈ K∂ ,

(iii) For all K∂ ∈M∂ , there exists a ball BK∂ ⊂ K∂ in H`K∂
such that

K∂ is star-shaped with respect to all points of BK∂ .



7.5 Further topics on LLE GDs 255

We take

θ ≥ regLLE(D) + max
K∈M

diam(K)

diam(BK)
+ max
K∂∈M∂

diam(K∂)

diam(BK∂ )
.

Then, there exists C31 > 0, depending only on p, d, Ω and θ, such that, for
all ϕ ∈W 2,p(Ω) satisfying γ(ϕ) ∈W 2,p(∂Ω ∩H`) for all ` = 1, . . . , r,

SD(ϕ) ≤ C31hM

(
‖ϕ‖W 2,p(Ω) +

r∑
`=1

‖γ(ϕ)‖W 2,p(∂Ω∩H`)

)
,

where SD is defined by (3.52).

7.5 Further topics on LLE GDs

7.5.1 LLE GDs with generalised discrete unknowns

The definition 7.28 of P1-exact gradient reconstructions implicitly assume that
the discrete unknowns of the method correspond to the values of functions
at given points in the domain (the approximation points S). Some numerical
schemes, especially high order methods, use other kinds of discrete unknowns;
for example, unknowns that represent moments of functions∫

K

xαf(x)dx.

It is possible to write a more general definition of P1-exact gradient recon-
struction to account for such generalised discrete unknowns. It makes sense to
also generalise the definition to higher order reconstructions, as in Proposition
7.38.

Definition 7.72 (Pk+1-exact gradient reconstruction with generalised
discrete unknowns). Let K be a bounded subset of Rd, p ∈ [1,+∞] and
k ∈ N. A Pk+1-exact gradient reconstruction on K with generalised discrete
unknowns is (P,G) where:

• P = (Pi)i∈I is a finite family of linear mappings Pi : Ck(K)→ R,
• G = (Gi)i∈I is a family of functions in Lp(K)d such that, for any polyno-

mial function q of degree k + 1 or less,∑
i∈I

Pi(q)Gi = ∇q on K.

The norm of (P,G) is defined by

‖(P,G)‖p = diam(K)|K|−
1
p

∥∥∥∥∥∑
i∈I
‖Pi‖(Ck)′ |G

i|

∥∥∥∥∥
Lp(K)d

,
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where

‖Pi‖(Ck)′ = max
w∈Ck(K)\{0}

|Pi(w)|
‖w‖Ck(K)

.

The P1-exact gradient reconstruction of Definition 7.28 corresponds to Pi(ϕ) =
ϕ(xi) and k = 0.
In a similar way as in Definition 7.72, these gradient reconstructions could
be used to design a notion of “Pk+1-exact GDs with generalised discrete un-
knowns” and perform most of the analysis done for LLE GDs (using ‖(P,G)‖p
instead of ‖G‖p, and with adjustments in some spaces of functions – e.g., in

Lemma 7.31 we would work with ϕ ∈ W k+2,∞(Rd)). We let the interested
reader fill in the details.

7.5.2 Non-linearly exact barycentric condensation

Let us consider a heterogeneous material, with a discontinuous diffusion tensor
Λ which is smooth inside subdomains P1, . . . , Pk (partition of Ω). The solution
to (2.20) is not expected to be smooth over Ω, but rather smooth (at least
if we exclude the corners) inside each P` and with continuous fluxes at the
interfaces P` ∩ P`′ . LLE GDs are adapted to such solutions provided that all
approximation points (xi)i∈IK , for each K ∈M, lie in a single subdomain P`.
Indeed, in this case, the gradient reconstruction GKv from the interpolated
values vi = u(xi) of the solution will be a good approximation of (∇u)|K
(Lemma 7.31).
When performing a barycentric condensation of an LLE GD, it is common
that for some eliminated unknowns i ∈ I\IBa, the set of approximated points
(xj)j∈Hi spreads over several subdomains P`, especially if xi lies at or close to
an interface between two such subdomains. It is then clear that a barycentric
condensation that is an LLE GD is not the best choice to approximate u:
if we define vj = u(xj) for all j ∈ IBa then, for the unknowns i ∈ I\IBa

such that Hi spread over several subdomains, the values ṽi defined by (7.47)
are no longer good (order diam(K)2) approximations of u(xi), and therefore
(∇DBav)|K = (∇Dṽ)|K will not approximate (∇u)|K properly. This does not
prevent the corresponding GS from converging, but leads to reduced accuracy
on coarse meshes.
Barycentric condensation preserves the LLE property thanks to Assumption
(7.46); it is this assumption that ensures that

∑
j∈Hi β

i
jA(xj) = A(xi) for all

affine function A. To deal with heterogeneous materials, it might be suitable to
relax this assumption and create barycentric condensations that do not satisfy
(7.46). Instead, we should aim for relations that ensure that, if v interpolates u
at (xj)j∈IBa , the values ṽ computed through (7.47) give good approximations
of the values of u at (xi)i∈I . This leads to the notion of S-adapted barycentric
condensation.

Definition 7.73 (S-adapted barycentric condensation). Let D be an
LLE GD in the sense of Definition 7.33, and let S be a dense subset W 1,p

0 (Ω)
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such that S ⊂ C(Ω). An S-adapted barycentric condensation DS of D is a
barycentric condensation in the sense of Definition 7.40, without Assumption
(7.46) on the barycentric coefficients but such that:

1. for all K ∈M there exists an open set OK such that
a) OK is star-shaped with respect to some xK ,
b) IK ⊂ OK , and
c) for all ϕ ∈ S, ϕ|OK ∈W 2,∞(OK),

2. for all ϕ ∈ S, there exists Cϕ ≥ 0, depending only on ϕ, and RDS , de-
pending only on DS , such that

∀K ∈M , ∀i ∈ IK\IBa :∣∣∣ϕ(xi)−
∑
j∈Hi

βijϕ(xj)
∣∣∣ ≤ CϕRDSdiam(K)2. (7.101)

The S-regularity of DS is then defined by

regS(DS) = regBa(DS) +RDS + max
K∈M

diam(OK)

diam(K)
.

Linearly exact barycentric condensations (i.e. in the sense of Definition 7.40)
are S-adapted barycentric condensations with S = C∞c (Ω) and OK the inte-
rior of the convex hull of (xi)i∈IBa

K
.

The following theorem is an equivalent of Theorem 7.43 for S-adapted
barycentric condensations.

Theorem 7.74 (Properties of S-adapted barycentric condensations).
Let (Dm)m∈N be a sequence of LLE GDs in the sense of Definition 7.33, that is
coercive, GD-consistent, limit-conforming and compact in the sense of Defini-
tion 2.2, 2.4, 2.6 and 2.9. Fix a subset S of W 1,p

0 (Ω) and, for each m, take DSm
an S-adapted barycentric condensation of Dm. Assume that (regLLE(Dm))m∈N
and (regS(DSm))m∈N are bounded, and that hMm

→ 0 as m→∞ (where Mm

is the mesh associated with Dm).
Then (DSm)m∈N is coercive, GD-consistent, limit-conforming and compact.

Proof. A close examination of the proof of Theorem 7.43 shows that the
transfer of the coercivity, limit-conformity and compactness properties from a
sequence of GDs to their barycentric condensations does not require Assump-
tion (7.46). Hence those properties are satisfied by S-adapted barycentric
condensations.
Let us now prove the GD-consistency. We drop the index m for legibility
and we take ϕ ∈ S. Analogously to the proof of Proposition 7.37, define the
interpolant v ∈ XDS ,0 by vi = ϕ(xi) for all i ∈ IBa. Let ṽ ∈ XD,0 be given by
(7.47), that is ṽi = vi = ϕ(xi) if i ∈ IBa and

ṽi =
∑
j∈Hi

βijvj =
∑
j∈Hi

βijϕ(xi) if i ∈ I\IBa.
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By (7.101) we have |ṽi − ϕ(xi)| ≤ CϕRDSdiam(K)2 if i ∈ IK . Hence

∀K ∈M , ∀i ∈ IK : ṽi = ϕ(xi) +O(diam(K)2). (7.102)

We can then reproduce with this ṽ the proof of Lemma 7.31, using the xK
with respect to which OK is star-shaped. This shows that (7.29) holds up to
an additional term O(diam(OK)2) = O(diam(K)2). Still following the com-
putations in the proof of Lemma 7.31, the W 2,∞(OK)-regularity of ϕ then
shows that ‖GK ṽ −∇ϕ‖Lp(K)d = O(|K|1/pdiam(K)) on K. This gives

‖∇DSv −∇ϕ‖Lp(Ω)d = ‖∇Dṽ −∇ϕ‖Lp(Ω)d = O(hM). (7.103)

The property (7.102), the definition (7.32) of ΠD and the boundedness of
regLLE(D) also give

‖ΠDSv − ϕ‖Lp(Ω) = ‖ΠDṽ − ϕ‖Lp(Ω) = O(hM). (7.104)

Estimates (7.103) and (7.104) show that SDS (ϕ) = O(hM) for any ϕ ∈ S. The
proof is complete by invoking Lemma 2.17 and the density of S in W 1,p

0 (Ω).
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Conforming approximations

8.1 Conforming Galerkin methods

8.1.1 Homogeneous Dirichlet boundary conditions

Conforming Galerkin methods are probably the simplest GDM there is. They
simply consist in replacing the infinite-dimensional Sobolev space involved
in the weak formulation (e.g., H1

0 (Ω) in (2.22)) with a finite dimensional
subspace. We can therefore define a corresponding GD as follows.
LetA = (ϕi)i∈I be a linearly independent finite family of elements ofW 1,p

0 (Ω).
A conforming Galerkin GD based on A is defined by:

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ I} and, for v ∈ XD,0,

ΠDv =
∑
i∈I

viϕi ∈W 1,p
0 (Ω) and ∇Dv = ∇(ΠDv) =

∑
i∈I

vi∇ϕi. (8.1)

The properties of this GD are straightforward.

Theorem 8.1 (Conforming GDs for hom. Dirichlet BCs). For all m ∈
N, take A(m) = (ϕ

(m)
i )i∈I(m) a linearly independent finite family of W 1,p

0 (Ω)
and define Dm = (XDm,0, ΠDm ,∇Dm) by (8.1) with A = A(m). Then Dm is a
GD for homogeneous Dirichlet boundary conditions in the sense of Definition
2.1.
Furthermore, if

∀ϕ ∈W 1,p
0 (Ω) , lim

m→∞
min

v∈XDm,0
‖∇ϕ−∇Dmv‖Lp(Ω)d = 0, (8.2)

then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense Definitions 2.2, 2.4, 2.6 and 2.9.

Remark 8.2. If (ui)i∈N is a dense sequence in W 1,p
0 (Ω) and if, for all m ∈ N,

A(m) is a basis of the space V (m) spanned by (ui)i=0,...,m, then the hypotheses
of the preceding theorem, in particular (8.2), are satisfied.
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Proof. Thanks to the Poincaré inequality in W 1,p
0 (Ω), ‖∇·‖Lp(Ω)d is a norm

on W 1,p
0 (Ω). Let v ∈ XD,0 and assume that ‖∇(ΠDmv)‖Lp(Ω)d = 0; then

ΠDmv =
∑
i∈I viϕ

(m)
i = 0 in W 1,p

0 (Ω). Since the family (ϕ
(m)
i )i∈I(m) is linearly

independent, we infer that vi = 0 for all i ∈ I, which shows that ‖∇Dm ·‖Lp(Ω)d

is a norm on XDm,0. Hence, Dm is a GD in the sense of Definition 2.1.
The coercivity of (Dm)m∈N is an immediate consequence of the continuous
Poincaré’s inequality, since this inequality gives, for all u ∈ XDm,0,

‖ΠDmu‖Lp(Ω) ≤ diam(Ω) ‖∇(ΠDmu)‖Lp(Ω)d = diam(Ω) ‖∇Dmu‖Lp(Ω)d .

Assumption (8.2) and the Poincaré’s inequality imply the consistency of
(Dm)m∈N. Indeed, for all v ∈ XDm,0 and ϕ ∈W 1,p

0 (Ω),

‖ΠDmv − ϕ‖Lp(Ω) + ‖∇Dmv −∇ϕ‖Lp(Ω)d

= ‖ΠDmv − ϕ‖Lp(Ω) + ‖∇(ΠDmv)−∇ϕ‖Lp(Ω)d

≤ (1 + diam(Ω)) ‖∇(ΠDmv)−∇ϕ‖Lp(Ω)d .

Hence,

SDm(ϕ) ≤ (1 + diam(Ω)) min
v∈XDm,0

‖∇Dmv −∇ϕ‖Lp(Ω)d → 0 as m→∞.

The limit-conformity is also straightforward, since ∇Dmu = ∇(ΠDmu) for
all u ∈ XDm,0, and therefore Stokes’ formula in Sobolev spaces shows that

WDm(ϕ) = 0 for all ϕ ∈W p′

div(Ω). The compactness of (Dm)m∈N follows from
Rellich’s theorem. Indeed, if vm ∈ XDm,0 is such that ‖∇Dmvm‖Lp(Ω)d =

‖∇(ΠDmvm)‖Lp(Ω)d is bounded, then by Rellich’s compactness theorem,

(ΠDmvm)m∈N is relatively compact in Lp(Ω).

Remark 8.3. Dealing with non-homogeneous Dirichlet boundary conditions re-
quires the design of an interpolation operator ID,∂ . This interpolator usually
depends on the chosen method and of the expected regularity of the solution.
See Section 8.3 for an example.

8.1.2 Non-homogeneous Neumann boundary conditions

The definition of a conforming Galerkin GD for Neumann boundary condi-
tions is pretty straightforward. Take A = (ϕi)i∈I a linearly independent finite
family of elements of W 1,p(Ω) and set

XD = {v = (vi)i∈I : vi ∈ R for all i ∈ I} and, for v ∈ XD,

ΠDv =
∑
i∈I

viϕi , ∇Dv = ∇(ΠDv) =
∑
i∈I

vi∇ϕi and TDu = γ(ΠDu), (8.3)

where γ is the trace on ∂Ω functions in W 1,p(Ω). The following result can be
proved in a similar way as Theorem 8.1.
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Theorem 8.4 (Conforming GDs for non-hom. Neumann BCs). For

all m ∈ N, take A(m) = (ϕ
(m)
i )i∈I(m) a linearly independent finite family of

W 1,p(Ω) and let Dm = (XDm,0, ΠDm ,TDm ,∇Dm) be defined by (8.3) with
A = A(m). Then Dm is a GD for non-homogeneous Neumann problems in the
sense of Definition 3.11.
Furthermore, if

∀ϕ ∈W 1,p(Ω) , lim
m→∞

min
v∈XDm

‖ϕ−ΠDmv‖W 1,p(Ω)d = 0, (8.4)

then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.16.

Remark 8.5 (Fourier boundary conditions). The relations (8.3) also define a
conforming Galerkin GD for Fourier boundary conditions, and the equivalent
of Theorem 8.4 holds for sequences of such GDs.

8.2 Pk finite elements for homogeneous Dirichlet
boundary conditions

8.2.1 Definition of Pk gradient discretisations

Pk finite elements methods are particular conforming Galerkin methods, and
thus are GDMs (Section 8.1). They however deserve to be described in detail,
if only because they will give us our first practical example of LLE GD.

Let T = (M,F ,P,V) be a conforming simplicial mesh of Ω in the sense of Def-
inition 7.4, and let k ∈ N \ {0}. We follow Definition 7.33 for the construction
of the Pk LLE gradient discretisation D = (XD,0,∇D, ΠD) for homogeneous
Dirichlet boundary conditions. We therefore describe the geometrical entities
I attached to the discrete unknowns, the set of approximation points S, the
P0-exact function reconstructions πK the P1-exact gradients reconstructions
GK on the elements K of M, and we check that ‖∇D·‖Lp(Ω)d is a norm on
XD,0.

1. The set I of geometrical entities attached to the discrete unknowns is
I = V(k), and the set of approximation points is S = I, where V(k) =⋃
K∈M V

(k)
K and V(k)

K is the set of the points x of the form (see Figure 8.1
for examples):

x =
∑
s∈VK

is
k
s with (is)s∈VK ∈ {0, . . . , k}VK s.t.

∑
s∈VK

is = k. (8.5)

(Note that for k = 1, V(1) = V.) Then IΩ = V(k)
int := V(k)∩Ω, I∂ = V(k)

ext :=
V(k) ∩ ∂Ω, and thus

XD,0 = {v = (vs)s∈V : vs ∈ R for all s ∈ V(k)
int , vs = 0 for all s ∈ V(k)

ext}.
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Fig. 8.1. Location of the unknowns in each cell for the Pk finite element method.

2. For K ∈ M, we let IK = V(k)
K := V(k) ∩K. The function reconstruction

ΠD in (7.32) is defined on K through the local basis functions (πsK)
s∈V(k)

K

,

called in this particular case the Lagrange interpolation functions and

defined the following way. For each s ∈ V(k)
K , πsK is polynomial in K of

degree k, and satisfies πsK(s) = 1 and πsK(s′) = 0 for all s′ ∈ V(k)
K \ {s}.

This leads to

∀v ∈ XD,0 , ∀K ∈M , (ΠDv)|K =
∑
s∈V(k)

K

vsπ
s
K . (8.6)

Since
∑
s∈V(k)

K

πsK is a polynomial of degree at most k that has value 1

at each s ∈ V(k)
K , Lemma 8.6 shows that

∑
s∈V(k)

K

πsK = 1 on K. Hence,

(πsK)
s∈V(k)

K

is a P0-exact function reconstruction on K.

For each v ∈ XD,0, ΠDv is polynomial of degree k or less in each cell, and
satisfies ΠDv(s) = vs for all s ∈ V(k). By Lemma 8.7, ΠDv is therefore
continuous over Ω, and thus belong to W 1,p(Ω). Moreover, for any σ ∈
Fext ∩ FK , ΠDv vanishes at all s ∈ V(k)

K ∩ σ; since σ is a simplex in

dimension d− 1 and V(k)
σ = V(k)

K ∩ σ, by Lemma 8.6 applied to σ instead
of K we deduce that ΠDv = 0 on the boundary faces, and thus that
ΠDv ∈W 1,p

0 (Ω).
3. We define the family GK = (GsK)

s∈V(k)
K

of functions in L∞(K)d by

GsK = ∇πsK . (8.7)

If q is a polynomial of degree less than or equal to k, then
∑
s∈V(k)

K

q(s)πsK
is a polynomial of degree less than or equal to k, and matches q at all

s ∈ V(k)
K . By Lemma 8.6, these two polynomials coincide. In particular,

with q = A affine map,∑
s∈V(k)

K

A(s)GsK =
∑
s∈V(k)

K

A(s)∇πsK = ∇
∑
s∈V(k)

K

A(s)πsK = ∇A.
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Hence, GK is a P1-exact gradient reconstruction on K upon V(k)
K .

The gradient reconstruction ∇D is given by these local gradients, which
means that

∀v ∈ XD,0 , ∀K ∈M , (∇Dv)|K =
∑
s∈V(k)

K

vsGsK ,

that is, given (8.6),

∀v ∈ XD,0 , ∇Dv = ∇(ΠDv) a.e. on Ω. (8.8)

4. Relation (8.8) and the Poincaré inequality in W 1,p
0 (Ω) imply that v 7→

‖∇Dv‖Lp(Ω)d is a norm on XD,0.

The following two lemmas justify the existence and uniqueness of the Lagrange
interpolation functions πsK , and the reasoning made in the construction above.
They are classical results, and form together what is called the “unisolvence
of V(k) for conforming Pk-finite elements” [49].

Lemma 8.6 (V(k)
K is a complete family for Pk). Let K be a simplex,

k ∈ N and V(k)
K be the points defined by (8.5). Then for any choice of values

(as)s∈V(k)
K

, there exists a unique polynomial function p of degree at most k

such that p(s) = as for all s ∈ V(k)
K .

Proof. Let

Φ : Pk(K) 7→ XK := {(as)s∈V(k)
K

: as ∈ R for all s ∈ V(k)
K }

be defined by Φ(p) = (p(s))
s∈V(k)

K

. Φ is clearly linear, and XK is a vector space

of dimension Card(V(k)
K ). Let us assume that (i) dim(Pk(K)) = Card(V(k)

K ),
and (ii) if Φ(p) = 0 then p ≡ 0. Then Φ is one-to-one between two vector
spaces of same dimension, and therefore Φ is an isomorphism. Hence, for any
family of real numbers (as)s∈V(k)

K

∈ XK there exists a unique p ∈ Pk(K) such

that Φ(p) = (as)s∈V(k)
K

, which is the conclusion of the lemma. It remains to

prove (i) and (ii).

Proof of (i): the dimension of Pk(K) is the number of monomials of the form
xα = xα1

1 · · ·x
αd
d with α = (α1, . . . , αd) and |α| = α1 + · · · + αd ≤ k. For

such a α we define i = (i0, . . . , id) by i0 = k − (α1 + . . . + αd), i1 = α1,
. . . , id = αd. This correspondence α → i clearly creates a bijection between
{α ∈ Nd : |α| ≤ k} and {i ∈ Nd+1 : |i| = k}. Hence those two sets have the
same cardinal. Since dim(Pk(K)) is the cardinal of the first set and, by (8.5),

Card(V(k)
K ) is the cardinal of the second set, the proof of (i) is complete.

Proof of (ii): the proof is done by induction on d.
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d = 1: K is then a segment of line, and V(k)
K are k + 1 distinct points on K.

It is well-known that if p is a polynomial of one variable, of degree less than
or equal to k and that vanishes on k + 1 distinct points, then p ≡ 0 and the
case d = 1 is thus proved.

d− 1⇒ d: we take d ≥ 2, we assume that (ii) holds for d− 1 and we want to
prove that it holds for d. The proof is done by induction on k.

• k = 1: the polynomial p is affine and vanishes at the vertices of K. The
mapping p − p(0) is linear, and therefore preserves barycentric combina-
tions. This mapping takes the value −p(0) at the vertices of K. Since
these vertices form a barycentric basis of Rd, we deduce that p − p(0) is
constant equal to −p(0) on Rd, which shows that p ≡ 0 on Rd.
• k − 1⇒ k: up to an affine change of variables, we can assume that one

of the faces σ0 of K lies on the hyperplane {xd = 0}. We then denote by
s0 the vertex of K opposite to σ0 (see Figure 8.2). A polynomial p in d
variables of degree less than or equal to k can be written

p(x) = xdq(x) + r(x1, . . . , xd−1)

where q is a polynomial of degree less than or equal to k − 1, and r a

polynomial of degree less than or equal to k. Since p vanishes on V(k)
K and

σ0 is a (d − 1)-dimensional simplex that lies on {xd = 0}, we see that r

vanishes on V(k)
K ∩ σ0 = V(k)

σ0 . By the induction hypothesis the result (ii)
is valid in dimension d− 1 and r is therefore the zero polynomial.

The convex hull of V(k)
K \V

(k)
σ0 forms a (closed) simplex K ′ such that

V(k−1)
K′ = V(k)

K \V
(k)
σ0 (these vertices correspond to (8.5) with the index

i0, corresponding to s0, different from zero). Moreover, since K ′ ∩ {xd =

0} = ∅, the relation p(x) = xdq(x) shows that q vanishes on V(k−1)
K′ . Since

q has degree k−1 or less, the induction hypothesis on k shows that q ≡ 0.
The proof that p ≡ 0 is therefore complete.

Lemma 8.7 (Continuity through the faces of piecewise polynomial
functions). Let k ∈ N\{0}, let K and L be two simplices of Rd with a common

face σ, and let the sets V(k)
K (resp. V(k)

L ) be defined by the points (8.5) (resp.
with K replaced with L). Let pK and pL be polynomial functions on K and
L, respectively, such that pK and pL have degree at most k and coincide at all

points of V(k)
K ∩ V(k)

L . Then pK and pL coincide on σ.

Proof. The functions (pK)|σ and (pL)|σ are polynomial of degree at most k,

and are identical at the points of V(k)
K ∩V

(k)
L . Since σ is a simplex in dimension

d−1, and V(k)
σ = V(k)

K ∩σ = V(k)
L ∩σ = V(k)

K ∩V
(k)
L , Lemma 8.6 can be applied

to σ, and shows that (pK)|σ and (pL)|σ are identical over the whole face σ.



8.2 Pk finite elements for homogeneous Dirichlet boundary conditions 265

�
�
�
�

��
��
��
�� �

�
�
�

�
�
�
� �

�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

s0

σ0

K ′

Fig. 8.2. Illustration of the construction in the proof of Lemma 8.6 for k = 3.

8.2.2 Properties of Pk gradient discretisations

The properties of Pk GDs follow from their conformity and from Proposition
7.37, provided that we establish an estimate on the LLE regularity of Pk GDs.
We first state a classical result, which relates the independence properties of
a family of vectors in Rd with the fact that they enclose a ball of radius com-
parable to their lengths. This result is then used to bound the LLE regularity
of Pk GDs.

Lemma 8.8. Let (xi)i=1,...,d be vectors in Rd, and let M be the d× d matrix
with columns xi. We let ` = maxi=1,...,d |xi| and we assume that the convex
hull of {0,x1, . . . ,xd} contains a ball of radius %` for some % > 0. Then

|M−1| ≤ d1/2

ωd%d
`−1, (8.9)

where ωd is the measure of the unit ball in Rd.

Proof. We first recall that |det(M)| is the volume of the d-dimensional
parallelogram M [0, 1]d defined by (x1, . . . ,xd). This parallelogram contains

the convex hull {
∑d
i=1 λixi : λi ≥ 0 ,

∑
i λi ≤ 1} of {0,x1, . . . ,xd}. Therefore

|det(M)| ≥ vol(B(0, %`)) = ωd%
d`d. (8.10)

Let ξ = (ξ1, . . . , ξd) ∈ Rd. We have Mξ =
∑d
i=1 ξixi. Hence, for all j =

1, . . . , d,

det(x1, . . . ,xj−1,Mξ,xj+1, . . . ,xd)

= det(x1, . . . ,xj−1, ξjxj ,xj+1, . . . ,xd)

= ξj det(x1, . . . ,xd) = ξj det(M), (8.11)
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where we used the properties of the determinant and created linear com-
binations to eliminate all vectors except xj from Mξ. The determinant is
multi-linear continuous with a norm 1. Using the definition of ` and (8.10),
Equation (8.11) thus gives

`d−1|Mξ| ≥ |x1| . . . |xj−1| |Mξ| |xj+1| . . . |xd|
≥ |det(x1, . . . ,xj−1,Mξ,xj+1, . . . ,xd)|
≥ |ξj | |det(M)| ≥ ωd%d`d|ξj |,

that is, |Mξ| ≥ ωd%d`|ξj |. We square this relation, sum over j = 1, . . . , d, and
take the square root. This leads to d1/2|Mξ| ≥ ωd%

d`|ξ|. Applying this to
ξ = M−1η for a generic vector η establishes (8.9).

Lemma 8.9 (Estimate of the LLE regularity of a Pk GD). Let T be a
simplicial mesh of Ω in the sense of Definition 7.4, and D be a Pk LLE GD
as in Section 8.2.1. Then, if % ≥ κT (see (7.10)), there exists C1, depending
only on d and %, such that

regLLE(D) ≤ C1. (8.12)

Proof. For any K ∈ M and any i ∈ IK = V(k)
K we have xi ∈ K and thus

dist(xi,K) = 0. To control the first and second terms in regLLE(D), thanks to
Remark 7.32 and to (8.7), it is sufficient to prove that

‖πsK‖L∞(K) ≤ C2 and ‖∇πsK‖L∞(K)d ≤ C2h
−1
K , (8.13)

where C2 depends only on d and %. This is done by a classical reference element
technique.
Let K ∈ M. Up to a translation we can assume that one of the vertices of
K is 0. Let (0, s1, . . . , sd) be the vertices of K and let S0 be the reference
d-simplex {α ∈ Rd : αi > 0 ,

∑
i αi < 1}. Let M be the d × d matrix with

columns (s1, . . . , sd). Each column of M is a vector with length at most hK .
Since K contains a ball of radius κ−1

T hK ≥ %−1hK , Lemma 8.8 shows that
|M−1| ≤ C3h

−1
K for some C3 depending only on % and d. By definition of the

simplex K, we have K = MS0, and M maps each approximation point of

V(k)
S0

onto the corresponding approximation point of V(k)
K (because M is linear

and these approximation points are defined by barycentric relations).

Hence, if s ∈ V(k)
K , then x 7→ πsK(Mx) is a polynomial of degree k that is

1 at M−1s ∈ V(k)
S0

and 0 at all other points in V(k)
S0

. There are only a finite
number of such polynomials – remember that S0 is fixed and does not depend
on K. We can therefore define C4 as the maximum of the L∞(S0) norms of
these polynomials and their gradients. This constant depends only on d, and
satisfies

‖πsK(M ·)‖L∞(S0) ≤ C4 and ‖∇(πsK(M ·))‖L∞(S0)d ≤ C4.
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Estimates (8.13) then follows by recalling that MS0 = K, that

(∇πsK)(M ·) = (MT )−1∇(πsK(M ·)),

and by using the estimate |(MT )−1| = |M−1| ≤ C3h
−1
K .

We can now prove the properties of Pk GDs.

Theorem 8.10 (Properties of Pk GDs for homogeneous Dirichlet
BCs). Let (Dm)m∈N be a sequence of Pk GDs, as in Section 8.2.1, based on
underlying conforming simplicial meshes (Tm)m∈N. Assume that (κTm)m∈N is
bounded (see (7.10)), and that hMm

→ 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.2, 2.4, 2.6 and 2.9.

Proof. If vm ∈ XDm then ΠDmvm ∈ W
1,p
0 (Ω) and ∇Dmvm = ∇(ΠDmvm).

Thus, as in the proof of Theorem 8.1, the Poincaré’s inequality and Rellich’s
theorem in W 1,p

0 (Ω) show that (Dm)m∈N is coercive and compact. Applying

Stokes’ formula shows that WDm(ϕ) = 0 for all ϕ ∈W p′

div(Ω), which gives the
limit-conformity. Finally, the consistency is a direct consequence of Proposi-
tion 7.37 and Lemma 8.9.

The previous theorem gives all the properties required to apply, for example,
Theorem 2.36 to establish the convergence of the conforming Pk scheme for
the quasi-linear model (2.49a). If aiming for error estimates, e.g., by using
Theorems 2.29 or 2.39, one needs specific estimates on SD and WD. The
following proposition provides such estimates.

Proposition 8.11 (Estimate on SD and WD for Pk GDs). Let T be a
conforming simplicial mesh of Ω in the sense of Definition 7.4, and D be the
Pk LLE GD on T as defined in Section 8.2.1. Let % ≥ κT (see (7.10)). Then,
there exists C5, depending only on Ω, k and %, such that

∀ϕ ∈W p′

div(Ω) , WD(ϕ) = 0, (8.14)

∀ϕ ∈W k+1,∞(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C5h

k
M ‖ϕ‖Wk+1,∞(Ω) . (8.15)

Here, SD and WD are defined by (2.2) and (2.6), respectively. This means
that the space size (see Definition 2.23) of the GD is such that

hD(W k+1,∞(Ω) ∩W 1,p
0 (Ω);W p′

div(Ω)) ≤ C5h
k
M.

Proof. The relation (8.14) follows directly from the conformity of the Pk GD,
and was already noticed in the proof of Theorem 8.10. The estimate (8.15)
on SD is as straightforward consequence of Lemma 8.9 and Proposition 7.38,
once we notice that D is of order k (as defined in Proposition 7.38). Indeed,
for any q ∈ Pk and any K ∈ M,

∑
s∈V(k)

K

q(s)πsK is a polynomial of degree

at most k that takes, by definition of (πsK)
s∈V(k)

K

, the value q(s) at a generic
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s ∈ V(k)
K . The polynomial q also satisfies this property so, by Lemma 8.6,

q =
∑
s∈V(k)

K

q(s)πsK . This proves (7.38) for polynomials of order k (not just

k − 1), and the exactness (7.39) of the gradients follows since GK = ∇πK .

Remark 8.12 (Rates of convergence of the Pk GS)
Proposition 8.11 and Theorem 2.29 give, as expected, O(hkM) error estimates
on the Pk method applied to the linear diffusion equation (2.20), in the case
u ∈W k+1,∞(Ω). We refer to [32, Theorem 4.4.20] for more optimal Wm,p-error esti-
mates, obtained by taking advantage of the specificities of this conforming method.

8.3 Pk finite element for non-homogeneous Dirichlet,
Neumann and Fourier boundary conditions

We briefly describe here, following the remarks in Section 7.3.6, the mod-
ifications to bring to the Pk GD to deal with non-homogeneous Dirichlet
conditions, Neumann conditions or Fourier conditions.

8.3.1 Non-homogeneous Dirichlet conditions

Following Definition 7.52, a Pk GD for non-homogeneous Dirichlet boundary
conditions consists in (XD, ID,∂ , ΠD,∇D) where

XD = {v = (vs)s∈V(k) : vs ∈ R for all s ∈ V(k)},

ΠDv and ∇Dv are defined by (8.6) and (8.8) (for all v ∈ XD), and an inter-

polation operator ID,∂ : W 1− 1
p ,p(∂Ω)→ XD,∂ has to be defined, where

XD,∂ = {v ∈ XD : vs = 0 for all s ∈ V(k)
ext}.

The definition of such an interpolant on W 1− 1
p ,p(∂Ω) is somewhat problem-

atic, given that Pk methods call for nodal interpolants – i.e. values of the

function at the vertices V(k). Since functions in W 1− 1
p ,p(∂Ω) are usually not

continuous, their value at a given point is not defined. One could then use
the notion of Clément interpolators [50], but this would have to be adapted
to interpolate functions only defined on the boundary of Ω.
In practice, in the context of Pk finite element schemes, the boundary condi-
tions are usually continuous. Following Remark 2.51, we therefore only need

to define ID,∂ : W 1− 1
p ,p(∂Ω) ∩ C(∂Ω) 7→ XD,∂ . This can be done by setting,

for g ∈W 1− 1
p ,p(∂Ω) ∩ C(∂Ω) and s ∈ V(k)

ext ,

(ID,∂g)s = g(s). (8.16)

We then have the following result.
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Theorem 8.13 (Properties of Pk GDs for non-homogeneous Dirichlet
BCs). Let (Dm)m∈N be a sequence of Pk GDs for non-homogeneous Dirichlet
boundary conditions, as above. We denote by (Tm)m∈N the underlying con-
forming simplicial meshes, and we assume that (κTm)m∈N is bounded (see
(7.10)). We also suppose that hMm → 0 as m→∞.
Then, the sequence (Dm)m∈N is coercive, limit-conforming and compact in the
sense of Definitions 2.2, 2.6 and 2.9. Moreover, with SD defined by (2.94), we
have SDm(ϕ)→ 0 as m→∞, for all ϕ ∈W 2,∞(Ω).

Remark 8.14 (General GD-consistency property)
We state here a weaker version of the consistency (only for regular functions). Check-
ing the consistency in the sense of Definition 2.52 on a dense subset in W 1,p(Ω) of
smooth functions would require to ascertain that (2.96) holds. This is somewhat
technical and requires the usage of Clément interpolator, with boundary interpola-
tor ID,∂ defined by (8.16). The literature does not seem to contain clear results in
that direction.

Proof. The Poincaré’s inequality, integration-by-parts and Rellich theorem
in W 1,p

0 (Ω) give the coercivity, limit-conformity and compactness as for homo-
geneous Dirichlet boundary conditions. Given the definition (8.16) of IDm,∂ ,
the consistency for ϕ ∈ W 2,∞(Ω) follows by selecting v = (vs)s∈V(k) defined
by vs = ϕ(s), and by using Lemmas 7.27 and 7.31 as in the proof of Proposi-
tion 7.37.

8.3.2 Neumann boundary conditions

The modification for Neumann boundary conditions is natural. Following Def-
inition 7.54, we simply enable boundary discrete unknowns to be non-zero,
i.e. we take

XD = {v = (vs)s∈V(k) : vs ∈ R for all s ∈ V(k)}.

ΠD and ∇D are still defined by (8.6) and (8.8) (for all v ∈ XD).
The proof that (3.1) is a norm on XD is straightforward. If ‖v‖D = 0 then
∇Dv = ∇(ΠDv) = 0 and thus ΠDv is constant. As ‖v‖D = 0 also implies∫
Ω
ΠDv(x)dx = 0, we infer that ΠDv = 0. Then, for all s ∈ V, vs = ΠDv(s) =

0, which shows that v = 0.
Finally, for non-homogeneous Neumann boundary conditions, we define TD :
XD → L∞(∂Ω) by

TDv = γ(ΠDv) = (ΠDv)|∂Ω . (8.17)

Poincaré–Wirtinger’s inequality in W 1,p(Ω) gives C depending only on Ω and
p such that, for all v ∈ XD,

‖ΠDv‖Lp(Ω) ≤ C
(
‖∇(ΠDv)‖Lp(Ω)d +

∣∣∣∣∫
Ω

ΠDv(x)dx

∣∣∣∣) = C ‖v‖D
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Combined with the continuity of the trace γ : W 1,p(Ω)→ Lp(∂Ω), this gives
a uniform estimate on CD (defined by (3.9)) depending only on Ω and p. The
choice (8.17) of the trace reconstruction shows that WD, defined by (3.11), is
identically zero.
Proposition 7.55 gives the consistency of sequences of Pk GDs for non-
homogeneous Neumann boundary conditions. The compactness of such a se-
quence follows from Rellich’s theorem and from the coercivity property, which
gives a bound on (TDmum)m∈N whenever (‖um‖Dm)m∈N is bounded. As a con-
clusion, we therefore have the following theorem.

Theorem 8.15 (Properties of Pk GDs for Neumann BCs).
Let (Dm)m∈N be a sequence of Pk GDs for Neumann boundary conditions
as above, defined from underlying conforming simplicial meshes (Tm)m∈N.
Assume that supm∈N κTm < +∞ (see (7.10)) and that hMm

→ 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.16.

8.3.3 Fourier conditions

For Fourier boundary conditions, the trace is still defined by (8.17) and clearly

satisfies the conditions in Definition 7.57, with M∂ = Fext and Iσ = V(k)
K for

all K ∈ M and all σ ∈ FK ∩ Fext. A bound on the LLE regularity of the
obtained GD can be established as in the proof of Lemma 8.9, by transporting
the basis functions on the reference simplex S0 to check that

∥∥π∂s∥∥L∞(σ)
is

uniformly bounded for all σ ∈ FK ∩ Fext and all s ∈ V(k)
K . To bound the

quantities dist(xi,K∂)
diam(K∂) in regLLE(D) defined by (7.69), we also use the fact that

diam(σ) ≤ ChK whenever σ ∈ FK , with C depending only on an upper bound
of κT.
As a conclusion, by Proposition 7.58, Theorem 8.15 remains valid in the con-
text of Fourier boundary conditions (with Definition 3.4 replaced with Defi-
nition 3.38).

8.4 Mass-lumped P1 finite elements

It is obvious from (8.6) that the reconstruction ΠD of the Pk GD is not
piecewise constant. To benefit from the advantages of a piecewise constant
reconstruction, such as a diagonal mass matrix in time-dependent problems, or
the applicability to non-linear models such as Stefan’s or Richards’ equations,
the Pk GD needs to be mass-lumped as per Definition 7.45.
Mass-lumping leads to a piecewise constant reconstruction ΠML

D , whose best
approximation properties are of order 1. There is therefore little interest in
using high order methods when mass-lumping is required, which is why we
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only consider the case k = 1 here. Since mass-lumping is essentially indepen-
dent of the boundary conditions (see Sections 7.3.6), we only present here the
case of homogeneous Dirichlet boundary conditions.

Definition 8.16 (Mass-lumped P1 GD). Let T = (M,F ,P,V) be a con-
forming simplicial mesh of Ω in the sense of Definition 7.4, and let D =
(XD,0, ΠD,∇D) be the P1 GD built on T as in Section 8.2.1 (with k = 1).
For each s ∈ V and K ∈M such that s ∈ VK , let

ΩK,s = {y ∈ K : πsK(y) > πs
′

K(y) for all s′ ∈ VK\{s}}

(recall that (πsK)s∈V are the P1 basis functions, defined in Item 2 of Section
8.2.1). Define then (see Figure 8.4 for an illustration)

Ωs =
⋃

K∈M| s∈VK

ΩK,s.

Then a mass-lumped P1 GD is defined by DML = (XD,0, Π
ML

D ,∇D) where ΠML

D
is the piecewise constant reconstruction built from (Ωs)s∈V , that is

∀v ∈ XD,0 , ∀s ∈ V , ΠML

D v = vs on Ωs.

K

ΩK,s

Ωs

s

∂Ω s′

Ωs′

Fig. 8.3. Partitions for the mass-lumping of the P1 GD.

The mesh (Ωs)s∈V thus constructed is sometimes called the barycentric dual
mesh, or Donald dual mesh, of T. This is only one possible mesh that can be
used to create a mass-lumped version of the P1 GD on T. It is however the
most classical one; indeed, for the time-dependent heat equation, this choice
leads to the usual mass lumping as known to the finite element community,
which consists in replacing the mass matrix M = (Mij) (resulting from the
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discretisation of the time derivative term) by the diagonal matrix D with
coefficients Dii =

∑
jMij , see e.g. [134, Chapter 15].

The properties of this mass-lumped P1 GD are stated in the following theorem.

Theorem 8.17 (Properties of mass-lumped P1 GDs). Let (Tm)m∈N be a
sequence of conforming simplicial meshes of Ω in the sense of Definition 7.4,
and let (DML

m )m∈N be the corresponding mass-lumped P1 GDs given by Defini-
tion 8.16. Assume that supm∈N κTm < +∞ (see (7.10)), and that hMm

→ 0
as m→∞.
Then (DML

m )m∈N is coercive, GD-consistent, limit-conforming, compact, and
has a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4,
2.6, 2.9 and 2.13.

Proof. Let us assume that

∀v ∈ XDm,0 ,
∥∥ΠDmv −ΠML

Dmv
∥∥
Lp(Ω)

≤ hMm
‖∇Dmv‖Lp(Ω)d . (8.18)

Then the conclusion of the theorem follows from Theorem 8.10 (which states
that the underlying sequence of P1 GDs (Dm)m∈N is coercive, GD-consistent,
limit-conforming and compact) and Theorem 7.49.
The proof of (8.18) is done by way of simple Taylor expansion in each ΩK,s.
Indeed, since ΠDmv is linear in K ⊃ ΩK,s with ∇(ΠDmv) = (∇Dmv)|K , and
since ΠML

Dmv = v(s) = ΠDmv(s) in Ωs ⊃ ΩK,s, we have, for x ∈ ΩK,s,

ΠML

Dmv(x)−ΠDmv(x) = ΠDmv(s)−ΠDmv(x)

= (∇Dmv)|K · (s− x) = ∇Dmv(x) · (s− x).

Hence,
|ΠML

Dmv(x)−ΠDmv(x)| ≤ hMm
|∇Dmv(x)|. (8.19)

This estimate is valid for any x ∈ ΩK,s, any K ∈ Mm and any s ∈ VK .
Hence, it is valid for any x ∈ Ω. Raised to the power p and integrated over
x ∈ Ω, (8.19) gives (8.18).

Remark 8.18. If p > d/2, by Proposition 7.64 the P1 gradient discretisations
on (Tm)m∈N satisfy SDm(ϕ) ≤ ChMm

‖ϕ‖W 2,p(Ω) for all ϕ ∈ W 2,p(Ω) (with

C not depending on m or ϕ), and WDm(ϕ) = 0 for all ϕ ∈W p′

div(Ω).
Estimate (8.18) shows that (7.59) holds (with D?m = DML

m ) with ωm = hMm
.

Combined with the previous estimates on SDm and WDm , and with (7.63)
and (7.64) in Remark 7.51, this proves that the mass-lumped P1 gradient
discretisations satisfy

SDML
m

(ϕ) ≤ C ′hMm ‖ϕ‖W 2,p(Ω)

(with C ′ not depending on m or ϕ), and
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WDML
m

(ϕ) ≤ hMm
‖divϕ‖Lp′ (Ω) .

Hence, as expected, mass-lumped P1 GSs are order 1 schemes. More precisely,
if the exact solution to the linear elliptic problem (2.20) belongs to H2 and
d = 1, 2, 3, then the estimates (2.25) and (2.26) are O(hM) when the mass-
lumped P1 GD is used in the GS (2.23).

8.5 Vertex approximate gradient (VAG) methods

Successive versions of the VAG schemes have been described in several papers
[98, 100]. VAG methods stem from the idea that it is often computationally
efficient to have all unknowns located at the vertices of the mesh, especially
with tetrahedral meshes (which have much less vertices than cells). It is how-
ever known that schemes with discrete unknowns at the vertices may lead to
unacceptable results for the transport of a species in a heterogeneous domain,
in particular for coarse meshes (one layer of mesh for one homogeneous layer,
for example). The VAG schemes are an answer to this conundrum. After all
possible local eliminations, the VAG schemes only have vertex unknowns, and
have been shown to cure the numerical issues for coarse meshes and heteroge-
neous media [100, 99, 101]; this is due to a specific mass-lumping that spreads
the reconstructed function between the centre of the control volumes and the
vertices. Let us remark that the original version of the VAG scheme in [98]
uses the same nodal formalism as in Chapter 14, but was shown in the FVCA6
3D Benchmark [103] to be less precise than the version presented here [97].

Starting from a generic polytopal mesh T, the VAG scheme is defined as a
barycentric condensation and a mass-lumping of the P1 GD on a conform-
ing simplicial sub-mesh of T. We consider here the situation of homogeneous
Dirichlet boundary condition and space dimension 3, this case being easy to
adapt to other boundary conditions and to dimension 2.

1. Let T = (M,F ,P,V) be a polytopal mesh of Ω in the sense of Definition
7.2, except for the removal of the hypothesis that the faces σ ∈ F are
planar. We define a conforming simplicial (tetrahedral in 3D) sub-mesh by
the following procedure. For any K ∈M, any σ ∈ FK , and any s, s′ ∈ Vσ
such that [s, s′] is an edge of σ, we define the simplex TK,σ,s,s′ by its four
vertices xK ,xσ, s, s

′ (see Figure 8.5), where the point xσ corresponding
to the face σ is given by

xσ =
1

Card(Vσ)

∑
s∈Vσ

s. (8.20)

We denote by TT the conforming simplicial mesh (as per Definition 7.4)
defined by the simplices TK,σ,s,s′ . More precisely, TT = (MT ,FT ,PT ,VT )
with
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• MT is the set

MT = {TK,σ,s,s′ :K ∈M , σ ∈ FK ,
(s, s′) ∈ V2 such that [s, s′] is an edge of σ},

• FT is the set of all faces of the simplices in MT ,
• PT is an arbitrary set of centres of the simplices (they do not play

any role in the construction of the scheme),
• VT is the set of all vertices of the simplices in MT ; this means that

VT = P ∪ V ∪ {xσ : σ ∈ F}. (8.21)

2. We let D = (XD,0,∇D, ΠD) be the P1 GD defined from TT as in Section

8.2.1 for k = 1. Given (8.21), for D we can define the set I of geometrical
entities attached to the discrete unknowns by I =M∪V ∪F , and the set
of S of approximation points of is S = ((xK)K∈M, (s)s∈V , (xσ)σ∈F ).

3. We define a barycentric condensation DBa

of D (see Definition 7.40) which
consists in eliminating the discrete unknowns attached to the internal
faces Fint of T. Precisely, we let IBa = M∪ V ∪ Fext and, for σ ∈ Fint,
we set Hσ = Vσ and we define the coefficients βσs = 1/Card(Vσ), for all
s ∈ Vσ. These coefficients are precisely the ones appearing in (8.20). The
mapping v ∈ XDBa,0 7→ ṽ ∈ XD,0 described by (7.47) is therefore given by
ṽ = ((ṽK)K∈M, (ṽs)s∈V , (ṽσ)σ∈F ) with

∀K ∈M , ṽK = vK ,

∀s ∈ V , ṽs = vs ,

∀σ ∈ Fext , ṽσ = vσ = 0 ,

∀σ ∈ Fint , ṽσ =
1

Card(Vσ)

∑
s∈Vσ

vs.

(8.22)

4. The VAG GD is the gradient discretisation D obtained from DBa

by per-
forming a mass-lumping in the sense of Definition 7.45. We therefore have
I = M∪ V ∪ Fext, IΩ = M∪ (V ∩ Ω) and I∂ = (V ∩ ∂Ω) ∪ Fext, which
gives

XD,0 = {v = ((vK)K∈M, (vs)s∈V , (vσ)σ∈Fext) : vK ∈ R for all K ∈M ,

vs ∈ R for all s ∈ V ∩Ω , vs = 0 for all s ∈ V ∩ ∂Ω ,

vσ = 0 for all σ ∈ Fext}.

To perform the mass-lumping of DBa

, we start by splitting each sim-
plex TK,σ,s,s′ into three parts TKK,σ,s,s′ , T

s
K,σ,s,s′ , and T s

′

K,σ,s,s′ (whose
detailed geometry is not needed), that respectively contain in their clo-
sure xK , s and s′. We then let, in Definition 2.13, ΩK be the union of all
(TKK,σ,s,s′)σ,s,s′ , and Ωs be the union of all (T sK,σ,s,s′)K,σ,s′ . This leads to
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∀v ∈ XD,0 : ΠDv =
∑
K∈M

vK1ΩK +
∑
s∈V

vs1Ωs . (8.23)

The gradient reconstruction is not modified by the mass-lumping, and
therefore ∇Dv is equal, in a tetrahedron TK,σ,s,s′ , to the gradient of
the affine functions that takes values (vK , ṽσ, vs, vs′) at the vertices
(xK ,xσ, s, s

′) of TK,σ,s,s′ .

s′

s

xK

xσK

TK,σ,s,s′

Fig. 8.4. Definition of a simplex TK,σ,s,s′ in a mesh cell K.

Remark 8.19 (Elimination of the cell unknowns in the VAG GS by static conden-
sation)
Apply the VAG GDM to obtain a GS (2.23) (with F = 0 to simplify the presen-
tation), and take in this scheme the test function v ∈ XD,0 which satisfies vK = 1
for a given cell K, vL = 0 for all other cells, and vs = 0 for all vertices. Then, the
integral in the right-hand side of (2.23) can be reduced to K. By letting αK be the
P1 Lagrange interpolator in the tetrahedra (TK,σ,s,s′)σ,s,s′ , that takes value 1 at xK
and 0 at all other vertices of these tetrahedra, we have, in K,

∇Du = uK∇αK +
∑

s∈VK

usΘs

for some functions Θs (involving the Lagrange interpolators at the vertices of the
tetrahedra contained in K). Since ∇Dv = ∇αK , we infer that

uK

∫
K

Λ(x)∇αK(x) · ∇αK(x)dx

=

∫
Ω

f(x)αK(x)dx−
∑

s∈VK

us

∫
K

Λ(x)Θs(x) · ∇αK(x)dx.



276 8 Conforming approximations

The coefficient of uK in the left-hand side is not zero, so this relation yields an
expression of uK in terms of (us)s∈VK (and the source term f), without even having
to solve a local system.
Hence, when using the VAG GD in a GS for a linear elliptic problem, the cell
unknowns can be locally eliminated and expressed in terms of the neighbouring
vertex unknowns.

Lemma 8.20 (Control of regBa for VAG GD). Let T be a polytopal mesh
of Ω in the sense of Definition 7.2, and let TT be the conforming simplicial
sub-mesh T as in Item 1 above. We take % ≥ κTT (see (7.10)). Let DBa

be the
barycentric condensation, defined in Item 3 above, of the P1 GD on TT .
Then there exists C6 depending only on % such that regBa(DBa

) ≤ C6.

Proof. The proof is made in several steps. Here, we write a . b for a ≤ Cb
for some C > 0 depending only on %. We write a ≈ b, and we say that a and
b are comparable, if a . b and b . a.

Step 1: The length of any edge in any tetrahedron T ∈MT is comparable to
the diameter hT of the tetrahedron.
Let τ be a face of T and let s be the opposite vertex. Let B(xT , ρT ) be the
centre of the largest ball included in T ; by definition of κTT we have ρT ≈ hT .
Let (si)i=1,...,d be the vertices of τ . We write xT as a convex combination

xT = λs +
∑d
i=1 λisi. Let nT,τ be the outer normal to T on τ . For any s′

vertex of τ , since (s′ − si)⊥nT,τ for all i = 1, . . . , d, and λ+
∑d
i=1 λi = 1, we

have

(xT − s′) · nT,τ = λ(s− s′) · nT,τ +

d∑
i=1

λi(si − s′) · nT,τ

= λ(s− s′) · nT,τ .

We have (xT − s′) · nT,τ = dist(xT , τ) ≥ ρT ≈ hT , and therefore

hT . λ(s− s′) · nT,τ ≤ (s− s′) · nT,τ . (8.24)

Therefore, hT . |s′ − s|. Since we also have |s′ − s| ≤ hT , we infer that

The length of any edge of a tetrahedron T ∈MT

is comparable to hT .
(8.25)

Step 2: If σ ∈ F and hσ is the maximal distance between two of its vertices,
then hσ is comparable to the diameter of any tetrahedron T ∈MT having its
base on σ.
Recall that a face σ does not need to be planar. Let T be a tetrahedron with
its face on σ, and denote by K ∈M the cell that contains T . We first notice
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that any two tetrahedra T1, T2 ∈ MT in K having their base on σ share the
common edge [xK ,xσ] and thus, by (8.25),

hT1
≈ |xK − xσ| ≈ hT2

. (8.26)

We have hσ = |s1 − s2| for some vertices si of σ. Let us take T1, T2 ∈ MT

tetrahedra in K with base on σ and having respectively s1 and s2 as vertices.
Using (8.26) we have

hσ = |s1 − s2| ≤ |s1 − xσ|+ |xσ − s2| ≤ hT1
+ hT2

≈ hT . (8.27)

Any edge of σ is also an edge of a tetrahedron with base on σ. Properties
(8.25) and (8.27) therefore give

The length of any edge of σ is comparable to hσ. (8.28)

Finally, T shares an edge with σ. Hence, (8.25) and (8.28) show that

For any tetrahedron T ∈MT having its base on σ, hT ≈ hσ. (8.29)

Step 3: conclusion.
The mesh corresponding to the P1 gradient discretisation D on TT is MT .
Hence, a cell of this mesh is a tetrahedron T with its base on some σ ∈ F , and
the only unknown that is eliminated in IK (from the P1 GD) is the unknown
at xσ. This elimination is done by using the vertices of σ and, by (8.29), these
vertices all lie within distance hσ ≈ hT of the points in T . Moreover, since
βσs = 1/Card(Vσ) we have

∑
s∈Vσ |β

σ
s | = 1.

These properties give a bound on regBa(DBa

) that depends only on % (through
the relations ≈).

Remark 8.21 (Comparison between hT and hK)
If % is also an upper bound of maxK∈M Card(FK), then by working neighbour to
neighbour it can be shown that any tetrahedra T ∈MT in a cell K ∈M has a size
hT ≈ hK .

Theorem 8.22 (Properties of VAG GDs). Let (Tm)m∈N be a sequence of
polytopal meshes of Ω in the sense of Definition 7.2. For each m ∈ N we define
the conforming simplicial sub-mesh TTm of Tm as in Item 1 above. Assume that
hMm

→ 0 as m→∞, and that (κTTm)m∈N is bounded (see (7.10)). Let Dm be
the VAG GD built on Tm.
Then (Dm)m∈N is coercive, GD-consistent, limit-conforming, compact and has
a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4, 2.6,
2.9 and 2.13.
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Proof. Let Dm be the P1 GD on TTm. Since Dm is the mass-lumping of the

barycentric condensation DBa

m of Dm, the result follows from Theorems 7.43

and 7.49 if we can prove that regLLE(Dm) and regBa(DBa

m) remain bounded,
and that the following version of (7.58) holds:

∀v ∈ XDm,0 ,
∥∥∥ΠDmv −ΠDBa

m
v
∥∥∥
Lp(Ω)

≤ hMm

∥∥∥∇DBa
m
v
∥∥∥
Lp(Ω)d

. (8.30)

Since (κTTm)m∈N is bounded, the boundedness of regLLE(Dm) follows from

Lemma 8.9. The bound on regBa(DBa

m) follows from Lemma 8.20. To prove
(8.30), we use the same technique as for the mass-lumping of P1 GDs. In each
TKK,σ,s,s′ (resp. T sK,σ,s,s′), ΠDBa

m
v is linear, ∇DBa

m
v = ∇(ΠDBa

m
v) and ΠDmv is

equal to vK = ΠDBa
m
v(xK) (resp. vs = ΠDBa

m
v(s)). Thus, in each TKK,σ,s,s′ and

T sK,σ,s,s′ , that is, on the whole of Ω,∣∣∣ΠDmv −ΠDBa
m
v
∣∣∣ ≤ hMm

∣∣∣∇DBa
m
v
∣∣∣ . (8.31)

We then conclude the proof of (8.30) by taking the Lp(Ω) norms in (8.31).

Theorem 8.23 (Estimate on SD and WD for VAG GD). Let T be a
polytopal mesh of Ω in the sense of Definition 7.2, and TT be the conforming
simplicial sub-mesh of Tm as in Item 1 above. We take

% ≥ κTT + max
K∈M

Card(VK),

and we let D be the VAG GD built on T. Then, there exists C7 depending only
on d, p, Ω and % such that

CD ≤ C7, (8.32)

∀ϕ ∈W p′

div(Ω) , WD(ϕ) ≤ hM ‖divϕ‖Lp′ (Ω) (8.33)

and

∀ϕ ∈W 1,p
0 (Ω) ∩W 2,p(Ω) , SD(ϕ) ≤ C7hM ‖ϕ‖W 2,p(Ω) (8.34)

Note that, in practice, the uniform bound on the number of vertices of each
cell, implied by %, is not a restrictive assumption.

Proof. By (7.62) and (8.30) (which shows that we can take ωm = hMm
≤

diam(Ω) in (7.59) with D?m = D and Dm = DBa

), we have CD ≤ diam(Ω) +
CDBa . We then use (7.57) to get CDBa ≤ CD ≤ CP , where CP depends only
on d, p and Ω (we can actually take CP = diam(Ω), an upper bound of the
Poincaré’s constant in W 1,p

0 (Ω) – remember that D is the P1 GD). This gives
(8.32).
Similarly, Estimate (8.33) follows from (7.64) (in which we can take ωm =
hMm

by (8.30)) and from (7.57), which shows that WDBa ≤WD = 0.
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Owing to (7.63) with D?m = D and Dm = DBa

, and to (8.30), to prove (8.34)
it suffices to show that SDBa(ϕ) ≤ C8hM ‖ϕ‖W 2,p(Ω) with C8 depends only on
p, d, Ω and %. This estimate is obtained by using Proposition 7.66, provided
that we find sets (VK)K∈M that satisfy (7.92) and (7.93), with D = DBa

and
θ depending only on d, p, Ω and %.
We first notice that the bound on regLLE(DBa

) in (7.93) is a consequence of
Lemma 7.42, Lemma 8.9 (with D = D the P1 GD on TT ), and Lemma 8.20.

Each cell of the mesh MT associated to DBa

is a tetrahedron TK,σ,s,s′ in a
certain cell K ∈ M. In Proposition 7.66, set VTK,σ,s,s′ = K. Each x ∈ Ω
belongs to a single cell K ∈ M, and can therefore only be in VTK,σ,s,s′ for
TK,σ,s,s′ a tetrahedron contained in K. The bound Card(VK) ≤ % ensures
that the number of such tetrahedra, and thus Card({TK,σ,s,s′ ∈ MT : x ∈
VTK,σ,s,s′}), is bounded above by some constant depending only on %. This
takes care of the last term in (7.93). It therefore remains to prove that each
VTK,σ,s,s′ = K is star-shaped with respect to a ball BTK,σ,s,s′ ⊂ TK,σ,s,s′ such
that diam(BTK,σ,s,s′ ) ≥ C9diam(K) with C9 depending only on %. As in the
proof of Lemma 8.20, in the following we denote a . b for a ≤ Cb with C
depending only on %, and a ≈ b for a . b and b . a. From now on, we also
set T = TK,σ,s,s′ .
In the current setting, the faces σ ∈ FK of K may not be planar. However,
in the construction of MT each of these faces have been split into triangles
that are necessarily planar. Hence, we can consider the cell K to be polytopal,
with planar faces the bases of the tetrahedra of MT contained in K. If τ is
the basis on σ of T , applying (8.24) with s = xK (which is indeed the vertex
opposite to τ in T ) and any vertex s′ of τ shows that

hT . (xK − s) · nT,τ = dK,τ .

Since Card(VK) . 1 we have Card(FK) . 1 and Remark 8.21 can be invoked.
This gives

hK ≈ hT . dK,τ . (8.35)

Then Lemma B.1 shows thatK is star-shaped with respect to a ballB(xK , rK)
with rK ≈ hK (see Figure 8.5 for an illustration).
Since κTT ≤ %, T contains a ball B(yT , ρT ) with, owing to (8.35),

ρT ≈ hT ≈ hK ≈ rK . (8.36)

We now find BT – mentioned in (7.92) – by an homothetic transformation of
B(yT , ρT ). Let µ ∈ (0, 1) and let

BT = (1− µ)xK + µB(yT , ρT ) = B((1− µ)xK + µyT , µρT ).

Since K is convex, BT ⊂ K. If BT ⊂ B(xK , rK), then VT = K is indeed star-
shaped with respect to BT . Since diam(BT ) = 2µρT ≈ µhK = µdiam(VT ),
this shows that the second term in the right-hand side of (7.93) is bounded



280 8 Conforming approximations

K = VT

xK

σ

BT

xσ

B(xK , rK)

T

B(yT , ρT )

Fig. 8.5. Illustration of the proof of Theorem 8.23. This figure is a planar section
of a cell K.

by µ−1C10 with C10 depending only on %. Hence, the proof is complete if we
can find µ depending only on % such that BT ⊂ B(xK , rK).
If z ∈ BT we have z = (1− µ)xK + µyT + µh with |h| < ρT , and therefore

|z − xK | ≤ µ|yT − xK |+ µρT < µ(hT + ρT ) ≤ C11µrK

with C11 depending only on % (we used (8.36)). Taking µ = 1/C11 ensures
that BT ⊂ B(xK , rK) and concludes the proof.
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Non-conforming finite element methods

As briefly seen in Chapter 1 and along the examples of Chapter 7, the non-
conforming P1 finite element method on triangular meshes can be recast in
the GDM framework. In the present chapter, all standard non-conforming
methods are shown to be GDMs. These methods are mesh-based, and their
analysis is facilitated by a simple generalisation of the notion of control by a
polytopal toolbox from Chapter 7.
A generic presentation of non-conforming methods is first developed for ho-
mogeneous Dirichlet boundary conditions and embedded in the GDM frame-
work. The case of non-conforming Pk finite elements is then considered; high
order estimates on SD and WD are obtained. Finally, the specific case k = 1
is detailed: the non-conforming P1 finite element method is shown to be an
LLE method for various types of boundary conditions; mass-lumping is finally
addressed.

9.1 Non-conforming finite element methods for
homogeneous Dirichlet BCs

9.1.1 Abstract framework

Definition 9.1 (Non-conforming W 1,p
0 (Ω) space). Let T = (M,F ,P,V)

be a polytopal mesh of Ω in the sense of Definition 7.2. The non-conforming
W 1,p

0 (Ω) space on T, denoted by W 1,p
T,0, is the space of all functions w ∈ Lp(Ω)

such that:

1. [W 1,p-regularity in each cell] For all K ∈ M, the restriction w|K of w to
K belongs to W 1,p(K). The trace of w|K on σ ∈ FK is denoted by w|K,σ.

2. [Continuity of averages on internal faces] For all σ ∈ Fint with Mσ =
{K,L}, ∫

σ

w|K,σ(y)dγ(y) =

∫
σ

w|L,σ(y)dγ(y). (9.1)
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3. [Homogeneous Dirichlet BC for averages on external faces] For all σ ∈ Fext

with Mσ = {K}, ∫
σ

w|K,σ(y)dγ(y) = 0. (9.2)

If w ∈W 1,p
T,0, the “broken gradient” of w is ∇Tw defined by

∀K ∈M , ∇Tw = ∇(w|K) in K

and we set

‖w‖W 1,p
T,0

= ‖∇Tw‖Lp(Ω)d =

( ∑
K∈M

∥∥∇(w|K)
∥∥p
Lp(K)d

) 1
p

. (9.3)

Owing to (9.4) in Lemma 9.3 below, ‖·‖W 1,p
T,0

is indeed a norm on W 1,p
T,0.

Remark 9.2 (Non-conforming approximation). The only continuity require-
ment for functions in W 1,p

T,0 is the “0-degree patch test” (9.1). All families
of non-conforming finite elements spaces based on the geometric elements of
T are subspaces of W 1,p

T,0, and we also observe that W 1,p
0 (Ω) ⊂W 1,p

T,0.
Due to this weak continuity requirement (9.1), approximations with func-
tions belonging to W 1,p

T,0 are “non-conforming”, in the sense that functions in

W 1,p
0 (Ω) are approximated by functions not necessarily in W 1,p

0 (Ω). In par-
ticular, these approximations in W 1,p

T,0 do not satisfy the Stokes formula in
general.

Let us now prove some properties of W 1,p
T,0, similar to the notions of coercivity,

limit-conformity and compactness for GDs.

Lemma 9.3 (Properties of W 1,p
T,0). Let T = (M,F ,P,V) be a polytopal

mesh of Ω in the sense of Definition 7.2. Let % ≥ θT + ηT (see (7.8)–(7.9)).
Let W 1,p

T,0 be given by Definition 9.1. Then there exists C12, depending only on
Ω, %, d and p, such that

∀w ∈W 1,p
T,0 , ‖w‖Lp(Ω) ≤ C12 ‖w‖W 1,p

T,0
(9.4)

and, for all ϕ ∈W 1,p′(Ω)d and all w ∈W 1,p
T,0, the quantity

W̃T(ϕ, w) =

∫
Ω

(ϕ(x) · ∇Tw(x) + divϕ(x)w(x))dx

satisfies ∣∣∣W̃T(ϕ, w)
∣∣∣ ≤ C12hM ‖ |∇ϕ| ‖Lp′ (Ω) ‖w‖W 1,p

T,0
. (9.5)

Moreover, for any sequence of polytopal meshes (Tm)m∈N such that (θTm +
ηTm)m∈N is bounded and hMm

→ 0 as m → ∞, the sequence (W 1,p
Tm,0

)m∈N is
compactly embedded in Lp(Ω) in the sense of Definition C.4.
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Proof. Step 1: We mimick the notion of control of a GD by a polytopal
toolbox (see Chapter 7). Recall that XT,0, |·|T,p, ΠT and ∇T are defined by
(7.7).
Let Ψ : W 1,p

T,0 → XT,0 be the linear mapping defined by: for all w ∈W 1,p
T,0,

∀K ∈M , Ψ(w)K =
1

|K|

∫
K

w(x)dx ,

∀σ ∈ F , ∀K ∈Mσ , Ψ(w)σ =
1

|σ|

∫
σ

w|K,σ(x)dγ(x).

(9.6)

The definition of Ψ(w)σ is justified by (9.1), which shows that Ψ(w)σ does not
depend on K ∈Mσ. Moreover, owing to (9.2), Ψ(w) indeed belongs to XT,0.
Let us first establish the existence of C13, depending only on %, d and p, such
that

∀w ∈W 1,p
T,0 , |Ψ(w)|T,p ≤ C13 ‖w‖W 1,p

T,0
, (9.7)

∀w ∈W 1,p
T,0 , ‖w −ΠTΨ(w)‖Lp(Ω) ≤ C13hM ‖w‖W 1,p

T,0
, (9.8)

∀w ∈W 1,p
T,0 , ∀K ∈M ,

∫
K

[
∇(w|K)(x)−∇TΨ(w)(x)

]
dx = 0. (9.9)

Apply first Lemma B.6 to obtain C1 depending only on d, p and % such that

|Ψ(w)σ − Ψ(w)K |p ≤
C1h

p−1
K

|σ|

∫
K

|∇(w|K)(x)|pdx (9.10)

and
‖w −ΠTΨ(w)‖Lp(K) ≤ C1hK

∥∥∇(w|K)
∥∥
Lp(K)d

. (9.11)

Divide (9.10) by dp−1
K,σ , multiply by |σ|, use hK/dK,σ ≤ θT and sum over

σ ∈ FK and K ∈M to find

|Ψ(w)|pT,p ≤ C1θ
p−1
T

∑
K∈M

∑
σ∈FK

∫
K

|∇(w|K)(x)|pdx

= C1θ
p−1
T

∑
K∈M

Card(FK)

∫
K

|∇(w|K)(x)|pdx.

Using Card(FK) ≤ θT leads to |Ψ(w)|pT,p ≤ C1θ
p
T ‖w‖

p

W 1,p
T,0

, which proves (9.7).

Estimate (9.8) is obtained by raising (9.11) to the power p and summing over
K ∈M.
Relation (9.9) follows from the Stokes formula by writing, for any K ∈M,∫

K

∇(w|K)(x)dx =
∑
σ∈FK

∫
σ

w|K,σ(x)dγ(x)nK,σ =
∑
σ∈FK

|σ|Ψ(w)σnK,σ
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= |K|(∇TΨ(w))|K =

∫
K

∇TΨ(w)(x)dx.

Step 2: We mimick the proofs of Theorem 7.11 and Corollary 7.12.
To prove (9.4), use the triangle inequality, Estimate (9.8), the Hölder’s in-
equality (D.7), Lemma B.15 (providing the q > p and C8 below), and Estimate
(9.7) to write, for any w ∈W 1,p

T,0,

‖w‖Lp(Ω) ≤ ‖w −ΠTΨ(w)‖Lp(Ω) + ‖ΠTΨ(w)‖Lp(Ω)

≤ C13hM ‖w‖W 1,p
T,0

+ |Ω|
1
p−

1
q ‖ΠTΨ(w)‖Lq(Ω)

≤ C13(diam(Ω) + C8|Ω|
1
p−

1
q ) ‖w‖W 1,p

T,0
.

We turn to (9.5). Let ϕ ∈W 1,p′(Ω)d and w ∈W 1,p
T,0. Use the triangle inequality

and Estimates (9.8), (B.31) (noticing that TTΨ(w) = 0 here) and (9.7) to
obtain∣∣∣W̃T(ϕ, w)

∣∣∣
≤
∣∣∣∣∫
Ω

[∇Tw(x)−∇TΨ(w)(x)] ·ϕ(x)dx

∣∣∣∣
+

∣∣∣∣∫
Ω

[w(x)−ΠTΨ(w)(x)]divϕ(x)dx

∣∣∣∣
+

∣∣∣∣∫
Ω

(
∇TΨ(w)(x) ·ϕ(x) +ΠTΨ(w)(x)divϕ(x)

)
dx

∣∣∣∣
≤
∣∣∣∣∫
Ω

[∇Tw(x)−∇TΨ(w)(x)] ·ϕ(x)dx

∣∣∣∣+ ‖divϕ‖Lp′ (Ω) C13hM ‖w‖W 1,p
T,0

+ C5 ‖∇ϕ‖Lp′ (Ω)d |Ψ(w)|T,p hM

≤
∣∣∣∣∫
Ω

[∇Tw(x)−∇TΨ(w)(x)] ·ϕ(x)dx

∣∣∣∣+ ‖divϕ‖Lp′ (Ω) C13hM ‖w‖W 1,p
T,0

+ C5 ‖∇ϕ‖Lp′ (Ω)d C13 ‖w‖W 1,p
T,0

hM. (9.12)

Let ϕK = 1
|K|
∫
K
ϕ(x)dx and write∫

Ω

[∇Tw(x)−∇TΨ(w)(x)] ·ϕ(x)dx

=
∑
K∈M

∫
K

[∇(w|K)(x)−∇TΨ(w)(x)] ·ϕ(x)dx

=
∑
K∈M

(∫
K

[
∇(w|K)(x)− (∇TΨ(w))|K

]
· [ϕ(x)−ϕK ]dx

+ϕK ·
∫
K

[∇(w|K)(x)−∇TΨ(w)(x)]dx
)
.
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Use (9.9) and
∫
K

(ϕ(x)−ϕK)dx = 0 to infer∫
Ω

[∇Tw(x)−∇TΨ(w)(x)] ·ϕ(x)dx =
∑
K∈M

∫
K

∇(w|K)(x) · [ϕ(x)−ϕK ]dx.

Applying (B.12) in Lemma B.6 to p′ instead of p, we find C14 depending only
on d, p and % such that ‖ϕ−ϕK‖Lp′ (K) ≤ C14hK ‖ |∇ϕ| ‖Lp′ (K). Hence, by

the Hölder inequalities (D.5) (in each cell) and (D.1) (for the sum over the
cells),∣∣∣∣∣
∫
Ω

[∇Tw(x)−∇TΨ(w)(x)] ·ϕ(x)dx

∣∣∣∣∣ ≤ C14hM ‖w‖W 1,p
T,0
‖ |∇ϕ| ‖Lp′ (Ω) .

Plugged into (9.12), this gives (9.5).

It remains to prove the compact embedding. If wm ∈ W 1,p
Tm,0

is such that
(‖wm‖W 1,p

Tm,0
)m∈N is bounded, then (9.7) ensures that (|Ψm(wm)|Tm,p)m∈N is

bounded. By Lemma B.19, (ΠTmΨm(wm))m∈N converges up to a subsequence
as m→∞ to some w in Lp(Ω). Estimate (9.8) shows that

‖wm −ΠTmΨm(wm)‖Lp(Ω) ≤ C13hMm
‖wm‖W 1,p

Tm,0
→ 0 as m→∞.

Hence, wm → w in Lp(Ω) and the proof is complete.

Let us describe, in the case p = 2, the approximation by a generic non-
conforming method of the linear elliptic problem (2.22) under Hypotheses
(2.21). To this purpose, a bilinear form aT and a linear form bT are defined
by

∀w, w̃ ∈W 1,p
T,0 , aT(w, w̃) =

∫
Ω

Λ(x)∇Tw(x) · ∇Tw̃(x)dx

and bT(w̃) =

∫
Ω

(f(x)w̃(x)− F (x) · ∇Tw̃(x))dx.

(9.13)

Let V ⊂ W 1,p
T,0 be a finite dimensional space. The non-conforming finite ele-

ment scheme based on V , for the approximation of (2.22), reads

find u ∈ V such that, for all w ∈ V , aT(u,w) = bT(w). (9.14)

Owing to (9.4), aT(·, ·) is an inner product in V . The Riesz representation
theorem thus shows that Problem (9.14) has a unique solution. It can be
proved, see for example [48, Theorem 4.2.2], that the following error estimate is
satisfied: u ∈ H1

0 (Ω) being the solution to (2.22), there exists C > 0 depending
on the regularity of M (factor θT + ηT as defined by (7.8)–(7.9)) but not on
hM, such that

‖u− u‖W 1,p
T,0
≤ C

(
inf
v∈V
‖u− v‖W 1,p

T,0
+ sup
w∈V \{0}

|aT(u,w)− bT(w)|
‖w‖W 1,p

T,0

)
. (9.15)
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This estimate is based on the second Strang Lemma [131]. As shown below,
it can also be recovered from the generic results obtained in the framework of
the gradient discretisation method, once we prove that non-conforming finite
element methods are GDMs.

9.1.2 GDM formulation of abstract non-conforming finite element
methods

Definition 9.4 (Non-conforming finite element gradient discretisa-
tion). Let T = (M,F ,P,V) be a polytopal mesh of Ω in the sense of Defi-
nition 7.2. A non-conforming finite element gradient discretisation (NCFE
GD, for short) on T is D = (XD,0, ΠD,∇D) defined the following way.

1. Let V be a finite dimensional subspace of W 1,p
T,0 (see Definition 9.1). Fixing

(χi)i∈I a basis of V , we set

XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ I}. (9.16)

2. The operator ΠD is the reconstruction in W 1,p
T,0 from the coordinates de-

scribed by elements of XD,0:

∀v ∈ XD,0 , ΠDv =
∑
i∈I

viχi. (9.17)

For all K ∈M and v ∈ XD,0, we set ΠKv = (ΠDv)|K ∈W 1,p(K).
3. The gradient reconstruction ∇D is defined from the broken gradient ∇T

by setting, for v ∈ XD,0, ∇Dv := ∇T(ΠDv). In other words,

∀K ∈M , for a.e. x ∈ K , ∇Dv(x) = ∇(ΠKv)(x). (9.18)

Observe that ΠD : XD,0 → V is an isomorphism and that, by (9.3),

‖∇D·‖Lp(Ω)d = ‖ΠD·‖W 1,p
T,0

. (9.19)

Hence, ‖∇D·‖Lp(Ω)d is a norm on XD,0.

Proposition 9.5 (Estimates on CD, SD and WD for NCFE GDs). Let
D be a NCFE GD in the sense of Definition 9.4, based on an underlying
polytopal mesh T and a finite dimensional space V ⊂ W 1,p

T,0. Let % ≥ θT + ηT
(see (7.8)–(7.9)). Then, with C12 defined in Lemma 9.3 (and depending only
on Ω, %, d and p),

CD ≤ C12, (9.20)

∀ϕ ∈W 1,p
0 (Ω) ,

inf
w∈V
‖ϕ− w‖W 1,p

T,0
≤ SD(ϕ) ≤ (1 + C12) inf

w∈V
‖ϕ− w‖W 1,p

T,0
,

(9.21)

and
∀ϕ ∈W 1,p′(Ω)d, WD(ϕ) ≤ C12hM ‖ϕ‖W 1,p′ (Ω)d . (9.22)

Here, CD is defined by (2.1), SD is defined by (2.2) and WD is defined by
(2.6).
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Proof. Inequality (9.20) is a consequence of (9.19) and of the Poincaré
inequality (9.4) applied to w = ΠDv for a generic v ∈ XD,0.
Since ΠD : XD,0 → V is onto, the second inequality in (9.21) follows from the

same Poincaré inequality (9.4) applied to w = ΠDv−ϕ, for ϕ ∈W 1,p
0 (Ω) and

a generic v ∈ XD,0. The first inequality in (9.21) comes from the definition of
SD.
Estimate (9.22) is established by applying (9.5) to w = ΠDv for a generic
v ∈ XD,0, and by using (9.19).

In the case p = 2, using an NCFE GD D = (XD,0, ΠD,∇D) as above, the
gradient scheme (2.23) for the discretisation of (2.22) is identical to the non-
conforming finite element scheme (9.14). Moreover, since ΠD is an isomor-
phism, (9.19) yields

WD(Λ∇u+ F ) = sup
w∈V \{0}

|aT(u,w)− bT(w)|
‖w‖W 1,p

T,0

.

Alongside (9.21), this proves that the error estimate (9.15) is a consequence
of (2.25) in Theorem 2.29.

The properties of NCFE GDs are straightforward consequences of the previous
results.

Theorem 9.6 (Properties of NCFE GDs for homogeneous Dirichlet
BCs). Let (Dm)m∈N be a sequence of NCFE GDs in the sense of Definition
9.4, based on underlying polytopal meshes (Tm)m∈N and finite dimensional
spaces (Vm)m∈N. Assume that the sequence (θTm + ηTm)m∈N is bounded (see
(7.8)–(7.9)), that hMm

→ 0 as m→∞, and that

∀ϕ ∈W 1,p
0 (Ω) , lim

m→∞
inf
w∈Vm

‖ϕ− w‖W 1,p
Tm,0

= 0. (9.23)

Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2.

Proof. Proposition 9.5 yields the coercivity, limit-conformity, and GD-
consistency owing to Hypothesis (9.23). The compactness of (Dm)m∈N is a
immediate consequence of compact embedding of (W 1,p

Tm,0
)m∈N in Lp(Ω) (see

Lemma 9.3) and of (9.19).

9.2 Pk NCFE GDs for homogeneous Dirichlet BCs

We now turn to a specific example of NCFE GD, corresponding to a simplicial
mesh and functions in V that are polynomial of degree k or less on each
simplex. This describes the non-conforming Pk finite element method.



288 9 Non-conforming finite element methods

Definition 9.7 (Pk NCFE gradient discretisation). Let T = (M,F ,P,V)
be a conforming simplicial mesh of Ω in the sense of Definition 7.4, and let
k ∈ N \ {0}. A Pk NCFE gradient discretisation on T is given by Definition
9.4 with the finite dimensional space V = V (k) defined as the set functions
w ∈ Lp(Ω) such that:

1. for all K ∈M, the restriction w|K of w to K belongs to Pk(K),
2. for all σ ∈ F , there exists a polynomial Rσw ∈ Pk−1(σ) such that

∀K ∈Mσ , ∀ϕ ∈ Pk−1(σ),∫
σ

ϕ(y)(w|K(y)−Rσw(y))dγ(y) = 0,
(9.24)

3. for all σ ∈ Fext, Rσw = 0.

For any σ ∈ F , the constant function ϕ = 1 on σ is an element of Pk−1(σ).
Hence, if w ∈ V and σ ∈ Fint with Mσ = {K,L},∫

σ

w|K(y)dγ(y) =

∫
σ

Rσw(y)dγ(y) =

∫
σ

w|L(y)dγ(y).

In other words, (9.1) is satisfied. Similarly, if σ ∈ Fext and Mσ = {K}, (9.2)
follows by writing ∫

σ

w|K(y)dγ(y) =

∫
σ

Rσw(y)dγ(y) = 0.

Remark 9.8. Relation (9.24) is equivalent to saying that the L2(σ)-orthogonal
projections on Pk−1(σ) of (the restrictions to σ of) w|K and w|L are identical.

Theorem 9.6 applies to Pk NCFE GDs if we can establish (9.23). Actually, as
expected for a method based on local polynomials of arbitrary degree, specific
estimates can be established for both SD and WD. Using these estimates,
Theorem 2.29 gives optimal orders of convergence for non-conforming Pk finite
elements when applied to linear elliptic problems.

Lemma 9.9 (Estimate on SD and WD for Pk NCFE GDs). Let D be a
Pk NCFE GD in the sense of Definition 9.7. Take % ≥ κT (see (7.10)). Then
there exists C15, depending only on Ω, p, k, % and d, such that

∀ϕ ∈W k+1,∞(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C15h

k
M ‖ϕ‖Wk+1,∞(Ω) (9.25)

and
∀ϕ ∈W k,∞(Ω)d , WD(ϕ) ≤ C15h

k
M ‖ϕ‖Wk,∞(Ω)d , (9.26)

where SD and WD are defined by (2.2) and (2.6), respectively. This means
that the space size (see Definition 2.23) of the GD is such that

hD(W k+1,∞(Ω) ∩W 1,p
0 (Ω);W k,∞(Ω)d) ≤ C15h

k
M.
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Proof. Let ϕ ∈W k+1,∞(Ω)∩W 1,p
0 (Ω). By (8.15) in Proposition 8.11, there

is a function w (equal to some ΠDcvc, where Dc is the conforming Pk GD on
T and vc ∈ XDc,0) such that w ∈W 1,p

0 (Ω), w|K ∈ Pk(K) for all K ∈M, w is

continuous on Ω, and

‖w − ϕ‖Lp(Ω) + ‖∇w −∇ϕ‖Lp(Ω)d ≤ C5h
k
M ‖ϕ‖Wk+1,∞(Ω) , (9.27)

where C5 is given by Proposition 8.11 and depends only on Ω, k and %. The
continuity of w ensures that it belongs to the space V (k) given in Definition 9.7
(since w|K = w|L on σ wheneverK,L ∈Mσ), and (9.25) is then a consequence
of (9.27) and (9.21).

We now turn to the proof of (9.26), starting with the case ϕ ∈ Ck(Ω)d. Let
u ∈ XD,0. Since ΠDu ∈ V (k), the definition (9.18) of ∇Du and an integration-
by-parts in each cell yields∫

Ω

(∇Du(x) ·ϕ(x) +ΠDu(x)divϕ(x)) dx

=
∑
K∈M

∫
K

(∇(ΠKu)(x) ·ϕ(x) +ΠKu(x)divϕ(x)) dx

=
∑
K∈M

∑
σ∈FK

∫
σ

ΠKu(y)ϕ(y) · nK,σdγ(y). (9.28)

Set Πσu = Rσ(ΠDu) and, gathering the sums by faces, notice that∑
K∈M

∑
σ∈FK

∫
σ

Πσu(y)ϕ(y) · nK,σdγ(y)

=
∑

σ∈Fint,Mσ={K,L}

∫
σ

Πσu(y)ϕ(y) · (nK,σ + nL,σ)dγ(y)

+
∑

σ∈Fext,Mσ={K}

∫
σ

Πσu(y)ϕ(y) · nK,σdγ(y) = 0,

since nK,σ +nL,σ = 0 if Mσ = {K,L} and Πσu = 0 if σ ∈ Fext. Subtracting
this quantity from (9.28) yields∫

Ω

(∇Du(x) ·ϕ(x) +ΠDu(x)divϕ(x)) dx

=
∑
K∈M

∑
σ∈FK

∫
σ

(ΠKu(y)−Πσu(y))ϕ(y) · nK,σdγ(y).

Let ϕσ,k−1 be the Taylor expansion of degree k − 1 of ϕ · nK,σ around the
point xσ. Relation (9.24) shows that
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Ω

(∇Du(x) ·ϕ(x) +ΠDu(x)divϕ(x)) dx

=
∑
K∈M

∑
σ∈FK

∫
σ

(ΠKu(y)−Πσu(y))(ϕ(y) · nK,σ − ϕσ,k−1(y))dγ(y).

(9.29)

Let σ ∈ FK . Since Πσu is the L2(σ)-projection of ΠKu on Pk−1(σ), the
projection estimate in [57, Lemma 3.4] applied to U = σ gives C16 depending
only on %, p, k and d such that

‖ΠKu−Πσu‖Lp(σ) ≤ C16diam(σ) ‖∇(ΠKu)‖Lp(σ)d

≤ C16hK ‖∇(ΠKu)‖Lp(σ)d .

The function ∇(ΠKu) belongs to Pk−1(K)d. Hence, by the discrete trace

inequality [61, Lemma 1.52], ‖∇(ΠKu)‖Lp(σ) ≤ C17h
−1/p
K ‖∇(ΠKu)‖Lp(K)d

for some C17 depending only on %, p, k and d. We infer that

‖ΠKu−Πσu‖Lp(σ) ≤ C16C17h
1− 1

p

K ‖∇(ΠKu)‖Lp(K)d . (9.30)

Moreover, the smoothness of ϕ provides C18 depending only on k and d such
that

‖ϕ · nK,σ − ϕσ,k−1‖Lp′ (σ) ≤ C18|σ|
1
p′ hkM ‖ϕ‖Wk,∞(Ω)d .

Combined with (9.30) and a Hölder inequality (D.5) on the right-hand side
of (9.29), this shows that∣∣∣∣∫

Ω

(∇Du(x) ·ϕ(x) +ΠDu(x)divϕ(x)) dx

∣∣∣∣
≤ C19 ‖ϕ‖Wk,∞(Ω)d h

k
M

∑
K∈M

∑
σ∈FK

|σ|
1
p′ h

1
p′

K ‖∇(ΠKu)‖Lp(K)d (9.31)

for some C19 depending only on %, p, k and d. Using %+d+1 ≥ κT+d+1 ≥ θT
(see Lemma B.4) and the second relation in (B.1), we have∑

σ∈FK

|σ|hK ≤ (%+ d+ 1)
∑
σ∈FK

|σ|dK,σ = (%+ d+ 1)d|K|.

A discrete Hölder inequality (D.1) in (9.31) therefore provides, since Card(FK) ≤
θT ≤ %,∣∣∣∣∫

Ω

(∇Du(x) ·ϕ(x) +ΠDu(x)divϕ(x)) dx

∣∣∣∣
≤ C19 ‖ϕ‖Wk,∞(Ω)d h

k
M((%+ d+ 1)d|Ω|)

1
p′ %

1
p ‖∇Du‖Lp(Ω)d .
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This concludes the proof of (9.26) if ϕ ∈ Ck(Ω)d. The general case ϕ ∈
W k,∞(Ω)d is obtained by an extension and regularisation argument, as in the
beginning of the proof of Proposition 7.38.

The properties of Pk NCFE gradient discretisations follow immediately from
Lemma 9.9 and Theorem 9.6.

Theorem 9.10 (Properties of Pk NCFE GDs for homogeneous Dirich-
let BCs). Let (Dm)m∈N be a sequence of Pk NCFE GDs in the sense of Defini-
tion 9.7, defined from underlying conforming simplicial meshes (Tm)m∈N. As-
sume that (κTm)m∈N is bounded (see (7.10)), and that hMm

→ 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2.

9.3 Non-conforming P1 finite element method for
homogeneous Dirichlet boundary conditions

Among the non-conforming finite element methods, the P1 non-conforming
finite element method has a particular importance. This scheme is often called
the Crouzeix–Raviart scheme, although this name historically pertains to the
usage of the method for the Stokes problem (see [55] for the seminal paper
and, for instance, [84, pp.25–26 and 199–201] for a synthetic presentation).
This finite element method approximates solutions to PDEs with functions
that are piecewise linear on a conforming simplicial mesh of Ω, and continuous
at the centres of mass of the faces.
The P1 NCFE method is nothing but a special case of the Pk NCFE method
and, as such, its inclusion in the GDM and the properties of the corresponding
GDs follow from the analysis done in the previous sections. However, it is
possible to present the P1 NCFE GD as an LLE GD, which makes it amenable
to the techniques developed for such GDs – in particular, the mass-lumping
process. Here, we give this LLE GD presentation of the P1 NCFE method,
and we discuss some consequences.

9.3.1 Definition of the non-conforming P1 gradient discretisation

Let T = (M,F ,P,V) be a conforming simplicial mesh of Ω in the sense of
Definition 7.4. The non-conforming P1 gradient discretisation is constructed
as an LLE GD, by specifying the objects introduced in Definition 7.33.

1. The set of geometrical entities attached to the discrete unknowns is I = F
and the approximation points are S = (xσ)σ∈F . Then IΩ = Fint, I∂ =
Fext, and

XD,0 = {v = (vσ)σ∈F : vσ ∈ R for all σ ∈ Fint ,

vσ = 0 for all σ ∈ Fext}.
(9.32)

For all K ∈M, we let IK = FK .
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2. The reconstruction ΠD in (7.32) is built from the affine non-conforming
finite element basis functions (πσK)σ∈FK defined, for each K ∈M, by

∀σ ∈ FK , πσK is affine on K, πσK(xσ) = 1,

and πσK(xσ′) = 0 for all σ′ ∈ FK\{σ}.
(9.33)

This leads to

∀v ∈ XD,0 , ∀K ∈M , for a.e. x ∈ K ,

ΠDv(x) =
∑
σ∈FK

vσπ
σ
K(x). (9.34)

3. The functions (GσK)K∈M , σ∈FK that define the gradient reconstruction
∇D through (7.33) are the constant functions on the cells given by

GσK = ∇πσK . (9.35)

Hence, the reconstructed gradients are piecewise constant on the cells:

∀v ∈ XD,0 , ∀K ∈M ,

(∇Dv)|K =
∑
σ∈FK

vσ∇πσK = ∇
[
(ΠDv)|K

]
. (9.36)

The properties of (πσK)σ∈FK and (GσK)σ∈FK , ensuring that the relations above
indeed define an LLE GD, are given by Lemma 9.12 below.
The link between this non-conforming P1 LLE GD and the notions in Section
9.2 is described by the following lemma, which also shows that ‖∇D · ‖Lp(Ω)d

is a norm on XD,0.

Lemma 9.11 (The non-conforming P1 LLE GD is the P1 NCFE GD).
Let T be a conforming simplicial mesh and D be the non-conforming P1 LLE
GD defined above. Then D is the P1 NCFE GD given by Definition 9.7 with
k = 1.

Proof. Let V (1) be the space given in Definition 9.7 for k = 1. For all
w ∈ V (1) and K ∈M, since w|K is affine on any σ ∈ FK we have∫

σ

w|K(y)dγ(y) = |σ|w|K(xσ).

Comparing with (9.24), this shows that Rσw is the constant polynomial
w|K(xσ). Since this polynomial does not depend on K ∈Mσ, we infer that w
is continuous at xσ (its value at this point does not depend on the considered
cell on either side of σ).
This allows us to define vσ = w(xσ). If σ ∈ Fext, vσ = w(xσ) = Rσw = 0
by Definition of V (1). Hence, v ∈ XD,0 defined by (9.32). Since both w|K and
(ΠDv)|K are affine and take value vσ = w(xσ) at any σ ∈ FK (see (9.34)),
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we have w|K = (ΠDv)|K (see, e.g., the start of the proof of Lemma 9.12). In

other words, w = ΠDv and V (1) = ΠD(XD,0). Moreover, ΠD : XD,0 → V (1)

is clearly an isomorphism.
For σ ∈ Fint, define 1σ ∈ XD,0 by (1σ)σ = 1 and (1σ)σ′ = 0 if σ′ 6= σ.
Then (χσ)σ∈Fint = (ΠD1σ)σ∈Fint forms a basis of V (1) and, using this basis
in Definition 9.4, we see that the P1 NCFE GD given by Definitions 9.7 and
9.4 is the non-conforming P1 LLE GD.

9.3.2 Estimate on SD for the non-conforming P1 LLE gradient
discretisation

As mentioned above, the properties of sequences of non-conforming P1 LLE
GDs follow from Theorem 9.10 (and Lemma 9.11). Proposition 9.5 gives a
bound on CD, and optimal estimates on WD (since the P1 NCFE is a non-
conforming order 1 method, O(hM) estimates on WD are expected to be
optimal). Lemma 9.9 provides an estimate on SD(ϕ), but it is sub-optimal in
the sense that it requires a strong regularity on ϕ. Using the results of Section
7.4, a better estimate on SD can be obtained.
We first need to formally establish that the non-conforming P1 GD defined
above is indeed an LLE GD, and to estimate its regularity.

Lemma 9.12. Let T = (M,F ,P,V) be a conforming simplicial mesh in the
sense of Definition 7.4. Let K ∈ M, πK = (πσK)σ∈FK be given by (9.33),
and GK = (GσK)σ∈FK be given by (9.35). Then πK is a P0-exact function
reconstruction on K, and GK is a P1-exact gradient reconstruction on K upon
(xσ)σ∈FK . Hence, D defined in Section 9.3.1 is an LLE GD.
Moreover, there exists C20, depending only on d and % ≥ κT (see (7.10)), such
that

regLLE(D) ≤ C20. (9.37)

Proof. Let K ∈ M. The convex hull K̃ of the centres of mass (xσ)σ∈FK
of the faces of K is a d-simplex (see Figure 9.1). Applying Lemma 8.6 to K̃
instead of K and with k = 1 shows that, for any given real numbers (aσ)σ∈FK ,
there exists a unique affine map that takes these values at the face centres
(xσ)σ∈FK . This proves in particular that (9.33) properly defines the basis
functions (πσK)σ∈FK .
The map

∑
σ∈FK π

σ
K is affine and takes the value 1 at each of the face centres of

K, exactly as the constant function equal to 1. These two affine functions must
therefore coincide, which shows that πK is a P0-exact function reconstruction
on K.
Let A be an affine map. The affine function

∑
σ∈FK A(xσ)πσK has the same

values as A at (xσ)σ∈FK , and is therefore equal to A. As a consequence, on
K, ∑

σ∈FK

A(xσ)GσK =
∑
σ∈FK

A(xσ)∇πσK = ∇
∑
σ∈FK

A(xσ)πσK = ∇A.
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Fig. 9.1. A simplex K and the convex hull K̃ of its face centres

Hence, GK is a P1-exact gradient reconstruction on K upon (xσ)σ∈FK .

We now establish the upper bound on regLLE(D). If K ∈ M, the simplex

K̃ ⊂ K created by (xσ)σ∈FK is a symmetry and dilatation by a factor 1/d of

K. Hence, its regularity factor “diameter of K̃ over the radius of the largest
ball inscribed in K̃” is identical to that of K, which is bounded by κT. Over
K̃ the functions πσK are defined as affine functions with values 0 or 1 at the

vertices of K̃. Hence, as in the proof of Lemma 8.9 we can use Lemma 8.8
with the vertices of K̃ as points xi to see that

‖πσK‖L∞(K̃) ≤ C21 and ‖∇πσK‖L∞(K̃) ≤ C21h
−1

K̃
, (9.38)

where C21 depends only on d and % ≥ κT. Since ∇πσK is constant in K and
hK̃ = hK/d, we deduce that

‖∇πσK‖L∞(K) ≤ C21dh
−1
K . (9.39)

We then write πσK(x) = πσK(y) + (x − y) · ∇πσK for any x ∈ K and y ∈ K̃,
and use |x− y| ≤ hK to infer from (9.38) and (9.39) that

‖πσK‖L∞(K) ≤ C21 + C21d. (9.40)

Remark 7.32 and Estimates (9.39) and (9.40) give an upper bound on the first
two terms in the definition (7.34) of regLLE(D). This upper bound depends only
on d and %. The proof is complete by noticing all points (xi)i∈IK = (xσ)σ∈FK
involved in the third term of regLLE(D) belong to K, which shows that this
third term vanishes.

Proposition 9.13 (Estimate on SD for non-conforming P1 GD). Let
T be a conforming simplicial mesh of Ω in the sense of Definition 7.4, and
D be the non-conforming P1 LLE GD on T as in Section 9.3.1. Assume that
p > d/2 and take % ≥ κT (see (7.10)). Then there exists C22 > 0, depending
only on p, d, Ω and %, such that
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∀ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C22hM ‖ϕ‖W 2,p(Ω) . (9.41)

Here, SD is the measure of GD-consistency defined by (2.2). This means that
the space size (see Definition 2.23) of the GD is such that

hD(W 2,p(Ω) ∩W 1,p
0 (Ω);W 1,p′(Ω)d) ≤ max(C22, C12)hM,

where C12 is defined in Proposition 9.5 (owing to Lemma B.4 page 409, C12

has the same dependencies as C22).

Proof. For any K ∈ M, the approximation points (xi)i∈IK = (xσ)σ∈FK all
belong to K. Using Lemma 9.12, Lemma B.1 and Lemma B.4, we can invoke
Proposition 7.64 and the conclusion follows.

9.4 Non-conforming P1 methods for Neumann and
Fourier BCs

9.4.1 Neumann boundary conditions

Definition 7.54 of LLE GDs for Neumann boundary conditions provides a
straightforward definition of non-conforming P1 GDs for these conditions, by
simply using the same IΩ , I∂ , ΠD, ∇D as in Section 9.3.1.
The proof of Proposition 9.3 shows that Inequality (9.7) is valid even if w does
not satisfy (9.2) for boundary edges. Apply this inequality to w = ΠDv, for
v ∈ XD such that ‖∇Dv‖Lp(Ω)d = 0. Then the right-hand side vanishes and

the definition (7.7f) of |·|T,p show that all (vσ)σ∈F are identical, equal to some

c ∈ R. As a consequence, ΠDv = c over Ω and thus, if
∫
Ω
ΠDv(x)dx = 0, c

must be equal to 0. This shows that the the quantity (3.1) is indeed a norm
on XD.

For non-homogeneous Neumann boundary conditions, the trace reconstruc-
tion TD : XD → Lp(∂Ω) can be naturally defined in a similar way as TT in
(7.7d), that is,

∀v ∈ XD , ∀σ ∈ Fext : TDv = vσ on σ. (9.42)

Since the regularity factor regLLE(D) for Neumann BCs is defined as for Dirich-
let BCs, Lemma 9.12 still applies and shows that this factor remains bounded
if κT is bounded. Define then the control Φ : XD → XT by Φ = Ψ ◦ ΠD
with Ψ given by (9.6). Since (9.7)–(9.9) are also valid for non-zero bounda-
ry conditions, we have ‖Φ‖D,T ≤ (Cp13 + 1)1/p, ωΠ(D,T,Φ) ≤ C13hM and

ω∇(D,T,Φ) = 0. We also obviously have ωT(D,T,Φ) = 0. Hence, Corollary
7.18 and Proposition 7.55 give the following theorem.
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Theorem 9.14 (Properties of non-conforming P1 GDs for Neumann
BCs). Let (Dm)m∈N be a sequence of non-conforming P1 GDs for Neumann
boundary conditions as above, defined from underlying conforming simplicial
meshes (Tm)m∈N. Assume that (κTm)m∈N is bounded (see (7.10)), and that
hMm → 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.16.

Proposition 7.70 and Theorem 7.17 also give estimates on CD, WD and SD
that are similar to (9.20), (9.22) and (9.41). The constants depend only on Ω,
p and an upper bound of κT.

Remark 9.15 (Other choice for the trace reconstruction)
Recalling the definition of the global basis functions πσ, see Section 7.3.3, it is also
possible to replace (9.42) by

T∗Dv =
∑

σ∈Fext

vσ(πσ)|∂Ω = (ΠDv)|∂Ω .

Then, for any K ∈M, any σ ∈ FK ∩Fext and any x ∈ σ, since ∇Dv = ∇((ΠDv)|K)
is constant in K,

|T∗Dv(x)− TDv(x)| = |ΠDv(x)−ΠDv(xσ)| ≤ hK |(∇Dv)|K |.

Taking the power p of this estimate and integrating over σ gives∫
σ

|T∗Dv(x)− TDv(x)|pdx ≤ hpK |σ| |(∇Dv)|K |p.

Since hK |σ| ≤ C23|K|, where C23 depends only on an upper bound on θT ≤ κT+d+1,∫
σ

|T∗Dv(x)− TDv(x)|pdx ≤ C23h
p−1
M |K| |(∇Dv)|K |p.

Sum this estimate over σ ∈ Fext. A given cell K can have at most d + 1 boundary
faces (and only in the trivial case where Ω = K, otherwise Card(FK ∩ Fext) ≤ d),
and thus

‖T∗Dv − TD‖pLp(∂Ω) ≤ (d+ 1)C23h
p−1
M

∑
K∈M , ∂K∩∂Ω 6=∅

|K| |(∇Dv)|K |p

≤ (d+ 1)C23h
p−1
M

∑
K∈M

|K| |(∇Dv)|K |p

= (d+ 1)C23h
p−1
M ‖∇Dv‖pLp(Ω)d

.

This estimate enables us to transport the analysis made with TD to the GD based
on the trace reconstruction T∗D instead.
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9.4.2 Fourier boundary conditions

Starting from the non-conforming P1 GD for Dirichlet boundary conditions,
we follow Definition 7.57 in Section 7.3.6 to define a non-conforming P1 GD
for Fourier boundary conditions.
The boundary mesh M∂ is simply Fext, and the trace reconstruction (9.42)
corresponds, for K∂ = σ ∈ Fext, to Iσ = {σ} and πσσ = 1 on σ, πσσ = 0 outside
σ. The bound on regLLE(D) for Fourier boundary conditions therefore easily
follows from the bound on this quantity for Dirichlet boundary conditions, and
the GD-consistency (under boundedness of κTm) is therefore a consequence
of Proposition 7.58.
As noticed in Remark 7.20, the work done for Neumann boundary conditions
then immediately show that Theorem 9.14 also applies for Fourier boundary
conditions. Similarly, we could obtain estimates on SD, CD and WD as in
Propositions 9.13 and 9.5.
We finally remark that, instead of TD defined by (9.42), we can also use T∗D
defined in Remark 9.15

9.5 Non-conforming P1 finite elements for
non-homogeneous Dirichlet boundary conditions

For non-homogeneous Dirichlet conditions, the interpolation operator ID,∂ is
defined by

∀g ∈W 1− 1
p ,p(∂Ω) , ∀σ ∈ Fext : (ID,∂g)σ =

1

|σ|

∫
σ

g(x)dγ(x). (9.43)

This interpolant clearly satisfies (7.65) since, for any i = σ ∈ I∂ = Fext,
xi = xσ is the centre of mass of σ and therefore, if ϕ ∈ C∞(Ω), ϕ(xi) =
1
|σ|
∫
σ
ϕ(x)dγ(x) +O(diam(σ)2).

We now check that (2.96) holds with C12 depending only on Ω, p and an upper
bound of κT. To this end, take ϕ ∈ W 1,p(Ω) and let u = ITϕ ∈ XT, where
IT is the interpolant defined by (B.10). Let v ∈ XD be such that vσ = uσ for
all σ ∈ F . Since v − ID,∂γϕ ∈ XD,0, (2.96) is proved if we can establish that

‖ΠDv‖Lp(Ω) + ‖∇Dv‖Lp(Ω)d ≤ C12 ‖ϕ‖W 1,p(Ω) . (9.44)

Let K ∈ M. We have (∇Dv)|K = ∇(ΠDv)|K and (ΠDv)|K is the affine map

on K such that, for all σ ∈ FK , (ΠDv)(xσ) = uσ. Since ∇K is a P1-exact
gradient reconstruction on K upon (xσ)σ∈FK (see Lemma B.10), we infer

(∇Dv)|K = ∇(ΠDv)|K = ∇Ku.

Hence, ∇Dv = ∇Tu. Using (B.29) and Proposition B.7 thus shows that
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‖∇Dv‖Lp(Ω)d =
∥∥∇Tu

∥∥
Lp(Ω)d

≤ d
p−1
p |u|T,p ≤ C24 ‖∇ϕ‖Lp(Ω)d (9.45)

where C24 depends only on Ω, p and an upper bound on κT (use Lemma B.4
to get, from the upper bound on κT, an upper bound on θT and thus enable
the usage of Proposition B.7).
We now turn to the estimate on ΠDv. Since this function is affine in each cell
K, with gradient (∇Dv)|K and value uσ at xσ, for all x ∈ K and any σ ∈ FK
we have

|ΠDv(x)− uσ| ≤ hK |(∇Dv)|K |.

Recalling that uσ = 1
|σ|
∫
σ
ϕ(y)dγ(y) and using Estimate (B.11), we infer∣∣∣∣ΠDv(x)− 1

|K|

∫
K

ϕ(y)dy

∣∣∣∣p ≤ C25h
p
K |(∇Dv)|K |p + C25

hpK
|K|

∫
K

|∇ϕ(y)|pdy

with C25 depending only onΩ, p and an upper bound on κT. As a consequence,
the power-of-sums estimate (D.12) with α = p and Jensen’s inequality yield

|ΠDv(x)|p ≤ C26

|K|

∫
K

|ϕ(y)|pdy + C26h
p
K |(∇Dv)|K |p

+ C26
hpK
|K|

∫
K

|∇ϕ(y)|pdy

with C26 depending only on Ω, p and an upper bound on κT. Integrate this
over x ∈ K and sum over K ∈M to get

‖ΠDv‖pLp(Ω) ≤ C26 ‖ϕ‖pLp(Ω) + C26diam(Ω)p ‖∇Dv‖pLp(Ω)d

+ C26diam(Ω)p ‖∇ϕ‖pLp(Ω)d .

Estimate (9.44) follows from this inequality and (9.45).

Since (7.65) and (2.96) hold, Proposition 7.53 can then be invoked (using
Lemma 9.12 to bound regLLE(D)) and shows that sequences of non-conforming
P1 GDs for non-homogeneous Dirichlet BCs are GD-consistent, provided that
the regularity factors (κTm)m∈N remain bounded and that hMm → 0.

The coercivity, limit-conformity and compactness of GDs for non-homogeneous
Dirichlet conditions are identical to the same properties for homogeneous
Dirichlet conditions, which follow from Theorem 9.10.

9.6 Mass-lumped non-conforming P1 gradient
discretisation

In the case d = 2, if σ 6= σ′ are two different faces of the mesh,∫
Ω

πσ(x)πσ
′
(x)dx = 0.
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This property ensures that the non-conforming P1 method has a diagonal mass
matrix. Nevertheless, the properties in Remark 2.14 are not satisfied, which
might prevent the usage of the non-conforming P1 scheme for some non-linear
problems. To recover a piecewise constant reconstruction, we apply to the
non-conforming P1 GD the mass lumping process as in Definition 7.45.

Definition 9.16 (Mass-lumped non-conforming P1 GD). Take a con-
forming simplicial mesh T = (M,F ,P,V) of Ω in the sense of Definition
7.4, and let D = (XD,0, ΠD,∇D) be the non-conforming P1 LLE GD built on
T as in Section 9.3.1.
For σ ∈ F , let Ωσ = Dσ be the diamond around σ if σ ∈ Fint, and Ωσ = DK,σ

be the half-diamond around σ if σ ∈ Fext with Mσ = {K} (see Definition 7.2
for the definitions of these diamond and half-diamond, and Figure 9.2 for an
illustration).
A mass-lumped non-conforming P1 GD is defined by DML = (XD,0, Π

ML

D ,∇D),
where ΠML

D is the piecewise constant reconstruction built from (Ωσ)σ∈F , that
is

∀v ∈ XD,0 , ∀σ ∈ F , ΠML

D v = vσ on Ωσ.

Ωσ
σ

σ′

∂Ω

Ωσ′

Fig. 9.2. Partition for the mass-lumping of the non-conforming P1 gradient dis-
cretisation.

As for the mass-lumped P1 GD, the properties of this mass-lumped non-
conforming P1 GD follow directly from Theorem 7.49.

Theorem 9.17 (Properties of mass-lumped non-conforming P1 GDs).
Let (Tm)m∈N be a sequence of conforming simplicial meshes of Ω in the sense
of Definition 7.4, and let (DML

m )m∈N be the corresponding mass-lumped non-
conforming P1 GDs given by Definition 9.16. Assume that supm∈N κTm < +∞
(see (7.10)), and that hMm

→ 0 as m→∞.
Then (DML

m )m∈N is coercive, GD-consistent, limit-conforming, compact, and
has a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4,
2.6, 2.9 and 2.13.
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Proof. In each DK,σ, ΠDmv is affine and ΠML

Dmv = ΠDmv(xσ). Hence, for
x ∈ DK,σ,

|ΠDmv(x)−ΠML

Dmv(x)| = |ΠDmv(x)−ΠDmv(xσ)|
≤ hMm

|(∇Dv)|DK,σ | = hMm
|∇Dv(x)|.

Raising to the power p, integrating over DK,σ, and summing over σ ∈ FK
and K ∈M we obtain∥∥ΠDmv −ΠML

Dmv
∥∥
Lp(Ω)

≤ hMm ‖∇Dmv‖Lp(Ω)d . (9.46)

The conclusion then follows from the properties of sequences of non-conforming
P1 GDs (Theorem 9.10) and from Theorem 7.49.

Remark 9.18. As in Remark 8.18, Propositions 9.13 and 9.5, Estimate (9.46)
and Remark 7.51 show that, for p > d/2,

SDML
m

(ϕ) ≤ ChMm
‖ϕ‖W 2,p(Ω)

and
WDML

m
(ϕ) ≤ ChMm

‖ϕ‖W 1,p′ (Ω)d ,

with C not depending on m, ϕ or ϕ. Mass-lumped non-conforming P1 GSs
are thus order 1 schemes: if the exact solution of the linear elliptic problem
(2.20) belongs to H2 and d = 1, 2, 3, then the estimates (2.25) and (2.26) are
O(hM) when the mass-lumped non-conforming P1 GD is used in the gradient
scheme (2.23).
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Hdiv conforming GDs from mixed finite
element methods

In this chapter, the mixed finite element (MFE) schemes for an isotropic linear
elliptic problem is shown to be a GDM for p = 2 and homogeneous Dirichlet
boundary conditions; the reconstructed gradient, which belongs to Hdiv(Ω) is
obtain by solving the non-local subsystem of the MFE scheme corresponding
to the first equation of the mixed form ((10.4b) below).
We prove that, under the so-called “inf-sup” or “LBB” condition, the gradient
discretisation thus obtained is coercive, GD-consistent and limit-conforming.
As a consequence, even though it has been designed only by considering the
Laplace problem, this GD can then be used on any of the models presented
in Parts I and II, provided that the corresponding convergence analysis only
relies on the coercivity, GD-consistency and limit-conformity properties (with
p = 2).
After considering general MFE schemes, the special case of the popular RTk
mixed finite elements is considered. For this method, the corresponding GDs
are additionally shown to be compact. Turning then to the hybrid form of
RTk, a different GD is constructed in which, contrary to the previous one,
the reconstructed gradient is computed locally (as is the case for most GDs
studied elsewhere in this book). We prove that, under standard assumptions
on the meshes, sequences of hybrid RTk GDs are coercive, GD-consistent,
limit-conforming and compact. High order estimates on SD and WD are also
established.

10.1 Mixed finite element schemes for elliptic problems

10.1.1 MFE: presentation and error estimate

Let us first recall the formulation of the mixed finite element method for the
linear isotropic diffusion problem [81]. We consider the problem
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Find u ∈ H1
0 (Ω) such that, for all v ∈ H1

0 (Ω),∫
Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx.
(10.1)

The assumptions are as usual:

Ω is an open bounded connected subset of Rd (d ∈ N?)
and f ∈ L2(Ω).

(10.2)

Take finite dimensional spaces V div
h ⊂ Hdiv(Ω) and Wh ⊂ L2(Ω) such that

there exists βh > 0 with

∀q ∈Wh, sup
w∈V div

h

1

‖w‖Hdiv(Ω)

∫
Ω

q(x)divw(x)dx ≥ βh ‖q‖L2(Ω) . (10.3)

The formulation of the MFE scheme for Problem (10.1) then reads

(v, q) ∈ V div
h ×Wh, (10.4a)

∀w ∈ V div
h ,

∫
Ω

w(x) · v(x)dx−
∫
Ω

q(x)divw(x)dx = 0, (10.4b)

∀ψ ∈Wh,

∫
Ω

ψ(x)divv(x)dx =

∫
Ω

ψ(x)f(x)dx. (10.4c)

There exists a unique (v, q) solution to (10.4), and it moreover satisfies the
following stability and error estimates (see [81, Theorem 5.2 p.38 and Theorem
5.3 p.39]): if 0 < β ≤ βh, there exists C27 depending only on Ω and β such
that

‖q‖L2(Ω) + ‖v‖Hdiv(Ω) ≤ C27 ‖f‖L2(Ω) (10.5)

and

‖q − u‖L2(Ω) + ‖v +∇u‖Hdiv(Ω)

≤ C27

(
inf

ψ∈Wh

‖ψ − u‖L2(Ω) + inf
w∈V div

h

‖w +∇u‖Hdiv(Ω)

)
. (10.6)

10.1.2 Construction and analysis of a mixed finite element GD

We construct a GD, in the sense of Definition 2.1, such that the corresponding
gradient scheme (2.23) (with F = 0 and Λ = Id) for (10.1) is the MFE
scheme (10.4). Let (χi)i∈I be a basis of Wh and define the mixed finite element
gradient discretisation (MFEGD) D = (XD,0, ΠD,∇D) by:

XD,0 = {u = (ui)i∈I : ui ∈ R for all i ∈ I}, (10.7a)

∀u ∈ XD,0 , ΠDu =
∑
i∈I

uiχi, (10.7b)
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∀u ∈ XD,0 , ∇Du ∈ V div
h and (10.7c)∫

Ω

w(x) · ∇Du(x)dx = −
∫
Ω

ΠDu(x)divw(x)dx , ∀w ∈ V div
h . (10.7d)

In order for (10.7) to define a GD, the system (10.7c)–(10.7d) should de-
fine one and only one ∇Du, and ‖·‖D := ‖∇D·‖L2(Ω)d should be a norm on
XD,0. The existence and uniqueness of ∇Du results from the Riesz represen-
tation theorem in V div

h for the L2(Ω)d-inner product, which shows that, for
a given ΠDu, (10.7d) has a unique solution ∇Du ∈ V div

h . The norm property
of ‖∇D·‖L2(Ω)d follows from the coercivity property shown in Theorem 10.3
below.

Remark 10.1 (Hdiv gradient discretisation). The interest of the MFEGD de-
fined by (10.7) is to provide a more regular reconstructed gradient than certain
other GDs. Indeed, we have here ∇Dv ∈ Hdiv(Ω), whereas for most GDs the
reconstructed gradient usually only belongs to L2(Ω)d.

The following theorem establishes the link between the GD (10.7) and the
mixed finite element method.

Theorem 10.2 (The mixed finite element method is a GDM in the
isotropic case). Under Assumption (10.2), if u is the solution of the GS
(2.23) (with F = 0 and Λ = Id) using the GD defined by (10.7), and if
(v, q) is the solution of the mixed finite element scheme (10.4), then (v, q) =
(−∇Du,ΠDu).

Proof. Let u ∈ XD,0 be the solution to (2.23) and let us prove that (v, q) =
(−∇Du,ΠDu) ∈ V div

h × Wh is a solution of (10.4). We first observe that
(10.7d) ensures (10.4b). Take then ψ ∈ Wh. Since (χi)i∈I is a basis of Wh,
there exists a unique v ∈ XD,0 such that ψ =

∑
i∈I viχi = ΠDv. The GS

(2.23) gives ∫
Ω

∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ψ(x)dx. (10.8)

Write (10.7d) with u replaced by −v to see that, for all w ∈ V div
h ,

−
∫
Ω

w(x) · ∇Dv(x)dx =

∫
Ω

ΠDv(x)divw(x)dx.

Substitute w = −∇Du = v to obtain∫
Ω

∇Du(x) · ∇Dv(x)dx =

∫
Ω

ψ(x)divv(x)dx.

Combined with (10.8), this completes the proof of (10.4c).
Reciprocally, consider the solution (v, q) to (10.4). Since q ∈ Wh, as above
there exists a unique u ∈ XD,0 such that q = ΠDu. Comparing (10.4b) and
(10.7d) yields v = −∇Du. Take v ∈ XD,0, set ψ = ΠDv ∈ Wh and follow the



304 10 Hdiv conforming GDs from mixed finite element methods

same computation as above to see, using (10.4c), that u is a solution to the
gradient scheme (2.23).

The properties of MFE gradient discretisations are established in the following
theorem.

Theorem 10.3 (Properties of MFEGDs). Let β > 0 and, for all m ∈ N,
let V div

hm
⊂ Hdiv(Ω) and Whm ⊂ L2(Ω) be such that:

1. for all m ∈ N, the inf-sup condition (10.3) holds with V div
h = V div

hm
,

Wh = Whm and βh = β,
2. for all ϕ ∈ L2(Ω),

lim
m→∞

inf
ψ∈Whm

‖ψ − ϕ‖L2(Ω) = 0,

3. for all ϕ ∈ Hdiv(Ω),

lim
m→∞

inf
w∈V div

hm

‖ϕ−w‖Hdiv(Ω) = 0.

Let Dm = (XDm,0, ΠDm ,∇Dm) be the MFEGD defined by (10.7) from the
pair of spaces (V div

hm
,Whm). Then (Dm)m∈N is coercive, GD-consistent and

limit-conforming in the sense of the definitions in Section 2.1.1.

Proof.
Coercivity. Let m ∈ N and u ∈ XDm,0. Using (10.3) (in which the supre-
mum is actually a maximum) for q = ΠDmu, take w ∈ V div

hm
such that

‖w‖Hdiv(Ω) = 1 and∫
Ω

ΠDmu(x)divw(x)dx ≥ β ‖ΠDmu‖L2(Ω) .

Invoking (10.7d) and using the Cauchy–Schwarz inequality yields

β ‖ΠDmu‖L2(Ω) ≤ −
∫
Ω

w(x) · ∇Dmu(x)dx ≤ ‖∇Dmu‖L2(Ω)d .

Hence,

‖ΠDmu‖L2(Ω) ≤
1

β
‖∇Dmu‖L2(Ω)d (10.9)

and the coercivity property is proved with CP = 1
β .

GD-consistency. The GD-consistency follows from Lemma 2.17 if we prove
that, for all ϕ ∈ C∞c (Ω), SDm(ϕ) → 0 as m → ∞. Consider the solution
(v, q) ∈ V div

hm
×Whm of (10.4) with f = −∆ϕ. Since (χi)i∈I is a basis of Whm ,

there is a unique u ∈ XDm,0 such that q =
∑
i∈I uiχi = ΠDmu. Comparing

(10.4b) and (10.7d) then shows that v = −∇Dmu. Since ϕ is the solution to
(10.1) for the chosen f , the error estimate (10.6) leads to
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‖ΠDmu− ϕ‖L2(Ω) + ‖−∇Dmu+∇ϕ‖Hdiv(Ω)

≤ C27

(
inf

ψ∈Whm

‖ψ − ϕ‖L2(Ω) + inf
w∈V div

hm

‖w −∇ϕ‖Hdiv(Ω)

)
.

The hypotheses on V div
hm

and Whm ensure that the right hand side of the
above inequality tends to 0 as m→∞, which proves that SDm(ϕ) tends to 0
as m→∞.

Limit-conformity. Take a sequence (um)m∈N such that um ∈ XDm,0 for all
m ∈ N, and (∇Dmum)m∈N is bounded in L2(Ω)d. Let ϕ ∈ Hdiv(Ω), and take
ϕm ∈ V div

hm
such that ‖ϕ − ϕm‖Hdiv(Ω) → 0 as m → ∞. Then, recalling the

definition (2.9) of W̃D and using (10.7d) with w = ϕm,

W̃Dm(ϕ, um) =

∫
Ω

(∇Dmum(x) ·ϕ(x) +ΠDmum(x)divϕ(x)) dx =∫
Ω

(
∇Dmum(x) · (ϕ(x)−ϕm(x)) +ΠDmum(x)(divϕ(x)− divϕm(x))

)
dx.

Apply the Cauchy–Schwarz inequality and the coercivity estimate (10.9) to
deduce

|W̃Dm(ϕ, um)| ≤ ‖ϕ−ϕm‖Hdiv(Ω)

(
1 +

1

β

)
‖∇Dmum‖L2(Ω)d .

The boundedness of (‖∇Dmum‖L2(Ω)d)m∈N and the choice of (ϕm)m∈N con-

clude the proof that (2.10) holds, that is W̃Dm(ϕ, um)→ 0 as m→∞, which
shows the limit-conformity by Lemma 2.8.

10.2 The particular case of the RTk mixed finite element

10.2.1 RTk mixed finite element gradient discretisation

Take k ∈ N and T = (M,F ,P,V) a conforming simplicial mesh in the sense
of Definition 7.4, with P the set of centres of mass of the cells, and let

Vh = {v ∈ (L2(Ω))d : v|K ∈ RTk(K) , ∀K ∈M}, (10.10a)

V div
h = Vh ∩Hdiv(Ω), (10.10b)

Wh = {p ∈ L2(Ω) : p|K ∈ Pk(K) , ∀K ∈M}, (10.10c)

Mh =

{
µ :

⋃
σ∈F

σ → R : µ|σ ∈ Pk(σ) , ∀σ ∈ F

}
, (10.10d)

M0
h =

{
µ ∈Mh : µ|∂Ω = 0

}
, (10.10e)

where
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• Pk(K) is the space of d-variate polynomials on K having degree less than
or equal to k,

• Pk(σ) is the space of (d− 1)-variate polynomials on σ having degree less
than or equal to k,

• RTk(K) = Pk(K)d +xPk(K) is the Raviart–Thomas space on K of order
k.

Let us recall some results on RTk mixed finite element schemes. The broken
Sobolev space H1(M) is the set of functions whose restriction to each simplex
K of the mesh belongs to H1(K), and HM := Hdiv(Ω) ∩ (H1(M))d. With
(V div

h ,Wh) defined by (10.10b)–(10.10c), the following relations uniquely de-
fines an interpolation operator Pk : HM → V div

h [81, Lemma 3.2]: for all
v ∈HM and all K ∈M,

∀σ ∈ FK , ∀µ ∈ Pk(σ),∫
σ

µ(x)v|K(x) · nK,σdγ(x) =

∫
σ

µ(x)(Pkv)|K(x) · nK,σdγ(x),

If k ≥ 1, ∀q ∈ Pk−1(K),∫
K

q(x)v|K(x)dx =

∫
K

q(x)(Pkv)|K(x)dx.

(10.11)

Then Pk satisfies the following properties [81, Lemma 3.5 and Theorem 3.1]:

∀p ∈Wh, ∀v ∈HM,
∫
Ω

p(x)div(v − Pkv)(x)dx = 0 (10.12)

and

∀v ∈HM, ‖v − Pkv‖L2(Ω)d ≤ αhM

( ∑
K∈M

‖v‖2H1(K)

)1/2

, (10.13)

where α > 0 depends only on an upper bound of κT (see (7.10)).
The “inf-sup” condition (10.3), with βh depending only on an upper bound of
κT, can be deduced from this property. Let p ∈Wh. Extend p by 0 outside Ω
to a ball B with radius R containing Ω. Then there exists w ∈ H1

0 (B) solution
to −∆w = p, that is,

∀q ∈ H1
0 (B),

∫
B

∇w(x) · ∇q(x)dx =

∫
B

p(x)q(x)dx. (10.14)

Moreover, by [33, Theorem 9.25], w ∈ H2(B) and, for some B > 0 depending
only on d and R,

‖w‖H2(B) ≤ B‖p‖L2(Ω). (10.15)

Therefore, since ∇w ∈HM, Estimate (10.13) yields

‖∇w − Pk∇w‖L2(Ω)d ≤ αBhM‖p‖L2(Ω).
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Since hM ≤ diam(Ω) ≤ 2R, this shows that

‖Pk∇w‖L2(Ω)d ≤ (2Rα+ 1)B‖p‖L2(Ω). (10.16)

From the definitions (10.10a)–(10.10c) it is easily checked that div(Pk∇w) ∈
Wh. Hence, writing (10.12) with v = ∇w and div(Pk∇w) instead of p we find

‖div(Pk∇w)‖2L2(Ω) =

∫
Ω

div(Pk∇w)(x)div(∇w)(x)dx

≤ ‖div(Pk∇w)‖L2(Ω) ‖∆w‖L2(Ω)

= ‖div(Pk∇w)‖L2(Ω) ‖p‖L2(Ω) .

Combined with (10.16), this shows that

‖Pk∇w‖Hdiv(Ω) ≤ [(2Rα+ 1)B + 1] ‖p‖L2(Ω).

The inf-sup condition follows by writing, thanks to (10.12) and since−Pk∇w ∈
V div
h ,

sup
v∈V div

h

∫
Ω

p(x)divv(x)dx

‖v‖Hdiv(Ω)

≥
−
∫
Ω

p(x)div(Pk∇w)(x)dx

‖Pk∇w‖Hdiv(Ω)

≥
−
∫
Ω

p(x)div(∇w)(x)dx

‖Pk∇w‖Hdiv(Ω)

≥ 1

(2Rα+ 1)B + 1

∫
Ω
p(x)2dx

‖p‖L2(Ω)

=
1

(2Rα+ 1)B + 1
‖p‖L2(Ω) . (10.17)

This shows that the inf-sup condition (10.3) holds with β = 1
(2Rα+1)B+1 .

The coercivity, GD-consistency and limit-conformity of sequences of RTk
MFEGDs follow from the generic result of Theorem 10.3, provided that the
last two assumptions of this theorem are checked. Here, we choose a differ-
ent approach, by directly showing that RTk MFEGDs can be controlled by
polytopal toolboxes (Definition 7.9) – which provides the coercivity, limit-
conformity and compactness properties – and by establishing high order esti-
mates on SD from which the GD-consistency can be deduced.
Let us start with a preliminary lemma, that establishes the existence of the
hybrid variables for the RTk MFE.

Lemma 10.4 (Hybridisation of the RTk MFE). Let D be the RTk
MFEGD, in the sense of (10.7) with the spaces (10.10). There exists a unique
linear mapping ΓD : XD,0 →M0

h such that
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∀u ∈ XD,0, ∀K ∈M, ∀w ∈ RTk(K),∫
K

w(x) · ∇Du(x)dx+

∫
K

ΠDu(x)divw(x)dx

=
∑
σ∈FK

∫
σ

ΓDu(x)w(x) · nK,σdγ(x).

(10.18)

Proof.
Fix u ∈ XD,0 and let K ∈ M. Denote by Pk(∂K) =

∏
σ∈FK Pk(σ) the space

of families q = (qσ)σ∈FK with qσ ∈ Pk(σ) for all σ ∈ FK .
As a consequence of [81, Lemma 3.2], for any q ∈ Pk(∂K), there is a unique
ω(q) ∈ RTk(K) such that

ω(q)|σ · nK,σ = qσ for all σ ∈ FK , and

the L2(K)d-projection of ω(q) on Pk−1(K) vanishes

(if k = 0, the second condition is non-existent). This defines a linear map
ω : Pk(∂K)→ RTk(K). The sum of the L2-inner product on each face defines
an inner product on the finite dimensional space Pk(∂K). Since ω is linear,
there is therefore a unique ΓKu ∈ Pk(∂K) such that

∀q ∈ Pk(∂K) ,

∫
K

ω(q)(x)·∇Du(x)dx+

∫
K

ΠDu(x)divω(q)(x)dx

=
∑
σ∈FK

∫
σ

ΓKu(x)qσ(x)dγ(x) (10.19)

(the left-hand side is the inner product of ΓKu and q). Consider now a generic
w ∈ RTk(K) and let qσ = w|σ · nK,σ for all σ ∈ FK . Since x ∈ σ 7→ x · nK,σ
is constant for all σ ∈ FK , it can easily be checked that qσ ∈ Pk(σ) for all
σ ∈ FK (see [81, Lemma 3.1]). This defines therefore q = (qσ)σ∈FK ∈ Pk(∂K).
The function w − ω(q) ∈ RTk(K) has a zero normal trace on ∂K, and its
extension to Ω by 0 outside K therefore belongs to V div

h (the normal traces
at the interfaces between K and its neighbouring cells are continuous). This
function can therefore be used in (10.7d), which shows that∫

K

(w − ω(q))(x) · ∇Du(x)dx+

∫
K

ΠDu(x)div(w − ω(q))(x)dx = 0.

Owing to (10.19) and recalling the definition of (qσ)σ∈FK , this yields∫
K

w(x) · ∇Du(x)dx+

∫
K

ΠDu(x)divw(x)dx

=
∑
σ∈FK

∫
σ

ΓKu(x)w(x) · nK,σdγ(x). (10.20)

We have thus defined a cell-dependent mapping ΓK : XD,0 → Pk(∂K) that
satisfies (10.18) on K. Take σ ∈ FK ∩ Fext and qσ ∈ Pk(σ), and consider
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w ∈ Vh such that w|σ · nK,σ = qσ and all the normal traces of w on the

other faces vanish; this defines w ∈ V div
h (since the normal traces across the

interfaces are continuous) and, used in (10.7d) and combined with (10.20),
this shows that ∫

σ

ΓKu(x)qσ(x)dγ(x) = 0.

Since this is true for any qσ ∈ Pk(σ) and since ΓKu ∈ Pk(σ), this shows that
ΓKu = 0 on σ, whenever σ ∈ FK ∩ Fext. If we prove that

∀σ ∈ Fint with Mσ = {K,L} , (ΓKu)|σ = (ΓLu)|σ, (10.21)

then setting (ΓDu)|σ = (ΓKu)|σ for any σ ∈ F and any K ∈ Mσ provides
a mapping ΓD : XD,0 → M0

h that satisfies (10.18). The uniqueness of this
mapping follows from the uniqueness of each ΓK .
Let σ as in (10.21) and let qσ ∈ Pk(σ). Take w ∈ V div

h such that w|σ ·nK,σ =
−w|σ · nL,σ = qσ, and the normal traces of w on all the other faces vanish.
Writing (10.20) with this w on all the cells and summing over the cells, the
left-hand side vanishes thanks to (10.7d), and only the contributions from K
and L on σ remain on the right-hand side, leading to∫

σ

ΓKu(x)w(x) · nK,σdγ(x) +

∫
σ

ΓLu(x)w(x) · nL,σdγ(x) = 0.

This proves that∫
σ

ΓKu(x)qσ(x)dγ(x)−
∫
σ

ΓLu(x)qσ(x)dγ(x) = 0

and thus, since qσ was arbitrary in Pk(σ), that (10.21) is satisfied.

Lemma 10.5 (Control of the RTk MFEGD by a polytopal toolbox).
Let D be the RTk MFEGD, in the sense of (10.7), using the spaces defined
by (10.10), and let % ≥ κT (see (7.10)). Let ΓD be given by Lemma 10.4 and
define the control Φ : XD,0 → XT,0 of D by T (see Definition 7.9) by, for
all u ∈ XD,0,

∀σ ∈ F , Φ(u)σ =
1

|σ|

∫
σ

ΓDu(y)dγ(y),

∀K ∈M , Φ(u)K =
1

|K|

∫
K

ΠDu(x)dx.

(10.22)

Then there exists C28 > 0, depending only on Ω, k, and %, such that

‖Φ‖D,T ≤ C28, (10.23)

ωΠ(D,T,Φ) ≤ C28hM, (10.24)

and
ω∇(D,T,Φ) = 0. (10.25)
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Proof.
Step 1: estimate (10.23).
Let K ∈ M, σ ∈ FK and wK,σ ∈ RT0(K) ⊂ RTk(K) be defined by wK,σ ·
nK,σ = 1 on σ, and wK,σ · nK,σ′ = 0 on σ′ for all σ′ ∈ FK \ {σ}. Then, if
s is the vertex opposite to σ in the simplex K, wK,σ is given by wK,σ(x) =
x−s

dist(s,σ) for all x ∈ K, where dist(s, σ) is the orthogonal distance between s

and σ (that is, the distance between s and the hyperplane generated by σ).

Hence, div(wK,σ) = d
dist(s,σ) = |σ|

|K| . Taking wK,σ as a test function in (10.18)

therefore yields∫
K

wK,σ(x) · ∇Du(x)dx+ |σ|(Φ(u)K −Φ(u)σ) = 0,

which implies

|σ|
dK,σ

(Φ(u)σ −Φ(u)K)2 ≤ 1

dK,σ|σ|
‖∇Du‖2L2(K)d ‖wK,σ‖

2
L2(K)d .

The expression of wK,σ yields the existence of C29 > 0, depending only on %,
such that, for all x ∈ K, |wK,σ(x)| ≤ C29. Moreover, using Lemma B.4 and

recalling that xK is the centre of mass of K, we can see that |K|
|σ|dK,σ ≤ C30

with C30 depending only on % and d. Hence, since Card(FK) = d + 1 for all
K ∈M,∑

K∈M

∑
σ∈FK

|σ|
dK,σ

(Φ(u)σ −Φ(u)K)2 ≤ C2
29C30(d+ 1) ‖∇Du‖2L2(Ω)d

and (10.23) follows by noticing that the left-hand side of this inequality is

|Φ(u)|2T,2.

Step 2: Estimate (10.24).
Let w ∈ H1

0 (B) ∩H2(B) be defined by (10.14) for p the extension of ΠDu−
ΠTΦ(u) to B by 0 outside Ω. Applying (10.15),

‖∇w‖H1(Ω)d ≤ B ‖ΠDu−ΠTΦ(u)‖L2(Ω) . (10.26)

Moreover, from (10.14) with q = w,∫
B

|∇w(x)|2dx =
∑
K∈M

∫
K

(ΠDu(x)−Φ(u)K)w(x)dx.

Denote by wK the average value of w on K. Since
∫
K

(ΠDu(x)−Φ(u)K)dx =
0, we infer∫

B

|∇w(x)|2dx =
∑
K∈M

∫
K

(ΠDu(x)−Φ(u)K)(w(x)− wK)dx.
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The Hölder inequalities (D.5) and (D.1) (with p = p′ = 2), and (B.12) in
Lemma B.6, show that∫
B

|∇w(x)|2dx

≤
∑
K∈M

‖ΠDu−Φ(u)K‖L2(K) ‖w − wK‖L2(K)

≤
∑
K∈M

‖ΠDu−ΠTΦ(u)‖L2(K) C31hK ‖∇w‖L2(K)d

≤ C31hM

( ∑
K∈M

‖ΠDu−ΠTΦ(u)‖2L2(K)

) 1
2
( ∑
K∈M

‖∇w‖2L2(K)d

) 1
2

with C31 depending only on d and % (the assumption of Lemma B.6 is checked
by using Lemma B.4 to write maxσ∈FK

hK
dK,σ

≤ θT ≤ κT + d+ 1 ≤ %+ d+ 1).

As a consequence,

‖∇w‖L2(Ω)d ≤ C31hM ‖ΠDu−ΠTΦ(u)‖L2(Ω) . (10.27)

Set w = −Pk∇w ∈ V div
h (Pk is defined by (10.11)). Thanks to (10.12) and

(10.13), ∫
Ω

ΠDu(x)div(w +∇w)(x)dx = 0 (10.28)

and
‖∇w +w‖L2(Ω)d ≤ αhM ‖∇w‖H1(Ω)d .

Combined with (10.26) this yields

‖∇w +w‖L2(Ω)d ≤ αhMB ‖ΠDu−ΠTΦ(u)‖L2(Ω) ,

and therefore, with (10.27),

‖w‖L2(Ω)d ≤ hM(αB + C31) ‖ΠDu−ΠTΦ(u)‖L2(Ω) . (10.29)

We now considerw in (10.7d). Using (10.28) and−div(∇w) = ΠDu−ΠTΦ(u),
this leads to∫

Ω

w(x) · ∇Du(x)dx+

∫
Ω

ΠDu(x)(ΠDu−ΠTΦ(u))(x)dx = 0. (10.30)

The function ΠTΦ(u) is the L2-orthogonal projection of ΠDu on piecewise
constant functions on M, and thus∫

Ω

ΠDu(x)(ΠDu−ΠTΦ(u))(x)dx =

∫
Ω

(ΠDu−ΠTΦ(u))2(x)dx.

Used in (10.30) and owing to (10.29), this gives
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‖ΠDu−ΠTΦ(u)‖2L2(Ω) ≤ ‖w‖L2(Ω)d ‖∇Du‖L2(Ω)d

≤ hM(αB + C31) ‖ΠDu−ΠTΦ(u)‖L2(Ω) ‖∇Du‖L2(Ω)d .

Hence, ‖ΠDu−ΠTΦ(u)‖L2(Ω) ≤ hM(αB + C31) ‖∇Du‖L2(Ω)d and (10.24) is
proved.

Step 3: Relation (10.25).
Let u ∈ XD,0, K ∈ M, ξ ∈ Rd, and w ∈ RTk(K) be such that w(x) = ξ for
all x ∈ K. Using this function in (10.18) yields∫
K

ξ · ∇Du(x)dx =
∑
σ∈FK

∫
σ

ΓDu(x)ξ · nK,σdγ(x) =
∑
σ∈FK

|σ|Φ(u)σξ · nK,σ.

Since ξ is arbitrary, this proves that∫
K

∇Du(x)dx =
∑
σ∈FK

|σ|Φ(u)σnK,σ =

∫
K

∇TΦ(v)(x)dx,

and (10.25) is proved.

Before stating the properties of RTk MFEGDs, we establish high order es-
timates on SD and WD for regular functions. These estimates are essential
to obtain optimal O(hk+1

M ) error estimates for RTk schemes on linear prob-
lems (see Theorem 2.29). The estimate on SD also helps establishing the
GD-consistency of RTk MFEGDs.

Lemma 10.6 (High order estimates for RTk MFEGD). Let D be the
RTk MFEGD defined by (10.7) with the choice of spaces (10.10). Take % ≥ κT
(see (7.10)). There exists C32 > 0, depending only on on Ω, k and %, such
that

∀ϕ ∈ Hk+2(Ω) ∩H1
0 (Ω) , SD(ϕ) ≤ C32h

k+1
M ‖ϕ‖Hk+2(Ω) , (10.31)

and
∀ϕ ∈ Hk+1(Ω)d, WD(ϕ) ≤ C32h

k+1
M ‖ϕ‖Hk+1(Ω)d , (10.32)

where SD is defined by (2.2) and WD is defined by (2.6). In other words, the
space size (see Definition 2.23) of the GD satisfies

hD(Hk+2(Ω) ∩H1
0 (Ω);Hk+1(Ω)d) ≤ C32h

k+1
M .

Proof. As in Theorem 10.3, setting u ∈ XD,0 such that ΠDu = q with (v, q)
solution to (10.4) for f = −∆ϕ, we have v = −∇Du and [81, Theorem 3.2]
thus gives the existence of C33 depending only on % and k such that

‖−∇Du+∇ϕ‖L2(Ω)d ≤ C33h
k+1
M ‖ϕ‖Hk+2(Ω) . (10.33)

Apply then [81, Theorem 3.3] to find C34 depending only on % and k such
that
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‖ΠDu− ϕ‖L2(Ω) ≤ C34h
k+1
M ‖ϕ‖Hk+2(Ω) . (10.34)

Estimate (10.31) follows from (10.33) and (10.34).

Let us turn to the estimate on WD. Let ϕ ∈ Hk+1(Ω)d. Thanks to Property
(10.12) of the interpolation operator Pk, we have, for any v ∈ XD,0,∣∣∣ ∫

Ω

(∇Dv(x) ·ϕ(x) +ΠDv(x)divϕ(x)) dx
∣∣∣

=
∣∣∣ ∫
Ω

(∇Dv(x) ·ϕ(x) +ΠDv(x)divPkϕ(x)) dx
∣∣∣

=
∣∣∣ ∫
Ω

∇Dv(x) · (ϕ(x)− Pkϕ(x)) dx
∣∣∣

≤ ‖ϕ− Pkϕ‖L2(Ω)d ‖∇Dv‖L2(Ω)d , (10.35)

using Pkϕ ∈ V div
h and the definition (10.7d) of ∇D. The estimate in [81,

Theorem 3.1] implies

‖ϕ− Pkϕ‖L2(Ω)d ≤ C35h
k+1
M ‖ϕ‖Hk+1(Ω)d

with C35 depending only on Ω, k and %. Used in (10.35) this proves (10.32).

We can now state and prove the properties of RTk MFEGDs.

Theorem 10.7 (Properties of RTk MFEGDs). Let (Tm)m∈N be a se-
quence of conforming simplicial meshes in the sense of Definition 7.4, such
that hMm

→ 0 as m → ∞ and (κTm)m∈N is bounded (see (7.10)). Let, for
m ∈ N, Dm = (XDm,0, ΠDm ,∇Dm) be the RTk MFEGD defined by (10.7)
with (V div

h ,Wh) = (V div
hm

,Whm) given by (10.10) with T = Tm.
Then (Dm)m∈N is coercive, GD-consistent, limit-conforming and compact in
the sense of the definitions in Section 2.1.1.

Proof. Lemma 10.5 and Corollary 7.12 give the coercivity, limit-conformity
and compactness properties. The GD-consistency follows from (10.31) and
from Lemma 2.17 with Ws = Hk+2(Ω) ∩H1

0 (Ω).

10.2.2 Gradient discretisation from the RTk hybrid mixed finite
element formulation

The hybrid, or Arnold–Brezzi, formulation [16] for the approximation of (10.1)
corresponds to an hybridisation of the mixed finite element scheme (10.4).
Using the discrete spaces defined by (10.10), it reads

(v, q, λ) ∈ Vh ×Wh ×M0
h , (10.36a)∫

K

w(x) · v(x)dx−
∫
K

q(x)divw(x)dx
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+
∑
σ∈FK

∫
σ

λ(x) w|K(x) · nK,σdγ(x) = 0,

∀w ∈ Vh , ∀K ∈M (10.36b)∫
K

ψ(x)divv(x)dx =

∫
K

ψ(x)f(x)dx, ∀ψ ∈Wh , ∀K ∈M, (10.36c)∫
σ

µ(x) v|K(x) · nK,σdγ(x) +

∫
σ

µ(x) v|L(x) · nL,σdγ(x) = 0,

∀σ ∈ Fint with Mσ = {K,L}, ∀µ ∈M0
h . (10.36d)

Since the normal traces of RTk functions on a face σ belong to Pk(σ), (10.36d)
is equivalent to imposing the pointwise continuity of the normal traces of v,
that is, to imposing v ∈ V div

h . Given that the elements inWh have independent
values in each cell, (10.36c) is then clearly equivalent to (10.4c). Taking w ∈
V div
h in (10.36b) and summing over the cells yields (10.4b). Conversely, if (v, q)

satisfies (10.4b) then by introducing u ∈ XD,0 such that (−∇Du,ΠDu) =
(v, q) and by setting λ = ΓDu, where ΓD is defined in Lemma 10.4, we see
that (10.18) is the same equation as (10.36b). All this shows that (v, q) is
a solution to (10.4) if and only if (v, q, λ) is a solution to (10.36). As a by-
product, this also establishes the existence and uniqueness of a solution to
this hybrid formulation.

We now construct a GD (in the sense of Definition 2.1), called HMFEGD,
inspired from the hybrid mixed finite element formulation (10.36) of Problem
(10.1). Let Wh be defined by (10.10c) and let again (χi)i∈I be a basis of
Wh. Let M0

h be defined by (10.10d) and let (ξj)j∈J be a basis of M0
h . To

avoid confusions in the notations below, the index sets I and J are selected
to be disjoint. Recalling that Vh is given by (10.10a), define the HMFEGD

D̃ = (XD̃,0, ΠD̃,∇D̃) by:

XD̃,0 = {v = ((vi)i∈I , (vj)j∈J) : vk ∈ R for all k ∈ I ∪ J}, (10.37a)

∀u ∈ XD̃,0 , ΠD̃u =
∑
i∈I

uiχi and ΓD̃u =
∑
j∈J

ujξj , (10.37b)

∀u ∈ XD̃,0 , ∇D̃u ∈ Vh is such that, for all K ∈M,∫
K

w(x) · ∇D̃u(x)dx+

∫
K

ΠD̃u(x)divw(x)dx

−
∑
σ∈FK

∫
σ

ΓD̃u(x) w|K(x) · nK,σdγ(x) = 0, ∀w ∈ Vh. (10.37c)

Remark 10.8. In the case k = 0, the hybrid RT0 scheme is a particular case of
the mixed-hybrid mimetic finite difference [129], which is itself a member of
the HMM family of schemes described in Chapter 13. The properties of RT0

HMFEGDs therefore also follow from the properties of HMM GDs.
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As for (10.7), in order for (10.37) to define a GD the system (10.37c) should de-
fine one and only one reconstructed gradient ∇D̃u, and ‖·‖D̃ :=

∥∥∇D̃·∥∥L2(Ω)d

should be a norm on XD̃,0. The existence and uniqueness of ∇D̃u again results

from the Riesz representation theorem (applied in each RTk(K) space with
the L2(K)d-inner product). The norm property results, on one hand, from the
coercivity property shown in Theorem 10.10 below, and on the other hand,
from the reasoning in the proof of Lemma 10.4 (based on the fact that any
q ∈ Pk(∂K) can be written as the normal trace of some w ∈ RTk(K)), which
shows that, if ∇D̃u = 0 and ΠD̃u = 0, then ΓD̃u satisfying (10.37c) must
vanish.

Let us check that the GD D̃ indeed corresponds to the hybrid RTk scheme.

Theorem 10.9 (Hybrid RTk is a GDM in the isotropic case). Using
the GD (10.37), u is the solution to the gradient scheme (2.23) for Problem
(10.1) if and only if (v, q, λ) = (−∇D̃u,ΠD̃u, ΓD̃u) is the solution to the
Arnold–Brezzi formulation (10.36) of the mixed finite element method.

Proof. Let u ∈ XD̃,0 be a solution to (2.23), and let us show that (v, q, λ) =

(−∇D̃u,ΠD̃u, ΓD̃u) is the solution of (10.36). We first observe that (10.37c)
ensures (10.36b). Let ψ ∈Wh and µ ∈M0

h , consider a particular K ∈M, and
take in (2.23) a test function v ∈ XD̃,0 such that ΠD̃v|K = ψ|K , ΠD̃v|L = 0

for all L ∈ M \ {K}, and ΓD̃v = 0. Thanks to (10.37c), the support of ∇D̃v
is also reduced to K and the GS (2.23) therefore gives∫

K

∇D̃u(x) · ∇D̃v(x)dx =

∫
K

f(x)ψ(x)dx.

Setting w = v in (10.37c) with u replaced by v, and using ΓD̃v = 0, we get∫
K

v(x) · ∇D̃v(x)dx+

∫
K

ΠD̃v(x)divv(x)dx = 0,

which implies∫
K

f(x)ψ(x)dx =

∫
K

∇D̃u(x) · ∇D̃v(x)dx

= −
∫
K

v(x) · ∇D̃v(x)dx

=

∫
K

ΠD̃v(x)divv(x)dx =

∫
K

ψ(x)divv(x)dx.

This completes the proof of (10.36c). Then, we take µ ∈M0
h and let v ∈ XD̃,0

be such that ΠD̃v = 0 and ΓD̃v|σ = µ|σ for a given σ = K|L ∈ Fint, and
ΓD̃v|σ′ = 0 for all σ′ ∈ F \ {σ}. Setting again w = v in (10.37c) with u
replaced by v, we get
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K

v(x) · ∇D̃v(x)dx−
∫
σ

µ(x) v|K(x) · nK,σdγ(x) = 0,

and ∫
L

v(x) · ∇D̃v(x)dx−
∫
σ

µ(x) v|L(x) · nL,σdγ(x) = 0.

Summing these relations and recalling that v = −∇D̃u gives∫
K∪L

∇Du(x) · ∇D̃v(x)dx+

∫
σ

µ(x) v|K(x) · nK,σdγ(x)

+

∫
σ

µ(x) v|L(x) · nL,σdγ(x) = 0. (10.38)

Using the GS (2.23), the fact that the support of ∇D̃v is reduced to K ∪ L,
and that ΠD̃v = 0, we see that the first term in (10.38) vanishes. This proves
(10.36d).
Conversely, considering the solution (v, q, λ) to (10.36), since q ∈ Wh and
λ ∈ M0

h , there exists a unique u ∈ XD̃,0 such that q = ΠD̃u and λ = ΓD̃u.

From (10.36b), we get that v = −∇D̃u. For any v ∈ XD̃,0, letting ψ = ΠD̃v
and µ = ΓD̃v, and following the same computation as above, we get that
(10.36c) and (10.36d) imply (2.23), using (10.37c) where u is replaced by v.

Theorem 10.10 (Properties of the hybrid RTk GDs). Let (Tm)m∈N be
a sequence of conforming simplicial meshes in the sense of Definition 7.4,
such that hMm

→ 0 as m → ∞ and (κTm)m∈N is bounded (see (7.10)). Let

D̃m = (XD̃m,0, ΠD̃m ,∇D̃m) be the gradient discretisation defined by (10.37)

with the spaces (10.10) built on Tm.

Then (D̃m)m∈N is coercive, GD-consistent, limit-conforming and compact in
the sense of the definitions of Section 2.1.1.

Proof. Let T be a conforming simplicial mesh, D̃ be the RTk HMFEGD
defined by (10.37), and D be the RTk MFEGD defined by (10.7). Define the
mapping T : XD̃,0 → XD,0 by T (ũ) = (ũi)i∈I . Then ΠD̃ũ = ΠDT (ũ). By

selecting w = ∇DT (ũ) ∈ V div
h ⊂ Vh in (10.37c) and summing on K ∈M, all

the integrals on σ ∈ Fint vanish and we obtain∫
Ω

∇DT (ũ)(x) · ∇D̃ũ(x)dx+

∫
Ω

ΠD̃ũ(x)div(∇DT (ũ))(x)dx = 0.

Using (10.7d) with w = ∇DT (ũ) and T (ũ) instead of u then yields∫
Ω

∇DT (ũ)(x) · ∇D̃ũ(x)dx = −
∫
Ω

ΠDT (ũ)(x)div(∇DT (ũ))(x)dx

=

∫
Ω

∇DT (ũ)(x) · ∇DT (ũ)(x)dx.
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The Cauchy–Schwarz inequality then leads to

‖∇DT (ũ)‖L2(Ω)d ≤ ‖∇D̃ũ‖L2(Ω)d , ∀ũ ∈ XD̃,0. (10.39)

We can now prove the properties of (D̃m)m∈N.

Coercivity. The coercivity follows from the relation ΠD̃m ũ = ΠDmT (ũ),
from the coercivity of (Dm)m∈N (Theorem 10.7), and from (10.39).

GD-consistency. Let u ∈ XDm,0. Recalling the definition of ΓDm in Lemma
10.4, there exists ũ ∈ XD̃m,0 such that T (ũ) = u (this defines (ũi)i∈I) and

ΓD̃m ũ = ΓDmu (this defines (ũj)j∈J). Then (10.18) and (10.37c) show that

∇Dmu = ∇D̃m ũ. Take ϕ ∈ H1
0 (Ω) and set

u = argmin
v∈XDm,0

(
‖ΠDmv − ϕ‖L2(Ω) + ‖∇Dmv −∇ϕ‖L2(Ω)d

)
.

Then, since ΠDmu = ΠDmT (ũ) = ΠD̃m ũ,

SD̃m(ϕ) ≤
∥∥∥ΠD̃m ũ− ϕ∥∥∥L2(Ω)

+
∥∥∥∇D̃m ũ−∇ϕ∥∥∥L2(Ω)d

= ‖ΠDmu− ϕ‖L2(Ω) + ‖∇Dmu−∇ϕ‖L2(Ω)d ≤ SDm(ϕ)

and the consistency of (D̃m)m∈N follows from the consistency of (Dm)m∈N
(Theorem 10.7).

Limit-conformity. If w ∈ V div
hm

then writing (10.37c) over each cell and
summing over the cells, the face terms cancel (since w · nK,σ +w · nL,σ = 0
whenever σ ∈ Fint with Mσ = {K,L}), and we see that (10.7d) holds with

D̃m instead of D. The limit-conformity can therefore be proved in a similar
way as in Theorem 10.3, by taking ϕm ∈ V div

hm
that converges to ϕ in Hdiv

and by writing, for ũm ∈ XDm,0,

W̃D̃m(ϕ, ũm) =

∫
Ω

(
∇D̃m ũm(x) ·ϕ(x) +ΠD̃m ũm(x)divϕ(x)

)
dx =∫

Ω

(
∇D̃m ũm(x) · (ϕ(x)−ϕm(x)) +ΠD̃m ũm(x)(divϕ(x)− divϕm(x))

)
dx.

Compactness. Similarly to the coercivity, this property is an immediate
consequence of the compactness of (Dm)m∈N (Theorem 10.7), of (10.39) and
of ΠD̃m ũ = ΠDmT (ũ).

Remark 10.11. The coercivity, limit-conformity and compactness properties
of sequences of RTk HMFEGDs can also be established through the notion
of control by a polytopal toolbox. The control is defined in a similar way as
(10.22) in Lemma 10.5, by using ΓD̃.
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Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods have a long history, and have become
very popular numerical methods for PDEs of various types. They present the
advantage of being applicable on generic meshes and of providing possibly high
order approximations of weakly regular functions. DG methods are based on
polynomial approximations in the cells, without continuity conditions imposed
on these polynomials across the faces. The continuity is weakly enforced in the
scheme, by using various possible stabilisation terms controlling the jumps of
the polynomials at the interfaces [17]. The convergence of DG methods has
been proved for a variety of problems and stabilisation terms (see [61] and
references therein).

In this chapter, following [96], we build a discontinuous Galerkin gradient
discretisation (DGGD) such that, for linear diffusion problems, the resulting
gradient scheme is identical to the symmetric interior penalty discontinuous
Galerkin scheme.
We then prove that, under standard regularity assumptions on the meshes,
sequences of DGGDs satisfy all the core properties of a GDM on general poly-
topal meshes in any space dimension. This is done via the notion of control by
a polytopal toolbox as defined in Chapter 7. Throughout this chapter, we con-
sider the general case p ∈ (1,+∞), but we restrict ourselves to homogeneous
Dirichlet boundary conditions for the sake of simplicity.

11.1 Discontinuous Galerkin gradient discretisation

11.1.1 Definition of the DGGD

The definition of a DGGD uses some notations presented in Figure 11.1.

Definition 11.1 (Discontinuous Galerkin gradient discretisation). Let
T = (M,F ,P,V) be a polytopal mesh of Ω in the sense of Definition 7.2,
k ∈ N∗ be a polynomial degree, and β ∈ (0, 1). A discontinuous Galerkin
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gradient discretisation (DGGD) D = (XD,0, ΠD,∇D) of degree k on T is
defined by the following elements.

1. Let (χi)i∈I be a basis of the space defined by (10.10c), that is

Wh = {w ∈ Lp(Ω) : w|K ∈ Pk(K) , ∀K ∈M}, (11.1)

and set
XD,0 = {v = (vi)i∈I : vi ∈ R for all i ∈ I}. (11.2)

2. The operator ΠD is the reconstruction in Lp(Ω) of the elements of XD,0:

∀v ∈ XD,0 , ΠDv =
∑
i∈I

viχi. (11.3)

For all K ∈ M and v ∈ XD,0, denote by ΠKv ∈ Pk(K) the polynomial
defined by (ΠDv)|K and extended to K, and set ∇Kv = ∇ΠKv.

3. For v ∈ XD,0, K ∈M, σ ∈ FK and a.e. x ∈ DK,σ, set

∇Dv(x) = ∇Kv(x) + ψ(s)
[v]K,σ(y)

dK,σ
nK,σ (11.4)

where:
• x is (uniquely) decomposed as x = xK +s(y−xK) with s ∈ (0, 1] and
y ∈ σ,
• for all y ∈ σ,

if σ ∈ Fint and Mσ = {K,L} ,

[v]K,σ(y) =
ΠLv(y)−ΠKv(y)

2
if σ ∈ Fext and Mσ = {K} ,

[v]K,σ(y) = 0−ΠKv(y),

(11.5)

• ψ : (0, 1) → R is the unique function such that ψ(s) = 0 on (0, β),
ψ|[β,1] ∈ Pk−1([β, 1]) and∫ 1

β

ψ(s)sd−1ds = 1, (11.6a)

∀i = 1, . . . , k − 1,

∫ 1

β

(1− s)iψ(s)sd−1ds = 0. (11.6b)

4. The fact that ‖∇D·‖Lp(Ω)d is a norm on XD,0 is a consequence of Lemma

11.10 (see Remark 11.11).

In the case k = 1, the function ψ|[β,1] ∈ P0([β, 1]) has the constant value d
1−βd .

For the general case k ∈ N?, considering the basis B = (1, (1 − s), . . . , (1 −
s)k−1) of Pk−1([β, 1]), and writing the function ψ|[β,1] as ψ(s) =

∑k
j=1 αj(1−
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K

σ

xK

K(β)

xK

DK,σ

σ
y

x = xK + s(y − xK)

D
(β)
K,σ

Fig. 11.1. Notations for the definition of a DG gradient discretisation

s)j−1, the equations (11.6) boil down to the system Aα = (1, 0, . . . , 0)T where
α = (α1, . . . , αk)T and

Ai,j =

∫ 1

β

(1− s)i+j−2sd−1ds.

In other words, A is the Gram matrix of B for the inner product (f, g) 7→∫ 1

β
f(s)g(s)sd−1ds on Pk([β, 1]). Hence, A is symmetric positive definite and

there exists a unique ψ|[β,1] ∈ Pk−1([β, 1]) such that (11.6) holds.

Remark 11.2 (Definition of the jump at the faces of the mesh). In (11.5), the
jump across the faces is divided by 2 for interior faces to allow for a seamless
definition of ∇D on all DK,σ, no matter if σ ∈ Fint or σ ∈ Fext.

Throughout this chapter, given K ∈ M and σ ∈ FK , we use the functions
s : DK,σ → (0, 1) and y : DK,σ → σ defined such that, for x ∈ DK,σ,
x = xK + s(x)(y(x)− xK). In other words,

s(x) =
(x− xK) · nK,σ

dK,σ
and y(x) = xK +

x− xK
s(x)

.

It will also be useful to split the cone DK,σ into D
(β)
K,σ and DK,σ \D(β)

K,σ with

D
(β)
K,σ := {x ∈ DK,σ : x = xK + s(y − xK), s ∈ (0, β], y ∈ σ}. (11.7)

We then set
K(β) =

⋃
σ∈FK

D
(β)
K,σ.

This is illustrated in Figure 11.1. Note that |DK,σ \D(β)
K,σ| =

1−βd
d dK,σ|σ|.
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Remark 11.3. If v ∈ XD,0, the function ΠDv ∈ Wh has discontinuities at
the faces of the mesh. Its distributional gradient therefore involves measures
concentrated on the faces (and absolutely continuous with respect to the (d−
1)-dimensional measure on the faces). The gradient ∇Dv ∈ Lp(Ω)d can be
seen as a regularisation of this distributional gradient, in which the measures
on the faces are “spread” over a neighbourhood of the faces (specifically, for

each σ ∈ F , over ∪M∈Mσ
DM,σ \ D(β)

M,σ), and weighted by functions whose
purpose is to ensure that the corresponding term has a proper orthogonality
property with respect to ∇Kv, see (11.12).

Remark 11.4. The mathematical analysis of the DGGD is essentially un-
changed if the uniform constant β is replaced with local constants βK,σ ∈
(0, 1).

Remark 11.5 (Piecewise constant reconstruction). A DGGD with piecewise

constant reconstruction can be obtained by replacing ΠD with Π̂D defined,
for all K ∈M and a.e. x ∈ K, by

Π̂Dv(x) =
1

|K|

∫
K

ΠKv(x)dx.

This function reconstruction is piecewise constant in the sense of Definition
2.13 if the basis (χi)i∈I is chosen such that, for each K ∈ M, there exists
i ∈ I with vi = 1

|K|
∫
K
ΠKv(x)dx for all v ∈ XD,0 (in other words, the

zero-th moment of ΠKv must be a degree of freedom of the method).

11.1.2 Link with the SIPG method

Theorem 11.6 (SIPG is a gradient scheme). Let T be a polytopal mesh
and D be a discontinuous Galerkin gradient discretisation on T as per Def-
inition 11.1. Assume Hypotheses (2.21), F = 0 and that Λ is constant in
each cell of T. Then the gradient scheme (2.23) constructed from D for the
linear elliptic problem (2.22) is a symmetric interior penalty Galerkin (SIPG)
method as in [83, 61].

Proof. Recall that the gradient scheme (2.23) is given by

u ∈ XD,0, ∀v ∈ XD,0,∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx =

∫
Ω

f(x)ΠDv(x)dx.
(11.8)

Write the integral in the left-hand side as a sum of integrals over the cells and
use the definition (11.4) of ∇D to develop the dot product. Since Λ is constant
in each cell, denoting by ΛK the value of Λ in K ∈M this yields
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Ω

Λ(x)∇Du(x) · ∇Dv(x)dx

=
∑
K∈M

[∫
K

ΛK∇Ku(x) · ∇Kv(x)dx

+
∑
σ∈FK

∫
DK,σ

ΛKψ(s(x))
[u]K,σ(y(x))

dK,σ
nK,σ · ∇Kv(x)dx

+
∑
σ∈FK

∫
DK,σ

ΛK∇Ku(x) · ψ(s(x))
[v]K,σ(y(x))

dK,σ
nK,σdx

+
∑
σ∈FK

∫
DK,σ

ΛK
[u]K,σ(y(x))

dK,σ
nK,σ ·

[v]K,σ(y(x))

dK,σ
nK,σψ(s(x))2dx

]
.

(11.9)
Let us first consider the cross-products (third and fourth lines above). They
are symmetric in u, v so understanding only one of them is sufficient. The
change of variable x ∈ DK,σ 7→ (y, s) ∈ σ × (0, 1) is defined by x = xK +
s(y − xK) and satisfies dx = dK,σs

d−1dγ(y)ds. Hence,∫
DK,σ

ΛKψ(s(x))
[u]K,σ(y(x))

dK,σ
nK,σ · ∇Kv(x)dx

=

∫
σ

ΛK
[u]K,σ(y)

dK,σ
nK,σ ·

∫ 1

β

∇Kv(x(y, s))ψ(s)sd−1dsdγ(y)dK,σ.

(11.10)

Since ∇Kv ∈ Pk(K), the function ϕ(s) = ∇Kv(xK + s(y − xK)) · nK,σ is a
polynomial of degree k or less. Expanding it along its Taylor series at s = 1
leads to

ϕ(s) = ∇Kv(y) · nK,σ +

k−1∑
m=1

pm(y)(1− s)m, (11.11)

where, for m = 1, . . . , k − 1, pm(y) is a polynomial with degree less or equal
to k − 1 with respect to the coordinates of y. Using (11.6) thus shows that∫ 1

β

∇Kv(x(y, s)) · nK,σψ(s)sd−1ds = ∇Kv(y) · nK,σ. (11.12)

Plugged in (11.10) this yields the following representation of the first cross-
product in (11.9):∫

DK,σ

ΛKψ(s(x))
[u]K,σ(y(x))

dK,σ
nK,σ · ∇Kv(x)dx

=

∫
σ

ΛK [u]K,σ(y)nK,σ · ∇Kv(y)dγ(y).

Using the same change of variable as above, the last term in (11.9) is easily
re-arranged into
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DK,σ

ΛK
[u]K,σ(y(x))

dK,σ
nK,σ ·

[v]K,σ(y(x))

dK,σ
nK,σψ(s(x))2dx

=
ΛKnK,σ · nK,σ

dK,σ

∫ 1

β

ψ(s)2sd−1ds

∫
σ

[u]K,σ(y)[v]K,σ(y)dγ(y).

The relation (11.9) is therefore re-written as∫
Ω

Λ(x)∇Du(x) · ∇Dv(x)dx

=
∑
K∈M

[∫
K

ΛK∇Ku(x) · ∇Kv(x)dx

+
∑
σ∈FK

{∫
σ

ΛK
(
[u]K,σ(y)∇Kv(y) + [v]K,σ(y)∇Ku(y)

)
· nK,σdγ(y)

+
ΛKnK,σ · nK,σ

dK,σ

∫ 1

β

ψ(s)2sd−1ds

∫
σ

[u]K,σ(y)[v]K,σ(y)dγ(y)

}]
.

This right-hand side corresponds to the bilinear form in the SIPG scheme as
presented in [83, 61]. Here, the penalty coefficient τσ (term σe

|e|β0 of [83, eqn.

(11)], term η
hF

of [61, eqn. (4.12)]) is

if σ ∈ Fint and Mσ = {K,L} ,

τσ =

(
1

4

∫ 1

β

ψ(s)2sd−1ds

)(
ΛKnK,σ · nK,σ

dK,σ
+
ΛLnL,σ · nL,σ

dL,σ

)
,

if σ ∈ Fext and Mσ = {K} ,

τσ =

(∫ 1

β

ψ(s)2sd−1ds

)
ΛKnK,σ · nK,σ

dK,σ
.

The proof is complete by noticing that the right hand side of (11.8) is identical
to the right-hand side of SIPG methods as in [83, 61].

Remark 11.7 (Lower bound for τσ and mesh regularity). By the Cauchy–
Schwarz inequality and (11.6a),

1 =

(∫ 1

β

ψ(s)sd−1ds

)2

≤
∫ 1

β

ψ(s)2sd−1ds

∫ 1

β

sd−1ds.

Hence, ∫ 1

β

ψ(s)2sd−1ds ≥ d

1− βd
≥ d.

The coercivity assumption (2.21a) on Λ therefore shows that τσ ≥ dλ/dK,σ
for all σ ∈ F , where K is any mesh in Mσ.
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Classical analyses of SIPG methods require the stabilisation parameter to be
larger than some constant depending on the mesh regularity (in particular,
through maxK∈M Card(FK) and some discrete trace constant, see [61, Lemma
4.12]). For the DGGD analysis, no such assumption is made. The lower bound
on τσ only depends on dK,σ, and no “large enough” parameter has to be
selected by the user.

11.2 Mathematical properties of DG gradient
discretisations

11.2.1 Preliminary results

Definition 11.8 (Comparison of norms on Rn+1). Let n ∈ N and q > 0
be given. We denote by Cq,n > 0 the largest number, depending only on n, q
and d, such that

∀(a0, . . . , an) ∈ Rn+1,

∫ 1

0

∣∣∣∣∣
n∑
i=0

ait
i

∣∣∣∣∣
q

td−1ds ≥ Cq,n
n∑
i=0

|ai|q. (11.13)

Note that the existence of Cq,n follows from the homogeneity of each side
of (11.13), and from the fact that, if the left-hand side vanishes, then the
polynomial

∑n
i=0 ait

i is zero on [0, 1], and thus ai = 0 for all i = 0, . . . , n.

The following lemma is instrumental to the study of ‖∇D·‖Lp(Ω)d .

Lemma 11.9. Let n ∈ N and β ∈ (0, 1) be given. Let T be a polytopal mesh
in the sense of Definition 7.2. Then

∀v ∈ Pn(Rd), ∀K ∈M, ∀σ ∈ FK ,∫
DK,σ

|v(x)|pdx ≤ (n+ 1)p−1

βd+pnCp,n

∫
D

(β)
K,σ

|v(x)|pdx,

where Cp,n is defined in Definition 11.8 with q = p, and D
(β)
K,σ is defined by

(11.7).

Proof. For K ∈ M and σ ∈ FK , compute
∫
D

(β)
K,σ

|v(x)|pdx by making the

change of variable x = xK +s(y−xK), where y ∈ σ and s ∈ (0, β). Recalling
that dx = dK,σs

d−1dγ(y)ds, this yields∫
D

(β)
K,σ

|v(x)|pdx =

∫
σ

∫ β

0

|v(xK + s(y − xK))|pdK,σsd−1dsdγ(y).

For a given y ∈ σ, s 7→ v(xK + s(y − xK)) is a polynomial of degree at most
n, and we can thus write v(xK + s(y − xK)) =

∑n
i=0 ai(y)si. Then, using
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the notation introduced in Definition 11.8, performing the change of variable
s = βt, and recalling that β ∈ (0, 1),∫ β

0

∣∣∣∣∣
n∑
i=0

ai(y)si

∣∣∣∣∣
p

sd−1ds = βd
∫ 1

0

∣∣∣∣∣
n∑
i=0

ai(y)βiti

∣∣∣∣∣
p

td−1dt

≥ βdCp,n
n∑
i=0

|ai(y)βi|p ≥ βd+pnCp,n

n∑
i=0

|ai(y)|p.

This leads to∫
D

(β)
K,σ

|v(x)|pdx ≥ βd+pnCp,n

∫
σ

dK,σ

(
n∑
i=0

|ai(y)|p
)

dγ(y). (11.14)

On the other hand, since (
∑n
i=0 |ai(y)|)p ≤ (n+1)p−1

∑n
i=0 |ai(y)|p (see (D.1)

with bi = 1 for all i),∫
DK,σ

|v(x)|pdx =

∫
σ

∫ 1

0

|v(xK + s(y − xK))|pdK,σsd−1dsdγ(y)

=

∫
σ

∫ 1

0

∣∣∣∣∣
n∑
i=0

ai(y)si

∣∣∣∣∣
p

dK,σs
d−1dsdγ(y)

≤ (n+ 1)p−1

∫
σ

(
n∑
i=0

|ai(y)|p
)
dK,σdγ(y).

The lemma is proved by using (11.14) in this last equation.

Norms well-suited to the analysis of DG methods involve the Lp norm of the
gradient in each cell, and jump terms at the faces. The following lemma relates
such a norm with the norm of the DGGD reconstructed gradient.

Lemma 11.10. Let D be a DGGD in the sense of Definition 11.1. Then there
exists A > 0, depending only on β, p, k and d, such that

∀v ∈ XD,0,
1

A
‖v‖DG,p ≤ ‖∇Dv‖Lp(Ω)d ≤ A‖v‖DG,p, (11.15)

where

‖v‖pDG,p =∑
K∈M

(∫
K

|∇Kv(x)|pdx+
∑
σ∈FK

1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)

)
. (11.16)

Remark 11.11 (DG norm). It is easy to see that ‖·‖DG,p defined by (11.16) is
a norm on XD,0. Indeed, if ‖v‖DG,p = 0 then the jumps at the faces (both
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interior and exterior) are equal to 0, which implies that ΠDv ∈ W 1,p
0 (Ω).

Since ‖v‖DG,p = 0 implies that ∇ΠDv = 0 a.e. in Ω, we get that ΠDv = 0
a.e. in Ω. It is then deduced from the definition (11.3) of ΠDv that v = 0.
Note that this DG norm is slightly different from [60, eqn. (5)] or [61, eqn.
(5.1)], mostly through the usage of dK,σ instead of diam(σ) in the jump term.

Proof. Let K ∈ M and σ ∈ FK . Writing x = xK + s(y − xK) and using,
for some c > 0 to be chosen later, |a + b|p ≤ (1 + cp

′
)p−1(|a|p + | bc |

p) with
1
p + 1

p′ = 1, a = ∇Kv(x) +
[v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ and b = −∇Kv(x), we

have∫
K

|∇Dv(x)|pdx

=

∫
K(β)

|∇Kv(x)|pdx

+
∑
σ∈FK

∫
DK,σ\D(β)

K,σ

∣∣∣∇Kv(x) +
[v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ

∣∣∣pdx
≥
∫
K(β)

|∇Kv(x)|pdx− 1

cp

∫
K\K(β)

|∇Kv(x)|pdx

+
1

(1 + cp′)p−1

∑
σ∈FK

∫
DK,σ\D(β)

K,σ

∣∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))nK,σ

∣∣∣∣p dx. (11.17)

We have, by equivalence of the l2 and lp norms on Rd (iterate (D.13) with
α = d/2),

1

d

d∑
i=1

|∂iΠKv|
p ≤ |∇Kv|

p ≤ dp/2
d∑
i=1

|∂iΠKv|
p. (11.18)

Applying Lemma 11.9 to the polynomial ∂iΠKv ∈ Pk−1(Rd) for i = 1, . . . , d
then shows that∫

K(β)

|∇Kv(x)|pdx ≥ βd+p(k−1)Cp,k−1

dkp−1

d∑
i=1

∫
K

|∂iΠKv(x)|pdx

≥ C ′
∫
K

|∇Kv(x)|pdx,

where by C ′ =
βd+p(k−1)Cp,k−1

d1+p/2kp−1 . We then define c by 1
cp = 1

2C
′. Using |nK,σ| = 1

and coming back to (11.17) yields∫
K

|∇Dv(x)|pdx ≥ 1

2
C ′
∫
K

|∇Kv(x)|pdx

+
1

(1 + cp′)p−1

∑
σ∈FK

∫
DK,σ\D(β)

K,σ

∣∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))

∣∣∣∣p dx. (11.19)
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Using once more the change of variable x = xK + s(y − xK), we obtain∫
DK,σ\D(β)

K,σ

∣∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))

∣∣∣∣p dx

= dK,σ

∫
σ

|[v]K,σ(y)|p

dpK,σ
dγ(y)

∫ 1

β

|ψ(s)|psd−1ds

=
1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds.

Used in (11.19), this completes the proof of the left-most inequality in (11.15).
To prove the other inequality, simple use the definition of ∇Dv and (D.12) to
write∫

DK,σ

|∇Dv(x)|pdx ≤ 2p−1

∫
DK,σ

|∇Kv(x)|pdx

+ 2p−1

∫
DK,σ\D(β)

K,σ

∣∣∣∣ [v]K,σ(y(x))

dK,σ
ψ(s(x))

∣∣∣∣p dx

= 2p−1

∫
DK,σ

|∇Kv(x)|pdx

+
2p−1

dp−1
K,σ

∫
σ

|[v]K,σ(y)|pdγ(y)

∫ 1

β

|ψ(s)|psd−1ds.

We now define, and state estimates on, a control of a DGGD by a polytopal
toolbox.

Lemma 11.12 (Control of a DGGD by a polytopal toolbox). Let T be
a polytopal mesh and D be a DGGD in the sense of Definition 11.1. Define the
control Φ : XD,0 → XT,0 of D by T (see Definition 7.9) by: for all v ∈ XD,0,

∀σ ∈ Fint with Mσ = {K,L},

Φ(v)σ =
1

|σ|

∫
σ

ΠKv(y) +ΠLv(y)

2
dγ(y),

∀σ ∈ Fext, Φ(v)σ = 0,

∀K ∈M , Φ(v)K =
1

|K|

∫
K

ΠKv(x)dx.

(11.20)

Take % ≥ θT + ηT (see (7.8)-(7.9)). Then, there exists C36 > 0 depending only
on Ω, k, d, β, p and %, such that

‖Φ‖D,T ≤ C36, (11.21)

ωΠ(D,T,Φ) ≤ C36hM, (11.22)

and
ω∇(D,T,Φ) = 0. (11.23)
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Proof. Apply first Lemma B.6 to obtain C37 depending only on d, p and %
such that, for all K ∈M and σ ∈ FK ,∣∣∣∣ 1

|σ|

∫
σ

ΠKv(y)dγ(y)−Φ(v)K

∣∣∣∣p ≤ C37h
p−1
K

|σ|
‖|∇Kv|‖

p
Lp(K)d

(11.24)

and
‖ΠKv −Φ(v)K‖Lp(K)

≤ C37hK ‖|∇Kv|‖Lp(K)d
. (11.25)

By Definition (11.5) of [v]K,σ, in all cases σ ∈ FK ∩ Fint or σ ∈ FK ∩ Fext

there holds

Φ(v)σ =
1

|σ|

∫
σ

[v]K,σ(y)dγ(y) +
1

|σ|

∫
σ

ΠKv(y)dγ(y). (11.26)

Therefore, using (D.12), Jensen’s inequality (D.10) (with Ψ(s) = sp) and
(11.24),

|Φ(v)σ −Φ(v)K |p

≤ 2p−1

(
1

|σ|

∫
σ

|[v]K,σ(y)|pdγ(y) +
C37h

p−1
K

|σ|
∥∥|∇Kv|∥∥pLp(K)d

)
.

Divide this inequality by dp−1
K,σ , multiply by |σ|, use hK/dK,σ ≤ θT, and sum

over σ ∈ FK . Then use Card(FK) ≤ θT and sum over K ∈ M to see that
there exists C38 > 0 depending only on Ω, p and %, such that

|Φ(v)|pT,p ≤ C38‖v‖pDG,p.

Conclude (11.21) by invoking Lemma 11.10.

Estimate (11.22) is obtained by raising (11.25) to the power p, by summing
over K ∈ M and by using Lemma 11.10 to see that

∑
K∈M ‖∇Kv‖

p
Lp(K)d

≤
Ap ‖∇Dv‖pLp(Ω)d .

To prove (11.23), notice that the change of variable x = xK + s(y − xK),
(11.6a) and Stokes formula on ∇Kv = ∇(ΠKv) give∫

K

∇Dv(x)dx =

∫
K

∇Kv(x)dx+
∑
σ∈FK

dK,σ

∫
σ

[v]K,σ(y)

dK,σ
nK,σdγ(y)

=
∑
σ∈FK

∫
σ

(ΠKv(y) + [v]K,σ(y))nK,σdγ(y).

Accounting for (11.26) leads to∫
K

∇Dv(x)dx =
∑
σ∈FK

|σ|Φ(v)σnK,σ =

∫
K

∇TΦ(v)(x)dx

and the proof of (11.23) is complete.
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11.2.2 Properties of DGGDs

Most of the properties of sequence of DGGDs are immediate consequences of
their control by polytopal toolboxes.

Theorem 11.13 (Properties of DGGDs). Let (Dm)m∈N be a sequence of
DGGDs in the sense of Definition 11.1, defined from underlying polytopal
meshes (Tm)m∈N. Assume that (θTm + ηTm)m∈N is bounded (see (7.8) and
(7.9)), and that hMm

→ 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2.

Proof. The limit-conformity, coercivity and compactness are obtained by
applying Corollary 7.12, thanks to Lemma 11.12.
The GD-consistency is obtained by applying Lemma 11.14 below with ` = 1,
and by using Lemma 2.17 and the density of W 2,p(Ω)∩W 1,p

0 (Ω) in W 1,p
0 (Ω).

As expected, DGGD is a high order method, which means that high order
estimates should be obtained for SD and WD. These estimates are given in
the following two lemmas.

Lemma 11.14 (Estimate on SD for DGGD). Let D be a DGGD in the
sense of Definition 11.1, with underlying polytopal mesh T. Take % ≥ θT +
ηT (see (7.8) and (7.9)) and let ` ∈ {1, . . . , k}. Then there exists C39 > 0,
depending only on on Ω, β, p, k, `, d and %, such that

∀ϕ ∈W `+1,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C39h

`
M ‖ϕ‖W `+1,p(Ω) , (11.27)

where SD is defined by (2.2).

Proof. In this proof, C is a generic notation for various positive numbers
depending only on Ω, β, p, k, `, d and %. Let ϕ ∈ W `+1,p(Ω) ∩ W 1,p

0 (Ω)
and, for K ∈ M, denote by πkK : L1(K) → Pk(K) the L2(K)-projection on
polynomials over K of degree at most k. By [57, Lemmata 3.4 and 3.6],∥∥ϕ− πkKϕ∥∥Lp(K)

≤ Ch`+1
K ‖ϕ‖W `+1,p(K) , (11.28)∥∥∇ϕ−∇(πkKϕ)

∥∥
Lp(K)d

≤ Ch`K ‖ϕ‖W `+1,p(K) , (11.29)

∀σ ∈ FK ,
∥∥ϕ− πkKϕ∥∥Lp(σ)

≤ Ch`+1− 1
p

K ‖ϕ‖W `+1,p(K) . (11.30)

The functions (πkKϕ)K∈M define an element of Wh. Since ΠD : XD,0 → Wh

is an isomorphism (see its definition (11.3)), there exists v ∈ XD,0 such that
(ΠDv)|K = ΠKv = πkKϕ for all K ∈M. Then, raising (11.28) to the power p
and summing over K ∈M yields

‖ϕ−ΠDv‖Lp(Ω) ≤ Ch
`+1
M ‖ϕ‖W `+1,p(Ω) . (11.31)
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Let us now analyse the jump terms in ∇Dv. Let σ ∈ Fint withMσ = {K,L},
and y ∈ σ. Writing

[v]K,σ(y) =
1

2
(ΠLv(y)− ϕ(y) + ϕ(y)−ΠKv(y))

=
1

2
(πkLϕ(y)− ϕ(y)) +

1

2
(ϕ(y)− πkKϕ(y))

and using (11.30) in cells K and L yields

‖[v]K,σ‖Lp(σ) ≤ Ch
`+1− 1

p

L ‖ϕ‖W `+1,p(L) + Ch
`+1− 1

p

K ‖ϕ‖W `+1,p(K)

≤ Ch`M
(
h

1− 1
p

L ‖ϕ‖W `+1,p(L) + h
1− 1

p

K ‖ϕ‖W `+1,p(K)

)
.

By definition of %, dK,σ ≥ %−1hK and dK,σ ≥ %−1dL,σ ≥ %−2hL, so d
1
p−1

K,σ ≤

Ch
1
p−1

K and d
1
p−1

K,σ ≤ Ch
1
p−1

L . Hence,

d
1
p−1

K,σ ‖[v]K,σ‖Lp(σ) ≤ Ch
`
M

(
‖ϕ‖W `+1,p(L) + ‖ϕ‖W `+1,p(K)

)
.

Using the same change of variable x = xK + s(y − xK) as in the proof of
Lemma 11.10, we infer∫

DK,σ

|∇Dv(x)−∇Kv(x)|pdx

=

∫
DK,σ

∣∣∣∣ψ(s(x))
[v]K,σ(y(x))

dK,σ

∣∣∣∣p dx

=

∫ 1

β

|ψ(s)|psd−1ds

∫
σ

d1−p
K,σ |[v]K,σ(y)|pdγ(y)

≤ Chp`M
(
‖ϕ‖pW `+1,p(L) + ‖ϕ‖pW `+1,p(K)

)
. (11.32)

Since ϕ = 0 on ∂Ω, performing the same steps as above shows that (11.32)
also holds if σ ∈ FK ∩ Fext, by simply removing the term involving L. Sum
(11.32) over σ ∈ FK and K ∈ M, recall that ∇Kv = ∇(ΠKv) = ∇(πkKϕ),
and use then (11.29) and the triangle inequality to infer

‖∇Dv −∇ϕ‖Lp(Ω)d ≤ Ch
`
M ‖ϕ‖W `+1,p(Ω) .

Combined with (11.31), this completes the proof of (11.27).

Lemma 11.15 (Estimate on WD(ϕ) for DGGD). Let D be a DGGD in
the sense of Definition 11.1, with underlying polytopal mesh T. Take % ≥
θT + ηT (see (7.8) and (7.9)) and let ` ∈ {1, . . . , k}. Then there exists C40,
depending only on Ω, β, p, k, `, d and %, such that

∀ϕ ∈W `,p′(Ω)d , WD(ϕ) ≤ C40h
`
M ‖ϕ‖W `,p′ (Ω)d , (11.33)

where WD is defined by (2.6).
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Remark 11.16 (Estimate on the space size of a DGGD). Lemmata 11.14 and
11.15 give the following estimate on the space size of a DGGD (as in Definition
2.23):

hD(W `+1,p(Ω) ∩W 1,p
0 (Ω);W `,p′(Ω)d) ≤ max(C39, C40)h`M.

Proof. In this proof, C denotes various constants having the same depen-
dencies as C40 in the lemma. Let ϕ ∈W `,p′(Ω)d. Using the definition of ∇Dv
and ΠDv yields∫

Ω

(∇Dv(x) ·ϕ(x) +ΠDv(x)divϕ(x)) dx (11.34)

=
∑
K∈M

∫
K

(∇(ΠKv)(x) ·ϕ(x) +ΠKv(x)divϕ(x)) dx

+
∑
K∈M

∑
σ∈FK

∫
DK,σ

ψ(s(x))
[v]K,σ(y(x))

dK,σ
nK,σ ·ϕ(x)dx

= T1 + T2. (11.35)

Stokes formula in each cell K yields

T1 =
∑
K∈M

∑
σ∈FK

∫
σ

ΠKv(y)ϕ(y) · nK,σdγ(y). (11.36)

Let πk−1
K : Lp(K)d → Pk−1(K)d be the component-wise L2(K)-projection

over polynomial vectors on K of degree at most k − 1, and write

T2 =
∑
K∈M

∑
σ∈FK

∫
DK,σ

ψ(s(x))
[v]K,σ(y(x))

dK,σ
nK,σ · (ϕ(x)− πk−1

K ϕ(x))dx

+
∑
K∈M

∑
σ∈FK

∫
DK,σ

ψ(s(x))
[v]K,σ(y(x))

dK,σ
nK,σ · πk−1

K ϕ(x)dx

= T2,1 + T2,2. (11.37)

Similarly to (11.28) we have
∥∥ϕ− πk−1

K ϕ
∥∥
Lp′ (K)d

≤ Ch`K ‖ϕ‖W `,p′ (K)d . Hence,

the Hölder inequalities (D.1), (D.5) and the now classical change of variable
x = xK + s(y − xK) show that

|T2,1| ≤ Ch`M ‖ϕ‖W `,p′ (Ω)d

×

( ∑
K∈M

∑
σ∈FK

∫
DK,σ

|ψ(s)|psd−1ds

∫
σ

d1−p
K,σ |[v]K,σ(y)|pdγ(y)

)1/p

≤ Ch`M ‖ϕ‖W `,p′ (Ω)d ‖v‖DG,p

≤ CAh`M ‖ϕ‖W `,p′ (Ω)d ‖∇Dv‖Lp(Ω)d . (11.38)
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Lemma 11.10 was invoked in the last line. We now turn to T2,2. Since πk−1
K ϕ

is a polynomial of degree k − 1 or less, using the change of variable x =
xK + s(y − xK) and a Taylor expansion in s about s = 1 we have, similarly
to (11.11),

πk−1
K ϕ(x) · nK,σ = πk−1

K ϕ(y) · nK,σ +

k−1∑
m=1

pm(y)(1− s)m

where pm is a polynomial in y. Hence, by (11.6),

T2,2 =
∑
K∈M

∑
σ∈FK

∫
σ

[v]K,σ(y)πk−1
K ϕ(y) · nK,σdy.

Therefore, with (11.36)

T1 + T2,2 =
∑
K∈M

∑
σ∈FK

∫
σ

(
ΠKv(y)ϕ(y) + [v]K,σ(y)πk−1

K ϕ(y)
)
· nK,σdγ(y)

=
∑
K∈M

∑
σ∈FK

∫
σ

(ΠKv(y) + [v]K,σ(y))ϕ(y) · nK,σdγ(y) (11.39)

+
∑
K∈M

∑
σ∈FK

∫
σ

[v]K,σ(y)(πk−1
K ϕ(y)−ϕ(y)) · nK,σdγ(y).

If σ ∈ Fint with Mσ = {K,L}, ΠKv(y) + [v]K,σ(y) = 1
2 (ΠKv(y) +ΠLv(y))

and thus, since nK,σ + nL,σ = 0,∫
σ

(ΠKv(y) + [v]K,σ(y))ϕ(y) · nK,σdγ(y)

+

∫
σ

(ΠLv(y) + [v]L,σ(y))ϕ(y) · nL,σdγ(y) = 0.

If σ ∈ Fext with Mσ = {K}, then ΠKv(y) + [v]K,σ(y) = 0. These arguments
show that the term (11.39) vanishes, and thus that

T1 + T2,2 =
∑
K∈M

∑
σ∈FK

∫
σ

[v]K,σ(y)(πk−1
K ϕ(y)−ϕ(y)) · nK,σdγ(y).

Similarly to (11.30), we have ‖ϕ− πk−1
K ϕ‖Lp′ (σ)d ≤ Ch

`−1/p′

K ‖ϕ‖W `,p′ (K)d ≤
Ch`Md

−1/p′

K,σ ‖ϕ‖W `,p′ (K)d (use dK,σ ≤ hK). The continuous and discrete

Hölder inequalities (D.5) and (D.2) (the latter with parameters di = d
1
p−1

K,σ =

d
−1/p′

K,σ ) thus give

|T1 + T2,2| ≤ C

( ∑
K∈M

∑
σ∈FK

∫
σ

d1−p
K,σ |[v]K,σ(y)|pdγ(y)

)1/p

h`M ‖ϕ‖W `,p′ (Ω)d
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≤ C ‖v‖DG,p h
`
M ‖ϕ‖W `,p′ (Ω)d

≤ CAh`M ‖∇Dv‖Lp(Ω)d ‖ϕ‖W `,p′ (Ω)d .

Combined with (11.38) and plugged alongside (11.37) into (11.35), this con-
cludes the proof of (11.33).

11.3 Average DG gradient discretisation

This section presents an alternative gradient discretisation associated with
discontinuous Galerkin methods. This GD, called the Average Discontinuous
Galerkin Gradient Discretisation (ADGGD), leads to simpler computations,
as shown in Chapter E in the case k = 1. Let XD,0 and ΠD be defined as in
Section 11.1. We substitute to (11.4) the following definition: for v ∈ XD,0,
K ∈M, σ ∈ FK and a.e. x ∈ DK,σ, set

∇Dv(x) = ∇Kv(x) + ψ(x)
[v]aK,σ
dK,σ

nK,σ, (11.40)

where ψ(x) = 0 for x ∈ D(β)
K,σ, ψ(x) = d

1−βd for x ∈ DK,σ \ D(β)
K,σ and the

average jump [v]aK,σ, which replaces the pointwise jump in (11.4), is defined
by

if σ ∈ Fint and Mσ = {K,L} ,

[v]aK,σ =
1

|σ|

∫
σ

ΠLv(y)−ΠKv(y)

2
dγ(y),

if σ ∈ Fext and Mσ = {K} ,

[v]aK,σ =
1

|σ|

∫
σ

(0−ΠKv(y))dγ(y).

(11.41)

The same analysis as in the previous sections can be carried out, following
the items below.

• Lemma 11.10 holds for the ADGGD, replacing ‖v‖DG,p by ‖v‖ADG,p de-
fined by

‖v‖pADG,p =
∑
K∈M

(∫
K

|∇Kv(x)|pdx+
∑
σ∈FK

|σ|
dp−1
K,σ

∣∣[v]aK,σ
∣∣p) . (11.42)

• The conclusions of Lemma 11.12 hold, with the same definition of the
control Φ : XD,0 → XT,0 of D by T. Hence, Theorem 11.13 is also verified
by ADGGDs, by noticing that Lemma 11.14 holds and by replacing the
pointwise jump by the average jump.
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• The proof of Lemma 11.15 cannot be immediately adapted since the term
(11.39) does no longer vanish.

The idea of using jumps of mean values (instead of jumps of functions) appears
in [113], and in [31] with a non-symmetric scheme. Following the same steps
as in the proof of Theorem 11.6, we check that using the ADGGD in the GS
(2.23) consists in applying to the linear diffusion model (2.22) the method
described in [113] on a model of linear elasticity.
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The multi-point flux approximation MPFA-O
scheme

The two-point flux approximation (TPFA) method was introduced in Section
1.1.3. This scheme has been widely used in industry because of its simplicity
in the case of scalar diffusion operators, since it leads (in 2D) to a 5-point
approximation for the Laplace operator, with no face unknowns. As we saw
1.1.3 the TPFA-CG scheme is a GDM. The GDM version can then be written
with any full diffusion matrices, with the drawback that the face unknowns
can no longer be eliminated from the flux conservation equations at the faces.
The multi-point flux approximation-O [2] scheme mitigates this drawback,
but leads to a symmetric definite positive matrix only on certain meshes. The
aim of this chapter is to show that, in two such particular cases of meshes,
the MPFA O-scheme is a GDM.

12.1 MPFA methods for Dirichlet boundary conditions

12.1.1 Definition of the MPFA gradient discretisation

We consider the MPFA-O scheme on particular polytopal meshes T =
(M,F ,P,V) of Ω: Cartesian (each K ∈ M is a parallelepipedic polyhedron
with faces parallel to the axes), or simplicial (in the sense of Definition 7.4).
In each of these cases, P is the set of centres of mass of the cells. We define a
partition (VK,s)s∈VK of each K ∈M the following way (see Figure 12.1):

• Cartesian meshes: VK,s is the parallelepipedic polyhedron whose faces are
parallel to the faces ofK, and that has xK and s as vertices. For σ ∈ F and
s ∈ Vσ, we let xσ,s = xσ. We have Card(VK) = 2d and Card(Vσ) = 2d−1.
• Simplicial mesh: We denote by (βKs (x))s∈VK the barycentric coordinates

of x in K, that is,

x− xK =
∑
s∈VK

βKs (x)(s− xK) with βKs (x) ≥ 0 and
∑
s∈VK

βKs (x) = 1.
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The set VK,s is made of the points x ∈ K whose barycentric coordinates
(βKs′ (x))s′∈VK satisfy βKs (x) > βKs′ (x) for all s′ ∈ VK \ {s}. For σ ∈ F
and s ∈ Vσ, xσ,s is the point of σ whose barycentric coordinates in σ are
βσs′(xσ,s) = 1/(d+1) for all s′ ∈ Vσ \{s}, and βσs (xσ,s) = 2/(d+1). Then,
denoting by s the vertex opposed to σ in K, the barycentric coordinates
in K of xσ,s are given by βKs′ (xσ,s) = 1/(d + 1) for all s′ ∈ Vσ \ {s},
βKs (xσ,s) = 2/(d+ 1) and βKs (xσ,s) = 0. We have Card(VK) = d+ 1 and
Card(Vσ) = d.

In both cases, we denote by FK,s the set of all elements σ ∈ FK such that
s ∈ Vσ, and we denote by τσ,s the external face of VK,s defined by

τσ,s = VK,s ∩ σ.

Observe that

|VK,s| =
|K|

Card(VK)
and |τσ,s| =

|σ|
Card(Vσ)

. (12.1)

K

xK xσ

σ

dK,σ

VK,s

s

nK,σ

s

σ
xK

xσ
VK,s

xσ,s

K

nK,σ

Fig. 12.1. Notations for MPFA-O schemes defined on Cartesian (left) and simplicial
(right) meshes.

We follow the notations in Definition 7.33 to construct the MPFA-O LLE GD
in both cases:

1. The set of geometrical entities attached to the discrete unknowns is I =
M ∪ {τσ,s : σ ∈ F , s ∈ Vσ} and the family of approximation points
is S = ((xK)K∈M, (xσ,s)σ∈F, s∈Vσ ). We define IΩ = M ∪ {τσ,s : σ ∈
Fint, s ∈ Vσ} and I∂ = {τσ,s : σ ∈ Fext, s ∈ Vσ}. This gives, with a
slight abuse of notation (we should write vτσ,s instead of vσ,s),

XD,0 = {v = ((vK)K∈M, (vσ,s)σ∈F, s∈Vσ ) :

vK ∈ R for all K ∈M , vσ,s ∈ R for all σ ∈ Fint and s ∈ Vσ,
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vσ,s = 0 for all σ ∈ Fext and s ∈ Vσ}.

For any K ∈M, we set IK = {K} ∪ {τσ,s : σ ∈ FK , s ∈ Vσ}.
2. The functions πK = (πiK)i∈IK of Lp(K) are defined by

πiK = 1 for i = K, and πiK = 0 for i = τσ,s, (12.2)

which means that

∀v ∈ XD,0 , ∀K ∈M , ∀x ∈ K , ΠDv(x) = vK . (12.3)

3. The functions GK = (GiK)i∈IK of Lp(K)d are defined by: for all s ∈ VK
and a.e. x ∈ VK,s,

GKK (x) = − 1

|VK,s|
∑

σ∈VK,s

|τσ,s|nK,σ,

∀σ ∈ FK,s , Gσ,sK (x) =
1

|VK,s|
|τσ,s|nK,σ ,

∀σ ∈ FK,s , Gσ,sK = 0 on K outside VK,s.

(12.4)

Hence, for all v ∈ XD,0,

∀K ∈M , ∀s ∈ VK , for a.e. x ∈ VK,s ,

∇Dv(x) =
1

|VK,s|
∑

σ∈FK,s

|τσ,s|(vσ,s − vK)nK,σ.
(12.5)

4. The exactness of the reconstructions πK and GK , as well as the fact that
‖∇D · ‖Lp(Ω)d is a norm on XD,0, are proved in Lemma 12.3 below.

Remark 12.1 (Identical approximation points). Note that, in the case of a
Cartesian mesh, for a given σ ∈ F all the approximation points (xσ,s)s∈Vσ
are identical. This is allowed in the definition of an LLE GD, see Definition
7.33

For such a GD, the GS (2.23) is a finite volume scheme. Indeed, by selecting
a test function with only non-zero value vK = 1 in (2.23), we obtain the flux
balance ∑

σ∈FK

∑
s∈Vσ

FK,σ,s(u) =

∫
K

f(x)dx,

where FK,σ,s(u) =

∫
σs

GKu(x) · nK,σdγ(x).

(12.6)

Selecting a test function with only non-zero value vσ,s = 1 in (2.23) leads to
the conservativity of the fluxes:

FK,σ,s(u) + FL,σ,s(u) = 0

for all σ ∈ Fint with Mσ = {K,L}, and all s ∈ Vσ.
(12.7)
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For a given s ∈ V, the unknowns (uσ,s)σ|s∈Vσ can be locally expressed in
terms of (uK)K|s∈VK . This is done by solving the local linear system issued
from (12.7) written for all σ such that s ∈ Vσ. After these local eliminations
of uσ,s, the resulting linear system only involves the cell unknowns. This dis-
cretisation of (2.20) obtained by writing the balance and conservativity of
half-fluxes FK,σ,s, constructed via P1-exact gradients reconstructions, is iden-
tical to the construction of the MPFA-O method in [2]. The GD constructed
above therefore gives indeed the MPFA-O scheme when used in the GS (2.23).

Remark 12.2 (Other meshes)
The identification of MPFA-O schemes as GSs is, to our knowledge, restricted to
the two cases considered here (Cartesian and simplicial meshes). In the case of more
general meshes for the approximation of (2.20), the gradient reconstruction defined
by the MPFA-O scheme can be used in the finite volume scheme (12.6)–(12.7);
however, the GS (2.23) built upon this gradient reconstruction cannot be expected
to always converge, since the corresponding GD may fail to be limit-conforming and
coercive.

12.1.2 Preliminary lemmas

Let us first prove that the GD constructed above is indeed an LLE GD, and
let us estimate its regularity.

Lemma 12.3 (Estimate on regLLE, MPFA-O). Let T be a polytopal mesh
in the sense of Definition 7.2, which is either Cartesian or simplicial. For
K ∈ M, let πK = (πiK)i∈IK be defined by (12.2), and GK = (GiK)i∈IK be
defined by (12.4). Then πK is a P0-exact function reconstruction on K, GK
is a P1-exact gradient reconstruction on K upon (xK , (xσ,s)σ∈FK , s∈Vσ ), and

∀ξ = (ξK , (ξσ,s)σ∈FK , s∈Vσ ) , (GKξ)|VK,s · (xσ,s − xK) = ξσ,s − ξK . (12.8)

Moreover, D is an LLE GE and there exists C41, depending only on d and
θ ≥ θT (see (7.8)), such that

regLLE(D) ≤ C41. (12.9)

Proof.
Step 1: properties of πK and GK .
We have

∑
i∈IK π

i
K = πKK = 1 so πK is a P0-exact function reconstruction.

Let s ∈ VK and assume that we can prove the following two properties:

∀σ̃ ∈ FK,s\{σ} , (xσ,s − xK)⊥nK,σ̃, and (12.10)

1

|VK,s|
|τσ,s|nK,σ · (xσ,s − xK) = 1. (12.11)

Then the expression
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(GKξ)|VK,s =
1

|VK,s|
∑

σ∈FK,s

|τσ,s|(ξσ,s − ξK)nK,σ

shows that

(GKξ)|VK,s · (xσ,s − xK) =
1

|VK,s|
|τσ,s|(ξσ,s − ξK)nK,σ · (xσ,s − xK)

= ξσ,s − ξK ,

which proves (12.8). Take an affine function A and apply this relation to
ξ = (A(xK), (A(xσ,s))σ∈FK , s∈Vσ ). Then

(GKξ)|VK,s · (xσ,s − xK) = A(xσ,s)−A(xK) = ∇A · (xσ,s − xK).

Since the family (xσ,s−xK)σ∈FK,s spans the whole space Rd, this shows that
the two vectors (GKξ)|VK,s and ∇A are identical, which concludes the proof
that GK is a P1-exact gradient reconstruction on K upon the approximation
points (xK , (xσ,s)σ∈FK , s∈Vσ ). We now have to establish (12.10) and (12.11).

• Cartesian mesh. For a Cartesian mesh, (12.10) and (12.11) are rather
straightforward by inspecting Figure 12.1, left.

• Simplicial mesh. Let σ ∈ FK,s and s be the vertex opposed to σ in K.
Recall that the barycentric coordinates in K of xσ,s are given by

βKs′ (xσ,s) = 1/(d+ 1) for all s′ ∈ Vσ \ {s},
βKs (xσ,s) = 2/(d+ 1)

βKs (xσ,s) = 0.

Since the barycentric coordinate of xK = xK are all 1/(d+ 1), this shows
that

xσ,s − xK =
1

d+ 1
(s− s).

For any face σ̃ ∈ FK,s\{σ}, the vertices s and s both belong to σ̃, and
s− s is thus orthogonal to nK,σ̃. This proves (12.10).
Since nK,σ · (xσ,s − xK) is the orthogonal distance between xK and σ,
|τσ,s|nK,σ · (xσ,s − xK) is equal to d times the measure of the cone with
basis τσ,s and vertex xK . We therefore have |τσ,s|nK,σ · (xσ,s − xK) =
|K|/(d+ 1), which concludes (12.11) due to (12.1).

Step 2: proof that D is an LLE GD, and estimate on regLLE(D).
To prove that D is an LLE GD, it remains to show that ‖∇D·‖Lp(Ω)d is a

norm on XD,0. If ∇Dv = 0 then (12.8) shows that vK = vσ,s for all σ ∈ FK
and s ∈ Vσ. Reasoning from neighbour to neighbour, this shows that v is the
constant vector. Since vσ,s = 0 whenever σ ∈ Fext, we infer that v = 0.

Let us now bound regLLE(D). Since all πiK are non-negative,
∑
i∈IK |π

i
K | = 1

and thus ‖πK‖p ≤ 1. All points (xi)i∈IK are in the closure of K, so
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dist(xi,K) = 0 and the third term in regLLE(D) vanishes. To bound ‖GK‖p,
we simply use |τσ,s| ≤ C42h

d−1
K and hdK ≤ C42|VK,s| for some C42 depending

only on θ and d, so that, by (12.4),

|GKK | ≤ dC2
42h
−1
K and |Gσ,sK | ≤ C

2
42h
−1
K .

The bound on ‖GK‖p follows from Remark 7.32.

Let us show how the generic tools presented in Chapter B apply.

Lemma 12.4 (Control of the MPFA GD by a polytopal toolbox).
Let T = (M,F ,P,V) be a Cartesian or simplicial polytopal mesh. Define the
polytopal mesh T′ = (M,F ′,P,V ′) such that the cells and centres (M,P) are
those T,

F ′ = {τσ,s : σ ∈ F , s ∈ Vσ},

and V ′ is the set of all vertices of the elements of F ′. We define a control of
D by T′ (in the sense of Definition 7.9) as the isomorphism Φ : XD,0 → XT′,0

given by Φ(u)K = uK and Φ(u)τσ,s = uσ,s.
Then, there exists C43, constant if T is Cartesian and depending only on
θ ≥ κT if T is simplicial, such that

‖Φ‖D,T′ ≤ C43, (12.12)

ωΠ(D,T′,Φ) = 0, (12.13)

ω∇(D,T′,Φ) = 0. (12.14)

Proof. Let u ∈ XD,0 and apply (12.8) to ξ = (uK , (uσ,s)σ∈FK , s∈Vσ ) to
deduce ∑

σ∈FK

∑
s∈Vσ

|τσ,s|dK,σ
∣∣∣∣uσ,s − uKdK,σ

∣∣∣∣p ≤ C44

∫
K

|∇Du(x)|pdx,

with C44 = 1 for parallelepipedic meshes, and C44 > 0 depends on θ ≥ κT
for simplicial meshes. Therefore ‖Φ(u)‖pT′,p ≤ C44‖∇Du‖pLp(Ω)d

and (12.12) is

proved.
Relation (12.13) follows immediately from ΠDu = ΠT′Φ(u). Finally, we have∫

K

∇Du(x)dx =
∑
σ∈FK

∑
s∈Vσ

|τσ,s|(uσ,s − uK)nK,σ

=
∑

σ′∈F ′K

|σ′|(Φ(u)σ′ −Φ(u)K)nK,σ′ = |K|(∇T′Φ(u))|K .

This shows that ω∇(D,T′,Φ) = 0, which establishes (12.14).
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12.1.3 Properties of the MPFA-O gradient discretisation

Thanks to the previous lemmas, the proof of the properties of MPFA-O GDs
is straightforward.

Theorem 12.5 (Properties of MPFA-O GDs). Let (Dm)m∈N be a se-
quence of MPFA-O GDs, as in Section 12.1.1, defined from underlying poly-
topal meshes (Tm)m∈N that are either Cartesian or simplicial. Assume that
(θTm + ηTm)m∈N is bounded (see (7.8) and (7.9)), and that hMm

→ 0 as
m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2. Each
Dm also has a piecewise constant reconstruction.

Proof. The limit-conformity, coercivity and compactness are obtained by
applying Corollary 7.12, thanks to Lemma 12.4. The consistency is obtained
by applying Proposition 7.37, thanks to Lemma 12.3. The piecewise constant
reconstruction property is obvious from (12.3).

The following two propositions, also direct consequences of results in the pre-
vious sections, are useful to establish precise error estimates for MPFA-O
GSs.

Proposition 12.6 (Estimate on WD for MPFA-O). Let T be a polytopal
mesh of Ω in the sense of Definition 7.2, that is either Cartesian or simplicial.
Let D be the MPFA-O GD as in Section 12.1.1. For Cartesian meshes we take
% ≥ θT + ηT (see (7.8) and (7.9)), and for simplicial meshes we take % ≥ κT
(see (7.10)). Then, there exists C45 depending only on Ω, p, and %, such that

CD ≤ C45 (12.15)

and, for all ϕ ∈W 1,p′(Ω)d,

WD(ϕ) ≤ C45 ‖ϕ‖W 1,p′ (Ω)d hM. (12.16)

Here, CD and WD are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. The conclusion follows immediately from Theorem 7.11 and Lemma
12.4.

Proposition 12.7 (Estimate on SD for MPFA-O). Let T be a polytopal
mesh of Ω in the sense of Definition 7.2, that is either Cartesian or simplicial.
Let D be the MPFA-O GD as in Section 12.1.1. Assume p > d/2 and take
% ≥ θT (see (7.8)). Then there exists C46 > 0, depending only on Ω, p and %,
such that

∀ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C46 ‖ϕ‖W 2,p(Ω) hM,
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where SD is defined by (2.2). This means that the space size (see Definition
2.23) of the GD satisfies

hD(W 2,p(Ω) ∩W 1,p
0 (Ω);W 1,p′(Ω)d) ≤ max(C46, C45)hM,

where C45 is defined in Proposition 12.6.

Proof. For all K ∈M and all i ∈ IK , we have xi ∈ K. By Lemmas 12.3 and
B.1, the hypotheses of Proposition 7.64 are satisfied with θ depending only
on %. This proposition yields the expected estimate on SD.

The application of Lemmas 12.3 and 12.6 to the estimates (2.25) and (2.26)
in Theorem 2.29 provides an error in O(hM) in the case of a linear elliptic
problem in one, two or three space dimensions, when the exact solution belongs
to H2(Ω).

12.2 MPFA-O methods for Neumann and Fourier
boundary conditions

12.2.1 Neumann boundary conditions

We refer to Definition 7.54 for the construction of an MPFA-O GD for Neu-
mann boundary conditions, with the same IΩ , I∂ , ΠD, ∇D as in Section
12.1.1.
Defining T′ as in Lemma 12.4, for v ∈ XD = XT′ such that ‖∇Dv‖Lp(Ω)d = 0,

Inequality (12.12) (still valid for non-zero boundary values) and the definition
(7.7f) of |·|T′,p show that all (vK)K∈M and all (vσ,s)σ∈F,s∈Vσ are identical.
Hence, by definition of ΠD the quantity (3.1) is indeed a norm on XD.
For non-homogeneous Neumann boundary conditions, the trace reconstruc-
tion TD : XD → Lp(∂Ω) can be defined as TT′ (see (7.7d) with T = T′):

∀v ∈ XD , ∀σ ∈ Fext , ∀s ∈ Vσ : TDv = vσ,s on τσ,s. (12.17)

Since the regularity factor regLLE(D) is defined as for Dirichlet boundary con-
ditions, Lemma 12.3 still applies and show that this factor remains bounded
if θT is bounded. Defining the control Φ = Id : XD → XT′ as in Lemma 12.4,
we see that this lemma still holds and that ωT(D,T′,Φ) = 0. Hence, Corollary
7.18 and Proposition 7.55 give the following theorem.

Theorem 12.8 (Properties of MPFA-O GDs for Neumann BCs). Let
(Dm)m∈N be a sequence of MPFA-O GDs for Neumann boundary conditions
as above, defined from underlying polytopal meshes (Tm)m∈N that are either
Cartesian or simplicial. Assume that the sequence (θTm +ηTm)m∈N is bounded
(see (7.8) and (7.9)), and that hMm → 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.16. Moreover, each
Dm has a piecewise constant reconstruction in the sense of Definition 2.13.
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Proposition 7.70 and Theorem 7.17 also give estimates on SD, CD and WD
that are similar to those in Lemma 12.3 and Proposition 12.6. The constants
depend only on an upper bound of θT + ηT (for Cartesian meshes) or κT (for
simplicial meshes, due to Lemma B.4).

12.2.2 Fourier boundary conditions

Starting from an MPFA-O GD for Dirichlet boundary conditions, we follow
Definition 7.57 in Section 7.3.6 to define an MPFA-O GD for Fourier boundary
conditions.
The boundary mesh M∂ is simply {τσ,s : σ ∈ Fext, s ∈ Vσ}, and the trace
reconstruction (12.17) corresponds to Iσ,s = {τσ,s} and πσ,sσ,s = 1 on τσ,s. The
bound on regLLE(D) for Fourier boundary conditions therefore easily follows
from the bound on this quantity for Dirichlet boundary conditions, and the
consistency (under boundedness of θT) is a consequence of Proposition 7.58.
As noticed in Remark 7.20, the work done for Neumann boundary conditions
then immediately shows that Theorem 12.8 also applies to Fourier boundary
conditions. Similarly, we could obtain estimates on SD, CD and WD as in
Propositions 12.7 and 12.6.
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Hybrid mimetic mixed schemes

Since the 50’s, several schemes have been developed with the objective to
satisfy some form of calculus formula at the discrete level. These schemes are
called mimetic finite difference (MFD) or compatible discrete operator (CDO)
schemes. Contrary to DDFV methods (see Section 14.2 and [77]) for which the
discrete operators and duality products are designed to satisfy fully discrete
calculus formula, MFD/CDO methods design discrete operators that satisfy a
Stokes formula that involves both continuous and discrete functions. Depend-
ing on the choice of the location of the main unknowns (faces or vertices), two
different MFD/CDO families exist. We refer to [127] for a review on MFD
methods, and to [27, 26] (and reference therein) for CDO methods.
A first MFD method, that we call mixed/hybrid MFD or hMFD here, is
designed by using the fluxes through the mesh faces as initial unknowns [36,
35]. This requires to recast (2.20) in a mixed form, i.e. to write q = Λ∇u and
−div(q) = f+div(F ), and to discretise this set of two equations. The resulting
scheme takes a form that is apparently far from the GS (2.23). It was however
proved in [75] that this form of hMFD can be actually embedded in a slightly
larger family also containing the hybrid finite volume (HFV) scheme, which
is the hybrid version of the SUSHI (Scheme Using Stabilisation and Hybrid
Interfaces) scheme [95], and mixed finite volume (MFV) methods [70, 71]. This
family has been called hybrid mimetic mixed (HMM) schemes; each scheme in
this family can be written in three different ways, depending on the considered
approach (hMFD, HFV or MFV). The HFV formulation of an HMM scheme
is very close to the weak formulation (2.22) of the elliptic PDE; it actually
consists in writing this weak formulation with a reconstructed gradient and
a stabilisation term (bilinear form on (u, v)). It was proved in [98] that this
specific stabilisation term could be included in an augmented gradient, and
thus that the HFV scheme is a GS. More surprisingly perhaps, [76] managed
to prove that all possible stabilisations in the HMM families can be embedded
in a gradient, and thus that all HMM methods (and thus all hMFD, HFV and
MFV schemes) are GDMs.
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In the following sections we detail the GD that leads to HMM methods when
applied to linear diffusion equations, and we establish its properties. HMM
methods correspond to LLE GDs. Following the nomenclature in Section 7.3.4,
the condensed SUSHI methods (including elimination of some or all of the in-
terface unknowns) are nothing else than barycentric condensation of HMM
methods; they are therefore also GDMs. We conclude this section by pre-
senting some considerations on the fluxes associated to the HMM and SUSHI
methods.
Note that some schemes adapting HMM ideas and variants to non-linear equa-
tions and systems have already been proposed and analysed in [68, 43, 94], but
they are not GDMs and do not fully take advantage of the coercive gradient
provided by HMM methods.

13.1 HMM methods for Dirichlet boundary conditions

We consider here the case of non-homogeneous Dirichlet boundary conditions,
which includes as a special case homogeneous Dirichlet conditions.

13.1.1 Definition of HMM gradient discretisations

The discrete elements that define an HMM GD are the following. We take
T = (M,F ,P,V) a polytopal mesh of Ω as in Definition 7.2, and we refer to
the notions in Definition 7.52.

1. The geometrical entities attached to the discrete unknowns are I =M∪F
and the approximation points are S = ((xK)K∈M, (xσ)σ∈F ). We let IΩ =
M∪Fint and I∂ = Fext. Hence, recalling the definitions (7.7a) and (7.7b)
of XT and XT,0,

XD = XT = {v = ((vK)K∈M, (vσ)σ∈F ) : vK ∈ R for all K ∈M ,

vσ ∈ R for all σ ∈ F},

and
XD,0 = XT,0 = {v ∈ XT : vσ = 0 for all σ ∈ Fext}.

For K ∈M, we set IK = {K} ∪ FK .
2. The function reconstructions πK = (πKK , (π

σ
K)σ∈FK ) of Lp(K) are defined

by
πKK = 1 and πσK = 0 for all σ ∈ FK . (13.1)

Recalling the definition (7.7c) of ΠT, (7.32) therefore reads

∀v ∈ XD , ∀K ∈M , for a.e. x ∈ K , ΠDv(x) = ΠTv(x) = vK . (13.2)
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3. The gradient reconstruction GK is best initially described through its ac-
tion GKv on families of real numbers, than through explicit formulas for
the functions (GiK)i∈IK . As already mentioned, the polytopal gradient de-
fined by (7.7e), that is,

∇Kv =
1

|K|
∑
σ∈FK

|σ|vσnK,σ, (13.3)

is P1-exact (Lemma B.10), but not “strong enough” to control all the dis-
crete unknowns in XT,0 since it does not involve the unknowns (uK)K∈M
(see Remark 7.8). The HMM gradient is built by adding to this polytopal
gradient a stabilisation term that is constant in each half-diamond in K.
Let XK = {v = (vK , (vσ)σ∈FK ) : vK ∈ R , vσ ∈ R} be the space of dis-
crete unknowns in K and define, for v ∈ XK , the function GKv ∈ Lp(K)d

by
∀σ ∈ FK , for a.e. x ∈ DK,σ ,

GKv(x) = ∇Kv +

√
d

dK,σ
[LKRK(v)]σnK,σ,

(13.4)

where, denoting by XFK = {ξ = (ξσ)σ∈FK : ξσ ∈ R} the space of face
values around K,
• RK : XK → XFK is the linear mapping given by

RK(v) = (RK,σ(v))σ∈FK with

RK,σ(v) = vσ − vK −∇Kv · (xσ − xK),
(13.5)

• LK is an isomorphism of the vector space Im(RK).
The gradient reconstruction ∇D is then defined by (7.33), which simply
gives

∀v ∈ XD , ∀K ∈M , ∀σ ∈ FK , for a.e. x ∈ DK,σ ,

∇Dv(x) = ∇Kv +

√
d

dK,σ
[LKRK(v)]σnK,σ.

(13.6)

Remark 13.1. If all values vσ are equal to 0 and all values vK are equal to 1,
then ∇Kv = 0 and the non-zero part of ∇Dv comes from the components
of RK(v), all equal to −1.

Remark 13.2 (The SUSHI scheme). A natural choice of LK is LK =
IdIm(RK). The corresponding HMM method is then the hybrid finite vol-
ume (HFV) scheme, i.e. the full hybrid version of the SUSHI scheme [95].
The coefficient

√
d in the expression (13.6) of the gradient may be modi-

fied to obtain other schemes; replacing it by d, for instance, leads to the
so-called “DGA” scheme, see [26, Remark 7.34].
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The functions (GiK)i∈IK of Lp(K)d can be recovered through GK defined
by (13.4). Let vK ∈ XK (resp. vσ ∈ XK) be the vectors with value 1 at
K (resp. at σ) and 0 at all other positions. Then,

GKK = GKvK and GσK = GKvσ for all σ ∈ FK . (13.7)

4. The trace interpolation operator ID,∂ : W 1− 1
p ,p(∂Ω) → XD,∂ is defined

by

∀g ∈W 1− 1
p ,p(∂Ω) , ∀σ ∈ Fext , (ID,∂g)σ =

1

|σ|

∫
σ

g(x)dγ(x). (13.8)

5. Lemma 13.10 below establishes the exactness of πK and GK , and the fact
that ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Remark 13.3 (Hybrid method)
The face unknowns (vσ)σ∈F correspond to the hybridisation of the hMFD methods.

Remark 13.4 (Simpler trace interpolation)
As explained in Remark 2.51, simpler trace interpolations can be used if the bound-
ary condition g of the considered problem (e.g., in (2.98b)) is more regular than

W
1− 1

p
,p

(∂Ω). For example, if g ∈ C(Ω) we can define (ID,∂g)σ = g(xσ).

We now want to prove that all hMFD, HFV and MFV methods, as presented
in the literature, are GDMs with gradient discretisations as above for suitable
choices of (LK)K∈M. As explained in the introduction of this chapter, hMFD,
HFV and MFV schemes are three different presentations of the same method
[75]. The presentation that is the closest to a GS is that of the HFV scheme.
With the notations above, any HMM method for the weak form (2.100) of the
linear problem (2.98) with F = 0 can be written (see [75] in the case g = 0):

Find u ∈ ID,∂g +XD,0 such that, for all v ∈ XD,0,∑
K∈M

|K|ΛK∇Ku · ∇Kv +
∑
K∈M

RK(v)TBKRK(u)

=
∑
K∈M

vK

∫
K

f(x)dx,

(13.9)

where ΛK is the constant value of Λ on K (we assume that Λ is piecewise
constant onM – see Remark 13.17 below for a discussion on this assumption),
BK = ((BK)σ,σ′)σ,σ∈FK is a symmetric positive definite matrix, and RK(v)T

the transpose of the vector RK(v).
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Remark 13.5 (RCard(FK) vs. XFK )
There is a slight abuse of notation here. We write RK(v) as a column vector as if it
belonged to RCard(FK), while it actually belongs to XFK . Implicitly, when switching
from elements w of XFK to column vectors, we have chosen a numbering (σ1, . . . , σ`)
of the faces of K, and we set w(σi) = wi for all i = 1, . . . , `. The same abuse of
notation is made when considering BK as a matrix and writing RK(v)TBKRK(v),
or further below in (13.15) when considering DK as a matrix.

The following lemma will be useful both to establish that all HMM methods
are GDMs, and to analyse the properties of HMM GDs.

Lemma 13.6. Let T = (M,F ,P,V) be a polytopal mesh of Ω in the sense of
Definition 7.2, and let D be an HMM GD as defined above, for certain choices
of (LK)K∈M. Then

1. For all K ∈M, β ∈ Im(RK) if and only if
∑
σ∈FK |σ|βσnK,σ = 0.

2. For all v ∈ XD and all K ∈M,

∇Kv =
1

|K|

∫
K

∇Dv(x)dx. (13.10)

Proof.
Item 1. Let us first introduce the mapping R̃K : XFK → XFK defined, for

ξ ∈ XFK by R̃K(ξ) = (R̃K,σ(ξ))σ∈FK with

R̃K,σ(ξ) = ξσ −Xξ · (xσ − xK) with Xξ =
1

|K|
∑

σ′∈FK

|σ′|ξσ′nK,σ′ .

By noting that RK(v) = R̃K((vσ−vK)σ∈FK ) we see that Im(RK) = Im(R̃K).

Let β ∈ Im(R̃K). Taking ξ ∈ XFK such that βσ = ξσ −Xξ · (xσ − xK), and
using Lemma B.3, we see that∑

σ∈FK

|σ|βσnK,σ =
∑
σ∈FK

|σ|ξσnK,σ −
∑
σ∈FK

|σ|Xξ · (xσ − xK)nK,σ

=
∑
σ∈FK

|σ|ξσnK,σ −

( ∑
σ∈FK

|σ|nK,σ(xσ − xK)T

)
Xξ

=
∑
σ∈FK

|σ|ξσnK,σ − |K|Xξ = 0.

Setting

GK : β ∈ XFK 7→
∑
σ∈FK

|σ|βσnK,σ ∈ Rd,

we just showed that Im(R̃K) ⊂ ker(GK). Since (nK,σ)σ∈FK spans Rd, the
linear mapping GK has rank d and therefore dim(kerGK) = Card(FK) − d.
It is easy to see that
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ker(R̃K) = {ξ ∈ XFK ; ∃Zξ ∈ Rd such that ξσ = Zξ · (xσ − xK)},

and thus that Z ∈ Rd 7→ (Z · (xσ − xK))σ∈FK ∈ ker(R̃K) is an isomorphism
(the one-to-one property comes from the fact that (xσ−xK)σ∈FK spans Rd).
Hence, dim(Im(R̃K)) = Card(FK) − d = dim(ker(GK)). Since Im(R̃K) ⊂
ker(GK), the equality of dimensions therefore gives Im(R̃K) = ker(GK) and
completes the proof of Item 1.

Item 2. By (13.6), since ∇Dv is constant in each half-diamond inside K, using

(B.1) to write |DK,σ| = |σ|dK,σ
d gives∫

K

∇Dv(x)dx =
∑
σ∈FK

|DK,σ|(∇Dv)|DK,σ

= |K|∇Kv +
1√
d

∑
σ∈FK

|σ|[LK(RK(v))]σnK,σ. (13.11)

But LK(RK(v)) ∈ Im(RK) since LK is an isomorphism of this space, and by
Item 1 the last term in (13.11) vanishes. This proves that

∫
K
∇Dv(x)dx =

|K|∇Kv as claimed.

Theorem 13.7 (HMM methods are GDMs). Let T be a polytopal mesh
of Ω in the sense of Definition 7.2, and for each K ∈M take BK a symmetric
positive definite matrix of size Card(FK). Then there exists a choice of iso-
morphisms LK : Im(RK) → Im(RK) such that, if D is the GD defined above
using these isomorphisms, the GS (2.23) (with F = 0) is the HMM scheme
(13.9) for the choice of matrices (BK)K∈M.

The proof also shows that any choice of isomorphisms (LK)K∈M leads to
an HMM method. In other words, there is a perfect equivalence between the
HMM family of methods and the family of GDs defined above.

Proof. Given the definition (13.2) of ΠD, the right-hand sides of (2.23) and
(13.9) clearly coincide. Since the space for the unknown and the test functions
are the same in both schemes, it simply remains to prove that the left-hand
sides also coincide for a proper choice of the isomorphisms (LK)K∈M.
Let K ∈ M. We will prove that there exists an isomorphism LK such that,
for all (u, v) ∈ X2

D,

|K|ΛK∇Ku · ∇Kv +RK(v)TBKRK(u)

=

∫
K

ΛK∇Du(x) · ∇Dv(x)dx. (13.12)

Summing (13.12) over K ∈ M then shows that the left-hand sides of (2.23)
and (13.9) are identical.
Recall the definition (13.6) of ∇D and use

∑
σ∈FK |DK,σ| = |K| to write, by

developing the scalar product,
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K

ΛK∇Du(x) · ∇Dv(x)dx =
∑
σ∈FK

|DK,σ|ΛK(∇Du)|K · (∇Dv)|K

= |K|ΛK∇Ku · ∇Kv

+ ΛK∇Ku ·
∑
σ∈FK

|DK,σ|
√
d

dK,σ
[LKRK(v)]σnK,σ (13.13)

+∇Kv · ΛK
∑
σ∈FK

|DK,σ|
√
d

dK,σ
[LKRK(u)]σnK,σ (13.14)

+
∑
σ∈FK

|DK,σ|
d

d2
K,σ

ΛKnK,σ · nK,σ[LKRK(u)]σ[LKRK(v)]σ.

By (B.1),
|DK,σ|
dK,σ

= |σ|
d and thus, since LK has values in Im(RK), Item 1 in

Lemma 13.6 shows that (13.13) and (13.14) vanish. Hence∫
K

ΛK∇Du(x) · ∇Dv(x)dx

= |K|ΛK∇Ku · ∇Kv + [LKRK(v)]TDK [LKRK(u)] (13.15)

with DK = diag( |σ|dK,σ
ΛKnK,σ ·nK,σ) a diagonal definite positive matrix. Re-

lation (13.12) therefore holds provided that, for all (ξ, η) ∈ (Im(RK))2,

ξTBKη = (LK(ξ))TDK(LK(η)). (13.16)

Consider the vector space E = Im(RK) ⊂ XFK , endowed with the two inner
products 〈ξ, η〉1 = ξTBKη and 〈ξ, η〉2 = ξTDKη. The isomorphism LK :
Im(RK) 7→ Im(RK) given by Lemma 13.8 below then satisfies (13.17), which
is precisely (13.16) with x = ξ and y = η.

Lemma 13.8. Let E be a finite-dimensional vector space endowed with two
inner products 〈 , 〉1 and 〈 , 〉2. There exists an isomorphism L : E 7→ E such
that

for all (x, y) ∈ E2, 〈x, y〉1 = 〈Lx,Ly〉2. (13.17)

Proof. Let e be an orthonormal basis for 〈 , 〉2 and Me be the (symmetric
definite positive) matrix of 〈 , 〉1 in this basis. If Xe and Ye are the coordinates
of x and y in e then 〈x, y〉1 = Y Te MeXe. Let Le =

√
Me and define L as the

isomorphism whose matrix relative to the basis e is Le. Since e is orthonormal
for 〈 , 〉2, the relation Y Te MeXe = (LeYe)T (LeXe) translates into 〈x, y〉1 =
〈Lx,Ly〉2.

Remark 13.9 (Elimination of the cell unknowns in the HMM GS by static conden-
sation)
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By static condensation, the cell unknowns can be eliminated when an HMM method
is applied to a linear elliptic equation. This is done by taking, in (13.9), the test
function v such that vK = 1 for one cell K ∈ M, vL = 0 for all other cells L, and
vσ = 0 for all σ ∈ FK . Then (13.3) shows that ∇Lv = 0 for all L ∈M, which gives
RK(v) = −(1)σ∈FK =: −1K , and RL(v) = 0 for all L 6= K. Hence, (13.9) leads to

−1TKBKRK(u) =

∫
K

f.

Since RK(u) = MK(uσ)σ∈FK − 1KuK , with MK a linear operator, we infer that

(1TKBK1K)uK =

∫
K

f + 1TKBKMK(uσ)σ∈FK .

The matrix BK being symmetric definite positive, 1TKBK1K > 0 and therefore

uK = (1TKBK1K)−1

(∫
K

f + 1TKBKMK(uσ)σ∈FK

)
.

Hence, the unknown uK can be locally computed from the source term f and the face
unknowns (uσ)σ∈FK , without even having to invert a local system. This expression
for uK can be plugged back into (13.9) and provides a symmetric positive definite
system only on (uσ)σ∈Fint .

13.1.2 Preliminary lemmas

To prove that HMM GD satisfy the properties defined in Part I, preliminary
results must first be established. If D is an HMM GD as in Section 13.1.1, we
define the following measure of the invertibility properties of the isomorphisms
(LK)K∈M:

ζD = min

{
ζ > 0 : ∀K ∈M, ∀v ∈ XK ,

ζ−1
∑
σ∈FK

|DK,σ|
∣∣∣∣RK,σ(v)

dK,σ

∣∣∣∣p ≤ ∑
σ∈FK

|DK,σ|
∣∣∣∣ [LKRK(v)]σ

dK,σ

∣∣∣∣p
≤ ζ

∑
σ∈FK

|DK,σ|
∣∣∣∣RK,σ(v)

dK,σ

∣∣∣∣p
}
.

(13.18)

In the case of the SUSHI scheme, see Remark 13.2, it is clear that ζD = 1.
The following lemma states that HMM GDs are LLE GDs, and gives a control
of their regularity regLLE in terms of ζD and geometric regularity factors.

Lemma 13.10 (Estimate on regLLE(D) for the HMM GD). Let T be
a polytopal mesh of Ω in the sense of Definition 7.2, and D be an HMM
GD as in Section 13.1.1. Then, for all K ∈ M, πK is a P0-exact function



13.1 HMM methods for Dirichlet boundary conditions 355

reconstruction on K, and GK is P1-exact gradient reconstruction on K upon
IK .
Moreover, D is an LLE GD and, if % ≥ θT + ζD (see (7.8) and (13.18)), there
exists C47, depending only on p, d and %, such that

regLLE(D) ≤ C47. (13.19)

Proof. Let K ∈ M. According to (13.1),
∑
i∈IK π

i
K = πKK = 1 so πK is a

P0-exact function reconstruction.
Lemma B.10 shows that ∇K is P1-exact gradient reconstruction. Hence, if v
interpolates an affine mapping A at the approximation points (xK , (xσ)σ∈FK ),
(13.5) gives RK,σ(v) = A(xσ) − A(xK) − ∇A · (xσ − xK) = 0. Therefore,
GKv|DK,σ = ∇Kv = ∇A and GK is a P1-exact gradient reconstruction on K
upon IK .
To prove thatD is an LLE GD, we need to show that v = 0 whenever∇Dv = 0.
If the latter equality holds, then (13.10) shows that ∇Kv = 0 for all K ∈ M
and thus, by (13.4) and the fact that LK is an isomorphism, RK(v) = 0.
Combined with ∇Kv = 0 this establishes that vσ − vK = 0 for all σ ∈ FK .
Reasoning from neighbour to neighbour we infer that v is the constant vector,
which means that it is zero since vσ = 0 for all σ ∈ Fext.

Let us now estimate regLLE(D). The first and last terms in the definition of
this regularity factor are easy to bound since, for all i ∈ IK , dist(xi,K) = 0
and

∑
i∈IK |π

i
K(x)| = 1. Let us estimate the term ‖GK‖p.

Take v = (vK , (vσ)σ∈FK ) and write, using the power-of-sums inequality (D.12)
and the definitions (13.4) and (13.18) of GK and ζD,

‖GKv‖pLp(K)d =
∑
σ∈FK

|DK,σ| |(GKv)|DK,σ |
p

≤ 2p−1

(
|K|

∣∣∇Kv∣∣p + d
p
2

∑
σ∈FK

|DK,σ|
∣∣∣∣ [LKRK(v)]σ

dK,σ

∣∣∣∣p
)

≤ 2p−1

(
|K|

∣∣∇Kv∣∣p + ζDd
p
2

∑
σ∈FK

|DK,σ|
∣∣∣∣RK,σ(v)

dK,σ

∣∣∣∣p
)
.

The definition (13.5) of RK,σ, the power-of-sums inequality (D.12), the esti-
mate |xσ − xK | ≤ hK ≤ θTdK,σ, and the relation

∑
σ∈FK |DK,σ| = |K| then

give

‖GKv‖pLp(K)d
≤ 2p−1

(
|K|

∣∣∇Kv∣∣p + 2p−1ζDd
p
2

∑
σ∈FK

|DK,σ|
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p

+ 2p−1ζDd
p
2 θpT|K| |∇Kv|

p

)
. (13.20)

Integrating (B.30) over x ∈ K yields
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|K| |∇Kv|p ≤ dp−1
∑
σ∈FK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p .
Plugging this estimate into (13.20) and recalling that |DK,σ| = |σ|dK,σ/d (see
(B.1)), we obtain

‖GKv‖pLp(K)d ≤ C48

∑
σ∈FK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p . (13.21)

where C48 depends only on %, p and d. Apply this estimate to v = vK or v = vσ

(defined in Item 3 of Section 13.1.1) and use |σ|dK,σ = d|DK,σ| ≤ d|K| and
d−1
K,σ ≤ θTh

−1
K for all σ ∈ FK to obtain

∥∥GiK∥∥Lp(K)d
≤ (C48d)1/pθT|K|1/ph−1

K

for all i ∈ IK . Recalling the definition (7.24) of ‖GK‖p and the fact that
Card(IK) = 1 + Card(FK), we infer that

‖GK‖p ≤ (C48d)1/pθT(1 + Card(FK)) ≤ (C48d)1/pθT(1 + %).

The proof of (13.19) is complete.

Lemma 13.11. Let T be a polytopal mesh of Ω in the sense of Definition 7.2,
and let D be an HMM GD on T as in Section 13.1.1. We take % ≥ θT + ζD
(see (7.8) and (13.18)). Then, there exists C49 > 0 depending only on Ω, p
and %, such that

∀v ∈ XD ,
1

C49
‖∇Dv‖Lp(Ω)d ≤ |v|T,p ≤ C49 ‖∇Dv‖Lp(Ω)d . (13.22)

Remark 13.12. The first inequality in (13.22) is used in Theorem 13.14 to
check Condition (2.96) and thus establish the GD-consistency of sequences
of HMM gradient discretisations. The second inequality in (13.22) is used
in Lemma 13.13 to control such sequences by polytopal toolboxes, and thus
prove their coercivity, limit-conformity and compactness.

Proof. In this proof, A . B means that A ≤MB for some M depending only
on Ω, p and %. Let v ∈ XD. The first inequality in (13.22) follows simply by
summing (13.21) over K ∈M. Let us therefore turn to the second inequality
in (13.22). Relation (13.10) and Jensen’s inequality give

|∇Kv|p ≤
1

|K|

∫
K

|∇Dv(x)|pdx. (13.23)

By definition (13.6) of ∇Dv and by the power-of-sums inequality (D.12), we
deduce that, for a.e. y ∈ DK,σ,∣∣∣∣∣

√
d

dK,σ
[LKRK(v)]σnK,σ

∣∣∣∣∣
p

=
∣∣∇Dv(y)−∇Kv

∣∣p
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. |∇Dv(y)|p +
1

|K|

∫
K

|∇Dv(x)|pdx.

Integrating over y ∈ DK,σ and summing over σ ∈ FK leads to

∑
σ∈FK

|DK,σ|
∣∣∣∣ [LKRK(v)]σ

dK,σ

∣∣∣∣p . ∫
K

|∇Dv(x)|pdx. (13.24)

Use then the definition (13.18) of ζD to write

∑
σ∈FK

|DK,σ|
∣∣∣∣RK,σ(v)

dK,σ

∣∣∣∣p . ∫
K

|∇Dv(x)|pdx. (13.25)

By definition (13.5) of RK,σ, and since |xσ − xK | ≤ hK ≤ θTdK,σ, we have
|vσ−vK | . |RK,σ(v)|+ |∇Kv|dK,σ. Hence, recalling (13.23) and using (13.25),

∑
σ∈FK

|DK,σ|
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p . ∫
K

|∇Dv(x)|pdx.

Since |DK,σ| =
|σ|dK,σ

d (cf. (B.1)), summing the above relation over K ∈ M
and recalling the definition (7.7f) of |·|T,p, the second inequality in (13.22) is
proved.

We can now define, and state estimates on, a control of an HMM GD by a
polytopal toolbox.

Lemma 13.13 (Control of an HMM GD by a polytopal toolbox). Let
T be a polytopal mesh of Ω in the sense of Definition 7.2, and let D be an
HMM GD on T as in Section 13.1.1. Take % ≥ θT+ζD (see (7.8) and (13.18))
and define the control Φ = Id : XD,0 → XT,0 of D by T (see Definition 7.9).
Then, there exists C49 > 0 depending only on Ω, p and %, such that

‖Φ‖D,T ≤ C49, (13.26)

and
ωΠ(D,T,Φ) = 0 , ω∇(D,T,Φ) = 0. (13.27)

Proof. Estimate (13.26) is given by Lemma 13.11. The first relation in (13.27)
follows from ΠDv = ΠTv = ΠTΦ(v) (see (13.2)). The second relation in
(13.27) is a straightforward consequence of (13.10).

13.1.3 Properties of HMM gradient discretisations

Thanks to the previous lemmas, the proof of the properties of HMM GDs is
straightforward.
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Theorem 13.14 (Properties of HMM GDs for Dirichlet BCs). Let
(Dm)m∈N be a sequence of HMM GDs, as in Section 13.1.1, defined from
underlying polytopal meshes (Tm)m∈N. Assume that (θTm + ηTm)m∈N and
(ζDm)m∈N are bounded (see (7.8), (7.9) and (13.18)), and that hMm → 0
as m→∞.
Then, the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.2, 2.52, 2.6 and 2.9. Moreover, each Dm
has a piecewise constant reconstruction in the sense of Definition 2.13.

Proof. The limit-conformity, coercivity and compactness are obtained by
applying Corollary 7.12, thanks to Lemma 13.13. The property of piecewise
constant reconstruction is also straightforward from (13.2) (using the nota-
tions in Definition 2.13, one simply chooses ΩK = K if K ∈ M and Ωσ = ∅
if σ ∈ F).
To prove the GD-consistency, we aim at applying Proposition 7.53. The bound
on regLLE(Dm) being provided by Lemma 13.10, we just have to check that
(7.65) and (2.96) hold. We drop the index m in Dm.
Let ϕ ∈ C∞(Ω) and σ ∈ FK . We have, for x ∈ σ, by Taylor’s expansion

ϕ(x) = ϕ(xσ) +∇ϕ(xσ) · (x− xσ) +Rσ(x)

where |Rσ(x)| ≤ 1
2diam(σ)2 supΩ |D2ϕ|. Hence, taking the average over x ∈ σ

and recalling the definition (13.8) of ID,∂ , since 1
|σ|
∫
σ
xdγ(x) = xσ,

|(ID,∂γ(ϕ))σ − ϕ(xσ)| ≤ 1

2
diam(σ)2 sup

Ω

|D2ϕ|.

Since diam(σ) ≤ diam(K) for any σ ∈ FK , this proves that (7.65) holds.
To prove (2.96), take ϕ ∈ W 1,p(Ω) and consider v = ITϕ, where IT is the
interpolant given by (B.10). By definition of the face values of v and by choice
(13.8) of the interpolant ID,∂ , we have v − ID,∂γϕ ∈ XD,0. Moreover, by
Lemma 13.11 and Proposition B.7,

‖ΠDv‖Lp(Ω) + ‖∇Dv‖Lp(Ω)d ≤ ‖ϕ‖Lp(Ω) + C49 |ITϕ|T,p
≤ ‖ϕ‖Lp(Ω) + C50 ‖∇ϕ‖Lp(Ω)d

with C50 depending only on d, p and an upper bound of θT+ζD. This concludes
the proof of (2.96).

The following two propositions, also easy consequences of the preliminary
results in the preceding section, are useful to establish error estimates for
HMM GSs.

Proposition 13.15 (Estimate on CD and WD for HMM GD – Dirich-
let BCs). Let T be a polytopal mesh of Ω in the sense of Definition 7.2, and
let D be an HMM GD on T as in Section 13.1.1. Take % ≥ θT + ηT + ζD (see
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(7.8), (7.9) and (13.18)). Then, there exists C51 depending only on Ω, p, any
%, such that

CD ≤ C51 (13.28)

and
∀ϕ ∈W 1,p′(Ω)d , WD(ϕ) ≤ C51 ‖ϕ‖W 1,p′ (Ω)d hM. (13.29)

Here, CD and WD are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. The conclusion immediately follows from Theorem 7.11 and Lemma
13.13.

Proposition 13.16 (Estimate on SD for HMM GD – Dirichlet BCs).
Let T be a polytopal mesh of Ω in the sense of Definition 7.2, and D be
an HMM GD on T as in Section 13.1.1. Assume that p > d/2 and take
% ≥ θT + ζD (see (7.8) and (13.18)). Let ϕ ∈ W 2,p(Ω) and, as in Remark
13.4, re-define ID,∂γ(ϕ) by: (ID,∂γ(ϕ))σ = ϕ(xσ) for all σ ∈ Fext (this makes
sense since ϕ ∈ C(Ω)). Then, there exists C52 > 0, depending only on Ω, p
and %, such that

SD(ϕ) ≤ C52 ‖ϕ‖W 2,p(Ω) hM,

where SD is defined by (2.94). This means that the space size (obtained by an
easy adaptation of Definition 2.23 to non-zero Dirichlet BCs) of the GD is
such that

hD(W 2,p(Ω);W 1,p′(Ω)d) ≤ max(C52, C51)hM,

where C51 is defined in Proposition 13.15.

Proof. By Lemma B.1, each cell K is star-shaped with respect to a ball of
radius minσ∈FK dK,σ ≥ θ−1

T hK ≥ %−1hK . Moreover, for all K ∈ M and all
i ∈ IK we have xi ∈ K, which shows that (7.84) holds. Using Lemma 13.10,
Proposition 7.68 can be applied and the result follows immediately.

The application of Propositions 13.16 and 13.15 to the estimates (2.25) and
(2.26) in Theorem 2.29 provides an O(hM) error in the case of a linear elliptic
problem in one, two or three space dimensions, when the solution belongs to
H2(Ω).

Remark 13.17 (Non piecewise constant diffusion tensor)
If Λ is not piecewise constant on M, then (13.9) is the GS (2.23) for the problem
(2.22) with Λ is replaced with its piecewise projection on the mesh, i.e. (13.9) is the
GS for

uM ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω),∫
Ω

ΛM(x)∇uM(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx−
∫
Ω

F (x) · ∇v(x)dx
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where (ΛM)|K = 1
|K|

∫
K
Λ(x)dx for all K ∈ M. Assuming that Λ is Lipschitz-

continuous inside each cell, we have ‖Λ− ΛM‖L∞(Ω) ≤ ChM and thus, denoting by
u the solution to (2.22), subtracting the equations satisfied by uM and u and taking
v = uM − u as a test function, we obtain

λ ‖∇uM −∇u‖2L2(Ω)d ≤
∫
Ω

ΛM(x)(∇uM −∇u)(x) · (∇uM −∇u)(x)dx

=

∫
Ω

(Λ(x)− ΛM(x))∇u(x) · (∇uM −∇u)(x)dx

≤ ChM ‖∇u‖L2(Ω) ‖∇uM −∇u‖L2(Ω)d .

This shows that ‖uM − u‖H1
0 (Ω) = O(hM). If u is the solution to the HMM scheme

(13.9), the estimates in Section 2.2.2 and in Propositions 13.16 and 13.15 show
that ‖uM −ΠDu‖L2(Ω) + ‖∇uM −∇Du‖L2(Ω)d = O(hM). Hence, we see that
‖u−ΠDu‖L2(Ω) + ‖∇u−∇Du‖L2(Ω)d = O(hM).
In other words, the replacement of Λ by its piecewise constant approximation in
(2.22), and the approximation of this latter equation by an HMM GS, does not
impact the expected rates of convergence. Assuming that Λ is piecewise constant is
therefore not extremely restrictive, especially since it is the case in many practical
applications.

13.2 HMM methods for Neumann and Fourier boundary
conditions

13.2.1 Neumann boundary conditions

Following Definition 7.54, an HMM GD for homogeneous Neumann boundary
conditions simply consists in defining XD, ΠD and ∇D as in Items 1, 2 and 3
in Section 13.1.1.
If v ∈ XD = XT and ‖∇Dv‖Lp(Ω)d = 0, then Inequality (13.22) and the

definition (7.7f) of |·|T,p show that all (vK)K∈M and all (vσ)σ∈FK are identical.
Hence, the definition of ΠD shows that the quantity (3.1) is indeed a norm
on XD.

For non-homogeneous Neumann boundary conditions, we take as trace recon-
struction TD : XD → Lp(∂Ω) the operator TT (see (7.7d)), that is,

∀v ∈ XD , ∀σ ∈ Fext : TDv = TTv = vσ on σ. (13.30)

Since the regularity factor regLLE(D) is defined as for Dirichlet boundary con-
ditions, Lemma 13.10 still applies and shows that this factor remains bounded
if θT and ζD are bounded. Defining the control Φ = Id : XD → XT of an HMM
GD D for Neumann boundary conditions by T, we see that Lemma 13.13 still
holds and that ωT(D,T,Φ) = 0. Hence, Corollary 7.18 and Proposition 7.55
give the following theorem.
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Theorem 13.18 (Properties of HMM GDs for Neumann BCs). Let
(Dm)m∈N be a sequence of HMM GDs for Neumann boundary conditions
as above, defined from underlying polytopal meshes (Tm)m∈N. Assume that
(θTm + ηTm)m∈N and (ζDm)m∈N are bounded (see (7.8), (7.9) and (13.18)),
and that hMm → 0 as m→∞.
Then the sequence (Dm)m∈N is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 3.13, 3.4, 3.14 and 3.16. Moreover, each
Dm has a piecewise constant reconstruction in the sense of Definition 2.13.

Proposition 7.70 and Theorem 7.17 also give estimates on SD, CD andWD that
are similar to those in Propositions 13.16 and 13.15. The constants depend
only on an upper bound of θT + ζD (for SD), or of θT + ηT + ζD (for CD and
WD).

13.2.2 Fourier boundary conditions

Starting from an HMM GD for Dirichlet boundary conditions, we follow Def-
inition 7.57 in Section 7.3.6 to define an HMM GD for Fourier boundary
conditions.
The boundary mesh M∂ is simply Fext, and the reconstructed trace (13.30)
corresponds to Iσ = {σ} and πσσ = 1. The bound on regLLE(D) for Fourier
boundary conditions therefore easily follows from the bound on this quantity
for Dirichlet boundary conditions, and the consistency (under boundedness of
θTm + ζDm) is therefore a consequence of Proposition 7.58.
As noticed in Remark 7.20, the work done for Neumann boundary conditions
then immediately show that Theorem 13.18 also applies to Fourier boundary
conditions. Similarly, we could obtain estimates on SD, CD and WD as in
Propositions 13.16 and 13.15.

13.3 HMM fluxes, and link with the two-point finite
volume method

Let us define the family of fluxes (FK,σ)K∈M ,σ∈FK as the linear mappings on
XD such that

∀u, v ∈ XD, ∀K ∈M :∑
σ∈FK

FK,σ(u)(vK − vσ) =

∫
K

Λ(x)∇Du(x) · ∇Dv(x)dx. (13.31)

The existence and uniqueness of these fluxes is ensured by the following propo-
sition.

Proposition 13.19 (Existence and uniqueness of the fluxes). There ex-
ists a unique family of linear mappings (FK,σ)K∈M , σ∈FK that satisfy (13.31).



362 13 Hybrid mimetic mixed schemes

Proof. Let u ∈ XD and assume that (FK,σ(u))K,σ a solution of (13.31).
Take K ∈M, σ ∈ FK , and let wσ ∈ XT be such that wσσ = 1, wσσ′ = 0 for all
σ 6= σ′, and wσL = 0 for all L ∈M. Substituting v = wσ in (13.31) gives

FK,σ(u) = −
∫
K

Λ(x)∇Du(x) · ∇Dwσ(x)dx, (13.32)

which determines uniquely FK,σ(u), since wσ depends only on σ. This formula
also clearly shows that u ∈ XD → FK,σ(u) is linear.
We now prove that the fluxes defined by (13.32) satisfy (13.31). Fix a cell
K ∈ M and let v ∈ XT. Multiplying (13.32) by vK − vσ and summing on
σ ∈ FK gives∑

σ∈FK

FK,σ(u)(vK − vσ)

=

∫
K

Λ(x)∇Du(x) · ∇D

( ∑
σ∈FK

(vσ − vK)wσ

)
(x)dx

=

∫
K

Λ(x)∇Du(x) · ∇DV (x)dx, (13.33)

where V =
∑
σ∈FK (vσ − vK)wσ ∈ XD. V has components Vσ′ = vσ′ − vK for

all σ′ ∈ FK , and Vσ′′ = VL = 0 for all σ′′ 6∈ FK and all L ∈M. We therefore
have, by definition (7.7e) of ∇K ,

∇KV =
1

|K|
∑
σ∈FK

|σ|VσnK,σ =
1

|K|
∑
σ∈FK

|σ|(vσ − vK)nK,σ = ∇Kv.

Moreover, for any σ ∈ FK , Vσ − VK = vσ − vK . Hence, by (13.4) and (13.5)
we see that ∇DV = ∇Dv on K. Equation (13.33) therefore shows that (13.31)
is satisfied.

The GS for (2.20) (with F = 0) then corresponds to writing the flux conser-
vativity and flux balances (see [75]):

∀σ ∈ Fint : FK,σ(u) + FL,σ(u) = 0, (13.34)

∀K ∈M :
∑
σ∈FK

FK,σ(u) =

∫
K

f(x)dx. (13.35)

The HMM method is therefore a finite volume scheme (more precisely, the
mixed finite volume scheme, see [75]).

For specific meshes and with Λ = Id, the flux FK,σ(u) actually depends only
on the values uK and uσ.

Lemma 13.20 (Superadmissible mesh and two-point flux). Let T be
a polytopal mesh of Ω in the sense of Definition 7.2. We assume that the
following superadmissibility condition is satisfied:
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∀K ∈M , ∀σ ∈ FK : nK,σ =
xσ − xK
dK,σ

(13.36)

( i.e. the orthogonal projection of xK on each face σ ∈ FK is the centre of
mass xσ of σ). Assume that, for each K ∈M, ΛK = Id and LK = Id. Then∫

K

∇Du(x) · ∇Dv(x)dx =
∑
σ∈FK

|σ|
dK,σ

(uK − uσ)(vK − vσ) (13.37)

and the fluxes defined by (13.31) are given by

FK,σ(u) =
|σ|
dK,σ

(uK − uσ).

A similar lemma can be proved [75] for isotropic Λ, i.e. Λ(x) = λ(x)Id.
The superadmissibility condition is satisfied by rectangles (with xK the centre
of mass of K) and acute triangles (with xK the circumcenter of K) in 2D,
and by rectangular parallelepipeds (with xK the centre of mass of K) in 3D.
It is unfortunately not satisfied by tetrahedra in general.

Proof. Since ΛK = Id, the choice LK = Id and Equation (13.15) give∫
K

∇Du(x) · ∇Dv(x)dx

= |K|∇Ku · ∇Kv +
∑
σ∈FK

|σ|
dK,σ

RK,σ(u)RK,σ(v). (13.38)

Thanks to Assumption (13.36), the reconstructed gradient may be written

∇Kv =
1

|K|
∑
σ∈FK

|σ|
dK,σ

(vσ − vK)(xσ − xK).

Using again (13.36), Equation (B.2) gives
∑
σ∈FK

|σ|
dK,σ

(xσ−xK)(xσ−xK)T =

|K|Id and therefore, recalling the definition (13.5) of RK,σ,

∑
σ∈FK

|σ|
dK,σ

RK,σ(u)RK,σ(v)

=
∑
σ∈FK

|σ|
dK,σ

(uσ − uK)(vσ − vK)− |K|∇Ku · ∇Kv.

Plugged into (13.38), this yields (13.37). The expressions of FK,σ are then
obtained by comparing (13.37) and (13.31).
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13.4 A cell-centred variant of HMM schemes on
∆-admissible meshes

Let us consider a ∆-admissible mesh in the sense of [90]. We recall that in
the case of a ∆-adapted polytopal mesh, the line (xK ,xL) is orthogonal to
the interface σ. Let us set XD,0 = {(vK)K∈M : vK ∈ R} and define dσ and
δK,σu, for all u ∈ XD,0, by

dσ = dK,σ + dL,σ and δK,σu = uL − uK , ∀σ = K|L ∈ Fint,
dσ = dK,σ and δK,σu = −uK , ∀σ ∈ FK ∩ Fext.

(13.39)

Let as before ΠDu ∈ L2(Ω) be the piecewise constant function equal to uK in
K. The gradient reconstruction ∇Du ∈ L2(Ω)d is constructed in the following
way. We start, as in HMM methods, by defining a constant gradient in each
cell K, using a formula that accounts for the ∆-admissibility of the mesh:

∇Ku =
1

|K|
∑
σ∈FK

|σ|(xσ − xK)
δK,σu

dσ
. (13.40)

We then let

RK,σ(u) =
δK,σu

dσ
−∇Ku · nK,σ (13.41)

and
∇K,σu = ∇Ku+

√
dRK,σ(u)(xσ − xK). (13.42)

Then, as in HMM methods, ∇Du ∈ L2(Ω)d is the piecewise constant function
defined by the value ∇K,σu in DK,σ.
The mathematical analysis of the consistency and limit-conformity follows
similar steps to that of standard HMM schemes. As in the case of an HMM
method with LK = Id, this variant gives back the standard 2-point scheme
for superadmissible meshes when Λ = Id.

13.5 The harmonic averaging points for heterogeneous
domains

The SUSHI scheme [95] is probably the starting point in the development of
the GDM method. In its hybrid version, it is an HMM scheme, but it also fea-
tures a possible barycentric condensation, in which some of the face unknowns
are eliminated. In its simplest form, a SUSHI GD is given by Definition 7.40
with D an HMM GD and IBa =M∪Fhyb for some Fhyb ⊂ F . The face un-
knowns that are eliminated correspond to Fbary = F\Fhyb. If σ ∈ Fbary, the
points (xi)i∈Hσ used to eliminate the unknown associated with σ are located
around σ. If σ is on or around a discontinuity of Λ, as discussed in Section
7.5.2 a linearly exact barycentric condensation as in Definition 7.40 leads to a
poor approximation of the solution. The notion of S-adapted barycentric con-
densation introduced in Definition 7.73 relaxes this requirement of a linearly
exact condensation and is therefore particularly useful for the SUSHI GD.
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13.5.1 Harmonic interpolation coefficients

We consider here p = 2, since this construction is mostly meaningful for linear
problems. If Λ is discontinuous, the solution u to (2.20) is smooth in the regions
where Λ is smooth, and has continuous fluxes where Λ is discontinuous. This
describes a subset S of H1

0 (Ω). Here a S-adapted SUSHI GD is presented; it
produces better approximation results in the case of heterogeneous material.
The construction of the interpolation families is based on the following result.

Lemma 13.21. Let K = Rd−1 × (−∞, 0) and L = Rd−1 × (0,∞) be two
half-spaces, and σ = Rd−1 × {0} be their interface. We consider a diffusion
tensor Λ which is constant equal to ΛK in K and constant equal to ΛL in L.
The vector nKL is the unit vector in the direction xd > 0. We take xK ∈ K
and xL ∈ L and define yK and yL as the respective projections of xK and
xL on σ. We let dK,σ = dist(xK , σ) and dL,σ = dist(xL, σ) and we define the
dioptrical point yσ ∈ σ by

yσ =
λLdK,σyL + λKdL,σyK
λLdK,σ + λKdL,σ

+
dK,σdL,σ

λLdK,σ + λKdL,σ
(λtL − λtK), (13.43)

where λK = nKL ·ΛKnKL, λtK = (ΛK −λKId)nKL, λL = nKL ·ΛLnKL and
λtL = (ΛL − λLId)nKL.
Let u be a continuous function on Rd, affine in both sets K and L and such
that ΛK∇u|K .nKL = ΛL∇u|L.nKL. Then we have

u(yσ) =
λLdK,σu(xL) + λKdL,σu(xK)

λLdK,σ + λKdL,σ
. (13.44)

Proof. Let us first notice that yσ indeed belongs to σ. This is a consequence
of yK ∈ σ, yL ∈ σ and (λtL − λtK)⊥nKL. This ensures that λtL − λtK is a
vector in σ.
Let us now take u as in the lemma, and let GK and GL be its gradients in
K and L. We decompose these gradients in their normal and tangential part
relative to σ: GK = gKnKL +Gt

K with Gt
K · nKL = 0, GL = gLnKL +Gt

L

with Gt
L · nKL = 0. We set uK = u(xK) and uL = u(xL). Since y − xK =

y−yK +dK,σnKL and y−xL = y−yL−dL,σnKL, the continuity of u along
the σ writes

∀y ∈ σ : u(y) = uK + dK,σgK + (y − yK) ·Gt
K

= uL − dL,σgL + (y − yL) ·Gt
L.

(13.45)

This is equivalent to the two conditions Gt
K = Gt

L =: gt and

dK,σgK + dL,σgL = uL − uK + (yK − yL) · gt. (13.46)

The condition ΛKGK · nKL = ΛLGL · nKL can be written

gKλK − gLλL = gt · (λtL − λtK). (13.47)
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From (13.46) and (13.47) we deduce

gK =
λL[uL − uK + (yK − yL) · gt] + dL,σg

t · (λtL − λtK)

λLdK,σ + λKdL,σ
.

Plugged into (13.45), this formula gives, for any y ∈ σ,

u(y) = uK + dK,σ
λL(uL − uK)

λLdK,σ + λKdL,σ

+ dK,σ
λL(yK − yL) · gt + dL,σg

t · (λtL − λtK)

λLdK,σ + λKdL,σ
+ (y − yK) · gt. (13.48)

We then just need to define the point yσ as the point y ∈ σ which eliminates
the unknown term gt from this expression, that is

dK,σ
λL(yK − yL) + dL,σ(λtL − λtK)

λLdK,σ + λKdL,σ
+ (yσ − yK) = 0,

which corresponds to (13.43). Equation (13.48) then reads

u(yσ) = uK + dK,σ
λL(uL − uK)

λLdK,σ + λKdL,σ
,

which is equivalent to (13.44).

This lemma justifies the following construction of interpolation families.

13.5.2 Construction of interpolation families

We recall that F is split into Fhyb, corresponding to unknowns that remain in
the SUSHI GD, and Fbary, corresponding to unknowns that are eliminated.
We first compute, for any face τ ∈ F , a point yτ on the hyperplane containing
τ and a value wτ by the following method:

1. if τ ∈ Fhyb, then yτ = xτ and wτ = uτ ;
2. if τ ∈ Fbary is a common face to grid cells M and N , then

yτ =
λNdM,τyN + λMdN,τyM + dM,τdN,τ (λτN − λτM )

λNdM,τ + λMdN,τ
, (13.49)

wτ =
λNdM,τuN + λMdN,τuM

λNdM,τ + λMdN,τ
, (13.50)

where: yM and yN are the orthogonal projections of xM and xN on the
hyperplane containing τ ; dM,τ = dist(xM ,yM ) and dN,τ = dist(xN ,yN );
and

λM = nMN · ΛMnMN , λ
τ
M = ΛMnMN − λMnMN ,

λN = nMN · ΛNnMN , λτN = ΛNnMN − λNnMN

with nMN the unit normal vector orthogonal to τ and oriented from M
to N .
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We can now construct the interpolation families for any σ ∈ Fbary. Let K and
L be the cells on each side of σ. We select d− 1 faces τi ∈ FK ∪FL, different
from σ but sharing a common cell with σ, such that there exists a unique
function w satisfying:

w is affine in K and in L, w is continuous on σ,
ΛK(∇w)K · nKL = ΛL(∇w)L · nKL and

uK = w(xK), uL = w(xL), wτi = w(yτi) for all i = 1, . . . , d.
(13.51)

By construction of the values wτi , the function w is entirely determined by
the cell values (uM )M∈M. We then set uσ = w(xσ), which defines uσ as a
linear combination of cell values uM for M ∈ Hσ (a certain set of cells close
to σ), that is

uσ =
∑

M∈Hσ

βσMuM . (13.52)

This defines the family of barycentric coefficients (βσi )i∈Hσ . The unknowns
corresponding to Fhyb are therefore not used to eliminate the unknowns on
Fbary.

The computation of the linear combination defining uσ can be simplified by
adopting the following algorithm:

1. The continuity of w forces the tangential components of the gradients
∇w|K and ∇w|L to be equal, say to gt, on τ . The gradients of w are
therefore entirely determined by gt and their two normal components gK
and gL to τ in K and L, that is, by d+1 scalar unknowns G = (gt, gK , gL).

2. Given that w is affine in K and L, we can write a linear relation between
the gradient components G and the increments X = (uK − uσ, uL −
uσ, (wτi − uσ)i=1,...,d−1) of w, that is, MG = X for some matrix M .

3. We then invert M to get G = M−1X, which defines all the gradients of
w in terms of the increments X.

4. The flux conservativity ΛK(∇w)K · nKL − ΛL(∇w)L · nKL = 0 is then
imposed and, given the construction of X, gives a linear relation between
uσ and (uK , uL, (wτi)i=1,...,d−1) as expected.

In practice, the selection of the faces (τi)i=1,...,d−1 is done by selecting those
who produce the most invertible matrix M in the previous algorithm.

GD-consistency of the method. We assume that Λ is piecewise constant
on a polytopal mesh Ω = ∪k`=1P` of the domain Ω, that the polytopal mesh
T are adapted to this mesh (i.e. each cell of the mesh is fully contained into
only one P`), and that the sets of barycentric faces Fbary are chosen such that

∀τ ∈ Fbary : yτ defined by (13.49) belongs to τ (13.53)

We consider the set S of continuous functions ϕ on Ω that are equal to 0
on ∂Ω, belong to W 2,∞(P`) for each P`, and that have continuous fluxes
through the jumps of Λ (that is, for all `, `′ such that P` ∩ P`′ has a non-zero
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(d − 1)-dimensional measure, Λ|P`∇ϕ|P` · n``′ = Λ|P ′`∇ϕ|P`′n``′ on P` ∩ P`′ ,
where n``′ is a fixed unit normal to P` ∩ P`′). The following lemma is an
enabler of Theorem 7.74 and therefore shows that SUSHI GDs constructed
using the coefficients (13.52) are coercive, consistent, limit-conforming and
compact. SUSHI GDs also obviously have piecewise constant reconstructions.
We refer to Definition 7.73 for the definition of the quantity regS used in the
next lemma.

Lemma 13.22. Let S ⊂ H1
0 (Ω) be constructed as above, let D be an HMM

GD, and let DS be a SUSHI GD constructed from D by using the coefficients
(13.52).
Then S is dense in H1

0 (Ω) and, under Assumption (13.53), S satisfies: for all
ϕ ∈ S, there exists Cϕ ≥ 0 and RDS (depending only on an upper bound of
ζD and regS(DS)) such that

∀σ ∈ Fbary :
∣∣∣ϕ(xσ)−

∑
K∈Hσ

βσKϕ(xK)
∣∣∣ ≤ CϕRDSdiam(σ)2. (13.54)

Proof.
The density of S is established in [8, Lemma 3.2]. We consider therefore Prop-
erty (13.54). For any τ = M |N ∈ Fbary, define a piecewise linear approxima-
tion ϕ of ϕ in M ∪N by:

∀x ∈M : ϕ(x) = ϕ(yτ ) +∇ϕ|M (yτ ) · (x− yτ ),

∀x ∈ N : ϕ(x) = ϕ(yτ ) +∇ϕ|N (yτ ) · (x− yτ ).

Then ϕ is continuous on through τ (because ϕ is continuous on τ , so the
tangential parts, with respect to τ , of ∇ϕ|M (yτ ) and of ∇ϕ|N (yτ ) coincide),
and the continuity of the fluxes of ϕ ensure that ϕ also has a continuous flux
through τ . Therefore, by Lemma 13.21,

ϕ(yτ ) =
λNdM,τϕ(xN ) + λMdN,τϕ(xM )

λNdM,τ + λMdN,τ

Since ϕ − ϕ = O((hM + hN )2) in M ∪N (because ϕ is smooth in M and in
N), we infer that

ϕ(yτ ) =
λNdM,τϕ(xN ) + λMdN,τϕ(xM )

λNdM,τ + λMdN,τ
+O((hM + hN )2). (13.55)

Let us then consider the values wτ constructed as above from the values
uτ = ϕ(xτ ) if τ ∈ Fhyb, and uN = ϕ(xN ), uM = ϕ(xM ) if τ = M |N ∈ Fbary.
Using the bound on ζD, the preceding reasoning shows that for any τ ∈ F ,
ϕ(yτ ) = wτ + O(diam(τ)2). Hence, for a given face σ = K|L, any piecewise
linear function w constructed as in (13.51) from the values uK = ϕ(xK),
uL = ϕ(xK) and (wτi)i=1,...,d−1 satisfies
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w − ϕ = O(diam(σ)2) (13.56)

at the points xK , xL and (yτi)i=1,...,d−1. This shows in particular that the
gradients of w in K and L (entirely computable from the values at the pre-
ceding points) are within distance O(diam(σ)) of the gradients of ϕ in these
cells, and therefore that (13.56) actually holds uniformly in K ∪ L. Applied at
xσ ∈ σ, this estimate gives w(xσ) = ϕ(xσ) +O(diam(σ)2), which is precisely
(13.54).





14

Nodal mimetic finite difference methods

Nodal mimetic finite differences (nMFD) methods form the second family
of MFD methods, after hMFD, that we study in this book. The analysis of
nMFD is relatively similar to that of hMFD, but several changes have to be
made since the discrete unknowns of nMFD are located at the vertices of the
mesh, rather than the cells and edges as in hMFD.
We only consider here homogeneous Dirichlet boundary conditions, but we
briefly address the questions of other boundary conditions in Remark 14.1.

14.1 Definition and properties of nMFD gradient
discretisations

We first define the GD, and then prove that the corresponding GS (2.23) is
indeed the nMFD scheme as defined in [34].
Let T = (M,F ,P,V) be a polytopal mesh of Ω in the sense of Definition 7.2.
For each K ∈ M we choose non-negative weights (ωsK)s∈VK such that the
quadrature ∫

K

w(x)dx ≈
∑
s∈VK

ωsKw(s) (14.1)

is exact for constant functions w, which means that∑
s∈VK

ωsK = |K|. (14.2)

For each face σ ∈ FK ∩ Fint, we also choose non-negative weights (ωsσ)s∈Vσ
such that the quadrature∫

σ

w(x)dγ(x) ≈
∑
s∈Vσ

ωsσw(s) (14.3)

is exact for affine functions w. This is equivalent to
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s∈Vσ

ωsσ = |σ| and
∑
s∈Vσ

ωsσs = |σ|xσ. (14.4)

We also assume the following property on these weights.

∀K ∈M , ∀s ∈ VK , ∃σ ∈ FK,s such that ωsσ 6= 0, (14.5)

where FK,s = {σ ∈ FK : s ∈ Vσ} is the set of faces of K that have s
as one of their vertices. This assumption, not very restrictive in practice,
states that each vertex of each cell K is genuinely involved in at least one of
the quadrature rules (14.3) on the faces of K. (14.5) is not required in the
construction of the nMFD, but it is used to identify the nMFD method with
a GDM.
For each cell K ∈M, we re-define its centre xK ∈ P by setting

xK =
1

|K|
∑
s∈VK

ωsKs (14.6)

(which is assumed to belong to K) and we select a partition (VK,s)s∈VK of K
such that

∀s ∈ VK , |VK,s| =
∑

σ∈FK,s

ωsσ
|DK,σ|
|σ|

=
1

d

∑
σ∈FK,s

ωsσdK,σ. (14.7)

The second equality follows from (B.1), and we note that (14.4) yields
∑
s∈VK

|VK,s| = |K|, which is compatible with the requirement that (VK,s)s∈VK is a
partition of K.

The nMFD LLE gradient discretisation is constructed by following the nota-
tions in Definition 7.33.

1. The set of geometrical entities attached to the discrete unknowns is I = V,
and the set of approximation points is S = I. We set IΩ = V ∩ Ω and
I∂ = V ∩ ∂Ω. Hence,

XD,0 = {v = (vs)s∈V : vs ∈ R for all s ∈ V ∩Ω ,

vs = 0 for all s ∈ V ∩ ∂Ω}.

For K ∈M, we let IK = VK .
2. For all K ∈M, the functions πK = (πsK)s∈VK are defined by

∀s ∈ VK , for a.e. x ∈ K , πsK(x) :=
ωsK
|K|

. (14.8)

Relation (7.32) gives

∀v ∈ XD,0, ∀K ∈M, ∀x ∈ K, ΠDv(x) = vK :=
1

|K|
∑
s∈VK

ωsKvs. (14.9)
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3. In a similar way as for the HMM method, the reconstructed gradient is
the sum of a constant gradient in each cell, and of stabilisation terms in
each VK,s. It is also best defined by first giving an expression of GKv. Let
XVK = {v = (vs)s∈VK : vs ∈ R} be the space of discrete unknowns in K,
and

∀K ∈M , ∀v ∈ XVK , ∇Kv =
1

|K|
∑
σ∈FK

(∑
s∈Vσ

ωsσvs

)
nK,σ. (14.10)

Define then, for v ∈ XVK , the function GKv ∈ Lp(K)d by

∀s ∈ VK , for a.e. x ∈ VK,s ,

GKv(x) = ∇Kv +
1

hK
[LKRK(v)]sNK,s

(14.11)

where
• NK,s = hK

d|VK,s|
∑
σ∈FK,s ω

s
σnK,σ,

• RK : XVK 7→ XVK is the linear mapping described by RK(v) =
(RK,s(v))s∈VK with

RK,s(v) = vs − vK −∇Kv · (s− xK), (14.12)

where vK is defined in (14.9) and xK is given by (14.6),
• LK is an isomorphism of the space Im(RK).

By (7.33), we then have

∀v ∈ XD , ∀K ∈M , ∀s ∈ VK , for a.e. x ∈ VK,σ ,

∇Dv(x) = ∇Kv +
1

hK
[LKRK(v)]sNK,s.

(14.13)

The functions (GsK)s∈VK of Lp(K)d are recovered from the definition
(14.11) of GKv by considering, for each s ∈ VK , the vector vs ∈ XVK
with value 1 at s and 0 at all other vertices of K, and by setting

GsK = GKvs for all s ∈ VK . (14.14)

4. The proof that πK and GK are P1-exact reconstructions and that ‖∇D·‖Lp(Ω)d

is a norm on XD,0, is provided in Lemma 14.8 below.

Remark 14.1 (Other boundary conditions)
The adaptation of nMFD to non-homogeneous Dirichlet conditions raises the same
interpolation issues as for P1 finite element methods (see Section 8.3.1), and es-
sentially requires a boundary condition smoother than W 1−1/p,p. Other boundary
conditions (Neumann, Fourier) are rather straightforward to deal with, using the
value uσ = 1

|σ|
∑

s∈Vσ ω
s
σus to define the trace reconstruction TD.
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We prove that an nMFD scheme is the GS (2.23) corresponding the GD
defined above, for suitable choice of (LK)K∈M. Let us first recall the definition
of an nMFD scheme from [34]. The space of discrete unknowns at the interior
vertices of the mesh, denoted by N0 in [34], is simply XD,0 defined above. The
nMFD for (2.20) (with F = 0) is then written under the general form

Find u ∈ XD,0 such that, for all v ∈ XD,0, [u, v]XD,0 = f̃(v), (14.15)

where [·, ·]XD,0 is an inner product on XD,0 and f̃ a linear form on XD,0. Using

the quadrature rule (14.1), the linear form f̃ is defined as

f̃(v) =
∑
K∈M

(
1

|K|

∫
K

f

) ∑
s∈VK

ωsKvs. (14.16)

The inner product [·, ·]XD,0 =
∑
K∈M[·, ·]VK is designed cell-by-cell to ensure

that a discrete Stokes formula is satisfied for interpolants of linear functions.
It is shown in [34] that this leads to the following generic form:

∀u ∈XVK , ∀v ∈ XVK :

[u, v]VK = uTMKv with MK =
1

|K|
CKΛ−1

K CTK + DKKKDTK ,
(14.17)

where

• ΛK is the constant value of Λ on K (as in HMM methods, we assume that
Λ is piecewise constant on M),
• CK is the Card(VK)×d matrix with rows (

∑
σ∈FK,s ω

s
σ(ΛKnK,σ)T )s∈VK ,

where, as before, FK,s is the set of faces of K that have s as one of their
vertices.
• DK is a Card(VK) × (Card(VK) − d) matrix whose columns span the

orthogonal space in XVK of EK , where

EK = {(A(s))s∈VK : A : Rd → R affine mapping}

is the vector space of the values of affine mappings at the vertices of K.
• KK is a symmetric positive definite matrix of size Card(VK)− d.

Remark 14.2 (RVK vs. RCard(VK))
As in Remark 13.5, we make abuses of notation when we consider CK , DK and KK
as matrices. Formally, this supposes that a numbering of the vertices VK of K has
been chosen.

Before proving that nMFD methods are GDMs, two technical results are re-
quired. The first one contains in particular results similar to those in Lemma
13.6, and the second one describes the kernel of DK .
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Lemma 14.3. Let T = (M,F ,P,V) be a polytopal mesh in the sense of Def-
inition 7.2, and let D be an nMFD GD as defined above, for some choices of
(LK)K∈M. Then,

1. For all K ∈M, β ∈ Im(RK) if and only if∑
s∈VK

|VK,s|
hK

βsNK,s = 0. (14.18)

2. For all v ∈ XD,0 and all K ∈M,

∇Kv =
1

|K|

∫
K

∇Dv(x)dx. (14.19)

3. ∇K is a P1-exact gradient reconstruction on K upon VK , in the sense of
Definition 7.28.

4. For all K ∈M and all s ∈ VK , |NK,s| ≥ 1.

Proof.
Item 1. If β ∈ Im(RK) then, for some v ∈ XVK ,

βs = vs − vK −∇Kv · (s− xK) for all s ∈ VK .

Set ws = vs − vK . Using (14.4) and
∑
σ∈FK |σ|nK,σ = 0 (see (B.4)) shows

that ∇Kw = ∇Kv. Hence, βs = ws −∇Kw · (s−xK) Given the definition of
NK,s, this yields∑
s∈VK

|VK,s|
hK

βsNK,s =
1

d

∑
s∈VK

∑
σ∈FK,s

βsω
s
σnK,σ

=
1

d

∑
σ∈FK

(∑
s∈Vσ

ωsσβs

)
nK,σ

=
1

d

∑
σ∈FK

(∑
s∈Vσ

ωsσws

)
nK,σ −

1

d

∑
σ∈FK

(∑
s∈Vσ

ωsσ∇Kw · (s− xK)

)
nK,σ

=
1

d
(|K|∇Kw − T1) . (14.20)

We then use (14.4) and Lemma B.3 to write

T1 =
∑
σ∈FK

[
∇Kw ·

(∑
s∈Vσ

ωsσ(s− xK)

)]
nK,σ

=
∑
σ∈FK

|σ| [∇Kw · (xσ − xK)]nK,σ = |K|∇Kw. (14.21)

Substituted in (14.20) this shows that β satisfies (14.18). Defining
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GK : β ∈ XVK →
∑
s∈VK

|VK,s|
hK

βsNK,s ∈ Rd,

we just showed that Im(RK) ⊂ ker(GK). The vectors (NK,s)s∈VK span Rd.
Indeed, for any vector ξ ∈ Rd, using (14.4) and Lemma B.3 (with xK = 0),∑

s∈VK

|VK,s|d
hK

(s · ξ)NK,s =
∑
σ∈FK

(∑
s∈Vσ

ωsσs · ξ

)
nK,σ

=
∑
σ∈FK

|σ|(xσ · ξ)nK,σ = |K|ξ.

By Assumption (14.5), none of the (VK,s)s∈VK has a zero measure. Hence,
Im(GK) = Rd and dim(kerGK) = Card(VK)− d. Using similar computations
as in (14.21), it can be seen that Z ∈ Rd 7→ (Z ·(s−xK))s∈VK ∈ ker(RK) is an
isomorphism (the one-to-one property comes from the fact that (s−xK)σ∈FK
spans Rd). Hence, dim(Im(RK)) = Card(VK) − d = dim(ker(GK)). Since
Im(RK) ⊂ ker(GK), the equality of dimensions therefore gives Im(RK) =
ker(GK) and completes the proof of Item 1.

Item 2. By Definition (14.13) of ∇D,∫
K

∇Dv(x)dx = |K|∇Kv +
∑
s∈VK

|VK,s|
hK

[LKRK(v)]sNK,s.

Since LKRK(v) ∈ Im(RK), Item 1 shows that the last term in this relation
vanishes, which concludes the proof of (14.19).

Item 3. If v = (A(s))s∈VK for some affine map A, then (14.4) shows that∑
s∈Vσ

ωsσvs =
∑
s∈Vσ

ωsσA(s) = |σ|A(xσ).

Hence, setting u = (A(xK), A(xσ)σ∈FK ), recalling the definition (7.7e) of ∇K
and using Lemma B.10,

∇Kv =
1

|K|
∑
σ∈FK

|σ|A(xσ)nK,σ = ∇Ku = ∇A.

Item 4. By definition (7.4) of dK,σ, for σ ∈ FK and s ∈ Vσ we have (s−xK) ·
nK,σ = dK,σ. Hence, by definition (14.7) of |VK,s|,

(s− xK) ·NK,s =
hK

d|VK,s|
∑

σ∈FK,s

ωsσ(s− xK) · nK,σ

=
hK

d|VK,s|
∑

σ∈FK,s

ωsσdK,σ = hK .

Since (s−xK)·NK,s ≤ |s−xK | |NK,s| ≤ hK |NK,s|, it follows that |NK,s| ≥ 1.



14.1 Definition and properties of nMFD gradient discretisations 377

Lemma 14.4. Let T be a polytopal mesh in the sense of Definition 7.2, let
K ∈ M, and let DK and RK be defined as above. Then, the mappings DTK :
XVK 7→ RCard(VK)−d and RK : XVK 7→ XVK have the same kernel.

Proof. The kernel of DTK is the orthogonal (for the dot product in XVK ) of
the columns of DK , that is to say, according to the definition of DK , the space
EK of values at the vertices of K of affine mappings.
We have v ∈ ker(RK) if and only if

∀s ∈ VK : vs = vK +∇Kv · (s− xK). (14.22)

If there exists A affine such that vs = A(s) for all s ∈ VK then ∇Kv = ∇A by
Item 3 in Lemma 14.3. The definitions (14.9) and (14.6) of vK and xK show
that vK = A(xK). Hence, since A is affine,

vs = A(s) = A(xK) +∇A · (s− xK) = vK +∇Kv · (s− xK)

and (14.22) holds. Conversely, if (14.22) holds then, defining the affine map-
ping A(x) = vK +∇Kv · (x−xK), we have vs = A(s) for all s ∈ VK . We just
established that the kernel of RK is made of the values at the vertices of K of
affine mappings. This kernel is therefore identical to EK = ker(DTK) and the
proof is complete.

We can now prove that the GD constructed above corresponds to the nMFD
scheme.

Theorem 14.5 (nMFD methods are GDMs). Let T be a polytopal mesh
of Ω in the sense of Definition 7.2. Assume that Λ is piecewise constant on
M. Take weights that satisfy (14.2), (14.4) and (14.5), and let (14.15) be
an nMFD method constructed from these weights. Then, there exists isomor-
phisms (LK)K∈M such that, if D is the GD defined as at the start of this
section, the corresponding GS (2.23) is identical to (14.15).

Remark 14.6 (Non piecewise constant diffusion tensor)
As for the HMM method (see Remark 13.17), if Λ is not piecewise constant on M,
then (14.15) is the GS (2.23) in which Λ is replaced with a piecewise constant ap-
proximation. We already noticed that this modification does not impact in practice
the rates of convergence provided by the theorems in Section 2.1.2.

Proof. Given the definitions (14.9) of ΠD and (14.16) of f̃ , the right-hand
sides of (2.23) and (14.15) clearly coincide. We therefore just have to prove
that the left-hand sides coincide. Since the inner product [·, ·]XD,0 and the
gradient (14.11) are constructed cell-wise, it suffices to show that, for any
u, v ∈ XD,0 and any cell K, we can find LK such that∫

K

Λ(x)∇Du(x) · ∇Dv(x)dx = uTMKv. (14.23)
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Let SK(u) = ∇Du−∇Ku be the stabilisation part of ∇Du on K. By (14.19),
we have

∫
K
SK(u)(x)dx =

∫
K
SK(v)(x)dx = 0 and thus, since Λ = ΛK is

constant on K,∫
K

Λ(x)∇Du(x) · ∇Dv(x)dx

= |K|ΛK∇Ku · ∇Kv +

∫
K

ΛK∇Ku · SK(v)(x)dx

+

∫
K

ΛKSK(u)(x) · ∇Kvdx+

∫
K

ΛKSK(u)(x) · SK(v)(x)dx

= |K|ΛK∇Ku · ∇Kv +

∫
K

ΛKSK(u)(x) · SK(v)(x)dx. (14.24)

By definition of CK , for all ξ ∈ XVK ,

CTKξ =
∑
s∈VK

 ∑
σ∈FK,s

ωsσΛKnK,σ

 ξs

= ΛK
∑
σ∈FK

(∑
s∈Vσ

ωsσξs

)
nK,σ = |K|ΛK∇Kξ.

Hence,

1

|K|
uTCKΛ−1

K CTKv = |K|(ΛK∇Ku)TΛ−1
K (ΛK∇Kv) = |K|ΛK∇Ku · ∇Kv.

The first term in the right-hand side of (14.24) therefore corresponds to the
first term in the expression (14.17) of uTMKv. To complete the proof of the
theorem, we therefore only have to show that, for any symmetric positive
definite (nK − d)× (nK − d) matrix KK , there exists an isomorphism LK of
Im(RK) such that, for all u, v ∈ XVK ,

uTDKKKDTKv =

∫
K

ΛKSK(u)(x) · SK(v)(x)dx. (14.25)

By Lemma 14.4 we have ker(DTK) = ker(RK). Let {·, ·}1 be the inner product
on RCard(VK)−d defined by KK , and apply Lemma 14.7 to produce an inner
product {·, ·}2 on XVK such that {DTKu,DTKv}1 = {RK(u), RK(v)}2. Then
(14.25) follows if we can establish the existence of an isomorphism LK of
Im(RK) such that, for all u, v ∈ XD,0,

{RK(v), RK(v)}2 =

∫
K

ΛKSK(u)(x) · SK(v)(x)dx. (14.26)

By definition of SK(u) (see (14.13)), we have∫
K

ΛKSK(u)(x) · SK(v)(x)dx
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=
∑
s∈VK

|VK,s|
h2
K

[LKRK(u)]s[LKRK(v)]sΛKNK,s ·NK,s

= 〈LKRK(u),LKRK(v)〉 (14.27)

where 〈·, ·〉 is the scalar product on Im(RK) defined by

〈ξ, β〉 =
∑
s∈VK

|VK,s|
h2
K

ΛKNK,s ·NK,sξsβs

(notice that ΛKNK,s ·NK,s > 0 by assumption on Λ and Item 4 in Lemma
14.3). Since {·, ·}2 and 〈·, ·〉 are two scalar products on Im(RK), Lemma 13.8
provides an isomorphism LK of Im(RK) such that {ξ, β}2 = 〈LK(ξ),LK(β)〉
for all ξ, β ∈ Im(RK). Applying this relation to ξ = RK(u) and β = RK(v)
and plugging the result in (14.27) shows that (14.26) holds for this choice of
LK .

The following lemma, used the in the above proof, is taken from [75].

Lemma 14.7. Let X, Y and Z be finite dimensional vector spaces and A :
X → Y , B : X → Z be two linear mappings with identical kernel. Then, for
any inner product {·, ·}Y on Y , there exists an inner product {·, ·}Z on Z such
that, for all (x, x′) ∈ X2, {Bx,Bx′}Z = {Ax,Ax′}Y .

Proof. Let N = ker(A) = ker(B). The mappings A and B define one-to-one
mappings Ā : X/N → Y and B̄ : X/N → Z such that, if x̄ is the class of x,
Ax = Āx̄ and Bx = B̄x̄. We can therefore work with Ā and B̄ on X/N rather
than with A and B on X, and assume in fact that A and B are one-to-one.
Then A : X → Im(A) and B : X → Im(B) are isomorphisms. If {·, ·}Y is
an inner product on Y , we can define the inner product {·, ·}Im(B) on Im(B)
the following way: for all z, z′ ∈ Im(B), {z, z′}Im(B) = {AB−1z,AB−1z′}Y ,
which precisely means that {Bx,Bx′}Im(B) = {Ax,Ax′}Y for all x, x′ ∈ X.
This inner product is only defined on Im(B), but we extend it to Z by choosing
W such that Im(B) ⊕W = Z, by selecting any inner product {·, ·}W on W ,
and by letting {z, z′}Z = {zB , z′B}Im(B) + {zW , z′W }W for all z = zB + z′W ∈
Z = Im(B)⊕W and z′ = z′B +z′W ∈ Z. This extension of {·, ·}Im(B) preserves
the property {Bx,Bx′}Z = {Ax,Ax′}Y .

14.1.1 Preliminary lemmas

We now turn to prove the properties of nMFD GDs, starting with preliminary
results. In a similar way as for HMM GDs, we define the following factor which
measures the invertibility properties of the isomorphisms (LK)K∈M:
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ζD = min

{
ζ > 0 : ∀K ∈M, ∀v ∈ XVK ,

ζ−1
∑
s∈VK

|VK,s|
∣∣∣∣RK,s(v)

hK

∣∣∣∣p ≤ ∑
s∈VK

|VK,s|
∣∣∣∣ [LKRK(v)]s

hK

∣∣∣∣p
≤ ζ

∑
s∈VK

|VK,s|
∣∣∣∣RK,s(v)

hK

∣∣∣∣p
}
.

(14.28)

The boundedness of ζD is a weaker assumption than the classical coercivity
assumption of nMFD methods, see, e.g., [34, Eq. (5.15)]. Choosing LK = βKId
with βK ∈ [ζ−1, ζ] ensures that the inequalities within (14.28) is satisfied.

Lemma 14.8 (Estimate of the LLE regularity of an nMFD GD). Let
T be a polytopal mesh in the sense of Definition 7.2, and let D be a nMFD GD
on T as defined in Section 14.1. Then, for any K ∈ M, πK = (πsK)s∈VK is
a P0-exact function reconstruction on K, and GK = (GsK)s∈VK is a P1-exact
gradient reconstruction on K upon VK .
Moreover, D is an LLE GD and, if % ≥ θT + ζD (see (7.8) and (14.28)) and

% ≥ max
K∈M

Card(VK), (14.29)

then there exists C53 depending only on p, d and % such that regLLE(D) ≤ C53.

Proof. By choice (14.2) of the weights and definition (14.8) of the functions
(πsK)s∈VK ,

∑
s∈V π

s
K = 1 on K and thus πK is a P0-exact function reconstruc-

tion on K.
We proved in Lemma 14.3 that ∇K is a P1-exact gradient reconstruction upon
VK . Assume that v = (A(s))s∈VK interpolates an affine mapping A. As in the
proof of Lemma 14.4, vK = A(xK) and thus RK,s(v) = A(s)−A(xK)−∇A ·
(s−xK) = 0. Hence, GKv = ∇Kv = ∇A, which proves that GK is a P1-exact
gradient reconstruction on K upon VK .
Let us now show that D is an LLE GD, i.e that ‖∇D·‖Lp(Ω)d is a norm on

XD,0. If ∇Dv = 0 then (14.19) shows that ∇Kv = 0 for all K ∈ M and
thus, by (14.13), RK(v) = 0. The definition (14.12) of RK,s and the fact that
∇Kv = 0 then implies vK = vs for all s ∈ VK . Reasoning from neighbour to
neighbour, we see v is a constant vector. Since vs = 0 for s ∈ V ∩ ∂Ω, this
shows that v = 0.

Let us now estimate regLLE(D). For any K ∈M and any i = s ∈ IK = VK , we
have xs ∈ K and thus dist(xi,K) = 0. Moreover, since all functions πiK are
non-negative,

∑
i∈IK |π

i
K | =

∑
i∈IK π

i
K = 1 and thus ‖πK‖p = 1. The bound

on regLLE(D) will therefore follow from estimating ‖GK‖p.
For any s ∈ VK , by choice (14.7) of |VK,s|,

|NK,σ| ≤
hK

d|VK,s|
∑

σ∈FK,s

ωsσ ≤
θT

d|VK,s|
∑

σ∈FK,s

ωsσdK,σ = θT.
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Hence, if v ∈ XVK , the definition (14.11) of GK gives

‖GKv‖pLp(K)d ≤ 2p−1

(
|K| |∇Kv|p +

∑
s∈VK

|VK,s|
∣∣∣∣ [LKRK(v)]s

hK

∣∣∣∣p |NK,σ|p
)

≤ 2p−1

(
|K| |∇Kv|p + θpT

∑
s∈VK

|VK,s|
∣∣∣∣ [LKRK(v)]s

hK

∣∣∣∣p
)

≤ 2p−1

(
|K| |∇Kv|p + θpTζD

∑
s∈VK

|VK,s|
∣∣∣∣RK,s(v)

hK

∣∣∣∣p
)
. (14.30)

Let V = maxs∈VK |vs|. The definition (14.13) of ∇Kv yields, thanks to (B.1),

|∇Kv| ≤
V

|K|
∑
σ∈FK

∑
s∈Vσ

ωsσ ≤
θTV

hK |K|
∑
σ∈FK

|σ|dK,σ =
dθTV

hK
. (14.31)

Using the definition (14.9) of vK , we infer

|RK,s(v)| ≤ 1

|K|
∑
s∈VK

ωsKV + V + |∇Kv|hK ≤ (2 + dθT)V.

Hence,∑
s∈VK

|VK,s|
∣∣∣∣RK,s(v)

hK

∣∣∣∣p ≤ (2 + dθT)pV p

hpK

∑
s∈VK

|VK,s| =
(2 + dθT)pV p

hpK
|K|.

Substituted alongside (14.31) into (14.30), this estimate gives

‖GKv‖pLp(K)d ≤ 2p−1
[
(dθT)p + θpTζD(2 + dθT)p

]
h−pK |K|V

p.

Applied to v = vσ for all σ ∈ FK , and recalling the definition (13.7) of
the functions (GsK)s∈VK , we deduce ‖GsK‖Lp(K)d ≤ C54h

−1
K |K|1/p with C54

depending only on d, p and %. The definition (7.24) of ‖GK‖p and (14.29)
then yield a bound on ‖GK‖p that depends only on d, p and %.

Lemma 14.9 (Norm on XD,0). Let T be a polytopal mesh in the sense of
Definition 7.2, and D be a nMFD GD on T as in Section 14.1. We take
% ≥ θT + ζD (see (7.8) and (14.28)). Then, there exists C55 depending only
on Ω, p and % such that

∀v ∈ XD,0,
∑
K∈M

∑
s∈VK

|VK,s|
∣∣∣∣vs − vKhK

∣∣∣∣p ≤ C55‖∇Dv‖pLp(Ω). (14.32)

Proof.
In this proof, A . B means that A ≤ CB for some C depending only on Ω,
p and %. Let v ∈ XD,0 and K ∈M. By (14.19) and Jensen’s inequality,
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|∇Kv|p ≤
1

|K|

∫
K

|∇Dv(x)|pdx. (14.33)

Using Item 4 in Lemma 14.3 and the definition (14.13) of ∇D, we infer that,
for all s ∈ VK and a.e. y ∈ VK,s,∣∣∣∣ 1

hK
[LKRK(v)]s

∣∣∣∣p ≤ ∣∣∣∣ 1

hK
[LKRK(v)]sNK,s

∣∣∣∣p
. |∇Dv(y)|p +

1

|K|

∫
K

|∇Dv(x)|pdx.

Integrate over y ∈ VK,s, sum over s ∈ VK and use the definition (14.28) of ζD
to deduce ∑

s∈VK

|VK,s|
∣∣∣∣RK,s(v)

hK

∣∣∣∣p . ∫
K

|∇Dv(x)|pdx.

Write |vs − vK | ≤ |RK,s(v)|+ hK |∇Kv| and use (14.33) to obtain

∑
s∈VK

|VK,s|
∣∣∣∣vs − vKhK

∣∣∣∣p . ∫
K

|∇Dv(x)|pdx.

Summing this estimate over K ∈M proves (14.32).

We now define a control of an nMFD GD by a polytopal toolbox, and we
establish some estimates on this control.

Lemma 14.10 (Control of an nMFD GD by a polytopal toolbox).
Let T be a polytopal mesh in the sense of Definition 7.2, and D be a nMFD
GD on T as in Section 14.1. Let Φ : XD,0 → XT,0 be the control of D by the
polytopal toolbox T (see Definition 7.9) defined by: for v ∈ XD,0,

∀σ ∈ FK , Φ(v)σ =
1

|σ|
∑
s∈Vσ

ωsσvs , and

∀K ∈M , Φ(v)K = vK =
1

|K|
∑
s∈VK

ωsKvs.

(14.34)

Let % ≥ θT + ζD (see (7.8) and (14.28)). Then, there exists C56 depending
only on Ω, p and % such that

‖Φ‖D,T ≤ C56, (14.35)

and
ωΠ(D,T,Φ) = 0 , ω∇(D,T,Φ) = 0. (14.36)

Proof. In this proof, A . B means again that A ≤ CB for some C depending
only on Ω, p and %. By definition of Φ, for σ ∈ FK ,
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|Φ(v)σ −Φ(v)K | =

∣∣∣∣∣ 1

|σ|
∑
s∈Vσ

ωsσ(vs − vK)

∣∣∣∣∣ ≤ 1

|σ|
∑
s∈Vσ

ωsσ|vs − vK |

Hence, the discrete Jensen inequality (D.11) (with the convex function Ψ(s) =
|s|p) and the definition of θT give∣∣∣∣Φ(v)σ −Φ(v)K

dK,σ

∣∣∣∣p ≤ θpT ∣∣∣∣Φ(v)σ −Φ(v)K
hK

∣∣∣∣p . 1

|σ|
∑
s∈Vσ

ωsσ

∣∣∣∣vs − vKhK

∣∣∣∣p .
We multiply this by |σ|dK,σ, sum over σ ∈ FK , and swap the sums over the
vertices and edges in the right-hand side to find∑

σ∈FK

|σ|dK,σ
∣∣∣∣Φ(v)σ −Φ(v)K

dK,σ

∣∣∣∣p . ∑
s∈VK

∑
σ∈FK,s

ωsσdK,σ

∣∣∣∣vs − vKhK

∣∣∣∣p .
Since

∑
σ∈FK,s ω

s
σdK,σ = d|VK,s|, summing the above relation over K ∈ M

yields∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣Φ(v)σ −Φ(v)K

dK,σ

∣∣∣∣p . d
∑
K∈M

∑
s∈VK

|VK,s|
∣∣∣∣vs − vKhK

∣∣∣∣p .
The proof of (14.35) is completed by using (14.32) in Lemma 14.9 and by
recalling the definition (7.12) of ‖Φ‖D,T.
We now turn to (14.36). By definitions (7.7c) of ΠT, (14.9) of ΠD, and
(14.34) of Φ, we have ΠDv = vK = ΠTΦ(v) on K, for all K ∈ M. Hence,
ωΠ(D,T,Φ) = 0. We then notice that

∇KΦ(v) =
1

|K|
∑
σ∈FK

|σ|Φ(v)σnK,σ =
1

|K|
∑
σ∈FK

(∑
s∈Vσ

ωsσvs

)
nK,σ = ∇Kv.

Hence, (14.19) shows that
∫
K
∇TΦ(v)(x)dx =

∫
K
∇Dv(x)dx, and thus that

ω∇(D,T,Φ) = 0.

14.1.2 Properties of nMFD gradient discretisations

The theorems presented here follow immediately, as for HMM GDs, from the
preliminary results above and from Propositions 7.37 and 7.64, Theorem 7.11
and Corollary 7.12.

Theorem 14.11 (Properties of nMFD GDs). Let (Dm)m∈N be a se-
quence of nMFD GDs, as in Section 14.1, defined from underlying polytopal
meshes (Tm)m∈N. Assume that the sequences (θTm +ηTm)m∈N, (ζDm)m∈N and
(maxK∈Mm

Card(VK))m∈N are bounded (see (7.8), (7.9) and (14.28)), and
that hMm → 0 as m→∞.
Then (Dm)m∈N is coercive, GD-consistent, limit-conforming and compact in
the sense of Definitions 2.2, 2.4, 2.6 and 2.9.
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Remark 14.12. Contrary to HMM gradient discretisations, nMFD gradient
discretisations do not have a piecewise constant reconstruction for the natural
choice of unknowns, nor for any obvious choice of unknowns. The nMFD GDs
should therefore be modified, e.g., by mass-lumping as in Section 7.3.5, to be
applicable in practice to certain non-linear models.

Proposition 14.13 (Estimate on CD and WD for nMFD GD). Let T
be a polytopal mesh of Ω in the sense of Definition 7.2, and let D be a nMFD
GD on T as in Section 14.1. We take % ≥ θT + ηT + ζD (see (7.8), (7.9) and
(14.28)) that also satisfies (14.29). Then, there exists C57 depending only on
Ω, p and % such that

CD ≤ C57 (14.37)

and
∀ϕ ∈W 1,p′(Ω)d , WD(ϕ) ≤ C57 ‖ϕ‖W 1,p′ (Ω)d hM. (14.38)

Here, CD and WD are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proposition 14.14 (Estimate on SD for nMFD GD). Let T be a poly-
topal mesh of Ω in the sense of Definition 7.2, and D be a nMFD GD on T
as in Section 14.1. Assume that p > d/2 and take % ≥ θT + ζD (see (7.8) and
(14.28)) that also satisfies (14.29). Then, there exists C58 > 0, depending only
on Ω, p and %, such that

∀ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) , SD(ϕ) ≤ C58 ‖ϕ‖W 2,p(Ω) hM,

where SD is defined by (2.2). This means that the space size (see Definition
2.23) of the GD satisfies

hD(W 2,p(Ω) ∩W 1,p
0 (Ω);W 1,p′(Ω)d) ≤ max(C58, C57)hM,

where C57 is defined in Proposition 14.13.

Remark 14.15 (Assumption on the weights)
As already mentioned, Assumption (14.5) is not very restrictive as most natural
weights will satisfy it. We emphasise that no lower bound on

∑
σ∈Fs ω

s
σ is required,

only that this quantity is non-zero for any s ∈ V. Even if this quantity becomes
extremely small for some vertex, no component of the GDs becomes extremely small
or large (we have 1 ≤ |NK,s| ≤ θT) and all estimates on SD or WD remain uniform
with respect to the weights.

14.2 Link with discrete duality finite volume methods

Let us consider the special case, in dimension d = 3, of an octahedral mesh,
i.e. a polytopal mesh T such that the elements of M are octahedra (open
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polyhedra with eight triangular faces and six vertices, not necessarily convex;
five vertices may be coplanar), and the elements of F are the triangular faces
of the elements of M. Each FK has 8 elements, each VK has 6 elements, and
each Vσ has 3 elements (see Figure 14.1, left). For any K ∈ M, the centre of
K is defined by xK = 1

6

∑
s∈VK s.

B

C

E

A

xK

D

F

xK

σ

Fig. 14.1. Left: octahedral cell K. Right: illustration of TK,σ (greyed domain).

We consider a modification of an nMFD GD D = (XD,0, ΠD,∇D) on T, in
which the space of discrete unknowns is unchanged, the gradient reconstruc-
tion is only built from the consistent part (14.10) of∇D, and the reconstructed
functions are piecewise constant on sub-tetrahedra. Precisely, we take for each

triangle σ ∈ F the order 1 quadrature rule (14.3) with equal weights ωsσ = |σ|
3 ,

and we define D? = (XD,0, ΠD? ,∇D?) the following way.

1. ∇D? : XD,0 → Lp(Ω)d is given by

∀v ∈ XD,0 , ∀K ∈M , for a.e. x ∈ K ,

∇D?v(x) = ∇Kv =
1

|K|
∑
σ∈FK

|σ|

(
1

3

∑
s∈VK

vs

)
nK,σ.

(given the equal-weights quadrature rule chosen for each face, this expres-
sion of ∇Kv corresponds to (14.10)).

2. ΠD? : XD,0 → Lp(Ω) is given by

∀v ∈ XD,0 , ∀K ∈M , ∀σ ∈ FK , for a.e. x ∈ TK,σ ,

ΠD?v(x) =
1

3

∑
s∈Vσ

vs,

where TK,σ is the tetrahedra formed by xK and σ (see Figure 14.1, right).
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The following lemma characterises the reconstructed gradient.

Lemma 14.16. For any v ∈ XD,0 and any K ∈ M, the constant vector
(∇D?v)|K is the unique vector ξ ∈ R3 such that

For all opposite vertices (s0, s1) of K, ξ · (s0 − s1) = vs0 − vs1 . (14.39)

Remark 14.17. The opposite vertices in the octahedra in Figure 14.1 are
(A,B), (C,D) and (E,F ).

Proof. First note that, since the three directions defined by the three pairs of
opposite vertices in K are linearly independent, (14.39) indeed characterises
one and only one vector ξ ∈ R3. We therefore just have to show that (∇D?v)|K
satisfies (14.39). We have

(∇D?v)|K =
1

|K|
1

3

∑
s∈VK

vs
∑

σ∈FK |s∈Vσ

|σ|nK,σ. (14.40)

Let us consider for example the case where s = A in Figure 14.1. For a
triangular face σ, the outer normal |σ|nK,σ can be written as the exterior
product of two of the edges of σ (with proper orientation). This gives∑
σ∈FK |s∈Vσ

|σ|nK,σ =
1

2
(
−→
AC ×

−→
AF +

−→
AF ×

−−→
AD +

−−→
AD ×

−→
AE +

−→
AE ×

−→
AC)

=
1

2
(
−−→
DC ×

−→
AF +

−−→
CD ×

−→
AE) = −1

2

−−→
CD ×

−−→
EF.

Applying this to all vertices of K, and since |K| = 1
6∆K with ∆K =

det(
−−→
AB,

−−→
CD,

−−→
EF ), we deduce from (14.40) that

(∇D?v)|K =
1

∆K

(
(vB − vA)

−−→
CD ×

−−→
EF + (vD − vC)

−−→
EF ×

−−→
AB

+ (vF − vE)
−−→
AB ×

−−→
CD

)
.

Property (14.39) is then straightforward. Considering for example the case

(s0, s1) = (B,A), the formula follows from (
−−→
EF ×

−−→
AB) ·

−−→
AB = (

−−→
AB ×

−−→
CD) ·

−−→
AB = 0 and (

−−→
CD ×

−−→
EF ) ·

−−→
AB = det(

−−→
CD,

−−→
EF,

−−→
AB) = ∆K .

This lemma proves that ‖∇D? ·‖Lp(Ω)d is a norm on XD,0. Moreover, (14.39)
is a well-known characterisation of the reconstructed gradient, piecewise con-
stant on the so-called “diamond cells”, of the CeVeFE discrete duality finite
volume (DDFV) method [52, 53]. The function reconstruction ΠD? has been
defined to match the function reconstruction used in the CeVeFE-DDFV; this
reconstruction is what ensures the discrete duality (Stokes) formula, that gave
the name to DDFV methods. Hence, the CeVeFE-DDFV scheme can be con-
sidered as an nMFD scheme on octahedral meshes, without the need for a
stabilisation and with a different function reconstruction.
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A complete analysis of the CeVeFE-DDFV method as a GDM may be found
in [77]. The same analysis also applies to the case d = 2, in which case the
mesh is now quadrangular (its cells still correspond to the “diamond cells” in
the DDFV terminology).





Part IV

Appendix
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The first chapter of this appendix presents gradient discretisations (GDs), and
some of their properties, in an abstract setting. This setting is shown to cover
most boundary conditions considered in Chapters 2 and 3, which enables us
to present unified proofs for some results on gradient discretisations.

Parts I (for elliptic problems) and II (for parabolic problems) introduced the
properties (coercivity, GD-consistency, etc.) needed on GDs to generate con-
vergent gradient schemes (GSs). Here, in Chapters B and C, we introduce
technical tools which are used in Part III to prove that a given GD satisfies
these core properties.
Chapter B is devoted to discrete functional analysis tools, that is, the transla-
tion to the discrete setting of classical results of functional analysis (Poincaré’s
inequality, compactness theorems, etc.). These tools are used, in Section 7.6
in conjunction with the notion of control of a GD by a polytopal toolbox,
to establish the coercivity, limit-conformity and compactness of gradient dis-
cretisations. They also provide explicit estimates on CD and WD. Most of the
results and notions presented in this chapter expand results that originally
appeared in [95].
Chapter C covers generic compactness results for time-dependent functions,
with abstract Banach spaces E as co-domains. Both averaged-in-time (i.e., in
Lp(0, T ;E)) and uniform-in-time (i.e., in L∞(0, T ;E)) situations are consid-
ered, and the focus is on piecewise-in-time functions, usually encountered in
numerical schemes for time-dependent problems.
In Chapter D, classical technical results are presented; these results are used
throughout the book.
Finally, numerical examples are provided in Chapter E to illustrate the be-
haviour of particular GDs applied to specific problems.





A

Gradient discretisations – abstract setting

Chapters 2 and 3 introduced the notions and properties of gradient discreti-
sation for various boundary conditions. Here, GDs are developed in a generic
setting that is shown to cover most boundary conditions. This enables uni-
fied proofs of many results on GDs, independently of the specific boundary
conditions they are designed for.
Throughout this chapter we take p ∈ (1,+∞) and let p′ be such that 1/p +
1/p′ = 1.

A.1 Continuous abstract setting

Let L and L be reflexive Banach spaces, with respective topological dual
spaces L′ and L′. Let H be a dense subspace of L′; this implies (and is
actually equivalent to) the following property.

For all u ∈ L, (∀v ∈H, 〈v,u〉L′,L = 0)⇒ u = 0. (A.1)

Take a linear operator D : H → L′, such that the graph of D is closed in
L′ × L′. Endowed with the graph norm ‖v‖H = ‖v‖L′ + ‖Dv‖L′ , H is a
Banach space continuously embedded in L′. Define

B = {u ∈ L : ∃u ∈ L,∀v ∈H, 〈v,u〉L′,L + 〈Dv, u〉L′,L = 0}. (A.2)

Thanks to (A.1), for all u ∈ B the element u ∈ L in the definition of B is
unique. This defines a linear operator G : B → L, adjoint operator of −D in
the sense of [123, p. 167], such that u = Gu, that is,

∀u ∈ B, ∀v ∈H, 〈v,Gu〉L′,L + 〈Dv, u〉L′,L = 0. (A.3)

This definition easily shows that the graph of G is closed in L × L. As a
consequence, B endowed with the graph norm ‖u‖B,G = ‖u‖L + ‖Gu‖L is a
Banach space continuously embedded in L. By [123, Theorem 5.29], B is also
dense in L.
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Remark A.1. Equivalently, we could define the same abstract setting by start-
ing from a dense subspace B of L and a linear operator G : B → L with
closed graph, and by defining then H and D : H → L′ by:

H = {v ∈ L′ : ∃w ∈ L′,∀u ∈ B, 〈v,Gu〉L′,L + 〈w, u〉L′,L = 0}

and, for v ∈H, Dv is the element w in the definition of H.

Let V be a subspace of L′ such that

L′ = Im(D) + V. (A.4)

We denote by |·|L the semi-norm on L defined by

∀u ∈ L, |u|L =

 sup
µ∈V \{0}

|〈µ, u〉L′,L|
‖µ‖L′

if V 6= {0},

0 if V = {0}.
(A.5)

Lemma A.2. With the definitions and notations above, for u ∈ B we set

‖u‖B = (|u|pL + ‖Gu‖pL)1/p. (A.6)

Then ‖·‖B and ‖·‖B,G are two equivalent norms.

Proof. Since ‖·‖B,G is a norm, proving its equivalence with ‖·‖B establishes
that this later semi-norm is also a norm.
For any u ∈ L and µ ∈ V , we have |〈µ, u〉L′,L| ≤ ‖µ‖L′ ‖u‖L. Hence, |u|L ≤
‖u‖L and thus ‖u‖B ≤ 21/p ‖u‖B,G . This proves half of the equivalence. To
prove the other half, we just need to show that

E = {u ∈ B : ‖u‖B = 1}

is bounded in L. Indeed, this establishes the existence of M ≥ 0 such that,
for all u ∈ E, ‖u‖L ≤M and thus, since ‖Gu‖L ≤ ‖u‖B = 1,

‖u‖B,G ≤M + 1 = (M + 1) ‖u‖B .

By homogeneity of the semi-norms, this concludes the proof that ‖·‖B,G and
‖·‖B are equivalent on B.
To prove that E is bounded, take f ∈ L′ and apply (A.4) to get vf ∈H and
µf ∈ V such that f = Dvf + µf . Then, for any u ∈ E, by definition of the
semi-norm |·|L and since ‖Gu‖L ≤ 1 and |u|L ≤ 1,

|〈f, u〉L′,L| = |〈Dvf , u〉L′,L + 〈µf , u〉L′,L|
= | − 〈vf ,Gu〉L′,L + 〈µf , u〉L′,L|
≤ ‖vf‖L′ ‖Gu‖L + ‖µf‖L′ |u|L
≤ ‖vf‖L′ + ‖µf‖L′ .
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This shows that {〈f, u〉L′,L : u ∈ E} is bounded by some constant depending
on f . Since this is valid for any f ∈ L′, the Banach–Steinhaus theorem [33,
Theorem 2.2] shows that E is bounded in L.

In the following sections, we make explicit correspondences between this ab-
stract setting and the specific settings of Dirichlet, Neumann and Fourier
boundary conditions.

A.1.1 Homogeneous Dirichlet BCs

We consider in this case the following spaces and operator D:

• L = Lp(Ω), so that L′ = Lp
′
(Ω).

• L = Lp(Ω)d, so that L′ = Lp
′
(Ω)d.

• H = W p′

div(Ω), D = div and V = {0}.
• B = W 1,p

0 (Ω).

The choice of V ensures (A.4) since div : W p′

div(Ω)→ Lp
′
(Ω) is surjective (see

the proof of Lemma 2.7).

The operator G : W 1,p
0 (Ω) → Lp(Ω)d is then the standard gradient, G = ∇.

Moreover, (A.5) shows that |·|L = 0, and thus ‖u‖B = ‖∇u‖Lp(Ω)d .

A.1.2 Homogeneous Neumann BCs

We consider in this case the following spaces and operator D:

• L = Lp(Ω), so that L′ = Lp
′
(Ω).

• L = Lp(Ω)d, so that L′ = Lp
′
(Ω)d.

• H = W p′

div,0(Ω), D = div and V = R1Ω .

• B = W 1,p(Ω).

To see that this V satisfies (A.4), take f ∈ Lp
′
(Ω) and write f = f0 +

µf1Ω with µf = 1
|Ω|
∫
Ω
f(x)dx. Since f0 has zero average, there exists u ∈

W 1,p(Ω) solution of −div(|∇u|p−2∇u) = f0 in Ω with homogeneous Neumann
boundary conditions |∇u|p−2∇u · n∂Ω = 0 on ∂Ω. Set ϕ = −|∇u|p−2∇u ∈
W p′

div,0(Ω) and notice that divϕ = f0, so that f = divϕ+ µf1Ω ∈ Im(D) + V .

The operator G : W 1,p(Ω) → Lp(Ω)d is the standard gradient, G = ∇. The
definition (A.5) gives |u|L = |Ω|−1/p′ |

∫
Ω
u(x)dx|. The factor |Ω|−1/p′ can be

dropped without changing anything to the analysis, and the norm on B can
therefore be defined by

‖u‖B =

(∣∣∣∣∫
Ω

u(x)dx

∣∣∣∣p + ‖∇u‖pLp(Ω)d

)1/p

.
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A.1.3 Non-homogeneous Neumann BCs

We consider in this case the following spaces and operator D:

• L = Lp(Ω)× Lp(∂Ω), so that L′ = Lp
′
(Ω)× Lp′(∂Ω).

• L = Lp(Ω)d, so that L′ = Lp
′
(Ω)d.

• H = W p′

div,∂(Ω), Dϕ = (divϕ,−γnϕ) and V = R(1Ω , 0).

• B = {(u, γu) ∈ Lp(Ω)× Lp(∂Ω) : u ∈W 1,p(Ω)}.

To prove that (A.4) holds, write any (f, g) ∈ Lp′(Ω) × Lp′(∂Ω) as (f, g) =
(f0 + µf,g1Ω , g) where

µf,g =
1

|Ω|

∫
Ω

f(x)dx+
1

|Ω|

∫
∂Ω

g(x)dγ(x).

Then∫
Ω

f0(x)dx+

∫
∂Ω

g(x)dγ(x) =

∫
Ω

f(x)dx+

∫
∂Ω

g(x)dγ(x)− |Ω|µf,g = 0.

Hence, (f0, g) satisfies the compatibility condition to be source and bound-
ary terms in a non-homogeneous Neumann problem. There exists thus u ∈
W 1,p(Ω) solution of −div(|∇u|p−2∇u) = f0 in Ω with boundary condi-

tions |∇u|p−2∇u · n∂Ω = g on ∂Ω. Set ϕ = −|∇u|p−2∇u ∈ W p′

div,∂(Ω).
We have divϕ = f0 and −γnϕ = g, that is, Dϕ = (f0, g). Hence, (f, g) =
Dϕ+ µf,g(1Ω , 0) ∈ Im(D) + V .

The operator G : B → Lp(Ω)d is then given by G(u, γu) = ∇u, and Relation
(A.3) is the standard Stokes formula

∀u ∈W 1,p(Ω) , ∀ϕ ∈W p′

div,∂(Ω),∫
Ω

∇u(x) ·ϕ(x)dx+

∫
Ω

u(x)divϕ(x)dx

−
∫
∂Ω

γu(x)γnϕ(x)dγ(x) = 0.

Moreover, (A.5) gives |(u,w)|L = |Ω|−1/p′ |
∫
Ω
u(x)dx|, and thus, after drop-

ping the factor |Ω|−1/p′ , the norm on B is

‖(u, γu)‖B =

(∣∣∣∣∫
Ω

u(x)dx

∣∣∣∣p + ‖∇u‖pLp(Ω)d

)1/p

.

A.1.4 Fourier BCs

The spaces and operator D are exactly the same as for non-homogeneous
Neumann BCs, except that we now take V = {0} × Lp′(∂Ω). Any (f, g) ∈
Lp
′
(Ω)× Lp′(∂Ω) can be written (f, g) = (f, g0) + (0, νf,g1∂Ω), where



A.2 Gradient discretisation in the abstract setting 397

νf,g =
1

|∂Ω|

∫
Ω

f(x)dx+
1

|∂Ω|

∫
∂Ω

g(x)dγ(x).

Then (f, g0) satisfies the compatibility condition to be source and boundary
terms in a non-homogeneous Neumann problem, which allows us, as in the

case of non-homogeneous Neumann BCs, to find ϕ ∈ W p′

div,∂(Ω) such that
(f, g) = Dϕ+ (0, νf,g1∂Ω) ∈ Im(D) + V .
The definition (A.5) gives |(u,w)|L = ‖w‖Lp(∂Ω), which leads to

‖(u, γu)‖B =
(
‖γu‖pLp(∂Ω) + ‖∇u‖pLp(Ω)d

)1/p

. (A.7)

Remark A.3. The decomposition of (f, g) made above shows that we could
take V = R(0, 1∂Ω), and thus that the norm on B could be weakened into

‖(u, γu)‖B =

(∣∣∣∣∫
∂Ω

γu(x)dγ(x)

∣∣∣∣p + ‖∇u‖pLp(Ω)d

)1/p

.

This norm is actually equivalent to (A.7). In the context of Fourier boundary
conditions, (A.7) is the standard norm in which estimates on solutions to
PDEs are obtained.

A.2 Gradient discretisation in the abstract setting

Based on the abstract setting described in Section A.1, we define a notion
of gradient discretisation, with corresponding properties and consequences. It
can be checked that, with the particular choices described in Sections A.1.1
to A.1.4, the following theory gives the concepts and results mentioned in
Section 2.1 (GDs for homogeneous Dirichlet BCs), Section 3.1.1 (GDs for
homogeneous and non-homogeneous Neumann BCs – with a variant definition
of consistency in the latter case) and Section 3.2.1 (GDs for Fourier BCs).

Definition A.4 (GD, abstract setting). In the context described in Section
A.1, a gradient discretisation D is defined by D = (XD,PD,GD), where:

1. The set of discrete unknowns XD is a finite dimensional vector space on
R.

2. The “function” reconstruction PD : XD → L is a linear mapping that
reconstructs, from an element of XD, an element in L.

3. The “gradient” reconstruction GD : XD → L is a linear mapping that
reconstructs, from an element of XD, an element in L.

4. The mappings PD and GD are such that

‖u‖D := (|PDu|pL + ‖GDu‖pL)
1/p

is a norm on XD.
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Remark A.5 (PD and GD for various boundary conditions). Definition A.4 is
translated in Chapters 2 and 3 to the contexts of homogeneous Dirichlet BCs,
homogeneous and non-homogeneous Neumann BCs, and Fourier BCs. Using
the notations in these chapters, we always have GD = ∇D. The operator PD
however depends upon the boundary conditions:

• For homogeneous Dirichlet BCs (Definition 2.1) and homogeneous Neu-
mann BCs (Definition 3.1): PD = ΠD,
• For non-homogeneous Neumann BCs (Definition 3.11) and Fourier BCs

(Definition 3.37): PD = (ΠD,TD).

Definition A.6 (Coercivity, abstract setting)

If D is a gradient discretisation in the sense of Definition A.4, let CD
be the norm of PD:

CD = max
v∈XD\{0}

‖PDv‖L
‖v‖D

. (A.8)

A sequence (Dm)m∈N of gradient discretisations is coercive if there
exists CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

Definition A.7 (Limit-conformity, abstract setting)

If D is a gradient discretisation in the sense of Definition A.4, let
WD : H → [0,+∞) be given by

∀ϕ ∈H ,

WD(ϕ) = sup
u∈XD\{0}

|〈ϕ,GDu〉L′,L + 〈Dϕ,PDu〉L′,L|
‖u‖D

.
(A.9)

A sequence (Dm)m∈N of gradient discretisations is limit-conforming
if

∀ϕ ∈H , lim
m→∞

WDm(ϕ) = 0. (A.10)

The following lemma shows that the limit-conformity is stronger than the
coercivity.

Lemma A.8 (Limit-conformity implies coercivity, abstract setting).
Let (Dm)m∈N be a sequence of gradient discretisations that is limit-conforming
in the sense of Definition A.7. Then (Dm)m∈N is also coercive in the sense of
Definition A.6.
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Proof. Set

E =

{
PDmv

‖v‖Dm
∈ L : m ∈ N , v ∈ XDm\{0}

}
.

Proving the coercivity of (Dm)m∈N consists in proving that E is bounded in L.
Let f ∈ L′. By (A.4), there exists vf ∈H and µf ∈ V such that f = Dvf+µf .
The definition of |·|L shows that |〈µf , ·〉L′,L| ≤ ‖µf‖L′ |·|L. For z ∈ E, take

m ∈ N and v ∈ XDm\{0} such that z =
PDmv
‖v‖Dm

and write

|〈f, z〉L′,L| ≤
1

‖v‖Dm
|〈Dvf ,PDmv〉L′,L|+

1

‖v‖Dm
|〈µf ,PDmv〉L′,L|

≤ 1

‖v‖Dm
|〈Dvf ,PDmv〉L′,L + 〈vf ,GDmv〉L′,L|

+
1

‖v‖Dm
|〈vf ,GDmv〉L′,L|+

1

‖v‖Dm
‖µf‖L′ |PDmv|L

≤WDm(vf ) + ‖vf‖L′ + ‖µf‖L′ . (A.11)

In the last inequality we used |PDmv|L ≤ ‖v‖Dm and ‖GDmv‖L ≤ ‖v‖Dm .
Since (Dm)m∈N is limit-conforming, (WDm(vf ))m∈N converges to 0 and is
therefore bounded. Estimate (A.11) thus shows that {〈f, z〉L′,L : z ∈ E} is
bounded by some constant depending on f . Since this is valid for any f ∈ L′,
we infer from the Banach–Steinhaus theorem [33, Theorem 2.2] that E is
bounded in L.

Checking limit-conformity is made easier by the following result, which reduces
the set of elements ϕ on which the convergence in (A.10) has to be asserted.

Lemma A.9 (Equivalent condition for limit-conformity, abstract set-
ting). Let (Dm)m∈N be a sequence of gradient discretisations in the sense of
Definition A.6. Then (Dm)m∈N is limit-conforming in the sense of Definition
A.7 if and only if it is coercive in the sense of Definition A.6, and there exists
a dense subset Hd of H such that

∀ψ ∈Hd, lim
m→∞

WDm(ψ) = 0. (A.12)

Proof. If (Dm)m∈N is limit-conforming, then it is coercive by Lemma A.8,
and (A.12) is satisfied with Hd = H (this is (A.10)).
Conversely, assume that (Dm)m∈N is coercive and that (A.12) holds. Let CP ∈
R+ be an upper bound of (CDm)m∈N. To prove (A.10), let ϕ ∈H, ε > 0 and
take ψ ∈ Hd such that ‖ϕ−ψ‖H ≤ ε. By definition of the norm in H, this
means that

‖ϕ−ψ‖L′ + ‖Dϕ−Dψ‖L′ ≤ ε.

Hence, for any u ∈ XDm\{0},
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|〈ϕ−ψ,GDmu〉L′,L + 〈Dϕ−Dψ,PDmu〉L′,L|
‖u‖Dm

≤ ‖ϕ−ψ‖L′
‖GDmu‖L
‖u‖Dm

+ ‖Dϕ−Dψ‖L′
‖PDmu‖L
‖u‖Dm

≤ max(1, CP )ε.

Introducing ψ and Dψ in the definition (A.9) of WDm(ϕ), we infer

WDm(ϕ) ≤ sup
u∈XDm\{0}

|〈ψ,GDmu〉L′,L + 〈Dψ,PDmu〉L′,L|
‖u‖Dm

+ max(1, CP )ε

= WDm(ψ) + max(1, CP )ε.

Invoking (A.12) we deduce that lim supm→∞WDm(ϕ) ≤ max(1, CP )ε, and
the proof is concluded by letting ε→ 0.

The lemma of regularity of the limit (Lemma A.11 below) is an essential tool to
use compactness techniques in the convergence analysis of numerical methods
for non-linear models. We start by a preliminary result that facilitates the
proof of the regularity of the limit.

Lemma A.10 (On limit-conformity, abstract setting). Let D be a gra-

dient discretisation in the sense of Definition A.4. Define W̃D : H ×XD →
[0,+∞) by

∀(ϕ, u) ∈H ×XD , W̃D(ϕ, u) = 〈ϕ,GDu〉L′,L + 〈Dϕ,PDu〉L′,L. (A.13)

A sequence (Dm)m∈N of gradient discretisations is limit-conforming in the
sense of Definition A.7 if and only if, for any sequence um ∈ XDm such that
(‖um‖Dm)m∈N is bounded,

∀ϕ ∈H, lim
m→∞

W̃Dm(ϕ, um) = 0. (A.14)

Proof. Remark that

WD(ϕ) = sup
u∈XD\{0}

|W̃D(ϕ, u)|
‖u‖D

.

The proof that (A.10) implies (A.14) is straightforward, since |W̃Dm(ϕ, um)| ≤
‖um‖DmWDm(ϕ). Let us prove the converse by way of contradiction. If (A.10)
does not hold then there exists ϕ ∈H, ε > 0 and a subsequence of (Dm)m∈N,
still denoted by (Dm)m∈N, such that WDm(ϕ) ≥ ε for all m ∈ N. We can then
find vm ∈ XDm \ {0} such that

|W̃D(ϕ, vm)| ≥ 1

2
ε ‖vm‖Dm .

Set um = vm/‖vm‖Dm . Then, for all m ∈ N, ‖um‖Dm = 1 and



A.2 Gradient discretisation in the abstract setting 401

W̃D(ϕ, um) =
1

‖vm‖Dm
W̃D(ϕ, vm) ≥ 1

2
ε.

This leads to a contradiction with (A.14).

Lemma A.11 (Regularity of the limit, abstract setting). Let (Dm)m∈N
be a limit-conforming sequence of gradient discretisations, in the sense of Defi-
nition A.7. For any m ∈ N, take um ∈ XDm and assume that (‖um‖Dm)m∈N is
bounded. Then there exists u ∈ B such that, along a subsequence as m→∞,
PDmum converges weakly in L to u, and GDmum converges weakly in L to
Gu.

Proof. By definition of ‖·‖Dm , (GDmum)m∈N is bounded in L. By Lemma
A.8, (Dm)m∈N is coercive and therefore (PDmum)m∈N is bounded in L. The re-
flexivity of L and L thus gives a subsequence of (Dm, um)m∈N, denoted in the
same way, and elements u ∈ L and u ∈ L such that PDmum converges weakly
in L to u and GDmum converges weakly in L to u. These weak convergences,
the limit-conformity of (Dm)m∈N and the boundedness of (‖um‖Dm)m∈N en-
able us to identify the limit in (A.14) to see that

∀ϕ ∈H , 〈ϕ,u〉L′,L + 〈Dϕ, u〉L′,L = 0.

This relation simultaneously proves that u ∈ B and that u = Gu.

We conclude this appendix by the notions of GD-consistency and compact-
ness in the abstract setting. Note that, once L, L, H and D are chosen, the
definition A.7 of limit-conformity is constrained by the continuous duality
formula (A.3); as a consequence of Lemma A.8, the definition of coercivity is
also constrained by this formula. These two notions therefore naturally follow
from the continuous abstract setting.
On the contrary, the definitions of GD-consistency and compactness are dis-
connected from the duality formula. In the absence of a specific problem to
analyse in the abstract setting, these definitions therefore remain rather open.
Particular choices for these notions are presented here, but variants are possi-
ble – see Remark 3.12 for GD-consistency and Remark 3.17 for compactness.

Definition A.12 (GD-consistency, abstract setting)

If D is a gradient discretisation in the sense of Definition A.4, let
SD : B → [0,+∞) be given by

∀ϕ ∈ B , SD(ϕ) = min
v∈XD

(
‖PDv − ϕ‖L + ‖GDv −Gϕ‖L

)
. (A.15)

A sequence (Dm)m∈N of gradient discretisations is GD-consistent, or
consistent for short, if



402 A Gradient discretisations – abstract setting

∀ϕ ∈ B , lim
m→∞

SDm(ϕ) = 0. (A.16)

Lemma A.13 (Equivalent condition for GD-consistency, abstract set-
ting). A sequence (Dm)m∈N of gradient discretisations is GD-consistent in the
sense of Definition A.12 if and only if there exists a dense subset Bd of B such
that

∀ψ ∈ Bd , lim
m→∞

SDm(ψ) = 0. (A.17)

Proof. Let us assume that (A.17) holds and let us prove (A.16) (the converse
is straightforward, take Bd = B). Observe first that, since B is continuously
embedded in L, there exists CB > 0 such that

∀ϕ ∈ B , ‖ϕ‖L ≤ CB ‖ϕ‖B .

Let ϕ ∈ B. Take ε > 0 and ψ ∈ Bd such that ‖ϕ − ψ‖B ≤ ε. For v ∈ XDm ,
the triangle inequality and the definition of the norm in B yield

‖PDmv − ϕ‖L + ‖GDmv −Gϕ‖L
≤ ‖PDmv − ψ‖L + ‖ψ − ϕ‖L + ‖GDmv −Gψ‖L + ‖Gψ −Gϕ‖L
≤ ‖PDmv − ψ‖L + ‖GDmv −Gψ‖L + (CB + 1) ‖ψ − ϕ‖B .

Taking the infimum over v ∈ XDm leads to SDm(ϕ) ≤ SDm(ψ) + (CB + 1)ε.
Assumption (A.17) then yields lim supm→∞ SDm(ϕ) ≤ (CB + 1)ε, and letting
ε→ 0 concludes the proof that SDm(ϕ)→ 0 as m→∞.

Definition A.14 (Compactness, abstract setting)

A sequence (Dm)m∈N of gradient discretisations in the sense of Defi-
nition A.4 is compact if, for any sequence um ∈ XDm such that
(‖um‖Dm)m∈N is bounded, the sequence (PDmum)m∈N is relatively
compact in L.

Remark A.15. The compactness of (Dm)m∈N often follows from some com-
pactness property of B – perhaps translated in a discrete setting. The typical
example is the case of “conforming Galerkin” gradient discretisations, defined
by Dm = (XDm ,PDm = Id,GDm = G), where XDm is a finite dimensional
subspace of B. Then, if B is compactly embedded in L, (Dm)m∈N is compact
in the sense of Definition A.14.

Lemma A.16 (Compactness implies coercivity, abstract setting). Let
(Dm)m∈N be a sequence of gradient discretisations that is compact in the sense
of Definition A.14. Then (Dm)m∈N is also coercive in the sense of Definition
A.6.



A.2 Gradient discretisation in the abstract setting 403

Proof. Assume that (Dm)m∈N is not coercive. Then there exists a subse-
quence of (Dm)m∈N (denoted in the same way) such that, for all m ∈ N, we
can find vm ∈ XDm \ {0} satisfying

lim
m→∞

‖PDmvm‖L
‖vm‖Dm

= +∞.

Setting um = vm/ ‖vm‖Dm , this gives limm→∞ ‖PDmum‖L = +∞. But
‖um‖Dm = 1 for all m ∈ N and the compactness of the sequence of gradi-
ent discretisations therefore implies that (PDmum)m∈N is relatively compact
in L, which is a contradiction.





B

Discrete functional analysis

Because the GDM encompasses non-conforming schemes, the functional spaces
where the approximate solutions live are not included in the classical Sobolev
spaces. Therefore, the usual Poincaré inequalities, Sobolev embeddings or
trace inequalities cannot be directly used. This chapter introduces a num-
ber of tools, referred to as “discrete functional analysis tools”, which are the
equivalent of the aforementioned inequalities/embeddings in discrete spaces
(made of vectors gathering cell and face unknowns). These tools are combined,
in Section 7.2, with the notion of polytopal toolbox to establish the coerciv-
ity, limit-conformity and compactness of sequences of gradient discretisations
that are controlled by such toolboxes. As shown in Chapters 8–14, many con-
forming and non-conforming schemes can be analysed through controls by
polytopal toolboxes and thus, indirectly, through the discrete functional anal-
ysis tools presented here.

In Section B.1, technical results on polytopal meshes and related recon-
struction operators are presented. The three subsequent sections are devoted
to discrete functional analysis results for diffusion problems with, respec-
tively, Dirichlet, Neumann/Fourier, and mixed boundary conditions. Some
of the tools developed here are inspired by previous works; this is in par-
ticular the case for discrete Poincaré and Sobolev inequalities, see, e.g.,
[51, 90, 105, 95, 109, 110, 25, 70] to cite a few.

In this chapter, unless otherwise specified we take p ∈ (1,∞) and Ω is an open
bounded connected subset of Rd (d ∈ N?) with Lipschitz-continuous boundary
∂Ω.

B.1 Preliminary results

We state here a few technical results on polytopal meshes and associated
discrete elements.
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B.1.1 Geometrical properties of cells

The lemmas in this section state simple geometrical properties and formulas
associated with a cell.

Lemma B.1. Let T be a polytopal mesh in the sense of Definition 7.2. Take
K ∈M and let %K = minσ∈FK dK,σ. Then, the open ball B(xK , %K) of centre
xK and radius %K is contained in K, and K is star-shaped with respect to all
points in this ball.

Proof. For σ ∈ FK we let Hσ be the affine hyperplane generated by σ and
H−σ = {x ∈ Rd : (x−z)·nK,σ < 0 for all z ∈ Hσ} be the half space, opposite
to nK,σ, corresponding to σ (see Figure B.1).

nK,σ

σ

H−σ

H

B(xK , %K)

K

Fig. B.1. Illustration of the proof of Lemma B.1.

By definition, dK,σ is the (usual) distance from xK to Hσ. Hence B(xK , %K)
is contained in H−σ ; otherwise, we would have a point in this ball which is at
a greater distance from xK than dK,σ, which contradicts %K ≤ dK,σ. Hence
B(xK , %K) ⊂ ∩σ∈FKH−σ =: H. The proof is concluded if we show that K is
star-shaped with respect to any point in H.
Let x ∈ H and y ∈ K. If [x,y] is not contained in K, then by convexity
of [x,y] we have (x,y) ∩ ∂K 6= ∅. Let z be the last point, towards y, in
(x,y) ∩ ∂K. Then (z,y) ⊂ K and, if σ is the face of K on which z lies,
(z − y) · nK,σ > 0. But x − z = α(z − y) for some positive α since z lies
between x and y, and thus (x − z) · nK,σ = α[(z − y) · nK,σ] > 0. On the
other hand, since x ∈ H ⊂ H−σ and z ∈ σ, (x − z) · nK,σ < 0. This is a
contradiction and the proof is complete.
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Lemma B.2. Let T be a polytopal mesh in the sense of Definition 7.2, K ∈M
and σ ∈ FK . Then

|DK,σ| =
1

d
|σ|dK,σ and

∑
σ∈FK

|σ|dK,σ = d|K|. (B.1)

Proof. We first compute |DK,σ| =
∫
DK,σ

dtdx. Since the integral is invariant

by translation and change of orthonormal axis system, there is no loss of
generality in supposing that σ lies on the hyperplane x(1) = 0, and that xK
on the line orthogonal to it. Then xK = (dK,σ, 0, . . . , 0), see Figure B.2.

xK

σ

K

DK,σ

dK,σ

x(1)

x(2), . . . , x(d)

Fig. B.2. Illustration of the proof of Lemma B.2

Consider the change of variable (t,y) ∈ (0, 1) × σ 7→ x ∈ DK,σ defined by
x = (1 − t)xK + ty = ((1 − t)dK,σ, ty(2), . . . , ty(d)) (note that y(1) = 0). Its
Jacobian determinant is J(t,y) = dK,σ × td−1 so

|DK,σ| =
∫ 1

0

∫
σ

td−1dK,σdtdγ(y) =
1

d
dK,σ|σ|,

as announced in the lemma. The second equation in (B.1) follows immediately
from the fact that (DK,σ)σ∈FK forms a partition of K (up to a set of zero
measure).

The following lemma and corollary are extremely useful to construct P1-exact
gradient reconstructions.
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Lemma B.3. Let K be a polytopal subset of Rd with faces FK and, for σ ∈
FK , denote by xσ the centre of mass of σ. Let xK be any point of Rd. Then,∑

σ∈FK

|σ|nK,σ(xσ − xK)T = |K|Id, (B.2)

where (xσ − xK)T is the transpose of xσ − xK ∈ Rd, and Id is the d × d
identity matrix.

Proof. Since xσ is the centre of mass of σ, for any i = 1, . . . , d,

x(i)
σ =

1

|σ|

∫
σ

x(i)ds(x)

(where x(i) denotes the i-th component of x), and therefore∑
σ∈FK

|σ|x(i)
σ nK,σ =

∑
σ∈FK

∫
σ

x(i)nK,σds(x).

The divergence (or Stokes’) formula then gives∑
σ∈FK

|σ|x(i)
σ nK,σ =

∫
K

∇(x(i))dx = |K|ei

where ei is the i-th vector of the canonical basis of Rd. Since xTσ ei = x(i)
σ ,

this shows that ( ∑
σ∈FK

|σ|nK,σxTσ

)
ei = (|K|Id)ei.

This relation being valid for any i = 1, . . . , d, we infer that∑
σ∈FK

|σ|nK,σxTσ = |K|Id. (B.3)

Apply now divergence formula to a constant field ξ ∈ Rd:( ∑
σ∈FK

|σ|nK,σ

)
· ξ =

∑
σ∈FK

∫
σ

ξ · nK,σdγ(x) =

∫
K

div(ξ)dx = 0.

Since this relation is true for any ξ ∈ Rd, it shows that∑
σ∈FK

|σ|nK,σ = 0. (B.4)

(B.2) is proved by adding (B.3) and (B.4) multiplied on the right by −xTK .

For simplicial meshes, the next lemma shows that the regularity factor κT
defined by (7.10) controls all the other ones.
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Lemma B.4. Let K be a simplex of Rd, xK be the centre of mass of K, and
ρK be the maximum radius of the balls centred at xK and contained in K. For
σ ∈ FK , let dK,σ be defined by (7.4) with xK = xK . Then

ρK = min
σ∈FK

dK,σ , (B.5)

∀s0 6= s1 in VK , ρK ≤
1

d+ 1
dist(s0, s1) , (B.6)

∀σ ∈ FK , ρK ≤
1

d+ 1
diam(σ). (B.7)

As a consequence, if T is a conforming simplicial mesh with P the centres of
mass of the cells, then, recalling the definitions (7.8)–(7.10),

ηT ≤
2κ2

T

d+ 1
and θT ≤ κT + d+ 1.

Proof. The inequality ≥ in (B.5) is a consequence of Lemma B.1. The other
inequality actually only relies on the convexity of K. If σ ∈ FK , as in the
proof of Lemma B.1 denote by Hσ the affine hyperplane containing σ, and by
H−σ the half space Hσ +R−nK,σ. Since K is convex, K ⊂ H−σ and dK,σ is the
(positive) distance from xK to Hσ. We have B(xK , ρK) ⊂ K ⊂ H−σ and ρK
must therefore be less than dist(xK , Hσ) = dK,σ.
Let us now prove (B.6). Let σ be the face of K opposite to s1. Write xK =

1
d+1

∑
s∈VK s, so that

s0 − xK =
1

d+ 1

∑
s∈VK

(s0 − s)

=
1

d+ 1

∑
s∈VK , s 6=s1

(s0 − s) +
1

d+ 1
(s0 − s1). (B.8)

If s 6= s1 then s, s0 ∈ σ and thus (s0−s)·nK,σ = 0. Taking the scalar product
of (B.8) with nK,σ therefore gives, since s0 ∈ σ,

dK,σ = (s0 − xK) · nK,σ =
1

d+ 1
(s0 − s1) · nK,σ ≤

1

d+ 1
dist(s0, s1).

Equation (B.6) follows since ρK ≤ dK,σ by (B.5). Estimate (B.7) is a conse-
quence of (B.6) since, for any face σ ∈ FK and any two vertices s0 6= s1 of σ,
dist(s0, s1) ≤ diam(σ).

Let us turn to the upper bound on ηT. For any neighbouring cells K and L,
denoting by σ their common face, by (B.5) applied to K and (B.7) applied to
L,

dK,σ ≥ ρK ≥ κ−1
T hK ≥ κ−1

T diam(σ) ≥ κ−1
T (d+ 1)ρL

≥ κ−2
T (d+ 1)hL ≥ κ−2

T (d+ 1)dL,σ.
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Hence
dL,σ
dK,σ

≤ κ2
T

d+1 which gives, by reversing the roles of K and L, the upper

bound on ηT.
The bound on θT is trivial since any simplex K has d+ 1 faces and, by (B.5),

hK
dK,σ

≤ κT
ρK
dK,σ

≤ κT. (B.9)

Remark B.5 (Generalisation to xK not located at the centre of mass)
The proof shows that (B.5) holds with xK replaced by any xK ∈ K. Writing xK =∑

s∈VK
αss as a convex combination and reproducing the previous proof with these

coefficients αs ∈ [0, 1] instead of 1/(d + 1), we see that (B.6) and (B.7) holds with
1 instead of 1/(d+ 1).

B.1.2 Interpolant on XT

For T a polytopal mesh of Ω in the sense of Definition 7.2 and p ∈ [1,∞),
define the interpolant IT : W 1,p(Ω)→ XT by

∀ϕ ∈W 1,p(Ω) , ITϕ = ((ϕK)K∈M, (ϕσ)σ∈F ) with

∀K ∈M , ϕK =
1

|K|

∫
K

ϕ(x)dx ,

∀σ ∈ F , ϕσ =
1

|σ|

∫
σ

ϕ(x)dγ(x).

(B.10)

This interpolant enjoys essential stability and approximation properties. Be-
fore establishing them, let us start with a preliminary lemma.

Lemma B.6. Let T be a polytopal mesh of Ω in the sense of Definition 7.2,
p ∈ [1,∞) and θ be such that

max

{
hK
dK,σ

: K ∈M , σ ∈ FK
}
≤ θ.

Then there exists C1, depending only on d, p and θ, such that, for any K ∈M
and any ϕ ∈W 1,p(K), with the notations in (B.10),

|ϕσ − ϕK |p ≤
C1h

p−1
K

|σ|

∫
K

|∇ϕ(x)|pdx (B.11)

and
‖ϕ− ϕK‖Lp(K) ≤ C1hK ‖∇ϕ‖Lp(K)d . (B.12)
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Proof. Let us assume the existence of C2 depending only on d, p and θ such
that, for all K ∈M and all σ ∈ FK , setting BK = B(xK , θ

−1hK/2),∣∣∣∣ϕσ − 1

|BK |

∫
BK

ϕ(x)dx

∣∣∣∣p ≤ C2
hp−1
K

|σ|

∫
K

|∇ϕ(x)|pdx, (B.13)

∣∣∣∣ 1

|BK |

∫
BK

ϕ(x)dx− ϕK
∣∣∣∣p ≤ C2

hpK
|K|

∫
K

|∇ϕ(x)|pdx, (B.14)

and ∥∥∥∥ϕ− 1

|BK |

∫
BK

ϕ(x)dx

∥∥∥∥
Lp(K)

≤ C2hK ‖∇ϕ‖Lp(K)d . (B.15)

Then (B.11) follows from (B.13) and (B.14) by using the triangle inequal-
ity, the power-of-sums inequality (D.12), and, in (B.14), the estimate |K| ≥
|DK,σ| =

|σ|dK,σ
d ≥ θ−1d−1|σ|hK . Similarly, Estimate (B.12) follows from

(B.14), (B.15) and the triangle inequality.
To prove the existence of C2 such that (B.13)–(B.15) hold, notice first that,
since the restrictions to K of functions in C∞(Rd) are dense in W 1,p(K) (K is
a polytopal set), these estimates only need to be established for ϕ ∈ C∞(Rd).

Proof of (B.13)

For z ∈ BK and y ∈ σ, write ϕ(y)− ϕ(z) =
∫ 1

0
∇ϕ(z + t(y − z)) · (z − y)dt.

Taking the mean value for z ∈ BK and y ∈ σ and using Jensen’s inequality
yields

L(B.13) ≤
hpK

|σ| |BK |

∫ 1

0

∫
σ

∫
BK

|∇ϕ(z + t(y − z))|pdzdγ(y)dt, (B.16)

where L(B.13) is the left-hand side of (B.13). Since θ−1hK/2 ≤ dK,σ for all
σ ∈ FK , by Lemma B.1 the cell K is star-shaped with respect to all points
in BK . Hence, for all z ∈ BK the change of variable ψ : (t,y) ∈ (0, 1) ×
σ → x = z + t(y − z) has values in K. By the same reasoning as in the
proof of Lemma B.2, the Jacobian determinant of this change of variable is

Jψ = td−1|(y− z) ·nK,σ|. Since |x− z| = t|y− z| ≤ thK , we have t ≥ |x−z|hK
.

Moreover,

|(y − z) · nK,σ| ≥ |(y − xK) · nK,σ| − |z − xK | ≥ dK,σ −
θ−1hK

2
≥ θ−1hK

2
.

Hence,

Jψ ≥
(
|x− z|
hK

)d−1
θ−1

2
hK ≥ (2θ)−1h2−d

K |x− z|d−1.

Using ψ in (B.16) therefore leads to

L(B.13) ≤
2θhp+d−2

K

|σ| |BK |

∫
K

|∇ϕ(x)|p
∫
BK

|x− z|1−ddzdx. (B.17)
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Since BK ⊂ K ⊂ B(x, hK) for any x ∈ K, denoting by ωd the surface of the
unit sphere in Rd,∫
BK

|x− z|1−ddz ≤
∫
B(x,hK)

|x− z|1−ddz = ωd

∫ hK

0

ρ1−dρd−1dρ = ωdhK .

Plugged into (B.17), this estimate gives (B.13) since |BK |= |B(0, 1)|(2θ)−dhdK .

Proof of (B.14)
We follow similar ideas as in the proof of Lemma 7.59. For all (x,y) ∈ BK×K,
we have

ϕ(x)− ϕ(y) =

∫ 1

0

∇ϕ(tx+ (1− t)y) · (x− y)dt. (B.18)

Taking the mean values for x ∈ BK and y ∈ K and denoting by L(B.14) the
left-hand side of (B.14), Jensen’s inequality gives

L(B.14) ≤
hpK

|BK | |K|

∫
BK

∫
K

∫ 1

0

|∇ϕ(tx+ (1− t)y)|pdtdydx. (B.19)

Applying the change of variable x ∈ BK → z = tx + (1 − t)y, which has
values in K since K is star-shaped with respect to all points in BK , we have∫

BK

∫
K

∫ 1

0

|∇ϕ(tx+ (1− t)y)|pdtdydx

≤
∫
K

|∇ϕ(z)|p
∫
K

∫
I(z,y)

t−ddtdydz (B.20)

where, as in the proof of Lemma 7.59 with V = BK , I(z,y) = {t ∈ (0, 1) :
∃x ∈ BK , tx+ (1− t)y = z}. Using BK ⊂ K and following estimates (7.73)
and (7.74), we arrive at∫

K

∫
I(z,y)

t−ddtdy ≤ hdK
d− 1

ωd. (B.21)

Substituting this inequality into (B.20) and coming back to (B.19) completes
the proof of (B.14), since |BK | = |B(0, 1)|(2θ)−dhdK .

Proof of (B.15)
This estimate follows immediately from Lemma 7.59 since V = K is star-
shaped with respect to B = BK , and diam(V ) = hK = θdiam(B).

The following stability property of IT is useful to check the condition (2.96) in
Lemma 2.53. It enabled us (in Section 9.5 and in the proof of Theorem 13.14)
to establish the GD-consistency, in the case of non-homogeneous Dirichlet
boundary conditions, of non-conforming P1 GDs and of HMM GDs.
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Proposition B.7 (Stability of the interpolant IT). Let T be a polytopal
mesh of Ω in the sense of Definition 7.2, let IT be defined by (B.10), and let
θ ≥ θT (see (7.8)). Then, there exists C3 depending only on d, p and θ such
that, for all ϕ ∈W 1,p(Ω),

‖ΠT(ITϕ)‖Lp(Ω) ≤ ‖ϕ‖Lp(Ω) , ‖TT(ITϕ)‖Lp(∂Ω) ≤ ‖γϕ‖Lp(∂Ω)

and |ITϕ|T,p ≤ C3 ‖∇ϕ‖Lp(Ω)d .
(B.22)

Proof. Using the notations in (B.10), by Jensen’s inequality,

|ϕK |p ≤
1

|K|

∫
K

|ϕ(x)|pdx.

Multiplying this inequality by |K| and summing over K ∈M gives

‖ΠT(ITϕ)‖Lp(Ω) ≤ ‖ϕ‖Lp(Ω) .

A similar reasoning gives the estimate on TT(ITϕ). To estimate |ITϕ|T,p, we
apply (B.11) in Lemma B.6 to find C4 depending only on d, p and θ such that

|ϕσ − ϕK |p ≤
C4h

p−1
K

|σ|

∫
K

|∇ϕ(x)|pdx.

Multiply this inequality by |σ|d1−p
K,σ and sum over σ ∈ FK and K ∈M. Since,

for all K ∈ M, Card(FK) ≤ θ and hK/dK,σ ≤ θ for all σ ∈ FK , this yields
|ITϕ|pT,p ≤ C4θ

p ‖∇ϕ‖pLp(Ω)d .

To prove the approximation properties of IT (Proposition B.9 below), let us
first state a preliminary lemma. We establish this lemma in the context of
partitions of Ω, but it actually holds in a more general setting of measurable
spaces; in particular, it is also valid if we replace Ω with ∂Ω (endowed with
its (d− 1)-dimensional measure).

Lemma B.8 (Approximation properties of projections on partitions).
Let (Mm)m∈N be a sequence of families of measurable subsets of Ω such that,
for each m ∈ N,

• Ω\
(⋃

K∈Mm
K
)

has a zero measure,
• each K ∈Mm has a non-zero measure,
• if K and L are two distinct elements of Mm, then K ∩ L = ∅.

For m ∈ N, define PrMm
: Lp(Ω) → Lp(Ω) as the projection on piecewise-

constant functions on Mm, that is,

∀ϕ ∈ Lp(Ω) , ∀K ∈Mm , (PrMm
ϕ)|K =

1

|K|

∫
K

ϕ(x)dx. (B.23)

Assume that maxK∈Mm diam(K) → 0 as m → ∞. Then, for all ϕ ∈ Lp(Ω),
PrMm

ϕ→ ϕ in Lp(Ω) as m→∞.
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Proof. Take ε > 0 and let ϕε ∈ C1(Rd) be such that ‖ϕ− ϕε‖Lp(Ω) ≤ ε. A
triangle inequality yields

‖PrMmϕ− ϕ‖Lp(Ω) ≤ ‖PrMm(ϕ− ϕε)‖Lp(Ω) + ‖PrMmϕε − ϕε‖Lp(Ω)

+ ‖ϕε − ϕ‖Lp(Ω) .

(B.24)
By Jensen’s inequality, for all ψ ∈ Lp(Ω) and K ∈Mm,

|(PrMmψ)|K |p ≤
1

|K|

∫
K

|ψ(x)|pdx.

Multiply this by |K| and sum over K ∈ Mm to obtain ‖PrMmψ‖Lp(Ω) ≤
‖ψ‖Lp(Ω). Using this estimate in (B.24) with ψ = ϕ − ϕε and recalling that

‖ϕ− ϕε‖Lp(Ω) ≤ ε leads to

‖PrMmϕ− ϕ‖Lp(Ω) ≤ 2ε+ ‖PrMmϕε − ϕε‖Lp(Ω) . (B.25)

Then, for all K ∈Mm and x ∈ K,

|PrMmϕε(x)− ϕε(x)| =
∣∣∣∣ 1

|K|

∫
K

(ϕε(y)− ϕε(x))dy

∣∣∣∣
≤ diam(K) ‖∇ϕε‖L∞(Rd)d .

Using Hölder’s inequality and taking the supremum of the above inequality
over x ∈ K and K ∈Mm, we obtain

‖PrMm
ϕε − ϕε‖Lp(Ω) ≤ |Ω|

1/p ‖PrMm
ϕε − ϕε‖L∞(Ω)

≤ |Ω|1/p
(

max
K∈Mm

diam(K)

)
‖∇ϕε‖L∞(Rd)d .

Plugged into (B.25), this gives

‖PrMmϕ− ϕ‖Lp(Ω) ≤ 2ε+ |Ω|1/p
(

max
K∈Mm

diam(K)

)
‖∇ϕε‖L∞(Rd)d .

Take now the superior limit as m → ∞ and use maxK∈Mm
diam(K) → 0 to

get lim supm→∞ ‖PrMm
ϕ− ϕ‖Lp(Ω) ≤ 2ε. Letting ε→ 0 concludes the proof

that PrMmϕ→ ϕ in Lp(Ω) as m→∞.

We can now state the approximation properties of IT .

Proposition B.9 (Approximation properties of the interpolant IT).
Let (Tm)m∈N be a sequence of polytopal meshes of Ω in the sense of Definition
7.2, such that hMm → 0 as m→∞. Then, for all ϕ ∈W 1,p(Ω), as m→∞,

ΠTm(ITmϕ)→ ϕ in Lp(Ω), (B.26)

TTm(ITmϕ)→ γϕ in Lp(∂Ω), (B.27)

∇Tm(ITmϕ)→ ∇ϕ in Lp(Ω)d. (B.28)
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Proof. Let PrMm
be the projection on Mm as defined by (B.23). By defi-

nitions (B.10) and (7.7c) of ITm and ΠTm , ΠTm(ITmϕ) = PrMm
ϕ and the

convergence (B.26) follows from Lemma B.8. The convergence (B.27) of the
reconstructed traces follows by the same argument, using a variant of Lemma
B.8 for partitions of ∂Ω instead of Ω.
By Stokes’ formula, the definition (B.10) of ITm , and the definition (7.7e) of
∇Tm , for all K ∈Mm,

(∇Tm(ITmϕ))|K =
1

|K|
∑
σ∈FK

∫
σ

ϕ(x)dγ(x)nK,σ =
1

|K|

∫
K

∇ϕ(x)dx.

Hence, ∇Tm(ITmϕ) = PrMm
(∇ϕ), where PrMm

acts on ∇ϕ component-by-
component. Hence, Lemma B.8 shows that ∇Tm(ITmϕ) → ∇ϕ in Lp(Ω)d as
m→∞, and the proof is complete.

B.1.3 Approximation properties of ∇T

The following result is the key to proving that several classical gradient dis-
cretisations are LLE GDs.

Lemma B.10 (P1-exactness of ∇T and stability). Under Hypothesis
(7.2), let p ∈ [1,+∞) and T be a polytopal mesh of Ω in the sense of Definition
7.2. Define XT, ∇T, ∇K and |·|T,p as in (7.7). Then

1. ∇K is a P1-exact gradient reconstruction on K upon (xK , (xσ)σ∈FK ), in
the sense of Definition 7.28. In other words, if A is an affine function
and u = (A(xK), (A(xσ))σ∈FK ) are the values at xK and (xσ)σ∈FK of A,
then ∇Ku = ∇A.

2. For all v ∈ XT, ∥∥∇Tv
∥∥
Lp(Ω)d

≤ d
p−1
p |v|T,p . (B.29)

Proof. The proof of Item 1 follows by multiplying both sides of (B.2) by the
constant vector ∇A, and by noticing that, since A is affine,

(xσ − xK)T∇A = (xσ − xK) · ∇A = A(xσ)−A(xK) = uσ − uK .

To prove Item 2, write, for x ∈ K,

|∇Tv(x)| ≤ 1

|K|
∑
σ∈FK

|σ| |vσ − vK | ≤ d
∑
σ∈FK

|σ|dK,σ
d|K|

∣∣∣∣vσ − vKdK,σ

∣∣∣∣ .
By (B.1) we have

∑
σ∈FK

|σ|dK,σ
d|K| = 1 and the convexity of s 7→ sp for s ≥ 0

therefore gives

|∇Tv(x)|p ≤ dp
∑
σ∈FK

|σ|dK,σ
d|K|

∣∣∣∣vσ − vKdK,σ

∣∣∣∣p
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=
dp−1

|K|
∑
σ∈FK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p . (B.30)

Integrate this estimate over x ∈ K, sum over K ∈M and recall the definition
(7.7f) of |·|T,p to obtain (B.29).

The following lemma helps proving the limit-conformity of a GD controlled
by a polytopal toolbox.

Lemma B.11 (Discrete Stokes’ formula). Let T be a polytopal mesh of Ω
in the sense of Definition 7.2, p ∈ [1,+∞) and θ ≥ θT (see (7.8)). We define
XT, ΠT, TT, ∇T and |·|T,p as in (7.7). Then, there exists C5 depending only

on d, p and θ such that, for all ϕ ∈W 1,p′(Ω)d and all v ∈ XT,∣∣∣ ∫
Ω

(
∇Tv(x) ·ϕ(x) +ΠTv(x)divϕ(x)

)
dx

−
∫
∂Ω

TTv(x)γn(ϕ)(x)dγ(x)
∣∣∣ ≤ C5 ‖ |∇ϕ| ‖Lp′ (Ω) |v|T,p hM, (B.31)

where γn(ϕ) = γ(ϕ) · n∂Ω is the normal trace of ϕ.

Remark B.12 (Broken W 1,p′ estimate)

The proof actually shows that the result still holds if we take ϕ ∈ W p′

div(Ω) ∩
W 1,p′(M)d, where the broken space W 1,p′(M)d is defined by

W 1,p(M) = {ψ ∈ Lp
′
(Ω) : ∀K ∈M , ψ ∈W 1,p′(K)}.

In (B.31), the factor “‖ |∇ϕ| ‖Lp′ (Ω) hM” must simply be replaced with

( ∑
K∈M

‖ |∇ϕ| ‖p
′

Lp
′
(K)

hp
′

K

)1/p′

,

or |ϕ|W1,∞(M) = maxK∈M(‖ |∇ϕ| ‖L∞(K) hK) if p = 1.

Proof. Set ϕσ = 1
|σ|
∫
σ
ϕ(x)dγ(x). Since nK,σ = −nL,σ whenever σ is a face

between K and L, gathering by faces shows that∑
K∈M

∑
σ∈FK

vσ|σ|ϕσ · nK,σ

=
∑

σ∈Fint,Mσ={K,L}

vσ|σ| (ϕσ · nK,σ +ϕσ · nL,σ)

+
∑

σ∈Fext,Mσ={K}

vσ

∫
σ

ϕ(x) · nK,σdγ(x)

=

∫
∂Ω

TTv(x)ϕ(x) · n∂Ω(x)dγ(x).
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By Stokes’ formula,
∫
K

divϕ(x)dx =
∑
σ∈FK |σ|ϕσ · nK,σ. Therefore,∫

Ω

ΠTv(x)divϕ(x)dx =
∑
K∈M

vK
∑
σ∈FK

|σ|ϕσ · nK,σ

=
∑
K∈M

∑
σ∈FK

(vK − vσ)|σ|ϕσ · nK,σ +

∫
∂Ω

TTv(x)γn(ϕ)(x)dγ(x). (B.32)

Introduce ϕK = 1
|K|
∫
K
ϕ(x)dx and write, since

∑
σ∈FK |σ|(vσ − vK)nK,σ =

|K|∇Kv,∫
Ω

ΠTv(x)divϕ(x)dx−
∫
∂Ω

TTv(x)γn(ϕ)(x)dγ(x)

=
∑
K∈M

∑
σ∈FK

|σ|(vK − vσ)nK,σ ·ϕK

+
∑
K∈M

∑
σ∈FK

|σ|(vK − vσ)(ϕσ −ϕK) · nK,σ

= −
∫
Ω

∇Tv(x) ·ϕ(x)dx

+
∑
K∈M

∑
σ∈FK

|σ|(vK − vσ)(ϕσ −ϕK) · nK,σ. (B.33)

Let T be the left-hand side of (B.31). Equation (B.33) and Hölder’s inequality
(D.3) show that, for p > 1,

T ≤
∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣ |ϕσ −ϕK | (B.34)

≤

( ∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣vσ − vKdK,σ

∣∣∣∣p
) 1
p

×

( ∑
K∈M

∑
σ∈FK

|σ|dK,σ|ϕσ −ϕK |p
′

) 1
p′

.

Apply (B.11) in Lemma B.6 to each component of ϕ, with p′ instead of p.
Since dK,σ ≤ hK , this gives C6 depending only on d, p and θ such that

T ≤ C6 |v|T,p

( ∑
K∈M

∑
σ∈FK

hp
′

K

∫
K

|∇ϕ(x)|p
′
dx

) 1
p′

≤ C6θ
1
p′ |v|T,p hM ‖ |∇ϕ| ‖Lp′ (Ω) .

This completes the proof in the case p > 1. If p = 1, simply write |ϕK−ϕσ| ≤
‖ |∇ϕ| ‖L∞(Ω) hM in (B.34).
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B.2 Discrete functional analysis for Dirichlet boundary
conditions

We establish discrete functional analysis results in the case of Dirichlet bound-
ary conditions. We first consider discrete Sobolev embeddings, starting with
the case p = 1 and then generalising to the case p > 1. Then we study a Rel-
lich compactness result, also looking at the case p = 1 first. All these results
apply to functions reconstructed, through ΠT, from elements in XT,0.

B.2.1 Discrete Sobolev embeddings

Let us first recall the Sobolev embedding, due to L. Nirenberg, of W 1,1(Rd)
into L1?(Rd), where 1? = d

d−1 :

∀w ∈W 1,1(Rd) , ‖w‖L1? (Rd) ≤
1

2d

d∑
i=1

‖∂iw‖L1(Rd) . (B.35)

Recall that the BV (Rd) norm of functions in L1(Rd) is defined by

‖w‖BV (Rd) = sup
{∫

Rd
w(x)divϕ(x)dx : ϕ ∈ C∞c (Rd,Rd),

‖ϕ‖L∞(Rd)d ≤ 1
}
,

with ϕ = (ϕ1, . . . , ϕd) and ‖ϕ‖L∞(Rd)d = supi=1,...,d ‖ϕi‖L∞(Rd). The space

BV (Rd) is defined as the set of functions w ∈ L1(Ω) such that ‖w‖BV (Rd) <

∞. The Sobolev embedding (B.35) can be extended to BV (Rd), by using a
regularisation technique.
Precisely, let w ∈ BV (Rd) and take (ρn)n≥1 a smoothing kernel, that is,
ρ1 ∈ C∞c (B(0, 1)), ρ1 ≥ 0,

∫
B(0,1)

ρ1(x)dx = 1, and ρn(x) = ndρ1(nx). Then,

wn = w ? ρn belongs to W 1,1(Rd), and wn → w in L1(Rd) as n → ∞ (and

thus a.e. up to a subsequence). Moreover,
∑d
i=1 ‖∂iwn‖L1(Rd) ≤ ‖w‖BV (Rd).

Apply then (B.35) to w = wn to obtain

‖wn‖L1? (Rd) ≤
1

2d

d∑
i=1

‖∂iwn‖L1(Rd) ≤
1

2d
‖w‖BV (Rd) .

Taking now the inferior limit and using Fatou’s lemma in the left-hand side
yields that

∀w ∈ BV (Rd) , ‖w‖L1? (Rd) ≤
1

2d
‖w‖BV (Rd) . (B.36)

Let us now state the discrete Sobolev embedding for p = 1.
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Lemma B.13 (Discrete embedding of W 1,1
0 (Ω) in L1?(Ω)). Let T be a

polytopal mesh of Ω. Setting 1? = d
d−1 and recalling the notations (7.7), we

have

∀u ∈ XT,0 , ‖ΠTu‖L1? (Ω) ≤
1

2
√
d
|u|T,1 . (B.37)

Proof. Let u ∈ XT,0, and extend ΠTu by 0 outside Ω. We have ΠTu ∈
L1(Rd). Let ϕ ∈ C∞c (Rd,Rd) such that ‖ϕ‖L∞(Rd) ≤ 1. This implies |ϕ| ≤

√
d.

Write (B.32) for v = u and take into account the boundary conditions uσ = 0
for all σ ∈ Fext (which implies TTu = 0) to obtain∫

Rd
ΠTu(x)divϕ(x)dx =

∫
Ω

ΠTu(x)divϕ(x)dx

=
∑
K∈M

∑
σ∈FK

|σ|(uK − uσ)
1

|σ|

∫
σ

ϕ(x) · nK,σdγ(x)

≤
√
d
∑
K∈M

∑
σ∈FK

|σ||uK − uσ| =
√
d |u|T,1 . (B.38)

Hence, ‖ΠTu‖BV (Rd) ≤
√
d |u|T,1 and (B.36) leads to (B.37).

Lemma B.14 (Discrete embedding of W 1,p
0 (Ω) in Lp

?

(Ω), 1 < p < d).
Let T be a polytopal mesh of Ω, p ∈ (1, d) and p? = pd

d−p . Then, there exists

C7, depending only on d, p and η ≥ ηT (see (7.9)), such that

∀u ∈ XT,0 , ‖ΠTu‖Lp? (Ω) ≤ C7 |u|T,p . (B.39)

Proof. We follow again L. Nirenberg’s ideas. Let α be such that α1? = p?,
that is, α = p(d − 1)/(d − p) > 1. Take u ∈ XT,0 and define û =
((|uK |α)K∈M, (ûσ)σ∈F ) with

ûσ =
1

2
(|uK |α + |uL|α) for all σ ∈ Fint with Mσ = {K,L},

ûσ = 0 if σ ∈ Fext.

Since |ΠTû|
d
d−1 = |ΠTu|p

?

, applying (B.37) to û and gathering the sums by
edges gives(∫

Ω

|ΠTu(x)|p
?

dx
) d−1

d ≤ 1

2
√
d

∑
K∈M

∑
σ∈FK

|σ|
∣∣|uK |α − ûσ∣∣ (B.40)

≤ 1

2
√
d

∑
σ∈Fext,Mσ={K}

|σ||uK |α +
1

2
√
d

∑
σ∈Fint,Mσ={K,L}

|σ|
∣∣|uK |α − |uL|α∣∣.

Since f : s 7→ sα is differentiable on [0,∞) and sup[a,b] |f ′| ≤ α(aα−1 + bα−1)
for all 0 ≤ a ≤ b, the mean value theorem yields
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Hence, setting δσu = |uK | if σ ∈ Fext and δσu = |uK − uL| if σ ∈ Fint,
gathering back by cells,(∫

Ω

|ΠTu(x)|p
?

dx

) d−1
d

≤ α

2
√
d

∑
K∈M

∑
σ∈FK

|σ||uK |α−1δσu

=
α

2
√
d

∑
K∈M

∑
σ∈FK

|σ|dK,σ|uK |α−1 δσu

dK,σ
.

The Hölder inequality (D.3) then yields

(∫
Ω

|ΠTu(x)|p
?

dx

) d−1
d

≤ α

2
√
d

( ∑
K∈M

∑
σ∈FK

|σ|dK,σ|uK |(α−1)p′

) 1
p′

×

( ∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣ δσudK,σ

∣∣∣∣p
) 1
p

.

(B.42)

Since (α− 1)p′ = p? and
∑
σ∈FK |σ|dK,σ = d|K| (see (B.1)),∑

K∈M

∑
σ∈FK

|σ|dK,σ|uK |(α−1)p′ =
∑
K∈M

d|K| |uK |p
?

= d

∫
Ω

|ΠTu(x)|p
?

dx.

Plugging this into (B.42) and noticing that d−1
d −

1
p′ = 1

p? , this shows that

‖ΠTu‖Lp? (Ω) ≤
αd1/p′

2
√
d

( ∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣ δσudK,σ

∣∣∣∣p
) 1
p

. (B.43)

For Mσ = {K,L}, using the definition of η,

dK,σ

∣∣∣∣ δσudK,σ

∣∣∣∣p ≤ 1

dp−1
K,σ

(|uK − uσ|+ |uσ − uL|)p

≤ 2p−1

(
|uK − uσ|p

dp−1
K,σ

+
|uL − uσ|p

dp−1
L,σ

)
dp−1
K,σ + dp−1

L,σ

dp−1
K,σ

≤ 2p−1

(
dK,σ

∣∣∣∣uK − uσdK,σ

∣∣∣∣p + dL,σ

∣∣∣∣uL − uσdL,σ

∣∣∣∣p) (1 + ηp−1).

The same holds, with uL = 0, if σ ∈ FK ∩ Fext. Hence,∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣ δσudK,σ

∣∣∣∣p
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≤ 2p−1(1 + ηp−1)
∑
K∈M

∑
σ∈FK

|σ|
(
dK,σ

∣∣∣∣uK − uσdK,σ

∣∣∣∣p + dL,σ

∣∣∣∣uL − uσdL,σ

∣∣∣∣p)

≤ 2p(1 + ηp−1)
∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣uK − uσdK,σ

∣∣∣∣p . (B.44)

To write the last line, we noticed that each contribution involving uK−uσ ap-
pears twice for interior edges (once when summing over σ ∈ FK , and another
one when summing over σ ∈ FL). The Sobolev inequality (B.39) is deduced
from (B.43), (B.44) and the definition of |u|T,p.

To prove the final result of this section, we first need to establish a natural
inequality on discrete Sobolev norms. Let 1 ≤ q < p < +∞. Using Hölder’s
inequality (D.3) with exponents p

q > 1 and p
p−q , we have

|u|T,q =

( ∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣uσ − uKdK,σ

∣∣∣∣q
) 1
q

≤

( ∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣uσ − uKdK,σ

∣∣∣∣p
) 1
p
( ∑
K∈M

∑
σ∈FK

|σ|dK,σ

) 1
q−

1
p

= |u|T,p (d|Ω|)
1
q−

1
p . (B.45)

In the last line, we invoked (B.1).

Lemma B.15 (Discrete embedding of W 1,p
0 (Ω) in Lq(Ω), for some q >

p). Let T be a polytopal mesh of Ω, p ∈ [1,+∞) and η ≥ ηT. Then, there
exists q > p, depending only on p and d, and there exists C8, depending only
on Ω, p, q and η, such that

∀u ∈ XT,0 , ‖ΠTu‖Lq(Ω) ≤ C8 |u|T,p . (B.46)

If p < d we can take q = p? = pd
d−p and, if p ≥ d, we can take any q < +∞.

Remark B.16 (Discrete Poincaré inequality). Combining (B.46) and the Hölder
inequality (D.7) yields the discrete Poincaré inequality

‖ΠTu‖Lp(Ω) ≤ C8|Ω|
1
p−

1
q |u|T,p .

This is established for polytopal meshes, using in particular the assumption
that each cell is star-shaped with respect to a ball. For some numerical meth-
ods, appropriate discrete Poincaré inequalities can be proved with a milder
assumption [135, 86].

Proof. If p = 1, take q = 1? and the result follows from Lemma B.13 (in
this case, C8 does not depend on η). If 1 < p < d, take q = p? and the result
is given by Lemma B.14.
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If p ≥ d, choose any q ∈ (p,∞) and take p1 < d such that p?1 = q (this is
possible since p?1 tends to +∞ as p1 tends to d). The choice of p1 depends
only on q and d, and Lemma B.14 gives

‖ΠTu‖Lq(Ω) ≤ C7 |u|T,p1

for some C7 depending only on p1, d and η. Inequality (B.46) follows from
this estimate and (B.45) with q = p1.

B.2.2 Compactness of ΠT

The continuous Rellich theorem states that bounded families in W 1,p
0 (Ω) are

relatively compact in Lp(Ω). We prove here a discrete version of this result,
involving the discrete W 1,p

0 (Ω) norm |·|T,p and the function reconstruction
operator ΠT. As for Sobolev embeddings, with start with the case p = 1,
which requires less assumptions on the mesh and from which we deduce the
case p > 1.

Lemma B.17 (Estimates of translations in L1). Let T be a polytopal
mesh of Ω in the sense of Definition 7.2. Let u ∈ XT,0 and extend ΠTu to Rd
by 0 outside Ω. Then,

∀h ∈ Rd , ‖ΠTu(·+ h)−ΠTu‖L1(Rd) ≤ |h|
√
d |u|T,1 . (B.47)

Proof. Since p = 1, the proof could be done by following the technique in
[90], and would lead to (B.47) without

√
d. We provide here another, more

direct, proof based on the BV space, as in Lemma B.13.

Let w ∈ C∞c (Rd). For x,h ∈ Rd, write

|w(x+ h)− w(x)| =
∣∣∣∣∫ 1

0

∇w(x+ th) · hdt

∣∣∣∣ ≤ |h|∫ 1

0

|∇w(x+ th)|dt.

Integrating with respect to x ∈ Rd and using Fubini’s Theorem gives the well
known result

‖w(·+ h)− w‖L1(Rd) ≤ |h|
∫
Rd
|∇w(x)|dx ≤ |h|

d∑
i=1

‖∂iw‖L1(Rd) . (B.48)

By density of C∞c (Rd) in W 1,1(Rd), Inequality (B.48) is also true for w ∈
W 1,1(Rd) and, proceeding as at the start of Section B.2.1, leads to the follow-
ing estimate for BV (Rd) functions:

∀w ∈ BV (Rd) , ∀h ∈ Rd , ‖w(·+ h)− w‖L1(Rd) ≤ |h| ‖w‖BV (Rd) . (B.49)
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Take now u ∈ XT,0 and, as in the statement of the lemma, set ΠTu = 0 outside
Ω. Then ΠTu ∈ L1(Rd) and it was proved in lemma B.13 that ‖ΠTu‖BV (Rd) ≤√
d |u|T,1. The proof is therefore complete by applying (B.49) to w = ΠTu.

The following compactness result in L1 results from Lemmas B.13 and B.17,
and the Kolmogorov compactness criterion.

Lemma B.18 (Discrete Rellich theorem, p = 1). Let (Tm)m∈N be a
sequence of polytopal meshes of Ω. Then, for any um ∈ XTm,0 such that
(|um|Tm,1)m∈N is bounded, the sequence (ΠTmum)m∈N is relatively compact in

L1(Ω).

Proof. Lemma B.13 shows that (ΠDmum)m∈N is bounded in L1?(Ω), and
thus also in L1(Ω) since Ω is bounded. Extending the functions ΠTmum by
0 outside Ω, they remain bounded in L1(Rd). The Kolmogorov compactness
theorem [33, Theorem 4.26] and Lemma B.17 then show that (ΠDmum)m∈N
is relatively compact in L1(Ω).

As for discrete Sobolev embeddings, establishing a compactness result for
p > 1 requires some an additional hypothesis on the meshes.

Lemma B.19 (Discrete Rellich theorem, p > 1). Let p ∈ [1,+∞) and
(Tm)m∈N be a sequence of polytopal meshes of Ω, such that supm∈N ηTm <
+∞. Then, for any um ∈ XTm,0 such that (|um|Tm,p)m∈N is bounded, the
sequence (ΠTmum)m∈N is relatively compact in Lp(Ω).

Proof. Using (B.45) with q = 1 shows that (|um|Tm,1)m∈N is bounded. By

Lemma B.18, (ΠDmum)m∈N is thus relatively compact in L1(Ω) and, up to a
subsequence denoted the same way, converges in this space. By Lemma B.15,
(ΠDmum)m∈N is also bounded by some C9 in Lq(Ω) for some q > p.
Recall now the interpolation inequality, consequence of Hölder’s inequality
(D.5) applied to |f |p = |f |αp|f |(1−α)p with α = q−p

(q−1)p and exponents (r, r′) =

( 1
pα ,

q
(1−α)p ):

‖f‖Lp(Ω) ≤ ‖f‖
q−p

(q−1)p

L1(Ω) ‖f‖
q(p−1)
(q−1)p

Lq(Ω) .

Apply this estimate to f = ΠTmum − ΠT`u` and use ‖f‖Lq(Ω) ≤ 2C9. This
gives

‖ΠTmum −ΠT`u`‖Lp(Ω) ≤ ‖ΠTmum −ΠT`u`‖
q−p

(q−1)p

L1(Ω) (2C9)
q(p−1)
(q−1)p . (B.50)

Since q−p
(q−1)p > 0 and (ΠTmum)m∈N is a Cauchy sequence in L1(Ω), (B.50)

shows that (ΠTmum)m∈N is also a Cauchy sequence in Lp(Ω), and thus that
it converges in this space.
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B.3 Discrete functional analysis for Neumann and
Fourier BCs

We develop here discrete functional analysis results for Neumann and Fourier
boundary conditions.

B.3.1 Estimates involving the reconstructed trace

Let us start with discrete versions of classical trace estimates, stated for the
case p = 1 in Lemma B.20 and for the case p > 1 in Lemma B.21.

Lemma B.20 (Discrete trace inequality, p = 1). Let T be a polytopal
mesh of Ω in the sense of Definition 7.2, and % ≥ θT + ηT (see (7.8) and
(7.9)). Then, there exists C10 > 0, depending only on Ω, d and %, such that

∀u ∈ XT , ‖TTu‖L1(∂Ω) ≤ C10

(
|u|T,1 + ‖ΠTu‖L1(Ω)

)
. (B.51)

Proof.
Step 1: we prove the existence of a finite family (τi, ξi)i=1,...,M such that:

1. for i = 1, . . . ,M , τi ⊂ ∂Ω is an open connected subset of an external face
of Ω, with outward unit normal vector nτi ,

2. ξi ∈ Rd \ {0} and the cylinder C(τi, ξi) = {x+ tξi : t ∈ (0, 1) , x ∈ τi} is
contained in Ω,

3. there exists α > 0 such that −ξi · nτi ≥ α|ξi|,
4. ∂Ω ⊂

⋃
i=1,...,M τ i.

To establish the existence of this family, recall that Ω can be defined as a finite
union of simplices of Rd. Take one of these simplices S = S((xi)i=1,...,d+1) (see
(7.1)), that touches the boundary of Ω and whose interior So is contained in
Ω. Assume that the face F = S((x`)`=1,...,d) of S is an external face of Ω and
define

τi =


d∑
j=1

αjxj :

d∑
j=1

αj = 1 , αj > 0 for all j, and αi >
1

d+ 1

 .

For any family of real numbers (αi)i=1,...,d such that
∑d
j=1 αj = 1, by way of

contradiction we can find i ∈ {1, . . . , d} such that αi >
1
d+1 . Hence,

F = S((x`)`=1,...,d) =

d⋃
i=1

τ i.

Let nτi be the unit normal to τi (that is, to F ) outside S, and set ξi =
1
d+1 (xd+1 − xi). If x ∈ C(τi, ξi) then there exists t ∈ (0, 1) and (αi)i=1,...,d,

with αj > 0 for all j and αi >
1
d+1 , such that
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x =

d∑
j=1

αjxj +
t

d+ 1
(xd+1 − xi)

=

d∑
j=1,j 6=i

αjxj +

(
αi −

t

d+ 1

)
xi +

t

d+ 1
xd+1.

Since αi − t
d+1 > 0, all the coefficients in this convex combination of the

vertices of S are strictly positive, so x ∈ So ⊂ Ω. Hence, C(τi, ξi) ⊂ Ω.
Finally, since xi ∈ F , −ξi ·nτi = 1

d+1 (xi−xd+1) ·nτi is strictly positive, since

it is 1
d+1 times the orthogonal distance between xd+1 and F . We are working

with a global finite number (depending only on Ω) of indices i = 1, . . . ,M , so
α = mini=1,...,M (−ξi · nτi/|ξi|) is strictly positive.

Step 2: proof of the trace inequality (B.51).

C(τi, ξi)

ξi

yσ(x)

K
yσ′(x)

σ′

σ

σ2

D(x, ξi)

Ω

x
σ1

τi

Fig. B.3. Illustration of Step 2 in the proof of Lemma B.20. Here, χK,σ(x) = 1,
χK,σ′(x) = −1, βσ1(x) = 1 and βσ2(x) = 0.

Fix i ∈ {1, . . . ,M} and denote by D(x, ξi) the half line starting from x and
with direction ξi. For K ∈M and σ ∈ FK , take x ∈ τi such that (see Figure
B.3 for an illustration):

• either D(x, ξi) does not intersect σ, in which case set yσ(x) = x and
χK,σ(x) = 0,

• or D(x, ξi) intersect σ at only one point, in which case set yσ(x) as this
point and
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? χK,σ(x) = 1 if, starting from x, D(x, ξi) intersects σ while entering
into K,

? χK,σ(x) = −1 if, starting from x, D(x, ξi) intersects σ while exiting
K.

In other words, χK,σ(x) = −sgn(ξi · nK,σ).

Note that a.e. x ∈ τi fall into one or the other of these two categories. The
half line D(x, ξi) always exits a cell after entering it and thus

∀K ∈M ,
∑
σ∈FK

χK,σ(x) = 0. (B.52)

Define

∀σ ∈ F , βσ(x) = max

(
1− (yσ(x)− x) · ξi

|ξi|2
, 0

)
,

∀K ∈M , βK(x) = max

(
1− (xK − x) · ξi

|ξi|2
, 0

)
.

Let σ ∈ Fext be such that χK,σ(x) 6= 0. If x ∈ σ then yσ(x) = x and thus
βσ(x) = 1. If x /∈ σ, then the inclusion C(τi, ξi) ⊂ Ω shows that yσ(x) 6∈
C(τi, ξi) and thus that (yσ(x) − x) · ξi ≥ |ξi|2, which implies βσ(x) = 0. If
σ ∈ Fint with Mσ = {K,L} and D(x, ξi) crosses σ, then if it exits K (for
example) it must enter L and thus χK,σ(x) = −χL,σ(x). As a consequence of
this reasoning, for a.e. x ∈ τi and for all σ ∈ F ,

If x /∈ σ then
∑

K∈Mσ

χK,σ(x)βσ(x) = 0 ,

If x ∈ σ then
∑

K∈Mσ

χK,σ(x)βσ(x) = 1
(B.53)

(note that the second situation only happens for a single σ ∈ Fext since
x ∈ ∂Ω). Relations (B.52) and (B.53) show that∑

K∈M

∑
σ∈FK

χK,σ(x)(βσ(x)uσ − βK(x)uK)

=
∑
σ∈F

uσ
∑

K∈Mσ

χK,σ(x)βσ(x)−
∑
K∈M

βK(x)uK
∑
σ∈FK

χK,σ(x)

= uσx

where σx is the unique boundary edge that contains x. We have TTu(x) = uσx
and thus

|TTu(x)| =

∣∣∣∣∣ ∑
K∈M

∑
σ∈FK

χK,σ(x)(βσ(x)uσ − βK(x)uK)

∣∣∣∣∣
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=

∣∣∣∣∣ ∑
K∈M

∑
σ∈FK

χK,σ(x)
[
βσ(x)(uσ − uK) + (βσ(x)− βK(x))uK

]∣∣∣∣∣
≤

∑
K∈M

∑
σ∈FK

|χK,σ(x)|
[
βσ(x)|uσ − uK |+ |βσ(x)− βK(x)||uK |

]
.

Integrating over τi gives

‖TTu‖L1(τi) ≤
∑
K∈M

∑
σ∈FK

|uσ − uK |
∫
τi

|χK,σ(x)|βσ(x)dγ(x)

+
∑
K∈M

|uK |
∑
σ∈FK

∫
τi

|χK,σ(x)| |βσ(x)− βK(x)|dγ(x). (B.54)

For any x ∈ τi such that |χK,σ(x)| > 0, there exists y ∈ σ such that x ∈
D(y,−ξi). The measure of {x ∈ τi : |χK,σ(x)| > 0} is thus bounded by
the measure of the trace on τi of the cylinder C(σ,−ξi). This measure is

less that |σ|/|ξ̂i · nτi |, where ξ̂i = ξi/|ξi|. Since |ξi · nτi | ≥ α|ξi|, we have

|σ|/|ξ̂i · nτi | ≤ |σ|/α. Hence, using βσ(x) ≤ 1,∫
τi

|χK,σ(x)|βσ(x)dγ(x) ≤ |σ|
α
. (B.55)

Noticing that |βσ(x)− βK(x)| ≤ |(yσ(x)−xK)·ξi|
|ξi|2 ≤ hK

|ξi| ≤
%dK,σ
|ξi| , we also have∫

τi

|χK,σ(x)| |βσ(x)− βK(x)|dγ(x) ≤ |σ|
α

%dK,σ
|ξi|

. (B.56)

Plugging (B.55) and (B.56) into (B.54), and recalling (B.1), provides C11

depending only on α, %, ξi and d such that

‖TTu‖L1(τi)
≤ C11(|u|T,1 + ‖ΠTu‖L1(Ω)).

The trace inequality (B.51) follows by summing these estimates over i =
1, . . . ,M .

Lemma B.21 (Discrete trace inequality, p > 1). Let p ∈ (1,+∞), T be
a polytopal mesh of Ω in the sense of Definition 7.2, and % ≥ θT + ηT (see
(7.8) and (7.9)). Then, there exists C12 > 0, depending only on Ω, d, p and
%, such that

∀u ∈ XT , ‖TTu‖pLp(∂Ω) ≤ C12

[
|u|T,p ‖ΠTu‖p−1

Lp(Ω) + ‖ΠTu‖pLp(Ω)

+ |u|pT,p h
p−1
M

]
.

(B.57)

As a consequence, there exists C13 > 0, depending only on Ω, d, p and %, such
that

∀u ∈ XT , ‖TTu‖Lp(∂Ω) ≤ C13

(
|u|T,p + ‖ΠTu‖Lp(Ω)

)
. (B.58)



428 B Discrete functional analysis

Proof. To deduce (B.58) from (B.57), start by using in the latter estimate
the bounds hM ≤ diam(Ω) and, owing to Young’s inequality (D.8),

|u|T,p ‖ΠTu‖p−1
Lp(Ω) ≤

1

p
|u|pT,p +

1

p′
‖ΠTu‖pLp(Ω) .

Take then the power 1/p of the resulting inequality and conclude by applying
the power-of-sums estimate (D.12) with α = p.
Let us now prove (B.57). Take u ∈ XT and, in a similar way as in the proof
of Lemma B.14, apply (B.51) in Lemma B.20 to û = ((|uK |p)K∈M, (ûσ)σ∈F )
with

ûσ =
1

2
(|uK |p + |uL|p) if σ ∈ Fint with Mσ = {K,L},

ûσ = |uσ|p if σ ∈ Fext.

Since ΠTû = |ΠTu|p and TTû = |TTu|p, this gives

‖TTu‖pLp(∂Ω) ≤ C10(|û|T,1 + ‖ΠTu‖pLp(Ω)). (B.59)

Suppose that we establish the existence of C14, depending only on Ω, d, p and
%, such that

|û|T,1 ≤ C14 |u|T,p

(
h

1
p′

M ‖TTu‖p−1
Lp(∂Ω) + ‖ΠTu‖p−1

Lp(Ω)

)
. (B.60)

Then, by Young’s inequality (D.9),

|û|T,1

≤ C14

(
1

pεp/p′
|u|pT,p h

p−1
M +

ε

p′
‖TTu‖pLp(∂Ω) + |u|T,p ‖ΠTu‖p−1

Lp(Ω)

)
. (B.61)

Taking ε > 0 such that C10C14
ε
p′ = 1

2 and plugging the result in (B.59) gives

(B.57).
Let us now prove (B.60). If Mσ = {K,L}, owing to (B.41),

|ûK − ûσ| =
1

2

∣∣|uK |p − |uL|p∣∣ ≤ p

2
(|uK |p−1 + |uL|p−1)|uK − uL|.

Similarly, if Mσ = {K},

|ûK − ûσ| =
∣∣ |uK |p − |uσ|p∣∣ ≤ p(|uK |p−1 + |uσ|p−1)|uK − uσ|.

Hence, setting δσu = |uK − uσ| if Mσ = {K} and δσu = |uK − uL| if Mσ =
{K,L},

|û|T,1 ≤ p
∑

σ∈Fext

|σ| |uσ|p−1δσu+ p
∑
K∈M

∑
σ∈FK

|σ| |uK |p−1δσu. (B.62)
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Let wi, Fi, Gi ≥ 0 and Hi > 0. Applying the Hölder inequality (D.4) to

ai = Gi, bi = F p−1
i and di = H

−(p−1)/p
i = H

−1/p′

i , we find

∑
i∈I

wiF
p−1
i Gi ≤

(∑
i∈I

wi
Gpi
Hp−1
i

) 1
p
(∑
i∈I

wiHiF
p
i

) p−1
p

.

Applied with wi = |σ|, Hi = 1, Fi = |uσ| and Gi = δσu in the first term of
(B.62), and with wi = |σ|, Hi = dK,σ, Fi = |uK | and Gi = δσu in the second
term of (B.62), this gives

|û|T,1 ≤ p

( ∑
σ∈Fext

|σ|(δσu)p

) 1
p
( ∑
σ∈Fext

|σ| |uσ|p
) p−1

p

+ p

( ∑
K∈M

∑
σ∈FK

|σ| (δσu)p

dp−1
K,σ

) 1
p
( ∑
K∈M

∑
σ∈FK

|σ|dK,σ|uK |p
) p−1

p

= T1 + T2. (B.63)

For σ ∈ Fext with Mσ = {K}, write (δσu)p = dpK,σ
(δσu)p

dpK,σ
≤ hp−1

M dK,σ
(δσu)p

dpK,σ

to obtain

T1 ≤ ph
1
p′

M |u|T,p ‖TTu‖p−1
Lp(∂Ω) . (B.64)

To estimate T2, first use the triangle inequality to write, if σ ∈ Fext with
Mσ = {K,L}, δσu ≤ |uK − uσ| + |uL − uσ|. Then, by definition of % ≥ ηT
and invoking the power-of-sums inequality (D.12),

(δσu)p

dp−1
K,σ

≤ 2p−1dK,σ

∣∣∣∣uK − uσdK,σ

∣∣∣∣p + 2p−1%p−1dL,σ

∣∣∣∣uL − uσdL,σ

∣∣∣∣p .
This also holds, dropping the second addend, if σ ∈ Fext with Mσ = {K}.
Using this estimate in the first factor in T2, the term dK,σ|uK−uσdK,σ

|p appears

twice, once with a factor 2p−1 and another time with a factor 2p−1%p−1 (when
summing on the faces of the cell L on the other side of K with respect to σ).
Hence,∑

K∈M

∑
σ∈FK

|σ| (δσu)p

dp−1
K,σ

≤ 2p−1(1 + %p−1)
∑
K∈M

∑
σ∈FK

|σ|dK,σ
∣∣∣∣uK − uσdK,σ

∣∣∣∣p
= 2p−1(1 + %p−1) |u|pT,p .

Invoke then (B.1) to re-write the second factor in T2 and obtain

T2 ≤ p(2d)
1
p′ (1 + %p−1)

1
p |u|T,p ‖ΠTu‖p−1

Lp(Ω) . (B.65)

Estimates (B.63), (B.64) and (B.65) complete the proof of (B.60).

The following lemma is particularly useful when dealing with Fourier bound-
ary conditions.
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Lemma B.22. Let p ∈ [1,+∞), T be a polytopal mesh of Ω in the sense of
Definition 7.2 and % ≥ θT + ηT. Then, there exists C15 > 0, depending only
on Ω, d, p and %, such that

∀u ∈ XT, ‖ΠTu‖Lp(Ω) ≤ C15

(
|u|T,p + ‖TTu‖Lp(∂Ω)

)
.

Proof. Let e be a unit vector (say, for example, corresponding to the first co-
ordinate in Rd). As in the proof of Lemma B.20, define χK,σ : Ω → {−1, 0,+1}
by χK,σ(x) = sgn(e ·nK,σ) if the half-line D(x, e) = x+ R+e intersects σ at
one point, and χK,σ(x) = 0 otherwise. Contrary to the proof of Lemma B.20,
χK,σ(x) is here defined for all x ∈ Ω. Since χK,σ is non-zero (and equal to
±1) only in the cylinder with base σ and axis e,∫

Ω

|χK,σ(x)|dx ≤ |σ|diam(Ω). (B.66)

Drawing the half-line D(x, e) and writing ΠTu(x) as the sum of jumps be-
tween x and the faces σ ∈ F that intersect D(x, e) leads to

ΠTu(x) =
∑
K∈M

∑
σ∈FK

χK,σ(x)(uK − uσ) +
∑

σ∈Fext,Mσ={K}

χK,σ(x)uσ.

Take the absolute value, integrate over x ∈ Ω and use (B.66) to deduce

‖ΠTu‖L1(Ω) ≤ diam(Ω)
∑
K∈M

∑
σ∈FK

|σ| |uK − uσ|+ diam(Ω)
∑

σ∈Fext

|σ| |uσ|

= diam(Ω)(|u|T,1 + ‖TTu‖L1(∂Ω)). (B.67)

This concludes the proof in the case p = 1.
In the case p > 1, apply (B.67) to û defined as in the proof of Lemma B.21.
Using the estimate (B.60) on |û|T,p and writing hM ≤ diam(Ω) then yields

‖ΠTu‖pLp(Ω) ≤ C16

(
|u|T,p ‖TTu‖p−1

Lp(∂Ω) + |u|T,p ‖ΠTu‖p−1
Lp(Ω) + ‖TTu‖pLp(∂Ω)

)
where C16 depends only on Ω, d, p and %. The proof is concluded by using
Young’s inequalities (D.8) and (D.9) to write

|u|T,p ‖TTu‖p−1
Lp(∂Ω) ≤

1

p
|u|pT,p +

1

p′
‖TTu‖pLp(∂Ω) ,

|u|T,p ‖ΠTu‖p−1
Lp(Ω) ≤

1

pεp/p′
|u|pT,p +

ε

p′
‖ΠTu‖pLp(Ω) ,

by choosing ε such that C16
ε
p′ = 1

2 , and by using the power-of-sums estimate

(D.12) with α = p.
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B.3.2 Discrete Sobolev embeddings

Lemma B.23 (Discrete embedding of W 1,1(Ω), with zero average, in
L1?(Ω)). Let T be a polytopal mesh of Ω in the sense of Definition 7.2, and
recall the notations (7.7). There exists C17 depending only on Ω and d such
that

∀u ∈ XT ,
∥∥ΠTu−ΠTu

∥∥
L1? (Ω)

≤ C17 |u|T,1 , (B.68)

where 1? = d
d−1 and ΠTu = 1

|Ω|
∫
Ω
ΠTu(x)dx.

Proof. The Sobolev embedding and the Poincaré-Wirtinger inequality show
that ‖w − w‖L1? (Ω) ≤ C18 ‖∇w‖L1(Ω)d for all w ∈ W 1,1(Ω), where C18 de-

pends only on Ω. By approximating ΠTu, strongly in L1(Ω) and weakly in
BV (Ω), by functions in W 1,1(Ω), the “mean” Nirenberg inequality can be
deduced: ∥∥ΠTu−ΠTu

∥∥
L1? (Ω)

≤ C18 |ΠTu|BV (Ω) , (B.69)

where

|w|BV (Ω) = sup

{∫
Ω

w(x)divϕ(x)dx : ϕ ∈ C∞c (Ω,Rd), ‖ϕ‖L∞(Ω)d ≤ 1

}
.

Write (B.32) with v = u. The integral term on ∂Ω can be dropped since ϕ
vanishes on the boundary. Reason then as in (B.38) in Lemma B.13 to obtain
|ΠTu|BV (Ω) ≤

√
d |u|T,1, and the conclusion follows from (B.69).

Lemma B.24 (Discrete embedding of W 1,p(Ω), with zero average, in
Lp

?

(Ω), 1 < p < d). Let T be a polytopal mesh of Ω in the sense of Definition
7.2. Let p ∈ (1, d) and % ≥ θT + ηT. Then, there exists C19, depending only
on Ω, d, p and %, such that

∀u ∈ XT ,
∥∥ΠTu−ΠTu

∥∥
Lp? (Ω)

≤ C19 |u|T,p ,

where p? = pd
d−p and ΠTu = 1

|Ω|
∫
Ω
ΠTu(x)dx.

Proof. Let u ∈ XT. Upon translating by ΠTu all the values of u =
((uK)K∈M, (uσ)σ∈F ), which does not change |u|T,p, we can assume that

ΠTu = 0. In the following, A . B means that A ≤ MB with M depend-
ing only on Ω, d, p and %.
Let α > 1 and consider û = ((|uK |α)K∈M, (ûσ)σ∈F ) with

ûσ =
1

2
(|uK |α + |uL|α) if Mσ = {K,L},

ûσ = |uK |α if Mσ = {K}.

Since |ΠTû| ≤ 1
|Ω| ‖ΠTu‖αLα(Ω), Inequality (B.68) applied to û yields
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‖ΠTu‖αLα1? (Ω) = ‖ΠTû‖L1? (Ω)

≤
∥∥∥ΠTû−ΠTû

∥∥∥
L1? (Ω)

+ |Ω| 1
1? |ΠTû|

. |û|T,1 + ‖ΠTu‖αLα(Ω) . (B.70)

The definition of ûσ ensures that the terms in |û|T,1 corresponding to bound-
ary faces vanish. Hence, for any r ∈ (1,∞), a similar reasoning as in the proof
of Lemma B.14 (passage from (B.40) to (B.42)) shows that

|û|T,1 . |u|T,r
∥∥ |ΠTu|α−1

∥∥
Lr′ (Ω)

.

Plugging this estimate into (B.70) and taking the power 1/α (thanks to the
power-of-sums inequality (D.13)) yields

‖ΠTu‖Lα1? (Ω) . |u|
1
α

T,r

∥∥ |ΠTu|α−1
∥∥ 1
α

Lr′ (Ω)
+ ‖ΠTu‖Lα(Ω) . (B.71)

Take r > 1 such that (α−1)r′ = α1? (since α1?/(α−1) > 1? > 1, this defines
r′ ∈ (1,∞) and thus r ∈ (1,∞)). This choice gives∥∥ |ΠTu|α−1

∥∥ 1
α

Lr′ (Ω)
= ‖ΠTu‖

1
α′

Lα1? (Ω)
.

Use Young’s inequality (D.9) with exponent α, and ε small enough (depending
only on the constants hidden in .), to deduce from (B.71) that

‖ΠTu‖Lα1? (Ω) . |u|T,r + ‖ΠTu‖Lα(Ω) .

If r ≤ p, that is if r′ = α1?

α−1 ≥ p
′, then (B.45) shows that

‖ΠTu‖Lα1? (Ω) . |u|T,p + ‖ΠTu‖Lα(Ω) . (B.72)

The estimate (B.68) and the fact that ΠTu = 0 give ‖ΠTu‖L1? (Ω) . |u|T,1 .

|u|T,p. An induction based on (B.72) applied with α = 1?, (1?)2, . . . then

establishes that, for any k ∈ N such that (1?)k+1

(1?)k−1
≥ p′,

‖ΠTu‖L(1?)k+1 (Ω)
. |u|T,p . (B.73)

Select k as the largest integer such that (1?)k+1

(1?)k−1
≥ p′. Such a k exists since

k = 0 satisfies this inequality and, as k → ∞, (1?)k+1

(1?)k−1
→ 1? = d′ > p′ (we

have p < d). Let α = p?

1? > 1 and assume that

α1?

α− 1
=

1?p?

p? − 1?
≥ p′ (B.74)

and
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α =
p?

1?
≤ (1?)k+1. (B.75)

Inequality (B.74) allows us to apply (B.72), which gives

‖ΠTu‖Lp? (Ω) . |u|T,p + ‖ΠTu‖Lα(Ω) .

By (B.75), ‖ΠTu‖Lα(Ω) . ‖ΠTu‖L(1?)k+1 (Ω)
and (B.73) then concludes the

proof.
It remains to check (B.74) and (B.75). We have p = dp?

d+p? so (B.74) boils

down to 1?p?

p?−1? ≥
dp?

dp?−d−p? , that is to say 1?(dp? − d − p?) ≥ d(p? − 1?), or

1?(d − 1)p? ≥ dp?. This last relation is obvious since 1?(d − 1) = d (we thus
even have equality in (B.74)). To check (B.75), we start by writing that, by

definition of k, (1?)k+2

(1?)k+1−1
≤ p′, which can be recast as 1− 1

p = 1
p′ ≤

1
1?−

1
(1?)k+2 .

But 1
p? = 1

p −
1
d and 1

1? = 1− 1
d , so

1

p?
≥ 1− 1

1?
+

1

(1?)k+2
− 1

d
=

1

(1?)k+2
,

which is equivalent to (B.75).

The proof of the following lemma is similar to the proof of Lemma B.15, using
Lemmas B.23 and B.24.

Lemma B.25 (Discrete embedding of W 1,p(Ω), with zero average, in
Lq(Ω), for some q > p). Let p ∈ [1,+∞), T be a polytopal mesh of Ω in the
sense of Definition 7.2, and % ≥ θT + ηT. Then, there exists q > p, depending
only on d and p, and there exists C20, depending only on Ω, d, p and %, such
that

∀u ∈ XT ,
∥∥ΠTu−ΠTu

∥∥
Lq(Ω)

≤ C20 |u|T,p ,

where ΠTu = 1
|Ω|
∫
Ω
ΠTu(x)dx.

If p < d we can take q = p? = pd
d−p and, if p ≥ d, we can take any q < +∞.

B.3.3 Compactness of ΠT and TT

Lemma B.26. Let T be a polytopal mesh of Ω in the sense of Definition 7.2,
and % ≥ θT + ηT. Then, there exists C21, depending only on Ω and %, such
that

∀u ∈ XT , ∀h ∈ Rd , ‖ΠTu(·+ h)−ΠTu‖L1(Rd) ≤ |h|C21(|u|T,1 + |ΠTu|),

where ΠTu has been extended by 0 outside Ω, and ΠTu = 1
|Ω|
∫
Ω
ΠTu(x)dx.

Proof. Writing (B.32) with v = u yields, for any ϕ ∈ C∞c (Rd,Rd) such that
‖ϕ‖L∞(Rd)d ≤ 1 (so that |ϕ| ≤

√
d),
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Rd
ΠTu(x)divϕ(x)dx

≤
√
d
∑
K∈M

∑
σ∈FK

|σ||uK − uσ|+
√
d

∫
∂Ω

|TTu(x)|dγ(x)

≤
√
d |u|T,1 +

√
d ‖TTu‖L1(∂Ω) .

Hence,
‖ΠTu‖BV (Rd) ≤

√
d |u|T,1 +

√
d ‖TTu‖L1(∂Ω) .

Lemma B.20 and B.23 then provide C22 depending only on Ω, d and % such
that

‖ΠTu‖BV (Rd) ≤ C22(|u|T,1 + |ΠTu|).

The inequality (B.49) concludes the proof.

We can now state the compactness of the function and trace reconstructions.

Lemma B.27 (Discrete Rellich theorem and compactness of the
trace from a bound on the mean value). Let (Tm)m∈N be a sequence
of polytopal meshes of Ω and p ∈ [1,+∞). Assume that supm∈N(θTm +
ηTm) < +∞. Then, for any um ∈ XTm such that (|um|Tm,p)m∈N and

(
∫
Ω
ΠTmum(x)dx)m∈N are bounded, the sequence (ΠTmum)m∈N is relatively

compact in Lp(Ω).
Moreover, if p > 1 and hMm

→ 0 as m→∞, then the sequence (TTmum)m∈N
is relatively compact in Lp(∂Ω).

Proof. The relative compactness of (ΠTmum)m∈N follows from Lemmas B.25
and B.26 in a similar way as for Dirichlet boundary conditions. We now assume
that p > 1 and hMm

→ 0, and we establish the relative compactness of the
traces. By (B.58) in Lemma B.21 and the boundedness of (ΠTmum)m∈N in
Lp(Ω), (TTmum)m∈N is bounded in Lp(∂Ω). The estimate (B.29) on ∇Tm

and the boundedness of (|um|Tm,p)m∈N show that (∇Tmum)m∈N is bounded

in Lp(Ω)d. Upon extracting subsequences, we can therefore assume that there
exists ψ ∈ Lp(Ω), χ ∈ Lp(∂Ω) and ξ ∈ Lp(Ω)d such that ΠTmum → ψ
strongly in Lp(Ω), TTmum → χ weakly in Lp(∂Ω) and ∇Tmum → ξ weakly
in Lp(Ω)d.

Using the same ideas as for Lemma 2.16 (regularity of the limit), we analyse
ψ. Take ϕ ∈ C∞(Ω)d and apply the discrete Stokes formula (B.31) to T = Tm
and v = um. The aforementioned convergences enable us to pass to the limit
m→∞ to see that∫

Ω

(ξ(x) ·ϕ(x) + ψ(x)divϕ(x)) dx−
∫
∂Ω

χ(x)γnϕ(x)dγ(x) = 0. (B.76)

Applied to ϕ ∈ C∞c (Ω)d this shows that ξ = ∇ψ, and thus that ψ ∈W 1,p(Ω).
Using then an integration-by-parts in (B.76) with a generic ϕ ∈ C∞(Ω)d

shows that γψ = χ.
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We now prove that TTmum → γψ strongly in Lp(∂Ω), which will conclude the
proof of the lemma. Let ITm : W 1,p(Ω)→ XTm be the interpolant defined by
(B.10). Applying (B.57) in Lemma B.21 to T = Tm and u = um− ITmψ, and
using the boundedness of (|um|Tm,p)m∈N and (|ITmψ|Tm,p)m∈N (see (B.22)),
we find C23 not depending on m such that

‖TTmum − TTm(ITmψ)‖pLp(∂Ω) ≤ C23 ‖ΠTmum −ΠTm(ITmψ)‖p−1
Lp(Ω)

+ C23 ‖ΠTmum −ΠTm(ITmψ)‖pLp(Ω) + C23h
p−1
Mm

.

Since p > 1, hMm
→ 0, and (ΠTmum)m∈N and (ΠTm(ITmψ))m∈N both con-

verge strongly to ψ in Lp(Ω) (see (B.26)), the right-hand side of the above
inequality tends to 0 as m→∞. Hence, TTmum−TTm(ITmψ)→ 0 in Lp(∂Ω).
The strong convergence of (TTmum)m∈N follows by using (B.27) to see that
TTm(ITmψ)→ γψ in Lp(∂Ω) as m→∞.

B.4 Discrete functional analysis for mixed boundary
condition

We consider here that Assumption (7.2) on Ω and Assumption (3.60) on Γd
and Γn hold. If T is a polytopal mesh of Ω in the sense of Definition 7.2, we
recall the notations in (7.7) and we additionally define

XT,Γd = {v ∈ XT,∂ : vσ = 0 for all σ ∈ Fext such that
σ ∩ Γd = ∅.},

XT,Ω,Γn = {v ∈ XT : vσ = 0 for all σ ∈ Fext such that
σ ∩ Γd 6= ∅}.

(B.77)

Note that XT = XT,Ω,Γn ⊕ XT,Γd , and that TTu = 0 on Γd for any u ∈
XT,Ω,Γn .

B.4.1 Discrete Sobolev embeddings

Discrete functional analysis tools for mixed conditions are a consequence of
the two following lemmas, and of the techniques used in the previous sections
for Dirichlet and Neumann boundary conditions.

Lemma B.28. Let Ω̃ be a bounded connected open subset of Rd with Lipschitz
boundary and let A ⊂ Ω̃ be a set of non-zero measure. Then, there exists
C24 depending only on Ω̃ and A such that, for all w ∈ BV (Ω̃) satisfying∫
A
w(x)dx = 0,

‖w‖L1? (Ω̃) ≤ C24 |w|BV (Ω̃) , (B.78)

where we recall that

|w|BV (Ω̃) = sup

{∫
Ω̃

w(x)divϕ(x)dx : ϕ ∈ C∞c (Ω̃,Rd), ‖ϕ‖L∞(Ω̃)d ≤ 1

}
.
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Proof. Let us start by recalling the Sobolev embedding, which can be ob-
tained by passing to the limit on the similar embedding in W 1,1(Ω̃): there

exists C25 depending only on Ω̃ such that

∀w ∈ BV (Ω̃) , ‖w‖L1? (Ω̃) ≤ C25(|w|BV (Ω̃) + ‖w‖L1(Ω̃)).

Estimate (B.78) is proved if we establish the following Poincaré’s inequality:

there exists C26 depending only on Ω̃ and A such that, for any w ∈ BV (Ω̃)
satisfying

∫
A
w(x)dx = 0,

‖w‖L1(Ω̃) ≤ C26 |w|BV (Ω̃) . (B.79)

The proof of (B.79) is done by way of contradiction, using a classical
compactness technique. If this inequality does not hold, there exists a se-
quence (wm)m∈N in BV (Ω̃) such that

∫
A
wm(x)dx = 0 for all m and

‖wm‖L1(Ω̃) ≥ m |wm|BV (Ω̃). Dividing throughout by ‖wm‖L1(Ω̃) we can

assume that ‖wm‖L1(Ω̃) = 1 for all m. Then (wm)m∈N is bounded in

L1(Ω̃) ∩ BV (Ω̃) and therefore, up to a subsequence, converges strongly in

L1(Ω̃) to some w such that ‖w‖L1(Ω̃) = 1. As |wm|BV (Ω̃) ≤ 1/m → 0, we

have ∇wm → 0 in the sense of distributions on Ω̃ and therefore ∇w = 0 on
Ω̃. Since Ω̃ is connected, this shows that w is constant on Ω̃, equal to 1

|Ω̃|

since its norm in L1(Ω̃) is equal to 1.

But, passing to the limit in
∫
A
wm(x)dx = 0 gives 0 =

∫
A
w(x)dx = |A|

|Ω̃|
,

which is a contradiction with the fact that A has a non-zero measure. Hence
(B.79) holds and so does (B.78).

Under Assumptions (7.2) and (3.60), it is easy to construct a bounded con-

nected open set Ω̃ with Lipschitz boundary which contains Ω, such that
A = Ω̃\Ω has a non-zero measure and A ∩ Ω̃ ⊂ Γd. This can for example
be done by gluing to Ω a small hypercube A along a planar subset of Γd, see
Figure B.4. Ω̃ and A depend only on Ω and Γd.

Ω

Γd

Ω̃

A

Fig. B.4. Extension of Ω.



B.4 Discrete functional analysis for mixed boundary condition 437

Lemma B.29. Under Assumptions (7.2) and (3.60), let Ω̃ be constructed as
above. Take T a polytopal mesh of Ω in the sense of Definition 7.2 and, if
u ∈ XD, define Π̃Tu ∈ L1(Ω̃) as the extension of ΠTu by 0 outside Ω. Then

∀u ∈ XT,Ω,Γn ,
∣∣∣Π̃Du∣∣∣

BV (Ω̃)
≤
√
d |u|T,1 . (B.80)

Proof. Let ϕ ∈ C∞c (Ω̃,Rd) be such that ‖ϕ‖L∞(Ω̃) ≤ 1. We have∫
Ω̃

Π̃Tu(x)divϕ(x)dx =

∫
Ω

ΠTu(x)divϕ(x)dx.

Since uσ = 0 whenever σ ∈ Fext is such that σ ∩ Γd 6= ∅, and since ϕ = 0 on
∂Ω\Γd, the boundary integral in (B.32) written for v = u vanishes, and the
same computations as in (B.38) lead to (B.80).

The following Sobolev embeddings are a straightforward consequence of
Lemma B.28 and B.29.

Lemma B.30 (Discrete embedding of W 1,1(Ω) in L1?(Ω), mixed BCs).
Under Assumptions (7.2) and (3.60), let T be a polytopal mesh of Ω in the
sense of Definition 7.2. Then, there exists C27 depending only on Ω and Γd
such that

∀u ∈ XT,Ω,Γn , ‖ΠTu‖L1? (Ω) ≤ C27 |u|T,1 .

The following results can be then proved from Lemma B.30 by using the same
trick as in the proof of Lemma B.14 and Lemma B.15.

Lemma B.31 (Discrete embedding of W 1,p(Ω) in Lp
?

(Ω), mixed BCs,
p ∈ (1, d)). Under Assumptions (7.2) and (3.60), let T be a polytopal mesh
of Ω in the sense of Definition 7.2, p ∈ (1, d) and η ≥ ηT. Then, there exists
C28 depending only on Ω, Γd and η such that

∀u ∈ XT,Ω,Γn , ‖ΠTu‖Lp? (Ω) ≤ C28 |u|T,p ,

where p? = dp
d−p .

Lemma B.32 (Discrete embedding of W 1,p(Ω) in Lq(Ω) for some q >
p, mixed BCs). Under Assumptions (7.2) and (3.60), let T be a polytopal
mesh of Ω in the sense of Definition 7.2, p ∈ [1,+∞) and η ≥ ηT. Then,
there exists q > p, depending only on p and d, and C29, depending only on Ω,
d, p, Γd and η, such that

∀u ∈ XT,Ω,Γn , ‖ΠTu‖Lq(Ω) ≤ C29 |u|T,p .

If p < d we can take q = p? = pd
d−p . If p ≥ d, we can take any q < +∞.



438 B Discrete functional analysis

B.4.2 Compactness of ΠT and TT

Lemma B.33 (Discrete Rellich theorem and compactness of the
traces, mixed BCs). Under Assumptions (7.2) and (3.60), let p ∈ [1,+∞)
and (Tm)m∈N be a sequence of polytopal meshes of Ω, such that supm∈N(θTm+
ηTm) < +∞. Then, for any um ∈ XTm,Ω,Γn such that (|um|Tm,p)m∈N is
bounded, the sequence (ΠTmum)m∈N is relatively compact in Lp(Ω).
Moreover, if p > 1 and hMm → 0 as m→∞, then (TTmum)m∈N is relatively
compact in Lp(∂Ω).

Proof. By Lemma B.32, the sequence (‖ΠTmum‖Lp(Ω))m∈N is bounded.

Hence, the sequence (
∫
Ω
ΠTmum(x)dx)m∈N is also bounded and Lemma B.27

gives the relative compactness of (ΠTmum)m∈N in Lp(Ω), and of (TTmum)m∈N
in Lp(∂Ω) if p > 1 and hMm → 0 as m→∞.



C

Discrete functional analysis for time-dependent
problems

This chapter is devoted to compactness results for sequences of functions
with domain [0, T ] and abstract co-domains (generic vector spaces). We focus
on functions that are discrete-in-time, as they are classically encountered in
numerical methods for time-dependent problems. The results established here
apply to a range of numerical schemes for such problems, and are used in
Section 4.2 to establish specific compactness properties of space–time gradient
discretisations.

In Section C.1, we first consider compactness results based on the Lp norm
on [0, T ], with p <∞. There are called “averaged-in-time” because they only
apply to norms that involve a time integral. A number of such compactness
results, for piecewise-constant-in-time functions, can be found in the literature
– see, e.g., [12, 66, 45]. Much more scarce are uniform-in-time compactness
results for discontinuous functions, i.e., results that apply to the supremum
norm on [0, T ]. The second section of this chapter, Section C.2, is devoted to
establishing such uniform-in-time compactness theorems.

C.1 Averaged-in-time compactness results

The first two theorems are generalisations to vector-valued Lebesgue spaces
of the classical Kolmogorov compactness theorem for Lp spaces [33]. If E is a
measured space and B a Banach space, we denote by Lp(E;B) the Lebesgue
space of p-integrable functions E → B, see, e.g., [67, 87] for a definition and
some properties of these spaces.

Theorem C.1 (Kolmogorov (1)). Let B be a Banach space, 1 ≤ p < +∞,
T > 0 and A ⊂ Lp(0, T ;B). Then A is relatively compact in Lp(0, T ;B) if it
satisfies the following conditions:

1. For all f ∈ A, there exists Pf ∈ Lp(R;B) such that Pf = f a.e. on (0, T )
and ‖Pf‖Lp(R;B) ≤ C, where C depends only on A.
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2. For all ϕ ∈ C∞c (R), the set {
∫
R(Pf)ϕdt, f ∈ A} is relatively compact in

B.
3. ‖Pf(·+ h)− Pf‖Lp(R;B) → 0 as h→ 0, uniformly with respect to f ∈ A.

Remark C.2 (Necessary conditions)
The conditions 1, 2 and 3 are actually also necessary for A to be relatively compact
in Lp(0, T ;B).

Proof. Let (ρm)m≥1 be a sequence of mollifiers constructed by scaling a
given smooth function ρ, that is:

ρ ∈ C∞c (−1, 1),

∫
R
ρdt = 1, ρ ≥ 0, ρ(−t) = ρ(t) for all t ∈ R

and, for all m ≥ 1 and t ∈ R, ρm(t) = mρ(mt).
(C.1)

Set K = [0, T ] and Am = {(Pf ? ρm)|K : f ∈ A}, where ? denotes the
convolution product in R.
The proof is divided in two steps. In Step 1 we prove, using Ascoli’s theorem
and Assumption 2, that, for m ≥ 1, the set Am is relatively compact in
C(K;B) endowed with its usual topology of the supremum norm. This easily
gives the relative compactness of Am in Lp(0, T ;B). In Step 2, we show that
Assumptions 1 and 3 give Pf ?ρm → Pf in Lp(R;B) as m→ +∞, uniformly
with respect to f ∈ A. This allows to conclude that the set A is relatively
compact in Lp(0, T ;B).

Step 1. Let m ≥ 1. In order to prove that Am is relatively compact in
C(K;B), we use Ascoli–Arzelà’s theorem. Hence, we need to prove that:

(AA1) for all t ∈ K, the set {Pf ? ρm(t), f ∈ A} is relatively compact in
B;
(AA2) the sequence {Pf ?ρm, f ∈ A} is equicontinuous from K to B (i.e.
the continuity of Pf ? ρm : K → B is uniform with respect to f ∈ A).

We first prove Property (AA1). For t ∈ K we have, with ϕt = ρm(t − ·) ∈
C∞c (R),

Pf ? ρm(t) =

∫
R
Pf(s)ρm(t− s)ds =

∫
R
Pf(s)ϕt(s)ds.

Then, Assumption 2 applied to ϕ = ϕt gives Property (AA1).

We now prove Property (AA2). Let t1, t2 ∈ K and recall that p′ = p
p−1 . By

Hölder’s inequality,

‖Pf ? ρm(t2)−Pf ? ρm(t1)‖B

≤
∫
R
‖Pf(s)‖B |ρm(t2 − s)− ρm(t1 − s)|ds

≤ ‖Pf‖Lp(R;B) ‖ρm(t2 − ·)− ρm(t1 − ·)‖Lp′ (R) .
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Since t1, t2 ∈ K = [0, T ], the functions ρm(t2−·) and ρm(t1−·) vanish outside
[−1, T + 1]. Hence, using the mean value theorem and Assumption 3, we infer

‖Pf ? ρm(t2)− Pf ? ρm(t1)‖B ≤ C|t1 − t2|
(

sup
t∈R
|ρ′m(t)|

)
(T + 2)

1
p′ .

This shows that Pf ? ρm is uniformly continuous on R, with a modulus of
continuity which does not depend on f . Hence, Property (AA2) is proved.

As a consequence, Am is indeed relatively compact in C(K;B). This is equiva-
lent to saying that, for any ε > 0, there exists a finite number of balls of radius
ε (for the supremum norm of C(K;B)) whose union cover the set Am. Then,
since ‖·‖Lp(0,T ;B) ≤ T 1/p ‖·‖C(K;B), we also obtain the relative compactness

of Am in Lp(0, T ;B).

Step 2. Let t ∈ R, we have, using
∫
R ρm(s)ds = 1 and setting s = ms,

Pf ? ρm(t)− Pf(t) =

∫
R

[Pf(t− s)− Pf(t)] ρm(s)ds

=

∫ 1

−1

[
Pf

(
t− s

m

)
− Pf(t)

]
ρ(s)ds.

Then, by Hölder’s inequality,

‖Pf ? ρm(t)− Pf(t)‖pB ≤ ‖ρ‖
p

Lp′

∫ 1

−1

∥∥∥∥Pf (t− s

m

)
− Pf(t)

∥∥∥∥p
B

ds.

Integrating with respect to t ∈ R and using the Fubini-Tonelli theorem to
swap the integrals on t and s leads to

‖Pf ? ρm − Pf‖pLp(0,T ;B)

≤ ‖ρ‖p
Lp′

∫ 1

−1

∥∥∥∥Pf (· − s

m

)
− Pf

∥∥∥∥p
Lp(0,T ;B)

ds

≤ 2 ‖ρ‖p
Lp′

sup

{
‖Pf(·+ h)− Pf‖pLp(R;B) : |h| ≤ 1

m

}
.

Using Assumption 3 then gives ‖Pf ? ρm − Pf‖Lp(0,T ;B) → 0 as m → +∞,
uniformly with respect to f ∈ A.

We can now conclude the proof. Let ε > 0 and pick m(ε) large enough such
that ∥∥Pf ? ρm(ε) − Pf

∥∥
Lp(0,T ;B)

≤ ε/2 for all f ∈ A. (C.2)

By Step 1, we can cover Am(ε) = {(Pf ? ρm(ε))|[0,T ] : f ∈ A} by a finite
number of balls in Lp(0, T ;B) of radius ε/2. Property (C.2) then shows that
{(Pf)|[0,T ] : f ∈ A} = A is covered by the same finite number of balls of
radius ε. This concludes the proof that A is relatively compact in Lp(0, T ;B).
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Theorem C.3 (Kolmogorov (2)). Let B be a Banach space, 1 ≤ p < +∞,
T > 0 and A ⊂ Lp(0, T ;B). Then A is relatively compact in Lp(0, T ;B) if it
satisfies the following conditions:

1. A is bounded in Lp(0, T ;B).

2. For all ϕ ∈ C∞c (R), the set {
∫ T

0
fϕdt : f ∈ A} is relatively compact in

B.
3. There exists a function η : (0, T ) → [0,∞) such that limh→0+ η(h) = 0

and, for all h ∈ (0, T ) and f ∈ A,∫ T−h

0

‖f(t+ h)− f(t)‖pB dt ≤ η(h).

Proof.
The proof uses Theorem C.1 with P defined the following way: for f ∈ A,
Pf = f on [0, T ] and Pf = 0 on R\[0, T ]. Owing to this definition and to
Assumption 1 in Theorem C.3, Items 1 and 2 of Theorem C.1 are clearly
satisfied.
We now prove, in two steps, Item 3 of Theorem C.1. Notice first that, replacing
η with η̃(h) = sup(0,h] η (which still satisfies limh→0+ η̃(h) = 0), we can assume
without loss of generality that η is non-decreasing.

Step 1. In this step, we prove that
∫ τ

0
‖f(t)‖pB dt → 0 as τ → 0+, uniformly

with respect to f ∈ A.

Let τ, h ∈ (0, T ) such that τ + h ≤ T . For all t ∈ (0, τ) one has ‖f(t)‖B ≤
‖f(t+ h)‖B + ‖f(t+ h)− f(t)‖B and thus, by the power-of-sums inequality
(D.12),

‖f(t)‖pB ≤ 2p−1 ‖f(t+ h)‖pB + 2p−1 ‖f(t+ h)− f(t)‖pB .

Integrating this inequality for t ∈ (0, τ) gives∫ τ

0

‖f(t)‖pB dt ≤ 2p−1

∫ τ

0

‖f(t+ h)‖pB dt

+ 2p−1

∫ τ

0

‖f(t+ h)− f(t)‖pB dt. (C.3)

Now let h0 ∈ (0, T ) and τ ∈ (0, T − h0). For all h ∈ (0, h0), Inequality (C.3)
gives, using η(h) ≤ η(h0),∫ τ

0

‖f(t)‖pB dt ≤ 2p−1

∫ τ

0

‖f(t+ h)‖pB dt+ 2p−1η(h0).

Integrating this inequality over h ∈ (0, h0) leads to

h0

∫ τ

0

‖f(t)‖pB dt ≤ 2p−1

∫ h0

0

(∫ τ

0

‖f(t+ h)‖pB dt

)
dh+ 2p−1h0η(h0). (C.4)
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Using the Fubini-Tonelli Theorem,∫ h0

0

(∫ τ

0

‖f(t+ h)‖pB dt

)
dh =

∫ τ

0

(∫ h0

0

‖f(t+ h)‖pB dh

)
dt

≤
∫ τ

0

(∫ T

0

‖f(s)‖pB ds

)
≤ τ ‖f‖pLp(0,T ;B) ,

from which one deduces, owing to (C.4),∫ τ

0

‖f(t)‖pB dt ≤ τ2p−1

h0
‖f‖pLp(0,T ;B) + 2p−1η(h0).

We can now conclude this step. Let ε > 0 and choose h0 ∈ (0, T ) such that
2p−1η(h0) ≤ ε. Then, with C = supf∈A ‖f‖

p
Lp(0,T ;B), take τ = min(T −

h0, εh0/(2
p−1C)). This gives, for all f ∈ A and all τ ≤ τ ,∫ τ

0

‖f(t)‖pB ≤ 2ε.

The proof that
∫ τ

0
‖f(t)‖pB dt→ 0 as τ → 0+, uniformly with respect to f ∈ A,

is complete.

A similar proof gives
∫ T
T−τ ‖f(t)‖pB dt→ 0 as τ → 0+, uniformly with respect

to f ∈ A (this can for example be obtained by working on g(t) = f(T − t)
instead of f).

Step 2. We now prove that Item 3 in Theorem C.1 is satisfied, and thus
conclude the proof of Theorem C.3.
Recall that Pf(t) = 0 if t 6∈ [0, T ] so that, for all h ∈ (0, T ) and f ∈ A,∫

R
‖Pf(t+ h)− Pf(t)‖pBdt

≤
∫ 0

−h
‖f(t+ h)‖pB dt+

∫ T−h

0

‖f(t+ h)− f(t)‖pB dt+

∫ T

T−h
‖f(t)‖pB dt

≤
∫ h

0

‖f(t)‖pB dt+ η(h) +

∫ T

T−h
‖f(t)‖pB dt. (C.5)

Let ε > 0 and take h1 > 0 such η(h1) ≤ ε. Owing to Step 1, there exists
h2 > 0 such that, for all f ∈ A and h ≤ h2,∫ h

0

‖f(t)‖pB dt ≤ ε and

∫ T

T−h
‖f(t)‖pB dt ≤ ε.

Hence, by (C.5), for all f ∈ A and h ≤ min(h1, h2),∫
R
‖Pf(t+ h)− Pf(t)‖pB dt ≤ 3ε.



444 C Discrete functional analysis for time-dependent problems

This concludes the proof that Assumption 3 in Theorem C.1 is satisfied.

We now turn to compactness theorems involving sequences of spaces as co-
domains of the functions. This typically occurs in numerical schemes, when we
consider sequences of functions that are piecewise constant on varying meshes.
We first state a notion of “compact embedding” of a sequence of spaces in a
fixed Banach space.

Definition C.4 (Compactly embedded sequence). Let B be a Banach
space and (Xm, ‖·‖Xm)m∈N be a sequence of Banach spaces included in B.
The sequence (Xm)m∈N is compactly embedded in B if any sequence (um)m∈N
such that

um ∈ Xm for all m ∈ N, and (‖um‖Xm)m∈N is bounded,

is relatively compact in B.

The first compactness result for sequences of subspaces is a straightforward
translation in that setting of the second Kolmogorov theorem above.

Proposition C.5 (Time compactness with a sequence of subspaces).
Let 1 ≤ p < +∞, T > 0, B be a Banach space, and (Xm)m∈N be compactly
embedded in B (see Definition C.4). Let (fm)m∈N be a sequence in Lp(0, T ;B)
satisfying the following conditions:

1. The sequence (fm)m∈N is bounded in Lp(0, T ;B).
2. The sequence (‖fm‖L1(0,T ;Xm))m∈N is bounded.

3. There exists a function η : (0, T ) → [0,∞) such that limh→0+ η(h) = 0
and, for all h ∈ (0, T ) and m ∈ N,∫ T−h

0

‖fm(t+ h)− fm(t)‖pB dt ≤ η(h).

Then, the sequence (fm)m∈N is relatively compact in Lp(0, T ;B).

Proof. We aim at applying Theorem C.3 with A = {fm : m ∈ N}. We only
have to prove Assumption 2 in this theorem, the other two assumptions being
already stated as assumptions of the proposition.

Let ϕ ∈ C∞c (R). We need to prove that the sequence (
∫ T

0
fmϕdt)m∈N is rela-

tively compact in B. We have, with ‖ϕ‖∞ = supt∈R |ϕ(t)|,∥∥∥∥∥
∫ T

0

fmϕdt

∥∥∥∥∥
Xm

≤ ‖ϕ‖∞ ‖fm‖L1(0,T ;Xm) .

The sequence (‖fm‖L1(0,T ;Xm))m∈N being bounded, this shows that the se-
quence
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∫ T

0

fmϕdt

∥∥∥∥∥
Xm

)
m∈N

is also bounded. Since (Xm)m∈N is compactly embedded in B, this concludes

the proof that (
∫ T

0
fmϕdt)m∈N in relatively compact in B.

We then turn to the statement and proof of a discrete Aubin–Simon theorem,
which was first used in [108] and generalised in [107], see also [106].
In the continuous setting, the Aubin–Simon compactness theorem establishes
a strong compactness property of sequences of functions in Lp(0, T ;B), based
on their boundedness in Lq(0, T ;A) and the boundedness of their derivatives
in Lr(0, T ;C), where A is compactly embedded in B and B is continuously
embedded in C. We first define a notion of triplets (A,B,C) having these
compact–continuous embedding properties, in the case where A and C are
replaced by sequences of spaces.

Definition C.6 (Compactly–continuously embedded sequence). Let
B be a Banach space, (Xm, ‖·‖Xm)m∈N be a sequence of Banach spaces in-
cluded in B, and (Ym, ‖·‖Ym)m∈N be a sequence of Banach spaces. We say
that the sequence (Xm, Ym)m∈N is compactly–continuously embedded in B if
the following conditions are satisfied:

1. The sequence (Xm)m∈N is compactly embedded in B (see Definition C.4).
2. Xm ⊂ Ym for all m ∈ N and, for any sequence (um)m∈N such that

a) um ∈ Xm for all m ∈ N and (‖um‖Xm)m∈N is bounded,
b) ‖um‖Ym → 0 as n→ +∞,
c) (um)m∈N converges in B,

it holds um → 0 in B.

Lemma C.7. Let B be a Banach space and (Xm, Ym)m∈N be compactly–
continuously embedded in B (see Definition C.6). Then, for any ε > 0, there
exists m0 ∈ N and Cε ≥ 0 such that, for any m ≥ m0 and w ∈ Xm, one has

‖w‖B ≤ ε ‖w‖Xm + Cε ‖w‖Ym .

Proof. We prove the result by contradiction. Let us therefore assume the
existence of ε > 0 such that, for any m0 ∈ N, we can find m = ϕ(m0) ≥ m0

and wϕ(m0) ∈ Xϕ(m0) such that∥∥wϕ(m0)

∥∥
B
> ε

∥∥wϕ(m0)

∥∥
Xϕ(m0)

+m0

∥∥wϕ(m0)

∥∥
Yϕ(m0)

.

There is no loss of generality in also selecting, by induction, each m = ϕ(m0)
greater than ϕ(m0−1); then ϕ : N→ N is a strictly increasing mapping. Since
wϕ(m0) 6= 0, we can then set uϕ(m0) =

wϕ(m0)

‖wϕ(m0)‖B
∈ Xϕ(m0). We then have,

for any m ∈ ϕ(N),

1 = ‖um‖B ≥ ε ‖um‖Xm + ψ(m) ‖um‖Ym , (C.6)
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where ψ = ϕ−1 : ϕ(N)→ N satisfies ψ(m)→∞ as m→∞. To define um for
all m ∈ N, we let um = 0 whenever n 6∈ ϕ(N) and, defining ψ(m) = m in that
case, we see that (C.6) still holds. This definition also preserves the property
ψ(m)→∞ as m→∞.
The sequence (um)m∈N is such that um ∈ Xm for all m ∈ N and, owing
to (C.6), (‖um‖Xm)m∈N is bounded by 1/ε. By the compact embedding
of (Xm)m∈N in B, we infer that there exists a subsequence, still denoted
(um)m∈N, that converges in B. Then, using (C.6) again, ‖um‖Ym ≤ 1/ψ(m)→
0 as m→ +∞, and thus, by Definition C.6, the limit of (um)m∈N in B must
be 0. This contradicts (C.6) which states that, since each um has norm 1 in
B, the limit in this space of these vectors should also have norm 1.

We can now state a discrete Aubin–Simon theorem with sequences of spaces.

Theorem C.8 (Aubin–Simon with sequences of spaces and discrete
derivative). Let p ∈ [1,+∞). Let B be a Banach space and (Xm, Ym)m∈N
be compactly–continuously embedded in B (see Definition C.6). Let T > 0,
θ ∈ [0, 1], and (fm)m∈N be a sequence of Lp(0, T ;B) satisfying the following
properties:

1. For all m ∈ N, there exists
• N ∈ N?,
• 0 = t(0) < t(1) < · · · < t(N) = T , and
• (v(n))n=0,...,N ∈ XN+1

m

such that, for all n ∈ {0, . . . , N − 1} and a.e. t ∈ (t(n), t(n+1)), fm(t) =
θv(n+1) + (1− θ)v(n).
We then define almost everywhere the discrete derivative δmfm by setting,

with δt(n+ 1
2 ) = t(n+1) − t(n),

δmfm(t) =
v(n+1) − v(n)

δt(n+ 1
2 )

for n ∈ {0, . . . , N − 1} and t ∈ (t(n), t(n+1)).

2. The sequence (fm)m∈N is bounded in Lp(0, T ;B).
3. The sequence (‖fm‖Lp(0,T ;Xm))m∈N is bounded.

4. The sequence (‖δmfm‖L1(0,T ;Ym))m∈N is bounded.

Then (fm)m∈N is relatively compact in Lp(0, T ;B).

Proof. We apply Proposition C.5. The only assumption in this proposition
that needs to be established in order to conclude is the third one, that is∫ T−h

0

‖fm(t+ h)− fm(t)‖pB dt→ 0 as h→ 0,

uniformly w.r.t. m ∈ N.

Note that, without the “uniformly with respect to m ∈ N”, this convergence is
known since each fm belongs to Lp(0, T ;B). As a consequence, we only have
to prove that, for all η > 0, there exist m0 ∈ N and 0 < h0 < T such that



C.1 Averaged-in-time compactness results 447

∀m ≥ m0, ∀h ∈ (0, h0) ,

∫ T−h

0

‖fm(·+ h)− fm‖pB dt ≤ η. (C.7)

Indeed, once this is proved, upon reducing h0 we can ensure that this estimate
also holds for f1, . . . , fm0−1.
Let ε > 0. Lemma C.7 gives the existence of m0 ∈ N and Cε ∈ R such that,
for all m ≥ m0 and u ∈ Xm, ‖u‖B ≤ ε ‖u‖Xm +Cε ‖u‖Ym . Then, for m ≥ m0,
0 < h < T and t ∈ (0, T − h),

‖fm(t+ h)− fm(t)‖B
≤ ε ‖fm(t+ h)− fm(t)‖Xm + Cε ‖fm(t+ h)− fm(t)‖Ym
≤ ε ‖fm(t+ h)‖Xm + ε ‖fm(t)‖Xm + Cε ‖fm(t+ h)− fm(t)‖Ym .

Take the power p of this inequality and use the power-of-sums inequality
(D.14) to obtain

‖fm(t+ h)− fm(t)‖pB ≤ 3p−1εp ‖fm(t+ h)‖pXm
+ 3p−1εp ‖fm(t)‖pXm + 3p−1Cpε ‖fm(t+ h)− fm(t)‖pYm .

Integrating this inequality with respect to t ∈ (0, T − h) leads to

∫ T−h

0

‖fm(t+ h)− fm(t)‖pB dt ≤ 2× 3p−1εp ‖fm‖pLp(0,T ;Xm)

+ 3p−1Cpε

∫ T−h

0

‖fm(t+ h)− fm(t)‖pYm dt. (C.8)

We now estimate the last term in this inequality by using the discrete deriva-
tive of fm. This function is piecewise constant in time so, for a.e. t ∈ (0, T−h),
writing fm(t+ h)− fm(t) as the sum of the jumps of fm at its discontinuities
gives

fm(t+ h)− fm(t) =
∑

n: t(n)∈(t,t+h)

(fm)|(t(n),t(n+1)) − (fm)|(t(n−1),t(n))

=
∑

n: t(n)∈(t,t+h)

(θv(n+1) + (1− θ)v(n))− (θv(n) + (1− θ)v(n−1))

=
∑

n: t(n)∈(t,t+h)

[
θ(v(n+1) − v(n)) + (1− θ)(v(n) − v(n−1))

]

=

N−1∑
n=1

[
θ(v(n+1) − v(n)) + (1− θ)(v(n) − v(n−1))

]
1(t,t+h)(t

(n))

= θ

N−1∑
n=1

v(n+1) − v(n)

δt(n+ 1
2 )

δt(n+ 1
2 )1(t,t+h)(t

(n))
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+ (1− θ)
N−1∑
n=1

v(n) − v(n−1)

δt(n−
1
2 )

δt(n−
1
2 )1(t,t+h)(t

(n)), (C.9)

where 1(t,t+h)(t
(n)) = 1 if t(n) ∈ (t, t + h) and 1(t,t+h)(t

(n)) = 0 if t(n) 6∈
(t, t + h). Let M be a bound of ‖δmfm‖L1(0,T ;Ym), which means that, for all
m ∈ N,

N−1∑
n=0

∥∥∥∥v(n+1) − v(n)

δt(n+ 1
2 )

∥∥∥∥
Ym

δt(n+ 1
2 ) ≤M.

Taking the Ym-norm of (C.9), then the power p, and using the convexity of
s→ sp gives

‖fm(t+ h)− fm(t)‖pYm

≤ θ

(
N−1∑
n=1

∥∥∥∥v(n+1) − v(n)

δt(n+ 1
2 )

∥∥∥∥
Ym

δt(n+ 1
2 )1(t,t+h)(t

(n))

)p

+ (1− θ)

(
N−1∑
n=1

∥∥∥∥v(n) − v(n−1)

δt(n−
1
2 )

∥∥∥∥
Ym

δt(n−
1
2 )1(t,t+h)(t

(n))

)p

≤ θMp−1

(
N−1∑
n=1

∥∥∥∥v(n+1) − v(n)

δt(n+ 1
2 )

∥∥∥∥
Ym

δt(n+ 1
2 )1(t,t+h)(t

(n))

)

+ (1− θ)Mp−1

(
N−1∑
n=1

∥∥∥∥v(n) − v(n−1)

δt(n−
1
2 )

∥∥∥∥
Ym

δt(n−
1
2 )1(t,t+h)(t

(n))

)
. (C.10)

Writing 1(t,t+h)(t
(n)) = 1(t(n)−h,t(n))(t) and integrating this inequality over

t ∈ (0, T − h) leads to∫ T−h

0

‖fm(t+ h)− fm(t)‖pYm dt ≤Mph. (C.11)

Plugging this inequality into (C.8), we obtain∫ T−h

0

‖fm(t+ h)− fm(t)‖pB dt ≤ 2× 3p−1εp ‖fm‖pLp(0,T ;Xm)

+ 3p−1CpεM
ph. (C.12)

We can now conclude the proof. Let η > 0. Since (‖fm‖Lp(0,T ;Xm))m∈N is

bounded, we can fix ε (and thus also m0) such that, for all m ≥ m0,

2× 3p−1εp ‖fm‖pLp(0,T ;Xm) ≤
η

2
.

We can then select h0 ∈ (0, T ) such that 3p−1CpεM
ph0 ≤ η/2. Estimate (C.12)

then shows that (C.7) holds, which proves the theorem.
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C.2 Uniform-in-time compactness

Most of the results and techniques developed here were first published in
[72]. Solutions of numerical schemes for parabolic equations are usually piece-
wise constant in time, and therefore not continuous. Their jumps nevertheless
tend to become small with the time step, and it is possible to establish some
uniform-in-time convergence results. These results are based on a generalisa-
tion to non-continuous functions of the Ascoli–Arzelà theorem.

Definition C.9. If (K, dK) and (E, dE) are metric spaces, we denote by
F(K,E) the space of functions K → E, endowed with the uniform metric
dF (v, w) = sups∈K dE(v(s), w(s)) (note that this metric may take infinite val-
ues).

Theorem C.10 (Discontinuous Ascoli–Arzelà’s theorem). Let (K, dK)
be a compact metric space, (E, dE) be a complete metric space, and let
(F(K,E), dF ) be as in Definition C.9. Let (vm)m∈N be a sequence in F(K,E)
such that there exists a function ω : K × K → [0,∞] and a sequence
(τm)m∈N ⊂ [0,∞) satisfying

lim
dK(s,s′)→0

ω(s, s′) = 0 , lim
m→∞

τm = 0 , (C.13)

∀(s, s′) ∈ K2 , ∀m ∈ N , dE(vm(s), vm(s′)) ≤ ω(s, s′) + τm. (C.14)

We also assume that, for all s ∈ K, {vm(s) : m ∈ N} is relatively compact in
(E, dE).
Then (vm)m∈N is relatively compact in (F(K,E), dF ), and any adherence
value of (vm)m∈N in this space is continuous K → E.

Proof. The last conclusion of the theorem, i.e. that any adherence value v of
(vm)m∈N in F(K,E) is continuous, is obtained by passing to the limit along
this subsequence in (C.14), showing that the modulus of continuity of v is
bounded above by ω.
The proof of the compactness result is an easy generalisation of the proof of
the classical Ascoli–Arzelà compactness result. We start by taking a countable
dense subset {sl : l ∈ N} in K (the existence of this set is ensured since K
is compact metric). Since each set {vm(sl) : m ∈ N} is relatively compact in
E, by diagonal extraction we can select a subsequence of (vm)m∈N, denoted
the same way, such that for any l ∈ N, (vm(sl))m∈N converges in E. We then
proceed in showing that (vm)m∈N is a Cauchy sequence in (F(K,E), dF ).
Since this space is complete, this will show that this sequence converges in
this space and will therefore complete the proof.
Let ε > 0 and, using (C.13), take δ > 0 and M ∈ N such that ω(s, s′) ≤ ε
whenever dK(s, s′) ≤ δ and τm ≤ ε whenever m ≥ M . Select a finite set
{sl1 , . . . , slN } such that any s ∈ K is within distance δ of a sli . Then, for any
m,m′ ≥M , by (C.14),
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dE(vm(s), vm′(s)) ≤ dE(vm(s), vm(sli)) + dE(vm(sli), vm′(sli))

+ dE(vm′(sli), vm′(s))

≤ ω(s, sli) + τm + dE(vm(sli), vm′(sli)) + ω(s, sli) + τm′

≤ 4ε+ dE(vm(sli), vm′(sli)). (C.15)

Let i ∈ {1, . . . , N}. The sequence (vm(sli))m∈N converges in E, and is therefore
a Cauchy sequence in this space. We can thus find Mi ∈ N such that

∀m,m′ ≥Mi , dE(vm(sli), vm′(sli)) ≤ ε. (C.16)

Take M ′ = max(M,M1, . . . ,MN ). Estimates (C.16) and (C.15) show that,
for all m,m′ ≥M and all s ∈ K, dE(vm(s), vm′(s)) ≤ 5ε. This concludes the
proof that (vm)m∈N is a Cauchy sequence in (F(K,E), dF ).

Corollary C.11 (Uniform-in-time compactness from estimates on
discrete derivatives). Let T > 0, θ ∈ [0, 1], B be a Banach space, and
(Xm, ‖·‖Xm)m∈N be a sequence of Banach spaces included in B. For any
m ∈ N, we take

• Nm ∈ N∗,
• 0 = t

(0)
m < t

(1)
m < . . . < t

(Nm)
m = T , and

• um = (u
(n)
m )n=0,...,Nm ∈ XNm+1

m .

Let (um)θ : [0, T ]→ Xm be the piecewise-constant function in time defined by

(um)θ(0) = u(0)
m and, for all n = 0, . . . , Nm − 1 and t ∈ (t(n), t(n+1)],

(um)θ(t) = θu(n+1)
m + (1− θ)u(n)

m .
(C.17)

Set δt
(n+ 1

2 )
m = t

(n+1)
m − t

(n)
m for n = 0, . . . , Nm − 1, and define the discrete

derivative δmum by:

∀n = 0, . . . , Nm − 1 , for a.e. t ∈ (t(n)
m , t(n+1)

m ) , δmum(t) =
u

(n+1)
m − u(n)

m

δt
(n+ 1

2 )
m

.

We assume that

(h1) The sequence (Xm)m∈N is compactly embedded in B (see Definition C.4).
(h2) The sequence (‖(um)θ‖L∞(0,T ;Xm))m∈N is bounded.

(h3) The sequence (‖δmum‖Lq(0,T ;B))m∈N is bounded for some q > 1.

(h4) Setting δtm = maxn=0,...,Nm−1 δt
(n+ 1

2 )
m , it holds limm→∞ δtm = 0.

Then, there exists u ∈ C([0, T ];B) such that, up to a subsequence,

lim
m→∞

sup
t∈[0,T ]

‖(um)θ(t)− u(t)‖B = 0. (C.18)
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Proof. Let

u(n+θ)
m = θu(n+1)

m + (1− θ)u(n)
m and δ

(n+ 1
2 )

m um :=
u

(n+1)
m − u(n)

m

δt
(n+ 1

2 )
m

.

Take n2 ≥ n1 in {0, . . . , Nm − 1}, s1 ∈ (t(n1), t(n1+1)] and s2 ∈ (t(n2), t(n2+1)].
By writing a telescopic sum, we get

(um)θ(s2)− (um)θ(s1)

= u(n2+θ)
m − u(n1+θ)

m

=

n2∑
n=n1+1

[
u(n+θ)
m − u(n−1+θ)

m

]
=

n2∑
n=n1+1

[
θ(u(n+1)

m − u(n)
m ) + (1− θ)(u(n)

m − u(n−1)
m )

]
=

n2∑
n=n1+1

[
θδt

(n+ 1
2 )

m δ
(n+ 1

2 )
m um + (1− θ)δt(n−

1
2 )

m δ
(n− 1

2 )
m um

]
. (C.19)

It can easily be checked that this relation extends to the case s1 = 0, n1 = −1

and n2 ∈ {0, . . . , Nm − 1} by defining δt
(− 1

2 )
m = 0 and δ

(− 1
2 )

m um = 0; consider
for example n2 = 0 and notice that

u(θ)
m − u(0)

m = θ(u(1)
m − u(0)

m ) = θδt
( 1
2 )
m δ

( 1
2 )
m um.

By the discrete Hölder inequality (D.3) with ωi = δt
(i± 1

2 )
m , bi = 1 and ai =

‖δ(i± 1
2 )

m um‖B , since q
q′ = q − 1,

( n2∑
n=n1+1

δt
(n± 1

2 )
m

∥∥∥δ(n+ 1
2 )

m um

∥∥∥
B

)q
≤

(
n2∑

n=n1+1

δt
(n± 1

2 )
m

)q−1( n2∑
n=n1+1

δt
(n± 1

2 )
m

∥∥∥δ(n± 1
2 )

m um

∥∥∥q
B

)

≤
[
t
(n2+ 1

2±
1
2 )

m − t(n1+ 1
2±

1
2 )

m

]q−1

Cq, (C.20)

where C is a bound of (‖δmum‖Lq(0,T ;B))m∈N. Take the norm in B of (C.19),
use the triangle inequality, then take the power q and use the convexity of
s→ sq. Invoking finally the estimate (C.20) yields

‖(um)θ(s2)− (um)θ(s1)‖qB

≤ θCq
[
t(n2+1)
m − t(n1+1)

m

]q−1

+ (1− θ)Cq
[
t(n2)
m − t(n1)

m

]q−1

,
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where we set t
(−1)
m = 0. This gives C1, that depends only on C and q, such

that, for all s1, s2 ∈ [0, T ] and all m ∈ N,

‖(um)θ(s1)− (um)θ(s2)‖B ≤ C1(|s2 − s1|+ δtm)
q−1
q

≤ C1|s2 − s1|
q−1
q + C1δt

q−1
q

m . (C.21)

In the last line, we used the power-of-sums inequality (D.13).
This relation and (h4) show that vm = (um)θ satisfies Assumptions (C.13)–
(C.14) in the discontinuous Ascoli–Arzelà theorem (Theorem C.10), with K =
[0, T ] and E = B. The proof of Corollary C.11 is therefore complete if we can
establish that, for all s ∈ [0, T ],

{(um)θ(s) : m ∈ N} is relatively compact in B. (C.22)

Assume first that s > 0. Since (um)θ is piecewise constant on (0, T ], the
L∞(0, T ;Xm) norm of (um)θ is actually a supremum norm on (0, T ]. Hence,
‖(um)θ(s)‖Xm ≤ ‖(um)θ‖L∞(0,T ;Xm) and Hypotheses (h1) and (h2) show that

((um)θ(s))m∈N is indeed relatively compact in B.
Let us now consider the case s = 0. Since (C.22) holds for any s > 0, by diago-
nal extraction we can find a subsequence, still denoted by (um)m∈N, such that,
for any k ∈ N satisfying k−1 ∈ (0, T ], the sequence ((um)θ(k

−1))m∈N converges
in B. We now prove that, along the same subsequence, ((um)θ(0))m∈N is a
Cauchy sequence in B. This will conclude the proof that (C.22) holds for any
s = 0.
Owing to (C.21) we have, for (m,m′) ∈ N2 and k ∈ N such that k−1 ≤ T ,

‖(um)θ(0)− (um′)θ(0)‖B
≤
∥∥(um)θ(0)− (um)θ(k

−1)
∥∥
B

+
∥∥(um)θ(k

−1)− (um′)θ(k
−1)
∥∥
B

+
∥∥(um′)θ(k

−1)− (um′)θ(0)
∥∥
B

≤ 2C1k
− q−1

q + C1δt
q−1
q

m + C1δt
q−1
q

m′ +
∥∥(um)θ(k

−1)− (um′)θ(k
−1)
∥∥
B
.

Given ε > 0, fix k such that 2C1k
− q−1

q < ε/4. Using (h4) and the convergence
of ((um)θ(k

−1))m∈N, we can then find m0 = m0(k) ∈ N such that, if m,m′ ≥
m0,

C1δt
q−1
q

m ≤ ε

4
, C1δt

q−1
q

m′ ≤
ε

4
and

∥∥(um)θ(k
−1)− (um′)θ(k

−1)
∥∥
B
≤ ε

4
.

This shows that ‖(um)θ(0)− (um′)θ(0)‖B ≤ ε whenever m,m′ ≥ m0. The
sequence ((um)θ(0))m∈N is therefore Cauchy in B, and the proof is complete.

The following lemma states an equivalent condition for the uniform conver-
gence of functions, which proves extremely useful to establish uniform-in-time
convergence of numerical schemes for parabolic equations when no smoothness
is assumed on the data.
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Lemma C.12. Let (K, dK) be a compact metric space, (E, dE) be a metric
space and (F(K,E), dF ) be as in Definition C.9. Let (vm)m∈N be a sequence
in F(K,E), and let v ∈ F(K,E). The following properties are equivalent.

1. v ∈ C(K,E) and vm → v for dF ,
2. for any s ∈ K and for any sequence (sm)m∈N ⊂ K converging to s for
dK , we have vm(sm)→ v(s) for dE.

Proof.
Step 1: Property 1 implies Property 2.
For any sequence (sm)m∈N converging to s,

dE(vm(sm), v(s)) ≤ dE(vm(sm), v(sm)) + dE(v(sm), v(s))

≤ dF (vm, v) + dE(v(sm), v(s)).

The right-hand side tends to 0 by definition of vm → v for dF , and by conti-
nuity of v.

Step 2: Property 2 implies Property 1.
Let us first prove that v ∈ C(K,E). Let (sm)m∈N ⊂ K be a sequence con-
verging to s for dK . Since for any t ∈ K the sequence (vn(t))n∈N converges
to v(t), we can find ϕ(0) ∈ N such that dE(vϕ(0)(s0), v(s0)) < 1. Assuming
that, for n ∈ N?, ϕ(n− 1) ∈ N is given, we can also find ϕ(n) ∈ N such that
ϕ(n) > ϕ(n− 1) and dE(vϕ(n)(sn), v(sn)) < 1/(n+ 1).
We define the sequence (ŝm)m∈N by ŝm = sn if m = ϕ(n) for some n ∈ N,
and ŝm = s if m 6∈ ϕ(N). The sequence (ŝm)m∈N is constructed by inter-
lacing the sequence (sm)m∈N and the constant sequence equal to s. Hence,
ŝm → s as m→∞ and, by assumption, (vm(ŝm))m∈N converges to v(s). The
sequence (vϕ(n)(sn))n∈N is a subsequence of (vm(ŝm))m∈N, and it therefore
also converges to v(s). A triangle inequality then gives

dE(v(sn), v(s)) ≤ dE(v(sn), vϕ(n)(sn)) + dE(vϕ(n)(sn), v(s))

≤ 1

n+ 1
+ dE(vϕ(n)(sn), v(s)),

which shows that v(sn)→ v(s). This completes the proof that v ∈ C(K,E).

We now prove by way of contradiction that vm → v for dF . If (vm)m∈N does
not converge to v for dF , then there exists ε > 0 and a subsequence (vmk)k∈N,
such that, for any k ∈ N, sups∈K dE(vmk(s), v(s)) ≥ ε. We can then find a
sequence (rk)k∈N ⊂ K such that, for any k ∈ N,

dE(vmk(rk), v(rk)) ≥ ε/2. (C.23)

K being compact, up to another subsequence, denoted the same way, we
can assume that rk → s in K as k → ∞. As before, we then construct a
sequence (sm)m∈N converging to s, such that smk = rk for all k ∈ N and
sm = s if m 6∈ {rk : k ∈ N}. By assumption, vm(sm) → v(s) in E and, by
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continuity of v, v(sm) → v(s) in E. A triangle inequality then shows that
dE(vm(sm), v(sm))→ 0, which contradicts (C.23) and concludes the proof.

Uniform-in-time convergence of numerical solutions to schemes for parabolic
equations often starts with a weak convergence with respect to the time vari-
able. This weak convergence is then used to prove a stronger convergence. The
following definition and proposition recall standard notions related to the weak
topology on L2(Ω). The inner product in L2(Ω) is denoted by 〈·, ·〉L2(Ω).

Definition C.13 (Uniform-in-time L2(Ω)-weak convergence).
Let (um)m∈N and u be functions [0, T ] → L2(Ω). We say that (um)m∈N con-
verges weakly in L2(Ω) uniformly on [0, T ] to u if, for all ϕ ∈ L2(Ω), as
m → ∞ the sequence of functions t ∈ [0, T ] → 〈um(t), ϕ〉L2(Ω) converges
uniformly on [0, T ] to the function t ∈ [0, T ]→ 〈u(t), ϕ〉L2(Ω).

Proposition C.14. Let E be a closed bounded ball in L2(Ω) and let {ϕl : l ∈
N} be a dense set in L2(Ω). Then, on E, the weak topology of L2(Ω) is given
by the metric

dE(v, w) =
∑
l∈N

min(1, |〈v − w,ϕl〉L2(Ω)|)
2l

. (C.24)

Moreover, a sequence of functions um : [0, T ] → E converges uniformly to
u : [0, T ] → E for the weak topology of L2(Ω) if and only if, as m → ∞, the
sequence of functions dE(um, u) : [0, T ]→ [0,∞) converges uniformly to 0.

Proof. The sets Eϕ,ε = {v ∈ E : |〈v, ϕ〉L2(Ω)| < ε}, for ϕ ∈ L2(Ω) and
ε > 0, define a neighbourhood basis of 0 for the L2(Ω)-weak topology on E.
A neighbourhood basis of any other points is obtained by translation of this
particular basis. If R is the radius of the ball E then, for any ϕ ∈ L2(Ω),
l ∈ N and v ∈ E,

|〈v, ϕ〉L2(Ω)| ≤ R ‖ϕ− ϕl‖L2(Ω) + |〈v, ϕl〉L2(Ω)|.

By density of {ϕl : l ∈ N} we can select l ∈ N such that ‖ϕ− ϕl‖L2(Ω) ≤
ε/(2R), and we then see that Eϕl,ε/2 ⊂ Eϕ,ε. Hence, a neighbourhood basis
of 0 in E for the L2(Ω)-weak topology is also given by (Eϕl,ε)l∈N, ε>0.
From the definition of dE we see that, for any l ∈ N, min(1, |〈v, ϕl〉L2(Ω)|) ≤
2ldE(0, v). If dE(0, v) < 2−l this shows that |〈v, ϕl〉L2(Ω)| ≤ 2ldE(0, v) and
therefore that

BdE (0,min(2−l, ε2−l)) ⊂ Eϕl,ε.

Hence, any neighbourhood of 0 in E for the L2(Ω)-weak topology is a neigh-
bourhood of 0 for dE . Conversely, for any ε > 0, selecting N ∈ N such that∑
l≥N+1 2−l < ε/2 gives, from the definition (C.24) of dE ,
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N⋂
l=1

Eϕl,ε/4 ⊂ BdE (0, ε).

Hence, any ball for dE centred at 0 is a neighbourhood of 0 for the L2(Ω)-
weak topology. Since dE and L2(Ω)-weak neighbourhoods are invariant by
translation, this concludes the proof that this weak topology is identical to
the topology generated by dE .
The conclusion on weak uniform convergence of sequences of functions follows
from the preceding result, and more precisely by noticing that all previous
inclusions are, when applied to um(t)−u(t), uniform with respect to t ∈ [0, T ].





D

Technical results

D.1 Standard notations, inequalities and relations

We gather here a few notations and standard inequalities that are used
throughout the book, sometimes implicitly.

D.1.1 Rd and measures

For ξ and η vectors in Rd, ξ ·η is the Euclidean (dot) product of ξ and η, and
|ξ| denotes the Euclidean norm of ξ. If M is a d × d matrix, we also denote
by |M | the norm of M induced by the Euclidean norm on Rd, that is,

|M | = sup
ξ∈Rd\{0}

|Mξ|
|ξ|

.

The Lebesgue measure of a measurable subset A of Rd is written |A|. The
integral of a function f : A→ R with respect to this measure is written∫

A

f(x)dx.

If B is a measurable subset of an hyperplane of Rd, then |B| denotes the
(d− 1)-dimensional Lebesgue measure of B in that hyperplane. The integral
of a function g : B → R with respect to this measure is written∫

B

g(x)dγ(x).

D.1.2 Lebesgue and Sobolev spaces

For q ∈ [1,+∞] and A a measurable subset of Rd, Lq(A) is the Lebesgue
space with exponent q, that is the set of (class of) measurable functions from
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A to R such that ‖u‖Lq(A) < +∞, where ‖·‖Lq(A) is the usual norm defined
by

‖u‖Lq(A) =


(∫

A

|u(x)|qdx
)1/q

if q < +∞,

inf{M ≥ 0 : |u(x)| ≤M for a.e. x ∈ A} if q = +∞.

For a vector-valued function u : A → Rd, we sometimes write ‖u‖Lp(A)d for

‖ |u| ‖Lp(A).

If A = Ω is an open set of Rd and k ∈ N, the standard Sobolev space is
denoted as usual by

W k,q(Ω) :=
{
u ∈ Lq(Ω) : ∂αu ∈ Lq(Ω) for all α = (α1, . . . , αd) ∈ Nd

such that |α| :=
∑n
i=1 αi ≤ k

}
,

and is endowed with the norm

‖u‖Wk,q(Ω) =


 ∑
α∈Nd, |α|≤k

‖∂αu‖qLq(Ω)

1/q

if q < +∞,

maxα∈Nd, |α|≤k ‖∂αu‖L∞(Ω) if q = +∞.

The space W k,q
0 (Ω) is the closure in W k,q(Ω) of the space C∞c (Ω) of infinitely

differentiable functions with compact support in Ω.
The space of vector-valued functions whose divergence (but not necessarily
all derivatives) belongs to Lq(Ω) is

W q
div(Ω) = {ϕ ∈ Lq(Ω)d : divϕ ∈ Lq(Ω)}.

It is endowed with the norm

‖ϕ‖W q
div(Ω) = ‖ϕ‖Lq(Ω)d + ‖divϕ‖Lq(Ω) .

In the particular case q = 2, we use the standard notations Hk(Ω) :=

W k,2(Ω), Hk
0 (Ω) := W k,2

0 (Ω) and Hdiv(Ω) := W 2
div(Ω).

D.1.3 Hölder inequalities

Let (ai)i∈I and (bi)i∈I be finite families of real numbers, and let (p, p′) ∈
(1,∞)2 be such that 1

p + 1
p′ = 1 (p and p′ are conjugate exponents). Then the

Hölder inequality for sums is

∑
i∈I
|aibi| ≤

(∑
i∈I
|ai|p

) 1
p
(∑
i∈I
|bi|p

′

) 1
p′

. (D.1)
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It is frequently used after the introduction of some non-zero real numbers
(di)i∈I in the product aibi. More precisely, writing aibi = (aidi)(

bi
di

) and
applying (D.1) to this new product, we have

∑
i∈I
|aibi| ≤

(∑
i∈I
|ai|p|di|p

) 1
p
(∑
i∈I

|bi|p
′

|di|p′

) 1
p′

. (D.2)

Another frequent use is to evenly split an existing weight. If (wi)i∈I are non-

negative numbers, writing wi|aibi| = (w
1/p
i |ai|)(w

1/p′

i |bi|) and using (D.1)
leads to ∑

i∈I
wi|aibi| ≤

(∑
i∈I

wi|ai|p
) 1
p
(∑
i∈I

wi|bi|p
′

) 1
p′

. (D.3)

Using both weights and the introduction of non-zero numbers, we also have

∑
i∈I

wi|aibi| ≤

(∑
i∈I

wi|ai|p|di|p
) 1
p
(∑
i∈I

wi
|bi|p

′

|di|p′

) 1
p′

. (D.4)

The Hölder inequalities are also valid in Lebesgue spaces over a measurable
set (X,µ). For example, the equivalent of (D.1) for integrals is: if f, g : X → R
are measurable functions, then∫

X

|fg|dµ ≤
(∫

X

|f |pdµ
) 1
p
(∫

X

|g|p
′
dµ

) 1
p′

. (D.5)

In other words, ‖fg‖L1(X) ≤ ‖f‖Lp(X) ‖g‖Lp′ (X). If X has a finite measure,
this is sometimes used with g ≡ 1 to give∫

X

|f |dµ ≤
(∫

X

|f |pdµ
) 1
p

µ(X)
1
p′ =

(∫
X

|f |pdµ
) 1
p

µ(X)1− 1
p . (D.6)

A variant consists in taking q > r > 1 and in applying this to |f |r, instead of
f , with the exponent p = q/r. This leads to

‖f‖Lr(X) ≤ µ(X)
1
r−

1
q ‖f‖Lq(X) . (D.7)

D.1.4 Young inequality

For a, b ≥ 0 and (p, p′) conjugate exponents, the Young inequality reads

ab ≤ 1

p
ap +

1

p′
bp
′
. (D.8)

As in the Hölder inequality, it is standard to introduce a (usually small)
parameter when applying Young’s inequality. Taking ε > 0 and writing ab =
(ε1/pa)(ε−1/pb), we obtain

ab ≤ ε

p
ap +

1

p′εp′/p
bp
′
. (D.9)
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D.1.5 Jensen inequality

Let A be a measurable subset of Rd with non-zero measure, and Ψ : R → R
be a convex function. If f is integrable on A, then the Jensen inequality states
that

Ψ

(
1

|A|

∫
A

f(x)dx

)
≤ 1

|A|

∫
A

Ψ(f(x))dx. (D.10)

Although mostly used for integrals over subsets of Rd, Jensen’s inequality is
of course also valid for sums. If wi ≥ 0 are such that W =

∑
i∈I wi > 0, then

Ψ

(
1

W

∑
i∈I

wiai

)
≤ 1

W

∑
i∈I

wiΨ(ai). (D.11)

D.1.6 Power of sums

The last inequality we want to mention is a simple one for powers of a sum.
If α ≥ 0 and a, b ≥ 0, a basic estimate is

(a+ b)α ≤ 2αaα + 2αbα.

This generic inequality can be improved by looking separately at the cases
α ≤ 1 and α ≥ 1. Using the convexity of s 7→ sα if α ≥ 1, we actually have
(a+b

2 )α ≤ 1
2a
α + 1

2b
α, that is

∀α ≥ 1 , (a+ b)α ≤ 2α−1aα + 2α−1bα. (D.12)

If α ≤ 1, the mapping s → (1 + s)α − sα is non-increasing and takes value 1
at s = 0. Hence, (1 + s)α ≤ 1 + sα. Applied to s = b/a, this gives

∀α ≤ 1 , (a+ b)α ≤ aα + bα. (D.13)

This inequality is often applied with α = 1/2.

An easy generalisation of the above inequalities can be obtained for sums of
more than two terms. For example, if α ≥ 1 and (ai)i=1,...,` are non-negative
numbers, (∑̀

i=1

ai

)α
≤ `α−1

∑̀
i=1

aαi . (D.14)

D.1.7 Discrete integration-by-parts (summation-by-parts)

Let (an)n=0,...,N and (bn)n=0,...,N be two families of real numbers. Splitting
the sum and re-indexing the first term (with j = n+ 1), we have

N−1∑
n=0

(an+1 − an)bn =

N−1∑
n=0

an+1bn −
N−1∑
n=0

anbn
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=

N−1∑
n=0

an+1bn −

(
a0b0 +

N−1∑
n=0

an+1bn+1 − aNbN

)

=

N−1∑
n=0

an+1(bn − bn+1) + aNbN − a0b0.

To summarise,

N−1∑
n=0

(an+1 − an)bn = −
N−1∑
n=0

an+1(bn+1 − bn) + aNbN − a0b0. (D.15)

The quantities an+1 − an and bn+1 − bn can be seen as discrete derivatives of
(an)n=0,...,N and (bn)n=0,...,N . Relation (D.15) is therefore a form of discrete
integration-by-parts, with aNbN and a0b0 playing the role of the boundary
(integrated) terms.

Set, for example, bN+1 = 0 and let b̃n = bn+1 for n = 0, . . . , N . Applying

(D.15) to (̃bn)n=0,...,N instead of (bn)n=0,...,N gives

N−1∑
n=0

(an+1 − an)bn+1 =

= −
N−1∑
n=0

an+1(bn+2 − bn+1)− a0b1

= −
N∑
n=1

an(bn+1 − bn)− a0b1

= −
N−1∑
n=0

an(bn+1 − bn) + a0(b1 − b0)− aN (bN+1 − bN )− a0b1.

In other words,

N−1∑
n=0

(an+1 − an)bn+1 = −
N−1∑
n=0

an(bn+1 − bn) + aNbN − a0b0. (D.16)

This is the equivalent of (D.15) with an offset of the second family (bn)n=0,...,N .

By creating a convex combination of (D.15) and (D.16) we arrive at a for-
mula that is instrumental when dealing with time terms in θ-schemes. If
(xn)n=0,...,N is a family of numbers and ν ∈ [0, 1], for all n = 0, . . . , N − 1 we
set xn+ν = νxn+1 + (1 − ν)xn. Adding up ν × (D.16) and (1 − ν) × (D.15)
yields

N−1∑
n=0

(an+1 − an)bn+ν = −
N−1∑
n=0

(νan + (1− ν)an+1)(bn+1 − bn) + aNbN − a0b0.
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In other words,

N−1∑
n=0

(an+1 − an)bn+ν = −
N−1∑
n=0

an+(1−ν)(bn+1 − bn) + aNbN − a0b0. (D.17)

D.2 Topological degree

The following theorem, which can be found in [87], is a consequence of the
theory of the topological degree [56].

Theorem D.1 (Application of the topological degree, finite dimen-
sional case). Let V be a finite dimensional vector space on R and Φ : V → V
be a continuous function. Assume that there exists a continuous function
Ψ : V × [0, 1]→ V satisfying:

1. Ψ(·, 1) = Φ.
2. There exists R > 0 such that, for any (v, ρ) ∈ V × [0, 1], if Ψ(v, ρ) = 0

then ‖v‖V 6= R.
3. Ψ(·, 0) is affine and the equation Ψ(v, 0) = 0 has a solution v ∈ V such

that ‖v‖V < R.

Then, there exists at least one v ∈ V such that Φ(v) = 0 and ‖v‖V < R.

As an easy consequence of this, we have the Brouwer fixed point theorem.

Theorem D.2 (Brouwer fixed point). Let V be a finite dimensional vector
space on R, B a closed ball in V and F : B → B be continuous. Then F has
a fixed point, i.e. there exists v ∈ B such that F (v) = v.

Proof. Without loss of generality, we can assume that B is centred at 0
and has radius r > 0. Let θr be the retraction of V on B, that is θr(v) = v
if v ∈ B and θr(v) = rv/ ‖v‖V if v 6∈ B. Set Φ(v) = v − F (θr(v)) and
Ψ(v, t) = v − tF (θr(v)). Then Φ : V → V is continuous, Φ = Ψ(·, 1), Ψ(·, 0) is
affine and the equation Ψ(v, 0) = 0 has the unique solution v = 0 ∈ B.
Moreover, if Ψ(v, t) = 0 then v = tF (θR(v)) ∈ tB ⊂ B, and thus ‖v‖V ≤ r <
r + 1 =: R. Theorem D.1 then shows that Φ(v) = 0 has a solution in V , that
is that there exists v ∈ V such that v = F (θr(v)). Since F takes values in B,
v ∈ B and thus v = F (v).

D.3 Derivation and convergence in the sense of
distributions

This section gives the generalisation of the notion of derivative that is used
in this book. We refer to, e.g., [106] for more details on this subject.
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Given an open set Ω of Rd, the following lemma allows to merge the (class of)
function(s) f ∈ L1

loc(Ω) with the linear mapping Tf : C∞c (Ω)→ R defined by

Tf (ϕ) =:

∫
Ω

f(x)ϕ(x)dx for any ϕ ∈ C∞c (Ω), (D.18)

Recall that f ∈ L1
loc(Ω) means that for any compact subset K of Ω, the

restriction f |K of f to K belongs to L1(K).

Lemma D.3 (Almost everywhere equality). Let Ω be an open subset of
Rd, d ≥ 1, and let f and g ∈ L1

loc(Ω). Then:[
∀ϕ ∈ C∞c (Ω),

∫
Ω

f(x)ϕ(x)dx =

∫
Ω

g(x)ϕ(x)dx

]
⇐⇒ [f = g a.e. on Ω.]

Let T be a linear mapping from C∞c (Ω) to R and ϕ ∈ C∞c (Ω), then the real
number T (ϕ) is called the action of T on ϕ. Lemma D.3 allows the definition
the derivative by transposition of a L1

loc function in the following way:

Definition D.4 (Derivatives in the sense of distributions, weak deriva-
tive). Let Ω be an open subset of Rd, d ≥ 1 and 1 ≤ i ≤ d. Let T be a linear
form on C∞c (Ω); its i-th derivative DiT in the sense of distributions is defined
by:

DiT (ϕ) =: −T (∂iϕ), ∀ϕ ∈ C∞c (Ω), (D.19)

where ∂iϕ is the classical partial derivative of ϕ with respect to its i-th variable.
Let f ∈ L1

loc(Ω), and Tf is the related linear form on C∞c (Ω) defined by
(D.18); then identifying f and Tf , the i-th derivative Dif := DiTf in the
sense of distributions is given by:

Dif(ϕ) =: −
∫
Ω

f(x)∂iϕ(x)dx (D.20)

Note that if f ∈ C1(Ω), then Dif is nothing but ∂if , merging ∂if and T∂if
(which is the linear form on C∞c (Ω) induced by ∂if). The derivative in the
sense of distributions is a generalisation of the notion of derivative. If the
linear form Dif can be identified as a locally integrable function in the sense
of Lemma D.3, then f is said to admit a weak derivative.

Definition D.5 (Convergence in the sense of distributions). Let Ω be
an open subset of Rd, d ≥ 1, (Tn)n∈N be a sequence linear forms on C∞c (Ω)
and T a linear form on C∞c (Ω). Then Tn converges to T pointwise in the set
of mappings from C∞c (Ω) to R, as n→ +∞, if

Tn(ϕ)→ T (ϕ) for any ϕ ∈ C∞c (Ω). (D.21)

Such a converging sequence is said to converge in the sense of distributions.
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Remark D.6 (Distribution theory)
In the framework of the distribution theory, the space C∞c (Ω) is equipped with a

(rather complicated) topology and usually denoted D(Ω). This topology is actually
not needed for most applications in PDEs. Even though the distribution theory
involves a smaller space consisting of the continuous linear mappings from C∞c (Ω)
to R (usually denoted by D′(Ω)), the notion of convergence is still given by (D.21).
Similarly, when C∞c (Ω) is equipped with its topology, the notion of derivative in the
sense of distribution coincides with that given by (D.19).

Lemma D.7 (Weak convergence and convergence of the derivatives).
Let Ω be an open subset of Rd, d ≥ 1, p ∈ (1,+∞), (fn)n∈N ⊂ Lp(Ω), and
f ∈ Lp(Ω), such that fn → f weakly in Lp(Ω) as n→ +∞, that is:∫

Ω

fn(x)g(x)dx→
∫
Ω

f(x)g(x)dx as n→ +∞ , for any g ∈ Lp
′
(Ω),

with 1/p + 1/p′ = 1. Then, identifying fn (resp. f) with a linear form Tfn
(resp. Tf ) on C∞c (Ω), Tfn tends to Tf in the sense of distributions and DiTfn
tends to DiTf in the sense of distributions. Hence, identifying Tfn with fn
and Tf with f ,

Difn → Dif in the sense of distributions as n→ +∞.

D.4 Weak and strong convergence results

Lemma D.8 (Weak-strong convergence). Let p ∈ [1,∞) and p′ = p
1−p

be the conjugate exponent of p. Let (X,µ) be a measured space. If fn → f
strongly in Lp(X)d and gn → g weakly in Lp

′
(X)d, then∫

X

fn · gndµ→
∫
X

f · gdµ.

Proof. By Banach–Steinhaus theorem, (gn)n∈N is bounded, say by C, in
Lp
′
(X)d. We therefore write, using Hölder’s inequality,∣∣∣∣∫

X

fn · gndµ−
∫
X

f · gdµ

∣∣∣∣
=

∣∣∣∣∫
X

(fn − f) · gndµ+

∫
X

f · (gn − g)dµ

∣∣∣∣
≤ ‖fn − f‖Lp(X)d ‖gn‖Lp′ (X)d +

∣∣∣∣∫
X

f · (gn − g)dµ

∣∣∣∣
≤ C ‖fn − f‖Lp(X)d +

∣∣∣∣∫
X

f · (gn − g)dµ

∣∣∣∣ .
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The first term converges to 0 by strong convergence of (fn)n∈N, and the second
term tends to 0 by weak convergence of (gn)n∈N.

We now state a lemma that is particularly useful to pass to the limit in terms
involving solution-dependent diffusion tensors.

Lemma D.9 (Non-linear strong convergence). Let (X,µ) be a measure
space and Λ : X × R → Md(R) be a Caratheodory function ( i.e. Λ(x, ·) is
continuous for a.e. x ∈ X, and Λ(·, s) is measurable for all s ∈ R), that is
bounded over X × R. Assume that, as n → ∞, un → u in L1(X) and that
Hn → H in Lp(X)d, for some p ∈ [1,∞). Then, Λ(·, un)Hn → Λ(·, u)H in
Lp(X)d.

Proof. Up to a subsequence, we can assume that un → u a.e. on X. Then, by
continuity of Λ with respect to its second argument, Λ(·, un)→ Λ(·, u) a.e. on
X. Still extracting a subsequence, we have Hn → H a.e. on X, and |Hn| ≤ g
a.e. on X for some fixed g ∈ Lp(X).
Then, Λ(·, un)Hn → Λ(·, u)H a.e. on X and, denoting by C an upper bound of
Λ, |Λ(·, un)Hn| ≤ C|Hn| ≤ Cg ∈ Lp(X). The dominated convergence theorem
therefore gives Λ(·, un)Hn → Λ(·, u)H in Lp(X)d.
This convergence is established up to a subsequence, but since the reasoning
can be made starting from any subsequence of (Λ(·, un)Hn)n∈N and since the
limit is unique, this shows that the whole sequence converges.

D.5 Minty trick and convexity inequality

The next lemma, whose proof is based on a technique called in the literature
as the Minty trick [130], is used to identify limits of non-linear functions of
weakly convergent sequences.

Lemma D.10 (Minty trick). Let β, ζ ∈ C0(R) be two non-decreasing func-
tions such that β(0) = ζ(0) = 0, β+ζ is strictly increasing, and lims→±∞(β+
ζ)(s) = ±∞. Let (X,µ) be a measurable set and let (wn)n∈N ⊂ L2(X) be such
that

(i) (β(wn))n∈N ⊂ L2(X) and there exists β ∈ L2(X) such that β(wn) → β
weakly in L2(X) as n→∞;

(ii) (ζ(wn))n∈N ⊂ L2(X) and there exists ζ ∈ L2(X) such that ζ(wn) → ζ
weakly in L2(X) as n→∞;

(iii) there holds:

lim inf
n→∞

∫
X

β(wn)ζ(wn)dµ ≤
∫
X

β ζdµ. (D.22)

Then,
β = β(w) and ζ = ζ(w) a.e. in X, (D.23)

where
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w =

(
β + ζ

2

)−1(
β + ζ

2

)
.

Proof. Notice first that the assumptions on β and ζ ensure that β+ζ
2 : R→ R

is an homeomorphism. Hence, w is well defined. Since β(0) = ζ(0) = 0, the
two functions β ◦(β+ζ

2 )−1 and ζ ◦(β+ζ
2 )−1 have the same sign (positive on R+,

negative on R−) and their sum is equal to 2Id. The absolute value of each one

of them is therefore bounded above by 2|Id|, and the property β+ζ
2 ∈ L2(X)

shows that

β(w) =

[
β ◦
(
β + ζ

2

)−1
](

β + ζ

2

)
and

ζ(w) =

[
ζ ◦
(
β + ζ

2

)−1
](

β + ζ

2

)
both belong to L2(X). By monotony of β and ζ,∫

X

[β(wm)− β(w)] [ζ(wm)− ζ(w)] dµ ≥ 0.

Develop this relation and use (D.22) and the weak convergences of β(wm) and
ζ(wm) to take the inferior limit as m→∞. This gives∫

X

[
β − β(w)

] [
ζ − ζ(w)

]
dµ ≥ 0. (D.24)

With w defined as in the lemma,

β + ζ

2
=
β(w) + ζ(w)

2
. (D.25)

Hence, β(w) = β+ζ
2 +

(
β−ζ

2

)
(w) and ζ(w) = β+ζ

2 −
(
β−ζ

2

)
(w). Used in

(D.24), this leads to

−
∫
X

(
β − ζ

2
−
(
β − ζ

2

)
(w)

)2

dµ ≥ 0.

Therefore, β−ζ
2 = β(w)−ζ(w)

2 a.e. in X and (D.23) follows from this latter
relation and (D.25).

The proof of this lemma is classical, and only given for the convenience of the
reader.

Lemma D.11 (Weak Fatou for convex functions). Let I be an interval
of R and H : I → [0,+∞] be a convex lower semi-continuous function. Denote
by L2(Ω; I) the convex set of functions in L2(Ω) with values in I. Let v ∈
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L2(Ω; I) and (vm)m∈N be a sequence of functions in L2(Ω; I) which converges
weakly to v in L2(Ω). Then,∫

Ω

H(v(x))dx ≤ lim inf
m→∞

∫
Ω

H(vm(x))dx.

Proof.
Let Φ : L2(Ω; I) → [0,∞] be defined by Φ(w) =

∫
Ω
H(w(x))dx. If (wk)k∈N

converges strongly to w in L2(Ω; I) then, up to a subsequence, wk → w a.e.
on Ω. H being lower semi-continuous, H(w) ≤ lim infk→∞H(wk) a.e. on Ω.
Since H ≥ 0, Fatou’s lemma then show that Φ(w) ≤ lim infk→∞ Φ(wk).
Hence, Φ is lower semi-continuous for the strong topology of L2(Ω; I). Since
Φ (as H) is convex, we deduce that this lower semi-continuity property is also
valid for the weak topology of L2(Ω; I), see [82]. The result of the lemma is
just the translation of this weak lower semi-continuity of Φ.





E

Some numerical examples

The numerical examples presented here illustrate theoretical convergence re-
sults proved in other chapters. Section E.1 is focused on gradient schemes for
a 3D linear elliptic equation of the form (2.100); two different GDs are consid-
ered: the HMM GD in its SUSHI version (Chapter 13), and the VAG scheme
(Section 8.5). The results show that these schemes yield a very good approx-
imation of a quite singular solution on complex meshes. In Section E.2, the
ADGGD scheme (see Section 11.3) is applied to the p-Laplace problem (Sec-
tion 2.1.5). Section E.3 contains numerical results based on the VAG scheme
for a degenerate parabolic problem as in Chapter 6.

E.1 A 3D elliptic problem

This numerical test is part of the 3D benchmark [103] and features an elliptic
linear problem with non-homogeneous Dirichlet boundary conditions arising
for instance in the exploitation of fluids in porous media through the use of a
slanted well. The goal is to approximate the solution u ∈ H1(Ω) solution of
the problem

−divΛ∇u = 0, (E.1)

in the domain Ω = P \W , where P is the parallelepiped (−15, 15)×(−15, 15)×
(−7.5, 7.5) and W is a slanted circular cylinder with radius rw = 0.1. The
axis of this well is a straight line located in the x0z plane, passing through
the origin at an angle θ = 70π

180 with the x axis, as shown in Figure E.1.
The permeability tensor Λ is constant and anisotropic in the third coordinate
direction:

Λ =

 1 0 0
0 1 0
0 0 τ

 ,

with τ = 0.2. The solution u, inspired from [7], is equal to 0 on the well
boundary ∂W ∩∂Ω and is strictly positive inside Ω. It is defined by ū(x, y, z)
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z

x

y

θ

Fig. E.1. The circular slanted well.

= v(Y (x, y, z), Z(x, y, z)), where the linear functions Y and Z are defined by

Y (x, y, z) = y and Z(x, y, z) = (sinβ)x+
cosβ√
τ
z,

with β = arctan( tan θ√
τ

). We then define α =
√

( sin β
sin θ )2 − 1, and we let a = αrw

and µ0 = log
(

1
α +

√
1
α2 + 1

)
. The function v is given by

v(Y,Z) = log(
√
S +
√
S + 1)− µ0,

with S > 0 such that a2S2 + (a2 − Y 2 − Z2)S − Y 2 = 0.

The simulation uses 3D meshes (mesh1 – mesh7) created for the 3D benchmark
of [103]. These meshes are refined around the well as can be seen in Figure
E.2. The first step of the meshing process is to create a radial mesh that is
exponentially refined down to the well boundary. This radial local refinement
implies a matching mesh between the radial grid and the reservoir Corner
Point Geometry grid using hexahedral cells.

Fig. E.2. Radial mesh without (left) and with transition zone (right).

We present in Table E.1 the results obtained on these grids using on one
hand the SUSHI scheme presented in Chapter 13 (see Remark 13.2 for the
particular choice of the discrete gradient), and on the other hand the VAG
scheme presented in Chapter 8, Section 8.5. The orders of convergence are
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computed with respect to the number of unknowns at the power 1/3, which
cannot put in evidence the effects of local refinement. The main observation
is that these two gradient discretisations are adapted to complex polytopal
meshes issued from a quite realistic situation (see Figure E.3 for a visualisation
of the approximate solution).

SUSHI VAG

u ∇u u ∇u
mesh1 3.79E-03 9.69E-02 6.22E-03 5.73E-02
order 0.69 2.03 3.24 3.03
mesh2 3.07E-03 5.21E-02 2.60E-03 2.53E-02
order 2.42 2.29 3.46 2.88E+00
mesh3 1.60E-03 2.81E-02 1.10E-03 1.24E-02
order 1.38 1.08 1.72 1.69
mesh4 1.10E-03 2.10E-02 7.13E-04 8.10E-03
order 1.45 1.19 2.64 1.05
mesh5 7.77E-04 1.57E-02 3.85E-04 6.35E-03
order 2.39 1.89 3.60 1.46
mesh6 4.78E-04 1.07E-02 1.90E-04 4.77E-03
order 0.26 0.37 -0.16 -0.06
mesh7 4.56E-04 9.98E-03 1.95E-04 4.82E-03

Table E.1. L2 error for the solution and its gradient in the case of the 3D slanted
well, using schemes SUSHI and VAG. “Order” represents the rate of convergence
from the line above to the line below.

Fig. E.3. Approximate solution using SUSHI on mesh3. Top left: slice in the plane
x = 0.2; bottom left: slice in the plane y = 0.2; right: slice in the plane z = 0.4.
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E.2 ADGGD for the p−Laplace problem

We consider the p-Laplace problem (2.61a) with Dirichlet boundary conditions
(2.61b). The aim of this section is to assess the accuracy of the error estimate
provided by Theorem 2.39.

E.2.1 The one-dimensional case

We consider the case where d = 1, Ω = (0, 1) and f(x) = 1. The analytical
solution is then given by

u(x) =
p− 1

p

[(
1

2

)p/(p−1)

−
∣∣∣∣x− 1

2

∣∣∣∣p/(p−1)
]
. (E.2)

We consider a mesh with constant space step h = 1/N (with N ∈ N?) and
we use Scheme (2.64) together with the Discontinuous Galerkin gradient dis-
cretisation given by Definition 11.1, with k = 1 and β = 1/2 (note that in the
one-dimensional case, the two definitions (11.4) and (11.40) for the discrete
gradient are identical, so the DGGD is identical to the ADGGD).
We see in Figure E.4 that the approximate solution matches quite well the
analytical solution for N = 6, considering the three cases p = 1.5, p = 2 and
p = 4.

p = 1.5 p = 2 p = 4

u ∇u u ∇u u ∇u
N = 10 5.51E-04 6.34E-03 9.65E-04 9.40E-03 1.48E-03 8.11E-03

order 1.85 1.55 1.96 1.50 1.62 1.33

N = 20 1.53E-04 2.17E-03 2.48E-04 3.32E-03 4.80E-04 3.23E-03

order 1.92 1.61 1.98 1.50 1.60 1.29

N = 40 4.02E-05 7.11E-04 6.29E-05 1.18E-03 1.58E-04 1.33E-03

order 1.96 1.64 1.99 1.50 1.59 1.59

N = 80 1.03E-05 2.28E-04 1.58E-05 4.15E-04 5.24E-05 5.51E-04

order 1.98 1.65 2.00 1.50 1.59 1.26

N = 160 2.62E-06 7.26E-05 3.97E-06 3.97E-06 1.74E-05 2.30E-04

Table E.2. Errors and rates of convergences, on the functions and the gradient,
for the ADGGD GS applied to the p-Laplace equation in dimension 1. “Order”
represents the rate of convergence from the line above to the line below.

Combining Remark 2.40 and Lemmas 11.14 and 11.15 (for ` = k = 1) shows
that, if the solution is smooth enough, the expected rates of convergence
in Lp norms on both the function and gradient are O(hp−1) if p ≤ 2 and
O(h1/(p−1)) if p ≥ 2. Hence, for p = 1.5 (resp. 2, resp. 4), the expected order
would be O(h0.5) (resp. O(h), resp. O(h1/3)). As seen in Table E.2, these
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(a) p = 1.5 (b) p = 2

(c) p = 4

Fig. E.4. Exact and DGGD approximate solutions for the p-Laplace equation (k =
1, β = 0.5, N = 6).

orders are pessimistic as, even for the non-smooth function given by (E.2),
the theoretical rates are beat by at least half an order. This was expected for
the Lp norm of the function, as estimates that are common to the function
and the gradient, as in Theorem 2.39, are known to be sub-optimal for the
function (but, at least for linear problems, better estimates can be established
in the GDM framework [80]). This was less obvious for the gradient.

E.2.2 The two-dimensional case

We take here d = 2, Ω = (0, 1) × (0, 1) and f(x) = 2 for all x ∈ Ω. Set
xΩ = (1/2, 1/2) and fix non-homogeneous Dirichlet boundary conditions in
agreement with the analytical solution

u(x) =
p− 1

p

[(
1√
2

)p/(p−1)

− |x− xΩ |p/(p−1)

]
. (E.3)

We apply the GS (2.64) together with the Average Discontinuous Galerkin
Gradient Discretisation given by Definition 11.1 and definition (11.40) for the
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discrete gradient, letting k = 1 and β = 4/5. Note that the discrete gradient
is piecewise constant, which leads to simple computations, in particular for
the p−Laplace problem. The triangular meshes from the family mesh1 of [115]
are used for the numerical tests.

(a) mesh1 1 (b) p = 1.5

(c) p = 2 (d) p = 4

Fig. E.5. Mesh mesh1 1 and exact and ADGGD approximate profiles along the line
x2 = x1 + 0.01 for the p-Laplace equation (k = 1, β = 0.8, using mesh1 1).

Figure E.5 presents the profile of the approximate solution along the line
x2 = x1 + 0.01, for the three cases p = 1.5, p = 2 and p = 4, on the coarsest
triangular mesh. We notice a rather good match of approximate solution on
this line.
Table E.3 shows that the practical rates of convergence are better than the
theoretical ones from Theorem 2.39; however, the rates for the gradient are
degraded with respect to the similar test case in dimension d = 1.
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p = 1.5 p = 2 p = 4

u ∇u u ∇u u ∇u
mesh1 1 0.944E-03 0.314E-02 0.120E-02 0.423E-02 0.138E-02 0.432E-02

order 1.96 1.48 1.95 1.42 1.32 1.41

mesh1 2 0.243E-03 0.113E-02 0.308E-03 0.158E-02 0.555E-03 0.162E-02

order 1.97 1.48 1.98 1.38 1.57 1.16

mesh1 3 0.621E-04 0.405E-03 0.783E-04 0.608E-03 0.187E-03 0.727E-03

order 1.98 1.40 1.99 1.31 1.67 0.93

mesh1 4 0.157E-04 0.154E-03 0.197E-04 0.245E-03 0.587E-04 0.381E-03

order 1.99 1.29 1.99 1.23 1.73 0.85

mesh1 5 0.396E-05 0.630E-04 0.495E-05 0.105E-03 0.177E-04 0.211E-03

Table E.3. Errors and rates of convergences, on the functions and the gradient,
for the ADGGD GS applied to the p-Laplace equation in dimension 2. “Order”
represents the rate of convergence from the line above to the line below.

E.3 An example of the application of the GDM to a
degenerate parabolic problem

We consider the evolution problem (6.1) in 2D, letting β(s) = s and Λ = Id,
which means that we approximate the Stefan problem. The scheme used here
is the VAG scheme described in Section 8.5. The domain is Ω = (0, 1)2, and
we use the following definition of ζ(u),

ζ(u) =

u if u < 0,
u− 1 if u > 1,
0 otherwise.

Dirichlet boundary conditions are given by u = −1 on ∂Ω and the initial
condition is u(x, 0) = 2. Four grids are used for the computations: a Cartesian
grid with 322 = 1024 cells, the same grid randomly perturbed, a triangular
grids with 896 cells, and a “Kershaw mesh” with 1089 cells as illustrated
in Figure E.8 (such meshes are standard in the framework of underground
engineering). The final time is 0.1 and the simulation is ran with a constant
time step of 0.001.
Figures E.8, E.9, E.10 and E.11 represent the discrete solution u(·, t) on all
grids for t = 0.025, 0.05, 0.075 and 0.1. For a better comparison we have also
plotted the interpolation of u along two lines of the mesh. The first line is
horizontal and joins the two points (0, 0.5) and (1, 0.5). The second line is
diagonal and joins points (0, 0) and (1, 1). The results for these slices are
shown in Figures E.6 and E.7.
The numerical outputs are weakly dependent on the grid, and the interface
between the regions u < 0 and u > 1 are located at the same place for all
grids. It is worth noticing that this remains true even for the very irregular
Kershaw mesh (which presents high regularity factors θT – see (7.8), that is
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high ratios for some cells between the radii of inscribed balls and the diameter
of the cell).

(a) t = 0.025 (b) t = 0.050

(c) t = 0.075 (d) t = 0.1

Fig. E.6. Interpolation of u along the line x2 = 0.5 of the mesh for each grids:
Cartesian in blue, perturbed Cartesian in red, triangular in green, and Kershaw in
black dashed.
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(a) t = 0.025 (b) t = 0.050

(c) t = 0.075 (d) t = 0.1

Fig. E.7. Interpolation of u along a diagonal axe of the mesh for each grids: Carte-
sian in blue, perturbed Cartesian in red, triangular in green, and Kershaw in black
dashed.
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(a) Cartesian (b) Perturbed Cartesian

(c) Triangular (d) Kershaw

Fig. E.8. Discrete solution u on all grids at t = 0.025.

(a) Cartesian (b) Perturbed Cartesian

(c) Triangular (d) Kershaw

Fig. E.9. Discrete solution u on all grids at t = 0.050.
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(a) Cartesian (b) Perturbed Cartesian

(c) Triangular (d) Kershaw

Fig. E.10. Discrete solution u on all grids at t = 0.075.

(a) Cartesian (b) Perturbed Cartesian

(c) Triangular (d) Kershaw

Fig. E.11. Discrete solution u on all grids at t = 0.1.
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95. R. Eymard, T. Gallouët, and R. Herbin. Discretization of heterogeneous
and anisotropic diffusion problems on general nonconforming meshes SUSHI:
a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal.,
30(4):1009–1043, 2010.

96. R. Eymard and C. Guichard. The discontinuous Galerkin gradient discretisa-
tion method. submitted, 2017.

97. R. Eymard, C. Guichard, and R. Herbin. Benchmark 3D: the VAG scheme. In
Finite volumes for complex applications. VI. Problems & perspectives. Volume
1, 2, volume 4 of Springer Proc. Math., pages 1013–1022. Springer, Heidelberg,
2011.



References 487

98. R. Eymard, C. Guichard, and R. Herbin. Small-stencil 3d schemes for diffusive
flows in porous media. M2AN, 46:265–290, 2012.

99. R. Eymard, C. Guichard, R. Herbin, and R. Masson. Vertex centred discretiza-
tion of two-phase Darcy flows on general meshes. In Congrès National de
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for Voronoi finite volume approximations. In Finite volumes for complex appli-
cations VI. Problems & perspectives. Volume 1, 2, volume 4 of Springer Proc.
Math., pages 533–541. Springer, Heidelberg, 2011.

111. M. Guedda, D. Hilhorst, and M. A. Peletier. Disappearing interfaces in non-
linear diffusion. Adv. Math. Sci. Appl., 7(2):695–710, 1997.

112. J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential
Equations. Dover Phoenix, New York, NY, USA, 1923.

113. P. Hansbo and M. G. Larson. Discontinuous Galerkin and the Crouzeix-Raviart
element: application to elasticity. M2AN Math. Model. Numer. Anal., 37(1):63–
72, 2003.

114. R. Herbin. An error estimate for a finite volume scheme for a diffusion-
convection problem on a triangular mesh. Numer. Methods Partial Differential
Equations, 11(2):165–173, 1995.



488 References

115. R. Herbin and F. Hubert. Benchmark on discretization schemes for anisotropic
diffusion problems on general grids. In Finite volumes for complex applications
V, pages 659–692. ISTE, London, 2008.
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135. A. Veeser and R. Verfürth. Poincaré constants for finite element stars. IMA
Journal of Numerical Analysis, 32(1):30–47, 2012.

136. J. Weickert. Coherence-enhancing diffusion filtering. International Journal of
Computer Vision, 31(2/3):111–127, 1999.





Index

Notations

Functional spaces

C∞c (Ω) , 458

Hdiv(Ω) , 22, 458

Hk(Ω) , 458

Hk
0 (Ω) , 458

H1
?(Ω) , 79

Lp(Ω) , 457

P` , 229

W q
div(Ω) , 22, 458

W p′

div,∂(Ω) , 73

W p′

div,Γn
(Ω) , 92

W k,q(Ω) , 458

W k,q
0 (Ω) , 458

W 1,p
• (Ω) , 101

GD operators

δD , 102

∇(θ)
D , 102

ID , 102

Π
(θ)
D , 102

T(θ)
D , 102

GDM notions

DT , 102

regLLE(D) , 227

XD,• , 101

Miscellaneous

vθ , 102

Norms and semi-norms

‖w‖BV (Rd) , 418

‖GK‖p , 223

‖u‖Lp(Ω) , 458

‖πK‖p , 221

‖ϕ‖Wq
div

(Ω) , 458

|·|T,p , 210
Polytopal tools
∂K , 207
DK,σ , 208
dK,σ , 207
Dσ , 208
F , 207
FK , 207
ηT , 210
hM , 208
κT , 211
M , 207
|K| , 207
|σ| , 207
Mσ , 207
NK , 207
nK,σ , 207
ω∇(D,T,Φ) , 212
ωΠ(D,T,Φ) , 212
P , 207
T , 209
θT , 210
xK , 207
XT , 209
XT,0 , 209
xσ , 207

Aubin–Simon theorem for GDs, 111

coercivity
abstract setting, 398
homogeneous Dirichlet conditions, 20



492 Index

homogeneous Neumann conditions,
68

mixed boundary conditions, 92
non-homogeneous Neumann condi-

tions, 72
compactly embedded sequence, 444
compactly–continuously embedded

sequence, 445
compactness

abstract setting, 402
homogeneous Dirichlet conditions, 24
homogeneous Neumann conditions,

69
implies coercivity, 24, 70, 74, 402
mixed boundary conditions, 93
non-homogeneous Neumann condi-

tions, 73
compactness of space–time GDs in

L∞(0, T ;Lp(Ω)), 116
conforming Pk LLE gradient discretisa-

tion, 265
conforming approximation, 6
conforming Galerkin GD, 263
consistency

abstract setting, 401
homogeneous Dirichlet conditions, 21

degenerate parabolic problem
continuous problem, 166
convergence of the discrete solution,

174
gradient scheme, 169
maximal monotone operator, 167
proof of uniqueness of the continuous

solution, 191
uniqueness of the discrete solution,

172
weak formulation of the continuous

problem, 166
density of smooth functions in

W p′

div,∂(Ω), 77
discontinuous Ascoli–Arzelà’s theorem,
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