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Preface

This monograph is dedicated to the presentation of the Gradient Discretisa-
tion Method (GDM) and of some of its applications. It is intended for masters
students, researchers and experts in the field of the numerical analysis of par-
tial differential equations.

The GDM is a framework which contains classical and recent discretisation
schemes for diffusion problems of different kinds: linear or non linear, steady-
state or time-dependent. The schemes may be conforming or non conforming
and may rely on very general polygonal or polyhedral meshes.

In this monograph, the core properties that are required to prove the conver-
gence of a GDM are stressed, and the analysis of the method is performed
on a series of elliptic and parabolic problems, linear or non-linear, for which
the GDM is particularly adapted. As a result, for these models, any scheme
entering the GDM framework can then be known to converge.

Appropriate tools are then developed so as to easily check whether a given
scheme satisfies the expected properties of a GDM. Thanks to these tools a
number of methods can be shown to enter the GDM framework: some of these
methods are classical, such as the conforming Finite Elements, the Raviart—
Thomas Mixed Finite Elements, or the P; non-conforming Finite Elements.
Others are more recent, such as the Hybrid Mixed Mimetic or Nodal Mimetic
methods, some Discrete Duality Finite Volume schemes, and some Multi-Point
Flux Approximation schemes.

Marseille, Melbourne, Paris
the authors, 2016
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Introduction

The purpose of this book is the study of the Gradient Discretisation Method
(GDM), which includes a large family of conforming or non conforming nu-
merical methods for diffusion problems. A Gradient Discretisation Method is
based on the choice of a set of discrete spaces and operators, referred to as
a “Gradient Discretisation” (GD). Using the discrete elements of a particular
GD in lieu of continuous space and operators in the weak formulation of a
diffusion problem then yields a numerical scheme called a Gradient Scheme
(GS) for this problem.

Considering here only the case of homogeneous Dirichlet boundary conditions,
the stationary linear and non-linear diffusion problems that we shall consider
can be written under the form:

—div a(z,u,Vu) = f in 2,
u=0 on 012,

where

e (2 is an open bounded connected subset of R?, d € N*, with a regular
boundary denoted by 002 = 2\ (2,
e a is a function from R? x R x R? to R?.

The function a may be a general anisotropic heterogeneous linear opera-
tor, that is a(x,u,€&) = A(x)€&, which yields a linear diffusion problem. An-
other possible choice for a is a Leray-Lions operator such as the p-Laplacian
a(x,u, &) = |€[P72¢ with p > 1, which yields a non linear diffusion problem.
We also consider the related evolution problem:

ou — diva(x,u, Vu) = f in 2x (0,7,
ﬂ(iL‘,O) = uini(w) in £2,
uw=0 on 002 x (0,T).

Degenerate transient problems are also treated, such as the following:
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8B(@) — AC(m) = in 2% (0,7),
B(u(x,0)) = B(uini(z)) in 2,
(@) =0 on 912 x (0,T),

where the functions ¢ and 8 will mainly be assumed to be Lipschitz-continuous
and non-decreasing. This model includes both the Stefan problem arising from
a melting material model, and the Richards problem which models a two phase
flow in a porous media problem under the assumption that the pressure of
one of the phases is given.

The above problems arise in various frameworks, such as underground engi-
neering (oil recovery, hydrology, nuclear waste disposals, etc.), or in image pro-
cessing. In the case of underground engineering, numerical simulations have
to be performed on meshes adapted to the geological layers, which include
complex geometrical features such as faults, vanishing layers, inclined wells,
highly heterogeneous permeability fields, local non conforming refinement. A
large number of discretisation methods have recently been developed for the
numerical approximation of these equations; we show in this book that several
of these recent methods, and many of the more classical ones, are GDMs, in
particular:

1. the conforming or non-conforming Finite Element methods, including
mass lumped versions,

2. the Raviart-Thomas Mixed Finite Element methods,

3. the Multi-Point Flux Approximation (MPFA) schemes and the Discrete
Duality Finite Volume (DDFV) schemes on particular grids,

4. the Hybrid Mimetic Mixed (HMM) family which includes the hybrid
Mimetic Finite Difference schemes, the SUSHI scheme and the Mixed
Finite Volume scheme,

5. the nodal Mimetic Finite Difference scheme.

This book is written assuming that the reader is familiar with Sobolev spaces
and weak formulations of elliptic and parabolic partial differential equations.
We refer to [13] for an introduction on this topic. The reader should also
have some notions of numerical analysis, in particular of the discretisation of
elliptic and parabolic partial differential equations (PDEs) : for example the
knowledge of one of the aforementioned methods (such as the conforming P,
Finite Elements on triangles).

This book is organised as follows. In Part I, we first motivate in Chapter 1 the
basic concepts used to define a GDM. This method is then formally introduced
in Chapter 2. Chapter 3 shows how the GDM is applied to elliptic problems.
An error estimate is first obtained in the linear case. The convergence of the
GDM is then proved for a generalised Leray—Lions model, which involves a
non-local dependency of the operator.

Part IT is devoted to the study of the GDM for linear and non-linear parabolic
problems. In Chapter 4, we present the definitions and main compactness re-
sults which are used to analyse the GDM for nonlinear parabolic problems. In
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Chapter 5, we start with the classical parabolic heat equation, and then study
the convergence of gradient schemes for transient Leray-Lions problem. Chap-
ter 6 covers the study of GSs for degenerate parabolic problems, including the
Stefan problem and the Richards problem. We also note that, even though
numerous kinds of equations are covered here, they do not form an exhaustive
list of the models for which gradient schemes have been developed and anal-
ysed. In particular, the following models are not covered in this monograph:
linear and non-linear elasticity equations [39], the poro-elasticity equations
[61], the Stokes and Navier—Stokes equations [34, 55], and the obstacle and
Signorini problems [3, 4].

Part III lists some important examples of GDMs. We first show that the stan-
dard Finite Elements Methods, the Vertex Approximate Gradient scheme, the
non-conforming P; Finite Elements Method and the Mixed Finite Elements
Methods are GDMs. We then analyse, in the framework of GDM, the HMM
family, some particular Finite Volume methods (MPFA, DDFV...), and the
nodal Mimetic Finite Difference method.

In the appendix, we provide tools to establish that particular gradient discreti-
sations satisfy the required properties for the convergence analysis of Parts I
and IT to hold. In particular, the following notions are introduced in Chapter

A:

- local linearly exact gradient reconstruction, which rigorously describes the
basic idea of numerous schemes for diffusion equations,

- barycentric elimination, which enables a reduction of the number of de-
grees of freedom of a method;

- mass-lumping, particularly useful to deal with time-dependent or some
non-linear models.

The second chapter of the appendix, Chapter B, describes further tools useful
to analyse GDs. These discrete functional analysis tools are gathered into
the notion of polytopal toolbox, which is relevant to a wide range of gradient
discretisations.

Remark 0.1 (Shaded remarks)
Shaded remarks such as this one contains notions, comments or results that can be
somewhat technical, and can be skipped in a first reading.






Part 1

Elliptic problems






1

Motivation and basic ideas

1.1 Some well-known approximations of linear elliptic
problems

Let us consider the following simple elliptic problem:

{—Au = fin £, )

w=0on 012,

where {2 is a polygonal subset of R? and f € L2(§2). The weak formulation
of (1.1) is:
Find w € H}(£2) such that, for all v € H}(2),

/QVE(Q:) -Vou(z)de = /Qf(a:)v(:c)da:.

(1.2)

1.1.1 Galerkin approximations

A classical family of numerical methods to approximate this problem is given
by conforming Galerkin methods: the main idea is to seek the approximate
solution in a finite dimensional subspace V}, of H{(£2). This is for example the
case for the well-known P; finite element method, in which a partition of {2
into simplices (e.g. triangles in dimension d = 2) is chosen and the space V}, is
made of the piecewise linear functions on this partition, which are continuous
over {2 and have a zero value on 9f2. In such a case, the index h denotes the
mesh size, see e.g. [22] for more on Finite Element approximations.

Once such a finite dimensional subspace V}, has been chosen, the Galerkin
approximation of (1.2) is

Find uj € V}, such that, for all v, € Vp,,

/ Vup(x) - Vop(z)dz :/ f(x)vp(x)de. (1.3)
o) 7
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It is then easy to establish an error bound between the weak solution u to
(1.1) and the approximate solution uy. Using a generic v = vy, € V}, C HE(£2)
as a test function in (1.2) and subtracting (1.3) we see that

/Q V(@ — up)(x) - Vop(x)de = 0. (1.4)

Taking v, = wyp — up where wy is any function in V, and writing v, =
wy, — U+ U — up, gives

/ V(@ —up)(z) - V(w—up)(x)de = / V(a—up)(x) - V(u — wp)(z)dz.
o) 7

Using Cauchy-Schwarz’ inequality in the right-hand side (see Section C.1) and
recalling that ”(p”?fé(ﬁ) = [, IVo(z)?de, we infer that

_ 2 _ _
@ — uhHHg(Q) < w— uh”Hé(Q) [w— whHH&(Q) :
Finally, since this estimate is valid for any w, € V},,
@ — unllmp o) < wf}flei{}h [lwn =0l g1 () (1.5)

This result may be generalised to the case of a bilinear form a and is known
as Céa’s lemma [21].

If a family of subspaces (V},)ns0 is such that V}, becomes “ultimately dense”
in H}(2) as h — 0, i.e. for all ¢ € H(2), miny, cv, ||wn — LPHH%(_Q) — 0 as
h — 0, then Estimate (1.5) shows that u;, — % in H}(£2) as h — 0.

The beauty of this analysis is its simplicity. It is however limited to methods
for which the approximation space V}, is included in the space V in which
the continuous solution lives. These methods are refered to as “conforming”.
Numerous numerical schemes for elliptic equations are “not conforming” in the
sense that the provided approximate solutions are not in H¢ (£2). This happens
for instance in the case of the non-conforming IP; finite element, which yields a
piecewise affine approximation and in the case of the cell-centred finite volume
scheme, which yields a piecewise constant approximation.

1.1.2 Non-conforming P; finite elements

We again consider a simplicial mesh M of a domain 2. Let F be the finite set
of the faces of the mesh (edges in 2D), Fext be the set of all o € F such that
o C 082, and Fipy = F \ Fext the set of interior faces. For any o € F, T, is
the barycenter (center of mass) of o. The approximation space V}, of the non-
conforming P; finite element method is the set of piecewise affine functions
on the simplices of the mesh; such a function is depicted in Figure 1.1. The
space V}, is spanned by the basis (¢, )scF,,, Where @, is the piecewise affine

nt?
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Fig. 1.1. Non-conforming IP; finite element, two-dimensional case

function such that ¢, (Z,) = 1 and ¢, (Z,+) = 0 for all o’ € F\{o}. The space
V}, is clearly not a subspace of H}(§2); however, the restriction of a function
of V}, is piecewise affine so that its gradient is well defined and constant. For
K € M, let us denote by Vg, the constant value of the gradient of the
function ¢,, o € F, on K (note that Vi, = 0 if o is not an interface of K.
It is remarkable that (1.3) still makes sense if the gradient operator V in this
formula is replaced by the “broken” gradient operator V  defined by

For any up = Z Uy Po

g€ Fint (16)
VK e MV € K, Vyun(®) = Y Ve,

0 EFint

(in other words, the gradients are computed without taking into account the
jump along the edges). Then the following norm is defined on Hg (£2) + Vj:
Vun € HYQ) + Vi, Junlls = 3 / Vun (@) de.
K

KeM

If up, € Vi, then we have [[upll, = [[Vaunllpzq) if un € HL($2), then we
have [lup |, = [[Vunl|p2(q)- In order to approximate Problem (1.1), we define
the bilinear form a;, : (H}(2) + V4)? — R by

Vunvn) € (HEQ)+Vi)?, an(unon) = 3 / V(@) - Vo (@)da.
Kem’ K

We see that ay, is elliptic with an ellipticity constant o = 1, since
2
Yy, € Vh, ah(vh,vh) = ”UhHh'

The approximate solution of Problem (1.1) is defined by
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Find up € Vj, such that, Vo, € Vi, ap(up,vp) = / f(@)vp(x)de.  (1.7)
2

There exists one and only one solution to (1.7), and there holds the following
error estimate [21, Theorem 4.2.2], based on the second Strang Lemma [67]:
there exists C' > 0, depending only on the regularity of M but not on h, such
that

[ = unll,

ah(ﬂ,wh)—/gf(w)wh(w)dw

<C| inf |[u—wul|l, + sup (1.8)
vhEVh " wnevi\{0} [[wnll),
This estimate can be written in terms solely involving u:
[ — unll), < C(Sm(@) + Wm(Va)), (1.9)
where Sp() is defined, for any ¢ € H}(£2), by
Smlp) = inf [l —vnln, (1.10)

v EVR

and Wy, (¢) is defined, for any sufficiently regular function ¢ : £2 — R% by

| (@l@): Tawn(@) + div(e)u ()de
Wam(p) = sup =2

(1.11)
wh €V \{0} l|lwnln

Under regularity assumptions on the mesh, the quantities, S (¢) and Waq ()
tend to zero as the size of the mesh tends to zero, see e.g. [22, 43].

1.1.3 Two-point flux finite volume on Cartesian meshes

A second example of a non-conforming scheme is given by the “T'wo-Point
Flux Approximation” (TPFA) finite volume scheme [47]. The TPFA scheme
on Cartesian grids, which we shall denote by TPFA-CG is widely used in
petroleum engineering: constant values are considered in control volumes over
which a discrete mass balance of the various components is established. Let
us consider a rectangular mesh of a rectangle {2 (d = 2). In addition to the
notations K, o and T, introduced above, we introduce the following (see
Figure 1.2):

e We denote by xx the centre of mass of K € M, by V the set of vertices of
the mesh, by Vi the set of vertices of K, and by Fx the set of the edges
of K.
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/ Ug! S

g
L
VK ,S g
UK
'/ug
Tx T, Ty
K ——
]
Ngo

Fig. 1.2. Notation for a rectangular mesh.

e For each K € M and each s € Vi, Vi s is the rectangle defined by Z,,
s, Ty and x g, where o and ¢’ are the edges of K touching s.
e ug (resp. u,) represents an approximate value of the unknown u at xx

(resp. Ty ).

The idea of finite volume schemes consists in finding approximate values F
of the exact fluxes — [ Vu-ng ,ds(x) (nk,s is the normal to o outward K,
ds is the measure on the edges), and in writing the following discrete flux
balance in each cell

VKeM, > FK,(,:/ f(x)da, (1.12)
K

ocEFK

and flux conservativity across each interior edge:
Vo € Finy common face of K and L, Fg , + Fr, =0. (1.13)

Relation (1.12) simply mimicks the Stokes formula applied to the continuous
problem (1.1):

— Z Vu-ng  ds(x) = /Kf(:l:)da:

o€FK "

The TPFA-CG finite volume scheme consists in substituting, in the previous

equations,

Us — UK

Fg o =—|o| (1.14)

dist(Ty, K )

The boundary condition is imposed by setting

u, =0if o C 012, (1.15)
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There is no clear way to see the TPFA-CG scheme method as a nonconforming
finite element method. However, it can be recast into a variational formulation.
We first consider a family ((vk)xem, (Vo)oecr) such that v, = 0 if o C 012
Multiplying (1.12) by vk and summing on K € M, we get

S vkFro= Y. UK/Kf(:c)da:. (1.16)

KeMoeFk KeMm

‘We then notice that

DD wkFro= Y, Y (vk —v5)Fko. (1.17)

KeMoeFg KeMoeFk

Indeed, if o C 042, then (vg — vo)Fr,o = vk FK . If 0 is the common face
between two control volumes K and L, then v, is multiplied in the above
sum by Fk - + Fp -, which vanishes thanks to (1.13). Thus, using (1.17) into
(1.16) and invoking (1.14), we get

Sy (M(UU—U,{)(uU—uK)z > UK/Kf(x)da:. (1.18)

KeMoeFk KeM

Conversely, it is possible, assuming Expression (1.14) for the fluxes, to deduce
(1.12), (1.13) and (1.15) from (1.18) with convenient choices for the family
((vk)kem, (Vs)oer) (namely, selecting only one value equal to 1 and all the
other ones equal to 0). Moreover, Relation (1.18) can be expressed in terms
of reconstructed functions and gradients, using the discrete values defined on
K and o.

e We define Xp ( as the space of all real families up = ((ur) Kkem, (Us)oeF)
satisfying the boundary conditions(1.15).

e For up € Xp o, we let IIpup be the piecewise constant function equal to
ug on the cell K.

e If K € M and s € Vg is such that o and ¢’ are the faces of K sharing the
vertex s, we define the reconstructed gradient Vg sup = Vg?y)sup ngq+

V(Ig,s? up NK,q/ with

Ug — UK /) U — UK

(o) (o
\Y% = d V ==
KD an K,sUP dist(Zy, )

dist(Z,, zK)

We then denote by Vpup the piecewise constant function equal to Vg sup
on Vi s, for any cell K and any vertex s € Vg.

The following properties arise, for (up,vp) € X%p:

3 UK/Kf(ac)dasz/nf(:c)HDvD(:I:)dm,

KeMm
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and
o]
Z Z ———— (v, — v )(Uy — ur) = / Vpup(x) - Vpup(x)de.
22, i) .

As aresult, we can rewrite (1.18) in the form of a discrete variational problem:

Find up € Xp o such that, for all vp € Xp o,

/ Vpup(x) - Vpup(x)de = / f(x)Ipvp(x)de. (1.19)
¢ Q

The study of the TPFA-CG scheme has been done in [47] using finite volume
techniques, and the following results are proven: if the size of the mesh tends
to 0, then ITpup converges to u in L?(§2), and an error estimate holds, which
depends on the regularity of u.

Remark 1.1 (Unstructured meshes). The analysis of the TPFA scheme of [47]
also holds in the case of unstructured meshes, provided an orthogonality con-
dition holds (see [47, Definition 9.1]). However, in the unstructured case, it
does not seem to be possible to write the scheme under the form (1.19), ex-
cept in the so-called “super-admissible” case, i.e. when the centre of mass is
also the intersection of the orthogonal bisectors; therefore, the general TPFA
scheme is not included in the framework of the gradient schemes studied in
this book.

The question arises to know whether the TPFA-CG scheme could be studied
using the non-conforming techniques of Section 1.1.2. There are a series of
objections to this approach:

1. Comparing the right-hand sides of (1.7) and (1.19) we see that the natural
space V3, would be
Vi = {HDUD,’UD S XD’()}.

However, this space “forgets” about the edge degrees of freedom (v, )secr
of vp € Xp,, and there is thus no way to compute Vpvp solely from
HD’UD.

2. Partially as a consequence of the previous item, there does not seem to
exist any bilinear form ay, defined on Vj, + H}(£2), which gives back
Jo Voup(x) - Vpup(x)de for elements of Vi, and [, Vi(x) - Vo(z)de
for elements of H}(2).

3. The same problem arises for the definition of the norm || - ||5.

Although we cannot directly use on the TPFA-CG scheme the technique from
non-conforming finite elements schemes, there is however a way of merging
these two kinds of schemes into a common framework, which also covers con-
forming finite element methods. The next section presents an introduction to
this framework.
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1.2 Towards Gradient Schemes

What does it take to design a unified convergence analysis framework covering
the preceding three examples, as well as other conforming and non-conforming
methods?

A numerical method obviously starts from selecting a finite number of degrees
of freedom describing the finite dimensional space in which the approximate
solution is sought. We already called Xp o this finite dimensional space (“D”
for “discretisation”, and the 0 to indicate that, in some way, this space ac-
counts for the homogeneous boundary condition in (1.1)). The two linear
operators IIp and Vp, which respectively reconstruct, from the degrees of
freedom, a function on (2 and its “gradient”, are such that

IIp : XD,O — LQ(Q) and Vop: XD,O — LQ(Q)d
All the schemes presented in the previous section can be written as

Find up € Xp o such that, for all vp € Xp o,

/Q Vpup(z) - Vpup(@)de = /!2 f@)pop(@)ydz 120
for suitable choices of (Xp o, IIp, Vp). For conforming P; finite elements, each
vp € Xpy is a vector of values at the vertices of the mesh, IIpvp € C(2)
is the piecewise linear function on the mesh which takes these values at the
vertices, and Vpup = V(IIpvp).

For non-conforming IP; elements, each vp € Xp g is a vector of values at the
barycenters of the edges, I[Ipvp is the piecewise linear function on the mesh
which takes these values at these barycenters, and Vpup = Vo (IIpuvp) is
the broken gradient defined in (1.6).

The space and operators for the TPFA-CG scheme have already been given
under the form (Xp o, IIp, Vp) in the previous section.

The question now is to understand which properties the triplet (Xp o, IIp, Vp)
must satisfy to enable some error estimates between the solution @ to (1.2)
and the solution up to (1.20) (assuming for the time being that it exists). The
main issue is that, contrary to Problem (1.2) and its conforming discretisa-
tion (1.3), Problem (1.2) and its general discretisation (1.20) do not appear
to have any common test functions. Hence, no equation equivalent to (1.4)
seems attainable. There is however a way to write an approximate version of
this relation in the same spirit as in the analysis of the nonconforming finite
element method; however, we no longer assume that a bilinear form a; or a
norm ||-||, can be defined with argument IIpu; as mentioned above, this is
mandatory if we want to include the TPFA-CG scheme in this framework.
By noticing that (1.2) implies that —Aw = f in the sense of distributions, we
get from (1.20) that, for any vp € Xp g,

Y VDUD(:E) . VDU'D(:B)dic = B —Aﬂ(:l?)ﬂp@p(:l))dw. (1.21)
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If IIpvp were a classical regular function, Stokes’ formula would allow us to
replace the integrand in the right-hand side with Va(z)-V(IIpvp)(x). Except
in some particular cases, the discrete operators IIp, Vp of a numerical scheme
do not satisfy an exact discrete Stokes formula, only an approximate one. We
measure the resulting defect of conformity of the method, in the spirit of
(1.11), by a function Wp(¢p) such that, for any sufficiently regular function
¢ : 2+ R and for all vp € Xpp,

/Q(go(:c) - Vpup(x) + dive(x) Ipvp(x)dx)de

Wo(p) = sup (1.22)

vpEXDp,0 HVDUD”L?(Q)d

Here, we assume that [|[Vpupl|;2(gya # 0if vp # 0, which is somewhat natural
given the homogeneous boundary conditions — we come back to this further
down. The quantity Wp () is expected to be small if the discretisation is “fine
enough” (e.g. the underlying mesh size is small). Then, considering ¢ = Vu
in (1.22) and using (1.21) to compute [, Au(x)Ipvp(z)de, we obtain an
approximate version of (1.4):

/Q (Va(x) - Vou(@)) - Voup(@)dz < [[Vpvpll sy Wo(VE).

We now take a generic wp € Xp o, apply this estimate to vp = wp —up, and
write Vu — Vpup = Vu — Vpwp + Vpwp — Vpup to find

/Q(prp(w) — Vpup(x)) - (Vpwp(x) — Vpup(x))de

< [ (Vowo(@) - Va(@) - (Vown(z) - Voun(a))de
+ HVD(MD - UD)”Lz(Q)d WD(V@)

Using the Cauchy-Schwarz inequality on the first term in the right-hand side,
we infer

IVpup — vaD||L2(_Q)d <|IVu — va'D”LQ(Q)d + Wp(Va). (1.23)

We now define the “best interpolation error” (in the spirit of (1.10)) by

Sp(@) := min <||prp ] W||L2(Q)d) .

wpEXp.o

We pick wp which realises this minimum. Since

HVDUD - va”[ﬁ(Q)d < ||VDUD - vaD||L2(Q)d + ||VD'LUD - VU||L2(Q)(1

< |IVpup — V'DwD||L2(Q)d + Sp(@),

Equation (1.23) gives
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IVpup — V| 12(g)a < 25p(@) + Wp(Va). (1.24)

Let us now study how IIpup approximates u. To this aim, we assume a
discrete Poincaré inequality:

There exists Cp > 0 such that, Yvp € Xpg,

[ Ipvpllp2i0) < Cp [VDUD|l 120 -

This enables us to write

[ Ipup — Ul 120y < HIpup — Hpwp|| 2oy + HIpwp — Ul 12

< Cp||[Vpup — Vpwpl|p2(gya + Sp ().
Estimate (1.23) then shows that
HHDUD - ﬂ||L2(Q) < (CD + 1)SD(E) + CDWD(VH) (1.25)

Equations (1.24) and (1.25) are error estimates between @ and IIpup and
between Vu and Vpup.
In particular, if we take a sequence (Xp,, o, Ip,,, Vp,, Jmen such that

™ms m? m

(P1) (Cp,,)men is bounded,

(P2) Sp, (@) = 0asm — oo,

(P3) Wp,, (Vu) = 0 as m — oo,
then (1.24) and (1.25) show that, as m — oo, IIp, up, — @ in L*(§2) and
that Vp_ up, — Vu in L?(2)%.

The previous reasoning highlights the core properties that (Xp o, Ip, Vp)
must satisfy to provide a proper approximation of (1.1) under the form (1.20).
Property (P1) is related to some coercivity property of this triplet, since this
uniform Poincaré inequality is also what ensures an estimate of the form
IVoupllp2(g) < C|lfllp2(q) if up is a solution to (1.20). Property (P2) states
that Ilp and Vp are consistent reconstructions of functions and their gradi-
ent; it allows us to approximate u and its gradient by using elements in Xp o.
As already discussed, Wp measures the error in the discrete Stokes formula
and (P3) therefore relates to the limit-conformity of (IIp, Vp), stating that
these two operators must ultimately behave as in the conforming case and
should, in the limit, satisfy the exact Stokes formula.

1.3 Generalisation to non-linear problems

The framework of the convergence analysis must be able to handle non-linear
equations. Assume we now wish to approximate the following problem:
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(2035 sm 1

with the same notations as in Section 1.1, and where the function 8 : R — R
is continuous. The weak formulation of (1.26) is

Find u € HE(£2) such that, for all v € H}(£2

_ _ 1.2
/ (B(E(z))v(@) + Vi(z) - Vo(z))dz = / f (1:27)
[0

It can then be shown that there exists at least one solution to (1.27). Let us
assume that we use a conforming Galerkin method, say the IP; finite element
method. Denoting by V}, the space of continuous piecewise linear functions on
a triangular mesh of (2, the P; finite element approximation of (1.27) could
be

Find uj € V}, such that, for all v, € V},,

1.28
| Bu@)on (@) + Vi) Vo@)ie = [ f@m@de. 2
0 [0
Although this approximate problem has at least one solution, its analysis
presents three major difficulties. The first one is the difficulty to compute, if

Up =Y gcy,, Us'Ps, the quantity

/Qﬁ( Z Us"Ps’(z)> (Ps(w>dw (1-29)

8/ E€Vint

for a given interior vertex s of the mesh; due to the non-linearity 3, the
integrand may not be a piecewise polynomial and thus exact quadrature rules
cannot be used. The second one is to define an algorithm to approximatie the
solution of the non-linear system of equations provided by (1.28). The third
one is to prove that the numerical method converges to the solution of the
initial problem.

A classical answer to the first issue is to use the so-called “mass-lumping”
method. This method consists in replacing, in (1.28) with v, = ¢, the term
(1.29) with wsfB(us) — where ws is some weight to be defined. The gradient
scheme framework provides a natural way of analysing the stability and con-
vergence of this mass-lumped scheme, with weights defined as the measure of
some “dual cells” denoted by K (see figure 1.3). We simply let Xp o = RVint
as before and we define, for u € Xp g,

IIpu = Z usly, (piecewise constant reconstruction),

8E€Vint (130)
VDU - Z usV§087

s€Vint

where 1k, is the characteristic function of K. Then the scheme (1.28) is
replaced with
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Fig. 1.3. Definition of K

Find u € Xp o such that, for all v € Xp g,
/ (B(ITpu(x))Ipv(x) + Vpu(x) - Vpu(x))de (1.31)
o .

- / (@) Tpo(z)dz.
0

We first notice that, since IIpu and IIpv are piecewise constant, this scheme
leads to a very simple computation of both the first term in the left-hand side
and the term in the right-hand side. Another major interest of dealing with
these piecewise constant reconstructions IIp is that they satisfy

B(ITpu) = Ip(B(u) = > Alus)lk,.

8E€Vint

This is of crucial importance for the obtention of the estimates (see section
6.3). It is also important from a numerical point of view since it facilitates
the implementation of the scheme. If (Xp, o,IIp,,, VD, )men is a sequence
of mass-lumped P finite elements it is possible to show that properties (P1),
(P2) and (P3) as defined at the end of Section 1.2 hold, provided that they
hold for the underlying P; finite elements. Then, only using those properties,
it is possible to show that:

1. The scheme (1.31) has at least one solution, which we denote by wu,, €
XDp,,.0,

2. Up to a subsequence, as m — 0o, IIp, u,, converges weakly in L%(£2) to
some function u € Hy(£2), Vp,, u, converges weakly in L2(2)? to Vu,
and B(Ilp,, u,,) converges weakly in L2(§2) to some function .

It is however not possible in general to deduce from Properties (P1)—(P3) that
B = B(w). An additional compactness property of the sequence (Xp,, o, p,,,
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Vp,,)men is necessary to prove that 3 = 3(u), and thus complete the conver-
gence proof of the scheme:

(P4) for any bounded sequence (Vop,, Um)men,
(IIp,, U )men is relatively compact in L2(£2).

This property can be established for gradient schemes defined by the mass-
lumped P; finite element method.

The discrete elements (Xp o, IIp, Vp) and Properties (P1), (P2), (P3), (P4)
are at the core of the definition and properties of the gradient discretisation
method (GDM), which provide the foundations to build gradient schemes, in
addition with the piecewise constant reconstruction property in the case of
some nonlinear problems (see (1.30)).






2

The gradient discretisation method

A gradient discretisation method (GDM) is a numerical technique used to find
approximate solutions to boundary value problems for elliptic and parabolic
partial differential equations. As mentioned in its name, the GDM relies on a
gradient discretisation (GD), denoted by D, which contains at least the three
following discrete entities:

e a discrete space of unknowns Xp is a, e.g. the values at the nodes of
the mesh, as in the conforming P1 finite element method, at a particular
point of the cell, as in the TPFA-CG scheme, or at a particular point of
the faces, as in the non-conforming P1 finite element method),

e a function reconstruction operator IIp which transforms an element
of Xp into a function defined a.e. on the physical domain 2.

e Vp is a an approximate gradient reconstruction, which builds a
“discrete gradient” (vector-valued function) defined a.e. on {2 from the
discrete unknowns.

In the present chapter, we define the concept of gradient discretisation and
list the properties of the spaces and mappings that are important for the
convergence analysis of the GDM. This convergence analysis is performed in
Chapter 3 for linear and non-linear elliptic problems, in Chapter 5 for linear
and non-degenerate non-linear parabolic problems, and in Chapter 6 for some
degenerate parabolic problems.

The idea of the GDM is then to mimick the weak formulation or the problem
to be solved, by building, thanks to the function and gradient reconstructions,
a discrete weak formulation which will be the gradient scheme.

The convergence analysis of the GDM depends, of course, on the nature of the
PDE to be solved. The definition the GDM, on the other hand, only depends
to a large extent only on the boundary conditions. Therefore, the construction
of a GD varies accordingly to the nature of these conditions.

For simplicity, we start with homegeneous and non-homogeneous Dirichlet
boundary conditions in Section 2.1, and then address the case of the home-
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geneous and non-homogeneous Neumann boundary conditions in Section 2.2.
The gradient discretisations defined for these cases may then be easily gen-
eralised to the case of Robin conditions (Section 2.3) and mixed conditions
(Section 2.4).

Throughout this book, {2 is a connected open bounded subset of R? which
is the physical domain over which the p.d.e. is studied, d € N* is the space
dimension, and p € (1, +00) denotes a regularity index of the sought solution.
In some abstract theorems, p might be allowed to take the value 1.

2.1 Dirichlet boundary conditions

2.1.1 Homogeneous Dirichlet conditions

Definition 2.1 (GD, homogeneous Dirichlet BCs).
A gradient discretisation D for homogeneous Dirichlet conditions is defined
by D = (Xpo,IIp,Vp), where:

1. the set of discrete unknowns Xp o is a finite dimensional real vector space,

2. the function reconstruction IIp : Xpo — LP(£2) is a linear mapping that
reconstructs, from an element of Xp o, a function over {2,

3. the gradient reconstruction Vp : Xpo — LP(2)? is a linear mapping
which reconstructs, from an element of Xp o, a “gradient” (vector-valued
function) over (2. This gradient reconstruction must be chosen such that
|- llp := VD - lr(ye is a norm on Xp .

In the following chapters, we shall construct some gradient schemes for several
problems, starting from a gradient discretisation. In order to show the conver-
gence of the scheme, we use some properties of consistency and stability. As
in the framework of the Finite Element method, stability is obtained through
some uniform coercivity of the discrete operator which relies on a discrete
Poincaré inequality.

Definition 2.2 (Coercivity, Dirichlet conditions)

If D is a gradient discretisation in the sense of Definition 2.1, define Cp
as the norm of the linear mapping Ilp:

[ 1Ipv|1e(2)
ma. T T
v€EXp,0\{0} ”U”D

Cp = (2.1)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.1 is coercive if there exists Cp € Ry such that Cp,, < Cp for all
m € N.
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Remark 2.3 (Discrete Poincaré inequality). Equation (2.1) yields the discrete
Poincaré inequality [[IIpvl| .oy < O (VDU 1p(0ya for all v € Xp .

The consistency properties that we need indicate how a regular function (and
its gradient) are more or less well approximated by some function and gradient
which are reconstructed from the space Xpg. The function Sp which we
introduce hereafter is often called “interpolation error” in the framework of
finite elements.

Definition 2.4 (GD-consistency, homogeneous Dirichlet BCs)

If D is a gradient discretisation in the sense of Definition 2.1, define
Sp : WyP(2) — [0, +00) by

Vo € Wy(£2),
. (2.2)
Sp(p) = min (I1TTov = ¢ll ooy + V00 = Vol yu(aye ) -

vEXD. o

A sequence (D, )men of gradient discretisations in the sense of Definition
2.1 is GD-consistent, or consistent for short, if

Vip € Wy (), lim Sp, () =0. (2.3)

Remark 2.5 (Definition of the interpolant Pp ). Since the LP(§2) and LP(£2)¢
norms are strictly convex, for each ¢ € VVO1 P(£2) there is a unique Ppp € Xp o
that realises the minimum in Sp(y), that is, such that

Sp(p) = |[{IpPpy — SDHLIJ(_Q) +VoPpy — v@”m(g)d .

We will write

P = axgmin (|[Tpv = ¢l (o) + IVD0 = Vol agaye) -
vEXD, 0
Note that Pp, even though uniquely defined, is not necessarily a linear map.

In the case p = 2, a linear interpolant Pg) : Wol’p(.Q) — Xp,o can be defined
by setting

2) . 2 2 1/2
Pe = argmin (|[ov = ¢ll3z0) + [Vov = Velliop) -
vEXD,0

This interpolant will be used to establish error estimates for linear parabolic
equations (see the proof of Theorem 5.3, which also contains a proof of the

linearity of Pg) and of its approximation properties).
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A wellknown property of the gradient operator in Hg is the so-called grad-div
duality; the Stokes formula gives :

/ (Vu - ¢ +u divp)de = 0, Yu € Hj(2),Ye € Haiy(2). (2.4)
2

where Hygiy(2) = {¢ € L}(2)? : dive € L*(£2)}. When dealing with non-
conforming method, this property is no longer exact at the discrete level.
The concept of limit-conformity which we now introduce states that the dis-
crete gradient and divergence operator satisfy this property asymptotically.
Since we shall be dealing with non linear problems, we introduce, or any
q € (1,+00), the space W (£2) of functions in (L9(£2))? with divergence in
Li($):

Wa

div

() = {p € LUN)* : dive € LU(2)}. (2.5)

We recall that the space W, *(£2) is commonly denoted by HE(£2) and that
Wiy (2) = Haie (02).

Definition 2.6 (Limit-conformity, Dirichlet conditions)

If D is a gradient discretisation in the sense of Definition 2.1, let p" = £

i
and define Wp: Wd’;;(.Q) — [0, +00) by

Vo € WEL(2),

/Q (Vou(@) - p(@) + Hpu(e)dive(e)) d

Wp(p) = sup
u€Xp 0\ {0} [[ullp
(2.6)
A sequence (D, )men of gradient discretisations is limit-conforming if
Ve € WEL(12), lim Wp, (¢) =0. (27)
m—r o0

It is clear from its definition that the quantity Wp measures how well the
reconstructed function and gradients satisfy the divergence (Stokes) formula
(2.4). If the method is conforming in the sense that Xp ¢ is a subspace of
Wol’p(Q), Vpu = Vuand IIpu =uforallu € Xp o C I/Vol’p7 the set {IIpv,v €
Xpo} is a subspace of W, (£2) and for all v € Xp g, there exists u € W, *(£2)
such that IIpv = u and Vpv = Vu. then Wp = 0. In general, Wp measures
the defect of conformity of the method, and must vanish in the limit — hence
the name “limit-conformity” for the above property.

The following equivalent condition for the limit-conformity property facilitates
the proof of the regularity of a possible limit (Lemma 2.12 below).
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Lemma 2.7 (On limit-conformity, Dirichlet BCs). Let D be a gradient
discretisation in the sense of Definition 2.1. Set p' = 2= and define Wp:

p—1
%IIV(Q) X XD,O — [O7+OO) by

V(i u) € W2, (2) x Xpyo,

Wole,n) = [ (Vou@) - pla) + Mpu(e)dive(@)) do 28)

A sequence (Dy,)men of gradient discretisations in the sense of Definition 2.1
is limit-conforming if and only if, for any sequence u,, € Xp,, o such that
(lem D, )men s bounded,

Voo € WP (£2), lim Wp, (@, i) = 0. (2.9)

m—o0

Proof. Let us remark that Wp(p) = sup,ex,, o\{0} \Wp(cpm)\/HuHD. The

proof that (2.7) implies (2.9) is then straightforward, since |WD(<,0, u)| <
|lulloWp (). Let us prove the converse by way of contradiction. If (2.7) does
not hold then there exists ¢ € VVd’;;(Q), € > 0 and a subsequence of (D, )men,
still denoted by (D, )men, such that Wp,_ (¢) > ¢ for all m € N. We can then
find u, € Xp,, 0 \ {0} such that

—~ 1
(Wo (e, um)| 2 Sellumlip,,-

Considering the bounded sequence (uy,/||um||p,, )men, We get a contradiction
with (2.9). ]

Dealing with generic non-linearity often requires additional compactness prop-
erties on the scheme.

Definition 2.8 (Compactness, Dirichlet conditions)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.1is compact if, for any sequence u,, € Xp,, ¢ such that (||um|p,, )men
is bounded, the sequence (IIp,, um)men is relatively compact in LP(f2).

Compactness is stronger than coercivity, as stated in the following lemma; in
fact, coercivity is required in linear problems, whereas compactness is not (see

Corollary 3.5 and Remark 3.6).

Lemma 2.9 (Compactness implies coercivity). Let (D,,)men be a com-
pact sequence of gradient discretisations in the sense of Definition 2.8. Then
it is coercive in the sense of Definition 2.2.
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Proof. Let us assume that the sequence is not coercive. Then there exists a
subsequence of (D, )men (denoted in the same way) such that, for all m € N,
there exists u, € Xp,, o\ {0} with

o um|lre
i [ I, uml L0 ()

m=—r00 ”um”Dm

:+OO

Setting vy, = Um/||tm||D,,, this gives limy, o [ IIp,, Vm||Lr0) = +00. But
|lvm|lD,, =1 and the compactness of the sequence of discretisations therefore
implies that the sequence (IIp, v )men is relatively compact in LP(§2). This
gives a contradiction. n

Let us turn to a property that we shall often require on the function recon-
struction I1p. Indeed, it is very often handy to obtain piecewise constant
functions as approximate functions, the reason being that piecewise constant
functions commute with any non-linearity. This will be a key argument for
non linear problems.

Definition 2.10 (Piecewise constant reconstruction)

Let D = (Xp,0,IIp,Vp) be a gradient discretisation in the sense of
Definition 2.1. The operator IIp : Xp o — LP(£2) is a piecewise constant
reconstruction if there exists a basis (e;)iep of Xpo and a family of
disjoint subsets (£2;);ep of £2 such that Ilpu = ), pule, for all u =
ZieB use; € Xp o, where 1, is the characteristic function of £2;.

In other words, IIpu is the piecewise constant function equal to u; on
£2;, for all i € B.

The set B is usually the natural set of (geometrical entities attached to the)
degrees of freedom of the scheme. Moreover, ||IIp-||1»(() is not requested to be
anorm on Xp o. Indeed, all degrees of freedom are involved in the definition of
the reconstructed gradients, but in several examples some degrees of freedom
are not used to reconstruct the functions itself. Hence some of the subsets (2;
may be empty, which prevents ||IIp - || (o) from being a norm.

Remark 2.11. If IIp is a piecewise constant reconstruction and g : R — R we
have
g(ITpu(z)) = Ipg(u)(x) for a.e. ¢ € 2, Yu € Xpy

where, for u = Y7, puie;, we set g(u) = >, pg(u)ie; € Xp o with g(u); =
g(u;). We also have
Ipu(z)Ipv(z) = Ip(uwv)(x) for a.e. x € 2, Yu,v € Xp o,

where uv € Xp g is defined by (uv); = u,;v; for all i € B.
Note that these definitions of g(u) or uv depend on the choice of the degrees of
freedom I in Xp . We should therefore denote gZ(u) or (uv)? to emphasize
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the dependency on B but, in practice, we will remove this exponent B as the
degrees of freedom are usually canonically chosen and fixed throughout the
whole study of a gradient scheme.

The convergence analysis of sequences of approximate solutions to a partial
differential equation (PDE) usually starts by finding a priori estimates on the
solutions to the schemes. In the framework of gradient schemes, this means
proving that ||up||p remains bounded. Lemma 2.12 below states that, if such
a bound holds, we can find a weak limit to the reconstructed functions and
their gradients. Combined if necessary with the compactness of the gradient
discretisations, this opens the way to the last stage of the convergence analysis,
which consists in showing that this limit is a solution to the PDE.

Lemma 2.12 (Regularity of the limit, homogeneous Dirichlet BCs).

Let (Dpn)men be a sequence of gradient discretisations in the sense of Defi-
nition 2.1 which is coercive (Definition 2.2) and limit-conforming (Definition
2.6). Let uy, € Xp,, 0 be such that (||um||p,,)men remains bounded. Then
there exist a subsequence of (D, Um)men, denoted in the same way, and
u € Wy (82) such that Ip,, uy, converges weakly in LP(£2) to u and Vop,, ty,
converges weakly in LP(2)? to Vu.

Proof. Thanks to the coercivity, the sequence (Ilp,, tm, )men remains bounded
in LP(£2). Therefore, there exists a subsequence of (D, U )men, denoted in
the same way, and there exist u € LP(£2) and v € LP(£2)% such that IIp, uy,
converges weakly in LP(£2) to u and Vp, u,, converges weakly in LP(2)?
to v. We extend IIp, um, 4, Vp, U, and v by 0 outside {2, and the same
convergence results hold respectively in LP(R?) and LP(R9)<. Using the limit-
conformity of (Dy,)men and the bound on ||uy,||p,,, passing to the limit in
(2.9) gives

Vo e WHEY, [ (v(e)- () + ule)dive(a)) do = 0

Being valid for any ¢ € C2°(R%)?, this relation proves both that v = Vu and
that u € W, P(£2). "

Let us now present some equivalent or sufficient conditions for the space-
consistency, limit-conformity and compactness of a sequence of gradient dis-
cretisations.

Lemma 2.13 (On GD-consistency, homogeneous Dirichlet BCs). A
sequence (Dp,)men of gradient discretisations is GD-consistent in the sense
of Definition 2.4 if and only if there exists a dense subset R in Wol’p(Q) such
that
Vi € R, lim Sp_ (¢) =0. (2.10)
m—r 00
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Proof. Let us assume that (2.10) holds and let us prove (2.3) (the converse
is straightforward, take R = W, (£2)). Let ¢ € WyP(2) and € > 0. Take
¥ € R such that [|¢ — 111||W01,p(9) < ¢e. For v € Xp, the triangle inequality
yields

[HIpv = @l ooy + [IVDU = VOl 1o(0)a
< |HIpv - wHLP(_Q) +[IVpv — V¢||Lp(9)d
e =Ylpoca) + IV = VYl o (oya -

Hence, 5p,, (¢) < Sp,, () + |l —¥llwir ) < Sp,. () +¢, we get from (2.10)
that limsup,,_,., Sp,, (¢) < e. The proof is then completed by letting £ — 0.
|

Lemma 2.14 (Equivalent condition for limit-conformity, Dirichlet
BCs).

Let (Dyn)men be a coercive sequence of gradient discretisations in the sense of
Definition 2.2. Then (Dp)men s limit conforming in the sense of Definition

2.6 if and only if there exists a dense subset S in VVdf;(Q) (endowed with the
n0rm [l oy = 1l cays + 9Vl 1t ) such that

Vi €S, lim Wp, (¢) =0. (2.11)

Remark 2.15. If £2 is a locally star-shaped open set in R? (which is in partic-
ular the case if {2 is polyhedral as in Section 7.1), then S = C°(R%)? is dense

in I/I/:ﬂ;(f?) and can therefore be used in Lemma 2.14.

Proof. Let Cp € Ry be such that Cp,, < Cp. Let us assume that (2.11)

holds and let us prove (2.7). Let ¢ € I/I{i’i’;(f}). Take ¢ > 0 and ¥ € S
such that | — ¢HW§L(Q) < ¢, which means that [|¢ — ||, () < € and
|[divep — divep|| 1, () < €. We have, using the coercivity assumption,

Wpo, (@) < Wp,, () +l¢ = ¥l ()0 + Crlldive — divep|[ 1 )

Using (2.11) we deduce that limsup,,_,., Wp,, (¢) < (1+Cp)e and the proof
is completed by letting € — 0. [

Lemma 2.16 (Equivalent condition for compactness, Dirichlet BCs).
Let D be a gradient discretisation in the sense of Definition 2.1 and let
Tp : R* = Rt be defined by

IIpv(- + &) — pv|| po(ra
VEERY, Tp(€)= max |pv(: +€) — ITpvll, ® (2.12)
vEXD,0\{0} lv]|p
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where IIpv has been extended by 0 outside (2.
The sequence (Dy)men is compact in the sense of Definition 2.8 if and only
if

lim sup Tp,, (§) =0.

|€|=0 meN
Proof.
This lemma is a consequence of Kolmogorov’s compactness theorem in Lebes-
gue spaces.

Step 1: we prove that the compactness of (D,,)men in the sense of Definition
2.8 is equivalent to the relative compactness in L?((2) of the set A = UenAm,
where

A = I, ({u € Xo, 0, |[ull,, =1}).

Indeed, any sequence in A is either contained in a finite union of A,,, which
means that it remains bounded in a finite dimensional space, or has a sub-
sequence which can be written IIp, ., Uy r) for some increasing sequence
(m(k))ken C N and some uppy € Xp,, )0 With [[unmllp,,,, = 1. Hence,
the compactness of (D,,)men gives the relative compactness of A in LP((2).
Moreover, any sequence u,, € Xp, _ o such that ||u,||p,, is bounded can be
written w,, = Ay ul, with (Ay,)men bounded and ||ul,||p,, = 1. We have then
IIp,, Uy = AU, for some vy, € A and the relative compactness of A in LP({2)
therefore shows that (D, )men is compact in the sense of Definition 2.8.

Step 2: a statement of Kolmogorov’s theorem.

Let w € LP(RY) be the extension of w € LP(£2) by 0 outside £2. A classical
statement of Kolmogorov’s compactness theorem is: A is relatively compact
in LP(£2) if and only it is bounded in L?(2) and if

TA(€) = SuIiH’M' + &) — wl|ppray — 0 as [] — 0.
we

But 74 is sub-additive. Indeed, for all £,&’ € R? we have

[|w(- + & + &)~ | r (re)
<N@(-+ €+ &) — (- + &) pr@ey + [0 + &) — D] Lr(ra)
= [|0(- 4+ &) — || Lo ey + [|@(- + &) — || Lo (re),

and therefore 74 (€ + &) < 7a(§) + 7a(§’). Hence, if limjg| o 74(§) = 0, then
74 is finite on a neighborhood of 0 in R? and its sub-additivity shows that it
is in fact finite on R

Now, taking &, € R? such that |£| > diam(£2), for all w € A we see that
w(- + &) and w have disjoint supports and therefore

1/p
me) > ([ oG+ [ a@ra) =2l

Rd
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The finiteness of 74(&y) then ensures that A is bounded in LP({2). Kol-
mogorov’s theorem can therefore be re-stated as: A is relatively compact in
LP($2) if and only if limg| 0 74(§) = 0.

Step 3: conclusion.

We have
A= | 1Ip, ({v,v € Xp,.0\ {0}})

e [ollo..

7o (s ) ¢+~ o (i)

(the functions being extended by 0 outside §2), we deduce sup,,cy Tp,, (§) =
T4 (&). The conclusion then follows from Steps 1 and 2. L]

and thus, since

Tp,, (&) =

max
v€XD,,,0\{0} Lr(R4)

The following lemma is an immediate consequence of the previous ones and
facilitates, in many practical situations, the verification of the core properties
of gradient discretisations.

Lemma 2.17 (Sufficient conditions, homogeneous Dirichlet BCs). Let
F be a family of gradient discretisations in the sense of Definition 2.1. Assume
that there exist C,v € (0,00) and, for all D € F, a real value hp € (0,400)
such that:

Sp(p) < Chpllellwze (), for all o € CF(£2), (2.13a)
Wo() < Cholll i e zoyyes Jor all € C(RA)1, (2.3b)
[{Ipv(- + &) — Hpvl|pr(ga

) < Clel, forall€ eRE (2.13¢
veXp o\{0} ||U||D = ‘5' ) f £ ( )

Then any sequence (Dp)men C F such that hp, — 0 as m — oo is GD-

m

consistent, limit-conforming and compact (and therefore coercive).

Note that for several gradient schemes, the parameter hp in the above lemma
can simply be chosen as the mesh size.

2.1.2 Non-homogeneous Dirichlet conditions

We present here the framework of gradient discretisations for diffusion prob-
lems with non-homogeneous Dirichlet boundary conditions. To handle non-
homogeneous boundary conditions, we need the concept of trace of functions
in WbP(02), for p € (1,+00). This concept requires more regularity on {2
than in Section 2.1.1 and we therefore assume here that {2 has a Lipschitz
boundary. We recall in Section 2.2.3 some facts about the trace operator +.
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Definition 2.18 (GD, non-homogeneous Dirichlet BCs).
A gradient discretisation D for non-homogeneous Dirichlet conditions is de-

fined by D = (Xp,Zps, Ip,Vp) where:

1. the set of discrete unknowns Xp = Xp,o ® Xp,s is the direct sum of two
finite dimensional spaces on R, corresponding respectively to the interior
degrees of freedom and to the boundary degrees of freedom,

2. the linear mapping Ip o : Wl_%’p(ﬁﬁ) — Xp.o is an interpolation ope-
rator for the traces yu of the elements u € WHP(£2),

3. the function reconstruction IIp : Xp — LP(S2) is linear,

4. the gradient reconstruction Vp : Xp — LP(2)¢ is linear. It must be
chosen such that || - [|[p := [Vp - ||Lr(0ye is a norm on Xp .

Remark 2.19 (Domain of Ip ). The interpolation operator Zp s does not

necessarily need to be defined on the whole space WP (092). If g is the
boundary condition of the considered problem (e.g. in (3.22b)), we only need
to define Zp p5g. Hence, if g has a better regularity than Wlf%’p(aﬁ), we can
take advantage of this to find a simpler definition of Zp g, see for example
Remark 12.2.

In that case, the GD-consistency (Definition 2.20) is required only for func-
tions ¢ € WP(£2) such that vy has the additional regularity supposed when
constructing Zp 5.

Coercivity, limit-conformity, compactness and piecewise constant re-
constructions are defined as in the homogeneous case, by considering Def-
initions 2.2, 2.6, 2.8 and 2.10 on the spaces Xp . The definition of GD-
consistency needs to be modified and implicitly imposes assumptions on the
interpolation operator.

Definition 2.20 (GD-consistency, non-homogeneous Dirichlet
conditions)

If D is a gradient discretisation in the sense of Definition 2.18, define
Sp : WHP(02) — [0, 4+00) by

Vo € WHP(2), Sp(p) = min{||Ipv — ¢|| s ()
+[IVpv = Vollproye, v —Ipave € Xpo}. (2.14)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.18 is GD-consistent if

Yo € WHP(02), lim Sp, (p) = 0. (2.15)

m— o0

Since coercivity, limit-conformity and compactness are the same as for homo-
geneous Dirichlet conditions, the characterisation Lemmas 2.7, 2.14 and 2.16
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may also be used in the context of non-homogeneous Dirichlet conditions. It
will be useful, as in the homogeneous case, to also have a characterisation
of the GD-consistency using dense subsets of W1?({2). This characterisation
however requires an additional assumption on the trace interpolation operator,
stating that for any given trace on 32, we can find elements in Xp which
interpolate this trace and have a norm controled by this trace.

Lemma 2.21 (Equivalent condition for GD-consistency, non-homo-
geneous Dirichlet BCs). Let (D,,)men be a sequence of gradient discreti-
sations in the sense of Definition 2.18. We assume that there exists Cy such
that, for any m € N and any ¢ € WHP(£2),

min{||Tp,, v||zr2) + [|VD,, V|22, v — Ip,, 079 € XD o} (2.16)
< Cillellwrr(a)-

Then (D) men is GD-consistent in the sense of Definition 2.20 if and only if
there erists a dense subset R in WP (§2) such that

v eR, lim Sp, () =0. (2.17)

Remark 2.22. Note that (2.16) is almost a requirement to GD-consistency in
the sense of Definition 2.20. Indeed, for any ¢ € W1P(§2), taking and element
in Xp +Zp gvp € Xp,o which realises the minimum Sp(p), we see that

min{|[IIpv|| e 2y + [IVDVl|Lr(0)a s v —Ipave € Xpo}
< Sp(p) + llellwrr()-

Hence, if (Dp,)men is GD-consistent in the sense of Definition 2.20, estimate
(2.16) is asymptotically true as m — oo since Sp,, (¢) — 0.

Proof. The proof is very similar as the proof of Lemma 2.13 and we obviously
only have to prove the “if” direction (the “only if” holds with R = WP (£2)).
Let ¢ € WhP(£2) and & > 0. Take ¢ € R such that ||¢ — ¥[|wrr) < €.
Let v € Xp,_ o0+ Ip,, 0y which realises the minimum in Sp, (1) and let
w € Xp,, 0+ Ip,, 07(p — 1) which realises the minimum for ¢ — 1 in the
left-hand side of (2.16). Then v+ w € Xp,, o + Ip,, o7 and, therefore,

m mo

Sp,,.(¢) < |/p,, (v +w) = @llLe2) + [VD,, (v +w) = V| Lr(2)a
< |[{Ip,, v =Y|lLe(2) + [IVD,,v = VY| Lr(2)a
+[Ip,, w||Lr(2) + [V, wl|Lr(2)a
+Hle = YllLee) + [V = V[ Lo (o)
< Sp,, (V) + (C1 + Dl = Y[lwrr ()
< Sp,, () + (C1 + 1)e.

The conclusion follows as in the proof of Lemma 2.13. [
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The convergence properties imposed on the interpolant Zp s are somewhat
hidden in the definition of GD-consistency. The following lemma shows that
the formulation (3.26) of gradient schemes for non-homogeneous Dirichlet
conditions make sense (for linear as well as non-linear problems): sequences
of solutions to the gradient schemes indeed converge, up to a subsequence, to
a function that has the required trace on the boundary of (2.

Lemma 2.23 (Regularity of the limit, non-homogeneous Dirichlet
BCs). Let (Dp)men be a sequence of gradient discretisations in the sense
of Definition 2.18 which is coercive (Definition 2.2), limit-conforming (Def-
inition 2.6) and GD-consistent (Definition 2.20). Let g € Wl_%’p(aﬂ), Let
Um € Xp,, be such that u,, —Ip,, 09 € Xp,, 0 and (”vaum”LP(Q)d)mGN
remains bounded. Then there exist a subsequence of (Dy,, Um )men, denoted in
the same way, and u € WHP(82) such that yu = g and, as m — oo, IIp, up,
converges weakly in LP(£2) to u and Vp, u,, converges weakly in LP(£2)¢ to
Vau.

Proof. Let g € W1P(£2) such that vg = g. By GD-consistency of (D,,)men,
we can find v,, € Xp,, o+ Ip,, 09 such that IIp, v, — g in LP({2) and
Vp,,vm — Vg in LP(2)%.

By assumption, wy, — m = (Um —Ip,,.09) + (Ip,,.09 — Um) belongs to Xp,, o,
and [[Vp,, (Wm — vm)||1s(0)e remains bounded. Hence, by recalling that the
coercivity and limit-conformity of (D,,)men are identical to the coercivity
and limit-conformity of the underlying gradient discretisations for homoge-
neous Dirichlet conditions (i.e. with Xp,_ ¢ instead of Xp ), Lemma 2.12
shows that, up to a subsequence, IIp, (um — Um) — U weakly in LP(£2) and
Vb, (U — vm) — VU weakly in LP(£2)?%, where u € WP (£2).

The properties of (vy,)men then show that IIp  u, = Ip, (4m — Um) +
Ip, vy —u+g=:uin LP(2), and Vp_ tpm = Vo, (Um —Vm) + Vo, Uy —
Vi + Vg = Vu in LP(2)¢. The function u = u + g belongs to WP (§2) and
has trace yu = yu+vg=0+g = g. n

2.2 Neumann boundary conditions

2.2.1 Homogeneous Neumann conditions

We take here 2 a connected open bounded subset of R? with Lipschitz bound-
ary and p € (1, 400).

Definition 2.24 (GD, homogeneous Neumann BCs).
A gradient discretisation D for homogeneous Neumann conditions is defined
by D = (Xp,IIp,Vp) where:

1. the set of discrete unknowns Xp is a finite dimensional vector space on
R

7
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2. the function reconstruction IIp : Xp — LP(2) is linear,
3. the gradient reconstruction Vp : Xp — LP(£2)4 is linear.

The operators Vp and IIp must be chosen such that

p\ 1/p
ol = (192014 g+ | [ 1Ep0tlae] ) 218
2

is a norm on Xp.

Remark 2.25. The choice of ||v||p, involving the integral of ITpv rather that
its LP(§2) norm, is justified by the way the scheme for Neumann problem is
written and the a priori estimates that can be established on the approximate
solution, cf Section 3.2.3.

The discrete properties of gradient discretisations for Neumann problems, that
ensure the convergence of the associated gradient schemes, are the following.

Definition 2.26 (Coercivity, homogeneous Neumann conditions)
If D is a gradient discretisation in the sense of Definition 2.24, define

Ipv| e
Cp— max W2l (2.19)
vexp\{0}  |jv[lp

A sequence (D, )men of gradient discretisations in the sense of Definition
2.24 is coercive if there exists Cp € R4 such that Cp,, < Cp for all
m € N.

Definition 2.27 (GD-consistency, Neumann conditions)

If D is a gradient discretisation in the sense of Definition 2.24, define
Sp : WHP(2) — [0, +00) by

Vo € WHP(02),

. 2.20
Sp¢) = min (1Tov ~ pllzeqe) + Vo0 = Velluwap) . &2

A sequence (D, )men of gradient discretisations in the sense of Definition
2.24 is GD-consistent if

Yo € WEP(02), lim Sp, (p) = 0. (2.21)

m—0oQ
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Definition 2.28 (Limit-conformity, homogeneous Neumann con-
ditions)

For p € (1,+00), let p = ;25 and

WP, o(2) = {p € LV (2)" : divgp € L (2), alp) = 0},
where n(¢) is the normal trace of ¢ on 02 (see Section 2.2.3). If D
be a gradient discretisation in the sense of Definition 2.24, define Wp:
Wity 0(£2) = [0, 400) by

VQO € V[{iip\//,o(“o)’

Wp(p) =

/Q Vou(z) - p(z)dz (2.22)

+ /Q IIpv(z)dive(x)dx| .

max _—
veXp\{0} ||v]|p

A sequence (D, )men of gradient discretisations in the sense of Definition
2.24 is limit-conforming if

Vo € Wik o(2), lim Wp, () = 0. (2.23)

m—r oo

Definition 2.29 (Compactness, homogeneous Neumann condi-
tions)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.24 is compact if, for any sequence u,, € Xp,, such that (||um||p,, )men
is bounded, the sequence (IIp,, um)men is relatively compact in LP(f2).

Note that the definition of piecewise constant reconstruction for a gradi-
ent discretisation for homogeneous Neumann boundary conditions is the same
as Definition 2.10, replacing the space Xp o by Xp.

As in the case of Dirichlet boundary conditions (see Lemma 2.13), the GD-
consistency (resp. the limit-conformity) of sequences of gradient discretisa-
tions in the case of homogeneous Neumann conditions needs only be checked
on a dense subset of W1P(£2) (resp. Wol’pl (£2)). The proof of this result which
is stated in the following lemma is identical to the proof of Lemma 2.13,
replacing Wy P (£2) by WhHr(0).

Lemma 2.30 (Equivalent condition for GD-consistency, Neumann
BCs). A sequence (Dy)men of gradient discretisations is GD-consistent in
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the sense of Definition 2.27 if and only if there exists a dense subset R in
WP(0) such that
Ve eR, lim Sp,(p)=0.

We stated in Lemma 2.16 a compactness criterion in the case of Dirichlet
boundary conditions; we state below a similar criterion for the case of Neu-
mann Boundary conditions, which holds under an additional regularity prop-
erty on the domain (2. Contrary to the case of Dirichlet boundary conditions,
we may no longer prolong the functions by 0 outside of {2, and therefore the
criterion can only involve the “interior” translations

Lemma 2.31 (A criterion for compactness). Let 2 be an open set of R?
satisfying the “segment condition”: there exist open sets (U;)i=1,..r and non-
zero vectors (&)i=1,....k such that 02 C UleUZ- and, for alli=1,...,k and
allt € (0,1], 2NU; +t& C 0.

Let p > 1 be given and (Um)men be a bounded sequence in LP(§2) such that

limg| 0 SUPp e [[um (- + &) — um”LP(.QE) =0

(where Q¢ = {x € 2, [x,x + &) C 2}). (2.24)

Then (Um)men s relatively compact in LP(S2).

Proof.

Let us first notice that, for any w relatively compact in {2, we have w C {2¢ for
|€] small enough. Hence, by the classical Kolmogorov compactness theorem,
there exists u € L} (£2) and a subsequence, still denoted by (um)men, such
that u,, — win LY (£2). Since (um)men is bounded in LP(£2), Fatou’s lemma
shows that u belongs in fact to LP(£2). We infer that (u,;, — u)men is bounded
in LP(£2) and satisfies (2.24). Reasoning on u,, — w rather than u, we can
therefore assume that v = 0 and we have to prove that u,, — 0 in LP({2).
The main issue is of course to estimate this convergence on a neighborhood
of 012.

Let (U;)i=1,... % and (&;)i=1,..k be given by the segment condition for 2. For
any i € {1,...,k} and any r € (0,1], K;, = 2NU; +r€; is a compact subset
of 2. Moreover, for any m € N, by the change of variable y = x + r§;, we get

[ lum@pde s [y - répPdy
20U;

oNU;+rg;

< v / (3 — 7€2) — ()P dly
2NU;+r€;

Lort / i () Pdy.
K

i,

For any z € 2NU; and any s € [0,1] we have (z +7&;) —sr€; = z+ (1 —
s)r&; € §2, by definition of z if s = 1 and by definition of §; if s < 1. Hence,
2NU; +7r& C (2_r¢, and the preceding inequality gives
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/ i (@) Pda < 27T p(—r) + 27 / i () Py
02NU;

K r»

where 7(§) = sup,,en [|um (- +&) — um||Lp(Q ) tends to 0 as |§| — 0. Summing

all these inequalities on ¢ = 1,...,k and defining the open set U = U¥_, U;,
neighborhood of 92 in R?, we obtain

k k
/ un(@)Pde <2713 (=€) + 273 [ fun(w)Pdy.
2NU i=1 i=1 K;

Let us now take e > 0 and fix » € (0,1] such that, for all i = 1,... k,
n(—r&;) < e. Since, for any i, K;, is a compact subset of 2 we have
fK |t (y)[Pdy — 0 as m — oo and therefore

lim sup/ |t () |Pdae < 2P ke
onu

m—r oo

The proof is completed by letting € — O. ]

2.2.2 Non-homogeneous Neumann conditions

We present here the framework of gradient discretisations for diffusion prob-

lems with non-homogeneous Neumann boundary conditions. We again take

2 a connected open bounded subset of R? with Lipschitz boundary and
€ (1, +00).

Definition 2.32 (GD, non-homogeneous Neumann BCs). A gradient
discretisation D for non-homogeneous Neumann conditions D is defined by

D= (XD,HD,TD,VD) where:

1. the set of discrete unknowns Xp is a finite dimensional vector space on
R,

2. the function reconstruction IIp : Xp — LP(S2) is linear,

3. the trace reconstruction Tp : Xp — LP(992) is linear; it provides, from
an element of Xp, a function over 052,

4. the gradient reconstruction Vp : Xp — LP(£2)? is linear.

The operators Vp and IIp must be chosen such that

p\ 1/p
ol i= (19001 g+ | [ TEp0talae] ) (225)
2

is a norm on Xp.
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The discrete properties of gradient discretisations for Neumann problems,
that ensures the the convergence of the associated gradient schemes, are the
following. The GD-consistency and piecewise constant reconstruction
are still defined by Definitions 2.27 and 2.10 (replacing Xp ¢ with Xp in the
latter definition).

Definition 2.33 (Coercivity, non-homogeneous Neumann condi-
tions)

If D is a gradient discretisation in the sense of Definition 2.32, define

1T » T »
Cp = max (max { |7l (Q), [Tovllroa) }) . (2.26)
veXp\{0} ||UHD HU”D

A sequence (D, )men of gradient discretisations in the sense of Definition
2.32 is coercive if there exists Cp € R4 such that Cp,, < Cp for all
m € N.

Definition 2.34 (Limit-conformity, non-homogeneous Neumann
conditions)

For p € (1,+00), let p’ = 25 and

Wi 5(92) = {p € L' (2)" : divp € L (2), 7alp) € LY (902)}, (2.27)

where ,(¢) is the normal trace of ¢ on 92 (see Section 2.2.3). If D
is a gradient discretisation in the sense of Definition 2.32, define Wp:
Wiiv,0(£2) = [0, +00) by

VSO € Wi?\//,a(“o) ’

Wo(p) =

/ Vou(z) - p(x)de
2

max _—
veXp\{0} ||v]|p

+ [ Hpv@)dive@)ia - [ Tov@hm(e)@)dste).
Q an
(2.28)
A sequence (D, )men of gradient discretisations in the sense of Definition
2.32 is limit-conforming if

’

Vo € Wi, 5(£2), lim Wp, (p) = 0. (2.29)

m— 00
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Remark 2.35. This definition of limit-conformity ensure both that the dual
operator to Vp,, approximates the continuous divergence operator, and that
Tp,, approximates the continuous trace operator (see also Lemma 2.40).

Definition 2.36 (Compactness, non-homogeneous Neumann con-
ditions)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.32 is compact if, for any sequence u,, € Xp,, such that (||um||D,, )men
is bounded, the sequence (IIp,, um)men is relatively compact in LP({2)
and the sequence (Tp_, tm)men is weakly relatively compact in LP(02).

Note that the weak relative compactness of the sequence of discrete traces
is an immediate consequence of the coercivity of the sequence of gradient
discretisations. Moreover, as in the case of Dirichlet boundary conditions, the
compactness of a sequence of gradient discretisations implies its coercivity.

Remark 2.87. As for Dirichlet problems, compactness of the gradient discreti-
sation is only useful to deal with non-linearities in the equation. If these
non-linearity involve the trace of the solution, then the compactness prop-
erty should be modified and include also the relative strong compactness of

(TDm,um)meN in Lp(a_o)

Lemma 2.38 (Equivalent condition for limit-conformity, non-homo-
geneous Neumann BCs). Let (D,,) be a sequence of coercive sequence
of gradient discretisations in the sense of Definition 2.33. Then (Dy)men
is limit-conforming in the sense of Definition 2.34 if and only if there ex-
ists a dense subset S in V[{if;’a(()) (endowed with the norm |||l »

i o(2)
el o (e + 1divell o (o) + I (@)l 1o (92)) such that

Vo eS8, lim Wp, (¢)=0. (2.30)

m—0o0

Remark 2.39. Lemma 2.46 shows that the set S = C°°(R%)? is dense in

Wdiv,p,a(g).

Proof. Let Cp € R, be such that Cp,, < Cp. Assuming that (2.30) holds, we

take @ € WP ,(92) and, for € > 0, select ¢ € S such that |[@—@]| .. <e.
iv, Wiiv,0(£2)

Then, using the definition of Cp,

Wo,, ()| < [Wp,, (@) + |l — @llLr(2)
+(||dive — diVS"HLI’(Q) + |l (U) — %(SO)HLP’(QQ))CP
< |Wp,, ()] + (1 +2Cp)e.
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From (2.30) with ¢ instead of ¢ we then deduce limsup,, .. |[Wp,, (¢)| <
(14 2Cp)e and the proof is complete. ]

The following lemma is the equivalent of Lemma 2.12 for non-homogeneous
Neumann conditions.

Lemma 2.40 (Regularity of the limit, non-homogeneous Neumann
BCs). Let (Dy)men be a coercive and limit-conforming sequence of gradient
discretisations in the sense of Definitions 2.33 and 2.84. Let w,, € Xp,, be
such that (|um||p, Ymen is bounded. Then there exists u € WP (£2) such that,
up to a subsequence,

IIp,, wy — u weakly in LP(12), (2.31)
Tp,, tm — yu weakly in LP(012), (2.32)
Vo, um — Vu weakly in LP(2)%. (2.33)

Remark 2.41. This lemma shows in particular that if u,, € Xp,, is such that,
for some u € WtP(02), Ilp, u,, — u weakly in LP(2) and Vp, u, — Vu
weakly in LP(£2)¢, then Tp, u,, — yu weakly in LP(012).

Remark 2.42. In the case of gradient discretisations for homogeneous Neu-
mann conditions, which do not involve a trace reconstruction, Lemma 2.40 is
still valid with (2.32) removed.

Proof. By coercivity, the bound on |up||p —shows that [[IIp,, uml| 1.,
ITD,, umll 1oy and [V, unllps(o)e are bounded. There exists therefore
w € LP(2), w € LP(3N2) and v € LP(N2)% such that, up to a subse-
quence, IIp, uy, — u weakly in LP(82), Tp, u, — w weakly in LP(042) and
Vp,, tm — v weakly in LP(£2)%.

Let ¢ € W, ,(£2). By Definition (2.28) of Wp,

[uml|p,, Wp,, (¢) >

/Q(meum(w) ~o(x) + Ip,, u(z)dive(x))dz
- [ o, un(@n(e)@)is@) . (230
o0

By limit-conformity of (D,,)men and the bound on ||u,||p,, , the left-hand
side of this expression tends to 0 as m — oco. Hence, passing to the limit we
get

[ (@) pl@) + u@)dvp@)dz - [ w@rm(e)@)ds@) =0 (23)
(9] o1

Applied to p € C°(£2)%, this relation shows that v = Vu and therefore that
u € WHP(£2) and that (2.31) and (2.33) hold.
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For any [ € L¥ (2) C (Wl_%’p(aﬂ))’7 take ¢ € VVdf;(Q) such that v, () =1
(see Lemma 2.45). Then ¢ € Wéf\:’a(ﬂ) and therefore, (2.35) and the definition
(2.39) of yu(p) =1 (with u instead of Lyyu, see the comments after (2.39))
give

/an(w)'yu(:c)ds(:c) :/ w(x)l(x)ds(x),

[210)

which proves that w = yu. Hence (2.32) is verified and the proof is complete.
n

We complete this section by stating an approximation property of Tp. This
property is useful to deduce error estimates on the traces of gradient scheme
approximations to linear elliptic problems (see Remark 3.12).

Proposition 2.43 (Approximation property of Tp — Neumann BCs).
Let D be a gradient discretisation in the sense of Definition 2.32. We define,
for o € WhP(02),

Sp(p) = mi (H — ol Tpw — ol
p(p) = min (|[Tpw = ¢llLoo) + I Tow =79l s o0

+ IVow = Vol oy ) (2:36)

Then, for any v € Xp and any ¢ € WHP($2),

1
[Tpv — ’WJ”Lp(aQ) <Cp <|-Q|”' [ Ipv — ‘PHLp(Q) + Vv — V@”Lp(rz)d)
+ max (1,CD,CD|Q|P%)§D(<,0).

Remark 2.44. The quantity Sp in (2.36) is actually the measure of the GD-
consistency for Fourier boundary conditions (see (2.49)).

Proof. We introduce

Ppp = argmin ([ Tow — ¢l o) +ITow =¥l 1o o)
weXp

+ [[Vpw — VSOHLP(Q)d )

and we notice that

[ IpPpe = ¢l 100y + IToPpe — 70l 15 (00
+IVoPpp = Vol 1o (gye < Splp). (2.37)

By definition of C'p and of ||-||, Holder’s inequality gives, for all w € Xp,

1
ITowl oog) < Co (IVDWllnays + 1217 1 Hpwllney) - (2:38)
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A triangular inequality therefore provides

[Tpv — %0||Lp(an)
<|ATo(v = Pp)ll1ro0) + IToPpe — 10l 1r (00

1
< Cp (1217 | o ~ Mo Pp¢l 1aa) + VD0 = VoPoel 1o )
+ IToPpe = vl 10002 -

We then use the triangular inequality again in the first two terms in the right-
hand side, to introduce ¢ in the first one and V¢ in the second one, and we
apply (2.37) to conclude the proof. [

2.2.3 Complements on trace operators

Let £2 be a bounded open subset of R¢ with Lipschitz boundary. The trace
operator vy : W1P(§2) — W“%’P(a(z) is well defined and surjective, and there
exists a linear continuous lifting operator Lj : Wl_F’p(&Q) — WLP(2) such
that vLsg9 = g for any g € WlwP (092). We recall that in the case p = 2,
W2-2(982) is generally denoted by Hz(912) and the set W12(£2) is denoted
HY(9).

We can then define the normal trace v, () € (Wl_%’p(aﬁ))’ of p € I/V:ﬁ/v(ﬂ)
(where p’ = %) the following way. Denoting by (-,-)s the duality product

between (Wl—%»')(an))’ and Wl—%”’(a(z), we let, for any g € Wl_%’p(aﬂ),

(), 9)0 = /Q (p(x) - VLog(x) + Log(@)dive(x)) de.  (2.39)

The linearity and continuity of Lg ensure that v, () is indeed an element of

(Wl_%’p(aﬁ))’. Moreover, for any ¢ € W1P(§2) such that y¢ = g we have
Log—p € Wol’p(Q) and thus, by Stokes’ formula,

/Q (V(Log — 9)(x) - () + (Log — ©)(@)dive(x)) dz = 0.

This shows that (2.39) is also valid if we replace Lpg with any ¢ € WP(2)
having trace g on 0f2.

Lemma 2.45 (Surjectivity of the normal trace). The normal trace

V[/d’l)lv(()) (Wl_%’p(aﬁ))’ is linear continuous surjective. More pre-
czsely, there exists Cy > 0 depending only on {2 and p such that, for any
le (W 7"’(8(2))’ there exists ¢ € V[/;ﬁv(()) satisfying yn(p) =1 and

ellgt gy < Collll a3 (240

where we recall that ||cp||W§/(m = (|l (22 + [1divep]| 1o () -
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Proof. Since v : W1P(Q2) — Wl_%’p(&(?), for any | € (Wl_%’p(aﬂ))’ we
have v*1 € (WP (£2))’. There exists thus (h, @) € LP (£2) x L? (£2)¢ such that,
for all o € WLP(02),

(Lye)a = (YL, @) (wre(2)y, wie(2)
2.41
- /Q (o(@) - Vo(@) + h(z)p(@)) de (241)
and
el oy + Loy < 7l < Collll ya g, (2:42)

where Cjy is the norm of v (it is also the norm of v*). Testing (2.41) with
functions ¢ in C2°(f2) shows that h = divep and, therefore, that ¢ € VV(ﬂ;(Q)
Taking then a generic g € Wlf%’p(aﬂ) and applying (2.41) with ¢ = Lsg
gives 1 () = | and Estimate (2.42) gives (2.40). ]

Lemma 2.46 (Density of smooth functions in WV:P:2(02)). Let 02 be
a polytopal open set (see Definition 7.2) and let p € (1,+00). The space
Wavr9(0) is defined by (2.27) and endowed with the norm lellywaivmoo) =

||‘P||Lp(n)d + ||diV‘PHLp(n) + ||'7n(90)||LP(8Q)' Then

1. C2(@) is dense in {p € WP9(2) : () = 0},
2. C*(RY)? is dense in WIV-P9((2).

Remark 2.47. We only stated the lemma for polytopal open sets (2, but the
proof shows that the result is more general than this (in particular, it holds for
open sets with piecewise C™! boundary — since the normal n is then Lipschitz
continuous outside a set of zero (d — 1)-dimensional measure).

Proof.

ITEM 1: using the localisation techniques of [68, Ch. 1, Theorem 1.1, (iii)],
we can reduce the study to the case where {2 is strictly star-shaped, say with
respect to 0. This means that, for any A € (0,1), A2 C £2.

Let ¢ € WV:P:2((2) such that v, () = 0. Then the extension @ of ¢ to R? by
0 outside {2 belongs to Wi (R?), since the normal traces of ¢ is continuous
through 92. Let A € (0,1) and define @) : & — @(x/A). As A — 1, we
have @y — @ in LP(2)% and div(@y) = A71(divg)(-/\) — diveg in LP(£2).
Moreover, the support of @y is contained in Af2, and is therefore compact in
0.

Let (pe)eso be a smoothing kernel. For e small enough, @y * p. belongs to
C2(2)4. As € — 0, we also have @y * p. — @y in LP(2)? and div(@y * pc) =
div(@y) * pe = div(ey) in LP(02).

Hence, letting in that order A — 1 and € — 0, the functions (@x * pc)|o give
an approximation in W4V:P:9(02) of ¢ by functions in C2°(£2)¢, and the proof
of Item 1 is complete.
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ITEM 2: let o € WVP9(Q) and € > 0. In the following, C' denotes a generic
constant, independent on € but whose value can change from one occurrence
to the other.

Since {2 is polytopal, n is piecewise constant and thus smooth outside a set S
of 0 measure in 9f2. We can therefore find a function v, that is C'"*°-smooth,
vanishes on a neighborhood of S, and such that [[yn(®) = Vellrr00) < &
Since 1. vanishes on a neighbourhood of the singularities S of n, we can
find a function 9. € C°(R%)¢ such that y,(1h.) = 1. (simply extend, on a
neighbourhood U of 02, the smooth function ¥.m into a function that does
not depend on the coordinate orthogonal to m, and multiply this extension
by a function in C°(U) equal to 1 on a neighbourhood of 912).

Let us consider the function ¢ — 4. € W4v-P:9(2). We have

[ (e — ¢e)||Lp(an) = [lm(e) — we”m(a(z) <e (2.43)

By Lemma 2.45 (applied with p and p’ swapped) and since LP(942) is embed-
1 /
ded in (W'™#" (802))', we can find ¢. € WP (£2) such that

'Vn(CE) = 'Yn(‘P - "l’s) (2.44)

and
HCsHvséfv(n) < Cllm(e - 1/’s)HLp(3(z) < Ce. (2.45)

’

Property (2.44) shows that (. € W, 5(£2) and, combined with (2.43) and
(2.45), that

||CE||Wd‘VvP«3(Q) = ||CE||VI{§’V(Q) + H'Yn(Ca)HLp(aQ) < Ce. (2.46)

The function ¢ — 1. — {. therefore belongs to Wﬁf;’a(ﬂ) and satisfies v, (@ —

. — () = 0. By Item 1 we can find &, € C2°(£2)¢ such that
1 = e =€) = &ellwaivmoo) <& (2.47)
We now set . = 1. + &.. This function belongs to C2°(R4)¢ and
P—pe=(p—%e—C —&)+(

so, by (2.46) and (2.47), [l — pellypavmon) < Ce. m

2.3 Non-homogeneous Fourier boundary conditions

Although we shall present few convergence results for PDE’s with Fourier
(also known as Robin) boundary conditions, for the sake of completeness we
give here the gradient discretisation framework for these conditions. Here (2
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is again a connected open bounded subset of R? with Lipschitz boundary and
p € (1,400).

Except for the choice of the norm || - ||p, the definition of a gradient discreti-
sation for Fourier boundary conditions is the same as for Neumann boundary
conditions.

Definition 2.48 (GD, non-homogeneous Fourier BCs). A gradient dis-
cretisation D for non-homogeneous Fourier conditions D is defined by D =
(Xp, p,Tp,Vp) where:

1. the set of discrete unknowns Xp is a finite dimensional vector space on
R,

2. the function reconstruction IIp : Xp — LP(§2) is linear,

3. the trace reconstruction Tp : Xp — LP(012) is linear,

4. the gradient reconstruction Vp : Xp — LP(2)% is linear.

The operators Vp and Tp must be chosen such that

» » 1/p
lelln i= (IV 0150 gy + ITD0IE 0 00) (248)
is a norm on Xp.

The coercivity, limit-conformity, compactness and piecewise constant
reconstruction for gradient discretisations for non-homogeneous Fourier
conditions are defined exactly as for non-homogeneous Neumann conditions,
i.e. Definitions 2.33, 2.34, 2.36 and 2.10 (with Xp o replaced by Xp in the
latter, and using the norm (2.48) in all these definitions). The GD-consistency,
however, must take into account the trace reconstruction.

Definition 2.49 (GD-consistency, non-homogeneous Fourier con-
ditions)

If D is a gradient discretisation in the sense of Definition 2.48, define
Sp : WHP(02) — [0, 4+00) by
Vo € WHP(£2),
Sp(e) = min ([[Ipv — ¢||Le(2) + [Tov — ¢l Lr002)
veEXD
+IVov — Vol Lr(a)a)-
(2.49)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.48 is GD-consistent if

Vo € WhP(02), lim Sp,, () =0. (2.50)
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We notice that Lemma 2.30 (characterisation of GD-consistency using a dense
set of WhP(£2)), Lemma 2.38 (characterisation of limit-conformity using a

dense set of I/I{if\:ﬁ 5(£2)) and Lemma 2.40 (regularity of the limit) still hold
in the framework of gradient schemes for non-homogeneous Fourier boundary
conditions.

For Fourier boundary conditions, the reconstructed trace has been included in
the definition of Sp, and we can therefore expect an approximation property
as in Proposition 2.43. However, the norm is different and actually already
includes the reconstructed trace. For this reason, an additional assumption
must be introduced which states that the reconstructed trace can be controlled
by the reconstructed function and gradients, see (2.51). In practice, for many
gradient discretisation this assumption is easy to check by using Lemma B.16
and the notion of control by a polytopal toolbox (cf. Section 7.2.3).

The proof of this proposition is identical to the proof of Proposition 2.43, the
assumption (2.51) playing the role of (2.38).

Proposition 2.50 (Approximation property of Tp — Fourier BCs).
Let D be a gradient discretisation in the sense of Definition 2.48. We assume
that there exists 0 > 0 such that

Vo € Xp : |TpollLoion) < 0 (100l 0 i0) + IVD0ll0iay) - (251)

Then, for any v € Xp and any p € WIP(02),

ITov =30l 02) < 0 (1100 = @l oy + 11V0 = Vol 1
+ max(1,6)Sp(p).

2.4 Mixed boundary conditions

From the framework of non-homogeneous Dirichlet and Neumann boundary
conditions, it is very easy to construct a gradient scheme discretisation for
mixed boundary conditions.

We consider here p € (1,00), §2 a connected open bounded subset of R? with
Lipschitz boundary and we assume that

I'y, I, are two disjoint relatively open subsets of 012

such that |02\(IyUT,)|=0and |4 >0 (2.52)

(| - | denotes here the (d — 1)-dimensional measure).

Definition 2.51 (GD, mixed BCs). Under Assumption (2.52), a gradi-
ent discretisation D for mized boundary conditions D is defined by D =
(XD,ID,F[“HD,TD,F,“VD) where:
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1. the set of discrete unknowns Xp = Xp o,r, ® Xp,r, is the direct sum of
two finite dimensional vector spaces on R, corresponding respectively to
the degrees of freedom in 2 and on I, and to the degrees of freedom on

Fd;
2. the linear mapping Ipr, : Wl_%’p(é)(}) — Xp,r, is an interpolation
operator for the restrictions (yu)|r, of traces of elements u € Whr(0),
3. the function reconstruction IIp : Xp — LP(§2) is linear,
4. the trace reconstruction Tp r, : Xp — LP(I3,) is linear, and reconstructs
from an element of Xp a function over I,
5. the gradient reconstruction Vp : Xp — LP(£2)¢ is linear.

The operator Vp must be chosen such that
[vllp == VDVl e ()

15 a norm on Xp o r,-

Definition 2.52 (Coercivity, mixed boundary conditions)

Under Assumption (2.52), if D is a gradient discretisation in the sense of
Definition 2.51, define

H r T P
Cp = max (max{ | Tpvlle (Q), ITo.r,vlle () }) . (2.53)
vEXD. 2,1, \{0} lv]lp l|lv]lp

A sequence (D, )men of gradient discretisations in the sense of Definition
2.51 is coercive if there exists Cp € R4 such that Cp, < Cp for all
m € N.

Definition 2.53 (GD-consistency, mixed boundary conditions)

Under Assumption (2.52), if D is a gradient discretisation in the sense of
Definition 2.51, define Sp : W1P(§2) — [0, +00) by

Vo € WHP(82), Sp(p) = min{||Ipv — ollze2) + IVDv — Vol o (a2y4s
v—Ipr,ve € Xp,or,} (2.54)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.51 is GD-consistent if

Yo € WhP(0), lim Sp,, () = 0. (2.55)
m oo
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Definition 2.54 (Limit-conformity, mixed boundary conditions)

For p € (1,+00), let p’ = p% and
W (0) = {p € LP ()T : divep € LY (2), () € LY ()},
(2.56)
where 1, () is the normal trace of ¢ on 9f2. Under Assumption (2.52),
if D is a gradient discretisation in the sense of Definition 2.51, define Wp:
WP In () — [0, 400) by

Vo € WAL (),

Wo() = max{ | [ (Vo0(@) (o) + Tou(e)tive(a) da

[vllp

- / Tp. 1, 0(@) () (@) ds(z)
I,

, U E XD,Q,F" \ {0}} . (257)

A sequence (D, )men of gradient discretisations in the sense of Definition
2.51 is limit-conforming if

Vo € WP In () lim Wp, (o) = 0. (2.58)

m— o0

Remark 2.55. Note that “y,(p) € L (I,)” makes sense because I, is a rel-
atively open subset of df2. Indeed, when ¢ € L¥' (£2)? and divep € LP (2)
then (p) € (Wl_%’p(&()))’ and saying that this linear form belongs to
LP (I,) means by definition that there exists g € L¥ (I3,) such that, for any
w € Wl_%’p(aﬂ) with support in I,

(Tn(p), w)

1

1 1 = g(x)w(x)ds(x).
bt b = [ 9@E)@)

Definition 2.56 (Compactness, mixed boundary conditions)

Under Assumption (2.52), a sequence (D,,)men of gradient discreti-
sations in the sense of Definition 2.51 is said to be compact if, for
any sequence u, € Xp, such that (||um||p,, )men is bounded, the se-
quence (ITp, um)men is relatively compact in LP(§2) and the sequence
(Tp,,.r, Um)men is weakly relatively compact in LP(I},).

The definition of piecewise constant reconstruction for a gradient dis-
cretisation for mixed boundary conditions is the same as Definition 2.10, re-
placing the space Xp g by Xp.
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As in the non-homogeneous Neumann case, the weak compactness of the re-
constructed traces is an immediate consequence of the coercivity of the se-
quence of gradient discretisations.

The equivalent of Lemmas 2.12, 2.23 and 2.40 is the following lemma.

Lemma 2.57 (Regularity of the limit, mixed BCs). Under Assump-
tion (2.52), let (Dm)men be a coercive, GD-consistent and limit-conforming
sequence of gradient discretisations in the sense of Definitions 2.52, 2.53
and 2.54. Let g € Wl_%’p(&()) and, for m € N, let un, € Xp,, such that
Um — Ip,,.r.9 € Xp,0,1, and ([|[Vp,, unllrs(oya)men is bounded. Then, there
exists u € WYP(£2) such that yu = g on Iy and, up to a subsequence, as
m — 00,
Ip,, um — u weakly in LP(12),

) 4 (2.59)
Vb, tm — Vu weakly in LP(§2)%.

If we assume moreover that g = 0, or that there exists p, € W1P(£2) such
that v, = g and, as m — oo,

min{ [ Zp,,v - ¢,y + ITo,. 0 = ¥ell o,

+IVp,,v = Vogllrr(2ya, v —Ip,, r,ve € Xp,, . 0r,} =0, (2.60)
then we also have
Tp,, r, Um — (Yu)|1, weakly in LP(I3,). (2.61)

Remark 2.58. Assumption (2.60), if satisfied for all ¢, € WP (42), is similar to
the GD-consistency of (D,,)men in the sense of Fourier boundary conditions
(but with a trace reconstruction only on I7,).

Proof.

Step 1: we suppose that g = 0.

Since wy, = Um — Ip,, . r,9 € Xp,,.0,1,, Wwe proceed with u,, as in the proof
of Lemma 2.40, replacing V[é]i’\i’a(ﬂ) with Wdi"’p,’rn(ﬂ) and, in (2.34), the
integrals over 9f2 with integrals over I',. This gives u € LP(£2), v € LP(2)¢
and w € LP(I},) such that , up to a subsequence, IIp,_ u, — u weakly in
LP(2), Vp, um — v weakly in LP(2)4, Tp,, r, uy — w weakly in LP(I},),

m

and such that the following version of (2.35) holds for all ¢ € W2 ((2):

| @) (o) + u(w)dive(@)de — | wi@pale)sa) =0,
Selecting ¢ € C°(£2)¢ gives v = Vu, and therefore u € W1P(£2). Taking
then ¢ smooth that does not vanish on {2 and using an integration-by-parts,
we obtain
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/ o) (@)yu(@)ds(z) = / w(@) () (@)ds().
o

Iy

This shows that yu = w on I', and that yu = 0 on Iy, which concludes the
proof of (2.59) and (2.61) if g = 0.

Step 2: we consider a general g € Wl—%’f’(arz).

As in the proof of Lemma 2.23, we take an extension § € W1P(§2) of g and
we use the GD-consistency to find v, € Xp,, such that v, — Ip, r,g €
Xp,, a.r,, Ip, vym — g in LP(2) and Vp, v, — Vg in LP(2)4. Then u,, —
Um € Xp,,.n,r, and we can apply the reasoning in Step 1 to this function. We
therefore find U € WP(2) such that vU = 0 on I'y and, up to a subsequence,

IIp,, (Um — V) — U weakly in LP(£2),
Vp,, (Um — vm) = VU weakly in LP(£2)% (2.62)
Tp,,.r, (Um — Um) = YU weakly in LP(I3,).

We then let u = U +g € WHP(£2), so that yu = g on I'y. The convergence
properties of (v, )men and (2.62) then show that (2.59) holds.

Step 3: we consider a general g € Wl—%’f’(an), and we assume that (2.60)
holds.

Then we can take v, € Xp, such that v,,—1Ip, , r,9 € Xp,, o.r. Up, vm —
g in LP(Q), Tp, r,vm — 7§ = g in LP(I},), and Vp, v, — Vg in LP(2)%
We can then reproduce Step 2 with this v,,. Since Tp,, 1, v — ¢ in LP(£2),
the convergence Tp,. r, (Um —Vm) = YU = yu—g in LP(I,)-weak (see (2.62))
ensures that (2.61) holds. ]
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Elliptic problems

The ingredients necessary to implement the gradient discretisation method
(GDM) for a diffusion problem were introduced in Chapter 2 for various
boundary conditions (BCs). They can now be applied to write a gradient
scheme (GS) for elliptic and parabolic PDEs; The present chapter is devoted
to the study of gradient schemes for the approximation of linear and non-
linear elliptic problems. Error estimates are provided in the linear case. In the
non-linear case, the convergence is proved thanks to compactness arguments.

3.1 The linear case

In this section, linear problems are considered, so that p = 2 is chosen in all
the definitions of Chapter 2.

3.1.1 Homogeneous Dirichlet boundary conditions

We consider here the following problem:
—div(A(x)Vu) = f + div(F) in £2, (3.1a)

with boundary conditions
w =0 on 012, (3.1b)

under the following assumptions:

e (2 is an open bounded connected subset of R% (d € N*), (3.2a)

e /A is a measurable function from {2 to the set of d x d
symmetric matrices and there exists A\, A > 0 such that,

for a.e. & € 2, A(x) has eigenvalues in [A, A, (3.2b)
o fcL?(N), FeL*(N) (3.2c)
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Note that the assumptions on the right hand side include both the case of
a right hand side in L?(£2) (taking F = 0) and the case of a right hand
side in H~1(£2), since H1(2) = {divv,v € L?(£2)?}. Note also that the
symmetry assumption on A(x) is not mandatory to study the convergence of
the GDM for (3.1a), but it is commonly satisfied in applications. Under these
hypotheses, the weak solution of (3.1) is the unique function @ satisfying:

ueHO ) VUEHO(.Q)
/ Az ) - Vou(z)de = / f(x)v(x)dz — / F(z) - Vu(z)dz. (3.3)
Q Q
Let us now introduce an approximation of Problem (3.3) by the GDM.

Definition 3.1 (GS, homogeneous Dirichlet BCs).
If D= (Xp,0, Ip, V) is a GD in the sense of Definition 2.1, then the related
gradient scheme for Problem (3.3) is defined by

Find u € Xp, such that for any v € Xp o,
/ A(x)Vpu(x) - Vpu(z)de =
Q

/f VIpv(x d:c—/F -Vpu(x)de. (3.4)

Note that, considering a basis (5(2'))2':17,__,1\/ of the space Xp g, Scheme (3.4)
is equivalent to solving the linear square system AU = B, letting

N
u = Z Ujﬁ(j)7
j=1
Ay = / A(x)VpeW (z) - Vpe (z)de, (3.5)
2

B; = /Q f(@) Mpg (@)da — /Q F(z) Vp& (z)da

The following theorem, first proved in [50] in the case F' = 0, is in the spirit
of the second Strang lemma [67].

Theorem 3.2 (Control of the approximation error, homogeneous
Dirichlet BCs). Under Assumptions (3.2), letu € H}(£2) be the solution of
Problem (3.3) (which implies that in the distribution sense —div(AVu+ F) =
f € L3(2) and therefore AVU + F € Hgiy(£2)). Let D be a GD in the sense
of Definition 2.1. Then there exists one and only one up € Xp o solution to
the GS (3.4); this solution satisfies the following inequalities:

1 _
HVﬂ — VDUD||L2(Q)d < X [WD(AVﬂ+ F) + ()\ +A)SD(H)] , (36)
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1 _
Hﬂ — H’DU’DHLZ(Q) < N [CDWD(AVE + F) + (CD)\ + A)Sp(ﬂ)] , (3.7)

where Cp, Sp and Wp are respectively the norm of the reconstruction operator
IIp, the space-consistency defect and the conformity defect, defined by (2.1)-
(2.6).

Remark 3.3 (Mesh-based GSs). Gradient schemes are often mesh-based. Under
usual non-degeneracy assumptions on the meshes, it is proved in many cases

that there exists C' € R, not depending on D, such that
Vo € H*(2) N Hy(R2), Sp(p) < Chollelln2(0)

and
Vi € H'(2)", W () < Chollpl (e,

where hp measures the mesh size. The proofs of these inequalities are done,
for some important examples of gradient schemes, in Part III. Then, under
the assumptions that the coefficients of A are Lipschitz-continuous, that F €
H(2) and that uw € H2(£2) N H}(£2), Theorem 3.2 gives in fact O(hp) error
estimates.

Remark 8.4 (Super-convergence)

As noticed in Remark 3.3 above, the L? estimate in Theorem 3.2 only provides an
O(hp) rate of convergence for low-order schemes. It is well known that several of
these schemes, e.g. conforming and non-conforming IP; finite elements, enjoy a higher
rate of convergence in L2 norm. This phenomenon is known as super-convergence.
It is possible to establish, in the framework of gradient schemes, an improved L?
estimate that provides such super-convergence results for various schemes, including
some for which super-convergence was previously not proved. See [40].

Proof. Let us first prove that, if (3.6) holds for any solution up € Xp o to
Scheme (3.4), then the solution to Scheme (3.4) exists and is unique. Indeed,
let us prove that, assuming (3.6), the matrix denoted by A of the linear system
(3.5) is non-singular. This will be completed if we prove AU = 0 implies U = 0.
Thus, we consider the particular case where f = 0 and F' = 0 which gives a
zero right-hand side. In this case the solution @ of (3.3) is equal to zero a.e.
Then from (3.6), we get that any solution to the scheme satisfies ||up||p = 0.
Since || - ||p is a norm on Xp ¢ this leads to up = 0. Therefore (3.5) (as well
s (3.4)) has a unique solution for any right-hand side f and F.
Let us now prove that any solution up € Xpg to Scheme (3.4) satisfies
(3.6) and (3.7). As noticed in the statement of the theorem, we can take
p = AVT+ F € Hgy;y(£2) in the definition (2.6) of Wp. We then obtain, for a
given v € Xp g,

/Q Vpu(x) - (A(z)Vu(z) + F(x)) + Hpv(x)div(AVa + F)(x)dx
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< [vllp Wp(AVu + F),

which leads, since f = —div(AVu + F) a.e., to

/Q Vou(z) - (A(x)Vu(z) + F(z)) — pv(z) f(x)dx
< ||lv|lp Wp(AVT+ F). (3.8)

Since up is a solution to (3.4), we get

, AVpu(x) - (Vu(x) — Vpup(x))de

We define

< |vllp Wp(AVE+ F).  (3.9)

Ppu = argmin (|[IIpw — | 12(0) + [|[Vpw — V|| 12(0)a) (3.10)

weXp,o
and we notice that, by definition (2.2) of Sp,
[ Ipu — | 12 ) + VD Ppt = V|| 12 )0 = Sp (). (3.11)

Recalling the definition of |-||5 in Definition 2.1, by (3.9) we get

’ /Q AVpu(x) - (VpPpu(x) — Vpup(x))de

S ||VDUHL2(Q)d WD(AVE‘F F)

+ (3.12)

/Q A(x)Vpu(zx) - (VpPpu(x) — Vu(zx))dz

IN

VDUl 2(0)a (WD(AVE‘F F)+X||VpPpu — Vﬂ”Lz(Q)d)
V0l 12(0ya (WD (AVT + F) + ASp (7)) .

IN

Choosing v = Ppu — up yields
MV (Ppti — up)||r2(0)e < Wp(AVU + F) 4+ ASp(u) (3.13)
and (3.6) follows by writing
[Va—Vpupl|L2(0)

< |IVu — VDPDEHB(Q)d + Vo (Ppu — uD)HLQ(Q)d (3.14)

< Sp(u) + % (WD(AVﬂ + F) +XSD(ﬂ)) .

Using (2.1) and (3.13), we get

AHH’DPDH - HDUD||L2(Q) < CD(WD(AVE + F) + XSD(H)),
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which yields (3.7) by using, as in (3.14), a triangular inequality and the esti-
mate ||ﬂ — HDPDQHLZ(Q)GZ < SD(E) ]

Theorem 3.2 gives a control of the approximation error thanks to the space-
consistency indicator Sp, the limit-conformity indicator Wp and the coer-
civity indicator Cp. This theorem yields the convergence of the GDM for
sequences of GDs that are space-consistent, limit-conforming and coercive, as
stated in Corollary 3.5 below. Can this be re-stated as the usual

Consistency and Stability = Convergence (3.15)

statement, well-known in the context of finite difference schemes? The answer
to this question is yes, provided a correct definition of consistency is chosen.

In the classical finite difference setting, the consistency error measures (roughly
speaking) how well the exact solution “fits” into the scheme. Formally, assume
that the equation to be discretised is written under the form Lu = f, and that
the scheme is under the form Lyuy, = f;, = I}, f where h denotes the discreti-
sation step and, for a given function g, II,g is the vector whose components
are the values (g(#;))i=1,..n of g at the discretisation points (#;)i=1,.. n-
Then the consistency error for the finite difference scheme is defined by

Cp = Lhﬂhu — fh = Lhﬂhu — Hh(Lu)

In this context, it is well-known that (3.15) holds: indeed, consistency (i.e.
cn — 0 as h — 0) and stability (i.e. L; " bounded) imply convergence (i.e.
max;=1,.. ~ [ Hp(u) —up|(x;) — 0 as h — 0).

In the finite element context, (3.15) no longer holds under these terms, al-
though the spirit remains the same. The reason for the failure of (3.15) is
that consistency no longer refers to how the exact solution fits into the com-
plete scheme, but only into the discrete equation of the scheme. To be more
explicit, consider the following elliptic problem:

wev, (3.16)
a(u,v) = (f,v), Yv eV, (3.17)

where V = HE(£2), f € L?(£2), and a is a continuous coercive bilinar form on
V. Consider a finite element scheme for the discretisation of Problem (3.17),
which reads

up € Vi, (3.18)
ah(uhuv) = (f,’l}) ) Yu € th (319)
where V}, is a finite dimensional space. In order to measure “how well the

exact solution fits into the scheme”, the consistency error should measure

(i) how far V}, is from V,
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(ii) how far ky, is from 0, with

Kp = max lan (wu,v) = (f, U)l, (3.20)

veV,\{0} vl

where IT,u is either u itself, or some kind of interpolant of u. In most finite
element textbooks, these two notions have been separated: Property (i) is
measured by the so-called interpolation error, while the term “consistency”
(or asymptotic consistency) only refers to the fact that k, =0 (or K, — 0 as
h — 0). We shall call this latter property “FEM-consistency” for the sake of
clarity. For the conforming Py finite element for instance, a;, = a, Il u can
be taken equal to u, and k; = 0, in which case the finite element scheme is
said to be consistent. However, there are cases where the solution to the PDE
itself cannot be plugged into the scheme’s equation (for instance when using
numerical quadrature), but when an interpolant of this solution needs to be
used; for more on this, see e.g. [21, Chapter 4] or [44, Chapter 20]. Hence in
the FEM context, (3.15) still holds provided

Consistency = FEM-consistency and interpolation error control. (3.21)

For the stability issue in the FEM context, we also refer to [44].

Let us now view a finite element method as a GDM. In this context, the
space-consistency (see Definition 2.4) together with the limit-conformity (see
Definition 2.2) is sufficient to ensure the consistency of the scheme in sense
(3.21). Indeed, in the context of the GDM, the equivalent of the term ry
defined by (3.20) reads (for F = 0)

/ A(x)Vp(Ppu)(x) - Vpu(x)de — / A(z)Vu(z) - Vpu(z)de
= J& 2

||VDUHL2(Q)d

KD

Controlled by Sp(@), see (3.12)

A(x)Vu(x) - Vpu(z)de — /Q f(x)pv(x)dx

4 J0
VDol 20

Controlled by Wp(AVa), see (3.8)

Note that space-consistency and stability (or coercivity) are not sufficient
to prove the convergence of a general GDM. The limit-conformity (which is
inherent to all conforming finite element methods) is needed to ensure that
the discrete function reconstruction and the discrete gradient reconstruction
are chosen in a coherent way. Hence for the GDM, we may also write

Consistency and Stability = Convergence,

provided
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Consistency = Space-consistency and Limit-conformity.

Let us conclude this section by stating the convergence of the GS, which
follows easily from Theorem 3.2.

Corollary 3.5 (Convergence). Under Hypotheses (3.2), let (Dm)men be
a sequence of GDs in the sense of Definition 2.1, which is coercive, space-
consistent and limit-conforming in the sense of definitions 2.2, 2.4 and 2.6.

Then, for any m € N, there exists a unique solution u,, € Xp, o to the
gradient scheme (3.4) and IIp  u,, converges in L*(2) to the solution U of

m

(3.3) and Vp,, uy, converges in L2(£2)? to Vu as m — .

Remark 3.6 (On the compactness assumption). Note that, in the present linear
case, the compactness of the sequence of GDs is not required to obtain the
convergence ; this compactness assumption will be needed in general for non
linear problems (see Remark 3.36 for non linear problems that do not require
it).

Remark 8.7 (Space-consistency and limit conformity are necessary conditions)

We state here a kind of reciprocal property to Corollary 3.5. Let us assume that,
under Assumptions (3.2a)-(3.2b), a sequence (D )men of GDs is such that, for all
f € L*(2) and F € L*(2)? and for all m € N, there exists u, € Xp,, 0 which
is solution to the gradient scheme (3.4) and which satisfies that ITp,,um (resp.
Vp,,um) converges in L?(£2) to the solution @ of (3.3) (resp. in L*(2)¢ to V).
Then (D )men is space-consistent and limit-conforming in the sense of definitions
2.4 and 2.6.

Indeed, for ¢ € Hg(£2), let us consider f = 0 and F = —AV in (3.3). Since in this
case, U = ¢, the assumption that ITp,, u, (resp. Vp,,um) converges in L*(£2) to the
solution ¢ of (3.3) (resp. converges in L?(£2)% to V) suffices to prove that Sp,, (¢)
tends to 0 as m — oo, and therefore the sequence (D, )men is space-consistent.
For ¢ € Haiv(£2), let us set f = divep and F' = —¢ in (3.3). In this case, the solution
7 is equal to 0 a.e., since the right-hand side of (3.3) vanishes for any v € Hg(£2).
Since um, € Xp,, 0 is a solution to the GS (3.4), we get for all v € Xp,, o,

/Q (Vo 0(x) - (@) + [Tp,, v(@)dive(z)) de
SV tmllr2(2)al| VD, vl 20y
Using that Vp,, u., converges in L?(£2)% to 0, we get that
Wo,,, (@) < M|V, tm| 20y — 0 as m — 0,

hence concluding that the sequence (D )men is limit-conforming.

Note that, if we now assume that Vp,, un, converges only weakly (instead of strongly)
in LQ(Q)d to Va, the same conclusion holds. Indeed, these hypotheses are sufficient
to prove that Vp,, u,, converges in LQ(Q)d to Vu. It suffices to observe that

lim (f(z)IIp,, um(x) — F(x) - Vp,,um(z))de

m—oo [
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= / (f(z)u(x) — F(x) - Vu(zx))dx.
o)
Then we take v =@ in (3.3) and v = u., in (3.4), this leads to

lim A(x)Vp,, um(x) - Vp,, um(x)de = /Q A(z)Vu(zx) - Vu(x)dz

m—00 |

In addition to the assumed weak convergence property of Vp,, tm, this proves

lim A(x)(Vp,,um(x) — Vu(z)) - (Vp,,um(x) — Va(z))de = 0,

m—oo [

and the convergence of Vp,, um to V@ in L?(£2)¢ follows.

3.1.2 Non-homogeneous Dirichlet boundary conditions

As already mentioned in Section 2.1.2, the case of non-homogeneous Dirichlet
boundary conditions requires the concept of trace of functions in H'(§2) which
demands the Lipschitz regularity of the boundary 0f2. We refer to Section
2.2.3 for the properties of the trace operator in this context. We consider the
linear problem defined in its strong form by:

—div(A(x)Va) = f + div(F) in £2, (3.22a)
with boundary conditions
u = g on 0{2, (3.22Db)
under Assumptions (3.2) and

(2 is an open bounded connected subset of R? (d € N*)

with Lipschitz boundary, (3.23)

g€ HY2(00). (3.24)
Under these hypotheses, the weak solution of (3.22a) is the unique function
u satisfying:
u e {we H' (2),7(w) =g}, Vv e Ho

| 4@V Vo@)ie = [ f@)(a)ie - / F)- Vo(@ye, %)

Under Assumptions (3.2)-(3.24), the GDM applied to Problem (3.25) yields
the following gradient scheme.

Definition 3.8 (GS, non-homogeneous Dirichlet BCs). If D = (Xp =
Xp.0® Xp,0,Ip,0,Ip, VD) is a gradient discretisation in the sense of Defi-
nition 2.18, then we define the related gradient scheme for (3.25) by
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Find u € Ip g + Xp,o such that, for any v € Xp,

/ z)Vpu(z) - Vpu(z)dz (3.26)
/f VIpv(x dzc—/F - Vpu(z)de.

The following theorem states error estimates for the GS for non-homogeneous
Dirichlet boundary conditions. This theorem yields a convergence result (not
explicitly stated) similar to Corollary 3.5.

Theorem 3.9 (Control of the approximation error, non-hom. Dirich-
let BCs). Under Hypotheses (3.2), (3.23), (3.24), let w € H*(£2) be the solu-
tion of (3.25) (remark that since f € L?(12), one has AVu+ F € Hg;, (02)).
Let D be a GD in the sense of Definition 2.18. Then there exists one and
only one up € Xp solution to the GS (3.26), and it satisfies the following
inequalities:

1 _
||Vﬂ - VD’U,DHLz(Q)d < X [WD(AVH + F) + ()\ + A)Sp(ﬂ)} s (327)
1 _
||ﬂ — HDUDHLQ(_Q) < X [C’DWD(AVE + F) + (CD)\ + A)SD(E)] R (328)

where Cp, Sp and Wp are defined by Definitions 2.2, 2.20 and 2.6.

Proof. Reasoning as in the proof of Theorem 3.2, we arrive at (3.9) for any
v € Xp . We then define

Ppu = argmin (Hﬂpw—ﬂHLz(Q) + Hpr—VﬂHLQ(Q)d),
w€EIp o9+Xp,0

and we notice that, by definition (2.14) of Sp, (3.11) is still valid. Moreover,
the vector v = Ppu — up belongs to Ip 99 + Xpo + (—Ip a9+ Xp,o) = Xp o
and can therefore be used in (3.9). The rest of the proof is then exactly as in
the proof of Theorem 3.2. [

3.1.3 Neumann boundary conditions

We consider here a linear elliptic problem with non-homogeneous Neumann
boundary conditions

—div(A(x)Va) = f + div(F) in {2,

AV -n+F-n=hon o, (329)

where n is the unit normal outward {2 to 92, assumed to be Lipschitz, under
Assumptions (3.2), (3.23) and

h e L*(902) and [ f(x)dx + h(x)ds(x) = 0. (3.30)
17 00
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Under these hypotheses and defining

HIQ) = {p e H(Q). / p(x)dz = 0},

9]

the weak formulation of (3.29) is
ue HN ), Yve Hl(Q)
/Q N@)Va(z) - Vo(z
z)dz — / F(a) - Vo@de + | h@)y()(@)ds(@).

a0

(3.31)

We recall that, owing to Hypothesis (3.30), Problem (3.31) is equivalent to
ue HY(N), Yve Hl(())
/ Az x)dx +/ u(x )dsur:/Q (z)dz (3.32)
= / f(x)v(x)de — / F(x x)dx —|—/ h(x)y(v)(x)ds(x),
Q a0

since letting v = 1 in (3.32) implies that [, u(z)dx = 0.
The approximation of Problem (3.31) by the GDM is described in the next
definition.

Definition 3.10 (GS, Neumann BCs). If D = (Xp, lIp,Tp,Vp) is a GD
for Neumann problems in the sense of Definition 2.32, then we define the
related gradient scheme for (3.31) by

Find u € Xp such that, for any v € Xp,
/ A(x)Vpu(z) - Vpo(x) dw+/ Hpu(x)dx / Ipv(x)de

/f Vpv(x da:f/F - Vpu(x)de (3.33)
n

h(z)Tpv(x)ds(x)
a9

The error estimates for Neumann boundary conditions are stated in Theorem
3.11. We do not explicitly the convergence result, similar to Corollary 3.5,
that stems from these error estimates.

Theorem 3.11 (Control of the approximation error, Neumann BCs).
Under Hypotheses (3.2), (3.23) and (3.30), let u € HL(§2) be the solution of
(3.31) (remark that f € L*(2) and h € L*(902) imply that in AVu + F €
Wdivi2.9(0) see (2.27)).

Let D be a GD for a Neumann problem in the sense of Definition 2.32.

Then there exists one and only one up € Xp solution to the GS (3.33), and
this element satisfies the following inequalities:
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HVﬂ — VDUD||L2(Q)d, < Err + Sp(ﬂ), (3.34)

Hﬂ — HDUDHLQ(Q) < CpErr + Sp(ﬂ), (335)
. R 1 - By 1/2 —

with Brr = oo [Wp(AVT+ F) + (3 + 19 CD)SD(U)] :

where Cp, Sp and Wp are defined by (2.26), (2.20) and (2.28).

Remark 3.12 (Error estimate on the traces). If we let Sp be the measure of
space-consistency for Fourier boundary conditions (i.e. (2.36)), then Proposi-
tion 2.43 and Theorem 3.11 show that

(@) — Toup|l 200 < C1 (Wo(AVE + F) + Sp(@)) .

where C only depends on ), ), |2| and an upper bound of Cp.

Proof. Recall that in Definition 2.32, it is assumed that

2) 1/2

defines a norm on Xp. Therefore, proving (3.34) for any solution up € Xp to
Scheme (3.33) is enough to prove the existence and uniqueness of this solution
(because this estimate shows that, whenever f = 0, h = 0 and F = 0, the
only possible solution to the scheme is up = 0).

To prove the estimates, we take ¢ = AVa+F € W4V:29() in the definition
(2.28) of Wp and using that @ is the solution to (3.31). We then have, for any
v € Xp,

HUHD = (”v'DU”iZ(Q)d + ‘/Q HD’U(LE)d:B

/Q [Vpu(z) - (A(x)Vu(z) + F(z)) — Hpv(x) f(z)]|de

7/ h(z)Tpv(x)ds(z)| < ||v|lp Wp(AVT + F).
o0

Therefore, since up is a solution to (3.33), we get

[ A¥or(a) - (Via) - Voo (@)de
_/ II'pup(x)de / Hpv(:c)dm‘ < |lvllp Wp(AVE + F).
2 o)

We then introduce

Ppu = argmin (HU’D’LU — ﬂ”[@(_@) + Hva - VEHL2(Q)L1) (336)

weEXp

in the above inequality. It leads to
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/n AVpo(@) - (Vo Poi() — Voup (@))de

+/Q(HDPDE(:B)—HDuD(w))dw /QHD’U(CL‘)dCB

< |vllp Wp(AVu + F) +

/ AVpu(x) - (VpPpu(x) — Vu(x))dx

o)
—|—/ IIp Ppu(x)de / Hpv(x)de
7 2

Observing that

/ HDPDH(.’IJ)dSC
2

/ (IIpPpu(x) — u(x))dx
7

< |2]'/? || ITp Ppu — ll 200

we can write, using the definition (2.26) of Cp,

/Q AVpu(x) - (VpPpu(x) — Vpup(x))de

+/(2(HDPDE(m)—HDuD(m))dm /QHDv(w)da:

<ollo [Wo(AVE + F) + (3 + |Q|1/2cp)sp(a)} .
We now let v = Ppu — up. Recalling the definition (2.25) of |-|| 5, we obtain

Wp(AVT + F) + (A + |2|Y/2Cp) Sp(7)

Pl — <
|Ppu — up||p < min(), 1)

The conclusion follows as in the proof of Theorem 3.2. ]

3.1.4 Mixed boundary conditions

To conclude the case of linear problem, we consider here a linear elliptic
problem with mixed boundary conditions

—div(A(x)Vu) = f + div(F) in £,
w=gon Iy, (3.37)
AVu-n+F -n=hon I,

under Assumptions (3.2), (3.23), (2.52) and
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ge HY2(80), h e L*(I,). (3.38)

Denoting by Hp, (£2) the set of functions in H'(£2) whose trace on Iy vanishes,
the weak formulation of (3.37) is

we{weHY(2) : y(w) =g on I}, Yve Hf (1),
[ A@)Vi(a) - Volaia - / f(@)o(@)dz

/ F(x xz)dx + h(zx)y(v)(x)ds(x).

F’Vl

(3.39)

The GDM applied to this mixed problem yields the following scheme.

Definition 3.13 (GS, mixed linear problem).
If D= (Xp,Ip,r,, Ip, Tp.1n,, V) is a GD for mized problems in the sense
of Definition 2.51, then the related gradient scheme for (3.39) is defined by:

Findu € Ip r,9 + Xp,o,r, such that, for any v € Xp o,r,,
| 4@ Vuta) Vou(e)de = | f@)ipu(a)de
o}

/F - Vpu( )dw—i—/F hMx)Tp, r,v(x)ds(x).

n

(3.40)

The proof of the following error estimates for mixed boundary conditions is
similar to the proofs made in the case of other boundary conditions. Likewise,
a convergence result similar to Corollary 3.5 follows from these error estimates.

Theorem 3.14 (Control of the approximation error). Under Hypothe-
ses (3.2), (3.23), (2.52) and (3.38), letw € H(£2) be the solution of (3.39) (re-
mark that since f € L?(82) and h € L*(I},), we have AVu+F € WIV:2In (),
see (2.56)).

Let D be a GD for mized boundary conditions in the sense of Definition 2.51.
Then there exists one and only one up € Xp solution to the gradient scheme
(3.40), and this element satisfies the following inequalities:

1 —
||Vﬂ - VDUDHLQ(Q)d < — [WD(AVE+ F) + ()\ +A)Sp(ﬂ)} ,
[z — HDUD||L2( X [CDWD(AVU +F)+ (O’DX + A)Sp(ﬂ)] ,

where Cp, Sp and Wp are defined by (2.53), (2.54) and (2.57).

3.2 Unknown-dependent diffusion problems

We shall consider here the quasi-linear operator' u + —div(A(z,u(x))Va),
which is often used to model non-linear heterogeneous materials. For such an

! Recall that a partial differential operator is said to be quasilinear if it is linear
with respect to all the highest order derivatives of the unknown function.
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operator, we remain in the functional framework of the linear case, considering
again that p = 2.

3.2.1 Homogeneous Dirichlet boundary conditions

We consider the following problem:
—div(A(z,w(x))Vu) = f in £2, (3.41a)
with boundary conditions
u =0 on 92, (3.41b)

under the following assumptions:

e 2 is an open bounded connected subset of R, d € N*, (3.42a)
e /A is a Caratheodory function from 2 x R to My(R),

A(zx, s) is measurable w.r.t. & and continuous w.r.t. s,

there exists A\, A > 0 such that, for a.e. & € {2, for all s € R

A(z, s) is symmetric with eigenvalues in [\, )], (3.42b)
o fcL?(N). (3.42¢)

Under these hypotheses, a weak solution of (3.41a) is a function @ (not nec-
essarily unique) satisfying:

ue H(02), Vv e HL($),
/Aa:u ))Vu(z) - Vo(z d:c—/f (3.43)

Then Problem (3.43) is approximated under Assumptions (3.42) by the fol-
lowing gradient scheme.

Definition 3.15 (Gradient scheme, unknown-dependent diffusion). If
D = (Xp,o,IIp,Vp) is a GD in the sense of Definition 2.1, then we define
the related gradient scheme for (3.3) by

Find u € Xp, such that, for any v € Xp g,

/ Az, Hpu(x))Vpu(x) - Vpu(x)dx :/ f(z)Tpv(x)da. (3.44)
@ 2

Note that, considering a basis (E(i))izl,,,,,]\; of the space Xp ¢, Scheme (3.44) is
equivalent to solving the system of N non-linear equations with N unknowns
A(w)U = B with

N
u= Z Ujg(j)7
j=1
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Ay () = /Q A, Hpu(@)VpeD (@) - Vpe i (z)de,  (3.45)

B; = /Q f(@)IpeD (x)da.

Standard methods for the approximation of a solution of this system can be
considered, such as the fixed point method A(u(k))U(’H‘l) = B or the Newton-
Raphson method.

Let us now state a convergence result (note that an error estimate between
an approximate solution and a weak solution to (3.44) cannot be stated, since
the uniqueness of the solution to neither (3.45) nor (3.44) is known in the
general case).

Theorem 3.16 (Convergence, unknown-dependent diffusion). Under
assumptions (3.42), take a sequence (Dy,)men of GDs in the sense of Defini-
tion 2.1, which is space-consistent, limit-conforming and compact in the sense
of Definitions 2.4, 2.6 and 2.8 (it is then coercive in the sense of Definition
2.2, see Lemma 2.9).

Then, for any m € N, there exists at least one w,, € Xp,, o solution to the
gradient scheme (3.44) and, up to a subsequence, Ilp, u,, converges strongly
in L?(£2) to a solution u of (3.43) and Vp,, u,, converges strongly in L*(§2)¢
to Vu as m — oo.

In the case where the solution u of (3.43) is unique, then the whole sequence
converges to w as m — oo in the senses above.

Proof.

Step 1: existence of a solution to the scheme.

Let D = (Xp,IIp, Vp) be a GD in the sense of Definition 2.1. Let w € Xp o
be given, and let u € Xp ¢ be such that

Find v € Xp o such that, Vv € Xp o,

/ A(w, HDw(m))vDu(m) . VD”U(a:)da: _ / f(m)ﬂpv(m)dw. (3.46)
2 2

Therefore, u is solution to the square linear system A(w)U = B, where A(w)
and B are defined in (3.45). Let us prove that the matrix A(w) is invertible.
Letting v = w in (3.46), and applying the Cauchy-Schwarz inequality and
Hypothesis (3.42b), we get

AVoullZege < 1fllz2e) 1 pullL20) < Ol flle2 (@) [ Voul L2 o),
where Cp is defined by (2.1) in Definition 2.2. This shows that
C
[Voullpz(o)e < TDHflle(Q). (3.47)

This completes the proof that A(w) is invertible, since (3.47) shows that
A(w)U = 0 implies U = 0. We then can define the mapping F' : RY — RV,
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by F(W) = U, with U is the solution of the linear system A(w)U = B. This
mapping is continuous, thanks to the continuity of the coefficients of the in-
verse of a matrix with respect to its coefficients. Moreover, we get from (3.47)
that some norm of U remains bounded, which means that F' maps R¥ into
some closed ball B if RY. Therefore the Brouwer fixed point theorem (Theo-
rem C.2) proves that the equation F(U) = U has at least one solution. This
proves the existence of at least one discrete solution to (3.44).

We note that the previous estimates easily show that any solution to this
scheme satisfies (3.47).

Step 2: convergence of IIp  uy, and Vp,  tp,.
Thanks to the coercivity hypothesis and (3.47), we have

C
IV, uml 22y < TPllfHL?(m (3.48)

We may then apply Lemma 2.12; which states that there exists a subsequence
of (D, wm)men, denoted in the same way, and there exists u € HJ (£2) such
that Vp, u,, converges weakly in L?(£2)? to V@ and IIp,, u,, converges weakly
in L2(£2) to u. Thanks to the compactness hypothesis, there exists again a
subsequence of the preceding one, denoted in the same way, such that IIp  up,
converges in L?(2) to u.

Step 3: proof that @ is a solution to Problem (3.43).

This proof is done by passing to the limit in the gradient scheme (3.44),
considering as test function the following interpolation of a given function
p € Hy(02).

Let us define, for a given GD D, Pp : H} () — Xp o by

P = argmin (|[1Tpv = ¢l 2oy + IV0 = Vol 20y -

veEXD,0

We have
1To(Pog) = Pl o + IV0(Pog) = Vil 1o s < So(%)
and therefore, by space-consistency of the sequence (D, )men, Ip,, (Pp,, @) —
¢ strongly in L?(£2) and Vp,, (Pp, ) — Vi strongly in L?(£2)<.
Using Lemma C.4 page 404 (non-linear strong convergence), we infer that

A(, IIp,, um)Vp,, (Pp, @) — A(-, W)V strongly in L?(£2)%. By symmetry of
A and the weak-strong convergence property (Lemma C.3), this shows that

/Q A, I, (@) Vo, u() - Voo, (Pp,. o) (a)da
- /Q Vo, u(®) - [A@, Ip, i (x)) Vo, (Pp, ¢)(x)] da

— | Va(z) - [A(z,u(x))Ve(x)]de asm — oo
7
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. / A, 7)) V(@) - Vo(x)da. (3.49)
Q
Moreover, since IIp, (Pp, @) — ¢ in L*(£2) as m — oo,

/ f(x)Ip,, (Pp,, ¢)(x)dx —>/ f@)p(x)de asm — oco. (3.50)
o) Q

Letting v = Pp,, ¢ in (3.44), we can use (3.49) and (3.50) to pass to the limit
and see that @ is a solution to (3.43).

Step 4: strong convergence of Vp, .

Let now prove that Vp, u,, converges to Vu in L?(£2)%. We let v = u,, in
(3.44) and we pass to the limit in the right-hand side. Since % is a solution to
(3.43), we obtain

lim [ A(@,IIp,,un(2)) VD, um(®) - VD, um(®)dz
m (oo} (9

(3.51)
= | f(@)a(z)ds = / A, i(2))Vi(@) - Va(z)dz.
(9] (9]

We have
/Q Az IIp,, um(x))(V,, um(x) — Vu(z)) - (Vp,, un(x) — Vi(x))de
- /Q A, I, i (2)) Vi, 1 () - Vi, tm ()
- /ﬂ A, I, i (2)) Vi, 1 () - V() da
- /!2 A, I, un ())VE(®) - (Vo (@) — VE(@))dz.  (3.52)
By (3.51), the weak convergence of Vp, u;,, the strong convergence of
A(+, IIp,, um)VT (obtained by non-linear strong convergence property, see

Lemma C.4 page 404), and the weak-strong convergence lemma (Lemma C.3),
we infer that

/ Az, II'p,, um (x))(Vp,, um(x) — Vu(z)) - (Vp,, um(x) — Vu(x))dx
Q

—0 asm — oo.
The coercivity of A shows that the left-hand side is larger than

A /Q Vo, (@) — Vi())2da.

This quantity therefore converges to 0 and the proof of the strong L?(2)
convergence of the gradients is complete. [
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3.2.2 Non-homogeneous Dirichlet boundary conditions

We again refer to Section 2.2.3 for the properties of the trace operator in the
case of domain {2 with Lipschitz boundary, and we consider Problem (3.41a),
replacing the homogeneous Dirichlet boundary condition by

u =g on 0f2,
under Assumptions (3.42) and
g€ HY2(00). (3.53)

Under these hypotheses, a weak solution of this problem is a function @ (again
not necessarily unique) satisfying:

u e {we H'(2),7(w) = g}, Yo € Hy(£2),

/A(IB7E(w))Vﬂ(m)-Vv(w)dm:/ f(x)v(z)de, (3.54)
@ 2

and it is approximated by the following gradient scheme.

Definition 3.17 (Non-linear problem, Dirichlet BCs).
IfD=(Xp=Xpo®Xp,0,Ip,s,Ip, V) is a GD in the sense of Definition
2.18, then we define the related gradient scheme for (3.54) by

Find u € Ip pg + Xp,o such that, for any v € Xp o,

/ Az, Ipu(x))Vpu(x) - Vpo(x)de :/ f(x)Ipv(x)dx. (3.55)
0 [0

This scheme is again leading to a nonlinear system of equations under the
form A(u)U = B, similar to (3.45). We then have the following convergence
result.

Theorem 3.18 (Convergence).

Under assumptions (3.42)-(3.53), let (D )men be a sequence of GDs in the
sense of Definition 2.18, which is space-consistent, limit-conforming and com-
pact in the sense of Definitions 2.20, 2.6 and 2.8 (it is then coercive in the
sense of Definition 2.2, see Lemma 2.9).

Then, for any m € N, there exists at least one u,, € Xp,, solution to the
gradient scheme (3.55) and, up to a subsequence, IIp, un, converges strongly
in L2(£2) to a solution u of (3.54) and Vp,, uy converges strongly in L?(£2)?
to Vu as m — oo.

In the case where the solution @ of (3.54) is unique, then the whole sequence
converges to w as m — oo in the senses above.

Proof. Let us first consider any GD D in the sense of Definition 2.18. We
consider any lifting g € H'(§2) such that vg = g, and we define
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P3g= argmin  (|[IIpv —gllr2(0) + |[VDv — V@l 2(2)e) -
v€EIp 6g9+XD,0

Thanks to Definition 2.20, we get that IIp,, Pgm g converges strongly in L?(2)
togand Vp,, Pgmg converges strongly in L?(£2)? to Vg. Then, for any solution
u to (3.55), writing w = u — P3g € Xp o, we have

Yv € Xpyo,

/Q A, ITp(w + P23) (@) Vow(@) - Voo(a)de

— [ @itov@)e ~ [ Alw. To(w+ Phg)(@) Vo Pho(a) - Vov(zda
(93 (93

The remaining of the proof is then similar to that of Theorem 3.16, reasoning
on w instead of w. [

3.2.3 Homogeneous Neumann boundary conditions

We consider Problem (3.41a), replacing the homogeneous Dirichlet boundary
condition by
A, w)Va-n =0 on 952,

where n is the unit normal outward (2 to 02, assumed to be Lipschitz, under

Assumptions (3.42) and
/ f(z)dz = 0. (3.56)
17

Under these hypotheses, again defining H}(2) = {¢ € H'(2), [, ¢(x)dx =
0}, a weak solution of this problem is a function @ (not necessarily unique)
satisfying:

ue HN02), Vve H (),

/ Az, u(x))Vu(x) - Vo(x)de :/ f(x)v(x)de, (3.57)
@ 2

and it is approximated by the following gradient scheme.

Definition 3.19 (Non-linear problem, homogeneous Neumann case).
If D= (Xp,Ip,Vp) is a GD in the sense of Definition 2.24, then we define
the related gradient scheme for (3.57) by

Find u € Xp such that for any v € XD,
/ Az, lTpu(z))Vpu(zx) - Vpu(x) (3.58)

/Hpu dw/ﬂpv dw—/f VIpv(x
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This scheme is again leading to a nonlinear system of equations under the form
A(u)U = B, similar to (3.45). But the matrix such obtained is in general full,
and equivalent algebraic methods leading to sparse matrices must be used.
We then have the following convergence result.

Theorem 3.20 (Convergence). Assume (3.42)-(3.56), and let (Dp)men be
a sequence of GDs in the sense of Definition 2.2/, which is space-consistent,
limit-conforming and compact in the sense of Definitions 2.27, 2.28 and 2.29
(it is then coercive in the sense of Definition 2.26).

Then, for any m € N, there exists at least one u,, € Xp,, solution to the
gradient scheme (3.58) and, up to a subsequence, IIp, u., converges strongly
in L?(£2) to a solution u of (3.57) and Vp,,u,, converges strongly in L*(§2)¢
to Vu as m — oo.

In the case where the solution @ of (3.57) is unique, then the whole sequence
converges to w as m — oo in the senses above.

Proof. We proceed as in the proof of Theorem 3.16.
For any GD D in the sense of Definition 2.32, let w € Xp be given, and let
u € Xp be such that

/ €T pr( VDU ) VDU

(3.59)
/Hpu dw/ﬂpv dx—/f JIpv(x)de, Yve Xp.

Then, letting v = w in (3.59), and applying the Cauchy-Schwarz inequality
and the coercivity property in the sense of Definition 2.26, we get

min(A, Dllullp < [1fllz2ce) 1 pullrz o) < Opllfllzze) llullp.

This shows that
[ullp < _ o £l (3.60)
P = min(y, 1) EHE '

Therefore, u is obtained by the resolution of an invertible square linear system
(since a null right hand side implies © = 0). The mapping w — w is continuous,
by continuity of the coefficients of the inverse of a matrix with respect to its
coefficients. Applying the Brouwer theorem (Theorem C.2), we see that this
mapping w — u has at least one fixed point. This shows the existence of at
least one discrete solution to (3.58). It is clear that any solution to this scheme
satisfies (3.60).

We denote by u,, € Xp,, such a solution for D = D,,,. The estimate (3.60)
shows that (||um|p )men is bounded and thus, up to a subsequence still
denoted by (U, )men, we find u € H'(£2) such that ITp  u,, converges strongly
in L2(2) and a.e. to @ and Vp,, u,, converges weakly in L?(£2)¢ to Vu. We
used here Remark 2.42 and the compactness of the sequence of GDs.

We define Pp : H'(£2) — Xp by
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Ppy = arggr(lin (HHDU — (P”L?(Q) +||Vpv — V<p||L2(_Q)d) . (3.61)
vEXD

By space-consistency of the sequence of GDs, for any ¢ € H'(£2) we have
IIp,, (Pp,,¢) — ¢ strongly in L?(£2) and Vp, (Pp, ») — Ve strongly in
L2(0)%.

Since 1, (the characteristic function of {2) belongs to H'(£2), we can take

v = Pp,1p in (3.58) and pass to the limit. We get, thanks to Hypothesis
(3.56), that

0=t ([ Mo, un(eyia) ([ 1, (P, p)(@)ac)

_ (/Q u(a:)da:) 2],

This shows that w € H}(£2) and that

lim IIp, um(x)de = 0. (3.62)

m—r oo (7

Let ¢ € HL(£2) be given. Using the non-linear strong convergence property
of Lemma C.4 page 404, A(-, ITp, um)Vop,, (Pp, ¢) — A(-,u)Vep strongly in
L2(£2)%. Lemma C.3 (weak-strong convergence property) enables us to pass
to the limit in (3.58) with v = Pp_ ¢, which proves that @ is a solution to
(3.57).

By passing to the limit in the left-hand side of (3.58) with v = w,, and using
(3.62), we get

lim Az, Ip,, um (x)) Vo, um(x) - Vo, t(x)de

m m m
m—0o0

Ie;
:/ f(w)ﬂ(a:)da::/ Az, u(zx))Vu(x) - Vu(z)de
2 o)

and the strong convergence of Vp,_ u,, to Vu follows from this as in the proof
of Theorem 3.16. [

3.2.4 Non-homogeneous Neumann boundary conditions

We again refer to Section 2.2.3 for the properties of the trace operator in
the case of domain §2 with Lipschitz boundary. We consider Problem (3.41a),
replacing the homogeneous Dirichlet boundary condition by

A(-,w)Vu-n = h on 042,

where n is the unit normal outward (2 to 02, assumed to be Lipschitz, under
Assumptions (3.42) and
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h e L2(092), / f@)dz+ [ h@)ds(@) = 0. (3.63)
0 a0
Under these hypotheses, again defining

HY(Q) = {p e H'(2), /Q p(a)da = 0},

a weak solution of this problem is a function @ (not necessarily unique) satis-
fying:

ue€ HN (), Vv e HL(9),

/A (z,u(x))Vu(z) - Vu(x da:—/ flx dw—i-/th(:B)v(v)(w)ds(w).

(3.64)
We again recall that, owing to Hypothesis (3.63), Problem (3.64) is equivalent

to
ue H'(Q), Vv e H(0),

[ Atw () Va(e) - Vele)de + / a@)ie [ vee oo

/f daz+/h 2)ds(x),

since letting v = 1 in (3.65) implies that [, u(x)dx = 0.
This problem is therefore approximated by the following gradient scheme.

Definition 3.21 (Non-linear problem, Neumann case).
If D = (Xp,IIp,Tp,Vp) is a GD in the sense of Definition 2.32, then we
define the related gradient scheme for (3.64) by

Find u € Xp such that, for any v € Xp,
/ Az, Ipu(x))Vpu(x) - Vpu(x)de —|—/ IIpu(x)dx / Hpv(z)dz
Q Q Q

= / f(x)Ipv(x)de + / h(z)Tp(v)(x)ds(x).
Q o0
(3.66)
We then have the following convergence result.

Theorem 3.22 (Convergence).

Under assumptions (3.42)-(3.63), let (D )men be a sequence of GDs in the
sense of Definition 2.32, which is space-consistent, limit-conforming and com-
pact in the sense of Definitions 2.27, 2.34 and 2.36 (it is then coercive in the
sense of Definition 2.33).

Then, for any m € N, there exists at least one u,, € Xp,, solution to the
gradient scheme (3.66) and, up to a subsequence, IIp, u, converges strongly
in L2(£2) to a solution u of (3.64) and Vp,, uy converges strongly in L?(£2)?
to Vu as m — oo.

In the case where the solution @ of (3.64) is unique, then the whole sequence
converges to w as m — oo in the senses above.
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Proof. We follow the same line as that of the proof of Theorem 3.20, in
addition to the use of Remark 2.41 for the weak convergence of the discrete
trace.

We first get, thanks again to Brouwer’s fix-point theorem, the existence of

at least one discrete solution u,, € Xp, to (3.66). Thanks to the coercivity

hypothesis (Definition 2.33) which involves the discrete trace, we then get that
Cp

umllD,, < m(”f”w(m + 12l 2(002))- (3.67)

Then the same arguments as those used in the proof of Theorem 3.20 show
that there exists u € H(£2), and a subsequence such that Vp_ u,, converges
weakly in L2(2)¢ to Vu and Ip,, u,, converges weakly in L2({2) to . More-
over, for the interpolation v,, = Pp, ¢ defined by (3.61), for any ¢ € H}(£2),
we get using Remark 2.41, that Tp, v,, — ¢ weakly in L?(942). The remain-
ing of the proof is then similar to that of the proof of Theorem 3.20. [

3.2.5 Non-homogeneous Fourier boundary conditions

We consider the same hypotheses on {2 as in the preceding section (in par-
ticular, it is assumed to have a Lipschitz boundary), and we then consider
Problem (3.41a) with Fourier boundary conditions:

A, w)Vu - n+bu = h on 052,
under Assumptions (3.42) and

h € L?(002), b€ L*>(0£2) and (3.68)
there exists b > 0 such that b(z) > b for a.e. © € 012. '
A weak solution of this problem is:

ue HY (D), Vv e HY(9),

/ M, () V() - Vo(z)dz + / b (@@ ()@ds(@) (560

/f dm+/h 2)ds(x).

This problem is then approximated by the following gradient scheme.

Definition 3.23 (GS for the non-linear problem, non-homogeneous
Fourier case). If D = (Xp, Ip,Tp,Vp) is a GD in the sense of Definition
2.48, then we define the related gradient scheme for (3.69) by

Find uw € Xp such that, for any v € Xp,
/ Az, Ipu(x))Vpu(x) - Vpu(x)de
19

+ b(x)Tpu(x)Tpv(x)ds(x)
[?)

- /Q F@)Ipo(@)dz + | h(@)To(v)(@)ds(x).

o

(3.70)

o5}
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The convergence result is similar to the previous ones.

Theorem 3.24 (Convergence, Fourier BCs). Under assumptions (3.42)-
(3.69), let (Dp)men be a sequence of GDs in the sense of Definition 2.48,
which is space-consistent, limit-conforming and compact in the sense of Def-
initions 2.49, 2.34 and 2.36 (it is then coercive in the sense of Definition
Then, for any m € N, there exists at least one u,, € Xp,, solution to the
gradient scheme (3.70) and, up to a subsequence, IIp, u., converges strongly
in L2(£2) to a solution U of (3.69), Vp, un, converges strongly in L*(£2)¢ to
Vu and Tp,, u,, converges strongly in L?(0§2) to yu as m — oc.

In the case where the solution @ of (3.69) is unique, then the whole sequence
converges to u as m — oo in the senses above.

Proof. The proof is very similar to the proof of Theorems 3.16 and 3.20, we
only indicate here the elements which differ.

Letting u = v in (3.70), by assumption on A and b and Definition 2.48 of ||-||p
we obtain

min(), b)||ul|% < /(ZA(m,HDu(m))VDu(w)-Vpu(:c)da:
+/ b(x)Tpu(x) Tpu(x)ds(x)
o0

:/ f(a:)HDu(:c)dm+/ h(x)Tp(u)(x)ds(x)
o) 09

< Nl 2oy Hpull 20y + 1Pl 200y ITD (W)l 2200
< Colfll 2oy + 1Bl L200)) llullp -

This gives an estimate on ||ul|, which allows us, as in the proof of Theorem
3.16, to use Brouwer’s fixed point theorem to prove the existence of a solution
to (3.70).

This estimate also shows that the solution wu,, for D = D,, is such that
[twm|lp, remains bounded and therefore, using Lemma 2.40 and the com-
pactness of the GDs, that, for some u € H!({2),

IIp, Uy, — W strongly in L?(£2) and a.e.,
Tp,, tm — YU weakly in L?(0£2) and (3.71)
Vp,, Uy — VU weakly in L%(£2)%.
Defining then Pp : H*(£2) — Xp by
Ppy = argf)l(lin (IHIpw — @l 2(2) + [IVDV = V@l 20200
veEXD
+[|Tpv — ’YSOHL?(Q)EL)

the space-consistency of the sequence of GDs shows that, for any ¢ € H*(£2),
IIp, (Pp,, @) — ¢ strongly in L2(£2), Vp, (Pp, ¢) — Vi strongly in L2(§2)¢
and Tp,, (Pp,, @) — v strongly in L?(912).
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We can then, as in the proof of Theorem 3.16, use v = Pp, ¢ in (3.70) and
pass to the limit, thanks to these strong convergences and to (3.71), to see
that @ is a solution to (3.69).

We then take v = uy, in (3.70) and pass to the limit to obtain

lim </Q A, IIp, tm(x))Vp,, tun(x) - Vi, upy(x)de

m— o0

+/zm b(m)TDmum(w)QdS(w)>

_ /Q fe)ute)de + [ hapul@)ise)

o1

:/ A(m,ﬂ(m))Vﬂ(x)-Vﬂ(a))der/ b(x)yu(x)?ds(x).
7 o0

This limit and (3.71) allows us to see that

/Q Az, Op,, um(z))(Vp,, un(x) — Vi(x)) - (Vp,, um(x) — Vu(z))de
+/ b(x)(Tp,, um(x) — yu(x))?ds(x) — 0.
a0

By Assumptions (3.42b) on A and (3.68) on b, the left-hand side of this limit is

greater than min(\, b)(||Vp,, um — vﬂ“iz(ﬁ)d + | Tp,, Um — ’Wniz(an)d)' The

strong convergences of the reconstructed gradient and trace therefore follow.
m

Remark 3.25. In the linear case (A independent of w), it is very easy to obtain
error estimates for (3.70) similar to the ones in Theorem 3.2 but with an
additional error estimate on the traces.

3.3 p-Laplacian type problems: p € (1, 400)

After the study of the approximation of quasilinear elliptic problem in Section
3.2, we now turn to the study of the approximation of problems involving a
nonlinear expression with respect to the gradient of the unknown function,
using gradient schemes. The first case which is studied is that of the p-Laplace
problem, which enables an error estimate, in terms of Wp and Sp in the same
way as error estimates are provided in Section 3.1. In the more general case
which we consider in Section 3.3.2, only convergence results are given.

3.3.1 An error estimate for the p-Laplace problem

We consider in this section a particular case of a non-linear Leray-Lions prob-
lem, the so-called p-Laplace equation:
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—div(|Val|P~?Va) = f + div(F) in £, (3.72a)
with boundary conditions
u =0 on 912, (3.72b)
under the following assumptions:
e (2 is an open bounded connected subset of R? (d € N*), (3.73a)
e pe(l,+00) (3.73b)
o feLP (), FeL” () (3.73¢)

Under these hypotheses, the weak solution of (3.72) is the unique function u
satisfying:

e Wy P(R2) and, for all v € W, P(£2),
VAP V() - Vo(e)d

:/Qf(a:)v(:n)dx—/QF(w)-Vv(:n)dzc.

(3.74)

Definition 3.26 (Gradient scheme for the p-Laplace problem). Let
D = (Xpyo,Ip,Vp) be a GD in the sense of Definition 2.1. The correspond-
ing gradient scheme for Problem (3.74) is defined by

Find u € Xp o such that, for any v € Xp,
/ |Vpu(x)|P>Vpu(zx) - Vpu(z)de
0

- [ s@v(@)de - [ F): Vou(a)de,
(9 2

(3.75)

The following lemma establishes the existence and uniqueness of the solutions
to (3.74) and (3.75), as well as estimates on these solutions.

Lemma 3.27. Under Hypotheses (3.73), there exists one and only one so-
lution to each of the problems (3.74) and (3.75). These solutions moreover
satisfy

_ 1
IVl Le(2)a < (Crpllfllper o) + 1F |l 1w (2)a) 7T (3.76)

and )
IVouplLe@ye < (CollfllLe (o) + 1F | o (2)a) P (3.77)

where Cp,, is the continuous Poincaré’s constant in W, P(£2), and Cp is
defined by (2.1).

Proof. The existence and uniqueness of u and up are obtained by noticing
that (3.74) and (3.75) are respectively equivalent to the minimisation problems

e argmin)(11)/9|vad:1:—/9f(w)v(w)da:+/QF(w)~Vv(w)dac)

vEW P (2 ( )
3.78
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and

1
up € argmin <7/ [Vpu(x)|Pde—
vEXpo P Jo

/ f(x)Ipv(x)dx + / F(z)- va(w)dm). (3.79)
Q Q
This equivalence is a consequence of the inequality

VX, € ERY X +EP — [xIP —pIx[P2x €20,

which follows by writing that the convex mapping H : { — |(|? lies above
its tangent at x, and by noting that VH(x) = p|x|?~2x. The existence and
uniqueness of the solutions to (3.78) and (3.79) are classical consequence of
standard convex minimisation theorems, see e.g. [6].

Then inequalities (3.76) and (3.77) follow by taking, in each corresponding
problem, the solution itself as a test function. m

Theorem 3.28 (Control of the approximation error). Under Hypothe-
ses (3.73), letw € W, P (£2) be the solution of Problem (3.74), let D be a GD in
the sense of Definition 2.1, and let up € Xp o be the solution to the gradient
scheme (3.75). Then there exists Co > 0, depending only on p such that:

1.Ifpe(1,2],

||VU - vDuDHLP(Q)d < SD(E) + Cy [W'D(|VU‘p_QVﬂ+ F) + Sp(ﬂ)p_l]

2—p
2

X |Sp@)" + [(Cp + Crp) I fllw o) + 1 Fll o @ya] 77| © - (3:80)

2. If p € (2, +00),
VT — Vpup| ey < Sp(@) + C2 |Wp(|VaP~?Va + F)

1
_ 1 _\1p—2]7-T
+ Sp@[(Copllfllw oy + 1F o) + 5o @) ] 7. (38)
As a consequence of (3.80)—(3.81), we have the following error estimate:
[z — HDU’D”LP(Q) < Sp(@) + Cp(Sp(u) + [|[Vu — VD'U/D”LP(Q)d). (3.82)

Remark 3.29 (Mesh-based gradient schemes). As in Remark 3.3 (for the case
p =2 and d < 3), under non-degeneracy assumptions on the meshes, for many
mesh-based gradient schemes it can be proved that there exists C' € Ry, not
depending on D, such that

Vo € WHP(2) N WP (R2), Sp(p) < Cholle|lwzr(o)

and
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Yo € WHP(2), Wp(p) < Chol|ellwrr(a)a;

where hp measures the mesh size. Under the condition p > d/2, the proofs of
these inequalities are done, for some important examples of gradient schemes,
in Part II1. Therefore, in the case where w € W2P?(2) and |Vu|P~2Vu + F €
WP (£2)?, the preceding theorem gives an error estimate of the form O(h%ﬁl)

if p € (1,2] and O(hlp/(pfl)) if p>2.

Proof. We notice that, since f € L? (£2), the equation (3.72a) in the sense of
distributions (i.e. taking v € C2°(£2) in (3.74)) shows that ¢ = |Vu[P~2Vu+F
belongs to W' (2) defined by (2.5), with divep = —f. We can therefore
take ¢ in the definition (2.6) of Wp and we obtain, for any v € Xp o, denoting
by W = Wp(|VaP~2Va + F) and S = Sp(7),

% Vou(z) - (|Va(@)["~*Vi(z) + F(z)) - Tpv(z) f(x)dx

< |Vpull ey W.

We use the fact that up satisfies (3.75) to replace the term IIpv f and we get

/ Vpu(z) - [|[Va(z)|P*Va(z) — |Vpu(z) P *Vpu(z)|dz
2

< ||Vpvl ey W.
We set

Ppu = argmin (”HDw — ﬂHLQ(Q) + ||VDw — VHHLQ(Q)d),
weXp,o

and we obtain

Av):=

’/ Vpu(z) - [|[VpPpu(x)|P*VpPpu(x) — |Vpu(x) [P *Vpup(z)|de
Q

< | Voullpeay W

+ ’/ Vopu(z) - [|[VoPpu(z)|P >V Ppu(z) — |Vu(x)|P*Vu(z)|dx
7

< |IVpv|lLr () [W+ I |Vp PpulP~*Vp Ppu — \Vﬂlpfzvm\m’(m]'

CasE p € (1,2].
Thanks to (3.86) in Lemma 3.30 below, we get the existence of C3 depending
only on p such that

| |Vp PpalP~2Vp Ppi — |VaP~2val|”

ll)ﬂ’/(_(l)d < CgHVDP'Dﬂ — VUH?@(Q)M
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which leads, recalling the definition (2.2) of Sp, to
A() < IVpolliooy [V + 557, (3.83)

We then apply (3.88) in Lemma 3.30 with £ = VpPpu and x = Vpup,
and use Holder’s inequality with exponents 2/p and 2/(2 — p). Taking v =
Ppu — up, we get Cy depending only on p such that

Vo P — Vpupl|], o)

2—p

< C’414(PDE - u’D)%(”vDPDHHZ[),IJ(Q)d + ||VDUD||I[),p(Q)d)Tv

and thus

IV Ppt — Vpup||7, (g

b

2 2-p
< Cf A(Ppt — up)(|[Vo Ppil|7, g0 + [VDUuDl7, (0)0) 7 -

Plugging (3.83) into this estimate gives C5 depending only on p such that

_ -1

Vo Ppt — Vpup| ey < Cs[W + S” ]
P 2
X [||VDPDH||I£P((Z)d + ||vDuD||Z[),p((2)d] :

‘We have ||Vﬂ — VDUD”Lp(Q)d < §+ HV'DPDﬂf VD’LLDHLp(_Q)d, and Estimate
(3.80) therefore follows from (3.76) and (3.77).

CASE p € (2, +00).
We use (3.85) in Lemma 3.30, Holder’s inequality with exponents p/p’ =p—1

and i%, and (a + b)? < 2°(a? 4 b%) with 6 = Lsa= |VpPpu|P~2 and

b= |Vu[P~2. This gives Cs depending only on p such that
[ IV PpulP~ Vo Ppti — [ValP >Vl | 1y g4
< Co||Vp Pptt — V|| o0y (VD Pot]| o) + |V Lo (2)0)7 2.
This leads to
Av) <
__ _ _ _ -2
IV 00l 1s2ya [ + CeS[I Vo Pl aaye + [Vl o] ~°]. (3.8)

As before, we take v = Ppu — up. Thanks to (3.89) in Lemma 3.30, we get
the existence of C7 depending only on p such that

||VDPDﬂ — vD’“’D”ip(Q)d < C7A(PDE — uD).

Using (3.84) we infer
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_ - — = _ -2
IV Pt — Vpup |7, g < Cr [W + C6S[||Vall (s +5]" ],

and the proof of (3.81) is complete by invoking (3.76). L]

In the following lemma, we gather a few useful estimates.

Lemma 3.30. Let p € (1,+00) and d € N*. Then

e x €RY,
167726 = IxP*x| < max(1,p = D¢ = x| (€72 + Ix["™%), (3.85)

which implies
Vp e (1,2], V& x € RY, |[€P7%6 — |x|P*x| < 5l¢ — x P~ (3.86)

Moreover, setting Co(p) = p%l for p € (1,2] and Co(p) = 2P~ for p > 2,
there holds

Ve, x € RY,
Co)(|EP726 — IXIP72x) - (€ = x) = [€ — xI* (J€] + [x)P~2, (3.87)

which implies

Vp € (1,2], V& x € RY,

€ —x|P < (pil(|f|p2£ = IxP72x) - (€~ X)) ' (3.88)
x (2P (elP + 7)) 7,

and

Vp > 2, Y€, x €RY, € — x| < 2PTH(EPTE — [XIPTEX) - (€ - x). (3.89)

Proof. Estimates (3.85) and (3.86) originally appeared in [7]. Let H(§) =
|E[P~2¢. If p > 2 then H € CY(RY)4 and |[DH(€)| < (p — 1)|¢|P~2 (where DH
is the differential of H and |DH| the norm induced by the Euclidean norm).
Hence, for all £,y € R,

[H (&) — H(x)| <€ = x|(p—1) max [¢[P~2, (3.90)
Celex]

The proof of (3.85) is complete in the case p > 2 since the mapping s + sP~2 is
non-decreasing, and thus maxcee 4 [¢]P~? = max([£[P72, [x[P~2) < (J§[P~2 +
XIP2).

If p < 2, (3.90) remains valid but does directly lead to (3.85). Without loss
of generality, we can assume that 0 < |x| < |£| (the case where xy = 0 is
trivial since the right-hand side of (3.85) is then equal to +00). Let £ be the
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point in R? at the intersection of the segment (&, x) and of the ball of centre
0 and radius |x| (see Figure 3.1). Since |§| = |x| we have |[H({) — H(x)| =
[x|P~2|¢ — x|. Hence, by the triangular inequality and (3.90) between & and £,
[H(&) = HO)| < [H(E) — HE|+ [x[P*|€ — x|
<lE-¢€lp—-1) e ICIP72 4+ IxP72[€ = x].

s

Since p < 2, max . g C[P=2 = |€[P=2 = |x|P~2 and therefore

[H() - HOol < [16 = 8+ 1€ = xI] I~

The proof of (3.85) in the case p < 2 is complete by noticing that |£ — §~| +
1€ = xI =1 = xl-

/

Fig. 3.1. Illustration of the proof of (3.85) in the case p € (1,2).

Let us now prove (3.86). Let nn > 0. If || and || belong to [n, +00), by (3.85)
we have

|I€/P2€ — Ix[P~2x| < 20”72J¢ — x| (3.91)
Otherwise, assume that |x| € (0,7]. We have
P26 = IXIP x| < JPTH + Pt < (€= X+ )PP (3.92)
Combining (3.91) and (3.92) we see that, for all £,y € R? and all 5 > 0,

[1€[P=2€ — [x[P2x| < 2072 1€ = x|+ (|6 = x|+ )P + 9P

Estimate (3.86) follows by choosing n = |£ — x/|.
We now turn to the proof of (3.87). Set A = (|€[P726 — [x[P~2x) - (£ — x). By
developing both sides we see that

A= (P = IxPTHUEl = IxD) + (P72 + IxP=2) (1€l Ixl = € - %) (3.93)

Let us prove that the function f(x) = 2P~! — yP=1 — Cog(p) (z+y)P2(z—vy)
satisfies f/(z) > 0 for all z >y > 0. We have

(@) = (p— a?? - %@@ )+ )R —y) —

2 -
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o If 1 < p <2, we write f/(z) > (p— 1)aP~2 — =2~2P~2 = 0 since Cy(p) =

Co(p)
2
r 2 2 2
o Ifp>2, f'(z) = (p—1)2P"*— 5l (0—2) (2 +y)P > (a+y) — 5 (2 +y)P 2,
and therefore, since z > y, f'(z) > (p — 1)(zP~2 — %@2?”%?*2) =0

since Cp(p) = 2P~ 1,

Since f(y) = 0, this shows that, if z >y > 0,

s (z+y)P (z—y).

2
~ Colp)
Assuming (without loss of generality) that |£] > |x| and applying the previous
inequality to = = |¢| and y = || gives

(167" = )16l = Ixl) 2 == (1€l + h)? (1€l — x> (3.94)

~ Colp

Let us again take generic numbers x >y > 0. If 1 < p < 2 we can write

~

PPy P> yP > (a4 )P P> (p- )@ty = (z+y)P 2.

Co(p)

If p > 2 we have

2
P2 4 yp—2 > P2 > 922=P( +y p—2 _ T4y p=2
( ) CO(P)( )

Applying these inequalities with x = |¢| and y = |x|, plugging the result in
(3.93) and using (3.94) leads to

1
A>
~ Co(p)

The proof of (3.87) is complete by writing

(€1 = IxD? +20€] [x] = € x) = 1€1> = 21€] Ix] + IxI* + 2/¢] [x| —2¢ - x
= ¢ =26 x+ [xI* =1 — x*.

(€] + IxD)P=2 [(lel = IxD* + 2(1€] Ix] = € x)] -

Estimate (3.88) is obtained by raising (3.87) to the power p/2 and by using
(€] + [x)? < 2P7L(|€]P + |x|P). Estimate (3.89) follows by writing |€ — x|P =
€ = x[21€ = xIP7? < 1€ = x[*(|¢] + [x|)P~? and by using (3.87). =

3.3.2 Convergence of gradient schemes for fully nonlinear
Leray—Lions problems

We now study the convergence of gradient schemes for the non-linear problem
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—div a(z,u, Vu) = f in 2,

w=0on 912, (3.95)
under the following assumptions:
epc(l,00) and a: 2 x LP(12) x R? — R? is a Caratheodory
function (3.96a)

(i.e. for a.e. & € {2 the function (u, &) — a(x,u, £) is continuous, and for any
(u, &) € LP(2) x R? the function = — a(x,u, £) is measurable),

e Ja € (0,400) such that a(x,u,&) - & > a|€|P for a.c. © € £2,

Vu € LP(2), V&€ € RY, (3.96b)
o (a(x,u, &) —a(x,u,x)) - (E—x) >0 for ae x e 2,

Yu € LP(R2), V&, x € RY, (3.96¢)
e 3@ € L” (£2), 3p € (0, +00) such that |a(z,u, )| < a(x) + /P!

for a.e. & € 2, Yu € LP(N2), V& € RY, (3.96d)
o f € LV (), where p/ = ]%. (3.96¢)

Remark 3.31. Note that the dependence of a on u is assumed to be non-local:
a(xz,u,-) depends on all the values of u € LP({2), not only on u(x). These
assumptions cover for example the case where a(x, u, Vu(x)) = Afu](x)Vu(x)
with A : LP(2) — L>(§2; S4(R)) as in [18, 28, 69].

These assumptions (in particular (3.96a)) do not cover the usual local depen-
dencies a(x, u(x), Vu(z)) as in the non-monotone operators studied in [62].
However, the adaptation of the following results to this case is quite easy
and more classical, see e.g. [30] for an adaptation of the original Leray-Lions
method to a numerical scheme (based on the Mixed Finite Volume method)
for local non-monotone operators.

If a function a satisfies (3.96), then the mapping u — —diva(-, u, Vu) is called
a generalised Leray-Lions operator. A classical example is the p-Laplacian
operator, obtained by setting a(x,u, £) = |€|P~2€. Note that the existence of
at least one solution to (3.95) is shown in [62] under hypotheses (3.96) in the
case where a does not depend on w. In our framework, we say that a function
u is a weak solution to (3.95) if:

e Wy P(0), Yo e Wy P(02),

/ a(z, 7, Vi(z)) - Vo(z)de = / F@)o(x)da. (3.97)
Q o)

Remark 3.32. Note that, even if @ does not depend on u € L?({2), the solution
to (3.97) is not necessarily unique. Consider the case where d = 1, 2 = (-1, 2),
f(z) =0 for x € (—1,0)U(1,2), f(z) =2 for x € (0,1) and
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a(x,u,€) = (min(|€], 1) + max(|€| — 2,0)) £ Ve € R, Yu € L*(92).

&1

Then (3.96b) is satisfied with a = 1, (3.96¢) is satisfied since a is non de-
creasing with respect to € and (3.96d) is satisfied with @(z) = 0 and p = 1.
Then the function u(x) = a(x +1) for z € (—1,0), a+z(1 —z) for x € (0,1),
a(2 —z) for z € (1,2) is solution to (3.97) for any value « € [1,2].

The hypothesis that a is strictly monotone, which may be expressed by

(a(m,u,ﬁ) - a(wa qu)) : (£ - X) > 0; (3 98)
for a.e. & € 2, Yu € LP(£2), V&, x € R? with £ # X, '

is only used to prove the strong convergence of the approximate gradient (see
theorem below). We now define the gradient scheme for Problem (3.95).

Definition 3.33 (GS for fully non-linear Leray—Lions problems, ho-
mogeneous Dirichlet BCs). If D = (Xp,IIp,Vp) is a GD, then we
define the related gradient scheme for (3.95) by

Find uw € Xp o such that, Vv € Xp o,

/ a(x, [Ipu, Vpu(x)) - Vpu(x)de = / f(z) Tpv(x)da. (3.99)
« 2

Theorem 3.34 (Convergence). Under assumptions (3.96)-(3.96¢), take a
sequence (Dm)men of GDs in the sense of Definition 2.1, which is space-
consistent, limit-conforming and compact in the sense of Definitions 2.4, 2.6
and 2.8 (it is then coercive in the sense of Definition 2.2).

Then, for any m € N, there exists at least one up,, € Xp, o solution to the
gradient scheme (3.99) and, up to a subsequence, Ilp, up,, converges strongly
in LP(£2) to a solution @ of (3.97) and Vp, up,, converges weakly in LP(§2)4
to Vu as m — co. Moreover, if we assume that the Leray-Lions operator a is
strictly monotone in the sense of (3.98), then Vp, up, converges strongly in
LP(2)4 to Vu as m — 0o.

In the case where the solution w of (3.97) is unique, then the whole sequence
converges to u as m — oo in the above senses.

Remark 3.35. As a by-product, this theorem also gives the existence of a so-
lution @ to (3.97). Indeed, under the assumptions of the theorem, the proof
shows that the sequence up, has a converging subsequence and that the limit
u of this subsequence is in fact a solution to the continuous problem. Since
there exists at least one (in fact there exist several, see Part III) gradient
scheme which satisfies the assumptions of this theorem, this gives the exis-
tence of a solution to (3.97).
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Remark 8.86 (Non-linearity without a lower order term)

In the case where a does not depend on u € LP(2), the proof of the weak convergence
of IIp,,u to a solution of (3.97) does not require the compactness of the sequence
of GDs. In this case the strong convergence results from (3.98) (which gives the
strong convergence of the approximate gradient) and from the coercivity and the
space-consistency of the sequence (D )men.

Proof.
This proof follows the same ideas as in [30, 48].

Step 1: existence of a solution to the scheme.

Let D be a GD in the sense of Definition 2.1. We endow the finite dimensional
space Xp,o with a inner product ( , ) and we denote by | - | its related norm.
We define F': Xp o — Xp as the function such that, if v € Xp o, F(u) is
the unique element in Xp o which satisfies

Yoe Xpo, (F(u),v)= / a(x, Ipu, Vpu(x)) - Vpu(x)de.
[0
Likewise, we denote by w € Xp o the unique element such that

Yoe Xpo, (w,v)= /Qf(a:)HDv(w)da:.

The assumptions on a show that F' is continuous and that, for all u € Xp o,
(F(u),u) > QHVDuH’Lp(md. By equivalence of the norms |- and [|Vp || 1p ()
on Xp,o, we deduce that (F(u),u) > Cs|ulP with Cs not depending on w. This
shows that lim,|_ o <F(‘Z)|’u> = 400 and thus that F' is surjective (see [62] or
[27, Theorem 3.3, page 19]). Note that we could as well use Theorem C.1,
consequence of the topological degree. There exists therefore up € Xp ¢ such
that F(up) = w, and this up is a solution to (3.99).

Step 2: convergence to a solution of the continuous problem.

Letting v = up,, in (3.99) with D = D,, and using (2.1) and Hypothesis
(3.96b), we get
—1
a ||vaqu||ip(Q)d < CDm”fHL:D'(Q)'

Thanks to the coercivity of the sequence of GDs, this provides an estimate
on Vp,_ up, in LP(2)% and on IIp, up, in LP(£2). Lemma 2.12 then gives
(TS Wol"p(ﬁ) such that, up to a subsequence, II'p, up, — @ weakly in LP({2)
and Vp, up, — Vu weakly in LP(£2)?. By compactness of the sequence of
GDs, we can also assume that the convergence of IIp up,, to u is strong in
LP(£2) (this strong convergence property is only necessary for coping with the
dependence of a with respect to u).

By Hypothesis (3.96d), the sequence of functions



86 3 Elliptic problems
Ap,, (x) = a(z, Ip,, up,,, Vp,up,, ())

remains bounded in Lp/(Q)d and converges therefore, up to a susbsequence,
to some A weakly in L? ()4, as m — occ.

Let us now show that @ is solution to (3.97), using the well-known Minty trick
[64]. For a given ¢ € Wol’p(()) and for any GD D belonging to the sequence
(Din)men, we introduce

Pp(p = argmin (HHD’U — (pHLP(Q) + ||VDU — thHLp(Q)d)
veEXD,0

as a test function in (3.99). By the space-consistency of (D,,)men, letting
m — 00 we get

/ A(x) - Vyp(x)de = / f(®)p(x)de, Yo e Wy (0). (3.100)
o) o)

On the other hand, we may let m — oo in (3.99) with up,, as a test function.
Using (3.100) with ¢ = @, this leads to

liin a(a}, HDm up,, me up,, (.’1))) . me up,, (.’B)dﬁc

2 (3.101)
_ /Q f(@)u(z)de = /Q Az) - Va(x)dz.

Hypothesis (3.96¢) gives, for any G € LP(£2)%,

/ (a(e. Tp, up, . Vo, up, (@) — a(e, Ip, up, , G(@)))
(]
-(Vp,,up,, (x) — G(x))dx > 0.

Developing the preceding inequality, using Lemma C.3 for the weak-strong
convergences and (3.101) for the convergence of the sole term involving a
product of two weak convergences, we may let m — oo and we get

/Q(A(:c) —a(x,7,G(x))) - (Vu(z) — G(x))dz >0, VG € LP(2)%.

We then set G = Vu + aw in the preceding inequality, where ¢ € C°(§2)¢
and a > 0. Dividing by «, we get

- /Q(A(zc) —a(zx, T, Vi(z) + ap(x))) - e(z)de > 0, Yo € C(2), Ya > 0.

We then let & — 0 and use the dominated convergence theorem, which leads
to

—/Q(A(ac) — a(a, 7, V() - p(@)de > 0, Ve € C=(2)".
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Changing ¢ into —¢, we deduce that
| (A(e) - ate. 1. V(@) - pla)iz =0, Vi € O (2",
and therefore that
A(x) = a(z,u, Vu(x)), for a.e. x € {2. (3.102)
In addition to (3.100), this shows that @ is a solution to (3.97). This concludes

the proof of the convergence of IIp, up, tow in LP(§2) and of Vp, up,, to
Vi weakly in LP(£2)4 as m — oco.

m

Step 3: Assuming now Hypothesis (3.98), strong convergence of the approx-
imate gradient.

We follow here the ideas of [62]. Thanks to (3.101) and (3.102), we get

lim [a(a:7 IIp, up, (x),Vp, up, () —alz, [Ip, up,, (x), Vﬂ(az))}

m—r oo o)

: {va up,, () — Vu(z)|dz = 0.
Since the integrand is non-negative, this shows that

la(-, IIp,,up,,, VD, up,, ) — a(, p,up,,, Vi)
[Vop, up, —Va] — 0in L*(£2), (3.103)

and therefore a.e. for a sub-sequence. Then, thanks to the strict monotonic-
ity assumption (3.98), we may use Lemma 3.37 given below to show that
Vop, up, — Vu ae. as m — oo, at least for the same sub-sequence. This
shows the a.e. convergence of a(-, IIp, up,, ,Vp, up,, ) Vpup to a(-,u, Vu) -

m

V. We next recall that, by (3.101) and (3.102),

lim [ a(z, lIp, up,,, Vo, up, (®)) - Vo, up,, (x)de

:/Q a(z,w,Vu(z)) - Vu(x)dz. (3.104)

Since a(-, IIp,, up,,,Vp, up, ) Vp, up, > 0, we can apply Lemma 3.38 to
get a(-, lIp, up,, ,Vp, up,, ) Vo, up, — a(-,u, Vu)-Vuin L1 (2) asm — oco.
This L!-convergence gives the equi-integrability of the sequence of functions
a(-,IIp, up,,,Vp,up,,) Vb, up,,, which gives in turn, thanks to (3.96b), the
equi-integrability of (|[Vp, up,, |P)men. The strong convergence of Vp  up,,
to Va in LP(§2)¢ is then a consequence of Vitali’s theorem. (]
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Lemma 3.37. Let B be a metric space, let b be a continuous function from
B x R? to R? such that

(b(u,8) — b(u,v)) - (6 =) >0, V6 #v € RY, Vu € B.

Let (U, Bm)nen be a sequence in B x R? and (u,3) € B x R? such that
(b(um, Brm) — blum,B)) - (Bm — B) = 0 and uy, — w as m — oo. Then,
Bm — B as m — 0.

Proof. We begin the proof with a preliminary remark. Let § € R4\ {0}. We
define, for all m € N, the function hs ,, from R to R by hsm(s) = (b(wm, 5+
50) —b(wm, 8))-0. The hypothesis on b gives that hs ,, is an increasing function
since, for s > s’, one has :

hsm(8) — hsm(s') = (b(um, B+ $0) — b(tm, B+ s'0)) - 6 > 0.

We prove now, by contradiction, that lim,, .- 8, = (. If the sequence
(Bm)men does not converge to 3, there exists e > 0 and a subsequence, still
denoted by (B )men, such that s, := |8, — | > ¢, for all m € N. Then, we

set d,, = m"‘:g‘ and we can assume, up to a subsequence, that &, — ¢ as
m — oo, for some § € R? with |6| = 1. We then have, since s,, > ¢,
5m B 6

(b(umaﬂm) - b(um; ﬂ)) : S

= hﬁm,m(sm) > hém,m(5>

Then, passing to the limit as m — oo,

0= lim i(b(umvﬁm)_b(umaﬁ))(ﬁm_ﬁ) > (b(uvﬁ +€5) - b(“)ﬁ))é >0,

m—00 S,

which is impossible. [

The following result is classical (see [62]). Its proof is given for the sake of
completeness.

Lemma 3.38. Let (F,,)men be a sequence non-negative functions in L'($2).
Let F € L'(2) be such that F, — F a.e. in 2 and [, F,(x)de —
[o F(x)dx, as m — co. Then, Fr, — F in L'(2) as m — occ.

Proof. The proof of this lemma is very classical. Applying the Domi-
nated Convergence Theorem to the sequence (F — F,,)" leads to [,(F(x) —
F,(x))tdz — 0 as m — oo. Then, since |F — F,,| = 2(F — F,, )T — (F — F,,),
we conclude that F,, — F in L'(£2) as m — oc. n
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Parabolic problems






4

Time-dependent problems: gradient
discretisation method and discrete functional
analysis

In this chapter, we first give the definition of gradient discretisations (GDs)
for time-dependent problems. We then present compactness results for the
analysis of such problems. These results include discrete Ascoli-Arzela and
Aubin—Simon theorems, and are presented first in an general setting, before
their consequences for gradient discretisations are discussed.

4.1 Space—time gradient discretisation

To fix ideas, let us consider a general time-dependent problem under the form
Ou + A(u) = f, over a domain 2 x (0,7) with T" > 0. Adequate boundary
conditions and initial conditions are also assumed. If § € [0, 1] and ¢ =0 <
tM) < ... < tV) = T is a set of time points, then the #-scheme reads: for all
n=20,...,N—1,

WD) ()

S e AU 4+ (1= )u) = . (4.1)

For § = 1, the scheme is Euler implicit (or “backward”), for 8 = 0 it is Euler
explicit (or “forward”), and § = L provides the Crank-Nicolson scheme. Im-
plicit schemes correspond to 6 € [3,1], and are the most frequently considered
in this book due to the parabolic nature of the equations under study.

To deal with all kinds of boundary conditions at once, the notation Xp o
stands for Xp ( in the case of homogeneous Dirichlet boundary conditions, and
for Xp in the case of other boundary conditions. Similarly, we write We ™ (£2)
for Wy ?(£2) in the case of homogeneous Dirichlet boundary conditions, and
WLP(£2) in the case of other boundary conditions.

Definition 4.1 (GD for time-dependent problems). Let p € (1,400),
2 be an open subset of R? (with d € N*), T > 0 and 6 € [0,1]. We say that
Dr = (D, Ip, (t(”))n:07,__,N) is a space—time gradient discretisation if
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oD = (Xp.e,I[Ip,Vp,...) is a GD in the sense of Definition 2.1 (resp.
Definition 2.18, 2.24, 2.32, 2.48 or 2.51 — depending on the considered
boundary conditions), which satisfies ITp(Xp o) C L™2*P:2) (),

eZp : L*(2) — Xp.e is an interpolation operator,

ot =0<t@® <) =T,

The gradient discretisation D is called the underlying spatial discretisation of
1
Dr. We then set "2 = ¢4 ¢ forn = 0,....N — 1, and dp =

..........

the functions vg € L>=(0,T; Xp.), Hl()e)v € L*>=(0,T; Lmax(”;?)(())), Vg)v €
L0, T; LP(2)%) and T v € L°(0,T; LP(92)) defined by
Vn=0,...,N—1, forallte (t("),t("+1)],
vg(t) = ) = 9ot (1 — 0)0™ and, for a.c. € 2,
) v(x, t) = Mpvs(H)](x) , Vi v(w,t) = Vplug(t)](x) and
T v(e, t) = Tplvg(t)](@).

To state uniform-in-time convergence results, we also need to extend the def-
inition of U(De)v up tot =0:

For a.e. x € (2, Hg)v(m,O) = IIpv' (x). (4.3)
Ifve Xg,fl, we define dpv € L=(0,T; L™2x(P:2)(02)) by
Vn=0,...,N—1, for a.e. t € (t™ (1)

(n+1) _ (n) (4.4)
N (n+%) L HD’U HD’U
dpv(t) =0p *'v:i= D)

Remark 4.2. The iterative definition (4.1) requires the initialisation step, a
way to compute u(?). The interpolation operator Zp applied to the initial
condition describes this initialisation of u(®) (cf., e.g., (5.5) in Section 5.1).

Definition 4.3 (Space—time-consistency for space—time GD)

For T > 0 and 6 € [0, 1], if D is a space—time GD in the sense of Defini-
tion 4.1, we define Sp by (2.2), (2.14), (2.20), (2.49) or (2.54) (depending
on the considered boundary conditions), where We”(£2) has been re-
placed with WoP(£2) N L2(£2) and | IIpv — @l 1r(2) has been replaced
with [[IIpv — ¢ Lmax(p.2) ()"

A sequence ((Dr1)m)men of space-time GDs in the sense of Definition 4.1,
with underlying spatial discretisations (D, )men, is said to be space—
time-consistent if
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Definition 4.3 (Space—time-consistency for space—time GD) (cont)
1. It holds R
Y € WHP(2)N L3 (92), lim Sp,, () =0.
2. It holds
2 - —
Yu € L*(£2), "}gnoo |u—1Ip,,Ip,,ul 120 = 0 (4.5)

3. &p,, = 0asm — oo.

Remark 4.4 (A generic definition of Ip )
Given a spatial gradient discretisation D such that ITp(Xp.e) C L?*(£2), we can
define an interpolator Zp : LQ(Q) — Xp.e by

Vu e L*(02),

Ipu = argmin {[|v||; : v € Xpe, IIpv = Pru,(xp )}, (4.6)

where Prp,xp,) @ L°(£2) — IIp(Xpe) is the L?(£2)-orthogonal projector on
IIp(Xp,e). Since the norm ||-||, is uniformly convex (see the definitions in Chapter
2, depending on the various boundary conditions), the argmin in (4.6) is indeed
unique, and we can even check that Zp : L*(£2) — Xp.. is linear continuous (al-
though this is not required in Definition 4.1).
Consider now a sequence (Dy,)men of spatial GDs, such that, as m — oo,
Sp,, (u) — 0 for all u € WEP(£2) N L?(£2) (this is an improved consistency property
of (Dm)men). This shows that, for such an u, there exists u., € Xp,, . such that
11D, um — ull 1 2(oy — 0. The definition (4.6) yields IIp,,Ip,, = Pru,  (xp,, .
and thus, by the properties of the orthogonal projector,

lu—IIp,, I, ull p2(0) = HU - Prnpm<xpm,.>U’ @)

IA

lw — Ip,, um| 2oy — 0 as m — oo.

Hence, (4.5) holds for u € Wa®(£2) N L*(£2). Since the mapping IIp,, Ip,, =
Pro, (xp. .4 : L*(2) — L*(£2) has norm 1, reasoning by density of W¢?(£2) N
L?(R) into L*(£2) shows that (4.5) actually holds for all u € L*(£2).

Remark 4.5. To illustrate the definition of §D, here is how it looks for Fourier
boundary conditions:
Vo € WHP(2)N L%(92),
Sp(p) = vlél)ig;(HUDv = @l pmaxw2y () + ITDV = 0l L2 (002)
+IVov = Vol 1o (2)e)-
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The notions of coercivity, limit-conformity and compactness for sequences
of space-time GDs boil down the corresponding notion for the sequence of
underlying spatial discretisations.

Definition 4.6 (Coercivity, limit-conformity and compactness
for space-time GDs)

Let T > 0 and ((Dr1)m)men be a sequence of space—time GDs in the sense
of Definition 4.1, with underlying spatial discretisations (D, )men.

The sequence ((Dr1)m)men is coercive (resp. limit-conforming, resp. com-
pact) if the sequence (Dy,)men is coercive (resp. limit-conforming, resp.
compact) for the corresponding boundary conditions.

The following lemma is the counterpart of Lemma 2.12 and Lemma 2.40.
We could as easily state counterparts of the regularity of the limit for non-
homogeneous Dirichlet boundary conditions or mixed boundary conditions (as
in Lemma 2.23 or Lemma 2.57).

Lemma 4.7 (Regularity of the limit, space—time problems). Let p €
(1,00) and ((D1)m)men be a coercive and limit-conforming sequence of space—
time GDs, in the sense of Definition 4.6, for homogeneous Dirichlet or non-
homogeneous Neumann boundary conditions. Let 6 € [0,1], g € (1,400) and
take, for any m € N, u,, € Xg:::l such that (|(um)oll a0 7;xp, o) )meN i
bounded.

Then there exists uw € L9(0,T; W.lp(_Q)) such that, up to a subsequence,
Hl()ai Um — uw weakly in L1(0,T;LP((2)) and Vg;um — Vu weakly in
L(0,T; LP(£2)).

In the case of non-homogeneous Neumann boundary conditions, we also have,
up to a subsequence, T(g}num — yu weakly in L1(0,T; LP(012)).

The same conclusions hold in the case ¢ = +oo, provided that the weak con-
vergences are replaced with weak-* convergences.

Remark 4.8. Note that each space Xp,, o is endowed with its natural norm
Ilp,,s i-e [[Vp,, [l 1p(q)a for Dirichlet boundary conditions and (2.18) for
Neumann boundary conditions. For ¢ < +00, abound on |[(um)el| 40, 7,xp, .)

is therefore a bound on
T
( | oo, dt)

Proof. We only consider the case of homogeneous Dirichlet boundary condi-
tions, the other case being handled similarly by following the proof of Lemma
2.40.

By coercivity of ((Dr)m)men,

1/q
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v, vl

||(Um)9||LQ(O,T;XDm,.) L9(0,T5LP(2))4

Y

L\l
Cp HHDmum’ La(0,T;Lr(2))
The sequences (Hg},i Um )men and (Vg}n Um)men are therefore bounded in
L9(0,T; LP(§2)) and L4(0,T; LP(£2))4, respectively. Up to a subsequence, they
converge weakly (or weakly-x if ¢ = +00) in these spaces towards u and v, re-
spectively. Extending all the functions by 0 outside {2, these convergences still
hold weakly in L?(0, T; LP(R%)) and L9(0, T; LP(R?))?. The proof is completed
by showing that v = Vu in the sense of distributions on R? x (0, 7).
Let ¢ € O (R4 and ¢ € C°(0,T). We drop the indices m for legibility.
We have, for t € (0,T), by definition (2.6) of Wp,

/Q [Voluo®)](@) - p() + Molus (O] (@)dive() | dz < ug(t)], , Wo ()

Multiply this by #(t), integrate over ¢ € (0,T) and use Holder’s inequality:

T
| [ 7900 e + 1 . taiv(w(0e) (@) deds

T
< WD(‘P)/O ||U9(t)||XD,O Y(t)dt < Wp(e) ||u9||Lq(o,T;XD,0) \lequf(o,T) :

Changing @ into — shows that the same inequality is satisfied if the left-
hand side is replaced with its absolute value. Since ([[ugll (0 7;xp 5))men 18
bounded and, by limit-conformity, Wp(¢) — 0 as m — oo, we can pass to the
limit and see that

/ ' [ [p@ - @oe@) + ula, Odiv(w()e)@)]dedt 0.
0 (%}

This relation holds true for linear combinations of functions of the form
(z,t) = ¥(t)p(x), that is for all tensorial smooth functions. These tensorial
functions are dense (e.g. for the C*(§2 x [0,7])¢ norm) in C2°(R? x (0,7))¢,
see [29, Appendix D]. This shows that, for all & € C>(R¢ x (0,T))%,

/OT /Q [U(.’Bat) B (x,t) + u(e, )div(S(-,1))(z) |dzdt = 0.

Hence, v = Vu in the sense of distributions on R? x (0,7, as required.
L]

The following result shows that functions depending on time and space can
be approximated, along their gradient, with reconstructed functions and gra-
dients built from space-time-consistent GDs.



96 4 Time-dependent problems: GDM and DFA

Lemma 4.9 (Interpolation of space—time functions). For p € [1,00),
T >0 and 0 € [0,1], let ((Dr)m)men be a sequence of space—time GDs in
the sense of Definition 4.1, which is space—time-consistent in the sense of
Definition 4.3. Let 5 € LP(0,T; Wa'*(£2)). Then:

1. There exists a sequence (Vp)men Such that v, = (UT(;I))H=O,---,Nm c
Xg",'jil for allm € N, and, as m — oo,

Hgivm — o strongly in LP(£2 x (0,T)), (4.7a)

ng)nvm — Vo strongly in LP (2 x (0,T))%. (4.7b)

2. In the case of non-homogeneous Neumann boundary conditions, if the se-
quence of underlying spatial discretisations is coercive and limit—confor-
ming in the sense of Definitions 2.33 and 2.3/, then the sequence (V) men
in Item 1 also satisfies

']Tg')nvm — YU weakly in LP(002 x (0,T)) as m — oo. (4.8)

3. In the case of non-homogeneous Fourier boundary conditions, the sequence

(Um)men in Item 1 can be chosen such that

'H‘g}nvm — U strongly in LP(02 x (0,T)) as m — oo. (4.9)
4. If moreover v € C([0,T]; L*(R2)), 8,v € L*(2 x (0,T)) and v(-,T) = 0,
then the sequence (Vpm)men in Item 1 can be chosen such that, in addition

to (4.7),

Vm € N vf,{v"‘fl) = vﬁnNm) =0

(and thus Hl(fivm =0 on 02 x (tWm=1 $(Nn)]), (4.10a)
Ugivm(~,0) — 0(+,0) strongly in L*(£2) as m — oo, (4.10Db)
5p,, vm — 040 strongly in L*(£2 x (0,T)) as m — oo. (4.10¢)

Proof.

Step 1: proof of Item 1.

Define the set 77(0,T; We?(£2)) of space-time tensorial functions the follow-
ing way: v € T(0,T;WeP(£2)) if there exist £ € N, a family (p;)iz1, ¢ C
C>([0,T]) and a family (w;)i=1....¢ C WeP(£2) such that

.....

¢
v(x,t) = ngi(t)wi(w) for a.e. & € 2 and all ¢t € (0,7). (4.11)
i=1

By [29, Corollary 1.3.1], T(0,T; Wa?(£2)) is dense in LP(0,T; Wo'*(£2)) and
we can therefore reduce the proof of (4.7) to the case T € T(0,T; Wa(£2))
(the proof of this reduction is similar to the proof of Lemma 2.13).
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Given the structure (4.11) of functions in 7(0,T; We'?(£2)), we actually only
need to prove the result for v(x,t) = p(t)w(x) with ¢ € C*([0,T]) and
w e WeP(02). Let v, € Xg::fl be defined by v\ = o(t™)Pp w for n =
0,..., Ny, where ;

Pp,,w = argmin (HHDMZ - w”Lmax(p,z)(Q) +Vp,,z = Vw”Lp(Q)d) :
ZEXDm,-

(4.12)
Define @, : (0,T] — R as the piecewise constant function equal to O (¢ +1))4-
(1= 0)p(t™) on (£, ¢t™+D] for all n = 0,..., N,, — 1. Then, by definition
(4.2) of the space—time reconstruction operator Hg l, for all t € (0,T) and
a.e. x € (2,

o(x,t) — H(Dejlvm(w,t) = o(H)w(x) — P, (t)p,, (Pp, w)(x) (4.13)
= [p(t) — Pm(t)]w(@) + P (V) [w(2) — p,, (Pp,, w)()].

Using the definitions of gpm and Pp,, , we infer that

_ 0
”’U_HZ(),ZL’UWHLP(QX(O,T))
< [le - ¢m||LP(0,T) ||w||LP(Q) + H¢m||LP(O,T) Jw — HDm<Pme)||LP(Q)
< Ml = Pmll Lo o,1) 10l 2o (2) + [®Prmll Lo 0,1 S ()- (4.14)

As m — oo, the space-time-consistency of ((Dr)m)men gives Sp. (w) — 0
and the smoothness of ¢ shows that @, — ¢ uniformly (and thus in LP(0,T)).
Hence, (4.7a) follows from (4.14). The proof of (4.7b) is obtained by the same

argument starting from (4.13) and replacing ¥ with Vv, w with Vw, and H(Dei
with V) .

Step 2: proof of Items 2 and 3.

In the case of Neumann boundary conditions, applying Lemma 4.7 to (Vs )men
yields (4.8).

In the case of Fourier boundary conditions, the definition (4.12) can be re-
placed with

Pp,w = argmin ¢y ( | p,,z — w| Lmax(».2) () T IVp,,z — VU’”LP(Q)d

+|Tp,,z — WUHLP(@Q)>

and the reasoning starting from (4.13) can be done with (4@, Tg}n vm) instead

of (0,11 vyn), since | Tp,, (Pp,,w) = ywll 1o (p0) < Sp,, (w). This shows that
(4.9) holds.

Step 3: proof of Item 4.

Assume that 7 € LP(0,T; Wa*(£2)) n C([0,T]; L2(R2)), 8;v € L*(2 x (0,T))
and 7(-,T) = 0. By [29, Theorem 2.3.1], we can find a sequence (U, )nen C
C>([0, T]; Wa'P(£2) N L2(£2)) such that, as n — oo,
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Tp — 0 in LP(0, T; Wa'P (£2)) N C([0, T); L2(£2)), and
8ﬁn — 8156 in LQ(O,T‘7 L2(Q))

The proof of [29, Theorem 2.3.1] is based on an even extension of ¥ at ¢t = T,
required to preserve the continuity of the extended function. Since (-, T") = 0,
we can actually use an extension by 0 on [T,00) and, by selecting in [29,
Theorem 2.3.1] a smoothing kernel with support in (—7',0), we ensure that
each v,, vanishes on [T — €,, c0) for some €, > 0.

Having approximated v by these ©U,, we just need to prove the result for
each v,, instead of ¥. Let us drop the index n and write v for v,,. We have
T e C®([0,T); WaP(2) N L2(£2)) and T = 0 on £2 x [T — ¢, T] for some € > 0.
Let 7 € (0,¢/4), £ = [T/7] and take (¢;);=1,....., C C*°([0,T]) a partition of
unity on [0, 7] subordinate to the open covering ((i7 — 27,47 + 27);=1,...¢.)-
Set

4y t
Ty (,t) = (e, T) + ; ( /T W(S)dS) Ov(, ir)
Lr

) ( /T t 7//i(3)d5> 0,5 (x, ir).

i=1

Since v =0o0n 2 x [T —¢,T] D 2 x [T — 47, T}, the terms corresponding to
i =4¥; —3,...,¢, in the previous sum vanish (since it > €,7 — 37 > T — 471).
For ¢ < ¢, — 4, the support of ¢ is contained in [0,7 — 27]. This shows that
(-, t)=0forallt € [T —27,T).

‘We write
Ov,(x,t) Zd}l )Oiu(x, i7).
=1
Since
> wi(t) =1forallt € (0,T), (4.15)

we have 0,0(x,t) = Zf;l ;i (t)0yv(x, t) and thus
0:07 (-, ) — oo, t)HWL”(Q)ﬂLQ(Q)
< Zdh Y0 (i) = 00(, D)llywrro)nr2(o) -

Using the fact that 1;(t) # 0 only if [¢—iT| < 27 (that is, iT € (t —27,t+27)),
and invoking (4.15), we infer

100+ (-, 1) — 00 (-, )l war )z o)

< sup |00, 1) — at@('at)”W}*P(Q)ﬁL%Q) :
re(t—27,t+271)
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By smoothness of 7, this shows that 8,7, — 8,0 in L>(0,T; Wa P (£2)NL2(£2))
as 7 — 0. Integrating and using v,(-,T) = v(-,T) = 0, we obtain 7, — 7 in
C([0,T); WaP(£2) N L2(£2)). Hence, we only need to find approximations in
the sense (4.7) and (4.10) for each T, instead of . Given the structure of v,
this amounts to finding such approximations when o(z,t) = ¢(t)w(z) with
w € WaP(2) N L2(2) and ¢ € C=([0,T]) having support in [0,T — v] for
some v > 0.

We set, as before, v\ = o(t")Pp, w for n =0, ..., N,,. The proof of (4.7)
is done exactly as in Step 1.

If m is large enough so that t(¥m=1) > T — vy then V=) = V) — 0 and
(4.10a) is satisfied. We can modify vy, for the remaining m (for example by
setting v,, = 0) to ensure that this property holds for any m.

By definition (4.3) of H(Daivm att =0,
u(@,0) ~ 1) v (2.0) = (O)w(@) (1) T, (Pp, w)(x)
= ¢(0)[w(z) — IIp,, (Pp,,w)()].
Then, by definition of Pp, and §Dm,

[50) = 115) 0 ()| | = 16(O)[ Il = 1T, (P, )| () < 19(0)|S,, (w)

L2(2)

and (4.10b) follows from the space—time-consistency of ((Dr)m )men-
To establish (4.10c), we define ¥, : (0,7] — R as the piecewise constant

function equal to % on (™ t+V)] for allm = 0,..., N, — 1.

Then, by definition (4.4) of dp,, vy, for all t € (0,T) and a.e. © € £,
Ov(z,t) — 6p, vm(x,t) = @' (H)w(x) — ¥, (t)p,, (Pp,, w)(x).

By smoothness of ¢ we have ¥,, — ¢ uniformly on [0,7] as m — oo, and
the proof of (4.10c) therefore follows by using the same sequence of esti-
mates as in Step 1, starting from (4.13) and replacing (T, IIp,, U, ©, @)
with (0¢0,0p,,Vm, ¢, ¥m), and the LP norms with L? norms (note that
Sp,, (w) > ||w— Ip,, (Pp,,w)|l 120y by definition of Sp). L]

4.2 Averaged-in-time compactness

4.2.1 Abstract setting

In this section, we gather a few notions and compactness results used in the
convergence analysis of numerical methods for time-dependent problems.
The first two theorems are generalisations to vector-valued Lebesgue spaces
of the classical Kolmogorov compactness theorem for LP spaces [13]. If E is a
measured space and B a Banach space, we denote by LP(F; B) the Lebesgue
space of p-integrable functions E — B, see e.g. [29, 45] for a definition and
some properties of these spaces.
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Theorem 4.10 (Kolmogorov (1)). Let B be a Banach space, 1 < p < 400,
T >0 and A C LP(0,T;B). Then A is relatively compact in LP(0,T; B) if it
satisfies the following conditions:

1. For all f € A, there exists Pf € LP(R; B) such that Pf = [ a.e. on (0,T)
and || P f|[pg. ) < C, where C depends only on A.

2. For all p € C*(R), the set { [(P[f)pdt, f € A} is relatively compact in
B.

3. |Pf(-+h)— Pf||Lp(R;B) — 0 as h — 0, uniformly with respect to f € A.

Remark 4.11 (Necessary conditions)
The conditions 1, 2 and 3 are actually also necessary for A to be relatively compact
in L?(0,T; B).

Proof. Let (pm)men be a sequence of mollifiers constructed by scaling a
given smooth function p, that is:

p € CX(-1,1), /pdt =1, p>0, p(—t) =p(t) for allt e R

- (4.16)
and, for all m € N and ¢t € R, p,,(t) = mp(mt).

We set K = [0,7] and, for m € N, A, = {(Pf * pm)
denotes the convolution product in R.

The proof is divided in two steps. In Step 1 we prove, using Ascoli’s theo-
rem and Assumption 2, that, for m € N| the set A,, is relatively compact in
C(K; B) endowed with its usual topology of the supremum norm. This easily
gives the relative compactness of A,, in L”(0,T; B). In Step 2, we show that
Assumptions 1 and 3 give Pf *p,, — Pf in LP(R; B) as m — o0, uniformly
with respect to f € A. This allows to conclude that the set A is relatively
compact in LP(0,T; B).

f € A} where x

)

Step 1. Let m € N. In order to prove that A,, is relatively compact in
C(K; B), we use Ascoli-Arzeld’s theorem. Hence, we need to prove that:

(AA1) for all t € K, the set {Pf % pin(t), f € A} is relatively compact in
B;

(AA2) the sequence {Pf*pm,, f € A} is equicontinuous from K to B (i.e.
the continuity of Pf  p,, : K — B is uniform with respect to f € A).

We first prove Property (AA1l). For t € K we have, with ¢ = p,(t — ) €
Ce(R),

PFepnt) = [ PHOp(t =95 = [ Prs)oi(s)as

Then, Assumption 2 applied to ¢ = p; gives Property (AA1).

We now prove Property (AA2). Let t1,t; € K and recall that p’ = ﬁ. By
Holder’s inequality,
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[Pf * pm(t2)=Pf * pm(t1)ll
< L IR Itz = 9) = pusts = 5] s
< ”Pf“LP(]R;B) [om (t2 =) — pm(t1 — ')HLP’(R) :

Since t1,ty € K = [0,T], the functions p,, (t2 —-) and p,, (t; —-) vanish outside
[-1,T +1]. Hence, using the mean value theorem and Assumption 3, we infer

1
7

IPF % pnlt2) = PS5 o)l < Clt = tl (sup 0t (0]) (7 + 207

This shows that Pf x p,, is uniformly continuous on R, with a modulus of
continuity which does not depend on f. Hence, Property (AA2) is proved.

As a consequence, A,, is indeed relatively compact in C'(K; B). This is equiva-
lent to saying that, for any € > 0, there exists a finite number of balls of radius
e (for the supremum norm of C(K; B)) whose union cover the set A,,. Then,
since ||| 100 7.5) < TP |l (¢, 3), we also obtain the relative compactness
of Ay, in LP(0,T; B).

Step 2. Let ¢t € R, we have, using [ pm(s)ds = 1 and setting 5 = ms,

Pf % pm(t) = PF(t) = / (PA(t — 8) — PA(1)] pm(s)ds

_ /11 {Pf <t - ;) - Pf(t)] p(3)d5.

Then, by Hélder’s inequality,

1 p

ds.
B

IPS 5 pu(®) — PEOIE < 0l /

—1

Pf (t— :;) _ Pf(1)

Integrating with respect to ¢ € R and using the Fubini-Tonelli theorem to
swap the integrals on t and s leads to

”Pf*/’m - Pf”ip(o,T;B)
ds

1 _
S
<ol [ |Ps ( - ) _pf
—1 m L (0,T;B)

1
< 2lpll s {IPFC+ 1) = Prl 1< -}

P

Using Assumption 3 then gives |[Pf * pp — P[00 1,5 = 0 as m — +o0,
uniformly with respect to f € A.

We can now conclude the proof. Let ¢ > 0 and pick m(e) large enough such
that
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| Pf* pme) — PfHLp(O’T;B) <e/2 forall fe€ A (4.17)

By Step 1, we can cover Ap,oy = {(Pf * pm(e))jjo,r) + f € A} by a finite

number of balls in L?(0,T’; B) of radius €/2. Property (4.17) then shows that

{(Pfor = f € A} = Ais covered by the same finite number of balls of

radius . This concludes the proof that A is relatively compact in LP(0,T; B).
u

Theorem 4.12 (Kolmogorov (2)). Let B be a Banach space, 1 < p < +00,
T >0 and AC LP(0,T; B). Then A is relatively compact in LP(0,T; B) if it
satisfies the following conditions:
1. A is bounded in L?(0,T; B).
2. For all ¢ € CX(R), the set {fOT fodt : f € A} is relatively compact in
B.
3. There exists a function n : (0,T) — [0,00) such that lim,_,o+ n(h) =0
and, for all h € (0,T) and f € A,

/0 A+ B — £ dt < ().

Proof.

The proof uses Theorem 4.10 with P defined the following way: for f € A,
Pf = fon[0,T] and Pf = 0 on R\[0,7]. Owing to this definition and to
Assumption 1 in Theorem 4.12; Items 1 and 2 of Theorem 4.10 are clearly
satisfied.

We prove now prove, in two steps, Item 3 of Theorem 4.10. Notice first that,
replacing 7 with 7j(h) = sup ;7 (which still satisfies lim, o+ 77(h) = 0), we
can assume without loss of generality that 7 is non-decreasing.

Step 1. In this step, we prove that [ || f(t)|/; dt — 0 as 7 — 07, uniformly
with respect to f € A.

Let 7,h € (0,T) such that 7+ h < T. For all t € (0,7) one has | f(t)||5 <
Ift+h)|lg+ | f(t+h)— f(t)|z and thus, by the power-of-sums inequality
(C.12),

IFONE < 2P7H I+ R + 207 (6 +R) = fO)II-

Integrating this inequality for ¢ € (0,7) gives
| s ae <2t [ nig a

Lot / AR — F@ A (418)

Now let hg € (0,T) et 7 € (0,T — hg). For all h € (0, hg), Inequality (4.18)
gives, using (k) < (ko)
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[ sl ae<2t [ ml e+ 2 ).
0 0

Integrating this inequality over h € (0, ho) leads to

T ho T
ho/o |l f(®)]% dt < 27)71/0 (/0 IfE+h)'s dt> dh+2P" hon(he). (4.19)

Using the Fubini-Tonelli Theorem,

ho T T ho
/0 (/ If(t+h)||Bdt)dh=/0 (/ If(t+h)||3dh>dt
T T
< / (/ ||f(8)|%d8><T|f||’£p(o,T;B)»

from which one deduces, owing to (4.19),

T -1
Il at < 2 e 271 (o)
o B =T Lr(0,T;B) n\o)-

We can now conclude this step. Let ¢ > 0 and choose hy € (0,T) such that
2°~1n(hy) < e. Then, with C' = SUp e g ||f|\’£p(0,:,1;]3)7 take 7 = min(T —
ho,eho/(2P~1C)). This gives, for all f € A and all 7 < 7,

/ IFE)IE < 2=.
0

The proof that [ || f(¢)||; dt — 0 as 7 — 0T, uniformly with respect to f € A,
is complete.

A similar proof gives ff_T |l f ()| dt — 0 as 7 — 0, uniformly with respect
to f € A (this can for example be obtained by working on g(t) = f(T — ?)
instead of f).

Step 2. We now prove that Item 3 in Theorem 4.10 is satisfied, and thus
conclude the proof of Theorem 4.12.
Recall that Pf(t) =0 if t £ [0,T] so that, for all h € (0,T) and f € A,

/R IPF(t+h) — PF(E) |t
T

0 T—h
< [ e nigacs [ e n - sl aes [ o

T

T

h
< [CIsoaeam+ [ sl (1.20)

Let ¢ > 0 and take h; > 0 such n(h1) < . Owing to Step 1, there exists
hs > 0 such that, for all f € A and h < ha,
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h T
[ hrergase ama [ jrolpase
0

T—h

Hence, by (4.20), for all f € A and h < min(hy, hs),

/R IPf(t+h) — Pf(t)||%dt < 3e.

This concludes the proof that Assumption 3 in Theorem 4.10 is satisfied.
|

We now turn to compactness theorems involving sequences of spaces as co-
domains of the functions. This typically occurs in numerical schemes, when we
consider sequences of functions that are piecewise constant on varying meshes.
We first state a notion of “compact embedding” of a sequence of space in a
fixed Banach space.

Definition 4.13 (Compactly embedded sequence). Let B be a Banach
space and (Xom, ||| x, )men be a sequence of Banach spaces included in B. We
say that the sequence (X,,)men is compactly embedded in B if any sequence
(Um )men such that

Up, € Xy for allm € N, and ([|uml x, Jmen is bounded,
is relatively compact in B.

The first compactness results for sequences of subspaces is a straightforward
translation in that setting of the second Kolmogorov theorem above.

Proposition 4.14 (Time compactness with a sequence of subspaces).
Let 1 <p < +o00, T >0, B be a Banach space, and (X,,)men be compactly
embedded in B (see Definition 4.13). Let (fm)men be a sequence in LP(0,T'; B)
satisfying the following conditions:

1. The sequence (fm)men is bounded in LP(0,T; B).

2. The sequence (||fm||L1(o,T;xm))meN is bounded.

3. There exists a function n : (0,T) — [0,00) such that lim,_,o+ n(h) =0

and, for all h € (0,T) and m € N,

T—h
A Wt 1) — Fr (D) dt < n(R).

Then, the sequence (fm)men is relatively compact in LP(0,T; B).

Proof. We aim at applying Theorem 4.12 with A = {f,, : m € N}. We only
have to prove Assumption 2 in this theorem, the other two assumptions being
already stated as assumptions of the proposition.

Let ¢ € C*(R). We need to prove that the sequence ( fOT fmpdt)men is rela-
tively compact in B. We have, with ||¢|| . = sup,cg |¢(t)],
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T
H / Frpdt
0

The sequence (”meLl(O,T;Xm))mEN being bounded, this shows that the se-

quence
T
/ Jmepdt
0 Xm/ meN

is also bounded. Since (X,,)men is compactly embedded in B, this concludes

< Nllo 1fmll L2 0,7:x,) -
X

m

the proof that ( fOT Jfm@dt)men in relatively compact in B. m

We then turn to the statement and proof of a discrete Aubin—Simon theorem,
which was first used in[58] and generalised in [57], see also [56].

In the continuous setting, the Aubin—Simon compactness theorem establishes
a strong compactness property of sequences of functions in LP(0, T; B), based
on their boundedness in L9(0,T; A) and the boundedness of their derivatives
in L™(0,T;C), where A is compactly embedded in B and B is continuously
embedded in C. We first define a notion of triplets (A, B,C) having these
compact—continuous embedding properties, in the case where A and C' are
replaced by sequences of spaces.

Definition 4.15 (Compactly—continuously embedded sequence). Let
B be a Banach space, (Xm, || x, Jmen be a sequence of Banach spaces in-
cluded in B, and (Yo, [|-lly, Jmen be a sequence of Banach spaces. We say
that the sequence (X, Yim)men is compactly—continuously embedded in B if
the following conditions are satisfied:

1. The sequence (Xn)men s compactly embedded in B (see Definition 4.13).
2. X, CY, for allm € N and, for any sequence (um)men such that
a) U € Xy for allm € N and (||um || x )men is bounded,
b) lumlly, — 0 asn — +o0,
¢) (Um)men converges in B,
it holds u,, — 0 in B.

Lemma 4.16. Let B be a Banach space and (X, Ym)men be compactly—-
continuously embedded in B (see Definition 4.15). Then, for any e > 0, there
exists mg € N and C. > 0 such that, for any m > mg and w € X,,, one has

lwllp <ellwlly,, +Cellwly,, -

Proof. We prove the result by contradiction. Let us therefore assume that
there exists € > 0 such that, for any mg € N, we can find m = p(mg) > mg

and w € X () such that

ol > ellwllx,,  +molhwlly,, -

There is loss of generality in also selecting, by induction, each m = ¢(my)
greater than ¢(mg—1); then ¢ : N — N is a strictly increasing mapping. Since
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w # 0, we can then set uy () = W € Xy (myg) (there is no ambiguity in the

definition of u () since ¢ is one-to-one). We then have, for any m € ¢(N),

L= luml g = € lumllx,, +90m) [umlly,, , (4.21)

where 1) = =1 : p(N) — N satisfies ¢)(m) — co as m — oo. To define u,, for

all m € N, we let u,,, = 0 whenever n ¢ ¢(N) and, defining ¢)(m) = m in that
case, we see that (4.21) still holds. This definition also preserves the property
P(m) — 0o as m — 0.

The sequence (U, )men is such that w,, € X, for all m € N and, owing
to (4.21), (lumllx, Jmen is bounded by 1/e. By the compact embedding
of (Xin)men in B, ‘we infer that there exists a subsequence, still denoted
(4m)men, that converges in B. Then, using (4.21) again, [[uy, |y, < 1/¢(m) —
0 as m — +o00, and thus, by Definition 4.15, the limit of (u,)men in B must
be 0. This contradicts (4.21) which states that, since each wu,, has norm 1 in
B, the limit in this space of these vectors should also have norm 1. L]

We can now state a discrete Aubin—Simon theorem with sequences of spaces.

Theorem 4.17 (Aubin—Simon with sequences of spaces and discrete
derivative). Let p € [1,400). Let B be a Banach space and (X, Yim)men
be compactly—continuously embedded in B (see Definition 4.15). Let T > 0,
0 € [0,1], and (fm)men be a sequence of LP(0,T; B) satisfying the following
properties:

1. For all m € N, there exists
e N € N*,
e 0=t <tM < ... <tM) =T and
° (’U(n))nzo,m’N S Xiﬂv—’_l
such that, for alln € {0,...,N — 1} and a.e. t € (t0) 0+ f () =
Ov( D (1 — 9)v™.
We then define almost everywhere the discrete derivative 6, fr, by setting,
with &3 = (1) _ ()

p (1) _ 4y(m)

S fm (t) = ) forn €{0,...,N —1} and t € (t™) (1),

snts

2. The sequence (fm)men s bounded in LP(0,T; B).
3. The sequence (”fm||LP(07T;X,,L))7”€N 15 bounded.
4. The sequence (||5mfm||L1(0,T;Y,,L))m€N is bounded.

Then (fm)men 1s relatively compact in LP(0,T; B).

Proof. We apply Proposition 4.14. The only assumption in this proposition
that needs to be established in order to conclude is the third one, that is

T—h
/ | fm(t+h) — fn(®)|'5 dt — 0 as b — 0,
0

uniformly w.r.t. m € N.
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Note that, without the “unformly with respect to m € N” | this convergence is
known since each f,,, belongs to LP(0,T; B). As a consequence, we only have
to prove that, for all 7 > 0, there exist mg € N and 0 < hg < T such that

T—h
Vim > mo, Vh € (0, ho), / i+ h) = FulBdt <n (4.22)
0

Indeed, once this is proved, upon reducing hy we can ensure that this estimate
also holds for fi,..., fio—1-

Let € > 0. Lemma 4.16 gives the existence of my € N and C. € R such that,
for all m > mg and u € X, [lullz <elullx, +Cc|lully, . Then, for m > my,
0<h<Tandte (0,T—h),

H.fm(t + h) - fm(t)”B
Sellfm(t+h) = fm®)llx,, + Cellfm(t+h) = fm(®)lly,,
SellfmE+n)lx, +elfm®llx,, + Cellfm(E+h) = fm(®)lly,, -

Take the power p of this inequality and use the power-of-sums inequality
(C.14) to obtain

1t + R) = fn ()] < 3772P (| fm(t + M),
+ 30 e | fm (O, + 377 CE | fm(t + h) = fm (I, -

Integrating this inequality with respect to ¢ € (0,7 — h) leads to

T—h
Lt = a0l at <253 U rix,

T—h
+3pflc§/0 [ fm(t+R) = fm ()|}, dt. (4.23)

We now estimate the last term in this inequality by using the discrete deriva-
tive of f,,,. This function is piecewise constant in time so, for a.e. t € (0,7 —h),
writing fo, (t + h) — f,(t) as the sum of the jumps of f,, at its discontinuities
gives

fm(t + h) - fm(t) = Z (fm)|(t<n>,t(n+1)) - (fm)l(t(n—l)’t(n))
n: (M) e(t,t+h)
= Z (91}(n+1) + (1 — Q)U(n)) _ (ev(n) + (1 _ 9)1}(”_1))
n: t(W) €(t,t4+h)

= 3 [g(v(nﬂ) ™) 4 (1 - )™ — v(nfn)]
n: (") (t,t4+h)

N-1
= 3 (B0 <o) 4 (1 )0 o] 2 (1)
n=1
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N1 (nt1) _ ,(n)
v v n+1 n
=0 Z W&( 2)1(t,t+h)(t( ))
n=1
N1 () _ yy(n=1)
v v n—1 n
where 1,15 (t™) = 1if t™) € (t,t + h) and 10 (™) = 0 if t™) &
(t,t+h). Let M be a bound of |6, fim |l 11 (0,7,y,,), Which means that, for all
m €N,
N-1 n+1 n
v o™ ) <M.
Y

&(n-?—%)

n=0
Taking the Y,,-norm of (4.24), then the power p, and using the convexity of
s — sP gives

[ fn(t + 1) = fn (DT

N=Ly (1) _ y(n)
Sg(Z oD — vl

p
n 1 n
‘ & +2)1(t,t+h)(t( ))>
Yim

— s(nt3)

N=1y () _ 4y(n—1) P

v v o1 n
+(1-0) (Z R 21y (E)
n=1 & 2 Ym
N1y (nt1) _ y(n) )
< OMmP! 2| &t Ly (E)
<nz=:1 arz e
» N-1 ’U(n) o ,U(nfl) (n—1) ()

n=1 Ym

Writing 1, 445 (™) = 1y —pmy(t) and integrating this inequality over
t € (0,7 — h) leads to

T—h
/0 |t + 1) — Fm(®)L. dt < MPh. (4.26)

Plugging this inequality into (4.23), we obtain

T—h
L Ml = a0l at <253 1o rix,
+ 3P 1CP MPh.  (4.27)
We can now conclude the proof. Let n > 0. Since (|[fmll10(07.x,,))men 18

bounded, we can fix € (and thus also mg) such that, for all m > my,

n

9 % 3p~1cp ||fm||1£p(o,:r;xm) < o

We can then select hg € (0,7) such that 3?"1CPMPhg < 1/2. Estimate (4.27)
then shows that (4.22) holds, which proves the theorem. L]
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4.2.2 Application to space—time gradient discretisations

In this section, we apply the previous abstract compactness results to the
framework of space-time GD.

Aubin—-Simon theorem

The first step is to defined a dual norm |jwl|, , on IIp(Xp,.), which will
enable us to define the spaces Y,,, in the above theorems.

Definition 4.18 (Dual norm on IIp(Xp.)). Let Dr be a space-time GD
in the sense of Definition 4.1. The dual norm |-, p on Hp(Xp.) C L3(0)
s defined by:

Yw € H'D(XD’.),
(4.28)
[wll, p = sup / w(x)Ipv(x)de : ve Xp,, ||[v|lp=1,.
Q

A straightforward consequence of this definition is

Yw € HD(X'D70)7 Yv € XD,. R

/Q w(@) Tpv(@)dz| < ull, p o]lp. (4.29)

This relation shows that |||,  is a norm (not just a semi-norm). Indeed, if
[wll, p = 0 then Jow(x)IIpv(z)de = 0 for all v € Xp ,. Taking then v such
that IIpv = w shows that w = 0.

The norm ||-||, , will mostly be used on dpv(t) for v € Xg’fl. Recalling the
notation (4.4), it is clear that dpv(t) € IIp(Xp.,) for a.e. t € (0,T), and thus
[6pv(?)]], p is well-defined.

Remark 4.19 (Boundary conditions)
It is also worth noticing that ||w]|, , takes into account the considered boundary
conditions, through the norm ||v||, on Xp e (see, e.g., Definitions 2.1 and 2.24).

Remark 4.20 (||-||, p is a discrete H™ norm)

Let us consider the case of homogeneous Dirichlet boundary conditions and
p = 2. Then Definition 2.1 shows that (Xp,o,]|||lp) is a discrete version of
(HY (92), |H|Hé(ﬂ))’ where H'”H[l)(()) = |[V-|l2(q)a is the standard norm on H ().
In the continuous setting, (4.28) therefore reads: for w € L*(£2),

wll, := sup {/Qw(m)v(m)da: v € Ho(2), vl o) = 1}. (4.30)
Identifying w as an element of H~'(£2), we have

| w@w(@de = ) .
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Hence, (4.30) turns out to be the standard dual norm on H~*(§2), that is the norm
of linear continuous functions Hg(2) — R.

The norm |||, ,, can thus be considered as a discrete version of the standard dual
norm on H™'(£2).

The next result is a consequence of the discrete Aubin—Simon theorem (The-
orem 4.17).

Theorem 4.21 (Aubin—Simon theorem for GDs). Let T > 0, p €
(1,400) and 6 € [0,1]. Assume that ((Dr)m)men is a sequence of space—
time-consistent and compact space—time GDs in the sense of Definitions 4.3
and 4.6. For any m € N, let v, € Xg:)‘:l be such that there exists C' > 0
satisfying

T
Vm € N, / l(om)o(®)[5, dt < C (4.31)
0

and

T
Vm €N, / 160, 0m ()], p, dt < C. (4.32)
0

Then the sequence (ngvm)meN is relatively compact in LP(§2 x (0,T)).

Proof. To apply Theorem 4.17, let B = L?(2), X,,, = IIp,,(Xp,, ), and
define the norm on X, by

lull x, =min{l|wlp : w € Xp,, o such that IIp,,w = u}. (4.33)

Set Y, = Xy, = Ilp (XD 0) and ||HYm = ||'||*,'Dm'

m m

Let us prove that the sequence (X,,, Yo )men is compactly—continuously em-
bedded in B, in the sense of Definition 4.15. First, the compactness hypothesis
on (Dp,)men is exactly stating that (X, )men is compactly embedded in B, in
the sense of Definition 4.13. Then, by construction, X,, =Y,, for all m € N.
Assume now that (u, )men is such that u,, € X,, for allm € N, (||Um||xm>meN
bounded, [|uy|ly, — 0 as m — +00, and (um)men converges in LP({2). Take
Ry € Xp,, o alifting of u, with minimal norm, i.e. II'p, Rpyytm = Uy, and
[Rmumllp, = umllx, A useof (4.29) yields

[ wn@?de = [ wn(@)itp, Bion @)z < linl., Rt
0] 2 o

= lumlly,, llumllx, -

The assumptions on (u;,)men thus ensure that lim,, fQ U ()?de = 0.
This shows that, up to a subsequence, u,, — 0 a.e. in {2, and hence that the
limit LP(£2) of (tm)men must be 0. The proof (X, Yin)men is compactly—
continuously embedded in B = L?({2) is complete.
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The relative compactness of (Hglv77l)MGN in LP(0,T; LP(£2)) follows from

Theorem 4.17 with f,, = Hg{i Up, if we can check the four assumptions stated
in this theorem. '

The first of this assumption is obviously satisfied by the definition of Hgii in
(4.2).

Since the sequence of underlying spatial discretisations is compact, it is also
coercive (see, e.g., Lemma 2.9 for homogeneous Dirichlet boundary condi-
tions). The definition of Cp_, combined with (4.31) and the definition of Hl(i l

then shows that (Hgi Um )men 18 bounded in LP(0,T'; LP(2)). This takes care
of the second assumption in Theorem 4.17.
The third assumption follows immediately from (4.31) and the fact that

0
500

= o, ((vm)e () x,, < (em)e®)lp,, -

m

To prove the fourth assumption in Theorem 4.17, we notice that

6
|3 IT8) 0 ®)]| = 180, 0m @y, = 130, 0m ). 5,

m

and we use (4.32). m

Convergence of a weak—strong product, and identification of
non-linear weak limits

Dealing with degenerate parabolic equations often requires fine results to iden-
tify non-linear limits of weakly converging sequences. The main result in this
section, Theorem 4.24, is one of these fine results. We consider here the partic-
ular case p = 2 and we restrict ourselves to homogeneous Dirichlet boundary
conditions. The adaptation to other boundary conditions is rather simple, but
establishing the equivalent of Theorem 4.24 for p # 2 requires a different path;
see [33, Theorem 5.4] for details.

We first define the inverses of the discrete and continuous Laplace operators
with homogeneous Dirichlet boundary conditions.

Definition 4.22 (Inverse of discrete and continuous Laplace opera-
tor). Let D = (Xp,, Ip,Vp) be a GD in the sense of Definition 2.1, for
p = 2. We define the operator ALy : Xp o — Xpo such that, for allv € Xp g,

Yw € Xpyo, / Vo(ALv)(x) - Vpw(x)de = | Hpv(x)Ipw(z)de. (4.34)
Q Q
We also define A : L2(£2) — H(82) such that, for all v € L*(12),

vwe Hy(2). [ V(a)(@) Vu@)s - /{ o@u(e)de. (139
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Theorem 4.23 (Compactness of AY). Letp=2,T >0, 0 € [0,1] and
((Dr)m)men = (Dm,Ip,,, (tgﬁ))n=0,_“71vm)meN be a space—time-consistent,
limit-conforming and compact sequence of space—time GDs for homogeneous
Dirichlet boundary conditions, in the sense of Definitions 4.3 and 4.6. For any
m €N, let v, € Xg::i;l be such that there exists C' > 0 and q > 1 satisfying

T 2
I vy (¢ ] dt < 4.
vmeN,/O ] B (0)], A <C (4.36)
and
T
Vm €N, / 160, 0m (| p_ dt < C. (4.37)
0

We also assume that H(Dejl vm converges weakly in L?(0,T; L*(£2)) as m — oo
to some v € L?(0,T; L*(£2)).

Then, as m — oo,
Y (A% v,,) = Al in L2(0,T; LA(R2)), and
V%’;( b, Um) = V(AT) in L2(0,T; L2(2))".
Moreover, if ¢ > 1 then
op,, ( %mvm) — 0y(AD) weakly in LI(0,T;L?(2)) as m — co.  (4.39)

Proof.

Step 1: we prove, using Proposition 4.14 with p = 2, that (Hl(fi (A%m Um))meN
is relatively compact in L?(0,T; L?(2)).

Let u,, = A%mvm. Since the sequence of underlying spatial discretisations
is compact, it is coercive (Lemma 2.9). Denote by Cp a coercivity constant
of this sequence. Using the definition (4.34) of AL~ with v = (vm)a(t) and
w = (um)o(t), the Cauchy-Schwarz inequality in the right-hand side, the
definition of Cp > Cp,,, raising to the power 2 and integrating over ¢t € (0,7T),
we see that

T ) T ©
| Moo, <€t [ |18

Set B = L*(2) and X,,, = IIp,, (Xp,, 0), endowed with the norm

2
< C3C. 4.4
oy S CRC (4.40)

||U‘)||Xm = lnf{”Z”Dm : H’sz = w}

The compactness of (D,,)men ensures that (X,,)men is compactly embedded
in B as per Definition 4.13. Estimate (4.40) and the coercivity of (D, )men
prove that items 1 and 2 of the hypotheses of Proposition 4.14 hold for f,, =
Hggl Uy, Let us now observe that, for all z € Xp_ o,

moy

|1Ip,, =

*, D,
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~ { [ 90,85, 2)(@) - Vo, ul@de : w e X, o, = 1}
0

. Hpu(7l+1) HDu
Therefore, since dp,, um (t) = T Hypothesis (4.37) and the use
of coercivity with constant C'p imply that
T
Vm €N, / 180, tn (1)Lt < (C)IC. (4.42)
0

Apply the same computation as in (4.24), followed by (4.25) with Y,, re-
placed by L2(£2). Using (4.42), this proves that (4.26) holds (still with L?(£2)
instead of Y,,,). Hence, item 3 of the hypotheses of Proposition 4.14 holds with
n(h) = h. Note that, contrary to the proof of Theorem 4.17, we do not use
an inequality similar to (4.23), which is the discrete equivalent of the Lions
lemma.

Therefore, Proposition 4.14 provides the existence of w € L?(0,T; L?(£2)) such

that, up to a subsequence as m — oo, Hgium —a in L?(0,T; L*(92)).

Step 2: we prove that u = A™D.

By Lemma 4.7, u belongs to L?(0,T; H}(£2)) and VD Uy — VU weakly
in L2(0,T;L?(2)%). Let w € L%*(0,T;H}(£2)) and consider the sequence
(Wm)men given by Lemma 4.9 for w. Writing (4.34) with v = (v, )e(t) and
w = (wm)e(t) and integrating over t € (0,T), we can pass to the limit to see
that @ satisfies

/OT /Q Vi(z, t) - Voo(z, t)dedt = /OT /ﬂ o(x, t)w(e, t)dzdt. (4.43)

This precisely shows that @ = A'.

Step 3: proof of (4.38).

Write now (4.34) with v = (v)e(t) and w = (un)e(t), and integrate over
€ (0,T). By strong convergence of Ul()gi Uy, to U, we can pass to the limit in

the left-hand side and, using (4.43) with w = @, we find

: 2
n}gnoo/ / |VD U (2, 1)|*ddt

/ / 2)dzdt = /OT /Q Ve, )2 dadt.

This convergence of L? norms show that the convergence of (nglum)mel\l to

V7 is actually strong. The proof of (4.38) is thus complete.
Step 4: assuming that ¢ > 1, proof of (4.39).
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We proved in Step 1 that (H(SDm(AiDm U"L)HLQ(O,T;YM))"LEN is bounded (recall
that A%mvm = u,,). By coercivity of the sequence of GDs, this shows that
6p,, (A% vy,) is bounded in L9(0,T; L?(§2)) and therefore converges, up to a
subsequence, to some V weakly in this space.

Take v € C2°(0,7) and ¥ € C°(£2). Multiply 6p,, (A% v,,)(t) by [vy(t™ +
(1 — )yt D)]eh, where v = 1 — 0 and n is such that ¢ € (¢t t("+1)) inte-
grate over (x,t) € £2x (0,7 and use the discrete integration-by-part formula
(C.17) to transfer the dp, operator onto (y(t(™)),—o .. n. By smoothness of
v, passing to the limit shows that

/ / V(x,t)y x)dadt = / / u(ax, t)y' ()¢ (x)dedt.

We infer that V = 9,u = 9;(A™) and the proof is complete. (]

The next result is characterised as “weak—strong space-time” because it deals
with the product of two sequences of functions, one of them being strongly
compact in time and weakly in space (estimates on the time derivative), the
other one being wearkly compact in time and strongly in space (estimate on
the spatial derivatives).

Theorem 4.24 (Weak-strong space—time convergence of a product).
Take T > 0, 0 € [0,1], p = 2 and a space—time-consistent, limit-conforming
and compact sequence ((Dr)m)men of space—time GDs for homogeneous Diri-
chlet boundary conditions, in the sense of Definitions 4.3 and 4.6. For any
m €N, let By, (m € Xg::‘gl be such that
e The sequences
T 0
(Jo 190, Bl p,, Jmex and (IV35) Gnll2(07:2(2)) Imers are bounded,
o Asm — oo, ngﬁm — B and Hgii(m — ¢ weakly in L2(£2 x (0,T)).

Then it holds

T
lim / / I By (@, )T G, t)dadt
2

m—o0 0

/ /Bm t) ((z, t)dadt. (4.44)

Proof. The sequence (B,,)men satisfies the hypotheses of Theorem 4.23.
Hence, V(gl(AiDmﬁm) converges strongly to V(A?S) in L2(0,T; L?(£2)%). By
definition of A%, | we have

T
//Hgiﬁm(w»t)ﬂ(peiCm(w,t)dwdt
0 2

T
= / VD (A B)(@,t) - VD) G, t)dadt.  (4.45)
0 2



4.3 Uniform-in-time compactness 115

By assumption on ((m)men, the sequence ([|Call 20,7, xp ,)men is bounded

and thus, by Lemma 4.7, v%’ig‘m — V(¢ weakly in L?(0,T; L?(£2)?). Passing
to the limit in the right-hand side of (4.45), we infer

T
lim / / H(Deiﬂm(:c,t)ﬂgigm(az,t)dxdt
0o Jo

:/T/ V(AB) (2, 1) - VE(w, t)dwdt.
0 2

The definition of A’ concludes the proof of (4.44). "

4.3 Uniform-in-time compactness

Most of the results and techniques developed here come from [33].

4.3.1 Definitions and abstract results

Solutions of numerical schemes for parabolic equations are usually piecewise
constant in time, and therefore not continous. Their jumps nevertheless tend
to become small with the time step, and it is possible to establish some
uniform-in-time convergence results. These results are based on a generali-
sation to non-continuous functions of the Ascoli-Arzela theorem.

Definition 4.25. If (K,dk) and (E,dg) are metric spaces, we denote by
F(K,E) the space of functions K — E, endowed with the uniform metric
dr(v,w) = sup,ec i de(v(s), w(s)) (note that this metric may take infinite val-
ues).

Theorem 4.26 (Discontinuous Ascoli—Arzela’s theorem). Let (K, dg)
be a compact metric space, (E,dg) be a complete metric space, and let
(F(K, E),dr) be as in Definition 4.25. Let (Um)men be a sequence in F(K, E)
such that there exists a function w : K x K — [0,00] and a sequence
(Tm)mEN C [0’ OO) satisfymg

lim  w(s,s)=0, lim 7,=0, (4.46)
di (s,s’)—0 m—o00
V(s,s") € K*, Ym €N, dg(vm(s),vm(s) < w(s,s) + Tpm. (4.47)

We also assume that, for all s € K, {v,(s) : m € N} is relatively compact in
Then (Um)men is relatively compact in (F(K,E),dr), and any adherence
value of (Vm)men @n this space is continuous K — E.
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Proof. The last conclusion of the theorem, i.e. that any adherence value v
of (Vm)men in F(K, E) is continuous, is trivially obtained by passing to the
limit along this subsequence in (4.47), showing that the modulus of continuity
of v is bounded above by w.

The proof of the compactness result an easy generalisation of the proof of the
classical Ascoli-Arzela compactness result. We start by taking a countable
dense subset {s; : I € N} in K (the existence of this set is ensured since K
is compact metric). Since each set {v,,(s;) : m € N} is relatively compact in
E, by diagonal extraction we can select a subsequence of (v, )men, denoted
the same way, such that for any [ € N, (vy,(81))men converges in E. We then
proceed in showing that (v,)men is a Cauchy sequence in (F(K, E),dF).
Since this space is complete, this will show that this sequence converges in
this space and will therefore complete the proof.

Let ¢ > 0 and, using (4.46), take 6 > 0 and M € N such that w(s,s’) < e
whenever dg(s,s’) < § and 7,, < & whenever m > M. Select a finite set
{S1y5-.-, 815} such that any s € K is within distance ¢ of a s;,. Then, for any
m,m’' > M, by (4.47),

dE(Vm(8), vm: (8)) < dp(vim(8), vm(s1,)) + dE(Vm(s1,), v (s1,))
+ d(vnv (s1;), vm (5))
< w(s,s1;) + Tm + de(vm(s1,), Vs (s1,)) + w(s, S1;) + T
<de+dr(vm(sy,), vm (s1,))- (4.48)

Leti € {1,..., N}. The sequence (v, (s1;))men converges in E, and is therefore
a Cauchy sequence in this space. We can thus find M; € N such that

Vm,m' > M;,  dg(vm(s,),vm (s,)) < e. (4.49)

Take M’ = max(M, My, ..., My). Estimates (4.49) and (4.48) show that, for
all m,m’ > M and all s € K, dg(vm(s),vm/(s)) < be. This concludes the
proof that (vm)men is a Cauchy sequence in (F(K, E),dr). L]

Corollary 4.27 (Uniform-in-time compactness from estimates on dis-
crete derivatives). Let T > 0, § € [0,1], B be a Banach space, and
(X, [l x, Jmen be a sequence of Bamach spaces included in B. For any
m € N, we take

e N, € N*,
00:t§2) <t$,1l) <... <t$,ILV’") =T, and
® Um = (ugwg))nzo,...,Nm S X;XM+1~

Let (um)e : [0,T] = X, be the piecewise-constant function in time defined by

(um)o(0) = u'® and, for alln=0,..., N, —1 and t € (£, t("1)]

- " (450
(um)o(t) = Gu,(qu) +(1- Q)u%‘). ( )
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n+i n n .
Set &ﬁn“) = tgnﬂ) — tgn) forn =0,...,N,, — 1, and define the discrete
derivative Oy, by:

LD )
Yn=0,...,Npm—1, forae te @t D) 6 0, () = ——

alte
We assume that

(h1) The sequence (Xm)men s compactly embedded in B (see Definition 4.13).
e sequence (||(tm)e|l (o 7. men s bounded.

h2) Th Lo (0,T5X0m) is bounded
e sequence (||0mUm||Lao.1.5))meN 5 bounded for some g > 1.

h3) Th ) La(0,T;B) is bounded f 1

(h4) Setting Gy = maxn_o.. n,—1 &%), it holds liMym_yec B = 0.
Then, there exists u € C([0,T]; B) such that, up to a subsequence,

lim  sup ||(um)o(t) —u(t)||z = 0. (4.51)
M=% ¢e0,T)
Proof. Let
(n+1) _ (n)
w0 = gu{ Y + (1 - f)u(  and 57(,?+%)um = u

Take ngy > ny in {0,..., N, — 1}, 81 € () ¢t(m+D] and s € (¢(72), ¢(n2+1)],
By writing a telescopic sum, we get

(um)o(s2) = (um)o(s1)

— (2 0) _ g (ni+0)

na
— Z [u%we)_u%zqw)}
n=ni+1
na
= Y [Pl —ul) - -0 - a7V
n=ni+1

72 1 1 _ 1y (p—1
S [oant o+ (- )6l 5>um]. (4.52)

n=ni+1

It can easily be checked that this relation extends to the case s; =0, ny = —1
1 _1

and ng € {0,..., N, — 1} by defining &,(w 2) — 0 and 5,(71 2)um = 0; consider

for example no = 0 and notice that

ul® — ) = gul) — ) = 9&,(%%)(57(%)um.

By the discrete Holder inequality (C.3) with w; = &ffli%), b; =1 and a; =
(i£3)
[16m 2

Um| B, since % =q-1,
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N~ (1) [[s(+) “
(30 & o)
B

n=ni+1
72 41 a1 12 41 41 q
( 3o 2>> ( > Al o )
n=ni+1 B

<
n=ni+1
1,1 1 —1
< |: ngﬁ-aia) . tgzl-i-éi%)}q 1, (4.53)

where C' is a bound of (||0muml| 14 (o,7,5))men- Take the norm in B of (4.52),
use the triangle inequality, then take the power ¢ and use the convexity of
s — s%. Invoking finally the estimate (4.53) yields

[[(tm)o(s2) = (um)o(s1)ll

< 6C1 [tnt) — t%“*”]ﬁ + (1= 0)C1 [t — tS,Z“’]H :
where we set ts,f D' = 0. This gives (1, that depends only on C and ¢, such
that, for all s1,s2 € [0,7] and all m € N,

(o (s1) = (wm)o(52)ll 5 < Ci(Is2 = s1] + &) ‘T
< Cilsy —s1|' T + X = (4.54)

In the last line, we used the power-of-sums inequality (C.13).

This relation and (h4) show that v, = (un,)e satisfies Assumptions (4.46)—
(4.47) in the discontinuous Ascoli-Arzeld theorem (Theorem 4.26), with K =
[0,T] and E = B. The proof of Corollary 4.27 is therefore complete if we can
establish that, for all s € [0, 7],

{(um)o(s) : m € N} is relatively compact in B. (4.55)

Assume first that s > 0. Since (u,)p is piecewise constant on (0,77, the
L>(0,T; X,,) norm of (uy,)e is actually a supremum norm on (0,7]. Hence,
[(um)o(s)|lx,, < l(um)oll o< (o,7;x,,) 2and Hypotheses (h1) and (h2) show that
((um)e(8))men is indeed relatively compact in B.

Let us now consider the case s = 0. Since (4.55) holds for any s > 0, by diago-
nal extraction we can find a subsequence, still denoted by (., )men, such that,
for any k € N satisfying k=1 € (0, T, the sequence ((tm)g(k™1))men converges
in B. We now prove that, along the same subsequence, ((t,)0(0))men is a
Cauchy sequence in B. This will conclude the proof that (4.55) holds for any
5s=0.

Owing to (4.54) we have, for (m,m’) € N? and k € N such that k=1 < T,

[1(wm)o(0) = (um)o(0)|| 5
< || (n)o(0) = (um)o (™ H)| 5 + (| (um)o (k™) = (um)o (K1) 5
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- [| (o (k™) = () (O)]|

-1

<2 T+ Ot + g+ || (o (R ) = (Yo (57|, -

Given € > 0, fix k such that 2Clk_% < /4. Using (h4) and the convergence
of ((um)e(k™1))men, we can then find mo = mg(k) € N such that, if m,m’ >
mo,

q—1

G’ <2, G, < < and [ (wn)o(k™) = (um)o(k ™) <

<
T
This shows that |[(um)e(0) — (um)e(0)|| 5 < € whenever m,m’ > mq. The
sequence ((Um)g(0))men is therefore Cauchy in B, and the proof is complete.
u

The following lemma states an equivalent condition for the uniform conver-
gence of functions, which proves extremely useful to establish uniform-in-time
convergence of numerical schemes for parabolic equations when no smoothness
is assumed on the data.

Lemma 4.28. Let (K,di) be a compact metric space, (E,dg) be a metric
space and (F(K, E),dr) be as in Definition 4.25. Let (Uym)men be a sequence
in F(K,E), and let v € F(K, E). The following properties are equivalent.

1.veC(K,E) and vy, — v for dr,
2. for any s € K and for any sequence ($m)men C K converging to s for
dg, we have vy (Sm,) — v(s) for dg.

Proof.
Step 1: Property 1 implies Property 2.
For any sequence (s,,)men converging to s,

dE(Um(8m),v(8)) < dg(Vm(sm), v(sm)) + de(v(sm), v(s))
< dr(Vm,v) +dg(v(sm),v(s)).

The right-hand side tends to 0 by definition of v,,, — v for dx, and by conti-
nuity of v.

Step 2: Property 2 implies Property 1.

Let us first prove that v € C(K, E). Let ($m)men C K be a sequence con-
verging to s for dg. Since for any t € K the sequence (v, (t))nen converges
to v(t), we can find ¢(0) € N such that dg(v,(0)(s0),v(s0)) < 1. Assuming
that, for n € N*, p(n — 1) € N is given, we can also find ¢(n) € N such that
@(n) > p(n —1) and de(vep@m)(sn), v(sn)) < 1/(n+1).

We define the sequence (8,,)men by Sm = s, if m = p(n) for some n € N,
and §,, = s if m € ¢(N). The sequence (8,,)men is constructed by inter-
lacing the sequence (8,)men and the constant sequence equal to s. Hence,
$m — s as m — oo and, by assumption, (v, (8m))men converges to v(s). The
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sequence (Vy(n)(Sn))nen is a subsequence of (v, (8m))men, and it therefore
also converges to v(s). A triangle inequality then gives

dE(U(Sn)7 U(S)) < dE(U(Sn)a Vip(n) (571)) + dE(vgo(n)(Sn)’ U(S))

1
< p—— + dE (V) (sn),v(8)),

which shows that v(s,) — v(s). This completes the proof that v € C(K, E).

We now prove by way of contradiction that v,, — v for dg. If (v;,)men does
not converge to v for dz, then there exists ¢ > 0 and a subsequence (v, )keN;
such that, for any k& € N, sup,cx dp(vm,(s),v(s)) > €. We can then find a
sequence (rg)reny C K such that, for any k € N,

AdE(Vm,, (rg), v(rg)) > €/2. (4.56)

K being compact, up to another subsequence, denoted the same way, we
can assume that r, — s in K as k — oo. As before, we then construct a
sequence (S, )men converging to s, such that s,,, = rg for all & € N and
Sm = s if m & {rp : k € N}. By assumption, v,,($m) — v(s) in E and, by
continuity of v, v(sy,) — v(s) in E. A triangle inequality then shows that
AdE(Vm (Sm),v(sm)) — 0, which contradicts (4.56) and concludes the proof.

u

Uniform-in-time convergence of numerical solutions to schemes for parabolic
equations often starts with a weak convergence with respect to the time vari-
able. This weak convergence is then used to prove a stronger convergence. The
following definition and proposition recall standard notions related to the weak
topology on L?(£2). The inner product in L?(£2) is denoted by (-, ) 12(0).

Definition 4.29 (Uniform-in-time L?({2)-weak convergence).

Let (wm)men and u be functions [0,T] — L*(£2). We say that (tm)men con-
verges weakly in L?(82) uniformly on [0,T] to u if, for all ¢ € L*(£2), as
m — oo the sequence of functions t € [0,T] — (um(t),p)r2(0) converges
uniformly on [0,T] to the function t € [0,T] = (u(t), ¥)r2(0)-

Proposition 4.30. Let E be a closed bounded ball in L?(£2) and let {p; : | €
N} be a dense set in L2(§2). Then, on E, the weak topology of L?(§2) is given
by the metric

min(1, [{(v — w, 2
dp(v,w) =" (L[¢ 5 pia@), (4.57)
leN

Moreover, a sequence of functions u,, : [0,T] — E converges uniformly to
u: [0,T] — E for the weak topology of L*(§2) if and only if, as m — oo, the
sequence of functions dg(tum,u) : [0,T] — [0,00) converges uniformly to 0.
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Proof. The sets E,. = {v € E : [(v,0)12()| < €}, for ¢ € L*(12) and
e > 0, define a neighborhood basis of 0 for the L?(£2)-weak topology on E.
A neighborhood basis of any other points is obtained by translation of this
particular basis. If R is the radius of the ball E then, for any ¢ € L?(£2),
leNandveE,

(v, ©) 2| < Rl — 801||L2(Q) + (v, 1) L2y

By density of {¢; : | € N} we can select [ € N such that [ — @i 12(p)
£/(2R), and we then see that E,, . /o C E, .. Hence, a neighborhood basis of
0 in E for the L?(§2)-weak topology is also given by (Ey, c)ien, e>0-

From the definition of dr we see that, for any [ € N, min(1, [(v, p1)r2(0)]) <
2!dg(0,v). If dg(0,v) < 27" this shows that [(v,¢;)12(2)| < 2'dp(0,v) and
therefore that

IN

By, (0,min(27,e27Y) C B, ..

Hence, any neighborhood of 0 in E for the L?(§2)-weak topology is a neigh-
borhood of 0 for dg. Conversely, for any € > 0, selecting N € N such that
dIsNt1 2-! < £/2 gives, from the definition (4.57) of dg,

N
n E¢l75/4 C BdE (O,z’:‘).
=1

Hence, any ball for dg centred at 0 is a neighborhood of 0 for the L?(£2)-weak
topology. Since dg and L?({2)-weak neighborhoods are invariant by trans-
lation, this concludes the proof that this weak topology is identical to the
topology generated by dg.

The conclusion on weak uniform convergence of sequences of functions follows
from the preceding result, and more precisely by noticing that all previous
inclusions are, when applied to wu,, (t) —u(t), uniform with respect to ¢t € [0, 1.

n

4.3.2 Application to space—time gradient discretisations

We now consider applications of the previous results to the framework of
space—time gradient discretisations for generic boundary conditions, as de-
scribed in Section 4.1.

The following theorem is a consequence of Corollary 4.27.

Theorem 4.31 (L>°(0,T; LP(2)) compactness). Letp € (1,+0c0), T > 0,
0 € 10,1], and ((Dr)m)men be a space—time-consistent, limit-conforming and
compact sequence of space—time GDs in the sense of Definitions 4.3 and 4.6.
For each m € N, let v, € Xg;”’"fl. Assume that there exist C' > 0 and ¢ > 1
satisfying

VmeN, H(Um)GHLoo(o,T;XDm,.) <G, (4.58)
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and
VYm e N, Hépmvm||Lq(07T;L,,(Q)) <C. (4.59)

Then, there exists u € C([0,T]; LP(£2)) N L®(0,T; Wa'?(2)) and a subse-
quence, again denoted by ((D1)m,Vm)meN, such that

= 0. (4.60)

lim sup HH( vm()—u(t)‘L(m

M= 10,7

Moreover, Oyu € L1(0,T; LP(§2)) and, along the same subsequence, dp,, Uy —
Opu weakly in L9(0,T; LP(£2)).

Proof. We apply Corollary 4.27 with B = L?(2), X,, = IIp, (Xp,, )
endowed with the norm (4.33), and ult) = Hpmvsff).

The compactness hypothesis on (D, )men states that (X,,)men is compactly
embedded in B in the sense of Definition 4.13, which yields Hypothesis (h1)
in Corollary 4.27. Hypothesis (h2) is satisfied owing to (4.58) and

I(um)o@®)lx,, = D, [(vm)o(®)]llx,, < [I(vm)o(®)llp,, -

Hypothesis (h3) of Corollary 4.27 is obtained by (4.59) since &, um = 0p,, V.

Hypothesis (h4) is included in the definition of space—time-consistency of
((D1)m)men (Definition 4.3).

By Corollary 4.27, we obtain v € C([0,T7]; LP(£2)) such that, up to a subse-
quence, (4.60) holds. The fact that u belongs to L (0, T; Wa'*(£2)) follows by
Lemma 4.7.

It remains to prove the convergence of the discrete time derivative. By (4.59)
we can assume, upon extraction of a new subsequence, that dp v, — U
weakly in L2(0,T; LP(£2)). The proof is complete by showing that U = d;u
in the sense of distributions on {2 x (0,7 (this also proves in particular that
no further extraction was necessary). Take ¢ € C2°(f2 x (0,T)) and write, by
definition (4.4) of dp,, vy,

T
/ / 0D, Um (2, 1) (x, t)daedt
o Jo

t(n+1)

m 1
= > —orp o (@) — ITp, v (@) ) (@, t)dedt,
= &t Sy
(4.61)
(n+1)
Set q/}n(w) = ﬁ tt(n) w(wat)dt andv forv=1-6, wn+u = an—&-l +
(1 — v)aby. Since ¢ is smooth, [, (&) — Yntv(2)| < Cydp,, for some Cy not
depending on x or n. Using the discrete integration-by-parts formula (C.17),
(4.61) yields, for m large enough so that 1y = ¢, = 0 (which is possible due

m

to v vanishing on a neighbourhood of 0 and T),
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/ /59 Um (2, ) (x, t)dedt (4.62)
Npp—1

= Z / (”“)(w)—ﬂpmvg?)(m)) V(@)

- Z / (2, @) ~ I, 003(2) ) Yo (@) + Ry

”m_l

= - Z /H 0+ (@) (g1 (@) — Yu(@)) dz + Rey,

¢(n+1)

- _ Z /n) /U o) ( )%Hgﬁ:ﬁn(w)dwﬁ—Rm (463)

where, owing to (4.59),
[Rin| < Cyéop,, 6D, vmll 11 (0x0,) — 0 as m — oc.

The term (4.62) converges to

/T/ Uz, t)y(x, t)dedt (4.64)
0o Jo

and, owing to the smoothness of ¥ and the convergence of Hl(fivm, the term
(4.63) converges to

/T/ u(z, t)0p(x, t)dadt. (4.65)
0 9]

The proof that U = 0;u is complete by equating (4.64) and (4.65). m

The uniform-in-time weak-in-space compactness result provided by the next
theorem is the initial step to proving a uniform-in-time strong-in-space con-
vergence result for gradient scheme approximations of parabolic equations.

Theorem 4.32 (Uniform-in-time L?({2)-weak compactness). Let T >
0, 0 € [0,1] and ((Dr)m)men be a sequence of space-time-consistent space—
time GDs in the sense of Definition 4.3. For each m € N, let v, € Xg;"’fl.
Assume that there exists C > 0 and ¢ > 1 such that, for all m € N,

T
sup (170 0,0 and /0 160, om (D) p_dt < C (4.66)

te[0,T)
(see Definition 4.18 of H”*D)

Then, the sequence (Hgivm)meN is relatively compact weakly in L*(2) uni-
formly on [0,T], that is, it has a subsequence which converges accordingly to
Definition 4.29.

Moreover, any limit of such a subsequence is continuous [0,T] — L?(£2) for
the weak topology.

L2(2) =
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Proof. Theorem 4.32 is a consequence of the discontinuous Ascoli-Arzela
theorem (Theorem 4.26), with K = [0,7] and E the ball of radius C' in
L?(£2), endowed with the weak topology. Let {¢; : | € N} C C(£2) be a
dense set in L%(£2) and endow E with the metric (4.57) from these ;. By

Proposition 4.30, this metric defines the weak L?({2) topology.

The set E is metric compact and therefore complete, and the functions 117, (¥ ) U

have values in E. It remains to estimate dg( 7(3971 v (8), H(Do)l vm(s')). We drop

the index m in D for legibility.

Let 0 < s < s < T and take ny,ny € {0,...,N — 1} such that s €
(t() ¢+ D] and s € (t2) 124 D] If s = 0 we let ny = —1 and (-1 = 0.
In a similar way as (4.52), we write

5 v (') = I v (s)

.y Z &Sy, 4 (1 6) i 3P0y,

n=ni+1 n=ni+1

where &%) = 0 and (5;_%)11“1 = 0. Take Ppy; € Xp,. that realises the
minimum defining Sp(¢;), multiply the previous relation by by II'p Ppy; and
integrate over (2. Estimates (4.29), (4.66) and the Holder inequality (C.3)
(used as in (4.53)) yield

/ (Hg)vm(w, s') — H(De)vm(m, s)) IIpPpy(x)de
1?)

Z gtz >/ 55 v, (@) ITp Ppgy (@) da

n=ni+1

1_ Z &(n—i)/(g” 2) HDPDQOI( )d

n= n1+1

<0 lPoal .
n=n1+1 *

o
+ 1= IPpally Y & D o,

*,D
n=ni+1
</ [9(t<n2+1> — ¢m+y1/d
(-9 - t(m))l/q'} 1Ppoilp - (4.67)

By definition of Pp and of ||-||, (depending on the specific boundary condi-
tions), we have

~

[ 1Ip Ppepr — 901||L2(Q) Sp(¢1)

and, using a triangle inequality,
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IPpoillp < Spler) + Dy, < Cy,

where D, and C,, do not depend on D (and therefore on m). Since ¢("2+1) —
t+) < |s — 5| + & and t(?2) — (") < |s' — 5| + &, the estimate on Hglvm
in (4.66) gives, owing to (4.67),

/ <Hg)vm(w7 s') — Hg)vm(a:, s)) o (x)dx
17

< / (Hg>vm(w78/)_ﬂg>vm(w, S)) IIpPpypy(z)de| + 2CSp ()
22
< Cl/qc(pl|5/ _ s|1/q’ + Cl/qccpl&l/ql + 20§D(80l)~ (4.68)

Plugged into the definition (4.57) of the distance in F, this yields

iy (I 0 ('), 118 v (5)

min(1,CV7 O, |s" — s|1/)
<> o

leN

=:w(s,s) + Tm.

min(1, 2CSp,, (1) + C/7 Cp, 8,7
+> 5
leN

Using the dominated convergence theorem for series, we see that w(s,s’) — 0
as s — s’ — 0, and that 7,,, = 0 as m — oo (we invoke the space—time-
consistency of ((Dr)m)men to see that lim,, . Sp,, (¢;) — 0 for any ).
Hence, the assumptions of Theorem 4.26 are satisfied and the proof is com-
plete. [

The following easy lemma is used in the proofs of uniform-in-time convergence
and strong convergence of the gradient for gradient schemes approximations
of parabolic equations.

Lemma 4.33. Let (am)men and (by)men be two sequences of real numbers,
and a,b € R. We assume that a < liminf,, .o ay,, b < liminf,, . b,, and
limsup,,, oo (@m + bp) < a+b. Then ap, — a and by, — b as m — oo.

Proof. We have

a+ b <liminf a,, + liminf b,
m—0o0 m—00

< liminf(an, + by) < limsup(am, + b)) < a+b.
m—00 m—o0
Hence, all inequalities involved in this sequence are equalities and, in parti-
cular, iminf,, oo (@ + b)) = limsup,,,_, oo (Gm 4 bm) = limy, 00 (@ + b)) =
a+b, and a = liminf,, . a.,,,. We then write

lim sup b, = limsup(b,, + am — am)
m— 00 m—00
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S lim Sup(b’m + anb) + lim SUP(—CLm)

m—r oo m— 00

= lim (ay, + by) — liminfa,, =a+b—a="b.
m—0o0 m—0o0

Combined with b < liminf,, s by, this proves that b,, — b as m — co. We
then have a,, = a,, + by, — b, — a+ b — b = a and the proof is complete.
[
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Parabolic problems

In this chapter, we consider time-dependent problems and their approximation
by the gradient discretisation method (GDM).

First, in Section 5.1, we study a quasi-linear problem, which is the transient
version of the quasi-linear problem studied in Chapter 3. We first prove an er-
ror estimate for the GDM approximation of the linear version of this problem,
under additional regularity hypotheses. For the complete non-linear problem,
the mathematical arguments used in the convergence analysis of the GDM
come from Chapter 4. The convergence of the gradient schemes (GS) for this
problem is proved under minimal regularity on the solution.

In Section 5.2, we analyse the convergence of the GDM applied to a non-
conservative parabolic equation, which indludes the regularised level-set equa-
tions. For this model, additional regularity on the initial condition must be
assumed.

Finally, in Section 5.3, we turn to generalised (non-local) fully non-linear
Leray—Lions parabolic problems with Neumann boundary conditions. These
problems arise in particular from image processing models. Several conver-
gence results for the GDM are obtained, including a uniform-in-time strong-
in-space convergence result (based on the tools developed in Section 4.3).
We stress that such a convergence implies in particular the pointwise-in-time
convergence, which is of high practical interest. Indeed, users of numerical
techniques are often more interested in approximating a quantity of interest
at a given time, rather than averaged over a time span.

5.1 The gradient discretisation method for a quasilinear
parabolic problem

In the whole section, we let p = 2.
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5.1.1 The continuous problem

We consider the following problem: approximate the solution u of
ot — div (A(x,w)Vu) = f + div(F), in 2 x (0,7T)

with initial condition
ﬂ(,O) = UWUini, ON Q,

and homogeneous Dirichlet boundary conditions
u=0on 9 x (0,T).
The following hypotheses are assumed:

e (2 is an open bounded connected subset of R, d € N*,
and T > 0,
o N:2x(0,T) = Mg4(R) is a Caratheodory function
(i.e. A(x,s) is measurable w.r.t.  and continuous w.r.t. s),
and there exists A\, A > 0 such that, for a.e. x € {2,
for all s € R, A(zx, s) is symmetric with eigenvalues in [\, ],
o fE L2 x(0,T)), FeL*(2x(0,T))4,
® Ui € LQ(Q).

Under Hypotheses (5.2), a function @ is a weak solution of (5.1) if

u e L?(0,T; Hi(£2)) and, for all v € L2(0,T; H}(£2))
such that 9,0 € L2(2 x (0,T)) and (-, T) = 0,

/OT/Qu(;I}7t)at’[}(m,t)d:Bdt/Quini(m)v(mvo)dm

+/0 A)A(nﬂ(:c,t))Vﬂ(w,t) -V (z, t)dedt

T
N A /g(f(m’tﬁ(m’t) — F(z,t) - Vo(z, t))dzdt.

(5.1a)

(5.1b)

(5.1¢)

(5.2a)

(5.2b)
(5.2¢)
(5.2d)

Taking v € C°(£2 x (0,T)) in this equation shows that (5.1a) then holds in
the sense of distributions. Since A(x,u)Vu and F both belong to L?(£2 x
(0,7))¢, this implies that d;u € L?(0,T; H (£2)). As a consequence, U €
C([0,T); L?(£2)) and, integrating by parts the first term in (5.3) and using the
density of C2°([0, T); H}(£2)) in L?(0, T; H}(£2)) (see [29, Corollary 1.3.1]), we

see that u satisfies
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€ L*(0,T; Hy(2)) N C([0,T); L*(£2)), dyu € L*(0,T; H 1 (2)),
= uiy; and, for all w € L2(0,T; H(£2)),

g 1’“
/ (Ogu(-, () -1 gadt
/ / @, (@, 1)) Vi, 1) - Vo(a, )dzdt

// P, Dw(m, t) — F(a,1) - Ve, {)dadt,
2

Remark 5.1. The existence of at least one solution @ to (5.3), and therefore
o (5.4), will be a consequence of the convergence analysis of the GDM (see
Remark 5.6).

In the linear case, that is A(x,u) = A(x), estimates on the continuous solution

show that this solution @ is also unique.

5.1.2 The gradient scheme

Recalling that p = 2, let Dy = (XD,O,HD,VD,ID,(t(”))n:o _____ ~) and 6 €
[%, 1] be a space-time GD for homogeneous Dirichlet boundary conditions
in the sense of Definition 4.1. Using a #-scheme for the time stepping, the
GDM applied to Problem (5.4) leads to the following GS: find a family
(™) po,..N € XNJrl such that, recalling the notations (4.2) and (4.4),

u(©® Ipum1 and, for alln =0,..., N — 1, u(™*1) satisfies
/ 872y () Mpv () dae

—&-/QA(a:,Hpu(”+9)(zc))vpu("+0)(w) -Vpu(z)de (5.5)

t(7b+1)

- [, [U@ome - Py Vo)t

Yv € Xpyo.

Here, of course, u(™ is expected to provide an approximation of @ at time .
Remark 5.2 (Practical implementation of the GS (5.5))
For any n =0,..., N — 1, taking w19 ag unknown, and using
w9 — (1 - g)u™
0 )

the implementation of the GS (5.5) is similar to that of the GS (3.44) for the steady
quasilinear problem.

LD
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5.1.3 Error estimate in the linear case

We now consider Problem (5.1) under Hypotheses (5.2) and the following
additional hypotheses.

F=0 and A(,s)=1Id (5.6)

The equation we consider is therefore 0;u— Au = f, with homogeneous Dirich-
let boundary conditions.

Theorem 5.3 (Error estimate, linear case and regular solution). Un-
der Hypotheses (5.2) and (5.6), let Dy be a space—time GD for homogeneous
Dirichlet boundary conditions, in the sense of Definition 4.1. We assume the
ezistence of hp > 0 such that
Vip € W2 (2) N HY(®), $p(¢) < b [@llwana (5.72)
Vo € WH(2)4, Wp(e) < ho [[@llirce e - (5.7b)
Vip € WHS(2) 0 HY(2), |1 ToToe — ol a0y < ho Iellyamga) - (5:70)
Assume that the solution U to (5.4) belongs to W1 (0,T; W2((2)), and

let w be the solution to the GS (5.5) with 6 = 1. Then there exists C > 0,
depending only on u, 2, T and (in a non-decreasing way) of Cp, such that

(1) P ’
m 1I St) =t <C(dtp+h
te[é%,};“]H o uls) = a( 1) L2(2) ~ Cdp +ho)
and W
—Vu <C(&p + hp).
HVD u Vu’ ooy C(dtp + hp)

Remark 5.4 (Existence of hp)

If Zp is linear and continuous (such as, e.g., in Remark 4.4), there always exists
hp satisfying (5.7). Indeed, defining Pg) : H3(2) — Xpyo as in (5.8) below, the
property (5.7) holds with hp upper bound of the norms of the following linear or
bilinear operators:

W (02) N Hy(2) — L*(2) x L*(2)%,
u (u— HDPému, Vu — VDPg)u),

Wl’oo(.Q)d X XD,O - R,
(p) = [ (@ive(@)Tou(a) + (@) - Voo(a))de,

and

W (02) N Ho(2) — L*(22),
ur— u— IpIpu.
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Proof. In the following proof, we denote by C; various quantities having the
same dependencies as C in the theorem.
For the sake of brevity, if n € {0,...,N — 1} and g = f, @ or 0;u we set

(n+1)
1 t

g (@) = / o, t)dt.
t

o &(n+ %) (n)

We also let 7(®) = 7(0).

Step 1: a linear spatial interpolator.

The interpolator Pp defined by (3.10) enables us to “plug” the exact solu-
tion into the scheme, which is an essential process in establishing error esti-
mates. However, this Pp is not necessarily linear, which becomes a problem
for parabolic equations. We therefore need a slightly modified version of this
interpolator. We define Pg) : H} (2) — Xpo by: for ¢ € H}(92),

Pe = argmin (|[Tow — gl o) + V0w = Vel jaop) - (58)
weXp,o

Let V = {(IIpw,Vpw) : w € Xpo} and P : L3(2) x L*(2)? — V be
the orthogonal projection. Since [[Vp-|[12(gya is a norm on Xpp, for any
z € V there exists a unique Rz € Xpg such that (IIpRz, VpRz) = z.
This defines a linear continuous mapping R : V — Xp o, and (5.8) shows that

Pg)cp = RoP(p, V) for all p € H}(§2). Hence, Pg)go is uniquely defined and
P1(>2) is linear continuous. The characterisation of the orthogonal projection P
also shows that, for all ¢ € H}(£2) and w € Xp o,

/ 115 P2 (@) pw(x) + Vo PO () - Vow(a)de
2
_ /ﬂ o(@) Ipw (@) + Vo(x) - Vpuw(e)de.

Let ¢ € H}(£2). Taking v € Xp o that realises the minimum defining Sp ()
and using the definition of P1(>2) shows that

2 1/2

o)

1/2
< (1o = 9lao) + VD0 = Veliaaye ) < V2Sp(0). (5.9)

2 2 2
( HUDP{’ o </)HLZ(Q) + HVDP;J o V@‘

We have uw € C([0,T]; W*°°(£2)) and Vua € W>(0,T; L?(£2)?), which im-
plies that Vu : [0,T] — L2(2) is Lipschitz-continuous. Hence, (5.9) with
¢ = w(t"*Y) and Assumption (5.7a) yield

Hvﬂ(n-l-l) _ VDPéQ)ﬂ(t(n-l-l))‘

e LR

L2(02)¢
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+ Sp(u(t" )
< Cl(&p + h'D) (510)
Since 9;u € L>(0,T; W2°(£2)), the quantity Haﬂ("'“) HWZ’OO(Q) is bounded
independently of n. Applying (5.9) to ¢ = d,a" ! = w; using
T2

the linearity of P1(>2) and invoking (5.7a), we obtain

_ 8tﬂ(”+1)

< Cohp.  (5.11)

L2(2)

Ip PPt ) — [1p PPu(t™)
s t3)

Step 2: proof of the error estimates.
Since Va("th e Haiv (£2) we can write, for all v € Xp g,

/ (Hpv(w)div(Vﬂ("“))(w) + vt () - VDv(w))da:
Q

< Wp(Va" ) [lv]p
Owing to the regularity of @, the equation d;u— f = div(V7) is satisfied a.e. in

space and time. Averaging over time in (¢t t(*+t1) gives 9,u(" 1) — f(+1) =
div(Va"*1) a.e. in space, and thus

/ (npv(w) (am<"+1>(x) - f<"+1>(x)) + va ) () - va(w))da:
Q

< Wp(Va"*) |lvllp
Use the GS (5.5) to replace the term f("*1) in the left-hand side. Since

Va € L0, T; Wh(2)9), the quantity ||VH(”+1)HW1,00(Q)d. is bounded in-
dependently on n and Assumption (5.7b) yields
/HDU(:Z:) (8@“’“ ( ) 5(n+
0

(@)
+ / (Vﬂ("“)( u("“)
(9]

For k=0,...,N, set e®) = Pg)ﬂ(t(k)) — u®). We have

dx

Vpu(x)de < Cshp ||v||p. (5.12)

Ip PY a0y — 11 P (™)
&(n+ )

+ [(’%ﬂmﬂ) - 6g+%)u} .

L
6(D+2)e =

a(n+1)]

and

Vel = [v PRty — W(”“)} + [w(”“) - vm#"“)}
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Then (5.12), (5.11), (5.10) and the definition of Cp give

/ Mpv(x)82 H e(z)da + / Vpe™ ) (z) - Vpou(z)dz
2 2
< Cy(dtp + hp) ||v]p -

Take v = &("+%)e("+1), andsumonn =0,...,m—1forsomem € {1,...,N}.
Recalling the definition of [|-||p,

m—1
3 / e ) (@) [Hpe™ ) (@) ~ Tpe™ ()] da
n=0 2

m—1
n 1 n
3l +2>/Q\vpe< ) () Pda
n=0

N-1

X 1/2
< > Cu(dp + hp)a"tz) Vpe™ D (z)]2de )] . (5.13)
2

n=0
We now apply the relation

1 1 1 1 1
Va,b € R, b(b—a) = 5b? - §a2 + 5(b —a)? > 5b2 — —a? (5.14)

N}

to a = IIpe™(x) and b = Ipe™ V) (z). Using the Young inequality (C.8)
with p = p’ = 2 in the right-hand side of (5.13), this leads to

N—-1
1 1
2 / (ITpet™ (2))?dz + 3 @) / Ve () 2da
(9] (9]

n=0

m—1
1 1
<1 / (pe® (2))?dz + = 3 D) / Vpet) (2)Pda
2 Q

n=0

1 a1
+3 > Ci(dtp + hp)?at T2 (5.15)

By Assumption (5.7¢) and Estimate (5.9), since u(®) = Tpusn; = Zpu(0),

2) _
HUD6<0>HL2(Q) < HHDPZ())U(O) - u(O)‘

pagy HIO) = EpTpa(0) | 2

< C5h'D.

Hence, recalling the definition of V() and using Zg;ol gtz — T, Equation
(5.15) yields

t(WL)

1
%/(Hpe(m)(m))Qd:c—i-i/ VW e(a, £)Pdadt < Co(dtp+hp)> (5.16)
2 0 (9]
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Using a triangle inequality, (5.9), and the power-of-sums inequality (C.13)
with a = 1/2, Equation (5.16) leads on one hand to

L) < 07((5?51) + hD) + ﬁSD(ﬂ(t(m)))

< Cs(dtp + h’D). (5.17)

Vm=1,....N, anu“”) —a(t“”))‘

On the other hand, using again (5.9) and a triangle inequality, Equations
(5.16) with m = N — 1 and the power-of-sums inequality (C.12) with a@ = 2
lead to

(n+1) Vu(t(n+1))’

L2(1)
N-1 L
< 4Cs(0tp + hp)® +4 Y &2 Sp(a(t ™)) < CF(dp + hp)?. (5.18)
n=0

The conclusion follows from (5.17), (5.18) and the Lipschitz-continuity of
@ : [0,T] — H'(£2) to compare (t) (resp. Va(t)) with w(t"+1) (resp.
V(1)) when t € (¢, t(?+D], .

5.1.4 Convergence analysis in the non-linear case

We come back to the generic quasilinear model (5.1). The convergence result
we intend on proving is the following.

Theorem 5.5 (Convergence of the GDM). Under Assumptions (5.2), let
6 € [3,1] and ((D1)m)men be a sequence of space—time GDs for homogeneous
Dirichlet boundary conditions in the sense of Definition 4.1, which is space—
time-consistent, limit-conforming and compact in the sense of Definitions 4.3
and 4.6. For any m € N, let u,, be a solution to (5.5) with Dy = (Dr)m
Then, up to a subsequence as m — oo,

() —
su 15 u —u(t ‘ —0 5.19a
te 0%“] H Do m( ®) L2(2) ( )
V(g) Um — VT in L2(02 x (0,7))%, (5.19b)

where @ is a solution to (5.3) (and thus also (5.4)).

Remark 5.6. We do not assume the existence of a solution @ to the continuous
problem. The convergence analysis establishes this existence.

The analysis of any GDM for non-linear models starts by establishing a priori
estimates on the solution to the GS. These estimates first allow us to prove
that such a solution exist, and are then useful to invoke the compactness
results of Chapter 4.
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Lemma 5.7 (L°°(0,T; L?(2)) estimate and discrete L?(0,T; H}(£2)) es-
timate). Under Assumptions (5.2), let 0 € [3,1] and Dr be a space-time GD
for homogeneous Dirichlet boundary conditions, in the sense of Definition 4.1.
Let u be a solution to the corresponding GS (5.5). Then, for any k =0,...,N,

1 / (Tpu® (z))2da

t(F)
/ / o, 1 u(a, 1))V u(x, t) - VO u(x, t)dzdt
(5.20)

/ (HDIDulm( ))2d$

/t<k>

Consequently, there exists C19 > 0 depending only on Cp > Cp (see Definition
2.2), Cini > | IpIpuinill 20, f, F, and A such that

/ (f(@, ) T u(x, t) — F(a,t) - VO u(x, t))dadt.

< Cho. (5.21)

sup HH(DG)u(t)‘

<Cip and va’)u’
t€[0,T)

L2(Q) ~

L2(£2x(0,T))¢

Moreover, there exists at least one solution u to the GS (5.5).

Proof. Relation (5.14) is generalised to the following: for all a,b € R,

(a—b) [(e—;)m(;—e) b} + Ya—vya+b)

= (6) - ;) (a—b)?+ %(a2 —b?) > %(a2 —b?).

(a — b)(0a+ (1 — 0)b)

\V]

Let n € {0,...,N — 1}. Applying the above relation to a = IIpu(™*? and
b= Ipu™ yields

1y (n+1 1
Setting v = &2y +0) in (5.5) and summing over n = 0,...,k — 1 (we

assume here that k& > 1, the case k = 0 in (5.20) is trivial) therefore leads to

ékz ([ oo @pyae - [ () @)ae)

+ Z ) / x, Hpu™* (2))Vpul") (z) - Vpu™+o) (z)dz

n=0
t(n+1
< Z / (F(m, ) Tpu™ ) (z) — F(a,t) - Vou™t? (2))dadt. (5.23)
—0 t(n)
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The first sum is telescopic and reduces to

/ (Ipu™ (2))?da — / (ITpu® (x))?da
2

0

= / (HDu(k) (:c))Qda: — / (HDI'DUini(.’B))Qd:B.
Q 2
Recalling that I19u(z,t) = Hpu™®(z) and Vi u(z,t) = Vpu+o ()
whenever ¢ € (t( t("+1] Equation (5.23) can then be recast as (5.20).
Using the Cauchy—Schwarz inequality (i.e. (C.5) with p = p’ = 2), the Young
inequality (C.9) and the definition (2.1) of Cp, we write

J

£k

/ (F(a, )T u(@, t) — F(a,t) - VOu(w, £))dadt
(%}

0
< Nfllz2cox o0y Hné)“‘

L2(2%(0,t())

+1F L2 (2 (0,600))a
s

viul
D U 22 (0,40))e

| /\

],

2
||fHL2(QX(O )+ 36z 4CD L2(£2%(0,t(h))

2

2 Ao (8)
U ”L2<9x<0¢<k>>>d+ o

02 2
< D ”fHL?(Qx(O oy Ty HFHLQ(Qx(o,tw)))d
2
*3 H b u L2(02x(0,t(8)))d (5:24)
Plugged into (5.20) and using the coercivity of A, this gives
1 0
5 | (UTpu®(@)*dz + A | V) ‘
- /Q (ITpu® (z))2de + R~
2 C’D 2 2
Cll’ll ||f||L2(.Q><(O,t(’€))) + X ”F”L?(QX(O,t(’C)))d
Allg® ‘2
+ 2 HVD b L2(02x(0,t(®))d
Hence,
1 LA lg@y,?
3 25| 2|V
2k H pu *3 Vp'u L2(2%(0,T)4
2 CD
le ||f||L2 @x©r) T ¥ ||F||L2 (2%(0,T))d -

The estimates in (5.21) follow from this inequality and from the fact that, by
definition (4.2) of H(De),
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1 pu 0|20y < O Tpu™ D] (o) + (1 = 0)[[ Hpu™ || 2 .

Following the same arguments as in the proof of Theorem 3.16, it is easy to
establish by induction that, for each n = 0,..., N — 1, there is a solution
u™Y) to the equation in (5.5). This shows that this GS has at least one
solution w. [

Lemma 5.8 (Estimate on the dual norm of the discrete time deriva-
tive). Under Assumptions (5.2), let 0 € [1,1] and Dr be a space—time GD
for homogeneous Dirichlet boundary conditions, in the sense of Definition 4.1.
Let u be a solution to the corresponding GS (5.5). Then there exists C11, de-
pending only on Cp > Cp, Cini > [[IIplpuiillz2(), f, F, A and A, such
that

T
/ [6pu(t)|; p dt < Ch, (5.25)
0
where the dual norm ||-||, p is defined by (4.28).

Proof. In (5.5), choose v € Xp o which realises the supremum in the def-

inition (4.28) of ||5gl+%)u\|*7p. Recalling that [[v|l, = 1 and applying the
Cauchy—Schwarz inequality as well as the definition (2.1) of Cp, we get

i

<X HvDu(nJre)
D

*, L2(02)

(n+1)
1 t
gy [ (Co Dl + NP0l

¢(n+1)

1 — 0)
- X Hv( ¢ ‘
&(”JF%) [(n) |: D u(t) L2(02)

+IEC Dl e ] At

+Co [lf () 120

Square, use the Jensen inequality (C.10), multiply by &"+2) and apply the
power-of-sums inequality (C.14). Recalling the definition (4.4) of dpu, this

yields

£(nt1)
[spu(t)lf; pdt <

t(n)

¢(n+1)

—92 0 2
3[R0+ ROy + IFC Ol at

We conclude the proof of (5.25) by summing over n = 0,..., N — 1 and by
invoking Estimates (5.21). L]

We are now ready to prove the convergence of the GS (5.5).
Proof of Theorem 5.5.
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We note that since ((Dr)m)men is compact, it is also coercive (see Lemma
2.9).

Step 1: Application of compactness results.

By Estimates (5.21), Lemma 4.7 gives the existence of some u € L2(0,T;

H}(£2)) such that, up to a subsequence as m — oo, H(Deium — u weakly
in L(2 x (0,7)) and V(gznum — Vu weakly in L?(£2 x (0,T))?. Estimate
(5.25) and Theorem 4.21 show that, in fact, H(Dogl Uy, converges strongly to u
in L2(2 x (0,7)).

Step 2: @ is a solution to (5.3) (and thus also (5.4)).

Let 7 € L%(0,T; H}(£2)) be such that 9;v € L*(2 x (0,T)) and v(T,-) = 0.
Let (vm)men be given for T by Lemma 4.9 (with 1 — 6 instead of ).

In the following, we drop the index m in D,,,, N,, and v,, for legibility reasons.
Introduce v("+(1=9) a5 test function in (5.5), multiply by &(”4'%), and sum
the result on n = 0,..., N — 1. Recalling the definitions (4.2), this gives

7™ 4+ 7™ = 7™ with

N—
™ = Z ., [Hpu(”“)(sc) - HDU(n)(m)} v+ 0= (z)de,

T
™ :/ /A(w,Hg)u(w,t))Vg)u(m,t)-Vg_e)v(w,t)dwdt,
0 2

and
T — / / NI u(@,t) ~ F(@,1) - V5" v, 1)) dedt,

Applying the discrete integration-by-parts (C.17), with v = 1 — 6, to Tl(m)
and using the fact that v(™) = 0, we write

T = Z / Tpu ™0 ( [H o+ () — HDM”)(:C)} da
/ Tpu'® () Tpv® (x)da

_ Z /
/ Tpu'® () Tpo® (x)da

/ / I, ©) u(ax, t)opv(x, t)dadt

I pTpui (@) 15~ Vv (x,0)da.
17

£(nt1)

/ I u(a, t)pv (e, t)dadt
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Recall that Hg)u — w in L*(2 x (0,T)) and, by space-time-consistency of
((D1)m)men, that IIpTpuin; — win; in L2(£2). The convergence properties of
(Um)men stated in (4.10c) and (4.10b) (with 1 — 6 instead of §) show that

T
lim 7™ = — / / u(x, )00 (x, t)dzdt — / Uini (z)0(z, 0)dz.  (5.26)
0 2 2

m— 00

Since Hg)u — win L?(2x(0,T)), Lemma C.4 (non-linear strong convergence
property) shows that A(-,U(Do)u)vgfe)v converges to A(-,u)Vv in L?(2 x
(0,7))% as m — oo. Hence, using the symmetry of A and the weak-strong
convergence result of Lemma C.3,

m— 00 m—r o0

T
lim TZ(m): lim / /V(De)u(z,t)~A(m,Hg)u(w,t))Vg_g)v(w,t)dwdt
0o Jo

/ ! / A, @(w, 1))V, t) - Vo(a, t)dwdt, (5.27)
0 2

The convergences of Hg =94 and Vg 0y readily give

T
lim 74" = / / (F(@, )5, t) — F(w,t) - Vo(w, ) dadt.  (5.28)
Using (5.26), (5.27) and (5.28) to pass to the limit m — oo in T\™ + T\™ =
T?Em) shows that u satisfies the equation in (5.3).

Step 3: Uniform-in-time convergence of H(Delum.

Let s € [0,T] and (Sm)m>1 be a sequence in [0,7] that converges to s.
Assume first that s,, > 0 and let k(m) € {0,...,N,,, — 1} be such that
Sy € (tk(m)) (k(m)+1)] By convexity of the square function and by Defini-
tion (4.2) of Hg),

2
(118 () = (07T, 05+ (1= 0) 1T, i)
< O(IIp, uk+N2 L (1 — ) (IIp ™2 (5.29)
Set 57({) .= t(k(m)) and 57(7?) = t<k(m)+1), which both converge to s as m — oo.
Write (5.20) for & = k(m) + 1, multiply by 6, write (5.20) with & = k(m),

and multiply by 1 — . Summing the two inequalities thus obtained and using
(5.29) yields
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1 Q) 2
5 | Up u(z,sm)) de

2 /o
s

+/ /A(a:,Hl(fiu(a:,t))Vg) u(z,t) - V) u(x, t)dedt
o, / m

S’NL

(+)
0 ) / A(w,Hgiu(w,t))Vglu(m,t) -Vg}nu(w,t)dwdt
D oJe

st

+

X (5.30)
S 5/(HDmIDmuini($))2dw

Q
35;)
+/ / (f(zc,t)H(D?Lu(az,t) — F(x,t) - Vglu(w,t))dacdt
0 Q
e

+ 9/( r; / (f(w,t)H(DGZLu(w, t) — F(x,t) 'Vggnu(w,t))dwdt.
Sm 0

Inequality (5.30) also obviously holds if s, = 0 (with, in this case, s =

s = 0). Our aim is to take the superior limit of (5.30). We first analyse the
behaviour of all the terms, except the first one.
The Cauchy—Schwarz inequality for the semi-definite positive symmetric form

st
W e L2(2 x (0,T))% — / / Az, 1T (@, )W (2, 1) - W (2, t)dadt
0 2

shows that
s ?
( / / A(cc,Hglum(m,t))vgfnum(w,t)~Vu(a:,t)dmdt>
0 2
o)
< ( / / A, 15t (2, £) V) th () - ) um<m,t>dwdt>
0 Q ' i

5
©) u - Vu(x x . .
X (/0 /QA(:B,HDmum(a:J))Vu(w,t) Vu(x,t)d dt) (5.31)

As m — oo, we have

H(Df),ium — @ strongly in L*(2 x (0,T)), and

1[0 SH]VE — 1o,) VU strongly in L(02 x (0,T))%.

Here, 1[4 is the function of time such that 1p,;(t) = 1 if t € [a,b], and
1(44)(t) = 0 otherwise. The non-linear strong convergence property stated in
Lemma C.4 page 404 then shows that, as m — oo,

1

0 S(7)]/1(-, H(Deium)Vﬂ — 19,5 A(-, W)V strongly in L2(£2 x (0,7))%.
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Owing to Lemma C.3 (weak-strong convergence property) and to the weak

convergence in L2(£2 x (0,T))% of v§§> U to VT, the left-hand side of (5.31)
and the second term in the right- hand side of (5. 31) pass to the limit. Taking
the inferior limit of this inequality and dividing by fo [ A o Az, u)Vu - Vu, we
deduce that

/S/ Az, u(x, t))Vu(e,t) - Vu(x, t)dedt
0o Jo

st
< lim inf / / Az, 1T 1 (2, )V 1 (1) - T e (a, B) .
(0]

m—0o0
(5.32)
The space—time-consistency of ((Dr)m)men (Definition 4.3) gives
/ (IIp, Ip,, wini(x da: — / Uini (2 d:I: as m — oo. (5.33)
Q

Still considering m — oo, we have 1[0 8(7)]f — 1jg4f in L2(02 x (0,T)) and

1[075%)]F — 19, F in L?(£2 x (0,7))%. The weak convergences of H(Dglum

and Vgr)n Uy, thus give, as m — oo,

/m /(f(m’t)ﬂgr)n“(m’t)*F(m,t)'vg,)n“(m,t))d:cdt
2
—>A /Q(f(mat)ﬂ(m,t)—F(Cc7t)-Vﬂ(m’t))dmdt' (5.34)

Finally, since 1o S<+)]f — 0 in L?(2 x (0,T)) and 1
L2(02 x (OvT))dv

s F = 0 in

/ / f@ )T w(w, 1) — F(z,t)- V) ulw, t)dzdt 0. (5.35)

We now come back to (5.30), drop the non-negative term in brackets, move
the second term from the left-hand side to the right-hand side, and take the
superior limit. The convergences (5.32), (5.33), (5.34) and (5.35) yield

1
limsupi/(ﬂg) U (2, 5 ) )2 d
fo)

m—r oo

< %Auini(w)de + /s/ (f(z, t)u(z,t) — F(z,t) - Vu(z, t))dedt

m— o0

1 ) - B
< 3 /Q Uini(z)“dx —i—/o /Q(f(:c,t)u(:c,t) — F(x,t) - Vu(z, t))dadt

fliminf/ / (@, 115 (2, 1))V (@, 1) - V) (2, t)dadt
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- / / A, a(e, ) Vi(a, t) - Va(e, ) dadt, (5.36)
0 2

Since uw € L2(0,T; H}(£2)) and d,u € L?(0,T; H*(£2)), the following integra-
tion by parts is justified (see [29, Section 2.5.2]):

/Os<atu(t),u(t)>H_17H3dt: %/Qﬂ(:v S)de—%/gﬂ(ac,O)de.

Making w = U1y 4 (t) in (5.4), we therefore see that

;/nu(w’s)2dm+/Os/!2/1(“’7u(m’t))vu($at)'Vu(iv,t)dacdt

1 , s o
25/9“iﬂi(‘”) dw+/0 /Q(f(w,t)u(w,t) F(x,t) - Vu(z,t))dadt.

(5.37)
Used in (5.36), this relation gives
limsup/ (H(D)um(w S5m))2dx </ u(x, s)2de, (5.38)
m—o0 0 (9]

Owing to Theorem 4.32 and to Estimates (5.21) and (5.25), (Hglum)meN
converges to @ weakly in L?(£2) uniformly in [0, 7] (in the sense of Definition
4.29). Hence, H(Deium(-, Sm) — U(+, 8y ) weakly in L?(£2) as m — oo. Estimate
(5.38) and a standard reasoning in Hilbert spaces then show that this con-

vergence is actually strong in L?(2). By Lemma 4.28, we infer that (5.19a)
holds.

Step 4: Strong convergence of VD Uy -
Note that, by (5.19a), I15y) wy (-, T) — @(-, T) in L*(£2). Write (5.30) with
Sm = T (so that sgn_) = t(VNm=1) and sS,J{) = T), move the first term to the

right-hand side and take the superior limit. We can pass, as in the previous
step, to the limit in all the terms on the right hand side. Let A, : [0,7] = R

be the function such that h,, =1 on [0, s ] and h,, =60 on (sg),T]. Using
(5.37) with s =T, we obtain

lim sup / / o () A(@, T (2, 0)) VL) () - V) 11 (a2, 1)t

m—r 00

T
< g/numl( ) d513+/0 (f(ili,t)ﬂ(:l‘:,t) — F(mvt) . Vﬂ(:ﬂ,t))dwdt

—}/ a(x, T)*dx
2Ja

- / " A, ) V(e £) - Ve, dadr,
2
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Using this estimate, the strong convergence in L?(£2 x (0,T)) of Hg:l Uy, 1O T,
Lemma C.4, the strong convergence in LQ(Q x (0,7))? of h,, Vi to Va, the

weak convergence in L2(£2 x (0,T))? of VD Uy, to Vu, and developing the
following expression in a similar fashion as (3 52), we infer that

T
lim sup / /Q hon (D) A, 1Ly 11, () (V) (2, 1) — Vi, 1))

m—r oo

' (Vg,)num(w, t) — Va(z,t))dzdt < 0.

By coercivity of A and since h,, > 6 > %, this shows that, as m — oo,

/ /‘vg’) (@, 1) — Vai(a, 8)| dadt — 0.

This concludes the proof that V(g}num — Va strongly in L2(2 x (0,T))% as
m — 00. L]

Remark 5.9 (About the discrete IBP formula (C.17))

The usage in Step 2 of the “v”-discrete integration by parts formula (C.17) is non-
standard. A usual way of proceeding, see e.g. [36] or the proof of Theorem 5.20, is
to analyse in this proof the convergence of H(D) um towards u. Using this analysis,

the test function v+ instead of v (=) can be used in Step 2, and the more

standard discrete integration-by-parts formula (C.15) can then be applied.

Thanks to (C.17), we can however fully analyse in the proof of Theorem 5.5 the
convergence of Hggﬂ Um without having to analyse at the same time Hg}n Um,, which
is a less natural reconstruction for #-schemes.

5.2 Non-conservative problems

5.2.1 The continuous problem

We focus in this section on the approximation of some non-linear problems
under the following non-conservative form:

vz, t,u(x,t), Vu(z, t)dwu(z, t) — div(p(|Vu(z, t)|) Vu(z, t))

= f(z,t), for a.e. (z,t) € 2 x (0,T) (5.39a)

with the initial condition
u(x,0) = uini(x), for a.e. x € £2, (5.39b)

and boundary conditions
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u(x,t) =0, for a.e. (x,t) € 92 x (0,7T). (5.39¢)
The hypotheses are as follows:

e (2 is an open bounded connected subset of R? (d € N*)

and T > 0, (5.40a)
o uini € HY () (5.40b)
o f e L*(2x(0,T)), (5.40¢)

e : 2 x(0,T) xR xR = R is a Caratheodory function and
there exists Vmax > Vmin > 0 such that v(x,t,$,£) € [Vmin, Vmax)

for a.e. x,t and for all s, ¢, (5.40d)
(Caratheodory means that, for all (s,£) € R x RY, the function (x,t) —
v(x,t,s,§) is measurable and, for a.e. (x,t) € £2x (0,7T), the function (s,&) —
v(zx,t,s,€) it is continuous)
e 1 : RY — R is Lipschitz-continuous, non-increasing, and
there exists ptmax = fmin > 0 and a > 0 such that
() € [Hmin, fmax] and (su(s))” > « for all s € RT. (5.40e)

On specific choice of p and v is of particular interest. For given real numbers
0 < a < b, using the functions

1 1
= S Rt
wu(s) max( 32+a2,b>,V36 -
v(x,t,2,6) = p(€]), Y(z,t) € 2% (0,T), z€ R, V¢ € R?

in (5.39a) lead to to the regularised level set equation [46]. These functions
satisfy (5.40d)—(5.40e) with a = a?/b>.

Let us now give the precise mathematical meaning of a solution to Problem
(5.39) under Hypotheses (5.40).

Definition 5.10 (Weak solution of (5.39)). Under Hypotheses (5.40), we
say that u is a weak solution of (5.39) if

1.u € L*0,T;H} () and Opu € L?(2 x (0,T)) (which implies u €
C([0,T]; L*(92))),

2. u(,O) = Uini;

3. the following holds
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T
/ /I/(a:,t,u(w,t),Vu(:c,t))@tu(mm)v(w,t)dwdt
0o Jo
T
+/ /M(Wu(x,t)\)Vu(w,t)-Vv(az,t)dazdt (5.41)
0 Jo

—/T/f(a:,t)v(w,t)dwdt, Yo € L*(0,T; H (12)).
0o Jo

The third item shows that a weak solution to (5.39) satisfies (5.39a) in the
sense of distributions. In particular, for such a solution, div(u(|Vu|)Vu) €
L2(02 x (0,T)).

Our aim is to use the GDM to construct gradient schemes for (5.41), and to
prove their convergence to a weak solution of (5.39). As usual for non-linear
model, convergence proofs start with a prior: estimates. Let us formally show
the kind of estimates that can be obtained on (5.39).

Defining F' by

s 82 82
Vs e Ry, F(s) = / zu(z)dz € [ume,,umaXQ} ) (5.42)
0

any sufficiently regular function u satisfies

d

" F(\Vu(oc,t)\)da::/u(|Vu(as,t)|)Vu(w,t)~V8tu(a;,t)da:dt. (5.43)
tJo Q

Therefore, assuming that u is solution of (5.39a) with f = 0 (for the sake of
simplicity of this brief presentation) and taking v = Jyu in (5.41), we see that

T
/ /y(u,Vu)atu(a:,t)Qdmdt—&—/ F(|Vu(z,t)|)de
o Jo 7
. /Q F(Vuim(2))de.  (5.44)

The discrete equivalent of this essential estimate is established in Lemma 5.11
for the fully-implicit scheme (using that 2 — zu(x) is strictly increasing), and
in Lemma 5.15 for the semi-implicit scheme (using that u is decreasing). The
hypothesis that x — xpu(x) is instrumental, for both schemes, to prove that
the reconstructed gradients converge strongly.

5.2.2 Fully implicit scheme

Let Dr = (Xp,0, [Ip, VD, Ip, (t("))nzop..,N) be a space-time GD, for homoge-
neous Dirichlet boundary conditions, in the sense of Definition 4.1 with p = 2
and # = 1. Using a fully implicit time-stepping, the GDM applied to Problem
(5.41) leads to the following GS: find a family u = (u(”))nzo’m,N € ng)rl
such that
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u® = Tpuy; and, for n=0,..., N — 1, u(™*1) satisfies

/t(n+1)

/z/(w,t,Hpu("ﬂ),Vpu(”ﬂ))5g1+%)u(a:)ﬂpv(:c)da:dt

+&rE) / 1([Vpu™ D (2))Vpu™ (z) - Vpo(z)de (5-45)

t(”+1)

/ /f(a:,t)ﬂpv(a:)dwdt, Yo e Xpy.
(n) o

We recall the notations (4.2) and (4.4), and that § = 1 here. The operators

Hg ) and v%> will therefore be our natural space-time function and gradient
reconstructions.

Estimates and existence of a solution to the fully implicit scheme

Lemma 5.11 (L?(2 x (0,T)) estimate on dpu and L*(0,T; Xp,) es-
timate on wu, fully implicit scheme). Under Hypotheses (5.40), let Dr
be a space-time GD for homogeneous Dirichlet boundary conditions, in the
sense of Definition 4.1. Then, for any solution u to the GS (5.45) and for all
m=1,...,N,

t(m)
Vmin/

/ Spu(zx, t)*dedt + fmin Vpu(m)

L2(92)¢

1
< Hmax ||VDID“1HIHL2(Q)d + ||fHL2(Q><(O T)) - (5.46)

As a consequence, there exists at least one solution u to the GS (5.45).

WD ()

Proof. Setting v = prces sumil (5.45) and summing over n =0,...,m—1
leads to
£(m)
Vmin/ / Spu(z, t)*dedt
m—1

Z / (1Vou ) (@) Vou ) @) - | Voul™D (@) — Vou'™ (x)| dz

<)

Hypothesis (5.40e) implies the convexity of F', defined by (5.42), and thus

t(WL)

/ (@, O)dpu(a, t)dadt. (5.47)
2

Ver,ca € RY L Fleg) — F(ey) = / zu(z)dz < cap(ea)(ca — ¢1).

c1

This gives in particular
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F(IVpu" ) (@)]) - F([Vpu™ ()
< (| Vpu D (@) Vou ) (@) [|[Vou ) ()] - [Vpu (@)]] . (5.48)

The Cauchy-Schwarz inequality implies
Vou ) (@)| [[Vou" ) (@)| - [Vpu (@)
< Vpul™ Y (z) - [VDU("H)(QS) - VDU(”)(;C)} . (5.49)

Combining (5.48) and (5.49) and plugging the result into (5.47) yields

t<m')

Vmin / 6DU($, t)zda)dt
0 2

+ ; [ [PU7ou @) - F(¥u® (@)))] az

t(’")
= /
0

The sum in the left-hand side is telescopic and reduces to

/ f(z, t)dpu(x, t)dedt. (5.50)
o)

| [F19ou™ @) = P90 @)] da.

The right-hand side of (5.50) can be estimated by means of the Cauchy—
Schwarz inequality and the Young inequality (C.9). Since the range of F' is in
[Mmin32/27 ,umax52/2]7 this gives

Vmin /
0

Nmax
5 /Q |VDU(O) (3’3)|2d33 + ||fHL2(Qx(0,T)) H(sDu”LQ(.Ox(O,t(m)))

t(m)

/5Du(m,t)2dmdt+m/ \Vpul™ (x)2da
0 2 Jo

IN

IN

Hmax 1 2
Lo | |9 pTptn (@) 0+ 5o oy

2Vmi]ﬂ

Vmin 2
Ty 16DullL2(2x (0,60m) -

Moving the last term to the left-hand side yields Estimate (5.46).

To prove the existence of at least one solution to the GS, we create an homo-
topy between the model (5.39) and a linear PDE. By induction, it suffices to
show that, for a given u(™ € Xp,0, there exists u(mtD) ¢ Xp,o satisfying the
integral relation in (5.45). For A € [0, 1], define py and vy by

,UA(S) = ,umax(l - /\) + AH’(S) , and
V/\(w7t?57§) = Vmin(l - A) + )\l/(ﬂﬁ,t,s,f).
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Let (vi)i=1,....m be a basis of Xp o and define & : Xpg x [0,1] — Xp,o by
its components (P(w, A);)i=1,...,m on (V;)i=1,... Mm:

t("+1)

B, \)i — / / vz, t, pw(), Vpuw(x))
t(n) 9]
" Hpw(x) — MTpu™ (x)
snt3z)

) /Q px(|[Vpw(z)|)Vpw(x) - Vpui(x)de

Hpv;(x)dedt

¢(n+1)

- / F(@, ) Tpvi () dad.

t(n) 9]
Then u("+1) satisfies the integral equation in (5.45) if and only if @(u(+1) 1) =
0.
The mapping @ is clearly continuous. If @(w,\) = 0 then, since ) (resp.
vy) has its range in [fmin, fmax] (T€SP. [Vmin, Vmax]), similar estimates to the
ones established above give a bound on |[Vpw||2(g)a = [[w]p that does
not depend on A € [0,1]. Finally, for A = 0, &(-,0) is affine and therefore
invertible since, by the previous bound, its kernel is bounded (and thus neces-
sarily reduced to a single point). As a consequence, for some R large enough,
&(-,0) = 0 has a solution in the ball of radius R in Xp g.
A topological degree argument (see Theorem C.1 page 403) can therefore be
applied and show that &(-,1) = 0 has at least one solution, i.e. that there
exists u(™*1) solution to the integral equation in (5.45). L]

Convergence of the fully implicit scheme
For u € Xg,gl, define wp and Gp by, for a.e. (x,t) € 2 x (0,7T),
wp(z,t) = f(z,1) — v (as,t,ng>u(x,t), Vg)u(m,t)) Spu(z,t),  (5.51)
Goplz,t) = p (|Vg)u(w7t)|) vz, ). (5.52)
With these definitions, (5.45) can be recast as
u € Xg’gl and, for all v € nggl ,
T
/0 /Q Gp(z,t) - VW (e, t)dadt (5.53)

T
= / / wp (@, t)Hg)v(:c, t)dadt.
o Jo

The following lemma is an initial step towards establishing the convergence
of the fully implicity GS for (5.39).
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Lemma 5.12 (A convergence property of the fully implicit scheme).
Under Hypotheses (5.40), let ((Dr)m)men be a sequence of space—time GDs
for homogeneous Dirichlet boundary conditions (with p = 2). Assume that the
sequence ((Dr)m)men 1s space—time-consistent, limit-conforming and compact
in the sense of Definitions 4.3 and 4.6. Also assume that (Vp,, Ip, Uini)meN
is bounded in L?(£2)<.
For any m € N, take up, a solution to the GS (5.45) and define wp,, and
Gp,, from un, by (5.51)—(5.52). Then there exist functions

€ L>®(0,T; Hy (2)) N C([0,T]; L*(2)) with 8;u € L*($2 x (0,T))
and u(+,0) = Uini ,

G e L*(2x(0,7)%, and

w e L2(2 % (0,T))

such that, along a subsequence as m — oo,

© suprejo ) [ 1T, tm(6) = (1) 2(2) = 0,

. Vg}num converges weakly in L*(£2 x (0,T))¢ to V1,
® 0p,, Um converges weakly in L?(2 x (0,T)) to dyu,
e G'p,, converges weakly to G in L?(2 x (0,T))4,

e wp_ converges weakly to w in L*(£2 x (0,7)),

e it holds

T
/ / Gp,, (x.) - V) up (@, t)dzdt
v (5.54)

— /OT/QG(:c,t) - Vu(x, t)dzdt.

Remark 5.13. Note that, at this stage, we do not identify G and w, respec-
tively, with u(|Va|)Va and v(u, V). This is done later, in the proof of The-
orem 5.14, by using (5.54).

Proof. Owing to (5.46), (Gp,, )men is bounded in L>(0,T; L%(£2)?) and
(wp,, )men is bounded in L2(£2 x (0,T)). Hence, there exists G € L2(£2 x
(0,7))¢ and w € L*(£2 x (0,T)) such that, up to a subsequence as m — oo,
Gp,, — G weakly in L?(02 x (0,T))? and wp,, — w weakly in L?(£2 x (0,T)).
By Lemma 5.11, the sequence ((um)1)men (see notation (4.2) with § = 1)
is bounded in L*(0,T; Xp,, o) and the sequence (dp,, Um)men is bounded
in L%(0,T; L*(£2)). Theorem 4.31 thus provides u € L*(0,T;HE(£2)) N
C([0,T]; L?(£2)) such that d;u € L?(2 x (0,T)) and, up to a subsequence as
m — 00, SUPeo.7] ||H1()1T)num(t) —(t)||L2(2) — 0 and dp,, um — O;u weakly
in L2(£2 x (0,T)). The weak convergence of Vg}num to Vu is a consequence

of Lemma 4.7.
The definition (4.3) gives H(Dli um (0) = Ip uSS) = IIp,_ TIp,_ uini. The space-

m m m

time-consistency of ((Dr)m)men then yields H(Dmum(O) — Uiy in L2(92) as
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m — oo. By the uniform convergence of (H(Dlium)meN to u, we infer that
ﬂ(~, 0) = Ujni-

We now aim to prove (5.54). Since @ € L?(0,T; H}(£2)) we can take (vyn)men
given by Lemma 4.9 for 7 = u. Using v,, as a test function in (5.53) with
Dr = (Dr)m and passing to the limit yields

/0 ’ /Q G(zx,t) - Vi(zx, t)dzdt = /O ' /Q w(x, t)u(x, t)dedt. (5.55)

Putting v = u,, in (5.53), the weak-strong convergence lemma (Lemma
C.3 page 403) enables us to pass to the limit in the right-hand side, since
(wp,, )men converges weakly in L?(£2 x (0,7T)) and (H(Dlium)meN converges
strongly in L?(§2 x (0,T)). Owing to (5.55), this gives

T T
lim / / Gp, (2,1) - V) (@, t)dzdt = / / w(z, t)u(z, t)dadt
0 2 ) 0 2

m—00
T p—
= / / G(z,t) - Vu(x, t)dedt
o Je

and the proof of (5.54) is complete. [
We now state and prove the convergence of the fully implicit GS for (5.39).

Theorem 5.14.

Assume (5.40) and let ((D1)m)men be a sequence of space—time GDs for ho-
mogeneous Dirichlet boundary conditions (with p = 2). Assume that the se-
quence ((Dr)m)men is space—time-consistent, limit-conforming and compact
in the sense of Definitions 4.3 and 4.6.

We also suppose that (Vp,, Ip, Uini)men is bounded in L%(2)? and, for any
m € N, we let u,, be a solution to the GS (5.45).

Then there exists a weak solution T of (5.39) in the sense of Definition 5.10

such that, up to a subsequence as m — oo,
1 _
® SUDP;c(o,7] ||H7(321um(t) —u(t)|| 22y — 0, and
o V9w — YV in L2(02 x (0,T))

Proof.
Let u, G and w be given by Lemma 5.12. Then, sup;c( 1 ||H(D13Lum(t) -
U(t)| 22y — 0 along a subsequence (not explicitly indicated below).

Step 1: a strong monotonicity property.
We aim to prove here that, for all V, W € L?(£2 x (0,T))¢,

[ wswiw = u(vipv - v - v dsa

2
= a W] = VIllL2(ox oy - (5:56)
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Use first the Cauchy-Schwarz inequality for the dot product of R? to get

/OT/QM(IWI)W.dedtg/OT/QAL(IWI)Wl |V |dadt.

Writing the same properties with W and V swapped leads to

T
/0 /Q (L(WDW = w([V))V) - (W — V) deedt
T
Z/o /Q(M(|W|>|W\*N(|V|)\V\)(|W|fIVl)da:dt.

By Property (5.40e) on p, (5.56) follows.

Step 2: Proof that G = pu(|Vu|)Va.
We use Minty’s trick. For V € L?(£2 x (0,T))%, set

/ / (VD) ) VD) w1 — M(\VDV] : [v§§> U — V} dzdt.

Recall that u(\V%Bﬂ um\)V%)n Um = Gp,,. Together with (5.54), the weak con-

vergences of Gp,, and Vg?ﬂ U, therefore yield

T P
im T (V) :/ (G n(v)V] - [Va - V]daar (5.57)

m— o0

By (5.56), T, (V) > 0 and thus

// [G—pu(IV)V] - [Vu - V]dadt > 0.

Take W € L2(£2 x (0,T))? and set V = Vu + AW for A € R. This gives

T
)\/O /Q[G—M(WEMWD(WMW)}-dedtzo.

Since A is any real number, this shows that the integral term is equal to zero.
The dominated convergence theorem justifies letting A — 0 in this term, which
shows that

T
/ / [G — p(|Vu|)Vu] - Wdzdt = 0.
0o Je
Taking W = G — u(|Va|)Vu yields
G = p(|Vu)Vu a.e. on 2 x (0,7). (5.58)

Step 3: strong convergence of Vgilum, and proof that w is a solution to
(5.39).
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Making W = V5 u,, and V = Va in (5.56) gives

2 1
< =T, (Va).

1 _
195 ol = 97| <
(2x(0,T)e ~ «

By (5.57), litynso0 T (V) = 0 and thus |V u,,| — |V in L*(2 x (0, T))
as m — oo. This entails the convergences of the L? norms of these functions,
that is

et

L @x©rns IVilz@xorys as m = oo

This latter convergence shows that the weak convergence of (ngnum)mel\l to

Va in L2(2 x (0,7)) is actually strong.

By a form of non-linear strong convergence property similar to Lemma C.4
page 404, the strong convergences of (Hgium)meN and (Vg}n Um )meN Show
that, as m — oo, '

v(, ',Hglum, Vg}n’um) — v(-, -, W, V) strongly in L2(§2 x (0,T)).

The weak convergence of dp,, u,, towards 0,u and the weak-strong convergence
property in Lemma C.3 page 403 then enable us to identify the limit of wp,,
(defined by (5.51)):

w=f—-v(,-uVu)ou a.e. in 2x(0,T). (5.59)

Let v € L2(0,T; H}(£2)) and take (vp)men provided by Lemma 4.9 for v.
Write (5.53) for Dy = (Dr)m and v = vy,. Passing to the limit m — oo in
this relation is justified by the weak convergences of Gp, and wp,,, and the
strong convergences of H(Dlibvm and Vg; Up,. This leads to

/OT/QG(:c,t)-Vv(m,t)dmdt:/OT/Qw(ac,t)v(m’t)dmdt.

Then (5.58) and (5.59) show that @ satisfies (5.41). Since the regularity prop-
erties of w required in Definition 5.10 are ascertained in Lemma 5.12, the proof
that @ is a solution to (5.39) is complete. [

5.2.3 Semi-implicit scheme

Given a space-time gradient discretisation Dr and using a semi-implicit time-
stepping, the GDM applied to (5.41) gives the following GS: seek a family
u = (u("))n:() N E Xg“ such that

,,,,
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u® = Tpuy; and, for n=0,..., N — 1, u(™*D) satisfies

/t("+1)

/z/(w,t,Hpu("),Vpu(”))5gb+%)u(w)ﬂpv(m)dazdt

&(m—l)/ w(|Vpu™ ) Vpu™t . Vpu(z)de (5-60)

t("+1)

/ / f(z,t) Ipv(z)dedt, Yo e Xpp.
(n) o

Quite naturally, the analysis of this semi-implicit implicit scheme uses both
Hg ), Vg) and Hl(jo ), V%)). Recall that the definition of these latter operators
(see (4.2)):

I u(a, t) = Ipu™ (x) and V9 u(z, t) = Vpu (z),

for a.e. (z,t) € 2 x (t™ "Dy ¥n=0,... N —1.
Estimates and existence of a solution to the semi-implicit scheme
Lemma 5.15 (L*(2 x (0,T)) estimate on dpu and L>(0,T; Xp ) esti-
mate on u, semi-implicit scheme.). Under Hypotheses (5.40), let Dr be

a space-time GD in the sense of Definition 4.1. Then the GS (5.60) has a
unique solution u, and it satisfies, for allm=1,..., N,

Vrnin/
+MminZ/ ’VDU(”H)(:B)—VDU(”)(:B)‘ dx (5.61)
o)

1
< Hmax ||VDIDU1mHL2(Q)d T ||fHL2(Q><(O R

£0m)

/ Spu(x, t)>dedt + fmin Vpu(m)H

Proof. First notice that, by Hypothesis (5.40¢),
J x| 1 )
vex e RS, [ Ceneaz s g ePueh < uex (-6 (56

To prove this property, simply remark by developing |x — ¢|? that it simplifies
into

Ve, x € RY 1 2 g - ‘Xl dz >0
y X , 2u(\&l)(lx\ 1€1%) zp(z)dz > 0.
lé|

Set, for a,b € RT,
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Then @'(b) = b(u(a)—u(b)), whose sign is that of b—a since p is non-increasing.
Hence ®(b) is non-increasing for b < a and non-decreasing for b > a. Since
@(a) = 0, this shows that @#(b) > 0 for all b € Rt and the proof of (5.62) is
complete.

Applying this relation to & = Vpul™ () and x = VputV(x) and recalling
the definition (5.42) of F' leads to

F([Vpul"™(@)]) — F(IVpu'™ (@)))

HMmin

Vpu™(x) — Vpu™ (x)

2
* |

< pu(|Vpu'™ (x)) Vpu"tY (z) - [Vpu(7‘+1)(:n) — Vpu(”)(a:)} . (5.63)

Estimate (5.61) is then established as the proof of Lemma 5.11, by plugging

(1) (m) . . .
= % in (5.60), summing over n =0,...,m — 1, and using (5.63) in
2

lieu of (5.48). L]

Convergence of the semi-implicit scheme

If w is the solution to the GS (5.60), let

’IED = f - V(Hg))uD, V%))’LLD)(SD’LLD y (564)
Gp = p(IV5 up| )V up , (5.65)
Gp = u(|Vg)uD|)V(£)uD. (5.66)

Note that the GS (5.60) can be recast as:

u € Xg:gl and, for all v € Xg:gl ,
T
Gp(z,t) - V(l)v(w, t)daedt
[, : 567

T
:/ /ﬁp(m,t)ﬂ(pl)v(x,t)dazdt.
0 (9]

The following lemma is the equivalent, for the semi-implicit scheme, of Lemma
5.12.

Lemma 5.16 (A convergence property of the semi-implicit scheme).
Under Hypotheses (5.40), let ((D1)m)men be a sequence of space—time GDs
for homogeneous Dirichlet boundary conditions (with p = 2). Assume that this
sequence is space—time-consistent, limit-conforming and compact in the sense
of Definitions 4.3 and 4.6. Assume also that (Vp,, Ip,, tini)men s bounded in
L2(0)4.

For m € N, let u,, be the solution to the GS (5.60), and define wp,,, Gp,,
and Gp,, from u, by, respectively, (5.64), (5.65) and (5.66).
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Then there exist functions

€ L>®(0,T; Hy (2)) N C([0,T]; L*(£2)) with 8, € L*(£2 x (0,T))
and u(+,0) = Ui ,

G e L*(2 x (0,7)%, and

we L*(2 x (0,T))

such that, along a subsequence as m — oo,

© subyeo.r) [ ), tn (1) = (1) 2(2) = 0,

. V%)Bnum and Vgium converge weakly in L*(£2 x (0,7))¢ to V7,
® 0p,, um converges weakly in L?(2 x (0,T)) to dyu,

e Gp,, and épm both converge weakly to G in L*(£2 x (0,T))¢, and

T
/ / (G, (@,1) — G, (@,8) - VOup (@, )dadt — 0, (5.68)
0 (9]

e Wp, converges weakly to w in L*(£2 x (0,T)),
o it holds

T
/ / Gp,, (z,1) - Vg}ylum(m, t)dxdt
v (5.69)

_>/OT/!2G(m7t)-Vu(:c,t)d:cdt.

Proof. The proof is similar to the proof of Lemma 5.12. The a priori estimate
(5.61) provide the existence of @ such that (Hg) U )meN, (Vg) U )men and
(0D, Um)men converge as stated in the lemma. The same estimates show that
(Gp, Ymen and (Gp, Jmen are bounded in L2(£2x (0,T))<, and therefore have
weak limits in this space (up to a subsequence). Likewise, (Wp,, )men has a
weak limit in L2(£2 x (0,T)) up to a subsequence.

Let us now prove that Vg}num converges weakly to Vu, that the weak limits
of (Gp,, )men and (éDm)mGN are the same, and that (5.68) holds. Since

2
HV%}numeg)num ’

L2(2x%(0,T))4
N-1 )

= Z&(n+%)/ ‘meuﬁg“)(w)fvpmu%)(w)‘ de
n=0 2

’2

N—-1
<dtp, ) / Vo, ul V(@) ~ Vo, ul(@)] dz,  (5.70)
n=0 "1

the estimate (5.61) shows that
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va) Uy — Vg) um‘ —0 asm — oo. (5.71)

m m

L2(2x(0,T))¢

This proves in particular that V(DO,)n Um — VT weakly in L2(£2 x (0,T))%. Take
now (Y )men bounded in L2(§2 x (0,7))¢ and write

T
/ /Z(ébm (w7 t) - éDm (ma t)) ' w'rn(ma t)dmdt
0 g

T
<[] n98 0D [V () = V) ) [ )t
0

Vg}num — Vg) U,

m

< Hmax L2(2x(0.T))¢ ||1/1m|\L2(Qx(o,T))d :

Use then (5.71) to infer

T
/ /(@Dm(sc,t) —Gp (1)) (. )dadt 0 asm — 0o, (5.72)
0 (9]

Applied to ¥, = 1 for a fixed ¢, this relation that the weak limits of
(Gp,,)men and (Gp,, )men are the same function G. The same relation (5.72)
with 1, = V(DOLU"L provides (5.68).

Let us conclude by proving (5.69). Relation (5.55) is established as in the
proof of Lemma 5.12. The GS (5.67) applied to D = D,,, and v = u,,, and the

strong convergence of Hg )

m

Uy, then show that
T , _ T
/ / Gp, (x,t) - Vg}num(w, t)dedt = / / Wp,, (x, t)Hg}num(w, t)dxdt
0o Jo 0o Jo

— /OT/Qw(x,t)u(w,t)dxdt
_ /OT/QG(a:,t)-Vu(a:,t)da:dt.

Since V%Lum — V(Doznum — 0 in L2(2 x (0,T))% and (Gp,, )men is bounded
in L2(2 x (0,7))4, this gives

T T
/ / Gp,, (x,1) - V(DO7)nu,,L(.’/c7 t)dedt — / / G(z,t) - Vu(z, t)dzdt.
o Jo o Jo

We conclude the proof of (5.69) by using (5.68). ]

The following theorem states the convergence of the semi-implicit scheme.
The proof is omitted, as it is identical to the proof of Theorem 5.14, replacing
Gp,, by @Dm and Vg}num by V(Do)um in the definition of T,,(V) in Step 2
(use of Minty trick).
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Theorem 5.17.

Assume (5.40) and let ((Dr)m)men be a sequence of space—time GDs for ho-
mogeneous Dirichlet boundary conditions (with p = 2).

Assume that ((Dr)m)men 1S space—time-consistent, limit-conforming and com-
pact in the sense of Definitions 4.8 and 4.6.

We also suppose that (Vp,, Ip, Wini)men is bounded in L%(£2)? and, for any
m € N, we let u,, be the solution to the GS (5.60).

Then there exists a weak solution T of (5.39) in the sense of Definition 5.10
such that, up to a subsequence as m — oo,

o supefo.7) [ .. (£) = T(t) | 12() = 0, and
. V%) Uy, — VU and ngn,um - VU in L*(2 x (0,7))".

5.3 Non-linear time-dependent Leray—Lions problems

5.3.1 Model

We consider here an evolution problem based on a Leray—Lions operator, with
non-homogeneous Neumann boundary conditions and non-local dependency
on the lower order terms. The model reads

ou — div(a(z,u,Vu)) = f in 2 x(0,7),

u(x,0) = uini(x) in {2, (5.73)
a(x,u,Vu) - n=g on 912 x (0,T),
where a satisfies (3.96a)—(3.96d) and
o T € (0,+00),
® Ui € L*(2), (5.74)
o f€ LY (2x(0,T)) and g € LV (92 x (0,T)), where p/ = 2.

The non-linear equation (5.73) covers a number of models, including semi-
linear ones appearing in image processing [18, 20]. The analysis of the GDM
applied to (5.73) with homogeneous Dirichlet boundary conditions is done in
[36].

The precise notion of solution to (5.73) is the following:

ue LP(0, T; WhP(02)) N C([0,T]; L*(£2)), u(-,0) = Uini,

du e LV (0,T; (WLr(£2))) and

T
/ (O £), 5. 1) w2y eyl
/ / a(@, (-, 1), Vi(w,t)) - Vo(a, t)dadt (5.75)
2

//fa:t wtdwdt+/ -/8(2 (z,t)yo(x, t)ds(z)dt,
))-

Vo € LP(0; T; WhHP (02
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Remark 5.18. The derivative 0;w is understood in the sense of distributions on

(0, T) with values in L?({2). Stating that it belongs to L? (0, T; (WP(£2))) =

(LP(0,T; W1P(£2)))" amounts to asking that the linear form defined by
C(0,T; L*(2)) N LP(0, T; WHP(2)) - R

© = (O, )1 (0,T3L2(2)), D(0,T5L?(£2))

T
= —/ (@(-,t), 0pp(-t)) L2(02),L2(2)dt (5.76)
0

—/OT/Qu(:c,t)(“)tgo(m,t)dwdt

is continuous for the norm of LP(0,T;W'P(£2)). Since the set of tensorial
functions § = {320, ¢i(t)Bi(x) : ¢ € N, ¢; € CX(0,T), B € O=(2)}
is dense in LP(0,T; WP(£2)) (see [29, Corollary 1.3.1]), the derivative 9,u
belongs to Lp/(O,T; (WP(£2))) if and only if (5.76) is continuous on S for
the LP(0,T; WP (£2))-norm.

Remark 5.19. Using regularisation and integration-by-parts techniques [29,
Section 2.5.2], it is possible to see that any solution @ to (5.75) also satis-
fies, for any s € [0, 7],

%Hu ||L2 // x,u(-,7), Vu(ze, 7))dzdr
= & iy + / | fa. (e, r)dadr
+/O /GQg(LE,T)’}/E(:E,T)dS(:D)dT. (5.77)

With a reasoning similar to the one employed to establish the equivalence of
(5.3) and (5.4), we can see that (5.75) is equivalent to:

ue LP(0,T; WHP(£2)) N L°°(0,T; L*(£2)) and,
for all v € C1([0,T]; WHP(£2) N L?(§2)) such that v(-, T) = 0,

/ / u(x, t)0yv(x, t)daedt —/ Uini (2)0(2, 0)da

/ / a(z,u(-,t), Vu(z, t)) - Vo(e, t)dzdt (5.78)

- /0 /Q F(a, t)5(x, £)ddt + /0 ' /a gttt fds(@)dr

To prove this equivalence, we use [29, Section 2.5.2] to see that if w €
LP(0, T; WhP(02) N L2(2)) satisfies 9@ € LP (0,T; (WhP(£2) N L2(12))),
then w € C([0,7]; L?(£2)). We also use the density in LP(0,T; W1P(£2)) of
CL([0,T); WEP(£2)N L3(£2)), which is for example a consequence of [29, Corol-
lary 1.3.1].
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5.3.2 Gradient scheme and main results

Let Dy = (Xp, IIp, Tp,Vp,Ip, (t("))nzo,m’N) be a space—time GD for non-
homogeneous Neumann conditions in the sense of Definition 4.1, and let 6 €
[3,1]. The GDM applied to Problem (5.73) yields the following GS: find a
family (u("))nzo,_“’N € Xg“ such that

uw® = Tpuin € Xp and, for all n = 0,..., N — 1, a1 satisfies
/ 6g+%)u(:ﬂ)ﬂpv(az)dw
Q

+/ a (w,ﬂpu(”+9)7vpu("+9) (:c)) - Vpo(x)de
2

1 ¢(n+1)
= —F t)II dxdt
&(n+%) /t(n) /Q f(m’ ) Dv(m) r

1 ¢(n+1)
+m/ / g(z, ) Tpv(z)ds(x)dt, Yve Xp.
AT Jm 002

The choice § > % is required for stability reasons. As explained in Section
4.1, 0 = 1 leads to the classical Euler time implicit discretisation, while 8 = %
corresponds to the Crank-Nicholson time discretisation.

Recalling the notations in (4.2), we now state our initial convergence results

for this GS.

(5.79)

Theorem 5.20 (Convergence of the GS for transient Leray—Lions).
Under Assumptions (3.96a)—(3.96d) and (5.74), let ((D1)m)men be a se-
quence of space—time GDs for non-homogeneous Neumann boundary condi-
tions, in the sense of Definition 4.1. Assume that this sequence is space—time-
consistent, limit-conforming and compact in the sense of Definitions 4.3 and
4.6. Let 6 € [3,1] be given.
Then, for any m € N, there exists a solution u,, to the GS (5.79) with D = D,,
and, along a subsequence as m — o0,

. H(Delum converges to u strongly in LP(2 x (0,T)),

o Hgi U converges to u weakly in L?(82) uniformly on [0, T] (see Definition

4.29),
. Vggium converges to Vu weakly in LP(£2 x (0,T))?,

where T is a solution to (5.75).

Remark 5.21. As for the stationary problem (see Remark 3.35), the existence
of a solution to (5.75) is a by-product of the proof of convergence of the
GDM. Moreover, in the case where the solution @ of (5.75) is unique, the
whole sequence (um,)men converges to T in the senses above.

The convergence of the function reconstructions is actually much better than
in the initial result above. It is uniform-in-time and strong in space.
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Theorem 5.22 (Uniform-in-time convergence of the GS). Under the
assumptions and notations of Theorem 5.20, and along the same subsequence
as in this theorem, we have

® SUDP;¢c0,T7 ||H um(t) —u(t) |2 0) — 0,

® sup;ejo,77 (11 5 Um(t) —a(t)|z22) — 0.

m

If the Leray—Lions operator a is strictly monotone, then a strong convergence
result can also be stated on the gradients.

Theorem 5.23 (Strong convergence of the gradients in the strictly
monotone case). Let us assume the hypotheses of Theorem 5.20, and that a
is strictly monotone in the sense of (3.98). Then, with the same notations and
along the same subsequence as in Theorem 5.20, Vg}num converges strongly
to Va in LP(2 x (0,T))%.

5.3.3 A priori estimates

We begin by establishing a priori estimates.

Lemma 5.24 (L>=(0,T; L*(£2)) estimate, discrete LP(0,T;W1P(2)) es-
timate, and existence of a solution to the GS). Under Hypotheses
(3.96a)—(3.96d) and (5.74), let Dr be a space—time GD for non-homogeneous
Neumann conditions in the sense of Definition 4.1. Then there exists at least
one solution to the GS (5.79), and there exists C12 > 0, depending only on p,
Cp > Cp, Cipy; > ||HDIDuini||L2(Q), f, g and a such that, for any solution u
to this scheme,

(1) (0)
e [0 < [0, <

Q
t€[0,T) Y ) t€[0,T) (5.80)
d H ) < Cho.
and ||Vp u Lr(@x @)t — 2
Proof. Let us first prove the estimates. Recall (5.22), that is
n+i 1
&(nJr%)a(D-i-z)u HDu(n+9) > § ((HDu(n+1))2 _ (HDu(n))Z) ,
choose v = &)y (+0) i (5.79), and sum on n = 0,...,k — 1 for a given

ke {1,...,N}. This yields

Hﬂpu(k / / x, H(Q) o), Vg)u(m,t)> . Vg)u(az,t)da:dt
1 (0) " )
< —|IT ‘ LT ,t)dadt
-2 H e L2(82) +/0 /.Qf(w ) P u(@, jdz
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(k)
/ / (x, )T u(z, t)ds(z)dt. (5.81)
6_(2

In particular, owing to the coercivity property (3.96b) of a, and using Holder’s

inequality and Young’s inequality (C.9) (the latter with ¢ = Cp ),
(k)
1 t »
<k)‘ H ©),(. 1
2H LZ(Q)_‘_Q/ V’D u() ) L (02)d
41/ (p—1) CP
0) 4vbon
HHD ’ L2(0) + (pa)t/(P=1) p Hf”LI’ (£2x(0,t())
41/ (p— 1)CP
[ + oty ol
4Cp LP(.Q><(0 10y (pa)t/P=1) L' (992 (0,t()))
4 g
407 LP(092x(0,tR))

Apply the definition (2.26) of Cp and recall that u® = Tpuy, to deduce

1
3 o)

RN,
2y 21°P
1 41/ 0=y

5 ||HDIDUm1||L2(Q + W ||f||Lp (2% (0,60)))

LP (2 (0,t(0)))¢

[\]

/-1 7
+ (pa)/ =D HgHLP (002%(0,t())) *

This establishes the estimates on Hg)u and V(g)u. The estimate on Hg)u
follows from the inequality

HHDU(

<o)

4 (1-6) HUDW)’

L2(0) L)

The existence of at least one solution to (5.79) is done as in the proof of
Theorem 3.34, reasoning on «("*t?) and using the above estimates. [

The following estimate will be useful to apply the Aubin—Simon theorem for
GD (Theorem 4.21).

Lemma 5.25 (Estimate on the dual norm of the discrete time deriva-
tive). Under Hypotheses (3.96a)—(3.96d) and (5.74), let Dy be a space—time
GD for non-homogeneous Neumann conditions in the sense of Definition 4.1.
Let u be a solution to the GS (5.79). Then there exists Cy3, depending only
onp, i, a, a, Cipi > HUDIDuini||L2(Q), f, 9, T and Cp > Cp, such that

T
| ool p e < (5.82)
0

where the dual norm ||-[|, p is given by Definition 4.18.
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Proof. Let us take a generic v € Xp as a test function in (5.79). We have,
thanks to Assumption (3.96d) on a,

/ 5gl+%)u(w)ﬂpv(w)da:
2

< [ (at@) + uVou I (@)p) [Vor(@as
(9
£+ 1)

1
+ — x,t)[Ipv(x)dxdt
&(n"rg) [(n) Af( ) DU( )

1 (1)
4+ — x,t)Tpv(x)ds(x)dt.
i ., [, s 0Tou(a)asta)

This leads, by definition (2.26) of Cp, to the existence of C14 > 0 depending
only on p, u such that

t/ 508y (@) o () da
2

p—1
all, . +vau<"+")’
il o+ [Vou 0
Cp [
<Cu| 4=l [ IOt | ol

t(n+1)

Cp
e gDl o

Taking the supremum on v € Xp such that |[v|, =1 gives

(n+3) 7 o)
|57, < Caalialunriay + Cua[Fout O
(nt1) (n+1)
C14Cp [* CuCp [*
n &(n_,_%) /t(n) Hf('7t)||LP’(Q) de + W/t(”) Hg(-,t)”Lp’(aQ) de.

The proof is concluded by raising this estimate to the power p’, distribut-
ing this power to each term on the right-hand side thanks to the power-
of-sums inequality (C.14), using Jensen’s inequality for the integral terms,
multiplying by & t3)
0
[Vl

, summing on n and invoking Lemma 5.24 to estimate

P
Lr(2x(0,T))d" .

5.3.4 Proof of the convergence results

We now prove the convergence of the GDM for the transient Leray—Lions
model (5.73).

Proof of Theorem 5.20.
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Step 1: Application of compactness results.

The definition (2.25) of |||, ~and Estimates (5.80) and (5.82) show that
the hypotheses of Lemma 4.7 (regularity of the limit) and Theorem 4.21
(Aubin-Simon for GD) are satisfied by (tm)men. There exists therefore u €
LP(0,T; WHP(£2)) such that, up to a subsequence as m — oo, (Hglum — T
strongly in LP(£2 x (0,T)), Vg}num — Vu weakly in LP(2 x (0,7))¢, and
Tg}num — ~u weakly in LP(962 x (0,T)). Moreover, since (Hgilum)mel\l
is bounded in L°°(0,T; L?(2)), the convergence H(Delum — @ also holds in
L*°(0,T; L?(02)) weak-*.

Estimates (5.80) and (5.82) show that (u.,,)men satisfies the assumptions
of Theorem 4.32 with 6 = 1. Hence, up to a subsequence as m — oo,
(Hglum)meN converges to some u uniformly-in-time for the weak topology
of L%(§2) (as per Definition 4.29).

Estimates (5.80) and Assumption (3.96d) show that the functions Ap_ (x,t) =
a(z, Hg’ium(-, t), ngnum(a:, t)) remain bounded in L? (2 x (0,T))%. Up to a
subsequence, Ap  therefore converges to some A weakly in L¥' (£2 x (0,T))?
as m — oo.

Step 2: Proof that uw = u.

First notice that the convergence of (H(Dlyl Um )meN towards @ also holds for the
weak topology of L2(£2x (0,T)) (this is an easy consequence of its convergence
uniformly-in-time and weakly in L?(£2)).

Take p € C°(£2 x (0,T)) and let

Pp,,o(t) = argmin (o, = ()| pmestr (0
weXp,,

V0,0 = Vot) oy )-

Since 0 € Xp,,, a triangle inequality shows that

|5, Py, (&)l pmsscrs 2y + 1V P 0O gy
< 20 (t) | pmestrriery + 2 IV s - (5.83)

In particular, by definition of ||-[|5,  and smoothness of ¢, || Pp,, ¢l 1o 0.7, xp, )

remains bounded. Moreover, the space—time-consistency of ((Dr)m)men en-
sures that, for all t € (0,7), IIp, Pp, ©(t) = ¢(t) in L?(2) as m — oo.
Combined with the dominated convergence theorem and (5.83), this yields
IIp, Pp, p — ¢ in L*(£2 x (0,T)) as m — oo.

For n € {0,...,N —1} and t € (¢, t(»+D],

H(Dlrlum@) - H(Deglum(t) = HDmu»E:lH_l) —IIp u(n+9)

m M

= (1-6)(Ip, uly ™ — IIp, uly)
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= (1= )& " 6p upm(t) (5.84)

and thus, by (4.29),

(1185 (@, t) = 1Y)t (,)) T, [P, ()] () dwdt

T
<(1-6)dp, / 160, 4, o |Po, o), dt

Use Lemma 5.25 and Hélder’s inequality to see that the right-hand side of this
relation tends to 0 as m — oo. Since H(Dlium and Hl(fr)n Uy, converge weakly
in L2(2 x (0,T)) towards @ and %, respectively, we deduce

/T/ (u(, t) — u(z, t))p(z, t)dedt

:"}gnw / [ (18 0 (w,8) = 1) (2,0 T, [P )] )
(5.85)

This proves that @ = u, and thus that H(Dljl U, — @ uniformly on [0, T weakly
in L?(£2). In particular, ngbum (T) — u(T) weakly in L?({2) and thus

/ a(x, T)2dz < lim inf / 1) wp (x, T)?da. (5.86)
2 2 )

m—r oo

Step 3: Proof that @ is a solution to (5.75).

Let v € CL([0,T]; WLP(£2) N L2(£2)) such that v(-,T) = 0, and let (v )men
be given by Lemma 4.9. Properties (4.7), (4.8) and (4.10) therefore hold, with
0 =0.

We drop some indices m for legibility. Using &3)y(™) as test function in
(5.79) yields 7™ + T{™ = 7{™ + T{™ with

N-—-1
T = 3 /Q [Tpu™ V) (2) — Hpu™ ()| Tpo™ (z)de,

T
- / / a(a:,Hg)u(-,t),Vg)u(:c,t)) VO, t)dadt,
0 (%}

T(m / / flx, )y v(x, t)dzdt,
//69 (2, )T v (x, £)ds ().

and
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Accounting for v(N) = 0, the discrete integrate-by-parts formula (C.15) gives
N—
== / pu™* ) (@) [Tpo™ ) (@) — Tpo™ ()] dz
Q

—/ Ipu® () oo (x)de
2

T
_ / T u(a, )po(@, t)dzdt — / T Tpum (@) T v(z, 0)da.
2 (9]

The strong convergences (4.10c) and (4.10b) of v, and the weak convergence
in L2(02 x (0,T)) of nglum thus ensure that, as m — oo,

(m) — ! u(x v(x xdt — Uini(X)V(X x. .
T /O/Q(,t)é)t(,t)d at /Q i ()5, 0)d (5.87)

Owing to the weak convergence of Ap, and the strong convergence (4.7b) of
V%)T)nvm, as m — oo,

T
T / / A(z, t) - Vo(z, t)dadt. (5.88)
0

Finally, by (4.7a) and (4.8), as m — o0,

T
T3(m)_>/ /f(w,t)ﬁ(:v,t)d:vdt, and
0 (9]

T
T4(m)*>/ / g(z, t)yo(x, t)ds(x)dt.
0 o

Using (5.87)—(5.89) we can pass to the limit in T( ™) —|—T(m) T?Em) + T4(m) to
see that

—/OTAZu(m,t)8tv(m,t)dwdt—/Quini(m)v(xvo)dm
n / ! / A(z, 1) - Vo(, t)dzdt
/ /fmt cctdccdt—!—/ /an (z, t)yo(z, t)ds(z)dt.

This holds for all v € C([0,T]; W1P(02) N L3($2)) such that v(-,T) = 0.
By a density argument similar to the one used to prove the equivalence of
(5.3) and (5.4), or of (5.75) and (5.78), we infer that w € LP(0,T; WP (2)) N
C([0,T); L2(£2)), 8yu € L¥ (0, T; (Wh2(£2))'), G(-,0) = uiy; and, for all T €
20, T; Whr(12),

(5.89)



166 5 Parabolic problems

T
/ (8@( t) ( )>(W1 p(_Q))/ wi, p(Q)dt+/ / A iI! t V’U((Iﬁ t)d(lidt

//fa:t actdacdt+/ /{m (z,t)yo(x, t)ds(x)dt.  (5.90)

It remains to prove that
A(z,t) = a(z,u(-,t), Vu(e,t)), for ae. (z,t) € 2x(0,T). (5.91)

The formula

T
/<8tﬂ(-,t),ﬂ(~,t))(wl,p(g))/,ww((z)dt
0

1 1
= f/ ﬂ(w,T)2dac—f/ (x,0)*dx
2J)a 2o

is justified by [29, Section 2.5.2] since u € LP(0,T; W1P(Q2) N L?(2)) and
ou € LP (0, T; (WhP(£2))). Writing (5.90) with ¥ = u thus yields

%/ u(zx,T) dm—%/ Uini () d:n—i—/ /A x,t) - Vu(zx, t)dedt

/ / @, (e, 1) d:cdt+/ / (@, )y, )ds(@)dt.  (5.92)
6!2
Relation (5.81) with k = N yields

1/(11(1) (a, T))2dadt

/ / x, H(G) 1), Vg)u(wﬂf)) 'V(De)u(w,t)dwdt

< 2/(HDIDu,m( da:+/ /f x,t) H(e u(x, t)dadt
Q

T
xr (a)ua: S| .
+/0 /mg< AT u(e, t)ds(z)dt

Recall that H(Dei Uy, — U strongly in LP(£2x(0,T)), that Tg) Uy, — YU weakly
in LP(082 x (0,T)) and, by space-time consistency, that IIp, Zp, Uini — Uini

in L%(£2). Moving the first term of (5.93) into the right-hand side, taking the
superior limit of the resulting inequality and using (5.86) therefore leads to

(5.93)

T
lim sup / / a (2. 10 u(. 1), Vu(. 1) - Vi u(w, )dedt
2

m—ro0

1 1
< —1iminff/(H(Dl)u(w,T))Qd:cdt+§/ Uini(ﬁc)zda)
10, 10,

m—ro0
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//f:ct wtdwdt+/ /8.(2 (z,t)yu(e, t)ds(x)dt

< _,/ a(z, T) d:l:dt-i-;/uml( )dz

/ flz,t)u mtdmdt—i—/ / (z, t)yu(z, t)ds(x)dt.
2 {m
Relation (5.92) then yields

T
limsup/ / a (a},Hgium(-7t),vg3num(a:,t)> -V(gy)num(ac,t)dazdt
7}

S/o /QA(:B,t)-Vﬂ(w,t)dwdt. (5.94)

It is now possible to apply Minty’s trick. Consider, for G € L?(0,T; LP(£2)),
the quantity

/ / 2, TOu(-, 1), VOu(,t )> (m T0u(.t )G(w,t))]

: [v§§>u(a,-, £) — G(m,t)} daedt > 0. (5.95)

Since ng U — @ strongly in LP(0,T'; LP(£2)), up to a subsequence we can
assume that H(Delum(t) — u(t) strongly in LP(£2) for a.e. t € (0,T). Assump-
tions (3.96a) and (3.96d) and the dominated convergence theorem then show
that a(-,Hg)u, G) — a(-,u, Q) strongly in L¥ (2 x (0,T))?. Developping
(5.95), all the terms except one pass to the limit by “weak-strong” conver-
gence (cf. Lemma C.3). For the only “weak-weak” limit, apply (5.94) and,
taking the superior limit as m — oo, write

T
/ / [A(z,t) — a(xz,T(-, 1), G(z,1))] - [Vu(z,t) — G(x,t)|dedt > 0.

In a similar way as in Step 2 of the proof of Theorem 3.34, take then G =
Vi + ap for @ € R and ¢ € LP(0,T; LP(£2))4, divide by a and let a — 0.
This gives

/T/ [A(2,t) — a (@, 1(- ), Vi(a, 1)) - p(a, t)dz = 0,
0 2

which shows that (5.91) holds. The proof that @ is a weak solution to (5.75)
is therefore complete. [

Proof of Theorem 5.22.
Step 1: a preliminary result.
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Take (Sm)men C [0,T] that converges to some s € [0,T]. Since H(Deylyum —T
strongly in LP(£2 x (0,T)), as in Step 3 of the proof of Theorem 5.20, Assump-
tions (3.96a) and (3.96d) show that (1[07Sm]a(w,Hglum,Vﬂ))meN converges
strongly in L¥' (£2 x (0,T))?. The weak convergence of (Vg}num)meN to Vu
in LP(2 x (0,7))¢ then yields

/m/ a(uﬂgium(-,t)?VH(mJ))
0 2
(VY (@, ) — Va(, b)) dedt — 0. (5.96)

Write (5.95) with s, instead of T' and V7 instead of G, and develop the terms.
Using (5.96), the weak convergence a(~,Hgium,Vglum) — a(-,u, Vu) in
LP (2% (0,T)) (see (5.91)), and the strong convergence 1j0,5,, ]V — 1)9, g VT
in LP(£2 x (0,T)), we obtain

liminf/ /a(m,ngium(-,t),vgf}num(m,t)) V) (i, t)dadt
0 2

m—r oo

2/0 /Qa(w’ﬂ("t)7vmwat))'Vﬂ(w,t)dwdt. (5.97)

Step 2: proof of the uniform-in-time strong in L?({2) convergences.
Let s € [0,7] and k(s) such that s € (¢() ¢(RE)+D] Apply (5.81) to k =
k(s) + 1 to write

L ’2
— (|11 m
2 H D,, U (5) L2(2)

s
+/ /a(w7ﬂglum(-,t)7V(Deilum(w,t))-Vglum(w,t)dwdt
0 Jo

1 S
§§||UDMIDmUini||iz(n)+/ /f(xat)ﬂbmum(ﬂc,t)dﬂﬂdt
0 (93
+ / / 9@, )T, (@, 1)ds(x)dt + p(dp,,)  (5.98)
0 o

where p(dtp, ) — 0 as &p,, — 0 (all time integrals should be up to ()1,
but we used the non-negativity of the integrand involving a to limit its integral
to s, and p is the quantity that includes the remaining parts of the integrals

in the right-hand side, estimated using to (5.80)).

The proof of the uniform convergence of (HZ()lm Um)meN 1s done by invoking

Lemma 4.28. As in Step 1, take (8, )men C [0, 7] that converges to some s €
[0, T]. We want to show that H(Dli Um (8m) — (s) in L2(£2). Apply (5.98) with
S = Sm, move the second term to the right-hand side, and take the superior
limit as m — oo. Relation (5.97) and the strong (resp. weak) convergence of
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Hl(f) U, (resp. T%) U, enable us to pass to the limit in all the terms except
the first one. Owing to (5.77), this gives

2

lim sup = HHD um(sm)‘

m—»o0 L2(2)

/ / (z, (-, t), Vu(z, t)) - Vu(e, t)dedt

HulnIHLQ(Q) +/ / f(z, t)u(zx, t)dedt
¥ / | steyaa ds@y = a6 - (6599)
0 Jon

The uniform-in-time weak L?({2) convergence of (II. D) Um )meN towards @ and
Lemma 4.28 show that H(Dlium(sm) — u(s) in L?(£2) weak. Owing to (5.99),
this convergence is actually strong in L2(£2). Invoke again Lemma 4.28 to
conclude that sup;¢(o 7 ||H(D131um(t) —0(t)|| p2(2) — 0.

The strong convergence of (Hglum)meN in the same sense follows imme-
diately from the definition of these functions, the strong convergence of
(ngﬂm)meN, and the continuity of @ : [0, T] — L?(2). Indeed, Hg)ium(-, t)
is a convex combination of values of Hgl/um at two times within distance
&Dm of t. ]

Proof of Theorem 5.23.
Using (5.94) and (5.96) with s,, =T,

limsup/ / T Hg? um7vg) um) —a <:B,Hg71um,Vﬂ”

m—o0

V9w — Va)dzdt < 0.

This relation and the strict monotonicity of a enable us to conclude, as in

Step 3 of the proof of Theorem 3.34, that V(Dev)num — Vu a.e. on 2 x (0,7).
From (5.94) and (5.91) we also infer

lim sup/ / um, V(e) ) . Vg) Uy, dacdt
m—o0
T
§/ / a(x,w, Vu) - Vudzdt.
o Jo

Together with (5.97) (with s, = T'), this proves that this relation holds with
a limit instead of a superior limit, and an equality instead of an inequality.
The same technique as in Step 3 of the proof of Theorem 3.34 then yields the
strong convergence of Vp, u, to Vi in LP(2 x (0,T))%. ]






6

Degenerate parabolic problems

In this chapter, we study the following generic nonlinear parabolic model

0,8(w) — div (A(x)V¢(m) = f  in 2 x (0,T),
B@)(x,0) = B(uini)(z) in £, (6.1)
¢(@) =0 on 892 x (0,T),

where 8 and ( are non-decreasing. This model arises in various frameworks
(see next section for precise hypotheses on the data). This model includes

1. Richards’ model, setting ((s) = s, which describes the flow of water in a
heterogeneous anisotropic underground medium,

2. Stefan’s model [8], setting 58(s) = s, which arises in the study of a simpli-
fied heat diffusion in a melting medium.

The purpose of this chapter is to study the convergence of gradient schemes for
(6.1). Although Richards’ and Stefan’s models are formally equivalent when 3
and ( are strictly increasing (consider 8 = (! to pass from one model to the
other), they change nature when these functions are allowed to have plateaux.
Stefan’s model can degenerate to an ODE (if ¢ is constant on the range of the
solution), and Richards’ model can become a non-transient elliptic equation
(if B is constant on this range).

Remark 6.1. The techniques developed in this chapter also apply to the fol-
lowing more general non-linear PDE, which mixes (6.1) and Leray—Lions op-
erators as in Section 5.3:

B (u) — diva (z,v(u), V{(u)) = f, (6.2)

where v/ = 3'¢’. We refer to [33] for the analysis of gradient schemes for (6.2).

The chapter is organised as follows. In Section 6.1, we present the assumptions
and the notion of weak solution for (6.1), and we show that this problem
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can be reformulated using the notion of maximal monotone graph. Section
6.2 presents the gradient schemes (GSs) obtained by applying the gradient
discretisation method (GDM) to the generic model (6.1). Based on estimates
proved in Section 6.3, Section 6.4 contains the convergence proof of these GSs.
Section 6.5 is focused on a uniform-in-time convergence result. A uniqueness
result, based on the existence of a solution to the adjoint problem, is given in
Section 6.7. Numerical examples, presented in Section 6.8 and based on the
VAG scheme (see Section 8.5), complete this chapter.

6.1 The continuous problem

6.1.1 Hypotheses and notion of solution
We consider the evolution problem (6.1) under the following hypotheses.

e (2 is an open bounded connected polytopal subset of R? (d € N*)
and T > 0, (6.3a)
e ( : R — R is non-decreasing, Lipschitz continuous with Lipschitz
constant L¢ > 0, ¢(0) = 0 and, for some My, M; > 0,

IC(s)| > Myls| — M; for all s € R, (6.3b)
e §: R — R is non-decreasing, Lipschitz continuous with Lipschitz

constantLg > 0, and 3(0) = 0, (6.3¢)
e 3+ ( is strictly increasing, (6.3d)
o A: 2 — My(R) is measurable and there exists A > A > 0 such that,

for a.e. x € 2, A(x) is symmetric with eigenvalues in [\, \]. (6.3¢)
o uini € L2(0), f € L*(2x (0,T)). (6.3f)

Remark 6.2 (Common plateauz of ¢ and 3)

Hypothesis (6.3d) does not restrict the generality of the model. Indeed, if we only
assume (6.3b)-(6.3c), and if there exist s; < s2 such that (8 + ¢)(s1) = (8 + ¢)(s2),
then [s1, s2] is a common plateau of 8 and . Denoting by E, gand v the functions
obtained from 8 and ¢ by removing this common plateau (by a contraction of the
s-ordinate), we see that u is a solution to (6.1) if and only if u is a solution of the
same problem with 8 and ¢ replaced with B and E

The precise notion of solution to (6.1) that we consider is the following:
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) € L*(0,T; H (R2)),
/ / B(w)(x, t)0;v(x, t)dedt — /Qﬁ(uini(:c))ﬁ(a:,O)dw
+/0 /Q/l z)V((u)(z,t) - Vo(z, t)daedt (6.4)

T
= / / f(x, t)v(x, t)dedt,
0 2
Vo € L*(0;T; Hy(£2)) such that 8,5 € L*((0,T) x £2)
and o(-,T) = 0.

Remark 6.3 (All the terms in (6.4) make sense). If T and 0,v belong to
L2(0,T; L?(£2)), then v € C([0,T]; L3(£2)) (see [29]), and we can therefore
impose the pointwise-in-time value of (-, T). Moreover, Assumptions (6.3b)
and (6.3c) ensure that, if ((u) € L?((0,T) x §2), then % and B(u) also belong
to L2((0,T) x §2). Hence, all the terms in (6.4) are well-defined.

The existence of a solution to this problem follows from the proof of conver-
gence of the GS (see Remark 6.15). The uniqueness of this solution is proved
in Section 6.7.

Theorem 6.4 (Existence and uniqueness of the weak solution). Under
Hypotheses (6.3), there exists a unique solution to (6.4).

Remark 6.5. We will see in Corollary 6.17 that the solution to (6.4) enjoys
additional regularity properties, and that (6.4) can be recast in a stronger
form.

6.1.2 A maximal monotone operator viewpoint

Following [38], we show here that (6.1) can be recast in a maximal monotone
operator framework.

Lemma 6.6 (Maximal monotone operator). Let 7 : R — R be a multi-
valued operator, that is a function from R to the set P(R) of all subsets of R.
The following properties are equivalent:

1. T is a mazimal monotone operator with domain R, 0 € T(0) and T is
sublinear in the sense that there exist Ty, To > 0 such that, for all x € R
and all y € T(x), |y| < Ti|x| + Ta;

2. There exist ¢ and B satisfying (6.3b) and (6.3c) such that the graph of T
is given by Cx(T) = {(C(s), B(s)), s € R}.

Proof. (2)=(1). Clearly 0 = ({(0),3(0)) € T7(0). The monotonicity of T
follows from the fact that ¢ and 8 are nondecreasing. We now have to prove
that 7 is maximal, that is, if z, y satisfy (((s) —x)(B8(s) —y) > 0 for all s € R
then (z,y) € Gr(T). By (6.3b) and (6.3c), the mapping S+ ¢ : R — R is onto,
so there exists s € R such that
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B(s)+((s)=z+y. (6.5)

Then ((s) -2 = y—B(s) and therefore —(8(s) —y)* = (¢(s) —)(B(s) —y) = 0.
This implies (s) = y and, combined with (6.5), {(s) = z. Hence (z,y) €
|

Gr(T). The sub-linearity of T follows from |B(s)] < Lgl|s| < Lg(|¢(s)] +
M) /M.

(1)=(2). Recall that the resolvent R(7) = (Id+ 7)~! of the maximal mono-
tone operator 7 is a single-valued function R — R that is nondecreasing and
Lipschitz continuous with Lipschitz constant 1. Set ¢ = R(7T) and 8 = Id — (.
These functions are nondecreasing and Lipschitz continuous with constant 1.
By definition of the resolvent,

(z,y) € Gr(T) & (z,2+y) € Gr(Id+T) & (z+y,z) € Gr(¢) & = = ((z+y).

Since f = Id — ¢, setting s = x + y shows that (z,y) € Gr(7) is equivalent
o (z,y) = (¢(s),8(s)). Since 0 € T(0) this gives 5(0) = ¢(0) = 0. Finally,
the existence of M7 and Ms in (6.3b) follows from the sublinearity of 7. If
(x,y) € Gr(T) then |y| < Ti|z| +T» and x = {(x + y), which gives |z + y| <
(L+T)|¢(x + )|+ Tp). .

Using this lemma, we recast (6.1) as

0T (z) — div (A(x)Vz) = f in £2x (0,7),
T(Z)(, O) = bin; in Q, (66)
z2=0 on 912 x (0,T)

where bin; = B(uini) € L?(§2). Hypotheses (6.3c) and (6.3b) are translated

into:
T : R — P(R) is a maximal monotone operator, 0 € 7 (0)

and T is sublinear: 377, T> > 0 such that, for all z € R (6.7)
ally € T(z), [y| < Tilz| + Ta.

Definition 6.7. Let us assume (6.3a), (6.3e), (6.3f) and (6.7). Let 2z, €
L2(02) and by : 2 — R such that, for a.e. € 2, bini(x) € T (zimi(x)). A
solution to (6.6) is a pair of functions (z,b) satisfying

zeL2(OTH0(Q))
b(x,t) € T(z(x,t)) for a.e. (x,t) € 2x(0,T),

/ /bm 00,5(e, ) dadt — | bus(x)5(@, 0)d
2
+/ /A(m)Vz(:c,t)V@(w,t)dxdt (6.8)
0 (9]

_ / / @, )5, t)dadt

0o Jo
Vo € L*(0;T; Hy (2)) such that 0,5 € L*((0,T) x £2)
and v(-,T) = 0.
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Remark 6.8. The sublinearity of 7 ensures that b € L?(0,T; L?(£2)) and by; €
L2(02), since z € L*(0,T; L?(£2)) and zy,; € L*(£2).

Given (zini, bini) as in Definition 6.7 and fixing ¢ = R(T) and § = Id — ¢
(as in the proof of Item 2 of Lemma 6.6), we can find a measurable u;y; such
that Zini — C(uini) and bini = ﬁ(uini). the estimate |Zini| Z M0|uini| — M1
ensures that wi,; € L?(£2). These ¢, B and wusy; being fixed, the existence
and uniqueness of the solution to (6.4) (Theorem 6.4) gives the existence and
uniqueness of the solution to (6.8). This solution satisfies that z = ((u) and
b = S(u), where @ is the unique solution to (6.4).

6.2 Gradient scheme

Let p =2 and Dy = (D, Ip, (t(”))n:() ,,,,, ~) be a space—time gradient discreti-
sation for homogeneous Dirichlet boundary conditions, in the sense of Defini-
tion 4.1. Assume that D has the piecewise constant reconstruction property
in the sense of Definition 2.10. We take # = 1 in (4.2), which means that an
implicit time-stepping is considered. We recall the corresponding notations
1)) and V3.

Formally integrating (6.4) by parts in time, we obtain a new formulation of
(6.1) (see (6.25)). The GDM applied to (6.4) leads to a GS which merely
consists in using, in this new formulation, the discrete space and mappings of
the GD. The GS is therefore: seek a family (u(”))nzo,m’N C Xp,o such that

u(®) = Tpusy and, for all v = (v™),=1 n C Xpo,

/OT/Q |opB(u) (@, I v, 8) + A@) V() (=, ) - Vi v(w, 1) | dwdt

T
= / / f(, t)Hg)U(:c,t)dwdt.
0o Jo
(6.9)
We recall the definition, in Remark 2.11, of ((u) and S(u), which is coherent
with ITp since this reconstruction is piecewise constant.

Remark 6.9 (Crank—Nicolson and 0-scheme)

As in Section 5.3, we could as well consider, instead of a fully implicit time-stepping,
a Crank—Nicolson scheme or any scheme in between those two. Such a scheme is
defined by taking 6 € [%,1] in (4.2). All the results we establish for (6.9) would hold
for such a scheme.

6.3 Estimates on the approximate solution

As it is usual in the study of numerical methods for PDE with strong non-
linearities or without regularity assumptions on the data, everything starts
with a priori estimates.
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Lemma 6.10 (L>(0,T; L?*(2)) estimate and discrete L?(0,T;H{(£2))
estimate). Under Assumptions (6.3), let Dy be a space—time GD for ho-
mogeneous Dirichlet boundary conditions, in the sense of Definition 4.1. As-
sume that the underlying spatial discretisation has a piecewise constant re-

construction in the sense of Definition 2.10, and that u is a solution to the
corresponding GS (6.9). Let n: R — R be defined by

vsek, )= [ s (6.10)

Let Ty € (0,T] and denote by k = 1,...,N the index such that Ty €
(t+=1 R, Then

To
/U<1> (z, To dm+/ / () VY ¢ () (2, t) - VO ¢ (u) (2, t)dadt

RO)
< / Ton(Tpum) (@)dz + /
0 0

Consequently, there exists C1 > 0, depending only on Lg, L¢, Cp > Cp (see
Definition 2.2), Cini > | HIpIptinill2(0), f and A such that

/Qf(a:,t)ﬂg)C(u)(w,t)dwdt. (6.11)

(1) ’ H (1) ‘
1L <
selor] H 1O, ) < Vo )| ooy <
) (6.12)
and su HH Blu)(t ‘ <C
te[o,pT] o AL() L2(2) '

Proof. Let us first remark that, for all a,b € R, an integration by parts gives

b b
:/c@a@@:qwmwww»f/C@W@—mmw.

Since f: ¢'(q9)(B(q) — B(a))dg > 0 (as ¢ and S are non-decreasing), we get
n(b) —n(a) < ¢(b)(B(b) — B(a)). (6.13)

Using Remark 2.11 (consequence of the definition 2.10 of piecewise constant

reconstruction) and (6.13), we infer that for any n = 0,...,N — 1, any ¢ €
(t(n)7t(n+1)]’

0p(u) () Ip( () = &(n1+ iy (B(UDU(”H)) —ﬂ(UDu("))> C(Hpulmth)
> ﬁ (n(npu(n+l)) _ n(H’DU(n))) '

Hence, taking v = (C(u(®),¢(u®),...,¢(u®),0,...,0) C Xpo in (6.9), we
find
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(k)
/ (I u(e, tW))dx + / / )W) (@, t) - VO ¢ () (0, t)dadt

t(k)
< [ ottt @)z + [
(P 0

Equation (6.11) is a straightforward consequence of this estimate, of the rela-

tion H(Dl)u(~7 Ty) = H(Dl)u(-, t(*)) (see (4.2)) and of the fact that the integrand
involving A is nonnegative on [Ty, t*)].
Using the Young inequality (C.9), we write

/(k)/ fla, t)II UC (u)(z, t)dedt

1
< % ||f||Lz<Qx<o sy F 202 TS ¢ 132 04007y (6:15)

/Q fa, ) I ¢ (u) (z, t)dadt.  (6.14)

We also notice that

s 2
0<n(s) < Lakc [ ada=LoLcS, (6.16)
0
so that
[nruc. g, = [ a1 ute T)a
L(£2) Q
and
LgL¢ 5
H??(HDU(O))) ey I Zpuni)ll 12y < =5 HpIptinillz2(q) -

The first two estimates in (6.12) therefore follow from (6.14), (6.15), Assump-
tion (6.3e) on A, and the definition (2.1) of Cp.

Let us now prove that the uniform-in-time L'({2) estimate on Hl()l )n(u) im-
plies the uniform-in-time L?({2) estimate on Hg)ﬁ(u) = ﬂ(H(Dl)u). Owing to
(6.3b), for all s > 0 there holds ((s) > Mys — M; > 1{[—;6(3) — M. Hence,
using the Young inequality,

1) = [ @ @da= 70 [ BaF @da - [ la)da
0 B Jo 0
= m5(3)2 — M14(s)
M, M, LsM?
2 mB(S)Q - mﬁ( )? My

For s < 0, we use —((s) > —Mys — M > —%ﬂ(s) — M, to infer the same
estimate. Therefore,
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LsM?

M,
Vs eR, —05(3)2 M,

< . 6.17
T < n(s) (617
Making s = Hg ) in this inequality and using the uniform-in-time L*(£2) esti-
mate on n(Hg)u), we deduce the uniform-in-time L?({2) estimate on ﬂ(ﬂg)u)
stated in (6.12). n

Corollary 6.11 (Existence of a solution to the GS). Under Assump-
tions (6.3), let Dy be a space—time GD for homogeneous Dirichlet boundary
conditions, in the sense of Definition 4.1. Assume that the underlying spatial
discretisation has a piecewise constant reconstruction in the sense of Defini-
tion 2.10. Then there ezists at least a solution to the GS (6.9).

Proof. For p € [0,1] we let 5,(u) = pu+ (1 — p)B(u) and (,(u) = pu+ (1 —
p)G(u). It is clear that 8, and (, satisfy the same assumptions as 8 and ¢ for
some Lg and My, M; not depending on p. We can therefore apply Lemma
6.10 to see that there exists Cy, not depending on p, such that any solution
up to (6.9) with 3 = 8, and ¢ = (, satisfies

< C,.

(1)
HVD Cp(up)‘ L2((0,T)x2)d —

Since [|[Vp-||p2(pya is a norm on Xpp, this shows that (,(u,))pefo,1) re-
mains bounded in this finite dimensional space. In particular, for all i € I,
(Co(up)i)peo,1] is bounded. Using Assumption (6.3b) for ¢, with constants not
depending on p, we deduce that ((u,):),e[0,1] remains bounded for any i € I,
and thus that (u,),e[0,1) is bounded in Xop g.

If p = 0 then (6.9) is a square linear system. Any solution to this system being
bounded in Xop o, this shows that the underlying linear system is invertible.
A topological degree argument (see Theorem C.1) combined with the uniform
bound on (u,),e[0,1] then shows that the scheme corresponding to p = 1, that
is (6.9), possesses at least one solution. ]

Lemma 6.12 (Uniqueness of the solution to the GS). Under Assump-
tions (6.3), let Dy be a space—time GD for homogeneous Dirichlet boundary
conditions, in the sense of Definition 4.1. Assume that the underlying spatial
discretisation has a piecewise constant reconstruction in the sense of Defini-
tion 2.10. Let u,u be solutions to the GS (6.9). Then, for allm =0,..., N,
Opu™ = Ipu™ in L2(2), and ((u™) = ((@™) in Xp.

Proof. The proof is done by induction on n. The result is clearly true for
n = 0, since u® = 7 = Tpui;. Let us now assume that, for some n <
N — 1, Ipu™(x) = Ipu™(x) for a.e. € 2. Subtracting the equation
corresponding to ("1 to the equation corresponding to u("t1) we get
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/ [HD(ﬂ(U(”“)) — B D)) (x)
0 sntz)

IIpv(x)
+ Vo () — @) () ~va(w)}dw =0, Yve€ Xpy. (6.18)

Using (6.3b)-(6.3c) we have

T [Bu™) = BE )| x Hp [¢u™0) = (@D)] =

|BITpu™ D) — BITa" )] [¢(Hpu™+1) = ((Tpa" )] = 0.
Hence, making v = ¢(u("+1)) — ¢(@™*+) in (6.18),
Vo (¢(ul™H) = (@) (@) *dw = 0.
2

Since [|V:[|12(p) is @ norm on Xp o, this shows that ClutD)y = ¢(@h),
We then get, from (6.18), that

/Q (o (B V) = 5" ) ()] Hpv(w)dz =0, Vo € Xpy.

Letting v = B(ut1)) — p@™*tV) gives IIpB(u"tV)) = MppE"+1) ae.
on £2. Since ITp¢(u™tD) = IIp¢ (@) ae. on 2, Assumption (6.3d) and
the fact that IIp(8(w) + ¢(w)) = (IIpw) + ((Ipw) for all w € Xp ¢ imply
Hpu™t) = [Tra(" ) ae. on 0. n

Lemma 6.13 (Estimate on the dual norm of the discrete time deriva-
tive). Under Assumptions (6.3), let Dr be a space-time GD for homogeneous
Dirichlet boundary conditions, in the sense of Definition 4.1. Assume that the
underlying spatial discretisation has a piecewise constant reconstruction in the
sense of Definition 2.10. Let u be a solution to Scheme (6.9). Then there ex-
ists C3, depending only on Lg, L¢, Cp > Cp, Cini > |[IpIpuinilr2(0), [, A,
X and T, such that

T
[ 1608 pat < C. (6.19)
0
where the dual norm ||-[|, p, is given by Definition 4.18.

Proof. Let us take a generic v = (v("))n:l,,,,,N C Xp,o as test function in
(6.9). We have

/T/ 5pB(u) (@, ) TS v (e, t)daedt <
0 2

T T
X / / VO () (@, 6)] [V (@, £)|dzdt + / Fla, )T (@, £)dadt.
0 (9] 0 2
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Using the Cauchy-Schwarz inequality, the definition 2.2 of Cp, and Estimates
(6.12), this gives Cy > 0 depending only on Lg, Cp, Cini, f, A and X such
that

T
/ / 5DB(u)(w,t)H(D1)v(a:,t)da:dt < 04||vg)v||L2(0’T;L2(_Q))d.
0 2

The proof of (6.19) is completed by selecting

v=sz$*”ﬁw>

.....

with (z("))nzo,__.7N C Xp, such that, for any n =0,...,N—1, 2("*+1) realises
the supremum in (4.28) with w = 6g+§)5(u). L]

6.4 A first convergence theorem

The following theorem states initial convergence properties of the GS for (6.1).

Theorem 6.14 (Convergence of the GS). Under Assumptions (6.3), let
((D1)m)men be a space-time-consistent, limit-conforming and compact se-
quence of space—time GDs, for homogeneous Dirichlet boundary conditions, in
the sense of Definitions 4.3 and 4.6. We assume that the sequence of under-

lying spatial discretisations has the piecewise constant reconstruction property
(Definition 2.10). Let v : R — R be defined by

vseR, w(s)= [ @)@ (6.20)
0
For any m € N, let u,, be a solution to (6.9) with D = D,,,. Then, as m — 00,
U(Dlr)”ﬁ(um) — B(w) weakly in L*(£2) uniformly on [0, T)
(see Definition 4.29),
5 C(um) = C(@)  weakly in L*(2 x (0,T)), (6.21)
5 v(uy) = v(@  in L2(2 x (0,T)),
V) C(um) — VC(@)  weakly in L2(2 x (0,T))°,
where T is the unique solution to (6.4).

Remark 6.15. We do not assume the existence of a solution = to the continuous
problem, the convergence analysis establishes this existence, which proves part
of Theorem 6.4.
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Proof.

Note that, since ((Dr1)m)men is compact, it is also coercive.

Step 1: Application of compactness results.

Thanks to Theorem 4.32 and Estimates (6.12) and (6.19), we first extract
a subsequence, without changing the notations, such that (H(Dl) B(Um))men
converges weakly in L2({2) uniformly in [0,7] (in the sense of Definition
4.29) to some function 8 € C([0,T]; L*(£2)-w). By space-time-consistency
of (Dr)m)men: Iy Bun)(-,0) = Hp, f(Tp, um) = BIp, Tp, tini) —

B(uini) in L2($2). Hgnce, the uniform-in-time weak L?(§2) convergence of
(H(Dliﬁ(um))meN shows that B(-,0) = B(uiy) in L?(£2). Using again Esti-
mates (6.12) and applying Lemma 4.7, we extract another subsequence such
that, for some ¢ € L2(0,T; H (£2)), Dmg(um) — ¢ weakly in L2(£2 x (0,T))

and V) ¢(uy) — VC weakly in L2(£2 x (0,T))".

Estimates (6.12) and (6.19) also show that 8, = S(um) and (n = ((um)
satisfy the assumptions of Theorem 4.24 (weak-strong time-space convergence
of a product theorem). Hence,

mlilnoo/ / 1Y) wp (@ t)) ¢ (ng> U (2 7t)> daedt
- / " [ B 0T@ dedr. (6.22)
0 2

Assumptions (6.3b)—(6.3d) allow us to apply Lemma C.5 to w,, = g) Uy

m

This gives the existence of a measurable function @ such that 8 = (%) and
¢ =((u) a.e. on 2 x (0,T). Since ¢ € L2(£2 x (0,T)), the growth assumption
(6.3b) on ¢ ensures that w € L?(£ x (() T))

Since 0 < ('(q ) < \/ L¢Lg \/ C'(q , the following inequality holds for
all a,b € R:

b 2
(v(a) = v(b))* = ( C’(q)ﬂ’(q)dq>

b 2
< <¢L<LB \/ﬁ’(q)C’(q)dq>

< L4L5< 6’(Q)dq> ( C’(Q)dq>

= L¢Lg[B(b) — B(a)][C(b) — C(a)].

It can therefore be deduced that

2
/ / D i (1)) — V(ﬂ(xvt))} dedt
17
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T
<rcts [ [ (BT wnlw.0) - Bate. )
0

X {C(Hgium(m,t)) —C(ﬂ(m,t))} dedt. (6.23)
Developing the right-hand side of this inequality, using (6.22) and the weak
convergences B(H(Dljlum) — B = B(u) and C(Hgium) — ¢ = ((u), we see
that this right-hand side goes to 0 as m — oo. Hence, taking the superior
limit as m — oo in (6.23) shows that V(H(Dlium) — v(u) in L2(2 x (0,7T)).

Step 2: @ is a solution to (6.4).
We drop some indices m for legibility. Let v € L?(0,T; H(£2)) such that
0w € L*(2 x (0,T)) and (-, T) = 0. Let (vn)men be given by Lemma 4.9
(for @ = 0) and introduce (0,0, ..., vN=1) as test function in (6.9). This
gives T™ + 7™ = (™) with

N-1
1 = 3 [ [Aos)(@) - 1105 (@)] Mool (@),
n=0

T
Tim :/ / A(az)Vg)((u)(x,t) : V%))v(a:,t)dazdt,
0o Ja
and
T
7™ :/ /f(:c,t)Hg))v(w,t)dwdt.
0o Jo
Use the discrete integration-by-parts formula (C.15) in Tl(m):
T
7™ = / / 115 B(u) (z, t)5pv (e, t)dadt
0o Jo
—/ B(HDIDUim)(:I})HDU(O)d:B.
Q

Hence, by the convergence properties (4.10c) and (4.10b) of (Vs )men, as m —
oo we have

(m) B T ) (x v(ax i — win ()0 ( T
"= /0 /Qﬁ( )(z,)0,0(, t)dzdt /95( ) (@), 0)dz.  (6.24)

Using the convergence (4.7b) and (4.7a) of (v )men, we have, as m — oo,
T
s / A@)VE@) (1) - Ve, H)dadt,
0o Jo

T
(m) _
3" — /0 /Q fz, t)v(x, t)dedt.

Plugged alongside (6.24) in Tl(m) + T:,(m) = TB(m), these convergences show
that @ satisfies (6.4). ]
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Remark 6.16 (Convergence of Hg)um ?)

We do not prove here that w is a weak limit of H(Dlyl Um. Such a limit is not stated
in (6.21) and can actually be considered as irrelevant for the model (6.1) since, in
this model, the quantities of interest (physically relevant when this PDE models a
natural phenomenon) are 8(u) and ((@).

As a corollary to this convergence analysis and to the uniqueness of the solu-
tion (Theorem 6.4), an equivalent form of (6.4) can be stated.

Corollary 6.17 (Equivalent from of (6.4)). Under Hypotheses (6.3), Prob-
lem (6.4) is equivalent to

w e 12(0,T: 1%(2))  ¢(u) € L*(0.Ts HY(2)

B@) € C([0.7), LA()w) , ai8(a) € 20,15 H-(12)),

() (0) = Hime) in L2(0),

| @B@ 0,5 g (6.25)

/ / A(x)V{(u)(x,t) - Vi(e,t)dedt

//f:ct (x,t)dxdt, Vo€ L*(0;T; H(52)),

where C([0,T); L?(§2)-w) denotes the space of continuous functions [0,T]
L2(02) for the weak-x topology of L*(£2).

Proof. Let us prove that (6.4) implies (6.25). There is a unique solution to
(6.4) (Theorem 6.4), so it must be the @ constructed in the proof of Theorem
6.14. We saw in Step 1 of this proof that f(u) = 8 € C([0,T]; L*(£2)-w) and
that 8(@)(0,-) = B(0,-) = B(uini). Using C((0,T) x §2) test functions in
(6.4), we see that

0y (u) = div(AV(()) + f

in the sense of distributions. Since V{(w) € L2(0,T; L*(§2)), this shows that
OB(m) € L*(0,T; H1(2)). Let v € C=((0,T) x £2). By definition of the
distribution derivative,

T
- / / B(@) (@, )00, t)dwdt = / (OB (1), T(1)) -1 gyt
0 (9] 0

and thus (6.4) shows that the equation in (6.25) is satisfied for such smooth
compactly supported T. Since these functions are dense in L?(0,T; H}(£2))
(see [29]), we infer that (6.25) is fully satisfied.

Let us now assume that @ satisfies (6.25). Then it clearly has all the regularity
properties expected in (6.4). To prove that it also satisfies the equation in this
latter problem, we start by taking 7 € C°((—o00,T) x 2). By smoothness
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of this function and regularity assumptions on (%) an integration-by-parts
gives

T T
| @@ st = [ 5@ @ 0o et
0 0
- [ s@)(a.0)0(a, 0.
2

Since (@) (x,0) = B(uini), (6.25) proves that (6.4) is satisfied for such 7. As
discussed at the end of the proof of Theorem 6.14, this shows that (6.25) is
satisfied for all required test functions. [

Remark 6.18 (The continuity property of f(w))

The continuity property of (@) : [0,T] — L*(£2)-w is rather natural. Indeed, the
PDE in the sense of distributions shows that T, : t — (8(u)(t),¢)r2 belongs to
W0, T), and is therefore continuous, for any ¢ € C2°(£2). The density in L?(§2)
of such ¢, combined with the fact that 3(@) € L (0, T; L?(£2)), proves the continuity
of T, for any ¢ € L*(£2), that is to say the continuity of 3(w) : [0, T] — L?(£2)-w.
This notion of 3(u) as a function continuous in time is nevertheless a subtle one.
It is to be understood in the sense that the function (x,t) — B(u(x,t)) has an
a.e. representative which is continuous [0, 7] — L?(£2)-w. In other words, there is
a function Z € C([0,T); L?(2)-w) such that Z(t)(x) = B(u(z,t)) for a.e. (x,t) €
2 x (0,T). We must however make sure, when dealing with pointwise values in
time to separate Z from S(u(-,-)) as B(u(-, t1)) may not make sense for a particular
t1 € [O,T]

That being said, in order to adopt a simple notation, in the following we denote by
B(w)(+,-) the function Z, and by B(u(:,-)) the a.e.-defined composition of 8 and w.
Hence, it will make sense to talk about 3(@)(:,t) for a particular ¢, € [0,77], and we
will only write 3(@)(z,t) = B(u(x,t)) for a.e. (x,t) € 2 x (0,T).

6.5 Uniform-in-time, strong L? convergence results

We denote by Rg the range of 3 and define the pseudo-inverse function 3% :
Rz — R of 3 by

iy [Jinf{t e R|B(t) =s} ifs>0,
Vs € Ry, §'(s) = {sup{t eR|B(t) =s} if s <0, (6.26)
= closest t to 0 such that §(t) = s.

See Figure 6.1 for an illustration of 3.

Since B(0) = 0, it holds 8° > 0 on Rg NR* and ¢ < 0 on Rg NR~. The
function B : Rg — [0, 0] is defined by

B(z) = / (B (s)) ds. (6.27)
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Fig. 6.1. An example of 3 (dashed line) and its pseudo-inverse function 3* (contin-
uous line). Here, the range of 3 is [a,b).

The function B¢ is non-decreasing, and thus B(z) is always well-defined in
[0,00). The signs of 3° and ¢ also ensure that that B is non-decreasing on
Rz NRT and non-increasing on Rg N R™. B can therefore be extended to the
closure Rg of Rg, by defining B(a) = lim,_,, B(z) € [0, +00] at any endpoint
a of Rg that does not belong to Rg. Lemma 6.23 in Section 6.6 states a few
useful properties of B.

Remark 6.19 (Range of B(u))
The a.e. equality 8(w)(x,t) = B(u(z,t)) (see Remark 6.18) ensures that 8(w)(-,-)

takes its values in Rg.

The following theorem shows that the solutions to GSs for (6.1) actually enjoy
stronger convergence results that established in Theorem 6.14.

Theorem 6.20 (Uniform-in-time convergence of the GS). Under the
assumptions of Theorem 6.14, the solution u,, to the GS (6.9) with Dy =
(Dr)m satisfies the following convergence results, as m — 0o:
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s (7)) ® - v o)

5) ((um) = C(a) in L*(2 x (0,T)),
V) C(um) — VC(@) in L2(2 x (0,T))%,

L2(0)
(6.28)

where @ is the unique solution to (6.4).

Remark 6.21. For the Stefan model, 8 = Id and thus v(a) = ((a) is the
temperature of the melting material. For the Richards model, ( = Id and
thus v(w) = B(u) is the water saturation. Hence, in both cases, v(u) is the
quantity of interest to approximate.

Proof.
By (6.38) in Lemma 6.23, n = B o 3. The energy estimate (6.11) can thus be
written

/Q BB up))(@, To)dz

To
T / M) () (@) - VD () (2, 1)t
0 0

B(B(Ilp,,Ip,, uini))(x)dx

“

Here, we recall that t(®) is the time such that Ty € (t*=1 ()],

(k)

/Q F(@, 0I5 ((uy) (2, t)dzdt.  (6.29)

Step 1 Uniform-in-time convergence of nglu(um).

Let us take T € [0,7] and (T5,)m>1 & sequence in [0,7] which converges to
Ty. The Cauchy—Schwarz inequality for the semi-definite positive symmetric
form

W e L2((0,T) x 02)% %/ / ) - W(t, z)dedt

shows that

( / / 2)V ¢ )(t,w)-V((u)(t,m)dmdt)
( / / (@)V5) ¢( um)(t,m)-vg}ng(um)(t,m)dmdt>
T
X ( /O /ﬂ A(az)VC(u)(t,x)-VC(u)(t,:c)da:dt)
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By weak convergence in L2((0,T) x )% of V(l) ° C(um) to V((u) and strong
convergence in the same space of 1)o7, V((u ) to V{(@), we can pass to the
limit in the left-hand side (by Weak—strong convergence, see Lemma C.3 page
403) and in the second term in the right-hand side. Hence, taking the inferior

limit of this inequality and dividing by [, [,, AV¢(w)- V¢ (@), we deduce that

m—r oo

lim inf / / (@)V) C(um) (@, t) - V) ¢(um) (@, t)dadt

2/0 /QA(‘”)VC(E)(W)'VC(E)(w,t)dwdt. (6.30)

By space-time-consistency of ((Dr)m)men (Definition 4.3) and quadratic
growth (6.16) of n = B o f3, it holds

B(ﬁ(HDmIDmuini)) — B(B(uini) in Ll(Q) as m — oQ. (631)

We then write (6.29) with 7}, instead of Tp. The time t(*(™) such T;, €
(tkm)=1) 4 (k(m))] satisfies +(F(™) — T, as m — oo. Hence, using (6.30) and
the weak convergence of Hgi{(um) to ¢(m),

lim sup/ B(B(H(Dlyl U (2, Thp)) )dee
o ,

m— o0

< limsup (/ B(B(IIp,,Ip,, uini))(x)dx

/ / F(@, )T ¢ () (@, t)dadt
(9]

T
- / / A<w>V%;<<um><w,t>-VS;<<um><w,t>dwdt>

To
/B (Uini)) dw+/ /f (z,t)¢(T)(x, t)dedt

~ liminf / / )V, C(um)(@,t) - V. C(um) (2, t)dzdt

m—r oo

/B (Uini)) dw+/TO/ f(z, t)¢(u)(x, t)dadt
-/ K | A@)Ve@ @) - Ve (e, azt

Corollary 6.26 therefore gives

£(k(m))

IN

m—0o0

limsup/ BB ua, m)))dxg/QB(ﬁ(a)(m,To))dm. (6.32)
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By Lemma 4.28, the uniform-in-time weak L? convergence of 5(171(71,)” Up) tO

B(u) and the continuity of B(w) : [0,T] — L?(§2)-w (see Corollary 6.17), we
have

B(Hg) um)(Tn) — B@)(Ty) weakly in L?(£2) as m — oo. (6.33)

m

Therefore, for any (s,,)men converging to Tp,

BULY i (Tn)) + B(T) (51m)
2

— B(w)(Ty) weakly in L%(£2) as m — oc.

Lemma C.6 then gives, by convexity of B,

/Q B(B(@) (. Ty))de

<liminf [ B

m—r o0 o)

1) T u)(x, s
<ﬂ(UDmUm( an;))“Lﬂ( (@, m)>dw. (6.34)

Property (6.40) of B and the two inequalities (6.32) and (6.34) allow us to
conclude the proof. Let T be the set of 7 € [0,T] such that S(u(-,7)) =
B(@)(-,7) and v(u(-,7)) = v(@)(-,7) a.e. on {2 (see Remarks 6.18 and 6.27),
and let (S, )men be a sequence in 7 which converges to Tp. Since v(u) €
C([0,T); L*(£2)) by Corollary 6.26, we have

v, sm)) — v(@) (-, To) in L2(£2) as m — oo. (6.35)

Inequality (6.40) gives

2

m

18 ) = v )|

L2(%2)
2
< 2|01 - T)) = vl s,

+ 2 |lv(u(-, sm)) — V(ﬂ)("To))||2L2(Q)

< 8Lyl /Q [BAIE) w (. T)) + BB ((, 51)))]| da

m

(1) _
_ 16L5L</ 5 <6<Hpmum(m,n,;)) +5(u(w,sm))> N
2

+ 2|, sm)) — v(@) (- To)) 220 -

We then take the limsup as m — oo of this expression. Thanks to (6.32)
and to the boundedness of B : t € [0,T] — [, B(8(uw)(x,t))dz € [0,00) (see
Corollary 6.26), the first term in the right-hand side has a finite lim sup. We
can therefore split the limsup of this right-hand side without risking writing
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oo — oo and we get, thanks to (6.32), (6.34), (6.35) and to the continuity of
B (Corollary 6.26),
2

<0.
L2(£2)

limsupH D lum v Tim)) —I/(ﬂ)(-,To)‘
m—o0

Thus, Z/(H(Dl:Lum(~,T )) — v(u)(Tp) strongly in L?(§2). By Lemma 4.28, this
concludes the proof that sup,c(o, 1 \\V(H(Dlglum)(t) —v(@)(t)||z2(2) — O.

Step 2: Strong convergence of Vg?ﬂ{(um).
Since B is convex, the convergence property (6.33) (with T, = Ty = T') and
Lemma C.6 give

/QB(ﬁ(ﬂ)(:c,T))dmgliminf B(BUIS) uy)(z,T))dz.

m—r o0 9]

Writing (6.29) with Tp = T, taking the limsup as m — oo, using (6.31) and
the continuous integration-by-part formula (6.49), we therefore find

T
lim sup/ / /1(:B)V§317)nC(um)(a:7 t)- Vgig(um)(% t)dadt
0o Jo

< /0 " /Q A@)VE@) (@, t) - V() (e, )dadt.

Combined with (6.30) with T;,, = To = T, this shows that

Jim / / 2)VD ) (2,1) - VL) () (@, )zt

To
- /0 /QA(“:)VC(H)(W)-VC(H)(m,t)dmdt. (6.36)

Developing all the terms and using the weak convergence of vgfng (um) to
V{(u), we deduce

i / | 46@) [98) ctum(@.) — Vel 0)
: [vgfng(umxx,t) - vg(a)(az,ﬁ)} dadt = 0.

The coercivity of A therefore implies Vg’)nc () — V() strongly in L?(£2 x
(0,7))% as m — oo.

Step 3: Strong convergence of H(l)  C(um)-

Apply Lemma 4.9 to v = C( ). This gives (v, )men such that H(l) Um — (W)

in L2(£2 x (0,T)) and V4 vm — V(¢(m) in L?(2 x (0,T))%. The coercivity
definition 2.2 gives
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118 ¢ ) = 115 0

m
Dm m

L2(2x(0,T))

1 1
<Cp HV%LC(U”’) B V%anm‘ L2(2x(0,T))d

By strong convergence of Vg?ﬂ( (um ), letting m — oo in this estimate proves
that H(Dlig‘(um) — ((u) in L2(2 x (0,T)) follows. L]

Remark 6.22 (Convergence of B(B(I1 (Dl) um(Tm))))
Let T,, — To. The convergence property (6.33), the convexity of B and Lemma C.6
show that

/ B(B(w)(x, To))dx <hm1nf/ B(pB 1()1) Um ) (, Trn))de.

m—r 00

Combined with (6.32), this gives

lim B(ﬁ(H(Dllum(a:,Tm)))d:c:/QB(ﬂ(E)(w,To))da:. (6.37)

m—oo [

6.6 Auxiliary results

We state here a family of technical lemmas, starting with a few properties on
v and B.

Lemma 6.23. Under Assumptions (6.3b) and (6.3c), let v be defined by
(6.20), B be defined by (6.27), and n be defined by (6.10). Then the function
B is convex lower semi-continuous on Rg, the function Bo 3 : R — [0,00) is
continuous,

VseR, n(s)= /C q)dg, (6.38)

Va € R,Vr € Rg, B(r)— B(B(a)) > ((a)(r — B(a)), (6.39)
and
Vs, s € R, (v(s) —v(s')? <4LgL¢ | B(B(s)) + B(B(s))

op (W)]- (6.40)
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Proof.

Let us first notice that, since 5 > 0 on RT and 3 < 0 on R™, B(s) is a
real number for all s € Rz. Moreover, since 3 is non-decreasing, 3° is also
non-decreasing on Rg and therefore locally bounded on Rg. Hence, B is well
defined and locally Lipschitz-continuous, with an a.e. derivative B’ = ((8%).
B’ is therefore non-decreasing and B is convex. Since B is continuous on Rg
and extended by its (possibly infinite) limit at the endpoints of this interval,
B is lower semi-continuous on Rg.

To prove (6.38), we denote by P C R the countable set of plateaux values of
B, i.e. the numbers y € R such that 37!({y}) is not reduced to a singleton. If
s & B71(P) then B71({B(s)}) is the singleton {s} and therefore 3¢(3(s)) = s.
Moreover, 3% is continuous at (3(s) and thus B is differentiable at 3(s). Since
B is differentiable a.e., we deduce that, for a.e. s ¢ S~Y(P), (B(B)) (s) =
B/(8(s))8'(s) = C(B(8(s)))8(5) = C(s)8'(5). The set B~1(P) is a union of
intervals on which §, and thus B(f), are locally constant; hence, for a.e. s
in this set, (B(8))'(s) = 0 and ¢(s)8’(s) = 0. As a consequence, the locally
Lipschitz-continuous functions B(8) and s — [; ((¢)8'(¢)dg have identical
derivatives a.e. on R. Since they have the same value at s = 0, they are thus
equal on R and the proof of (6.38) is complete. The continuity of Bo f follows
from this relation.

We now prove (6.39), which states that ((a) belongs to the convex sub-
differential of B at (a). We first start with the case r € Rg, that is r = 3(b)
for some b € R. If 3% is continuous at B(a) then B is differentiable at 3(a),
with B'(B(a)) = ¢(8%(B(a))) = ((a), and (6.39) is an obvious consequence of
the convexity of B. Otherwise, a plain reasoning also does the job as

B(r) — B(6(a)) = B(A(b)) — B(5(a))
- / ¢

(q)B'(q)dq
- / (¢(q) — C(@)F (@)dq + ¢(a) (B(b) — B(a))
> ¢(a)(r - B(a)).

Here, the inequality comes from the fact that 5’ > 0 and that ((q) — {(a) has

the same sign as b — a if ¢ is between a and b. The general case » € Rg is
obtained by passing to the limit on b,, such that 5(b,) — r, and by using the
fact that B has limits (possibly +o00) at the endpoints of Rg.

Let us now take s,s' € R, and let § € R be such that 5(5) = %ﬂ(sl) We
have

[ #tada+ [ 8 @aa=pts) + 5) 2509 = 0
Hence, using (6.38),
B(B(s))+B(B(s") — 2B(B(s))
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:/Osg(q dq+/ ¢(q)B'(q)dg — 2 /C
:L%@a@®+LC@Eq®

We then use [¢(q) = ¢(3)] = 75[v(a) = v(3)| and B'(a) = /() 52 = 42 to
write

= T (v(s) —v(5))%

The same relation holds with s replaced by s’. Owing to

(v(s) = v(s)? < 2(u(s) — v(5)* +2(u(s") — 1(5))*,
the inequality (6.40) follows from (6.41). L]

The following property states an expected integration-by-parts result, which
can be formally obained by writing (0;8(v)){(v) = p'(v){(v)0w = 0, B(B(v))
(owing to (6.38)). The rigorous proof of this result is however a bit technical,
due to the lack of regularity on u and to the non-linearities involved.

Lemma 6.24. Let us assume (6.3b) and (6.3c). Let v : 2 x (0,T) — R be
measurable such that

¢(v) € L*(0, T Hy (12

), B(B(v)) € L*(0,T; L'(%2)),
B(v) € C([0,T]; L*(£2)-w

)
), OiB(v) € L*(0, T HH(92)).

Then t € [0,T] — [, B(B(v)(z,t))dx € [0,00) is continuous and, for all
t17t2 S [ 7T}7

/t (OB, C())) g1 gyl
:/BW(wQ(M—/B )@, t1))de.  (6.42)

Remark 6.25 (Continuity of B(v))

Since = B o § satisfies (6.17), the condition B(B(v)) € L*(0,T;L'(R2))
ensures that B(v) € L°°(0,T;L*(£2)). Combined with the condition 9:;3(v) €
L2(0,T; H'(£2)), this shows that B(v) € C([0,T]; L*(£2)-w). Hence, this continuity
property on 3(v) is actually a consequence of the other assumptions on v.

We also point out that, as in Remark 6.18, it is important to keep in mind the
separation between B(v(,-)) and its continuous representative S(v)(,-).
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Proof.
We obviously only need to make the proof when t; < ts.

Step 1: truncation, extension and approximation of 5(v).
We define B(v) : R — L?({2) by setting

{ﬁ(v)(t) if t € [t1, 2],

B)(t) = Bv)(t1) if t <tq,

ﬂ(v)(tg) if ¢ Z tg.

By continuity property of 5(v), we have 8(v) € C(R; L?(£2)-w) and 9;8(v) =
L4, )0 B(v) € L2(R; H'(£2)) (no Dirac masses have been introduced at
t =ty or t = t3). This regularity of 9;8(v) ensures that the function

t+h
teR— Dpf(v) := %/t O B(v)(s)ds (6.43)
_ B)E+h) -BO)E) _ -
= 0 c H () (6.44)

tend to 9;8(v) in L?(R; H=1(£2)) as h — 0.

Step 2: we prove that [|B(B(v)(t)llr1(e) < IBBW)| e (o,rr () for all
t € R (not only for a.e. t).

Let ¢ € [t1,ts]. Since B(v)(+,-) = B(v(+,+)) a.e. on 2 X (t1,ts), there exists a
sequence t,, — t such that, for all n, B(v)(:,t,) = B(v(-,t,)) in L?(§2) and
[1BB@)Csta)ll i) < IBB@) Lo 0,1:11 () Using the continuity of 5(v)
with values in L?(§2)-w, we have B(v)(,t,) — B(v)(-,t) weakly in L?(£2). We
then use the convexity of B and Lemma C.6 to write, thanks to our choice of

/ B(p ))de < hmlnf/ B(B w)de < ([ BB L= 0,7:11 () -

n—oo

The estimate on B(8(v))(t) is thus complete for ¢t € [t1,t2]. The result for
t <t1 or t >ty is obvious since B(v)(t) is then either S(v)(t1) or B(v)(t2).

Step 3: We prove that for all 7 € R and a.e. t € (t1,t2),

(B)(1) = B@)(@), (1)) -1, m
/ B(B{0)(x, 7)) — B(3(v)(w,))dw. (6.45)

Let ¢ such that B(v)(-,t) = B(v(,t)) a.e. on §2. Almost every ¢ satisfies this
property. By Remark 6.19, for a.e. € 2 we have B(v)(x,7) € Rg and we
can therefore write, by (6.39) with r = 8(v)(x,7) and a = v(z, t),

B(B(v)(z,7)) = B(B(v(z,1))) = ((v(=, 1)) (B(v)(2,7) — Blv(,1))).
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Integrating this relation over & € §2, Property (6.45) follows since the H !~
H} duality product in (6.45) can be replaced with an L? inner product, as all
terms in this product belong to L?(2).

Step 4: proof of (6.42)
By convergence of Dy, 3(v) to 8;3(v) in L*(0,T; H~*(£2)) and since 1(;, 4,)¢(v)
€ L?(R; H}(£2)), we have

/t “(OBW)E), C0(1))) g gl

- / OBN(E), Ly,10) (DC (0 prs pra
— Jim / (DRB)0), L1y (D D)) pros pradt

h—0

~ lim & / (5 + h) = BO)(®), C(o(, )1 st (6.46)

h—0 h

We then use (6.45) for a.e. t € (¢1,t2) to obtain, for h small enough such that
t +h < to,

3| B ) = B0,y
<1 //B J(@,t + b)) — B(B@)(x, ¢))dwdt

ta+h ti+h
= / /B )z, 1)) dacdt—f/ / ))dadt

t1+h
/ B(B(v)(x, 12))da — — / B(A()(w, ))dadt.  (6.47)

t1 (9]

In the last line, we used B(v)(t) = B(v)(t2) for all t > t5. We then take the
superior limit of (6.47), and use the fact that B(5(v)(-,t2)) is integrable (Step
2) to take its integral out of the limsup. Coming back to (6.46) we obtain

@800,y

t1

h—0

ti+h
S/{)B(ﬁ(v)(az,tg)) :Iz—hmlnff/ ’ /B ))daedt. (6.48)

But since 3(v) € C([0,T]); L*(2)-w), as h — 0 we have + I B B (4)dt —
B(v)(t1) weakly in L2(£2). Hence, the convexity of B, Lemma C.6 and Jensen’s
inequality give

o Lohn
/Q B(B(w)(x,t1))de < hzn_:élf /Q B (h /t1 ﬂ(v)(a:,t)dt) dx
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1 [tith
< liminf/ f/ B(B(v)(x,t))dtdx.
=0 Jo h Jy,

Plugged into (6.48), this inequality shows that (6.42) holds with < instead of
=. The reverse inequality is obtained by reversing time. We consider v(t) =
v(ty +ta —t). Then (v), B(B(v)) and S(¥) have the same properties as {(v),
B(B(v)) and B(v), and B(v) takes values B(v)(t1) at t = to and B(v)(t2) at
t = t;. Applying (6.42) with “<” instead of “=" to v and using the fact that
WP @)(t) = —0B(v)(t1 + t2 — t), we obtain (6.42) with “>” instead of “=”

and the proof of (6.42) is complete.

The continuity of ¢t € [0,T] — [, B(8(v)(x,t))dx is straightforward from
(6.42), since the left-hand side of this relation is continuous with respect to
tl and tg. |

The following corollary states continuity properties and an essential formula
on the solution to (6.4).

Corollary 6.26. Under Assumption (6.3), if @ is a solution of (6.4) then:

1. The function t € [0,T] = [, B(8(u)(x,t))dx € [0,00) is continuous (and
thus bounded);
2. For any Ty € [0, T,

To
/ B(B(@)(x, T))dw + / / A@)VC@) (@, ) - V@) (@, t)dadt
(9] 0 (9]
Ty B .
- /Q BB (tini ()t + / /Q F(@, ) (@) (. t)dadt;  (6.49)
3. v(u) is continuous [0,T] — L*(£2).

Remark 6.27 (Continuity of v(u))

The continuity of v(@) has to be understood in the same sense as the continuity of
B(w) (see Remark 6.18), that is, v(u) is a.e. on {2 x (0,T) equal to a continuous
function [0,T] — L?(£2). We use in particular a similar notation v(%@)(-,-) for the
continuous representative of v(u(-,-)) as we did for the continuous representative of

B(@).

Proof.

We first notice that Corollary 6.17 was established using Theorems 6.4 and
6.14, which do not make use of Corollary 6.26. Hence, we invoke Corollary
6.17, which tells us that @ is also a solution to (6.25). The continuity of
t€[0,T] — [, B(B(w)(x,t))dx € [0,00) and Formula (6.49) therefore follow
from Lemma 6.24 applied to v = u, by using v = ((@)1p 7, in (6.25).

Let us prove the strong continuity of v(u) : [0, 7] — L?(£2). Let T be the set
of 7 € [0,T] such that S(u(-,7)) = S(u)(-,7) a.e. on §2. The set [0, T]\T has
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zero measure. Let (s;)eny and (x)gen be two sequences in T that converge to
the same value s. Owing to (6.40),

/Q (@, 1)) — v(a(, i) Pde
<atste ([ B sz + [ o))

—8L5LC B Bu(z, s1)) + Bu (wvtk))>dw

(6.50)

=4LgL¢ (/ B(B(@)(x, s1)) d:l:+/ B[B(u)(zx, tk))dw>
sni [ o (A0 ><w7tk>>dm.
2

2

Since ﬁ(a)("sl);ﬁ(m("t’“) — B()(+, s) weakly in L%*(£2) as I,k — oo, Lemma
C.6 and the convexity of B (Lemma 6.23) give

/Q B (3(0)(a,5) e < it /Q B(ﬁ(u)(m,&);ﬂ(u)(w,tk)> .

Taking the superior limit as I,k — oo of (6.50) and using the continuity of
t— [, B(B(u)(z,t))de thus shows that

lv(@(-, s1)) = v(@(, te)ll 2y = 0 aslk — oo. (6.51)

The existence of an a.e. representative of v(@(-, -)) that is continuous [0, T] —
L?(02) is a direct consequence of this convergence.

Let s € [0,T] and (s;);eny C T that converges to s. Applied with ¢, = sy, (6.51)
shows that (v(u(-,s;)))ien is a Cauchy sequence in L?(§2), and therefore that
lim; oo v(U(-, 87)) exists in L?(£2). Relation (6.51) also shows that this limit,
that we can call v(@)(-, s), does not depend on the Cauchy sequence in T
which converges to s. With t; = s, we also see that whenever s € 7 we have
v(a(-,s)) = v(w)(-s) ae. on 2, and v(w)(-,-) is therefore equal to v(au(:,-))
a.e.on 2 x (0,T).

It remains to establish that v(u) thus defined is continuous [0, 7] — L?(£2).
For any (7.)reny C [0,7] which converges to 7 € [0,7], we can pick s, €
TN(r—Ln+2)andt, € TN(r— L 7+ 1) such that

T

We therefore have
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sup |v(@)(, ) = v(@) ()|l 1202
te[0,T]

2 _ _
< —+ sup |v(u(,s,)) — V(u('vtr))“m(rz) :
T te€lo,T]

By (6.51) with [ = k = r, this proves that v(u)(-, 7.) — v(u)(-,7) in L?(2) as
T — 00. "

6.7 Proof of the uniqueness of the solution to the model

We give here a proof of the uniqueness of the solution to (6.4) (and thus also to
the solution to (6.6)). The uniqueness of entropy solutions to 9;5(u) — A (u) =
f (with an additional convective term, and a merely integrable f) has been
established in [17], using the doubling variable technique. Although this proof
could be extended to our framework, we rather provide here a much shorter
proof, following the idea due to J. Hadamard [60]. This idea consists in using
the solution to an approximate dual problem. It was successfully applied to
the one-dimensional Stefan problem in [9], and subsequently generalised to
the higher dimensional case in [59].

The proof provided here was originally developed in [38] and applies the ap-
proximate duality technique to the doubly degenerate model (6.1), which con-
tains both Richards’ and Stefan’s models as particular case.

Proof of uniqueness of the solution to (6.4).
Set ug = B(u1) + C(u1) — B(u2) — {(us2), and for all (x,t) € 2 x [0,T], define

Cu(®,t))—C(ua(,t))
q(z,t) = uq(z,t) if ud(wft) 70,
otherwise.

Take ¢ € L%*(0,T; H}(R2)) with o, € L*(2 x (0,T)), ¥(-,T) = 0 and
div(AVYy) € L%(2 x (0,T)). Subtract the two equations (6.4) satisfied by
uy and usg, and use 1 as a test function. The assumed regularity div(AVy) €
L?(2 x (0,T)) enables us to integrate by parts the term involving AV@ - V4,
and we obtain

T
/ / uala, ) ((1 — q(z,1)d(, t) + q(x,t)div(Aw)(w,t))dmdt = 0.
o Jo
(6.52)
For e € (0,1/2) set ¢- = (1 —2¢)g+e. Since 0 < g <1wehavee <¢g <1l—g¢,
and

(qa—q)2<E and (g= — q)?

qe 1—4¢e

Let 9. be given by Lemma 6.28 below, with g = ¢. and some w € C°(§2 x
(0,7)). Making ¢ = 1. in (6.52) and using (6.56),

<e. (6.53)
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/OT /g ua(e, thw(w, t)dedt

T
/0 /Q () (g (@, ) — q(@, ) (div(AV.) (@, £) — Oy (, £))dadt
(6.54)

<

The Cauchy-Schwarz inequality, (6.57) and (6.53) imply
l / ' | v t(az(a,t) = ala, D) AV o) - atwgm,t»dwdt] 2
<2 </0T/Qud(w,t)2(q<w7t36z;2()w7t))2dwdt>
T 2
X ( /0 /Q g (, 1) (div(AwE)(w,t)) dmdt>
+2 (/OT/Qud(m,t)ﬂq(wl’?%E];(’i;t)ydmdo

x </OT/Q(1—qg(az,t))(8tw5(m,t)>2dccdt>

< 2eCo [[uall 2o 0,1y

2 2 2
x (vaHL2((Z><(0,T))d + lwllz2(2x 0, + HathLQ((ZX((),T))) - (6.55)

Letting ¢ — 0 and using (6.54) gives

/OT /Q uq(x, t)w(z, t)dedt = 0.

Since this holds for any function w € C°(£2 x (0,T)), we deduce that ug =0
a.e. on §2 x (0,T). Hence S(u1) + ((u1) = B(uz) + ((uz), and the proof is
complete since § + ( is one-to-one. [

The following lemma ensures the existence of the function 1, used in the proof
above.

Lemma 6.28. Let T > 0, and let {2 be a bounded open subset of R (d € N).
Assume Hypothesis (6.3¢). Let w € C°(§2 x (0,T)) and g € L>(2 x (0,T))
such that g(x,t) € [gmin, 1 — gmin] for a.e. (x,t) € 2 x (0,T), where gmin s a
fized number in (0, %) Then there exists a function i such that:

1.4p € L=(0,T; H}(R2)), b € L*(£2 x (0,T)), div(AVy) € L*(2 x (0,T))
(this implies ¢ € C([0,T]; L*(£2)));
2.4(-,T) = 0;
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3. For a.e. (x,t) € 2 x (0,T),
(1 - g(a}, t))atl/f(ﬂ% t) + g(ma t)le(/lVi/))(.’I}, t) = ’LU(:L‘, t); (656)

4. There exists Co > 0, depending only on T, diam(§2), A and A (and not
ON Gmin), Such that

/OT /Q ((1 - g($,t))(5t¢(m7t))2 +g(z, 1) (div(/le/;)(;p,t))Q) dadt

2 2 2
<Co (HVU)HLZ(Qx(o,T))d + 1wl z2(2x 0,0 + Hatw||L2(Qx(o,T))) . (6.57)
Proof.

Step 1: existence of i satisfying 1, 2 and 3.
After dividing through by g, observe that (6.56) is equivalent to

For a.e. (z,t) € 2 x (0,T),
b(x,t)0p(x, t) + div(A(x) Vi (z,t) = f(x,t), (6.58)

where f € L>®(2 x (0,T)), & € L>°(2 x (0,T)) and, for some fixed numbers
©* > s >0, o < P(x,t) < @* for ae. (x,t) € 2 x (0,T). The parabolic
equation (6.58) is slightly non-standard because of the time-dependent coef-
ficient @ in front of J;1p. However, as we shall now see, a standard Galerkin
approximation provides the existence of a solution to this equation.

Let (Vi)ken be a non-decreasing family of finite-dimensional subspaces of
H}(£2). We look for vy, : [0,T] — Vj, solution to the following Galerkin ap-
proximation of (6.58), with final condition:

Yi(T) =0 and Vt € [0,T],Yv € V},
(@( )Yk(t),v)r2 — (AVYi(t), VU) (12)a = (f(,1),0) L2
Here, (-,-)z2 is the L?(£2) inner product. Choosing an orthonormal (for this

inner product) basis (e;);=1,.. n, of Vi and writing ¢y (t) = Zivz"l 0;(t)e;,
(6.59) can be re-cast as

(6.59)

O(T) =0 and, for all t € [0,T], M(t)O'(t) — S(t)O(t) = F(t) (6.60)

where O(t) = (0;(t))i=1,... n,, M(t) and S(t) are the symmetric matrices with
respective entries Mw( ) = (@(,t)ei,ej)p2 and S; ;(t) = (AVe;, Ve;)(p2ya,
and F(t) = ((f(-,t),e5))j=1,.. N, Since @ > ¢* and (e;);=1,... n, is orthonor-
mal for (-,-)z2, it holds M(t) > @,Id. M(t)~! is therefore well defined and
measurable bounded over [0, T]. Hence, the initial value problem (6.60) can be
put in standard form, with bounded measurable coefficients, and it therefore
has a unique solution © such that @’ is bounded.

There exists thus a unique solution 1y, to (6.59), with 1, € WH°(0,T;V}) C
Wheo(0,T; Hi(£2)). Let us now prove some a priori estimates on 1. We
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make, for a.e. t € (0,T), w = ¢} (t) in (6.59) and we integrate over ¢t € (7,7,
for some 7 € (0,T). Since A is symmetric and does not depend on ¢,

1d
(AT (1), V(1)) 2y = 5 o (ATW(0), V() 2y
and we therefore obtain, using (-, 7) = 0 and the Young inequality (C.9),

T
/ / O(z,t)| 0o (e, t) [P daedt + %/ A(x) Vb (z, 7) - Vb (z, 7)dx
T 2 2

< ||fHL2(Qx(0,T)) Hatwka(Qx(T,T)

IA

1 Px 2
%on £ 22 2x 0,7y + 5 10¥kllz2(@x (i) -

This estimate holds for any 7 € (0,7). Given that A is uniformly coercive
and that & > ., we deduce that (¢y)kren is bounded in L>(0,T; H}(£2))
and that (9,1 )ken is bounded in L?(§2 x (0,7)). Hence, there exists ¢ €
L°(0,T; HY(£2)) such that 9y € L%(£2 x (0,T)) and, up to a subsequence
as k — 00, 1, — 1 weakly-x in L>(0,T; H}(£2)) and 9490 — Optp weakly in
L2(2 x (0,7T)). Using Aubin-Simon’s theorem, we also see that the conver-
gence of (¥g)ken holds in C([0,T]; L2(£2)), which ensures that ¢ (-, T) = 0.
We then take § € C2°(0,T) and v € V; for some ¢ € N, and apply (6.59) for
k > £ to O(t)v instead of v. Integrating the resulting equation over ¢ € (0,7,
we can take the limit and see that v satisfies, with p(x,t) = 0(t)v(x),

T T
/ / B(a, )0 (w, 1) p(, 1)l — / / A@) V@, t) - Vp(a, t)dadt
0 (9} 0 (%}
:/ /f(:ut)p(:c,t)dwdt. (6.61)
0 (9]

Any function p in L?(0,T; H}(£2)) can be approximated in this space by finite
sums of functions (x,t) — 0(t)v(x), with § € C(0,T) and v € UpenVy
(see [29]). Hence, (6.61) also holds for any p € L?(0,T; H}(£2)). Considering
smooth compactly supported functions p, (6.61) shows that div(AVy) = f —
@0, in the sense of distributions. This proves that div(AV) € L?(2x(0,T))
and thus, by (6.61), that (6.58) is satisfied.

Note that Lemma 6.29 below provides an additional regularity property and
an integration-by-part formula on .

Step 2: proof of (6.57).
Taking s, 7 € [0, 7], we have

/ST/Qw(:n,t)div(/lvw)(wﬁ)dmdt = —/ST/QA(Q:)Vw(g;,t) - V(z, t)dadt,

and
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/ / w(x, t)Opp(x, t)dadt = / (w(x, T)(x, 7) — w(x, s)Y(x, s))dx
s 2 2

- / / Y(z, t)0pw(z, t)dadt.
s 2
Multiplying (6.56) by 0ip(x,t) + div(AVY)(x,t), integrating over 2 x (s,T)

for s € [0,T], using (6.65) in Lemma 6.29, and recalling that ¢(-,T) = 0, we
obtain

1

5/0/1(a:)V1/1(w,s) -V(x, s)dx

T 2 2
[ (0= st@n(aven)+ oo (avavee.n) ) dea
s 2
T
= —/ /A(:B)Vw(:n,t)~V¢(m,t)dmdt—/ w(x, $)(x, s)dx
s 2 2
T
—/ / Y(x, t)0pw(x, t)dedt. (6.62)
s 2
Integrating (6.62) with respect to s € (0,7) leads to
T
1/ / Ax)Vi(x,s) - Vi(z, s)deds
2Jo Ja
T T
< T/ A(2) V() - Vb, 1) dedt +/ / (@, )i (x, s)|deds
0o Jo 0o Jo
T
—|—T/ / [(x, t)Opw(x, t)|dedt. (6.63)
0o Jo
Apply the Cauchy-Schwarz and Poincaré inequalities to obtain

A _
5 IVl 2% 0,y < TAIVW 2 (0x 0,7y
+ diam(82) (@l 2@ omy + T 100l 2oy ) - (6:64)

Letting s = 0 in (6.62), recalling that w(-,0) = 0, and using (6.64) gives

T 2 . 2
[ [ (a=s@oy(owin) + g (avavee.n)”) asa
0o Jo
< (NIVll 2 (00,1 + diam(2) 18]l 2 0,1 ) IV 2 0.
Combined with (6.64), this shows that (6.57) holds. L]
Lemma 6.29. Assume that 2, T and A satisfy (6.3a) and (6.3¢). Let ¢ €

L°(0,T; HY(82)) such that Oyb and div(AVY) belong to L2(£2 x (0,T)). Then
Y € C([0,T); H($2)) and, for all s,7 € [0,T],
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T 1
/ / Opp(x, t)div(AVY) (x, t)dedt = —5/ ANx)Vi(z,7) - Vip(z, 7)dx
s 2 2

+% /Q A@)Vi(,5) - Vib(a, s)de.  (6.65)

Proof.

Step 1: ¢ € C([0,7]); L?(£2)) and ¢ : [0,T] — HZ(£2) is continuous for the
weak topology of H{(£2).

Since v € L>(0,T; HE(£2)) C L*(0,T; L*(£2)) and ;¢ € L?(0,T; L?(£2)), we
have ¢ € H1(0,T; L?(£2)) C C([0,T]; L?(12)).

Let M = ||1/1||L00(07T;Hé(9)) and let t € [0, T]. There exists (t,)nen converging
to t such that |[¢(t,) HH[%(Q) < M. Since 1) is continuous with values in L?(2),
we have ¥(t,) — t(t) in L?*(£2). Given the bound on ||1/J(tn)||Hé(Q), this
convergence also holds in Hg(£2), and ||¢(t)||H3(Q) < M. In other words, M
is not just an essential bound of [[¢(-) ”Hé(!?)’ but actually a pointwise bound.
Let us now prove the weak continuity of . Let ¢ € [0,7] and ¢, — t. If

v € C(S2) we have
(W(ta) Ny = [ Vol ta) Va(e)dedt = - [ bl ta) 21 (@)dads
7} o)
and thus, as n — oo, since v € C([0,T]; L%(£2)),
(w(tn)f}’)Hé - - / ¢(iL‘J)A’y($)diL‘dt
o)
=LVM%WVW@®&=W®WM; (6.66)

If v € H}(£2) then we take 7. € C2°(£2) such that ||y — %HHé(Q) < ¢ and we
classically write

(w(tn)’ V)Hé 7(7/}(75)7 PY)H%
< [@ ) iy = W) 70 my
|07 i~ G0,y

< Me+{(W(tn), %) iy — (00, 7)my

|7 iy — (82

+ Me.

Taking the superior limit as n — oo (using (6.66) with 7. instead of ~), and
then the limit as ¢ — 0, we deduce that that (¢(tn),7) gz — (¥(t),7) gy as

n — oo. This concludes the proof of the continuity of ¢ : [0, T] — HJ (£2)-w.

Step 2: proof of (6.65).
We only have to consider the case s < 7. We truncate 9 to [s, 7] and extend

it by its constant values at the endpoints of this interval, which consists in
defining 1 on R by
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W(s) ift <s,
P(t) = v(t) ifte(sT),
W(r) ift>r7.
Since v € C([0,T]; L?(£2)) N C([0,T]; H}(£2)-w), this definition makes sense
and we have ¢ € C(R; L?(£2)) N C(R; H} (£2)-w). By these continuity prop-
erties, we have Op) = 1(5,7)0¢¢ since no Dirac masses are introduced at
s or 7. We also have, on (s,7), div(AV%y) = div(AVy) € L2(02 x (s,7)).
However, because we cannot ensure that div(AVy (7)) and div(AV(s)) be-
longs to L?({2), we cannot say that div(AVi) € L?(2 x R). We only have

div(AVY) € C(R; H=1(2)-w), owing to ¢ € C(R; H}(2)-w).

Let (pn)nen be a smoothing kernel in time, such that supp(p,) C (—(7—s5),0).
We set 9,,(x,t) = (¥(x,-) * py)(t). Then ¥, € C°(R; H}(£2)) and we can
write, since A is symmetric and does not depend on time,

/ (0T (0), div( AV, ) () s -t

_ _/T/Qatvwn(ac,t)-A(:B)V1pn(m,t)dmdt

=3 [ & ] AV 0) Vit
1 _ —
- —5 [ A@Vi, @) Vi (7)o
+5 [ A@D,(@5)- Vi, (@) (6.7

We aim at passing to the limit n — oo in this relation. By choice of supp(pn)
and by definition of ¥,

Do) = /R B2, q)pn(r — q)dg

_ / " B(@, q)pu(r — @)ds = (@, 7) / pulr — q)dg = (@, 7).

T

Hence, for all n € N,

%/QA(:B)W”(;U,T) VP, (@, 7)da

:1/ A(@)Vi(x,7) - Vib(e, 7)dz.  (6.68)
(]

2
Since ¢ € C(R; H}(£2)-w), as n — oo we have 9,,(s) — ¥(s) = ¥(s) weakly
in H(£2). The bilinear form (AV-, V-)2ye being a Hilbert norm in Hg(£2),
we infer that
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n—oo 2

Jim inf = / N@)VD, (@,5) - VE, (@, s)da
(9}

2% A@)V(, 5) - Vip(, s)da.  (6.69)
(%}

Dealing with the left-hand side of (6.67) is a bit more challenging, due to the
lack of regularity of div(AV) outside (s, 7). By definition of ¢, we have

div(AVY (1)) = 1(oo,s ()div(AVY(s)) + L7 (8)(div(AVY(2))
+ l[THroo)(t)(diV(Avw(T))-

The choice of the support of p,, ensures that, whenever t > s, 1(_qo 5% pn(t) =
0. Hence, for t € (s, 7),

div( AV, (1)) = [AV(AVE)) L0 m] *pn(t) + (Lr, 100 * o) (O(div(AV(T)).

Since div(AV)1(, ) € L?(£2 x R), the left-hand side of (6.67) can therefore
be re-cast as

[ (00, aiv AV, )0 gt
- / ’ /Q Ot (@, 1) [div(AVY) (@, )L iom] * pu () dedt
+ [ OB, AT g1+ (U * ) O
= /ST /Qat@n(a:,t) [div(/lvw)(w, -)1(577)] * pp(t)dxedt + T,  (6.70)
where T,, = [T F},(t)(1(.00) * pn)(t)dt with
Fult) = Fpalt), () = (B(2), div(AVY()) sy s
Integrating-by-parts, we have
Ty = Falt) (L) * p0)(7) = Fu() Loy * p0)(5)

~ [ R0 < pa) (101

The choice of support of p,, ensures that (1(;,o)*pn)(s) = 0 and that (1}; ) *
pn)(T) = 1. We also notice that (1[0 * pn)’ = 7 * p, has support in (s, 7)
and converges weakly in the sense of measures toward the Dirac mass §... Since
P € C(R; H} (£2)-w), we have F € C(R) and thus F,, — F locally uniformly
on R. Hence, as n — oo,

T, = Fo(r) — /T Fo(t)(1jr,00) * pn)'(t)dt — F(1) — F(1) = 0. (6.71)
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The functions 8y and div(AVY)(x,)1(s ) belong to L2(£2 x R), so
04, = (04) * pn — Ot in L2(£2 x R)
and
[div(AVY) (@, )1(s )] * pn = div(AVY) (@, )15, in L2(2 x R).

Using (6.71), we can therefore pass to the limit in (6.70) and we see, since

0y1) = Oyth on 2 x (s,7),

T

lim [ (0, (t), div(AVY,,)(t) g3 -1 dt

:/T/ O (z, t)div(AVY)(z, t)dedt.
s ]

Combined with (6.67), (6.68) and (6.69), this gives (6.65) with “>” instead of
“=". The converse inequality is obtained by re-doing the previous reasoning
with smoothing kernels p,, having support in (0,7 — s), or by reversing the
time as at the end of the proof of Lemma 6.24.

Step 3: proof that 1 : [0, 7] — HE(£2) is continuous for the strong topology
of H}(02).

Since the left-hand side of (6.65) is continuous with respect to s, the mapping
s = (AVY(s), V() (L2)a is continuous. Assume that s, — s in [0, T]. Owing
toy € C([0,T); H} (2)-w) we have 1 (s,,) — 1(s) weakly in H{ (£2). Moreover,
(AV¢(Sn),Vw(Sn))(L2)d — (AV¢(S),V¢(S))(L2)d. Since (AV'7V')(L2)d is a
Hilbert norm on H}(§2), we conclude that (s, ) — 1(s) strongly in H}($2).

"

6.8 Numerical example

We consider a 2D test case with 5(s) = s and A = I, which means that we
approximate the Stefan problem. The scheme used here is the VAG scheme
described in Section 8.5. The domain is 2 = (0, 1)?, and we use the following
definition of ¢ (),

T if 7 <0,
(@=L u—1ifu>1,
0 otherwise.
Dirichlet boundary conditions are given by @ = —1 on 92 and the initial

condition is u(x, 0) = 2. Four grids are used for the computations: a Cartesian
grid with 322 = 1024 cells, the same grid randomly perturbed, a triangular
grids with 896 cells, and a “Kershaw mesh” with 1089 cells as illustrated
in Figure 6.4 (such meshes are standard in the framework of underground
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engineering). The time simulation is 0.1 for a constant given time step of
0.001.

Figures 6.4, 6.5, 6.6 and 6.7 represent the discrete solution wu(-,¢) on all grids
for t = .025,0.05,0.075 and 0.1. For a better comparison we have also plotted
the interpolation of u along two lines of the mesh. The first line is horizontal
and joins the two points (0,0.5) and (1,0.5). The second line is diagonal and
joins points (0,0) and (1, 1). The results for these slices are shown in Figures
6.2 and 6.3.

The numerical outputs are weakly dependent on the grid, and the interface
between the regions v < 0 and w > 1 are located at the same place for all
grids. It is worth noticing that this remains true even for the very irregular
Kershaw mesh (which presents high regularity factors Kz — see (7.10), that is
high ratios for some cells between the radii of inscribed balls and the diameter
of the cell).

(c) t =0.075 (d) t=0.1

Fig. 6.2. Interpolation of uw along the line zo = 0.5 of the mesh for each grids :
Cartesian in blue, perturbed Cartesian in red, triangular in green, and Kershaw in
black dashed.
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Fig. 6.3. Interpolation of u along a diagonal axe of the mesh for each grids: Carte-
sian in blue, perturbed Cartesien in red, triangular in green, and Kershaw in black
dashed.
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(a) Cartesian ) Perturbed Cartesian
. . |
c¢) Triangular ) Kershaw

Fig. 6.4. Discrete solution u on all grids at ¢t = 0.025.

(a) Cartesian ) Perturbed Cartesian

(¢) Triangular (d) Kershaw

Fig. 6.5. Discrete solution u on all grids at ¢ = 0.050.
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(a) Cartesian (b) Perturbed Cartesian

F

-0

(c) Triangular (d) Kershaw

Fig. 6.6. Discrete solution u on all grids at ¢t = 0.075.

(a) Cartesian ) Perturbed Cartesian
70 4
0.4
08
¢) Triangular ) Kershaw

Fig. 6.7. Discrete solution u on all grids at t = 0.1.
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Review of gradient discretisation methods
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In this part several classical and popular numerical methods are shown to fit
in the gradient discretisation method (GDM).

Most of the considered schemes are mesh-based numerical methods; hence
Chapter 7 begins with meshes and discrete tools which are used to estab-
lish the properties of various gradient discretisations (GDs). The notions of
“control by polytopal toolboxes”, of “local linearly exact (LLE) GDs”, of
“’mass lumping”, and of “barycentric condensation” provide very easy and
short proofs of the consistency, coercivity, limit-conformity and compactness
of the considered GDs.

Each of the chapters 8 to 13 are devoted to a particular well known class of
methods, namely: conforming Galerkin methods, non-conforming finite ele-
ment methods and derived methods, mixed finite element RT; schemes, the
multi-point flux approximation (MPFA)-O scheme, hybrid mimetic mixed
schemes, nodal mimetic finite difference methods (which is also compared with
the CeVeFE-DDFV method). For each of these methods, a gradient discreti-
sation is constructed in such a way that the corresponding gradient scheme
(GS) (3.4) for the standard linear diffusion model (3.1) corresponds to the
considered numerical method applied to this model.

The properties (defined in Part I) of the GDs thus constructed are then anal-
ysed. Once these known numerical methods are recasted as GDMs through the
choice of appropriate GDs, the analysis developed for various models in Parts
I and II directly applies to these methods. A by-product is the convergence of
say the non-conforming Py, HMM and nMFD schemes for the Leray—Lions,
Stefan and Richards models.

As in the previous part, in all the following chapters we take p € (1,00)
and {2 is an open bounded connected subset of R? (d € N*) with Lipschitz-
continuous boundary 92 (except for Galerkin methods, {2 is in fact polytopal
in this part).






7

Meshes and discrete tools

This chapter is devoted to the introduction of polytopal meshes, which are
used in most of the examples of GDs reviewed in this part.

Section 7.1 presents the notion of polytopal toolbor which enables the “con-
trol” of numerous GDs by mapping them into polytopal toolboxes. Using the
discrete functional analysis tools of Appendix B, this notion of “control” of a
GD by a polytopal toolbox is shown to give the coercivity, compactness and
limit-conformity of numerous mesh-based GDs. Precise estimates on Cp and
Wop are also established.

The notion of local linearly exact (LLE) gradient discretisation is then intro-
duced and analysed in Section 7.3. It is shown to ensure the consistency of
sequences of GDs. Section A.1 in the appendix extends the analysis done here
to prove explicit estimates on Sp, in the case p > d/2.

The notion of LLE GD also enables us to describe a generic process to elimi-
nate unknowns in gradient schemes, by replacing them with barycentric com-
binations of other unknowns. This process is standard in the construction of
numerous schemes (e.g., SUSHI [49], VAG [50, 52]) but always on a case-
by-case basis. The description of this barycentric elimination, given in the
context of LLE GDs, is detailed, generic and ensures the preservation of the
GD-consistency.

A general way to mass-lump any GD is finally presented. Mass-lumping hides
various processes which are not always well defined nor justified and whose
purpose is to modify a scheme so as to obtain piecewise constant approxima-
tions. In the GDM framework, a rigorous way of performing mass-lumping
is set up so that, under a single easily-checked assumption, the mass-lumped
GDs enjoys the same properties as the initial GDs.

Example 7.1 (Illustration of the notions)
Boxes such as this one provide illustrative examples of the concepts in-
troduced in this chapter (control by a polytopal toolbox, LLE GDs, etc.).
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These examples are all based on the non-conforming P; finite element
method, covered in detail in Chapter 9.

7.1 Polytopal meshes

7.1.1 Definition and notations

We recall that a O-polytope is a vertex, a 1-polytope is a segment or an edge,
a 2-polytope is a polygon, a 3-polytope is a polyhedron. In order to give
a precise definition of a polytope, we first define the k-simplices of R¢ for
k=0,...,d. For any family (x;);=1,... k+1 of points of R? such that the family
of vectors (&; — ®k+1)i=1,... k is linearly independent, the k-simplex denoted
by S((xi)i=1,... k+1) is defined by the convex hull of the points (@;)i=1,... k+1,
that is

k+1 k+1
S((xi)i=1,... k1) = {Z Qim0 > 0i=1,.. k+1,> a;= 1} - (7.1)
i=1

=1

An open d-polytope {2 is defined as the interior of the union of a finite number
of d-simplices (S;)j=1,....m, such that the intersection S, NS, of two different
simplices S,, and S, of the family is either empty or equal to a d’-simplex
with d’ < d. In particular, we have

2= s

j=1,...M

and (2 is the interior of £2. The boundary of §2 is then the union of the faces
of the simplices (S;);=1,...,» which are not common to two different simplices.
012 is therefore the union of d — 1-simplices.

In this chapter, we work with the following conditions and notations:

d € N\ {0} denotes the space dimension,
12 is a d-polytopal bounded connected open subset of R?, (7.2)
with boundary 912.

Definition 7.2 (Polytopal mesh). Let 2 C R? satisfy Assumption (7.2);
a polytopal mesh of 2 is given by T = (M, F, P, V), where:

1. M is a finite family of non empty connected polytopal open disjoint subsets
of 2 (the “cells”) such that 2 = Ugem K. For any K € M, let 0K =
K\ K be the boundary of K, |K| > 0 is the measure of K and hx denote
the diameter of K, that is the maximum distance between two points of
K.
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2. F = Fint U Fexs 5 a finite family of disjoint subsets of 2 (the “faces” of
the mesh — “edges” in 2D), such that, for all 0 € Fins, 0 is a non empty
open subset of a hyperplane of R? included in 2 and, for all 0 € Fuxy,
is a non empty open subset of 02; furthermore, the (d — 1)-dimensional
measure |o| of any o € F is stricly positive, and we denote by T, its centre
of mass. We assume that, for all K € M, there exists a subset Fgx of F
such that 0K = Uycr, 0. We then denote by M, = {K € M,o € Fk}.
We then assume that, for all o € F, either M, has ezactly one element
and then o € Fexy or My has exactly two elements and then o € Fiyg.-
For all K € M and for any o € Fi, we denote by nk , the (constant)
unit vector normal to o outward to K.

For all K € M, we denote by Nx the set of the neighbours of K :

Ni = {L e M\ (K}, 30 € Fine, M, = {K,L}}. (7.3)

3. P is a family of points of (2 indexed by M and F, denoted by P =
(®K)Kkem, (@s)oeF), such that for all K € M, xx € K and for all
ocF, xz, € 0. We then denote by di - the signed orthogonal distance
between Tk and o € Fi (see Figure 7.1), that is:

dxo =(x—Tg) Nk, foralx e o. (7.4)

(Note that (x — i) - Nk - is constant for © € 0.) We then assume that
each cell K € M is strictly star-shaped with respect to x, that isdy , > 0
for all o € F. This implies that for all x € K, the line segment [z, x]
is included in K.

For all K € M and 0 € Fk, we denote by Dk , the cone with vertex xk
and basis o, that is

Dg,={tex +(1—-t)y, t€(0,1), y€o}. (7.5)

We denote, for all 0 € F, D, = UKGM” Dk, (this set is called the
“diamond” associated to the face o, and for obvious reasons Dy , is also
referred to as an “half-diamond”).

4.V is a set of points (the vertices of the mesh). For K € M, the set of
vertices of K , i.e. the vertices contained in K, is denoted by Vi . Similarly,
the set of vertices of o € F is V.

The size of the polytopal mesh is defined by:

hp = sup{hg, K € M}. (7.6)

Remark 7.3. The above definition applies to a large variety of meshes. In par-
ticular, the cells are not assumed to be convex. Hence generalised “hexahedra”
with non planar faces can be used (in fact, such sets have then 12 faces if each
non planar face is shared in two triangles, but only 6 neighbouring cells).
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Fig. 7.1. A cell K of a polytopal mesh

Remark 7.4. The common boundary of two neighbouring cells can include
more than one face.

A number of Finite Element methods require the notion of simplicial mesh.

Definition 7.5 (Conforming simplicial mesh). A conforming simplicial
mesh of (2 is a polytopal mesh T = (M, F,P,V) in the sense of Definition
7.2, such that for each K € M we have Card(Fg) = d + 1. Most often, for
these polytopal meshes, P will be the centres of mass of the cells.

In a conforming simplicial mesh, each cell is therefore a d-simplex (triangle if
d = 2, tetrahedron if d = 3), and there are no hanging nodes, i.e. the vertices
of the mesh are exactly the “physical” vertices of the cells.

7.1.2 Operators, norm and regularity factors associated with a
polytopal mesh

Under Hypothesis (7.2), if ¥ = (M, F,P,V) is a polytopal mesh of 2 in the
sense of Definition 7.2, we define the space of cell and face unknowns by

Xz ={v=((vk)kem, (vo)ocF) : vk € R v, € R}, (7.7a)
and the subspace of vectors with a zero value on the boundary by
Xzo={veXg:v,=0forall 0 € Fexi }. (7.7b)

The function reconstruction Il : Xg¢ — L°i(9), trace reconstruction T :
Xz — L*(9£2) and gradient reconstruction Vg : Xg — L>(£2)¢ are defined
by
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Vv € Xz, VK € M, for a.e. x € K, IIzv(x) = vk, (7.7¢)
Vo € Xg, Vo € Foxt, for ae. x € 0, Tgv(x) = vy, (7.7d)
Vv e Xg, VK € M, for a.e. ¢ € K,
= = 1
Vav(z) = Vgv = — lo|(ve — VK )NK, o
‘K | U;K (7.7e)
= lo|veTE o
w2

We notice that the last equality in (7.7e) comes from Stokes’ formula, which
ensures that > r |o|nk, = 0 (see the proof of Lemma B.3). Finally, for
p € [1,+00) we define a discrete WP semi-norm on Xz by

Yo € Xg, |v]g, = Z Z \0|dKa —

KeMoeFk Ko ‘

(7.7f)

We remark that |-|; , is in fact a norm when restricted to Xs o.

Remark 7.6 (Cell-centred schemes)
For cell-centred schemes, whose unknowns are v = (Vk ) kem, a more natural norm
than (7.7f) would be

‘p

where, in this sum, K and L are the cells around ¢ and dx,1. = dk,o +dr,o if 0 is an
interior face, or v, = 0 and di, 1. = dk,o if 0 € Fx N Fexs. It is however very easy, for
such schemes, to come back to a space and norm using cell and face unknowns as in
(7.7a) and (7.7f). It suffices to extend u = (ukx)rkem into ¥ = ((vk)xem, (Vo )ocF)
with v, = % if o is an interior face and K, L are the cells around o, or v, = 0
if o is a boundary face. Then, the norms v — |U‘$ and v — [v|¢ p.c are equivalent,
with constants involving 7z given in (7.9) below, and all the results presented in this
section can therefore be applied provided that 7z is bounded independently of the
mesh size. Note that the converse (adding cell unknowns to a method which only
has face unknowns, in order to use the results of this section) is also easy to do —
see the analysis of non-conforming finite elements in Chapter 9.

Tpc Z|U|dKL

oEF

Finally, for a given polytopal mesh T we define two numbers that measure the
regularity properties of the mesh:

+ Card(]:K)> (7.8)

dK,U dL,O'
max )
0€Fint, Mo={K,L} \dL s dKs

< = max | max
KeM \oceFk ng

ng = (7.9)
A number of results involving sequences (%,,)men of polytopal meshes will
require one or the other, or both, of these corresponding regularity factors to
be bounded along the sequence of meshes.
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For simplicial meshes, only the following simpler regularity factor is needed:

h
K = max —, (7.10)
KeM pi
where, for K € M, pg is the radius of the largest ball included in K and
centred at the centre of mass Tx of K. It is proved in Lemma B.4 page 374
that, for simplicial meshes, this regularity factor controls the other two.

7.2 Polytopal toolboxes

Example 7.7 (GD for the non-conforming P; finite elements)
Since the non-conforming P; finite element is used to illustrate notions
introduced below, we need to briefly describe the corresponding gradient
discretisation.

The non-conforming P; finite element method is defined on a simplicial
mesh ¥ (Definition 7.5). The DOFs of this method consist in face un-
knowns, gathered in the space

Xpo={v=(V)ocri : Vo €R forall o € Fip,

7.11
vy =0 for all o € Fext }- ( )

The function reconstruction IIp : Xpo — LP(f2) is defined by: for
v € Xp, IIpv is the function on {2 that is linear on each K € M,
continuous at the face centres (Z,),ecx, and takes the values (vy)scr
at these centres. The gradient reconstruction Vp : Xp g — L (2)% is the
“broken” gradient: Vpu is constant equal to V[(/Ipv) k] in each K € M.

7.2.1 Dirichlet boundary conditions

A polytopal toolbox is nothing more than a polytopal mesh with associated
reconstruction operators and norm.

Definition 7.8 (Polytopal toolbox for homogeneous Dirichlet BCs).
Let §2 satisfy Assumption (7.2), and let T be a polytopal mesh in the sense of
Definition 7.2. The quadruplet (X< o, Iz, Vz, | |T’p) is a polytopal toolbox for
Dirichlet boundary conditions if:

1. The set Xz o is defined by (7.7b):
Xzo={veXz:v,=0 forall o € Fex¢}-
2. The function reconstruction Iz : Xz o — L>(£2) is defined by (7.7c):

Yo € Xx g, VK € M, for a.e. x € K, IIzv(x) = vg.
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3. The gradient reconstruction Vz : X« o — L>(2)¢ is defined by (7.7e):

Vv € Xz, VK € M, for a.e. x € K,
— 1 1
Veu(z) = ol(vo — VK )P ,e = T |o|venr o
" "

oceFK oceFK
4. The space Xz o is endowed with the norm (7.7f):
vy —vg |V
Yo € Xz, |U|§,p: Z Z lo|dk o Ung‘

KeMoeFg

Remark 7.9. Note that (tho,ﬂf,ﬁg) is not a GD since HﬁT'HLP(Q)d is not

a norm on Xg: if v € Xz ¢ has zero values at all the faces but not in the
cells, Vev =0 but v # 0 in Xz g.

Often, ¥ refers to both the polytopal mesh and to the polytopal toolbox
(Xz,0, 5, Vs, | \Tp) There is an abuse of notation here, since the polytopal
mesh does not depend on the considered boundary conditions (Dirichlet, Neu-
mann, etc.), but the polytopal toolbox depends on these conditions as seen
in Section 7.2.3. However, the context will always make clear which boundary
conditions are considered, and thus which kind of polytopal toolbox should
be used.

The notion of “control of a GD” by a polytopal toolbox consists in comparing
the GD operators with those of a polytopal toolbox, through a linear mapping
of the GD DOFs on the polytopal toolbox DOFs. Under some assumptions,
this comparison enables us to establish the coercivity, limit-conformity and
compactness of sequences of GDs.

Definition 7.10 (Control of a GD, hom. Dirichlet BCs). Let 2 satisfy
Assumption (7.2), let D be a GD in the sense of Definition 2.1, and let T be
a polytopal toolbox in the sense of Definition 7.8. A control of D by ¥ is a
linear mapping @ : Xpo — Xz . We then define

[P ()<,

] ) . 7.12
1@l p < vexpo\{0}  v]p o
ITpv — HzP(v
wU(D,‘LSp) = max |72 bl )HLP(Q),
veXp o\{0} ”v”D
wY(D,T,P) =
1
1 v )
max = —— Kl—P/va—Vdsvw d '
veXp o\{0} ||U||D (K;Vl| | K[ i ( ) ) ( )( )} )
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Example 7.11 (Control of the non-conforming P; GD)

Finding a control of a given gradient discretisation D by a polytopal tool-
box ¥ consists in computing — often in the most natural way — face and
cell values (which define an element of X« ) from the DOF's of D.

Let us consider the case of the non-conforming Py gradient discretisa-
tion. Recalling the definition (7.11) of Xp g, there is not need to actually
compute face unknowns since they are already in Xp g. Cell unknowns are
computed by creating equally weighted averages of the d+1 face unknowns
in each cell.

This leads us to defining the following control @ : Xpo — Xgo: for
v = (Vo)oerx € Xp,o, the element &(v) = U = ((Vk)kem, (Vs)oer) of
X is given by

~ N 1
VoeF, v, =v, and VK eM, vK:m Z Vg
oceFK
We prove in Lemma 9.2 that, for this control, |®]p s < rzd!/?,
Ww(D,%T,®) < hag and wV (D, T, ) = 0. Example 7.14 shows how such
bounds are used.

Theorem 7.12 (Estimates for a controlled GD, hom. Dirichlet BCs).
Let §2 satisfy Assumption (7.2), let D be a GD in the sense of Definition 2.1,
let T be a polytopal toolbox in the sense of Definition 7.8, and let @ be a control
of D by ¥ in the sense of Definition 7.10. We take 0 > 0 +nz (see (7.8) and

(7.9)).

Then, there exists C1 depending only on 2, p and o such that
Cp < (D,T,8) +C1 | P« (7.13)

and, for all ¢ € Wl’p,(Q)d,

Wo(ep) < ||‘P||W1,p’(9)d Crhm(1+ H‘IS”D,Q) +w(D,%, )
+wV(D,%, 45)] (7.14)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. Using the triangular inequality, Lemma B.12 and the Holder’s in-
equality (C.7) we observe that, for any v € Xp o,

||HD”HLP(Q) < wH(D,‘Z, P) [[vllp + ||H‘I¢(U)||Lp(.o)
11
<w(D,T,B) [[vllp + Cos 2777 |B(v)]
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with ¢ and Cbg given in Lemma B.12. The proof of Estimate (7.13) is concluded
by dividing by [[v]|; and using the definition (7.12) of || 2] p <

We turn to (7.14). Let ¢ € W' (2)¢ and use the triangular inequality, the
definition of w' (D, T, ®) and (B.22) (notice that TpP(v) = 0 since H(v) €
X<z,0) to obtain

/Q (Vov(m) ~p(x) + UDv(a:)divgo(m))dm

< /Q Vo) — Vad()(@)] - p(z)de| + [dive] o« (D, &) o]l

+

/Q (V=d(v)(x) - p(@) + = B(v) (@)dive(@)) da

IN

/Q Vou(@) - Vsd(0)(@)] - p@)de| + [dive] o & (D, T, B) 0]
+ Coo V0] Lo (g0 [ B0l Fona (7.15)

Let px = ﬁ Sy p(x)de. Assuming that p > 1 (so that p’ < co) and applying
(B.12) in Lemma B.7 to p’ instead of p, we find Cy depending only on d, p and

o such that [l¢ — okl x) < Cohk |||Vl (k). Hence, using Holder’s
inequality,

/Q Vou(z) - Veb(v)(@)] - o()de

Z /KWDU(“’) —Vz®(v)(x)] - p(x)de

KeMm

S ([ Voute)- (o) - gl

KeMm

Yok /K [Vou(z) — %@(v)(x)]dx)

< Coha [ IVl | 1o (o) VDUl 1o (2)a

s m] [ [ou(e) - Tso) (@)

KeMm

.. s . . _ 1—21 1_
By Holder's inequality [@rc| < |~ K "7 @] 1 seye = K7 @l 1o 1y

and thus

/Q Vpu(@) — Vad(v)(x)] - pz)dz

< Coh IVl v (@) VDUl Lo 2y
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+ el L (@)a ( > K[

p> 1/p
KeM

< (Cohat + w7 (0,5, 8)) @l aye [TVl - (7.16)

/ [Vpu(x) — Ve@(v) ()] de
K

Plugged into (7.15) and using the definition (7.12) of ||®|| < this gives (7.14).
In the case p = 1 (and thus p’ = +0), we extend ¢ into a Lipschitz-continuous
function over R, with a Lipschitz constant bounded by Cj || |[V¢| |10 (2 for
some C'3 depending only on d. We can then use, in the previous calculations,
the estimate |o(x) — @i | < C3hi || [Vl || oo () for any @ € K. m

An immediate consequence of Theorem 7.12 is the following corollary.

Corollary 7.13 (Properties of controlled GDs, hom. Dirichlet BCs).
Let 2 satisfy Assumption (7.2), let (Dp)men be a sequence of GDs in the
sense of Definition 2.1, and let (Z,)men be a sequence of polytopal toolbozes
in the sense of Definition 7.8. We assume that haq,, — 0 as m — oo and that
sup,,en(fs,, +1z,,) < +oo (see (7.8) and (7.9)).

For all m € N we take a control ®,, of D,, by T, in the sense of Definition
7.10, and we assume that

sup [|omllp,, <, < +0o,

meN

lim w (D, Tpn, ) =0, and
m—r 00

lim wV (D, Ty, ®m) = 0.

m— 00

Then (Du)men 18 coercive in the sense of Definition 2.2, limit-conforming in
the sense of Definition 2.6, and compact in the sense of Definition 2.8.

Example 7.14 (Properties of the non-conforming P; GD)

Using the control @ and the estimates on [|®|p «, w(D, T, ®) and
wY (D, %, ), from Example 7.11, the above corollary establishes the co-
ercivity, limit-conformity and compactness of the gradient discretisations
built on non-conforming P; finite elements.

Proof. The coercivity and limit-conformity are trivial since (7.13) and (7.14)
ensure that sup,,cy Cp,, < +0o and that Wp,,(¢) — 0 as m — oo, for all
@ € W' (2)? (we use Lemma 2.14 and the fact that W' (2)4 is dense in
WP’ () — see Remark 2.15).

It remains to prove the compactness. If u,, € Xp,, o is such that (||um[lp, Jmen
is bounded, then the bound on ||®, 5 < ensures that ([P, (um)ls, ,)men
is bounded. By Lemma B.15, we infer that up to a subsequence IIz, P, (um,)
converges to some u in LP(f2) as m — oco. Since
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||HDmum - Himént(um)HLp(Q) S WH(Dm;$ma¢7n) ||um||p —0

m

as m — oo, we deduce that ITp,  u, — win LP(§2) and the proof is complete.
u

7.2.2 Non-homogeneous Dirichlet boundary conditions

The definition of coercivity, limit-conformity and compactness of GDs for
non-homogeneous Dirichlet boundary conditions are identical to the same
definitions for homogeneous Dirichlet conditions. Hence, all the previous re-
sults (and in particular Corollary 7.13) can be used to in the context of non-
homogeneous Dirichlet boundary conditions.

Although polytopal meshes/toolboxes are not directly useful to establish the
consistency of GDs, the structures provided by meshes can sometimes be
used to construct interpolants of functions and prove that Sp,, (¢) — 0 for
all smooth ¢. In the context of non-homogenous Dirichlet boundary condi-
tions, using Lemma 2.21 requires to check the condition (2.16), which can be
facilitated by the following proposition.

Proposition 7.15 (Estimate of the discrete norm of an interpolate).
Let T be a polytopal mesh of {2 in the sense of Definition 7.2, and let § > 0%
(see (7.8)). Let o € WHP(02) and define v € X< by

1
VK e M, vK:@/ p(x)de
K

(7.17)
1
Vo eF, v,= o] / o(x)ds(x).
Then, there exists Cy depending only on d, p and 0 such that
Il o) < lellry  and  |olxp < Cal[Veollppgye - (7.18)

Proof. By Jensen’s inequality

1
ol < e [ Iet@)de,
K| Jx
Multiplying this inequality by |K| and summing on K € M gives

HHTUHLP(Q) < H@HLP(Q)-
To estimate |v|x p, we apply (B.11) in Lemma B.7 to find Cs depending only
on d, p and 6 such that
Cshb !
or = vl < S [ V@),
o] K

Multiplying this inequality by |a|d}€5, summing on 0 € Fx and K € M, and
using the definition of 6 we deduce that [v]|5 , < C567 || [V ||1£,,(Q).
"
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7.2.3 Neumann and Fourier boundary conditions

We define here the notions of polytopal toolboxes and control by polytopal
toolboxes for non-homogeneous Neumann boundary conditions, in a similar
way as what we did in Section 7.2.1 for Dirichlet boundary conditions. In
Remarks 7.20 and 7.21 we indicate the minor modifications that needs to be
made to the following definitions and results for homogeneous Neumann and
Fourier boundary conditions.

Definition 7.16 (Polytopal toolbox for Neumann BCs). Let {2 satisfy
Assumption (7.2), and let T be a polytopal mesh in the sense of Definition
7.2. The family (X<, Iz, Tx, Vs, || H$7p) is a polytopal toolbox for Neumann
boundary conditions if:

1. The set Xz is defined by (7.7a):
Xz ={v=(vg)kem, Ws)secr) : vk € R,u, € R}.

2. The function reconstruction Iz : Xz — L% (£2) is defined by (7.7c):
Yo € Xg, VK € M, for a.e. x € K, TIzv(x) = vk.

3. The trace reconstruction Tg : Xg — L*°(012) is defined by (7.7d):
Vv € X, Vo € Fext, for a.e. € o, Tzv(x) = v,.

4. The gradient reconstruction Vx : X — L= (2)? is defined by (7.7e):

VUGX‘I,VKEM for a.e. x € K|
Vao(z lo|(v K)NK o = lo[veN K 5.
|K| > |K| >

o FK oceFK

5. Recalling the definition (7.7f) of the semi-norm | |37p, the space X« is
endowed with the norm

(7.19)

p
lll2, = ol + \ /Q Iso(2)de

As mentioned in Section 7.2.1 on Dirichlet boundary conditions, we will of-
ten use T to denote both the polytopal mesh and the polytopal toolbox
(Xg, 5, Tz, Va, || [z ,)-

Definition 7.17 (Control of a GD by a polytopal toolbox — Neumann
BCs). Let §2 satisfy Assumption (7.2), let D be a GD in the sense of Defini-
tion 2.32, and let T be a polytopal toolbox in the sense of Definition 7.16. A
control of D by ¥ is a linear mapping ® : Xp — Xz. We then define

125,

b = m
H HD,T vEXD\{0} H,UHD
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Ipv — zP ()|,
WD T.B) = max [ 1Ip =PV, @

veXp\{0} HU”D
Tpv — Ts®(v
D58 = a2 T 2Ol en
vNe0) ol
_ P\ 7
Z [K|'P /K [Vpu(z) — Ve®(v) ()] de
wV(D,T,@): max KeM .
veXp\{0} [v]lp

Theorem 7.18 (Estimates for a GD controlled by polytopal tool-
boxes — Neumann BCs). Let 2 satisfy Assumption (7.2), let D be a GD
in the sense of Definition 2.32, and let ¥ be a polytopal toolbox in the sense
of Definition 7.16. We take @ a control of D by T in the sense of Definition
7.17, and ¢ > 0z + nz (see (7.8) and (7.9)).

Then, there exists Cg depending only on 2, p and o such that

Cp < max (w"(D,T,®),0"(D,%,®)) + Cs | P p < (7.20)

and, for all ¢ € Wl’p/(Q)d,

Wo(@) < 1€l (0)s [ Cohat(1 + 1@ ]p5) + (D, T, @)

+wY(D,T, &) +w'(D,T, sli)} . (7.21)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.26) and (2.28).

Proof. The proof is similar to the case of Dirichlet boundary conditions
(Theorem 7.12). By Lemma B.16 and B.20 we have [[Tz®(v)|1sp0) <

C7||®(v)||¢, for some C7 depending only on (2, p and g. Hence, using the
triangular inequality,
ITovl 1o (o) < @™ (D, %, ®) [vllp + I TsP(0)] Lo(an)
<W'(D, %, D) |v]lp + Crl|D(v) s,
<W'(D, %, D) |vllp + Crl|llp < V]l -

The proof of (7.20) is concluded by reproducing the same steps starting from
[ Ipvll s 50y and using Lemma B.20 to control || @(v)| s (o) by [[(0)]|< -

We turn to (7.21). Let ¢ € W' (22)¢ and use the triangular inequality, the
definition of w (D, T, ®) and W' (D, T, ®P) and (B.22) to obtain

/Q (va(a:) ~p(x) + Hpv(a:)divgo(w))dm - / Tpv(x)yn(e)(x)ds(x)

a1
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< +ldivep] 1y (o) 0™ (D, T, B) [0l p

/Q Vpu(z) — Ved(v)(@)] - o(z)

+ 1 (@)l 1o 02y W (D, T, D) 0]l

+ / (Ved(v)(x) - @(x) + HzP(v)(x)dive(x)) do
7

- / Terv(@) 1 () () ds () de
on

< + [l divepl 1y (o) 0™ (D, T, B) [0l p

/Q Vpu(z) — Ved(v)()] - o(z)

(@) o 012y & (D.T.B) [0l + Cs V0] Lo s (B0 Pt

where Cg depends only on d, p and o. The first term in the right-hand side
can be bounded above by using (7.16). Invoking the definition of ||®||;  then
concludes the proof. =

Corollary 7.19 (Properties of GDs controlled by polytopal toolboxes
— Neumann BCs). Let §2 satisfy Assumption (7.2), let (Dy)men be a se-
quence of GDs in the sense of Definition 2.32, and let (T,,)men be a sequence
of polytopal toolboxes in the sense of Definition 7.16. 1ssume that hpaq,, — 0
as m — oo and that sup,,en(Os,, +1z,,) < +00 (see (7.8) and (7.9)).

For all m € N we take a control ®,, of D,, by T, in the sense of Definition
7.17, and we assume that

sup [|[Pnllp,, ¢, < +oo,

meN o

lim w(Dyn, Tn, ) = 0,

m— 00

lim WDy, T, @) = 0, and
lim wV (D, Ty, P) = 0.

m— 00

Then (Di)men 18 coercive in the sense of Definition 2.33, limit-conforming
in the sense of Definition 2.34, and compact in the sense of Definition 2.36.

Proof. The coercivity and limit-conformity follow from Estimates (7.20)
and (7.21), from Lemma 2.38, and from the fact that W?' (£2)? is dense in
W' 9(() (see Lemma 2.46).

To establish the compactness, we notice that if v, € Xp  is such that

([lvmllp,, Jmen is bounded, then so is (||@m(vim)|ls, ,)men since

7nap)

1P (0m)lls,, < @mlip, <, 1vmlp,, -

Hence, by Lemma B.22 and the definition of |[®y,(vm)l¢, . the sequence
(s, P (Vim))men converges up to a subsequence in LP((2). Using Lemma
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B.16 we also see that, up to a subsequence, (Tx, @, (vm))men converges
weakly in LP(042) (recall that p € (1,00) throughout this chapter). The con-
vergences of W (D, T, @rn) and w™ (D, Tyn, @) then ensure that, along
the same subsequence, (IIp,, Um)men converges in LP(§2) and (Tp,, vm)men
converges weakly in LP(942), which completes the proof. m

Remark 7.20 (Homogeneous Neumann boundary conditions). Homogeneous
Neumann conditions are a particular case of non-homogeneous Neumann con-
ditions, so all previous results also apply. However, if one is solely interested
in homogeneous Neumann conditions, some simplifications can be made. Pre-
cisely, there is no need to include T in Definition 7.16, w" in Definition 7.17
and Corollary 7.19, and Theorem 7.18 holds with wT replaced with 0.

Remark 7.21 (Fourier boundary conditions). The only differences between
GDs for non-homogeneous Neumann conditions and Fourier conditions are
the definition of the norm | ||, and the definition of the GD-consistency.
Since GD-consistency is not a notion covered by polytopal toolboxes, all pre-
vious results in this section apply to Fourier boundary conditions provided
that the norm (7.19) is replaced with the norm defined by

ol = 102, + [ TvlZaon -

Estimating Cp in Theorem 7.18 in the case of Fourier boundary conditions is
straightforward thanks to Lemma B.17.

7.2.4 Mixed boundary conditions

Finally, we cite the definition of a polytopal toolbox for mixed boundary con-
ditions, as well as associated results without proofs (they can be established
exactly as for Dirichlet and Neumann boundary conditions, using Lemma B.27
and B.28).

Definition 7.22 (Polytopal toolbox for mixed BCs). Under Assump-
tions (7.2) and (2.52), let T be a polytopal mesh in the sense of Definition
7.2. The family (X< o r,, <, T< r,, Vz,| |{3)p) is a polytopal toolbox for mized
boundary conditions if:

1. The set Xz o.r, is defined by (B.65).

2. The function reconstruction Iz : Xz — L% (£2) is defined by (7.7c).

3. The trace reconstruction Tz p, : X — L™(I3,) is the restruction to I,
of the discrete trace (7.7d).

4. The gradient reconstruction Vx : X — L ()¢ is defined by (7.7e¢).

5. The space X< o1, is endowed with the norm | |, defined by (7.7f).

Definition 7.23 (Control of a GD by a polytopal toolbox — mixed
BCs). Under Assumptions (7.2) and (2.52), let D be a GD in the sense of
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Definition 2.51, and let ¥ be a polytopal toolbox in the sense of Definition
7.22. A control of D by T is a linear mapping ® : Xp o.r, — Xz.or,. We
then define

|¢(U)|‘:
[@llp = max ———F
veXp, a,r, \{0} ”U”D
IIpv — zP(v)||,,
(D% B) . | 11p D ( )”LP(Q)’
ve€Xp o,r, \{0} HU”D
TD,F,L’U — T‘Z,F,LQ(U p
DT B) - I Mz (rn),
vEXDp, 2,r, \{0} HU”D
> 1K1 | [ [Fovi@) - e @] ae
K
wV(D,%T,$) = max KeM )
v € Xp,ar, ”U”D
v#0

Theorem 7.24 (Estimates for a GD controlled by polytopal tool-
boxes — mixed BCs). Under Assumptions (7.2) and (2.52), let D be a GD
in the sense of Definition 2.51, and let ¥ be a polytopal toolbox in the sense
of Definition 7.22. We take @ a control of D by T in the sense of Definition
7.23, and ¢ > 0z + nz (see (7.8) and (7.9)).

Then, there exists Cy depending only on 2, p and o such that

Cp < max (w"(D,T,®),0"(D,T,®)) + Cs | P .«

and, for all ¢ € Wl’p/(_Q)d,

Wo(9) < 1€l (@ys | Cohaa(1 + 1@ ]p5) + (D, T, @)
+w¥(D,T,P) +w'(D,T, 45)} .

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.53) and (2.57).

Corollary 7.25 (Properties of GDs controlled by polytopal toolboxes
— mixed BCs). Under Assumptions (7.2) and (2.52), let (Dpm)men be a
sequence of GDs in the sense of Definition 2.51, and let (T, )men be a sequence
of polytopal toolboxes in the sense of Definition 7.22. We assume that haq,, —
0 as m — oo and that sup,,en(fs,, +1=z,,) < +0o (see (7.8) and (7.9)).

For all m € N we take a control ®,, of D,, by %, in the sense of Definition
7.23, and we assume that

sup ||gpm||’D Tm < +OO7
meN

ms

hm WH(Dm,T7n,¢m) = 0’

m— o0
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lim wT(Dp, Tpn, Pr) =0, and

m—00

lim wV (D, Ty, ®rm) = 0.

m—00
Then (Dpm)men is coercive in the sense of Definition 2.52, limit-conforming
in the sense of Definition 2.54, and compact in the sense of Definition 2.56.

The only (slightly) non-trivial adaptation of the preceding proofs to establish
this corollary is the density of smooth functions in W3v-r"In (), endowed
with the norm (|||, (oya + [|divell o (o) + (@)l Lo (1, )- This density is
actually established in a similar way as in Lemma 2.46, where in Item 2 we
take 9. such that

() — well(w + (@) = Well por 1,y < e

5P (00)y

7.3 Local linearly exact GDs

7.3.1 Pg-exact and P;-exact reconstructions

Most numerical methods for diffusion equations are based, explicitly or im-
plicitly, on reconstructions of functions — or gradients — from discrete degrees
of freedoms. These reconstructions are designed to match certain simple func-
tions (e.g. constant, or affine) — or their gradients — when the degrees of
freedom interpolate these functions at certain points. We give here a precise
meaning to these notions, and state some of their approximation properties
of the corresponding reconstructions.

Definition 7.26 (Pp-exact function reconstruction). Let I be a finite set,
K be a bounded set of R? with non-zero measure, and p € [1,+00].

A Py-ezact function reconstruction on K is a family nx = (7% )icr of func-
tions in LP(K) such that

for a.e. x € K, Zw}((w) =1 (7.22)
iel

The norm of wx is defined by (setting |K\_% =1ifp=+o0)

> Imkd

i€l

I, = [K]™» (7.23)

Lr(K)

If v = (v;)ier is a family of real numbers, Tv denotes the function in LP(K)
given by:

for a.e. x € K, (mgv)(x) = va}{(z)
i€l



232 7 Meshes and discrete tools

Property (7.22) shows that, if v = (v;)ses is such that there exists ¢ € R
with v; = ¢ for all ¢ € I, then mgv = ¢ a.e. on K. The reconstruction wy is
therefore exact on interpolants of constant functions.

Example 7.27 (Elementary basis functions for non-conforming
P; finite element)
Let K be a simplex. For each 0 € Fg, let 7% be the affine function in
K that has value 1 at T, and 0 at T, for all face ¢’ # o of K. Then
ZUG;K 7% =1 on K, that is, g = (7% )oerx 15 a Py-exact function
reconstruction on K.

Since regular functions are locally close to constant functions, it is expected
that Py-exact function reconstructions enjoy some approximation properties
when computed on interpolants of regular functions.

Lemma 7.28 (Interpolation estimate for Py-exact function recon-
struction). Let I be a finite set, K be a bounded set of R with non-zero
measure, p € [1,+00], T = (7% )icr be a Po-ezact function reconstruction on
K, and (x;)ier be points in RY.

Then, if o € WY>(R?) and v = (p(:))icr,

||7TKU - SOHLP(K)

< (1 + max dist(zx;, K)

1 ..
iel  diam(K) ) HWK”P |K|» diam(K) ||SD||W1,m(Rd) .

Proof. For a.e. € K, using (7.22) yields

(@) = o(@) Y mic(x) = Y mic(@)p(x).

icl iel
Moreover, for any i € I and « € K,

lp(x:) — ()| < |lzi — 2] ||l 1,00 (1)
< (diam(K) + dist(x;, K)) ”(pHWl«w(Rd) :

Hence, for a.e. x € K,

mrv(x) — p(@)] =

> mic(@)(vi — s@(w))‘ (7.24)

iel

IN

max |¢(x;) — p(x)] Z |7l ()|

i€l
i€l

1 + max dist(aci, K)
il diam(K)

IN

diam(K) [|@llws gy Y _ 7k ()]
icl
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The proof is complete by taking the LP(K) norm over & and by using the
definition of [|m ||, ]

We now turn to the notion of gradient reconstructions that are exact on
interpolants of affine functions.

Definition 7.29 (P;-exact gradient reconstruction). Let I be a finite set,
K be a bounded set of R® with non-zero measure, p € [1,4+00], and S = (x;)icr
be a family of points in RY.
A Py-exact gradient reconstruction on K upon S is a family Gk = (G )icr of
functions in LP(K)? satisfying the following property:

for any affine A:R? = R and a.e. ¢ € K, ZA(:BZ)Q}((:B) =VA. (7.25)
iel

The norm of Gk is defined by (setting |K\7% =1ifp=+0)

71> 16k

i€l

19k ||, = diam(K)| K[> (7.26)

Lr(K)

If v = (v;)ier 18 a family of real numbers, G v denotes the function in LP(K)
given by:
for a.e. x € K, (Ggv)(x Z'UZQK

el

We notice from (7.25) that
for all affine function A, if v = (A(x;))ier then Ggv = VA. (7.27)

This is the Py-exactness of the gradient reconstruction G .

Example 7.30 (Gi for non-conforming P; finite element)

Let K be a simplex. Recalling the definition of 7x = (7% )ser, in Remark
7.27, we let G% = Vr% € LP(K)?. As proved in Lemma 9.1, the family
Ox = (G%)oery is a Pi-exact gradient reconstruction on K upon S =
(EU)UE]‘—K' ) )

This property that Gj is the gradient of 7}, which also holds for conform-
ing finite elements, is a very specific one. It is not satisfied by a number
of other schemes such as mixed finite elements, hybrid mimetic mixed
methods, etc. (see Chapters 10, 11, 12 and 13), or if performing mass-
lumping of conforming and non-conforming finite elements (see Example
7.44). Hence, for many methods, a full description cannot be given by
just describing the elementary functions 7, but also requires a separate
definition of the local gradients g};.
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In a similar way as for Pp-exact function reconstructions above, the fact that
any smooth function is locally close to an affine function ensures that P;-exact
gradient reconstructions enjoy approximation properties.

Lemma 7.31 (Interpolation estimate for P;-exact gradient recon-
structions). Let I be a finite set, K be a bounded set of R with non-zero
measure, p € [1,4+00], S = (zi)icr C R, and Gx = (G% )ier be a Pi-ezact
gradient reconstruction on K upon S.

Then, if p € W>>*(R?) and v = (p(:))icr,

1 dist(x;, K)]°
_ < (142 1 ST, )
19260 = Vepllogrs < ( # gl [1emes T )
.
< K diom () @l -

Proof. Let us first assume that ¢ € CZ(RY). Take zx € K and let
A(z) = p(zx) + Vo(zk) - (£ — xx) be the first order Taylor expansion
of ¢ around zk. If £ = (A(x;))ier, by Pi-exactness (7.27) of Gx we have
G =VA=Vep(xk) on K. Hence, since Ve is Lipschitz-continuous with a
Lipschitz constant bounded above by [|¢||yy2. (ga), We write
1GK€ — V<P||Lp(K)d = [Ve(zk) — V‘PHLp(K)fl
1
<K [Ve(xr) = Veoll oo (5
1
< |K 1 diam () [l ey - (7.29)
For any ¢ € I we have, by Taylor’s expansion,
= ¢(@i) —p(er) = Vo(zk) - (@ — oK)

1
= / (1- s)DQcp(a:K +s(x; —zx))(x; —xK) - (2, — TR )dS.
0
Using |x; — x| < diam(K) + dist(x;, K) yields
1. .. .
[vi = &l < 5 [diam(K) + dist(a;, )P |l 2.0 (gay - (7.31)

Hence, for a.e. x € K,

Grv(®)—Gré(@)] = > (vi — &)Gic ()

iel

2
1] .. . i
< [ ) gt 20| el e 216K

Taking the LP(K) norm over  and recalling the definition of ||Gk||, leads to
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Grv — ggHLP(K)d

5 2
K Gclly 1T |
< g (i) 2 |dam) + maxdist(@i, K) | el e

1 dlbt(ﬂ)“K)
= — 1 _—
2|gK”p{ +r?ealx diam(K)

2
1

LS P —
Combined with (7.29) and a triangle inequality, this completes the proof of the
lemma if p € CZ(RY). Since any function ¢ € W?2°°(R?) can be approximated
(using convolution) by functions ¢,, € CZ(R?) such that ¢, — ¢ and Vi,, —
Vi uniformly on compact sets, and [[¢n|[y 2.0 gay < 1¢llyy2.00 (ray, the proof
follows by passing to the limit n — oo in (7.28) written for . L]

Remark 7.32. For all functions and gradient reconstructions considered in
Chapters 8-13, the functions 7% (resp. Gi.) have values in L*°(K) (resp.
L>(K)%). In that case, by Holder’s inequality,

7wkl < lImillog = esssup » |7 ()]
zek el

(where esssup is the essential supremum) and

IGxl, < 1Gx o < diam(K) D~ [|Gic| o sy -
el

These estimates will be used, when analysing specific GDs in Chapters 8-13,
to obtain upper bounds on [|7k||, and |Gk /|,

In a number of cases, estimating [|7x||,, (and thus [|7kl[,) is trivial. For
example, if for a.e. * € K the value mrv(x) is computed as a convex
combination of the real numbers (v;);cr, then ﬂﬁ( > 0 for all 4 € I and
Sier I (@)| = >0,c; i (x) = 1. This is for instance the case, e.g., if mxv is
linear on K, v; = mv(x;) and (x;);cr are extremal points of K (this situation
appears in the conforming linear P; finite element method).

Another example is the case where for a.e. © € K there is exactly one i € T
such that 74 () = 1, and 7 () = 0 for all other j € I. Then >, |7k ()| =
1 a.e. on K (and 7xv is piecewise constant on K ). This situation occurs in
the case of the mass-lumped P; finite element method, see Section 8.4.

7.3.2 Definition and consistency of local linearly exact GDs for
Dirichlet boundary conditions

The previous concepts of Py/Py-exact function/gradient reconstructions are
useful to establish the GD-consistency, through the following notion of local
linearly exact gradient discretisation (LLE GD). This notion applies to the
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vast majority of GDs analysed in the Chapters 8-13. LLE GDs are the gra-
dient discretisations whose function reconstructions are locally Pgp-exact and
whose gradient reconstructions are locally Pi-exact, both reconstructions be-
ing computed locally. To measure this locality, a regularity parameter reg, .
is introduced; the boundedness of this parameter imposes that, at any given
point @, the reconstructed functions and gradients are computed by degrees
of freedom (or zero values) located not far from .

Definition 7.33 (Local linearly exact gradient discretisation (LLE
GD)). A gradient discretisation D = (Xpo,Ip,Vp) in the sense of Def-
inition 2.1 is a local linearly exact gradient discretisation (LLE GD) if:

1. There exists a finite set I of geometrical entities attached to the degrees of
freedom (DOFs), where I is partitioned into I, (interior geometrical enti-
ties attached to the DOF's) and Iy (boundary geometrical entities attached
to the DOF's), such that

Xpo={v=(vi)ier :vi €R foralliel, v;=0ifiecly}. (7.32)

2. There exists a family of approzimation points S = (x;);c; C R, a mesh
M of £2 and, for each K € M, a subset Iy C I and
a) a Po-eract function reconstruction wx = (7% )icr,, on K (see Defini-
tion 7.26) such that

Yv &€ Xpyo, forae €K,
HDU(QJ) = WK[(Ui)ieIK](w) = Z ’UﬂT%((L’)’ (733)

i€l

b) aP1-ezact gradient reconstruction G = (G&)ier, on K upon (2;)icry
(see Definition 7.29) such that

Vv € Xpo, forae zeK,
Vopv(x) = Gr[(vi)icry](x) = Z 0;Gl (). (7.34)

i€lk
Here, the mesh M is merely a finite family of open disjoint subsets of (2
such that e g K = 2. Its size is hyy = maxgepm diam(K), and the LLE
regularity of D is defined by

dist(x;, K
reg, (D) = II{nea/\}El (”WKI;D + ”gK”p + max ()> (7.35)

iclx  diam(K)

Example 7.34 (LLE GD interpretation of the non-conforming
P, gradient discretisation)
Example 7.7 defines the Py gradient discretisation D in a global way. For
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both the analysis and the practical implementation, a definition starting
from elementary basis functions is necessary. This gradient discretisation
is an LLE GD for which the set of geometrical entities attached to the
DOFs are the faces of the mesh (that is, I = F), the elementary basis
functions are the 7% described in Remark 7.27, and the local gradients
G% are given in Remark 7.30.

It is proved in Lemma 9.1 that, under standard regularity assumptions
on ¥, reg,, ,(D) is bounded. Used in Proposition 7.36 below, this bound
yields the consistency of non-conforming P; gradient discretisations.

Definition 7.33 calls for a few comments. First, it is not required that the
mesh M satisfies Item 1 in Definition 7.2 of a polytopal mesh. Nevertheless,
in all the examples of LLE GDs encountered in Chapters 8-13, the mesh
M in Definition 7.33 is indeed the set of cells of some polytopal mesh ¥ =
(M, F,P,V). Note that the choice of ha in Definition 7.33 is the same as
(7.6) in Definition 7.2.

The set S in Definition 7.33 might be such that there exist i, j € I with i # j
and x; = ;. This means that two different DOFs may be located at the same
point x; = ;. This happens for instance in the case of the MPFA-0 scheme,
see Remark 11.1 in p.305.

Finally, the function reconstruction IIp of an LLE GD is not necessarily
locally Pi-exact; only the local Py-exactness is required. This enables us to
consider gradient discretisations with piecewise constant reconstructions (see
Definition 2.10), and in particular mass-lumped GDs (see Section 7.3.5 below).

Remark 7.85 (Generalisation of reg; )

The term diam(K) in reg;, ,(D) could be replaced with any quantity wx > 0, the
requirement to prove Proposition 7.36 below being that maxkxem,, wxk — 0 as
m — oo.

Proposition 7.36 (LLE GDs are consistent). Let (D;)men be a se-
quence of LLE GDs (in the sense of Definition 7.33), with associated meshes
(Mp)men- If (reg, .(Dm))men is bounded and haq,, — 0 as m — oo, then
(D )men is GD-consistent in the sense of Definition 2.4, i.e. Sp,, (¢) — 0 as
m — +o0, for any @ € Wy P(£2).

Proof. Lemma 2.13 states that the convergence of Sp_ (¢) to zero only needs
to be proved for functions in a dense subspace of WO1 P(£2). Having in mind
to use Lemmas 7.28 and 7.31, we take Wy?(£2) N W2>(R%) as the dense
subspace in W, ?(£2) (the space C2°(£2) would also be adequate).

Let ¢ € WyP(2) N W2°(R?) and let v™ = (p(x}"))ierm € Xp,, 0, Where

Sm = (&")ierm is the family of approximation points of D,,. Let K € M,,

K3
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and denote by 7 ., the Pp-exact function reconstruction associated to K
for D,,. The definition (7.33) of IIp,, Lemma 7.28 and the definition of

reg,, (D) give

Hp,, 0™ = @lloie) = |meml(Wierp] = @l o,

1+ ma dist(x;, K)
y oo\ T )
iely  diam(K)

1
(1 + reng(Dm)) Ieg Lk (Dm)|K| P hMm ||50||W1»00(]Rd) :

IN

) sl T3 i) el

IN

Raise to the power p, sum over K € M,, and take the power 1/p to obtain

[Ip,,v™ — 80||Lp(rz)
S (1 + regLLE(Dm)) regI_LE(Dm)|Q|EhM7n ”(p”leOO(]Rd) . (736)

Let us now turn to the gradients. For K € M,,, let Gk ,,, be the Pi-exact
gradient reconstruction associated to K for D,,. Owing to the definition (7.34)
of Vp,,, to Lemma 7.31 and to the definition of reg,, .(Dp,),

m

||vaUm - v‘P”Lp(K)d = ||gK,m[('Uz’ )ieI}?] - v<p||Lp(K)d
1 1.
< (14 3 reme D) 168, D) ) 1T din () el o -

Again, raising to the power p, sum over K € M,, and take the power 1/p to
obtain

VD, o™ — V‘PHLP(Q)d

1 1
< (1 + 5 regLLE(Dm)[]‘ + regLLE(le)}2> |“Q|ph/\/lm ||§0||W2*°°(Rd) ’ (737)
Since (reg,..(Dm))men is bounded and Sp,,(¢) < [Ip,v™ —¢|l1sn) +
VD, v™ = V@l 14y, we infer from (7.36) and (7.37) the existence of Cio
not depending on m or ¢ such that

SDm (QO) S CthMnl ||<IDHW2*°°(Rd) : (738)

Thus, Sp,, () — 0 as m — oo and the proof is complete. L]

Remark 7.87 (Order of approzimation)

The order 1 approximation (7.38) is expected for reconstructions that are only lin-
early exact.

Assume that, for each K € M, the family (7k)icr, is a P(x—1)-exact function
reconstruction, that is

V§ = (j1,...,ja) € N* such that j, +... 4+ ja<k—1, Ve € K,
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Z il (x) = 2.
il

Here, 7 = zI'...2/% if @ = (x1,...,24). Similarly, suppose that the family
(Gk )iery is a Py-exact gradient reconstruction, that is:

V§ = (j1,...,ja) € N* such that j, +... 4+ ja < k, Ve € K ,
Z 2l Gy (x) = Va.

i€l

Then, in (7.24) in the proof of Lemma 7.28, express v; — p(x) = ¢(x:) — ¢(x) using
the Taylor expansion of ¢ of order k — 1 to see that, under boundedness assumption
on reg; (D), L

1250 = @l ) = QUKL [@llys.o aay)- (7.39)
Similarly, using in the proof of Lemma 7.31 the k-th order (instead of the first order)
Taylor expansion of ¢ shows that (7.31) becomes |v; —&| = O(h5! ol wi+1.00 (Rey )5
and thus that the final estimate in Lemma 7.31 is

1
190 = Vll o ya = OWSAKTP [@llyass o may)- (7.40)

Raising (7.39) and (7.40) to the power p and summing over K € M yields
Vo € Wg(2) NWHHH(R?), 8p(p) < Chi |l wr+1,00 may (7.41)

where C' depends only on an upper bound of reg;, (D). This latter estimate is
particularly useful for problems in which Sp participates in the error estimates
established for the GDM (cf. Theorems 3.2 and 3.28 for example).

The relation (7.41) is not optimal in the sense that the regularity assumptions on
¢ can often be relaxed. In particular, we only need the W**1>° regularity around
each K € M, and this regularity can often be further relaxed to H**!. See Section
A.1 in Appendix A for examples of more efficient estimates.

7.3.3 From local to global basis functions, and matrix assembly

Let D = (Xp,,IIp,Vp) be an LLE GD in the sense of Definition 7.33. The
functions (%) kem.icr and (Gi)kem.icr, can be seen as elementary basis
functions, from which global basis functions can be constructed. Each of these
global basis functions is associated with one DOF of the GD in the following
way. For i € I, define 7* € LP(£2) and G* € LP(£2)¢ by:

VK € M such that i € I, (n')x = 7 and (G°)|x = G,

VK € M such that i € I, (7°);x = 0 and (G")x = 0.

Let (U(i))iem be the canonical basis of Xp g, that is: for i € I, vgi) =1 and
vy) =0 for all j € I'\ {i}. It can be checked that, for any i € I,
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= Hpv(i) and G' = va(i) on 2.

From the definition of reg,, (D) it is expected that, for each i € I, the cells
K € M such that i € Ix are close to x;. Hence, the global basis functions 7’
and G have their support in a neighbourhood of x;, associated with the DOF
v; of a generic v € Xp .

This construction is illustrated in Figure 7.2, for the special case of basis
functions from the Py finite element method (for which I =V and Ix = Vk).
As can be seen, the elementary basis function 7% is only defined in K, whereas
the global basis function 7° is defined over all of {2, and is zero on the cells
K’ that do not have s as a vertex (i.e., s € Vk).

T

Fig. 7.2. Elementary basis function (left) and global basis functions (right) for Py
finite elements

Let us now consider the problem (3.3) and its GS approximation (3.4). As
seen in Section 3.1.1, this scheme can be re-cast as a linear system AU = B
with

U= Z Uiv®,

i€ln

Ay = / A@) VoD (@) - Voo (z)de,
(9]

Bi— / F@) oo (z)da — / F(z) - Voo (z)da.
2 (9]

As in finite element methods, for an LLE GD the matrix A and vector B
can be assembled by local computations. Define the elementary matrices and
vectors by

Vi€ I, Vj € I,
A8~ [ A@)) (@) Gic(a)d,
K
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BE = /Kf(m)w}((ac)dzc—/KF(ac)g}((sc)da:

Then the global matrix and vectors are assembled by the following operations:

Aij = Z Ag and Bz = Z BlK

KeM st. i,jelk KeM s.t. iclx

7.3.4 Barycentric elimination of degrees of freedom

The construction of a numerical scheme often requires several interpolation
points, the approximation points S of an LLE GD, corresponding to as many
DOFs of the scheme. The higher the number of DOFs, the larger the matrix
will be and, very likely, the more expensive the scheme is. A classical way
to reduce the computational cost of a scheme is to eliminate some of these
DOFs through barycentric combinations. This consists in replacing (and thus,
eliminating) certain DOF's by averages of other DOFs.

We describe here a way to perform this reduction in the general context of
LLE GDs, while preserving the required properties (coercivity, consistency,
limit-conformity and compactness). In the following definition, a subset I®* is
selected from the geometrical entities I associated with the DOF's of an LLE
GD, and all other degrees of freedom (associated with I'\I*) are eliminated
from the GD space by being expressed as local barycentric combinations of
the degrees of freedom corresponding to I°*.

Definition 7.38 (Barycentric condensation of an LLE GD). Let D be
an LLE GD in the sense of Definition 7.33, S = (x;)ic; C R be its family of
approximation points, and M be its mesh. A gradient discretisation D™ is a
barycentric condensation of D if there exists a strict subset I®* C I and, for
all i € I\I™, a set H; C I™ and real numbers (B;)jeHi satisfying

Z ﬂj’ = and Z B;-a:j =z, (7.42)
jeH,; jeH,;
such that

o[y C I,
o Xpoig={u= (u)ierm : u; €R foralli € I™, u; =0 for alli € Iy},
o The function and gradient reconstructions Ilpe. and Vpes are given by:

Yv € X‘DBA70 s H’DBA/U = H’D?]’ and VDBA'U = V‘Di}’,
where v € Xp g is defined by

Vi Zf’L S IBA,
Viel, vi=9 3" Blv; ifiel\I™ (7.43)
JEH;
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(recall that Xp o = {u = (ui)ier : w; €R foralli eI, u; =0 forallie
Is}, and notice that U indeed belongs to this space since Iy C I* and
v; =0 ’LfZ € I{))

The regularity of the barycentric condensation D®* is

, dist(x;, x;)
g (0™) = max [ Y18+ ma ax sU@), Ti)
regp, (D™) z‘EHIl\I)‘(3A jeH, |ﬁ]| KE/I\I/}I?GIK Jné]}f diam(K)

It is clear that D" defined above is a GD. Indeed, if Vpeiv = 0 on (2 then
Vpv =0 on {2 and thus v; = 0 for all i € I, since D is a GD and [|[Vp-|[ 15 ()
is a norm on Xp . This shows that v; = 0 for all ¢ € I™, and thus that
||VDBA'HLP(Q)d is a norm on Xpss ¢.

Note that regy, (D) is always greater than or equal to 1 (take ¢ € I\ I** and
write 1 = 3",y B <> ey, 185])- Let us, for a brief moment, confuse a DOF
with the geometrical entity ¢ € I it is attached to, and with the interpolation
point x; it corresponds to (x; usually lies on or close to 7). Bounding the
last term in regg,(D™) consists in requiring that, if ¢ € I\ I™ is involved
in the definition (for D) of mx or Gx for some K € M, then i lies within
distance O(diam(K)) of any j € H; used to eliminate i. This ensures that,
after barycentric elimination, g and G are still computed using only degrees
of freedom in a neighborhood of K.

The operation, performed to build a barycentric condensation of a given LLE
GD and consisting in replacing some degrees of freedom with combinations
of others, is called a barycentric elimination. These combinations are linearly
exact thanks to (7.42). The LLE property is therefore preserved in the process,
as formally stated in the lemma below.

Remark 7.39 (Barycentric elimination vs. static condensation)

A barycentric elimination is not quite the same as a static condensation. A static
condensation consists, after having written a linear scheme, in expressing some of
the unknowns in terms of others and of the source terms. Examples of static con-
densations are given in Remarks 8.17 and 12.7.

A barycentric elimination occurs before a scheme is even written, and can also
be performed for non-linear schemes; the replacement of DOFs in a barycentric
elimination modifies the space and operators of the scheme independently of the
model to which it is applied.

Lemma 7.40 (Barycentric elimination preserves the LLE property).
Let D be an LLE GD in the sense of Definition 7.33, and let D®* be a barycen-
tric condensation of D in the sense of Definition 7.38. Then D* is an LLE
GD on the same mesh as D, and

reg (DBA) S régpa (DBA) Teg 1k (D) + Tegpa (DBA)' (744)
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Proof. Let M be the mesh corresponding to D, and let K € M. Take
v € Xpoa g and let v € Xp o be defined by (7.43). For any K € M, the values
(0s)icr, are computed as linear combinations of (v;);¢ 7o, with

I =Ixn™yu ) H. (7.45)
1€l \ 1B
By (7.33) in Definition 7.33 and the definition (7.43) of v, for K € M and
ae x € K,

Mpsv(x) = Hpi(x) = Y Gir(x)

ic€lk
= Y urk@+ Y (Zﬁ;uj)wg{(x):zvﬁ;;(m), (7.46)
i€ T NIBA i€l \IB  jEH; JEIB

where, for j € I}, the function ﬁ( € LP(K) is defined by

e+ > Bimg i jeIgnI™,
i€l \IB | jEH,;

7TK = .
> Bimi if j & I NI™.
i€l \IB | jEeH,;

Using (7.42) and (7.22) yields, for a.e. ¢ € K,

YoT@ = ) m(@)+ Y Y. Birk(@)

jeria GEINIBA JEIBN i€Ix \IPA | jEH;
= Y @+ Y mk@ Y s 4
JEIKNIBA i€k \IBA JjEH;
= Y @+ Y mk(@)
i€l NIBA 1€1k \IBA
:Zﬂﬁf(m’)zl.
i€l K

In the first term of the penultimate line, we simply performed the change of
index j + 4. The family (7% )¢ o is therefore a Po-exact function reconstruc-
tion and, by (7.46), IIpesv has the required form (7.33).

In a similar way as above, write

Vpno(x) = Vpi(®) = Y 0,05 (x)

i€lKk

= D wbr@+ Y | B | Gk@) = D vGk(@),

i€l NIB €I \IP \JEH, jers
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where the function @( € LP(K)% is defined by
G+ > PGk ifjelxnI™
=i i€Ig\IP" | jEH;
> BiGi if j & Ie N I™
i€l \IB | jEH,;

Let A be an affine map. Reproduce similar computations as above for %}; and
write

> Az;)Gk ()
JEIR

= Y Al)Gr(@)+ Y Alz) Y BiGk(@)

jEINIBA jerks i€T\IBr | jEH;

= Y Alw)Gi@)+ Y | D Al@)s) | Gi(x).  (748)

JEIgNIBA i€l \IBr \jEH;

Since A is affine we have A(x) = A(x;) + VA - (x — x;). Hence, (7.42) yields

> BA() = BiA(m) + VA | > By — x| = Alm).

JEH; JEH; JEH;
Plugged into (7.48) and using (7.25), this gives
> Alw)G@) = Y A@)Gi(@)+ Y Alx)Gic(x)

jery i€lxnIB €T \IB

=Y A(xi)Gic(w) = VA.

i€lk

The family (5;()Je s s therefore a Pj-exact gradient reconstruction, and
V peav has the required form (7.34). This completes the proof that D** is an
LLE GD.

Let us now establish the upper bound on reg,, (D). Reproducing the rea-
soning that leads to (7.47) but using absolute values and inequalities, we see
that for any K € M and a.e. x € K

Yo Fk@I< Y k@I + D Imk@)] Y 18]
jeItr i€l NIBA 1€l \IBA JjEH;

regp, (D™) Y |7 (). (7.49)

1€l

IN

Take the LP(K) norm, multiply by |K\7% and recall the definition (7.23) of
the norm of Py-exact function reconstructions to obtain
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ITkll, < regp\(D™) [7kll, - (7.50)
The estimate on the gradient reconstructions is similar. Using the definition
of (G )je o, we see that (7.49) still holds with “G” instead of “n” so that,
taking the L?(K) norm and multiplying by diam(K)|K|_%,

|G| < reas (@) G, (7.51)

Finally, for j € I} we estimate %ﬁg)

there exists ¢ € Ix\I™ such that j € Hy, and thus %ﬁ?)‘) < regp, (D™).
This gives

by assuming first that j & Ix. Then,

dist(x;, K) < dist(x;,xe) ~ dist(x, K)
diam(K) — diam(K) diam(K)

dist(x;, K
< regp, (D) + max dist(@;, K)

. .52
ielx diam(K) (752)

This last inequality obviously also holds if j € Ix. The proof of (7.44) is
completed by recalling the definition (7.35) of reg,,., by combining (7.50),
(7.51) and (7.52), and by using regg, (D") > 1. L]

The following theorem shows that barycentric condensations of sequences of
LLE GDs satisty the same properties (coercivity, GD-consistency, compact-
ness, limit-conformity) as the original sequence of GDs. The GD-consistency
is a consequence of Lemma 7.40 and Proposition 7.36, and the other three
properties result from the fact that Xps.  is (roughly) a subspace of Xp o.

Theorem 7.41 (Properties of barycentric condensations of GDs). Let
(Din)men be a sequence of LLE GDs in the sense of Definition 7.33, that is
coercive, GD-consistent, limit-conforming and compact in the sense of Defi-
nitions 2.2, 2.4, 2.6 and 2.8. Let M,, be the mesh associated with D,,. We
assume that hag, — 0 as m — oo, and that (reg,, .(Dm))men s bounded.
For any m € N we take a barycentric condensation D} of Dy, in the sense of
Definition 7.38, such that (regp, (D)) men is bounded.

Then (D2))men is also coercive, GD-consistent, limit-conforming, and com-
pact. Moreover, we have

Cpu < Cp,,  and  Wps < Wp,,. (7.53)

Remark 7.42. Each of the property is transferred to the barycentric condensa-
tion independently of the others. This means, for example, that we only need
to know that (Dy,)men is coercive to deduce that (D),,en is also coercive.

Proof. For any v € Xpg, o, with v defined by (7.43) we have

17280l ) = 10Tl
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<Cp,, Hva5||LP(Q)d =Cp,, VDE{\U

leroye-

This shows that Cps. < Cp,, and thus that (D)) men is coercive if (D )men
is coercive.

To prove the compactness, we take (VDE;\ Um)meN = (VD,, Um)men bounded in
LP(2)4, and we use the compactness of (D, )men to see that (IIp,, Uy )men =
(Ippsvim)men is relatively compact in LP(£2).

The limit conformity follows by writing, for v € Xpp: o and ¢ € Wdi"”’/(ﬂ)7

1
Vg

/Q (Vmsnw(m) ~p(x) + Hpgﬁv(ac)divcp(:c)) dx

[or(eys
1

B ||va5HLp(Q)d

b

/Q (Vo 3(x) - (@) + ITp, 3()divep(x)) da

which shows that Wps. () < Wp,, (p) — 0 as m — oo.

Finally, by Lemma 7.40 each D} is an LLE GD and (reg,, ,(D:))men is
bounded, since (reg,,.(Dm))men and (regg, (D)) men are bounded. Proposi-
tion 7.36 then gives the GD-consistency of (Dy)men- L]

7.3.5 Mass lumping

“Mass-lumping” is the generic name of the process applied (usually on a case-
by-case basis) to modify schemes that do not have a built-in piecewise constant
reconstruction, say for instance the Py finite element scheme (see Chapter 8 in
Part III). In the GDM framework, a generic and rigorous way to perform mass-
lumping can be described. It simply consists in modifying the reconstruction
operator IIp so that it becomes a piecewise constant reconstruction. Under
an assumption easy to verify in practice, this “mass-lumped” GD can be com-
pared with the original GD, which ensures that all properties are preserved.

Note that the notions and results in this section are not limited to LLE GDs,
they apply to any kind of gradient discretisation.

Definition 7.43 (Mass-lumped GD). Let D = (Xp,lIp,Vp) be a GD
in the sense of Definition 2.1. A mass-lumped version of D is a GD DM =
(Xp,0, I3, V) such that I} is a piecewise constant reconstruction in the
sense of Definition 2.10.

Example 7.44 (Mass-lumped non-conforming P; gradient dis-
cretisation)

Consider the special case of an LLE GD D, with I as set of geometri-
cal entities attached to the DOFs. Recalling the notations in Definition
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2.10, mass-lumping D first requires to select disjoint subsets (£2;);cs of 2
with each {2; lying “around” ¢. Then, a new function reconstruction I13"
is defined such that, if v = (v;);er, for all ¢ € I we have II}}'v = v; on
£2;. According to Theorem 7.47 below, this new reconstruction is a valid
choice if the (£2;);er are such that IIpv = v; on §2;, for all i € T.

For the non-conforming P; finite element on a simplicial mesh ¥, since
I = F we need to find, for each ¢ € F, a set {2, that lies “around” o
and is disjoint from all the other sets ({2,/),/,. There are many possible
choice; one of them is presented in Figure 9.2 page 289, in which each (2,
is a diamond D, around o. Then, (II}*v)|p, = v, for all o € F.

Remark 7.45 (Mass-lumping with respect to a canonical basis preserves the
LLE property). Let D be an LLE GD, with I as set of geometrical entities
attached to the degrees of freedom. Let DM be a mass-lumping of D with
respect to I, that is, II33" is a piecewise constant reconstruction in the sense
of Definition 2.10 with B = I and (e;); = d;;. Then D" is also an LLE GD,
and regLLE(DML) <reg g (D)

Remark 7.46 (Mass lumping with respect to a non canonical basis)

The basis (e;)icp of Xp,o used in Definition 2.10 to perform a mass-lumping of D is
usually a canonical basis, each vector in this basis corresponding to a natural degree
of freedom of D. Mass-lumping could be done with respect to a non-standard basis,
but this might lead to additional numerical cost if the computation of Vp in this
non-standard basis is complex; the scheme implementation might require to perform

changes of basis, possibly with full transition matrices, to compute II33" and Vop.

Theorem 7.47 (Properties of mass-lumped GDs). Let (D,,)men be a
sequence of GDs in the sense of Definition 2.1, that is coercive, GD-consistent,
limit-conforming and compact in the sense of Definitions 2.2, 2.4, 2.6 and
2.8. For any m € N we take D) a mass-lumped version of Dy,. If there exists
(Wm)men such that wy,, — 0 as m — oo and

vmeN, Yv e Xp o,

m

|H%Env — HDmUHLP(Q) < wm, ”UHD,” , (7.54)

then (DX )men 18 coercive, GD-consistent, limit-conforming, and compact.
The reconstruction Il is also piecewise constant.

This theorem is a direct consequence of Theorem 7.48 below, which gives
a general setting for proving the properties of a GD by comparing it with
another GD.

Theorem 7.48 (Comparison of function reconstructions).

Let (Dy)men be a sequence of GDs in the sense of Definition 2.1. For any
m € N, let D}, be a GD defined from Dy, by Dy, = (Xp,, 0,113 ,VD,,),
where 113, is a linear operator from Xp,, o to LP(§2).
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1. We assume that there exists a sequence (wm)men such that

lim wy, =0 and, for allm € N and all v € Xp,, 0,
e (7.55)
||HDmv — HDWUHLP(Q) < wm ||vHDm )

If (Dyn)men s coercive (resp. GD-consistent, limit-conforming, or compact
— in the sense of Definitions 2.2, 2.4, 2.6 and 2.8), then (D}, )men is also
coercive (resp. GD-consistent, limit-conforming, or compact).

2. Reciprocally, if (Dm)men and (D},)men are both limit-conforming and
compact in the sense of Definitions 2.6 and 2.8, then there exists (W )meN

such that (7.55) holds.

Proof.
Step 1: proof of Item 1.
COERCIVITY: let us assume that (D, )men is coercive with constant Cp. Set-
ting M = sup,,,cy Wm, using the triangular inequality and invoking (7.55), we
have, for any v € Xp,, o,
Hn%)mvHLP(_Q) < || 11p, v - HDmUHLP(Q) + [HIp,,vll o)
< M|V, o0yt + Cp,, VD,V o) -

The coercivity of (D}, )men follows, with Cp, < M 4 Cp,, < M + Cp.

GD-CONSISTENCY: let us assume that (D, )men is consistent. Using the tri-
angular inequality and (7.55), we write, for v € Xp_ o and ¢ € Wol’p(Q),

Sp;, () < [[Ip, v - ‘F’”LP(Q) +IVD,,v = Vol L ()

<wm |Vp,v
Swm [V
+ HIp,,v = ¢l o) + VD, v = Vol (o)

lLec2ye + D, v = @l 1oy + IV, 0 = Vol o)

Le(@)s T Wm IVp,,v— V‘PHLp(n)d

< Wm ||V80||Lp(9)d
(U M), 0 = ¢l + 90,0 = Vol o)
Hence Sp; (¢) < wimn [Vl o0y + (1 + M)Sp,, () and the consistency of
(D}, )men follows from the consistency of (Dy,)men and from lim,,, o0 Wy, = 0.

LIMIT-CONFORMITY: let us now assume that (D, )men is limit-conforming.
By the triangular inequality and (7.55), for any ¢ € WaV-P'((2),

/Q (mev(:c) cp(x) + H{;mv(w)divp(w))dw

S ||diV(P||Lp/(Q) Wm ||vaUHLl”(.Q)d

+ / (Vp,, v(x) - p(x)+ Ip, v(x)dive(x)) dr
fo)
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We infer that Wp; (¢) < w [[dive| . o) + Wp,, (¢) = 0 as m — oo, and
the limit conformity of (D}, )men is established.

COMPACTNESS: we now assume that (D,,)men is compact. If (Vp, ) men
is bounded in LP(£2)?, then the compactness of (D,,)men ensures that
(IIp,, Vm)men is relatively compact in LP(£2). Since ||H5mvm —IIp,, v, HLP(!?)
tends to 0 as m — oo by (7.55), we deduce that (II v )men is relatively
compact in LP(£2).

Step 2: proof of Item 2.
We reason by way of contradiction, therefore assuming that (D,,)men and
(D},)men are both compact and limit-conforming, and that

H ’U—H* v P
11,0 = 0, lr@) )y ocm 00, (7.56)

Wy 1=

max
veXp,, 0\0} ||V, vlLr(0)e

Then there exists ¢g > 0, a subsequence of (D, D}, )men (not denoted
differently) and for each m € N an element v,, € Xp_ o\{0} such that

115, vm — HD,,"vaLP(Q) > €0 VD, vmll 1o()a- Since vn, # 0, the element

;j(md Um € Xp,, 0 is well defined. It satisfies |[Vp,, U/ 1n ()

fﬁm = ||vaUm|
=1 and
1113, 0m = I, Ul | 1 ) = €0- (7.57)

Extract another subsequence such that Vp_ v, weakly converges to some G in
LP(£2)%, and, using the compactness of (D, )men and (D) men, Ip,, U — v
in LP(§2) and 113 v, — v* in LP(§2). Passing to the limit in (7.57) we find
lv — v*||Lp(Q) > go. Extending the functions Vp,, v, IIp,, Uy and 113 Uy,
by 0 outside £2, we see that, for any @ € WiV (),

/ (Vi T () - () + [Ty, T (@)divep()) da| < Wops (i),

and

< Wp,, ().

/Rd (Vp,, Um(x) - p(x) + IIp, Upy(x)dive(x)) de

By limit-conformity of both sequences of GDs, let m — co to find

/ (G- p(@) + v* (@)dive()) dz = / (G- p(@) + v(@)dive()) dz = 0.
R4 R

This proves that v,v* € Wy*(2) and that G = Vv = Vu*. Poincaré’s in-
equality then gives v = v*, which contradicts ||v — v*|| () = €0- T herefore
the sequence (wy,)men defined by (7.56) satisfies (7.55). ]
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Remark 7.49. Three estimates obtained in the course of this proof deserve to
be put forward. Under Assumption (7.55) and setting M = sup,, ey Wm, We
saw that

Cp: <M+ Cp,,, (7.58)

that
Vo € WoP(2), Sp;, (9) < wm IVl Lo (ya + (1 +M)Sp,, (), (7.59)
and that
Yoo € WP (), Wpy () < win [[divel| 1 () + W, ()- (7.60)

These estimates are particularly useful in the situation where rates of conver-
gence of Sp_ and Wp,_ to 0 are known. Indeed, in this case, (7.59) and (7.60)
give some rates of convergence of Spx and Wp ~to 0, which in turns provides
rates of convergence for D}, applied to linear, and some non-linear, problems
(see e.g. Theorems 3.2 and 3.28).

An example of this is given for mass-lumped P; gradient discretisations in
Remark 8.16.

7.3.6 Non-homogeneous Dirichlet, Neumann and Fourier
boundary conditions

The (minor) changes that must be made in the definitions and results in the
three previous sections in case of non-homogeneous Dirichlet conditions, Neu-
mann conditions or Fourier conditions are now introduced. Mixed boundary
conditions being deduced from Dirichlet and Neumann conditions, we do not
detail this last case.

Upon trivial changes of the space of degrees of freedom, the definition of a
mass-lumped GD (Definition 7.43) does not depend on the considered bound-
ary conditions since it only deals with the reconstruction I1p.

Non-homogeneous Dirichlet boundary conditions
LLE gradient discretisation

Definition 7.50 (LLE GD for non-homogeneous Dirichlet BCs). A
gradient discretisation D = (Xp,Ip s, IIp,Vp) for non-homogeneous Diri-
chlet conditions in the sense of Definition 2.18 is an LLE GD if

e There exists a finite set I = I U Iy such that
Xp={v=(vi)ier : vi €R forallie I} =Xpo® Xpo
where
Xpo={v=(vi)ier : vi €R foralliclo, v;=0 forallic Iy},
and

Xpo={v=(vi)ier : vi €R foralli eIy, v; =0 for alli € I},
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o [Ip and Vp satisfy Item 2 in Definition 7.33,
1
eIpy: W= v P(002) — Xp.s s a linear mapping.

The regularity factor reg,,.(D) is defined by (7.35).

Proposition 7.51 (GD-consistency of LLE GDs for non-homogeneous
Dirichlet BCs). Let (Dy,)men be a sequence of LLE GDs for non-homoge-
neous Dirichlet boundary conditions, in the sense of Definition 7.50. Denote
by M., the mesh associated to Dy,. Assume that (veg,, .(Dm))men is bounded,
that haq,, — 0 as m — oo, that (2.16) holds, and that

Vi € C™(92),

T o ,
max  max I Dm,a’Y.(QO))z Pl —0 asm — co. (7.61)
KeM,, icIxnly diam(K)

Then (Dy)men is GD-consistent in the sense of Definition 2.20.

Here and in the following, to simplify the notation we make the convention
that maX;ci,nI, Z;=0if Ix NIy= 0.

Proof. The property (2.16) enables us to check the GD-consistency only
on smooth functions (see Lemma 2.21). Let ¢ € C2?(R?). The function
v™ = (o(x))ierm, defined as in the proof of Proposition 7.36, has good
approximation properties since Vp, v™ — Vi in LP(£2)? and IIp, v™ — ¢
in L*°(£2) as m — oo (these properties were established in the proof of Propo-
sition 7.36 without using the zero boundary value of ¢). However, v™ does
not necessarily satisfy the requirement v™ —Zp, ov(¢) € Xp,, 0 in Definition
2.20.

Consider therefore w™ € Xp,, 0 +Ip,, 07(¢) defined by w® = v* = ¢(x;) if
i€ Inand w™ = (Ip,, 07(p)): if i € Iy. Let, for K € My,

mo_ ,m
wm (K) = max i — vl

iet diam(K) (762)

By definition of [|Gk||, (we do not explicitly denote the dependency with
respect to m of this Pj-exact gradient reconstruction),

>l — w6k |

19k [(vi")iend] — Gr (Wi )ier]ll po(xye <

1€k Lp(K)d
< wn(K)diam(K) || > |G|
i€l Lp(K)d
< 19kl 1K [P wm (K)
1
< regy s (Dm)|K|Pwm(K).  (7.63)



252 7 Meshes and discrete tools
Raising this estimate the power p and summing the result over K € M,, gives

m m 1
||va’U - vaw ”LP(Q)d < regLLE(Dm)|Q|p Krg?'/}l(m wm(K)'

Since (reg,,,(Dm))men is bounded, Assumption (7.61) shows that the right-
hand side of the previous inequality tends to 0 as m — oo. Hence, the con-
vergence of (Vp, v™)men gives Vp, w™ — Vi in LP(£2)%. The convergence
of (IIp,, w™)men is established similarly. L]

Barycentric condensation

The change to be made in Definition 7.38, besides considering an LLE GD for
non-homogeneous Dirichlet conditions, is the obvious replacement of Xpe. o =
{1} = (Ui)ielm :v; € Rforalli € I®;v; = 0foralli € Ia} with Xps:. =
{v = (v3)sem : v; € Rfor all i € I*}. Notice that the boundary degrees of
freedom are not eliminated (Iy C I**).

Lemma 7.40, that is the preservation of the LLE property, still holds (the
proof did not use the zero boundary condition). The properties of barycentric
condensations, Theorem 7.41, is also valid provided that we assume (2.16)
and (7.61) — to establish the GD-consistency by invoking Proposition 7.51.

Mass-lumping

Since the interpolation operator Zp 5 is unchanged by the mass lumping of D,
it is easy to see that Theorem 7.48, and thus Theorem 7.47, still hold modulo
a trivial adjustment of the space of degrees of freedom.

Neumann boundary conditions

LLFE gradient discretisation

Definition 7.52 (LLE GD for Neumann BCs). A gradient discretisa-
tion D = (Xp,IIp,Vp) (resp. a D = (Xp, p,Tp,Vp)) for homogeneous
Neumann boundary conditions (resp. non-homogeneous Neumann boundary
conditions) is an LLE GD if

e There is a finite set I = I U Iy such that
Xp={v=(vi)ier : vi €R forallie I} =Xpo® Xp,o,
where
Xpo={v=(v)ier : vi €R foralli €Iy, v; =0 for alli € Iy},
and

Xpo={v=(vi)ier : vi €R foralli €Iy, v; =0 for alli € I},
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o [Ip and Vp satisfy Item 2 in Definition 7.33,
The regularity factor reg,, (D) is defined by (7.35).

The proof of the following proposition is identical to the proof of Proposition
7.36, in which we actually did not use the boundary value of the functions.

Proposition 7.53 (GD-consistency of LLE GDs for Neumann BCs).
Let (Dy)men be a sequence of LLE GDs for Neumann boundary conditions,
in the sense of Definition 7.52. We denote by M., the mesh associated to Dy, .
If (reg, s(Dm))men is bounded and haq,, — 0 as m — oo then (Dp)men is
GD-consistent in the sense of Definition 2.27.

Barycentric condensation

Starting from an LLE GD for Neumann conditions as defined above, a
barycentric condensation is defined as in Definition 7.38, with the addition
that, in the case of non-homogeneous conditions, the trace Tps. of D®* is de-
fined by Tpesv = Tpv, where v is defined by (7.43). We note that, with the
norm (2.25) considered in a GD for Neumann boundary conditions, we have
[0l ps = [10]lp-

The preservation of the LLE property by barycentric condensation (Lemma
7.40) is still valid, as well as Theorem 7.41.

Mass-lumping

There is no change in the definition of a mass-lumped GD. Note that, if IIp
and II7 are two function reconstructions on Xp, by the Hoélder inequality

(C.6),

< + | [I5v — pv|| 1o (g »

/Q IIyv(x)de

/Q IIpv(x)de

and vice versa with IIp and IT} switched. This enables to prove the equivalent,
for Neumann boundary conditions, of Theorem 7.48 in which the norm ||v||p,
in (7.55) is defined by (2.25).

Theorem 7.47 then clearly holds, provided that we use the norm (2.25) in
(7.54).

Remark 7.54 (Mass-lumping the trace reconstruction)

In the case of non-homogeneous Neumann conditions, one could also mass-lump
the trace reconstruction Tp. This would be useful for problems that are non-linear
with respect to the trace, or that involve the trace in a time-stepping. If the trace
is mass-lumped, then for Theorems 7.48 and 7.47 to hold one must introduce this
trace in (7.55) and (7.54). This latter formula, for example, would therefore become

”H%'T‘nv — HDmvHLP(Q) + ||']T%I;nv — TDMUHLZD(BQ) < Wm ||’UHDm . (7.64)
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Fourier boundary conditions
LLE gradient discretisation

LLE GDs for Fourier boundary conditions are probably those that undergo
the major changes with respect to Definition 7.33. Because the consistency
of GDs for Fourier boundary condition involves the trace reconstruction, this
trace must be dealt with in a similar way as IIp.

Definition 7.55 (LLE GD for Fourier BCs). A gradient discretisation
D = (Xp,Ip, Tp,Vp) for Fourier boundary conditions is an LLE GD if

e There is a finite set I = I U Iy such that
Xp={v=(vi)ier : vi €R forallie I} =Xpo® Xp,o,
where
Xpo={v=(v)ier : vi €R foralli €Iy, v; =0 for alli € Iy},
and
Xpo={v=(vi)ier : v; €ER forallie Iy, v; =0 for alli € Ip},

o [Ip and Vp satisfy Item 2 in Definition 7.33,

o There exists a finite mesh My of 012 and, for each Ky € Mgy, a subset
Ir, C I and a Py-exact function reconstruction mg, = (W}(a)iefKa on Ky
such that

Vv € Xp, forae x € Ky (for the (d — 1)-dimensional measure)
Tov(x) = T, [(v)ier, |(®) = Y virh, ().

€1k,
The LLE regularity of D is defined by

dist(aci, K)
reg,.;(D) = max (Ilwllp * G, + g dm(K))
diam(Kp) )

(7.65)
e, (Il +
The following proposition is then proved as Proposition 7.36, the estimate on
ITp,,v™ = ¥(®)ll 1r (a5 is obtained as the estimate on ||IIp,, v™ — @| 140

Proposition 7.56 (Consistency of LLE GDs for Fourier BCs). Let
(Din)men be a sequence of LLE GDs for Fourier boundary conditions, in the
sense of Definition 7.55. We denote by M,, the mesh associated to D,,. If
(reg, . (Dm))men is bounded and hpq,, — 0 as m — oo then (Du)men 18

consistent in the sense of Definition 2.49.
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Barycentric condensation

With the above definition of an LLE GD for Fourier boundary conditions, we
use the same definition of barycentric condensation as for non-homogeneous
Neumann conditions, i.e. Definition 7.38 to which we add the relation Tpsiv =
Tpv. With the norm (2.48) of a GD for Fourier boundary conditions, we still
have [[v]| o, = [[7]p-

The preservation of the LLE property (Lemma 7.40) is still valid, the trace
reconstruction Tpes being dealt with as IIps.. A barycentric condensation for
Fourier boundary conditions preserves the properties of a GD (Theorem 7.41
holds).

Mass-lumping

The definition of a mass-lumped GD for Fourier boundary conditions is not
different from Definition 7.43. In particular, if the trace reconstruction is not
mass-lumped, Theorems 7.48 and 7.47 hold. If the trace reconstruction trace
is mass-lumped, Assumption (7.54) must be replaced with (7.64).






8

Conforming methods and derived methods

8.1 Conforming Galerkin methods

8.1.1 Homogeneous Dirichlet boundary conditions

Conforming Galerkin methods are probably the simplest GDM there is. They
simply consist in replacing the infinite-dimensional Sobolev space involved in
the weak formulation (e.g. H{(£2) in (3.3)) with a finite dimensional subspace.
We can therefore define a corresponding GD as follows.

Let A = (¢;)ics be a linearly independent family of elements of Wy?(£2). A
conforming Galerkin GD based on A is defined by:

Xpo={v=(v)ier : vi € Rforall i € I'} and, for v € Xp,
Mpv =Y wvip; € WyP(R2) and Vpv = V(IIpv) = > v;Vep;. (8.1)
icl ~
The properties of this GD are straightforward.

Theorem 8.1 (Conforming GDs for hom. Dirichlet BCs). For all m €
N, take A™) = (Lpl(-m))ig(m) a linearly independent finite family of Wol’p(Q)
and define D, = (Xp,, 0, p,,,Vp,,) by (8.1) with A = A™). Then D, is a

GD for homogeneous Dirichlet boundary conditions in the sense of Definition
2.1.
Furthermore, if

Yo e WyP(2), lim  min ||V — Vp, v|r(e) =0, (8.2)

m—o0 veEXp,, 0

then the sequence (Dp,)men 18 coercive, GD-consistent, limit-conforming and
compact in the sense Definitions 2.2, 2.4, 2.6 and 2.8.

Proof. Thanks to the Poincaré inequality in W, (£2), V|l o (2)a 18 @ norm
on Wy P(£2). Let v € Xpo and assume that IVIp,, v)|pp(nya = 0; then
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IIp,v=73%,c; ;0™ = 0in WP(£2). Since the family (™), ¢ jon) is linearly
independent, we infer that v; = 0 for all ¢ € I, which shows that ||Vp,, || s (o)
is a norm on Xp,_ . Hence, D,, is a GD in the sense of Definition 2.1.

The coercivity of (D,;)men is an immediate consequence of the continuous
Poincaré’s inequality, since this inequality gives, for all u € Xp, o,

”HDmu”LP(Q) < diam(£2) ”V(HDmU)HLP(Q)d = diam({?) ||VDmU||Lp(Q)d :

Assumption (8.2) and the Poincaré’s inequality imply the consistency of
(D) men- Indeed, for all v € Xp, o and o € W, P (£2),

[ p,,v— <P||Lp(9) +1IVp,,v— V‘PHLP(Q)d
= [Mp,.v = ¢l 1o () + VD, v) = Vol 1o()a
< (1+ diam(2)) [V (p,v) — Vell oy

Hence,

Sp,, () < (1 + diam(£2)) Uer)r(lin . VD, v = Vol oo — 0 as m — .
The limit conformity is also straightforward, since Vp_ u = V(IIp, u) for
all u € Xp,, 0, and therefore Stokes’ formula in Sobolev spaces shows that
Wp, (@) = 0 for all ¢ € WV (). The compactness of (Dy,)men follows
from Rellich’s theorem. Indeed, if v,, € Xp,, o is such that [|[Vp, vp, | Lo(2)d =
IV(IIp,, vm)| s (0ye is bounded, then by Rellich’s compactness theorem,
(IIp,, Vm)men is relatively compact in LP(£2). n

Remark 8.2. Dealing with non-homogeneous Dirichlet boundary conditions re-
quires the design of an interpolation operator Zp . This interpolator usually
depends on the chosen method and of the expected regularity of the solution.
See Section 8.3 for an example.

8.1.2 Non-homogeneous Neumann boundary conditions

The definition of a conforming Galerking GD for Neumann boundary condi-
tions is pretty straightforward. Take A = (p;);cs a linearly independent finite
family of elements of WP (£2) and set

Xp ={v=(v)ier : v € Rforall i € I} and, for v € Xp,
IIpv = Z’Uﬂpi, Vpv=V(IIpv) = Zvng@i and Tpu = y(IIpu), (8.3)

i€l i€l

where 7 is the trace on 942 functions in W1?(£2). The following result can be
proved in a similar way as Theorem 8.1.
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Theorem 8.3 (Conforming GDs for non hom. Neumann BCs). For
all m € N, take A™ = (‘Pz(‘m))iel(m) a linearly independent finite family of
WLP(2) and let D,, = (Xp,, 0,p, ,Tp,, ,Vp, ) be defined by (8.3) with
A=A Then D,, is a GD for non-homogeneous Neumann problems in the
sense of Definition 2.32.
Furthermore, if

Vo e WI(2), lm min llp— o, olwisoy =0, (34)

then the sequence (Dp,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.33, 2.27, 2.3/ and 2.36.

Remark 8.4 (Fourier boundary conditions). The relations (8.3) also define a
conforming Galerkin GD for Fourier boundary conditions, and the equivalent
of Theorem 8.3 holds for sequences of such GDs.

8.2 P finite elements for homogeneous Dirichlet
boundary conditions

8.2.1 Definition of Py gradient discretisations

Py Finite Elements methods are particular conforming Galerkin methods, and
thus are GDMs (Section 8.1). They however deserve to be described in detail,
if only because they will give us our first practical example of LLE GD.

Let ¥ = (M, F,P,V) be a conforming simplicial mesh of {2 in the sense of Def-
inition 7.5, and let k € N\ {0}. We follow Definition 7.33 for the construction
of the P, LLE gradient discretisation D = (Xp o, Vp, IIp) for homogeneous
Dirichlet boundary conditions. We therefore describe the geometrical entities
attached to the degrees of freedoms I, the set of approximation points S, the
Py-exact function reconstructions mx the Pi-exact gradients reconstructions
Gk on the elements K of M, and we check that |[|[Vp-||;,(g)a is a norm on
X&x@

1. The set I of geometrical entities attached to the DOFs is I = V(*) and
the set of approximation points is S = I, where V¥) = Ukem V%C) and
V%C) is the set of the points x of the form (see Figure 8.1 for examples):

is S .
T = Z %8 with (is)sevy € {0,...,k}VE s.t. Z is=k. (85

sEVk EIS%%

(Note that for k = 1, V) = V.) Then I = V¥ .= v n@, 1, = V¥ =
V&) N 92, and thus

vs =0 for all s € V(k)}.

ext

Xpo={v=(vs)sey : vs € Rforall s € v

int
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k=1 k=2 k=3
Fig. 8.1. Location of the degrees of freedom in each cell for the Py finite element
method.
2. For K € M, we let I = Vgc) = V®) NK. The function reconstruction

IIp in (7.33) is defined on K through the local basis functions (F%)sevﬁfh
called in this particular case the Lagrange interpolation functions and
defined the following way. For each s € Vﬁ?), % is polynomial in K of
degree k, and satisfies 7% (s) = 1 and 75.(s") = 0 for all s’ € V%C) \ {s}.
This leads to

Vo € Xpo, VK € M, (IIpv)jx = Y vaTi. (8.6)
sEVE(M

Since Zsev(k) T3 is a polynomial of degree at most k that has value 1
K

at each s € V}?% Lemma 8.5 shows that Zsevﬁf) 7% = 1 on K. Hence,
(T%) v is a Pg-exact function reconstruction on K.

For each v € Xp o, IIpv is polynomial of degree & or less in each cell, and
satisfies ITpv(s) = vs for all s € V() By Lemma 8.6, IIpv is therefore
continuous over {2, and thus belong to W1P(£2). Moreover, for any o €
Fext N Fi, IIpv vanishes at all s € V%C) N 7; since ¢ is a simplex in
dimension d — 1 and V(Sk) = Vg) N o, by Lemma 8.5 applied to o instead
of K we deduce that IIpv = 0 on the boundary faces, and thus that
IIpv € WyP(02).

We define the family Gx = (G3,) of functions in L>(K)¢ by

sevﬁ(k)

Ok = Vrk. (8.7)

If ¢ is a polynomial of degree less than or equal to k, then Zsev"“) q(s)ms;
K

is a polynomial of degree less than or equal to k, and matches ¢ at all

s € V](f). By Lemma 8.5, these two polynomials coincide. In particular,
with ¢ = A affine map,

Y A(s)Gr = > A(s)Vri =V Y A(s)mi =VA.

seV(P) seViP) seviP)
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Hence, Gk is a P1-exact gradient reconstruction on K upon Vgc).
The gradient reconstruction Vp is given by these local gradients, which
means that

Yo € Xpo, VK € M, (Vpv)ix = Y vsGi,

sevﬁ)
that is, given (8.6),
Yo e Xpo, Vpv=V(IlIpv) a.e. on 2. (8.8)

4. Relation (8.8) and the Poincaré inequality in W, ?(£2) imply that v
Vol Lr(ye is a norm on Xp o.

The following two lemmas justify the existence and uniqueness of the Lagrange
interpolation functions 7%, and the reasoning made in the construction above.

Lemma 8.5 (V}f) is a complete family for P). Let K be a simplez,

k € N and VI(?) be the points defined by (8.5). Then for any choice of values
(as)sev(k>, there exists a unique polynomial function p of degree at most k
K

such, that p(s) = ag for all s € V.
Proof. Let

@ : Py(K) = Xi = {(as) : as €R for all s € V1

sev§<">

be defined by @(p) = (p(8)) 0 - @ is clearly linear, and Xk is a vector space
K

of dimention Card(V%C)). Let us assume that (i) dim(Py(K)) = Card(VI(f)),
and (ii) if @(p) = 0 then p = 0. Then @ is one-to-one between two vector
spaces of same dimension, and therefore @ is an isomorphism. Hence, for any
family of real numbers (as)sev<k) € Xk there exists a unique p € Py (K) such
K
that @(p) = (as) .\, Which is the conclusion of the lemma. It remains to
K
prove (i) and (ii).

Proof of (i): the dimension of Py (K) is the number of monomials of the form
x® = 2" - xy? with o = (aq,...,aq) and |a] = a1 + -+ ag < k. For
such a a we define © = (ig,...,4q) by io = k — (1 + ... + @q), i1 = oy,
..., g = ag. This correspondence o — % clearly creates a bijection between
{a e N? : |a| <k} and {i € N¢*1 : |§| = k}. Hence those two sets have the
same cardinal. Since dim(PPy(K)) is the cardinal of the first set and, by (8.5),

Card(Véf)) is the cardinal of the second set, the proof of (i) is complete.

Proof of (ii): the proof is done by induction on d.

d=1: K is then a segment of line, and Vﬁf) are k + 1 distinct points on K.
It is well-known that if p is a polynomial of one variable, of degree less than
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or equal to k and that vanishes on k + 1 distinct points, then p = 0 and the
case d = 1 is thus proved.

d —1 = d: we take d > 2, we assume that (ii) holds for d — 1 and we want to
prove that it holds for d. The proof is done by induction on k.

e k = 1: the polynomial p is affine and vanishes at the vertices of K. The
mapping p — p(0) is linear, and therefore preserves barycentric combina-
tions. This mapping takes the value —p(0) at the vertices of K. Since
these vertices form a barycentric basis of R?, we deduce that p — p(0) is
constant equal to —p(0) on R, which shows that p = 0 on R%.

e k— 1= k: up to an affine change of variables, we can assume that one
of the faces o9 of K lies on the hyperplane {x4 = 0}. We then denote by
so the vertex of K opposite to oo (see Figure 8.2). A polynomial p in d
variables of degree less than or equal to k can be written

p(x) = zaq(x) + (21, ..., Ta-1)

where ¢ is a polynomial of degree less than or equal to k — 1, and r a
polynomial of degree less than or equal to k. Since p vanishes on Vﬁﬁ) and
0o is a (d — 1)-dimensional simplex that lies on {z4 = 0}, we see that r
vanishes on Vgc) Naog = Vg];). By the induction hypothesis the result (ii)
is valid in dimension d — 1 and r is therefore the zero polynomial.

The convex hull of v}é“)\vé’;) forms a (closed) simplex K’ such that
Vg,_l) = v}?\v},’;) (these vertices correspond to (8.5) with the index
i, corresponding to sy, different from zero). Moreover, since K' N {xq =
0} = 0, the relation p(x) = xq4q(x) shows that ¢ vanishes on VED Since
q has degree k — 1 or less, the induction hypothesis on k shows that ¢ = 0.
The proof that p = 0 is therefore complete.

0o

Fig. 8.2. Illustration of the construction in the proof of Lemma 8.5 for k = 3.
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Lemma 8.6 (Continuity through the faces of piecewise polynomial
functions). Let k € N\{0}, let K and L be two simplices of R with a common

face o, and let the sets V%g) (resp. Vék)) be defined by the points (8.5) (resp.
with K replaced with L). Let px and pr, be polynomial functions on K and
L, respectively, such that px and pr, have degree at most k and coincide at all

points of V%C) N Vék). Then px and py, coincide on o.

Proof. The functions (px )|, and (pr)|, are polynomial of degree at most k,

and are identical at the points of Vl(f) ﬂVék). Since o is a simplex in dimension

d—1, and Vc(,k) = Vﬁ?) nNo = Vék) nNo = Vﬁ?) N Vgc), Lemma 8.5 can be applied

to o, and shows that (pk)|, and (pr)|, are identical over the whole face o.
m

8.2.2 Properties of P, gradient discretisations

The properties of P, GDs follow from their conformity and from Proposition
7.36, provided that we establish an estimate on the LLE regularity of P, GDs.
We first state a classical result, which relates the independence properties of
a family of vectors in R? with the fact that they enclose a ball of radius com-
parable to their lengths. This result is then used to bound the LLE regularity
of P, GDs.

Lemma 8.7. Let (x;)i=1,...a be vectors in R, and let M be the d x d matriz
with columns x;. We let £ = max;—1 . q|x;| and we assume that the convex
hull of {0, ®1,...,xq} contains a ball of radius ol for some ¢ > 0. Then

d1/2

M <
| < wqo?

1 (8.9)

where wq 1s the measure of the unit ball in R?.

Proof. We first recall that |det(M)| is the volume of the d-dimensional
parallelogram M|0, 1]¢ defined by (1,...,24). This parallelogram contains

the convex hull {Z‘Ll Xizi 0 A >0, >0, A <1} of {0,21,..., x4} Therefore
| det(M)| > vol(B(0, o)) = wao4?. (8.10)

Let &€ = (&1,...,&) € RY We have M¢ = Z?zl &x;. Hence, for all j =
1,...,d,

det($17 e ,mj_l,ME,a:j+1, .. .,ZBd)

= det(iI)l, v ,wj_1,§jill‘j,$j+1, .. .,:Bd)
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:fj det(:cl,...,scd) :gj det(M), (8.11)

where we used the properties of the determinant and created linear com-
binations to eliminate all vectors except x; from M&. The determinant is
multi-linear continuous with a norm 1. Using the definition of ¢ and (8.10),
Equation (8.11) thus gives

(Y ME| > || - [y | [ME] gl - |zl
Z |det(:1:1,...,scj_l,ME,a:j+1,...,acd)|
> [¢] | det(M)| > wao®e?|g],

that is, |M&| > wq0?l|¢;|. We square this relation, sum over j = 1,...,d, and
take the square root. This leads to d'/2|M&| > wqo®|€|. Applying this to
& = M~'n for a generic vector n establishes (8.9). L]

Lemma 8.8 (Estimate of the LLE regularity of a P, GD). Let T be a
simplicial mesh of 2 in the sense of Definition 7.5, and D be a Py, LLE GD
as in Section 8.2.1. Then, if 0 > k< (see (7.10)), there exists Cy, depending
only on d and p, such that

reg, (D) < Ch. (8.12)

Proof. For any K € M and any i € Ix = Vgc) we have x; € K and thus
dist(x;, K) = 0. To control the first and second terms in reg,, .(D), thanks to
Remark 7.32 and to (8.7), it is sufficient to prove that

il oo i) < C2 and [Vl o 500 < Cahii (8.13)

where Cs only depends on d and p. This is done by a classical reference element
technique.

Let K € M. Up to a translation we can assume that one of the vertices of
K is 0. Let (0,s1,...,84) be the vertices of K and let Sy be the reference
d-simplex {a € R? : a; >0, >, ; < 1}. Let M be the d x d matrix with
columns (s1,...,8q). Each column of M is a vector with length at most hg.
Since K contains a ball of radius m;lhK > 0 'hg, Lemma 8.7 shows that
M~ < C3hj* for some C3 depending only on ¢ and d. By definition of the
simplex K, we have K = M Sy, and M maps each approximation point of
Véﬁ) onto the corresponding approximation point of Vl((k) (because M is linear
and these approximation points are defined by barycentric relations).

Hence, if s € Vﬁf), then @ — 75 (Mx) is a polynomial of degree k that is

1lat M~ 1ls € Vg;) and 0 at all other points in Vg;). There are only a finite
number of such polynomials — remember that Sy is fixed and does not depend
on K. We can therefore define Cy as the maximum of the L>°(Sp) norms of
these polynomials and their gradients. This constant only depends on d, and
satisfies
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7% (M) ooy < Ca and V(a5 (M)[| oo (5590 < Ci-
Estimates (8.13) then follows by recalling that M Sy = K, that
(Vi) (M) = (M) 'V (wf (M-)),

and by using the estimate |(M7)~| = |M =1 < C3hy'. n
We can now prove the properties of Py GDs.

Theorem 8.9 (Properties of P, GDs for homogeneous Dirichlet BCs).
Let (Dy)men be a sequence of Py, GDs, as in Section 8.2.1, based on un-
derlying conforming simplicial meshes (Tp,)men. Assume that (K<, )men 18
bounded (see (7.10)), and that ha,, — 0 as m — oo.

Then the sequence (Dy,)men 48 coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.2, 2.4, 2.6 and 2.8.

Proof. If v,, € Xp,, then IIp, v, € Wy*(2) and Vp, vy = V(IIp,, ).
Thus, as in the proof of Theorem 8.1, the Poincaré’s inequality and Rellich’s
theorem in W, (§2) show that (D,,)men is coercive and compact. Applying
Stokes’ formula shows that Wp,_ () = 0 for all ¢ € W3V2'(£2), which gives
the limit-conformity. Finally, the consistency is a direct consequence of Propo-

sition 7.36 and Lemma 8.8. n

Remark 8.10 (Rates of convergence of the P, GS)

The reasoning of Item 3 in the definition of the P, GD shows that the reconstruction
IIp is based on local Pg-exact function reconstructions (see Remark 7.37 for the
definition). Since Vp = V(IIp), this gradient reconstruction is also Px-exact. By
Remark 7.37 we deduce that, under boundedness assumption on ks, a Py, GD satisfies

SD(W) < Chf\/l ||<P‘|Wk+1,oo(g) .

Since Wp = 0, Theorem 3.2 gives, as expected, O(h%,) error estimates on the Py
method applied to the linear diffusion equation (3.1) (in the case @ € W*T1:°°(02)).
We refer to [12, Theorem 4.4.20] for more optimal W™ P-error estimates, obtained
by taking advantage of the specificities of this conforming method.

8.3 P finite element for non-homogeneous Dirichlet,
Neumann and Fourier boundary conditions

We briefly describe here, following the remarks in Section 7.3.6, the mod-
ifications to bring to the Py GD to deal with non-homogeneous Dirichlet
conditions, Neumann conditions or Fourier conditions.
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8.3.1 Non-homogeneous Dirichlet conditions

Following Definition 7.50, a Py, GD for non-homogeneous Dirichlet boundary
conditions consists in (Xp,Zp g, [Ip, Vp) where

Xp ={v=(vs)gepw : vs €Rforall se V(k)},

IIpv and Vpu are defined by (8.6) and (8.8) (for all v € Xp), and an inter-
polation operator Zp g : Wl—%m(arz) — Xp o has to be defined, where

Xpo={veXp :vs=0forall se ngt)}

The definition of such an interpolant on WiopP (042) is somewhat problem-
atic, given that P, methods call for nodal interpolants — i.e. values of the
function at the vertices V(*). Since functions in Wl_%’p(aﬂ) are usually not
continuous, their value at a given point is not defined. One could then use
the notion of Clément interpolators [23], but this would have to be adapted
to interpolate functions only defined on the boundary of f2.

In practice, in the context of Py, finite element schemes, the boundary condi-
tions are usually continuous. Following Remark 2.19, we therefore only need
to define Zp g : Wl_%’p([)()) NC(012) — Xp p. This can be done by setting,

for g € W' 5P(82) N C(0R2) and s € V)

Xt
(Zp,09)s = 9(s). (8.14)
We then have the following result.

Theorem 8.11 (Properties of P, GDs for non-homogeneous Dirichlet
BCs). Let (Dyy)men be a sequence of P, GDs for non-homogeneous Dirichlet
boundary conditions, as above. We denote by (Tp)men the underlying con-
forming simplicial meshes, and we assume that (k<, )men is bounded (see
(7.10)). We also suppose that haq,, — 0 as m — oco.

Then, the sequence (Dp,)men is coercive, limit-conforming and compact in the
sense of Definitions 2.2, 2.6 and 2.8. Moreover, with Sp defined by (2.14), we
have Sp,, (p) — 0 as m — oo, for all ¢ € W2>°({2).

Remark 8.12 (General GD-consistency property)

We state here a weaker version of the consistency (only for regular functions). Check-
ing the consistency in the sense of Definition 2.20 on a dense subset in W7 (£2) of
smooth functions would require to ascertain that (2.16) holds. This is somewhat
technical and requires the usage of Clément interpolator, with boundary interpola-
tor Zp,s defined by (8.14). The literature does not seem to contain clear results in
that direction.

Proof. The Poincaré’s inequality, integration-by-parts and Rellich theorem
in WO1 P (£2) give the coercivity, limit-conformity and compactness as for homo-
geneous Dirichlet boundary conditions. Given the definition (8.14) of Zp,, a,
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the consistency for ¢ € W2°°(£2) follows by selecting v = (vs)gcyp defined
by vs = (s), and by using Lemmas 7.28 and 7.31 as in the proof of Proposi-
tion 7.36. u

8.3.2 Neumann boundary conditions

The modification for Neumann boundary conditions is natural. Following Def-
inition 7.52, we simply enable boundary degrees of freedom to be non-zero,
i.e. we take

Xp = {v = (vs)septm : vs €R for all s € VR,

ITp and Vp are still defined by (8.6) and (8.8) (for all v € Xp).
The proof that (2.18) is a norm on Xp is straightforward. If ||v|, = 0 then
Vpv = V(IIpv) = 0 and thus IIpv is constant. As ||v|, = 0 also implies
Jo Ipv(x)de = 0, we infer that ITpv = 0. Then, for all s € V, v, = IIpv(s) =
0, which shows that v = 0.
Finally, for non-homogeneous Neumann boundary conditions, we define Tp :
Xp — L>®(992) by

Tpv = y(IIpv) = (IIpv)sp- (8.15)

Poincaré-Wirtinger’s inequality in WP (£2) gives C' depending only on {2 and
p such that, for all v € Xp,

1ol e < © (nvmov)w)d n \ [ ito(e)aa

) — Clollp

Combined with the continuity of the trace v : WP (£2) — LP(942), this gives
a uniform estimate on Cp (defined by (2.26)) depending only on (2 and p. The
choice (8.15) of the trace reconstruction shows that Wp, defined by (2.28), is
identically zero.

Proposition 7.53 gives the consistency of sequences of Pr GDs for non-
homogeneous Neumann boundary conditions. The compactness of such a se-
quence follows from Rellich’s theorem and from the coercivity property, which
gives a bound on (Tp,, um)men Whenever (||unl|p )men is bounded. As a con-

m

clusion, we therefore have the following theorem.

Theorem 8.13 (Properties of P, GDs for Neumann BCs).

Let (Dyn)men be a sequence of P GDs for Neumann boundary conditions
as above, defined from wunderlying conforming simplicial meshes (Zpn)men-
Assume that sup,, cy ks,, < +00 (see (7.10)) and that hpay,, — 0 as m — oo.
Then the sequence (Du,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.33, 2.27, 2.8/ and 2.36.
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8.3.3 Fourier conditions

For Fourier boundary conditions, the trace is still defined by (8.15) and clearly

satisfies the conditions in Definition 7.55, with Mg = Fext and I, = Vﬁf) for
all K € M and all 0 € Fg N Fext- A bound on the LLE regularity of the
obtained GD can be established as in the proof of Lemma 8.8, by transporting
the basis functions on the reference simplex Sy to check that H7T§H Lo (o) is

uniformly bounded for all 0 € Fg N Fext and all s € Vﬁf). To bound the

quantities %&3) in reg, (D) defined by (7.65), we also use the fact that
diam(o) < Chi whenever o € Fg, with C depending only on an upper bound
of ks.

As a conclusion, by Proposition 7.56, Theorem 8.13 remains valid in the con-
text of Fourier boundary conditions (with Definition 2.27 replaced with Defi-

nition 2.49).

8.4 Mass-lumped P; finite elements

It is obvious from (8.6) that the reconstruction ITp of the P GD is not
piecewise constant. To benefit from the advantages of a piecewise constant
reconstruction, such as a diagonal mass matrix in time-dependent problems, or
the applicability to non-linear models such as Stefan’s or Richards’ equations,
the P, GD needs to be mass-lumped as per Definition 7.43.

Mass-lumping leads to a piecewise constant reconstruction II}", whose best
approximation properties are of order 1. There is therefore little interest in
using high-order methods when mass-lumping is required, which is why we
only consider the case k = 1 here. Since mass-lumping is essentially indepen-
dent of the boundary conditions (see Sections 7.3.6), we only present here the
case of homogeneous Dirichlet boundary conditions.

Definition 8.14 (Mass-lumped P; GD). Let T = (M, F,P,V) be a con-
forming simplicial mesh of {2 in the sense of Definition 7.5, and let D =
(Xp,0,Ip,Vp) be the Py GD built on T as in Section 8.2.1 (with k =1).
For each s € V and K € M such that s € Vi, let

Oxs={y € K : mi(y) > mi(y) for all 8' € Vi\{s}}

(recall that (% )sey are the Py basis functions, defined in Item 2 of Section
8.2.1). Define then (see Figure 8.4 for an illustration)

2.= |J k.
KeM|seVk

Then a mass-lumped Py GD is defined by DM = (Xp o, 13", Vp) where 1T}
is the piecewise constant reconstruction built from (£25)sey, that is

Yo e Xpo, Vs eV, IIFv=uvs on 2.
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o0 s

Fig. 8.3. Partitions for the mass-lumping of the P; GD.

The mesh (£25)sey thus constructed is sometimes called the barycentric dual
mesh of ¥. This is only one possible mesh that can be used to create a mass-
lumped version of the P; GD on ¥.

The properties of this mass-lumped P; GD are stated in the following theorem.

Theorem 8.15 (Properties of mass-lumped Py GDs). Let (%) men be a
sequence of conforming simplicial meshes of (2 in the sense of Definition 7.5,
and let (DX)men be the corresponding mass-lumped Py GDs given by Defini-
tion 8.14. Assume that sup,,cy kz,, < +0o (see (7.10)), and that haq,, — 0
as m — oo.

Then (DX)men is coercive, GD-consistent, limit-conforming, compact, and
has a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4,
2.6, 2.8 and 2.10.

Proof. Let us assume that
Yo € Xp,.0, || Ip,,v— H;;EanLp(m < bt 1V D, 0l o (2a - (8.16)

Then the conclusion of the theorem follows from Theorem 8.9 (which states
that the underlying sequence of P; GDs (D, )men is coercive, GD-consistent,
limit-conforming and compact) and Theorem 7.47.

The proof of (8.16) is done by way of simple Taylor expansion in each 2k ,.
Indeed, since IIp,, v is linear in K O Q2 s with V(IIp,,v) = (Vp, v)x, and
since I135" v = v(s) = Ilp,,v(s) in 25 D 2k s, we have, for & € (2 s,

Iy v(x) — IIp, v(x) = IIp,,v(s) — IIp,, v(x)
= (Vp,v)x - (s —x)=Vp,v(z) (s —x).

Hence,
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[y, v(x) — Ip,, v(@)| < ha,, [V, v(@)|. (8.17)

This estimate is valid for any © € 2k, any K € M,, and any s € Vg.
Hence, it is valid for any @ € 2. Raised to the power p and integrated over
x € (2, (8.17) gives (8.16). L]

Remark 8.16. If p > d/2, by Proposition A.6 the P; gradient discretisations
on (T )men satisty Sp,, (9) < Ch,, [[@lly2m (o) for all ¢ € W2P(§2) (with

C not depending on m or @), and Wp,, (p) = 0 for all ¢ € Wdv»' ().
Estimate (8.16) shows that (7.55) holds (with D}, = D)) with w,, = ha,, -
Combined with the previous estimates on Sp,, and Wp_ , and with (7.59)
and (7.60) in Remark 7.49, this proves that the mass-lumped P; gradient
discretisations satisfy

SD%L (¥) < Cthm ”‘P”mﬁm(g)
(with C’ not depending on m or ¢), and

WDL\'ILL (QO) <hm,, HdiVSOHLp,(Q) ’

Hence, as expected, mass-lumped P; GSs are order 1 schemes. More precisely,
if the exact solution to the linear elliptic problem (3.1) belongs to H? and
d = 1,2,3, then the estimates (3.6) and (3.7) are O(haq) when the mass-
lumped P; GD is used in the GS (3.4).

8.5 Vertex approximate gradient (VAG) methods

Successive versions of the VAG schemes have been described in several papers
[50, 52]. VAG methods stem from the idea that it is often computationally
efficient to have all unknowns located at the vertices of the mesh, especially
with tetrahedral meshes (which have much less vertices than cells). It is how-
ever known that schemes with degrees of freedom at the vertices may lead to
unacceptable results for the transport of a species in a heterogeneous domain,
in particular for coarse meshes (one layer of mesh for one homogeneous layer,
for example). The VAG schemes are an answer to this conundrum. After all
possible local eliminations, the VAG schemes only have vertex unknowns, and
have been shown to cure the numerical issues for coarse meshes and heteroge-
neous media [52, 51, 53]; this is due to a specific mass-lumping that spreads
the reconstructed function between the centre of the control volumes and the
vertices. Let us remark that the original version of the VAG scheme in [50]
uses the same nodal formalism as in Chapter 13, but has been shown in the
FVCAG6 3D Benchmark [54] to be less precise than the version presented here.

Starting from a generic polytopal mesh ¥, the VAG scheme is defined as a
barycentric condensation and a mass-lumping of the P; GD on a conform-
ing simplicial sub-mesh of €. We consider here the situation of homogeneous
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Dirichlet boundary condition and space dimension 3, this case being easy to
adapt to other boundary conditions and to dimension 2.

1. Let T = (M, F,P,V) be a polytopal mesh of {2 in the sense of Definition
7.2, except for the removal of the hypothesis that the faces ¢ € F are
planar. We define a conforming simplicial (tetrahedral in 3D) sub-mesh by
the following procedure. For any K € M, any o € Fk, and any s,s € V,
such that [s, '] is an edge of o, we define the simplex Tk » s s by its four
vertices Tk, Ty, S, s (see Figure 8.5), where the point @, corresponding
to the face o is given by

x, = Card Z s. (8.18)

SGV

We denote by T7 the conforming simplicial mesh (as per Definition
7.5) defined by these thetrehedra these Tk o s 5. More precisely, T7 =
(MTFT PT VT with

o M7 is the set

T = {TK,U,S,S’ ZKGM, g E.FK,
(s,8") € V? such that [s, 8] is an edge of o},

o FT is the set of all faces of the simplices in M7,

e PT is an arbitrary set of centres of the simplices (they do not play
any role in the construction of the scheme),

o V7T is the set of all vertices of the simplices in M7; this means that

VI =PuvU{z, : 0 € F}. (8.19)

2. We let D = (X5, Vo, II55) be the Py GD defined from 7 as in Section

8.2.1 for k = 1. Given (8.19), for D we can define the set I of geometrical
entities attached to the DOFs by I = M UV U F, and the set of S of
approximation points of is S = ((xx)xkem, (8)sev, (To)oecF)-

3. We define a barycentric condensation D of D (see Definition 7.38) which
consists in eliminating the DOFs attached to the internal faces Fi,; of
T. Precisely, we let I** = MUYV U Foy and, for o € Fiy, we set
H, =V, and we define the coefficients 57 = 1/Card(V,), for all s € V.
These coeflicients are precisely the ones appearing in (8.18). The map-
ping v € Xpsig = ¥ € Xpg described by (7.43) is therefore given by
U= ((:JK)KG./VU (:Js)se\h (60')06.7:) with

VK eM, vg=vg,

VseV, Vs = Vg,
Vo € Fexty Vo =V = 0 (8.20)
Vo € Fint, Vo = Card Z Vg

seV
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8 Conforming methods and derived methods

The VAG GD is the gradient discretisation D obtained from D" by per-
forming a mass-lumping in the sense of Definition 7.43. We therefore have
I=MUVUFe, Io=MU (Vﬁ Q) and Iy = (Vﬂaﬂ) U Foxt, Which
gives

XD,O = {U = ((UK)KE./\/h (vs)se\h (va)ae]:cxt> UK € R for all K € M7
vs ERforallse VN2, vg =0forall s € VNI,
v, =0 for all 0 € Fox}

To perform the mass-lumping of fDA, we start by splitting each sim-
plex Tk s s, into three parts T}éms’s/, T% 556> and T]s(:ms,s, (whose
detailed geometry is not needed), that respectively contain in their clo-
sure €, s and s’. We then let, in Definition 2.10, 2 be the union of all

(TE 4.4.6/)0.s,s7, and 2, be the union of all (T, . ) k.0~ This leads to
Vo€ Xpo : Ipv= Y vklo,+ Y vala,. (8.21)
KeM seV

The gradient reconstruction is not modified by the mass-lumping, and
therefore Vpv is equal, in a tetrahedron Tk s s, to the gradient of
the affine functions that takes values (vk,U,,vs,vs) at the vertices
(K, To,8,8") of Tk o.5.s-

Fig. 8.4. Definition of a simplex Tk 5,5/ in a mesh cell K.

Remark 8.17 (Elimination of the cell DOF's in the VAG GS by static condensation)
Apply the VAG GDM to obtain a GS (3.4) (with F' = 0 to simplify the presentation),
and take in this scheme the test function v € Xp o which satisfies vg = 1 for a given
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cell K, vy, = 0 for all other cells, and vs = 0 for all vertices. Then, the integral in
the right-hand side of (3.4) can be reduced to K. By letting ax be the P, Lagrange
interpolator in the tetrahedra (T'x o.s,s/)o,s,s’> that takes value 1 at xx and 0 at all
other vertices of these tetrahedra, we have, in K,

Vpu =uxgVag + Z UsOs

sEVK

for some functions ©, (involving the Lagrange interpolators at the vertices of the
tetrahedra contained in K). Since Vpv = Vag, we infer that

uK/ A(x)Vak (x) - Vog (x)de

- /Q f@ax@de— 3 u /K A@)Bs(x) - Vak (x)de.

sEVK

The coefficient of ux in the left-hand side is not zero, so this relation yields an
expression of ux in terms of (us)sev, (and the source term f), without even having
to solve a local system.

Hence, when using the VAG GD in a GS for a linear elliptic problem, the cell
DOFs can be locally eliminated and expressed in terms of the neighbouring vertex
unknowns.

Lemma 8.18 (Control of regy, for VAG GD). Let ¥ be a polytopal mesh
of £2 in the sense of Definition 7.2, and let T be the conforming simplicial
sub-mesh T as in Item 1 above. We take ¢ > kgr (see (7.10)). Let D be the
barycentric elimination, defined in Item 8 above, of the P1 GD on T7T.
Then there exists Cs depending only on o such that regg, (D) < Cs.

Proof. The proof is made in several steps. Here, we write a < b for a < Cb
for some C' > 0 depending only on o. We write a ~ b, and we say that a and
b are comparable, if a < b and b < a.

Step 1: The length of any edge in any tetrahedron T € MT is comparable to
the diameter hp of the tetrahedron.

Let 7 be a face of T and let s be the opposite vertex. Let B(ar, pr) be the
centre of the largest ball included in T'; by definition of kgr we have ppr ~ hyp.
Let (si)i=1,....a be the vertices of 7. We write &7 as a convex combination
T = AS + Zle Ais;. Let np; be the outer normal to T on 7. For any s’
vertex of T, since (8’ — s;)Llny, foralli=1,...,d, and A\ + 2?21 A =1, we
have

d
(@ — &) nr,=As—8) nr,+ Y Ni(si— ) -nr,
i=1

=\Ns—¢§) nr,.
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We have (zr — §') - ny . = dist(xp,7) > pr =~ hr, and therefore

hr SAXs—8") nr,.<(s—8) nr,. (8.22)
Therefore, hy < |8’ — s|. Since we also have |8’ — s| < hyp, we infer that

The length of any edge of a tetrahedron T' € M7T

is comparable to hr. (8.23)

Step 2: If o € F and h, is the mazimal distance between two of its vertices,
then ho is comparable to the diameter of any tetrahedron T € MT having its
base on o.

Recall that a face o does not need to be planar. Let T be a tetrahedron with
its face on o, and denote by K € M the cell that contains T. We first notice
that any two tetrahedra T},T5 € M” in K having their base on o share the
common edge [Tk, T,] and thus, by (8.23),

th ~ ‘:IZK —§g| ~ hT2~ (824)

We have h, = |s; — s3] for some vertices s; of o. Let us take T7,T» € MT
tetrahedra in K with base on ¢ and having respectively s; and s as vertices.
Using (8.24) we have

he = |Sl - Sgl < |81 —fg‘ + |§U — 32| < th + hT2 ~ hr. (825)

Any edge of o is also an edge of a tetrahedron with base on o. Properties
(8.23) and (8.25) therefore give

The length of any edge of o is comparable to h,. (8.26)
Finally, T shares an edge with o. Hence, (8.23) and (8.26) show that

For any tetrahedron 7' € M” having its base on o, hy & h,. (8.27)

Step 3: conclusion.

The mesh corresponding to the P; gradient discretisation D on T is MT.
Hence, a cell of this mesh is a tetrahedron T with its base on some o € F,
and the only degree of freedom that is eliminated in I (from the P; GD) is
the degree of freedom at ®,. This elimination is done by using the vertices of
o and, by (8.27), these vertices all lie within distance h, &~ hr of the points
in 7. Moreover, since 37 = 1/Card(V,) we have ) _.,, |7] =1.

These properties give a bound on regg, (D) that only depends on o (through
the relations ). ]
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Remark 8.19 (Comparison between hr and hi )

If p is also an upper bound of maxxem Card(Fk), then by working neighbour to
neighbour it can be shown that any tetrahedra 7' € M” in a cell K € M has a size
hT ~ hK.

Theorem 8.20 (Properties of VAG GDs). Let (T,,)men be a sequence of
polytopal meshes of {2 in the sense of Definition 7.2. For each m € N we define
the conforming simplicial sub-mesh TL, of T, as in Item 1 above. Assume that
hm,, = 0 asm — oo, and that (Ksr )men is bounded (see (7.10)). Let Dy, be
the VAG GD built on T,,. '

Then (D) men 1s coercive, GD-consistent, limit-conforming, compact and has
a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4, 2.6,

2.8 and 2.10.

Proof. Let D,, be the P; GD on L. Since D,, is the mass-lumping of the
barycentric condensation D, of Dy, the result follows from Theorems 7.41

and 7.47 if we can prove that reg,, .(D,,) and regy A(DE;:) remain bounded,
and that the following version of (7.54) holds:

Yv e Xp_ o, HHD ’U—HfBAU

my m
m

Vﬁm v

m

‘ < ha,, (8.28)

Lr(2) Lr(2)d’

Since (kgr )men is bounded, the boundedness of reg,,(D,,) follows from

Lemma 8.8. The bound on regBA(ff;) follows from Lemma 8.18. To prove

(8.28), we use the same technique as for the mass-lumping of P; GDs. In each
T 5ae (esp. Tk, o o), Ismev is linear, Vs = V(Ilgpv) and IIp,, v is

equal to vg = Ilgsv(xg) (resp. v = [Tmv(s)). Thus, in each Tf , , ., and

Tk .55 that is, on the whole of £2,
IIp,,v = gt < hat,, Vo] (8.29)

m m

We then conclude the proof of (8.28) by taking the LP(f2) norms in (8.29).
"

Theorem 8.21 (Estimate on Sp and Wp for VAG GD). Let T be a
polytopal mesh of §2 in the sense of Definition 7.2, and T be the conforming
simplicial sub-mesh of <., as in Item 1 above. We take

0> kgr + max Card(Vk),

and we let D be the VAG GD built on . Then, there exists Cg depending only
on d, p, 2 and o such that
Cp < Cs, (8.30)
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Vo € W), Wole) < ha |[divee] 1 o) (8:31)

and
Vo € Wy () nW2P(82), Sp() < Coha 1@l (0) (8.32)

Note that, in practice, the uniform bound on the number of vertices of each
cell, implied by p, is not a restrictive assumption.

Proof. By (7.58) and (8.28) (which shows that we can take wy,, = ha, <
diam(£2) in (7.55) with D}, = D and D,, = D), we have Cp < diam(£2) +
Czvr. We then use (7.53) to get Czpn < O < Cp, where Cp only depends
on d, p and 2 (we can actually take Cp = diam({2), an upper bound of the
Poincaré’s constant in W, ?(£2) — remember that D is the P; GD). This gives
(8.30).

Similarly, Estimate (8.31) follows from (7.60) (in which we can take w,, =
hm,, by (8.28)) and from (7.53), which shows that Wxzs: < Wz = 0.

Owing to (7.59) with DX, = D and D,, =D, and to (8.28), to prove (8.32)
it suffices to show that Sgpes(p) < Crhiad[|@lly2s (o) With C7 only depends
on p, d, {2 and p. This estimate is obtained by using Proposition A.8 in the
appendix, provided that we find sets (Vi) ke that satisfy (A.23) and (A.24),
with D =D"" and 6 depending only on d, p, {2 and p.

We first notice that the bound on reg,, (D) in (A.24) is a consequence of
Lemma 7.40, Lemma 8.8 (with D = D the P; GD on ¥7), and Lemma 8.18.
Each cell of the mesh M7 associated to D" is a tetrahedron Tk 05,5 in &
certain cell K € M. In Proposition A.8, set Vi oo = K. Each © € (2
belongs to a single cell K € M, and can therefore only be in VTK,U,S,S/ for
Tk s, @ tetrahedron contained in K. The bound Card(Vg) < o ensures
that the number of such tetrahedra, and thus Card({Tk s ss € MT : @ €
VTK,U,S‘S/})v is bounded above by some constant depending only on o. This
takes care of the last term in (A.24). It therefore remains to prove that each
VTK,U,S,S/ = K is star-shaped with respect to a ball BTK_U,&S, C Tk ,4,s,s’ SUCh
that diam(Br, ) > Csdiam(K) with Cs depending only on . As in the
proof of Lemma 8.18, in the following we denote a < b for a < Cb with C
depending only on g, and a =~ b for ¢ < b and b < a. From now on, we also
set T' = TK,a,s,s’-

In the current setting, the faces 0 € Fi of K may not be planar. However,
in the construction of M7T each of these faces have been split into triangles
that are necessarily planar. Hence, we can consider the cell K to be polytopal,
with planar faces the bases of the tetrahedra of M7 contained in K. If 7 is
the basis on o of T, applying (8.22) with s = @ (which is indeed the vertex
opposite to 7 in T') and any vertex s’ of 7 shows that

hT ,S (.’.UK — S) Nrr = dK,T-

Since Card(Vg) < 1 we have Card(Fg) < 1 and Remark 8.19 can be invoked.
This gives



8.5 Vertex approximate gradient (VAG) methods 277

hi ~ hy < dg.». (8.33)

Then Lemma B.1 shows that K is star-shaped with respect to a ball B(z g, rk)
with 75 ~ hg (see Figure 8.5 for an illustration).

Fig. 8.5. Illustration of the proof of Theorem 8.21. This figure is a planar section
of a cell K.

Since kgr < o, T contains a ball B(yr, pr) with, owing to (8.33),
pPT =~ hT ~ hK NTK. (834)

We now find By — mentioned in (A.23) — by an homothetic transformation of
B(yr, pr). Let 1 € (0,1) and let

Br = (1 - pzx + pB(yr, pr) = B(1 — p)xk + pyr, per).

Since K is convex, Br C K. If By C B(xk,7Kk), then Vr = K is indeed star-
shaped with respect to Br. Since diam(Br) = 2upr ~ phx = pdiam(Vr),
this shows that the second term in the right-hand side of (A.24) is bounded
by 1~ 'Cy with Cy depending only on o. Hence, the proof is complete if we
can find p depending only on p such that By C B(zk,rk).

If z € By we have z = (1 — p)zx + pyr + ph with |h| < pp, and therefore

|z — xx| < plyr — x|+ por < plhr + pr) < Croprk

with Cio depending only on o (we used (8.34)). Taking u = 1/Cio ensures
that Br C B(xk,rk) and concludes the proof. n
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Non-conforming finite element methods and
derived methods

As briefly seen in Chapter 1, the non-conforming P finite element method
can be recast in the GDM framework. Let us develop this in more details,
using the notions developed in Chapter 7.

9.1 Non-conforming P; finite element method for
homogeneous Dirichlet boundary conditions

9.1.1 Definition of the non-conforming P; gradient discretisation

The non-conforming P; finite element method approximates solutions to PDEs
with functions that are piecewise linear on a conforming simplicial mesh of
{2, and continuous at the centres of mass of the faces — but not necessarily
on the whole edge. This approximation is “non-conforming” in the sense that
it approximates the solution u € H}(2) by functions that are not in H}(£2),
and therefore do not satisfy in particular the Stokes’ formula.

This scheme is often called the Crouzeix-Raviart element, although this name
usually pertains to the usage of this method for the Stokes problem (see [26]
for the seminal paper and, for instance, [43, pp.25-26 and 199-201] for a
synthetic presentation).

Let € = (M, F,P,V) be a conforming simplicial mesh of {2 in the sense of
Definition 7.5. The non-conforming P; gradient discretisation is constructed
as an LLE GD, by specifying the objects introduced in Definition 7.33.

1. The set of geometrical entities attached to the DOFs is I = F and the
approximation points are S = (%, )scr. Then I = Fint, Ig = Fext, and

Xpo={v=(v5)ser : vo € Rforall o € Fip;, v, =0 for all 0 € Fext}.

For all K € M, we let I = Fk.
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2. The reconstruction IIp in (7.33) is built from the affine non-conforming
finite element basis functions (7% )sc 7, defined, for each K € M, by

Vo € Fi, % is affine on K, 7% (Z,) = 1,

9.1
and 7% (Z,) = 0 for all o’ € Fr\{o}. (0.1)

This leads to

Yve Xpg, VK e M, forae xz €K, lIpv(x) = Z Vi ().
o FK

3. The functions (G%)kem, cer, that define the gradient reconstruction
Vp through (7.34) are the constant functions on the cells given by

G = Vrik. (9.2)
Hence, the reconstructed gradients are piecewise constant on the cells:

Vo€ Xpo, VK € M, (Vpv)x = Y v,Vrk =V [(IIpv)x]. (9.3)
oc€FK

4. The existence and properties of (7% )ser, and (G%)oecry, and the fact
that [|[Vp - [|Lr(@)e is @ norm on Xp g, are given by Lemma 9.1 below.

Contrary to the basis functions for the Py finite elements, the global basis
functions (77),cr defined as in Section 7.3.3 (that is, (77)x = 7% on K
for all K € M) for non-conforming finite elements have jumps across the
faces of the mesh. They are only continuous at the face centers. The function
Ilpv =73 . F.., Vo 18 therefore also, in general, only continuous at the face
centres (T, )oer,, — at which it takes the values (vy)oecr,, -

The gradient (9.3) is defined cell-by-cell and does not account for the jumps
of IIpv. Hence, the reconstructed gradient Vpuv is not V(IIpv) in the sense
of distributions on 2. We nonetheless have V(IIpv) = Vpv in each K € M,
and Vpuv is therefore usually refer to as the “broken gradient” of Ilpwv.

9.1.2 Preliminary lemmas

Lemma 9.1. Let € = (M, F,P,V) be a conforming simplicial mesh in the
sense of Definition 7.5. Let K € M, mx = (n%)ocr, be given by (9.1),
and G = (G%)oecr, be given by (9.2). Then wx is a Py-exact function re-
construction on K, and Gg is a Py-exact gradient reconstruction on K upon
(ja)ae]:x'

Moreover, D defined above is an LLE GD, and there exists C11, depending
only on d and ¢ > kx (see (7.10)), such that

regm,n(D) S C(11~ (94)
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Proof. Let K € M. The convex hull K of the centres of mass (To)ocri
of the faces of K is a d-simplex (see Figure 9.1). Applying Lemma 8.5 to K
instead of K and with k = 1 shows that, for any given real numbers (as)se .,
there exists a unique affine map that takes these values at the face centres

(To)oer,- This proves, in particular, that the basis functions (7% ),cr, are
well-defined by (9.1).

Fig. 9.1. A simplex K and the convex hull K of its face centres

Themap ), . r 7% is affine and takes the value 1 at each of the face centres of
K, exactly as the constant function equal to 1. These two affine functions must
therefore coincide, which shows that 7 is a Pg-exact function reconstruction
on K.

Let A be an affine map. The affine function ) . A(®,)7% has the values
of A at (Ty)sery, and is therefore equal to A. As a consequence, on K,

> A@)NGE = Y A@)VTE =V > A@,)rh = VA.

ocEFK cEFK cEFK

Hence, Gk is a P1-exact gradient reconstruction on K upon (Ty)eery -

To complete the proof that D is an LLE GD, we need to show that [V || 1,54
is a norm on Xp . Let v be in this space and such that Vpv = 0. Then, on
each cell K, the affine map ITpv has zero gradient (see (9.3)), and is therefore
constant on K. Since this map is continuous at the face centers, its constant
values in two neighbouring cells must be the same. This shows that IIpv is
actually constant on each connected component of 2. Any such component
touches an face o € Fexs, at the centre of which ITpv equals v, = 0 (since
v € Xp,). Hence, IIpv = 0 and all its values (v,),ecr at the face centres are
equal to 0. This shows that v = 0.

We now establish the upper bound on reg,, (D). If K € M, the simplex
K C K created by (T,)scr, is a rotation and dilatation by a factor 1/d of
K. Hence, its regularity factor “diameter of K over the radius of the largest
ball inscribed in K7 is identical to that of K, which is bounded by k¢. Over
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K the functions % are defined as affine functions with values 0 or 1 at the
vertices of K. Hence, as in the proof of Lemma 8.8 we can use Lemma 8.7
with the vertices of K as points s; to see that

||7r?(||L°°(I~() S 012 and ||V7T?(||Loo(f() S Clgh}(l. (95)

where C2 depends only on d and ¢ > kz. Since Vr{, is constant in K and
hg = hx/d, we deduce that

IVaGl Lo (50) < Cradhi' (9.6)

We then write 7% (z) = 7% (y) + (x —y) - V7% for any € K and y € K,
and use |z — y| < hg to infer from (9.5) and (9.6) that

7% poe 7y < Crz + Chzd. (9.7)

Remark 7.32 and Estimates (9.6) and (9.7) give an upper bound on the first
two terms in the definition (7.35) of reg,, ,(D). This upper bound depends only
on d and p. The proof is complete by noticing all points (;)icr, = (To)oecri
involved in the third term of reg,,.(D) belong to K, which shows that this
third term vanishes. L]

The following lemma provides a control of the non-conforming P; GD by a
polytopal toolbox, with proper bounds under the usual non-degeneracy as-
sumption on the conforming simplicial meshes.

Lemma 9.2 (Control of the non-conforming P; GD by a polytopal
toolbox). Let T = (M, F,P,V) be a conforming simplicial mesh of {2 in the
sense of Definition 7.5, such that P are the centres of mass of the cells. Let
P : Xpo — Xz be the control of D by T (see Definition 7.10) defined by:
for any v € Xp o,

1
Q = — = . .
(v)Kk F] Z ve and P)y = v, (9.8)
ceFK
Then

1®llps < red'?, (9.9)

WD, T, ®) < hp, (9.10)

wV (D, %, ®) = 0. (9.11)

Proof. For a given v € Xp g, set U = ®(v). Using [Ipv(Z,) = v, shows that

~

Vo = Hpv(T,).

— . . . . 1 —
The cent're of mass Tk of K is given as the convex combination Y oery To-
Hence, since IIpv is affine in K,
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= g Y Moo(@n) =Tov | g Y @ | = Hou(an)
Vg = ——— vl = V| — xr = v\ .
K d+1 D o D d+1 o D K
0EFK 0cEFK

Lemma B.4 page 374 yields hx < kzprx < kzdg . Since IIpv is affine in K
with constant gradient (Vpv) g, we infer

[V — VK| = |[lIpv(®,) — pv(ZTk)| < By — Tk | |(VDV) K]
< hi |[(Vpu)k| < kxdik,o

(V'D’U)K|.

Recalling the definition (7.7f) of |- ,, divide the previous inequality by dx .,
raise to the power p, multiply by |0'rdK7U and sum over 0 € Fg and K € M

to find
ok, <KE D < > |U|dK,a> (Vo) k|P.

KeM oceFK

Relation (B.1) p372 gives Y lo|dk, = d| K|, and thus

oceFK
O, < K2 V00l gy

This completes the proof of (9.9).
Observe next that, since IIpv is affine in K, for any « € K,

[[Ipv(z) — Hs0(x)| = [[Ipv(x) — Uk | = [Tpv(z) — Ipv(TK )|
<lz —Zk||(Vov)k| < hm|Vou(z)|.

Raising this last inequality to the power p and integrating over x € {2 gives
[ Ipv — IV 1o () < T [[VDU| 15 (), which is exactly (9.10).

The relation (9.11) follows from Item 1 in Lemma B.6 (see p376) applied,
for any K € M, to the affine mapping A = (IIpv)g. Indeed, since

(Vk, (Vo )oeFy ) are the values of A at Ty and (%, )seFy , this corollary yields
(V‘I@\)U( :VK”J:VA:V(HD’U)‘K = (VD”U)|K. |

9.1.3 Properties of the non-conforming P; finite element method

Thanks to the previous lemmas, the proof of the properties of non-conforming
Py, GDs is straightforward.

Theorem 9.3 (Properties of the non-conforming P; GDs for homo-
geneous Dirichlet BCs). Let (Dy,)men be a sequence of non-conforming
Py GDs, as in Section 9.1.1, defined from underlying conforming simplicial
meshes (Tpn)men in the sense of Definition 7.5. Assume that the sequence
(K=, )men is bounded (see (7.10)), and that haq, — 0 as m — oo.

Then the sequence (Dy,)men 48 coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2.
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Proof. Owing to Lemma 9.2, the limit-conformity, coercivity and compact-
ness follow from Corollary 7.13 (use Lemma B.4 to control 8%, +n<z,, by kz,, ).
The consistency is obtained by applying Proposition 7.36, thanks to Lemma
9.1. [

The following two propositions are easy consequences of the preliminary re-
sults and of some estimates in Appendix A. These propositions are useful to
establish precise error estimates for non-conforming P; gradient schemes.

Proposition 9.4 (Estimate on Sp for non-conforming P; GD). Let ¥
be a conforming simplicial mesh of §2 in the sense of Definition 7.5, and D
be the non-conforming Py GD on T as in Section 9.1.1. Assume p > d/2 and
take 0 > kx (see (7.10)). Then there exists C13 > 0, depending only on p, d,
Q and o, such that, for all o € W2P(2) N W, (£2),

Sp(p) < Cizhm ”‘PHsz(Q) .

Proof. For any K € M, the approximation points (x;)icr, = (To)oer, all
belong to «; € K. Using Lemma 9.1, Lemma B.1 and Lemma B.4, we can
invoke Proposition A.6 and the conclusion follows. [

Proposition 9.5 (Estimate on Wp for non-conforming P; GD). Let
be a conforming simplicial mesh of {2 in the sense of Definition 7.5, and let
D be the non-conforming Py GD on T as in Section 9.1.1. Take o > ks (see
(7.10) ). Then there exists Ch4 depending only on 2, p, any o, such that

Cp <Cuy (9.12)
and, for all o € W' (02)4,
Wo(e) < el (o) Craha. (9.13)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. The conclusion immediately follows from Theorem 7.12, Lemma 9.2
and Lemma B.4 (to bound 0% + n). ]

The application of Propositions 9.4 and 9.5 to the error estimates (3.6) and
(3.7) in Theorem 3.2 provides an error in hpq in the case of a linear elliptic
problem in two or three space dimensions, if the exact solution u belongs to
H?(92).

9.2 Non-conforming P; methods for Neumann and
Fourier BCs

9.2.1 Neumann boundary conditions

Definition 7.52 of LLE GDs for Neumann boundary conditions provide a
straightforward definition of non-conforming P; GDs for these conditions, by
simply using the same I, Iy, IIp, Vp as in Section 9.1.1.
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Inequality (9.9) is valid even if v, are not zero for boundary edges. If v € Xp
is such that |[Vpvl|,(gya = 0, this inequality and the definition (7.7f) of |-,
show that all (v, ),cr are identical, equal to some ¢ € R. Then, IIpv = ¢ over
2 and thus, if [, [Tpv(x)de = 0, ¢ must be equal to 0. This shows that the
the quantity (2.18) is indeed a norm on Xp.

For non-homogeneous Neumann boundary conditions, the trace reconstruc-
tion Tp : Xp — LP(942) can be naturally defined in a similar way as T in
(7.7d), that is,

Vv e Xp, Vo € Foxt : Tpv =10, on o. (9.14)

Since the regularity factor reg,, (D) for Neumann BCs is defined as for Dirich-
let BCs, Lemma 9.1 still applies and shows that this factor remains bounded
if kg is bounded. Defining the control @ : Xp — X< as in Lemma 9.2, we
see that this emma still holds, with moreover w™(D, T, ®) = 0 in the case of
non-homogeneous Neumann BCs. Hence, Corollary 7.19 and Proposition 7.53
give the following theorem.

Theorem 9.6 (Properties of non-conforming P; GDs for Neumann
BCs). Let (Dp)men be a sequence of non-conforming Py GDs for Neumann
boundary conditions as above, defined from underlying conforming simplicial
meshes (T )men. Assume that (kz,, )men is bounded (see (7.10)), and that
hm,, = 0 as m — oo.

Then the sequence (Dy,)men s coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.33, 2.27, 2.84 and 2.36.

Proposition A.12 and Theorem 7.18 also give estimates on Sp, Cp and Wp
that are similar to those in Propositions 9.4 and 9.5. The constants depend
only on 2, p and an upper bound of k<.

Remark 9.7 (Other choice for the trace reconstruction)
Recalling the definition of the global basis functions 77, see Section 7.3.3, it is also
possible to replace (9.14) by

']I‘»*D’l) = Z ’UO-(TFU)‘BQ = (HD’U)‘BQ.

o€ Fext

Then, for any K € M, any 0 € Fx N Fext and any x € o, since Vpv = V(IIpv) is
constant in K,

[Tpo(x) — Tov(z)| = [[Tpv(x) — Hpv(Ts)| < h|(Vov)kl.
Taking the power p of this estimate and integrating over o gives

/ |Thv(x) — Tpv(z)|[Pde < Y |o| [(Vov)k|P.

Since hi|o| < Ci5|K|, where Ci5 only depends on an upper bound on Oz,
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/ |Thv(x) — Tpv(z)Pde < Cishh, K| |(Vov)x|P-

Sum this estimate over o € Fext. A given K can have at most d + 1 boundary faces
(and only in the trivial case where 2 = K, otherwise Card(Fx N Fext) < d), and
thus

IT50 = Tollfs gy < (d+ 1)Cishh > |K||[(Vov)«l?
KeM , 0KNON#D

< (d+1)CishBt > K[ [(Vov) k[P
KeM

=(d+ 1)015hﬁ;11 HVDUHZ]ZP(Q)” :

This estimate enables us to transport the analysis made with Tp to the GD based
on the trace reconstruction T, instead.

9.2.2 Fourier boundary conditions

Starting from the non-conforming P; GD for Dirichlet boundary conditions,
we follow Definition 7.55 in Section 7.3.6 to define an non-conforming P; GD
for Fourier boundary conditions.

The boundary mesh My is simply Fext, and the trace reconstruction (9.14)
corresponds, for Kg = 0 € Foxt, to I, = {0} and 77 = 1 on o, 77 = 0 outside
o. The bound on reg,, . (D) for Fourier boundary conditions therefore easily
follows from the bound on this quantity for Dirichlet boundary conditions, and
the GD-consistency (under boundedness of kg, ) is therefore a consequence
of Proposition 7.56.

As noticed in Remark 7.21, the work done for Neumann boundary conditions
then immediately show that Theorem 9.6 also applies for Fourier boundary
conditions. Similarly, we could obtain estimates on Sp, Cp and Wp as in
Propositions 9.4 and 9.5.

We finally remark that, instead of Tp defined by (9.14), we can also use T,
defined in Remark 9.7

9.3 Non-conforming P; finite elements for
non-homogeneous Dirichlet boundary conditions

For non-homogeneous Dirichlet conditions, the interpolation operator Zp g is
defined by

1 1
Yo € W'THH(00), ¥ € Fux ¢ (Toon)s = 1 / g(@)ds(z).  (9.15)
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This interpolant clearly satisfies (7.61) since, for any i = 0 € Iy = Foxt,
ml = Eg is the centre of mass of o and therefore, if o € C°°(02), p(x;) =
‘U‘ [, (x)ds(x) + O(diam(o)?).

We now Check that (2.16) holds with C; depending only on (2, p and an
upper bound of ks. To this end, take ¢ € W1P(£2), define v € Xz by (7.17)
in Proposition 7.15, and w € Xp by w, = v, for all 0 € F. Since w—Zp gvp €
Xp,0, (2.16) is proved if we can establish that

[HTpwl| o0y + VD 1o(2)e < Crllollwingo (9.16)

Let w € Xz be given by W = ®(w) as defined by (9.8). Then @ and v have
the same face values, and since the gradient Vs depends only on the face
values (see (7.7e)), we infer that V@ = Vgv. As seen at the end of the proof
of Lemma 9.2, Vpw = V@ (this also holds for non-zero boundary values).
Item 2 of Lemma B.6 page 376 gives a bound on ||ﬁgv||m(md by [v]g . and
Estimate (7.18) in Proposition 7.15 yields a bound on |v]g , by [[¢lly1.0(0)-
Gathering all these results show that

= p—1
||VDw||Lp(Q)d = HV‘IUHLP 0)d <dw |U|‘I,p < Cis ||V<P||Lp(n)d (9.17)
(£2)

where Cig depends only on (2, p and an upper bound on k< (use Lemma B.4
to get, from the upper bound on kg, an upper bound on ¢ and thus enable
the usage of Proposition 7.15). Since w, = v, for all ¢ € F we can use the
definitions (9.8) of Wi and (7.7¢) of IIzv, and Estimate (B.11) p377, to see
that for any K € M and any = € K,

. Cirhh,
Msii(a) - Trvla)P < 2 [ Votw)Pay

with C17 depending only on {2, p and an upper bound on kz. Integrating this
over K and summing over K € M gives

~ . 1
[ HT<® — v ) < diam(2)CHP [Vl o 0 -

Moreover, (9.10) (also valid for vectors with non-zero boundary values) for w
yields
[ Ipw — H‘I@HLP(Q) < diam(£2) ||VDw||Lp(Q)d

Invoking all these estimates, (7.18) and (9.17) enable us to infer that

[Tpwll s () < diam(£2)(Cre + CHP) Vol ooy + lellpoay - (9:18)

Gathering (9.17) and (9.18) proves (9.16).

As a consequence, since (7.61) and (2.16) hold, Proposition 7.51 can be in-
voked (using Lemma 9.1 to bound reg,, (D)) and shows that sequences of
non-conforming P; GDs for non-homogeneous Dirichlet BCs are consistent,
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provided that the regularity factors (kz,,)men remain bounded and that

The coercivity, limit-conformity and compactness of GDs for non-homogeneous
Dirichlet conditions are identical to the same properties for homogeneous
Dirichlet conditions. For non-conforming Py GDs with non-homogeneous
Dirichlet conditions, these properties therefore follow from Theorem 9.3.

9.4 Mass-lumped non-conforming P; reconstruction

In the case d = 2, if 0 # o’ are two different faces of the mesh,

/Q 7 (z)77 (z)da = 0.

This property ensures that the non-conforming P; method has a diagonal
mass matrix. Nevertheless, the properties in Remark 2.11 are not satisfied,
which might prevent the usage of the non-conforming P; scheme for some
nonlinear problems. To recover a piecewise constant reconstruction, we apply
to the non-conforming P; GD the mass lumping process as in Definition 7.43.

Definition 9.8 (Mass-lumped non-conforming P; GD). Take a con-
forming simplicial mesh ¥ = (M, F,P,V) of 2 in the sense of Definition
7.5, and let D = (Xp.,o, IIp, V) be the non-conforming P1 GD built on T as
in Section 9.1.1.
Foro € F, let 2, = D, be the diamond around o if 0 € Fing, and 2, = D »
be the half-diamond around o if 0 € Fexy with M, = {K?} (see Definition 7.2
for the definitions of these diamond and half-diamond, and Figure 9.2 for an
illustration).
A mass-lumped non-conforming P1 GD is defined by DM = (Xpo, 3", VD),
where ITR" is the piecewise constant reconstruction built from (£2,)scr, that
is

Yo e Xpyg, Yo € F, IIFv=uv, on (2.

As for the mass-lumped P; GD, the properties of this mass-lumped non-
conforming P; GD follow directly from Theorem 7.47.

Theorem 9.9 (Properties of mass-lumped non-conforming P; GDs).
Let (Tn)men be a sequence of conforming simplicial meshes of §2 in the sense
of Definition 7.5, and let (D)) men be the corresponding mass-lumped non-
conforming Py GDs given by Definition 9.8. Assume that sup,,cn kz,, < +00
(see (7.10)), and that haq,, — 0 as m — oo.

Then (DY:)men is coercive, GD-consistent, limit-conforming, compact, and
has a piecewise constant reconstruction in the sense of Definitions 2.2, 2.4,
2.6, 2.8 and 2.10.



9.4 Mass-lumped non-conforming Py reconstruction 289

o

Fig. 9.2. Partition for the mass-lumping of the non-conforming P; finite element
method.

Proof. In each Dy, IIp, v is linear and 11} v = IIp,  v(Z,). Hence, for

T € DK’[,7

\p,,v(x) — Ip, v(x)| = [p,,v(z) - Ip,,v(Ts)|
< hml(Voo) g, | = hm|Voo(@)].

Raising to the power p, integrating over Dk ,, and summing over ¢ € Fg
and K € M we obtain

[1Ip,,v = 1, v b ) < Bt 1V D, 0l o2y - (9.19)

The conclusion then follows from the properties of the non-conforming P
GDs (Theorem 9.3) and from Theorem 7.47. L]

Remark 9.10. As in Remark 8.16, Propositions 9.4 and 9.5, Estimate (9.19)
and Remark 7.49 show that, for p > d/2,

Spu () < Ch, [#llw2s(0)
(with C' not depending on m or ¢) and
Wou (¢) < b, [divel| 10 o) -

Mass-lumped non-conforming P; are thus order 1 schemes: if the exact solution
to the linear elliptic problem (3.1) belongs to H? and d = 1,2, 3, then the
estimates (3.6) and (3.7) are O(haq) when the mass-lumped non-conforming
P; GD is used in the GS (3.4).
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Mixed finite element RT; schemes

In this chapter, we only consider the case p = 2 and homogeneous Dirichlet
boundary conditions. We establish that both primal and dual forms of the
RT}, mixed finite elements are GDMs. In the primal form, the computation of
the reconstructed gradient, which has to be Hgiy(§2) conforming, implies the
resolution of a global linear system (which is actually part of the RTy, linear
system for approximating the diffusion equation (3.1)). On the contrary, in the
dual form, the reconstructed gradient is computed locally, as for the GDMs
studied in the other chapters.

10.1 The RT, mixed finite element scheme for linear
elliptic problems

Let us first recall the primal and dual formulations of the mixed finite element
method [41] for the linear anisotropic diffusion problem. We consider a slighlty
simplified version of this problem, corresponding to F' = 0: find u € H}($2)
the solution to

W € Hj(82) such that, for all v € H} (),
(10.1)
/ Alx)Vu(z) - Vo(x)dx = / fx

The assumptions are as usual:

e (2 is an open polytopal bounded connected subset of R?,

e /A is a measurable function from 2 to My(R) and there exists A\, A > 0
such that, for a.e. ¢ € £2, A(x) is symmetric with eigenvalues in [\, \],

o fEL?(N).

Take a conforming simplicial mesh T = (M, F, P, V) in the sense of Definition
7.5, and let

Hyiv(2) = {p € L2(2)? : divp € L*(2)},
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Vi, ={v e (L) : v|x € RTL(K), VK € M}, (10.2)
Vi = Vi, 0 Haiv (92), (10.3)
Wy ={p € L*(2) : p|x € Px(K), VK € M}, (10.4)
M;?:{u:UU—>R:M|JEPk(U),VU€f;,u|gm:0}, (10.5)
ceF
where

e P.(K) is the space of polynomials, on K, of d variables and having degree
less than or equal to k,

e P.(0) is the space of polynomials, on K, of d — 1 variables and having
degree less than or equal to k,

e RT;(K) = Py(K)? + Py (K) is the Raviart-Thomas space, on K, of
order k (here, Py(K) is the set of homogeneous polynomials of degree k,
including the zero polynomial).

The primal formulation of the RT}, scheme for (10.1) reads
(v,q) € Vi x Wi, (10.6a)

w(@) - A~ (2)v(x)des — / g(@)divw(z)de = 0, VYw € VA, (10.6b)

£2 2

Y(x)dive(x)dx :/ Y(x)f(x)de, Vi € W, (10.6¢)
2 Q

The dual, or Arnold-Brezzi, formulation [5, 66] corresponds to an hybridation
of the primal formulation:

(v,q,\) € Vi, x Wy, x M, (10.7a)
/ w( (z)v(x)dx —/ q(z)divw(x)dx
K
+ Z / ) wlk(xz) g dy(x) =0, Yw € V4, (10.7b)
0CFK
/w( Ydivo(x daz—/ Y(x) f(z)de, Yo € W), VK € M, (10.7¢)
K

[ (@) vlx(@)  nicodr(a@) + / (&) vl1(@) - niodo(e) =0,

o

Yo € Fine with M, = {K, L}, Vu € M;. (10.7d)

It is shown in e.g. [5] that the problems (10.6) and (10.7) admit a unique
solution, and that the solutions (v, ¢) to (10.6) and (10.7) are identical.
Moreover, the following error estimate holds [41, Theorem 5.3 p.39]: there
exists 6, depending only on £2, A, A, and an upper bound of k¢ such that
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llg —llz2(0) + |lv + AVE|| gy, (2)

div
h

<4 <wi€nmf/h 1 —llzae) +  inf | flw - AVUlHdiV(Q)> - (10.8)

10.2 Gradient discretisation from primal mixed finite
element

We construct a GD (in the sense of Section 2.1) inspired from the primal
mixed finite element formulation (10.6) of Problem (10.1). Let W}, be defined
by (10.4) and let (x;):er be a family of piecewise polynomial basis functions
of degree k on each cell, spanning W),. Define the gradient discretisation D =
(Xp,0,1Ip,Vp) by:

Xpo={v=(v)ier : vi € Rforalliel}, (10.9a)

Yu € Xpo, Hpu= Zux (10.9b)
iel

Yu € Xpo, AVpu € Vhdiv and (10.9¢)

/ v(x) - Vpu(x)dx +/ IHpu(x)dive(z)de =0, Yo € VY. (10.9d)
I7; o)

Remark 10.1 (A-dependent gradient discretisation)

A GD only relies on the definition of discrete operators and should be problem
independent. However, the tensor A appears here in the definition of the gradient
reconstruction. This is done to ensure that (10.9¢) holds, but it also means that the
GD defined above is problem-dependent.

An alternate option, that would lead to a problem-independent GD, is to perform
the same construction without A. In this case, the convergence can still be proved,
and the gradient is in Haiy, but AVpu is not. In the case of highly anisotropic and
heterogeneous problems, one can therefore expect lower convergence rates for this
alternate construction.

In order for (10.9) to define a GD, the system (10.9¢)-(10.9d) should define
one and only one Vpu, and || - [|p := [|Vp - || 12(2)e has to be a norm on Xp p.
The existence and uniqueness of Vpu results from the fact that (10.9d) can
be written as the square linear system

/ v(x) ~A*1(:c)(AVDu)(:c)dac = 7/ Hpu(x)dive(x)dx , Vv € Vhdiv
7] o)

on AVpu, whose solution vanishes if the right-hand-side vanishes (consider
IIpu = 0, take v = AVpu and use the coercivity of A~!). The fact that
[Vp - [[12(0)s defines a norm results from the coercivity property shown in
the Theorem 10.2 below.
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Before analysing this GD, we need to recall some results on RTy mixed fi-
nite element schemes. The broken Sobolev space H'(M) is the set of func-
tions whose restriction to each simplex K of the mesh belongs to H'(K). For
(VA W},) defined by (10.3)—(10.4), by [41, Theorem 3.1 and Lemma 3.5] the
interpolation operator Py, defined by

P, : Hpg = Haio(2) N (HY(M))? = VY,

Vp € Wh, Yv € Hy, / p(x)div(v — Pyv)(x)de = 0, (10.10)
Q
satisfies
1/2
Yo € Hpq, ||v — PkUHLQ(_Q)d < ahpm ( Z UH?P(K)) , (10.11)
KeM

where a > 0 depends only on an upper bound of k<.

The standard “inf-sup” condition [65] can be deduced from this property. Let
p € Wj. Extend p by 0 outside (2 to a ball B with radius R containing (2.
Then there exists w € H}(B) such that

Vg € H3(B), /B Vuw(z) - Ve(x)dx = /Bp(w)q(:c)dw. (10.12)
Moreover, w € H?(B) and, for some 3 depending only on d and R,
lwllz2) < Bllpll2(2)- (10.13)
Therefore, since Vw € H q, Estimate (10.11) yields
IVw = PeVwl|2(2)e < aBhallpllze(o)-
Since hyq < diam(§2) < 2R, this shows that
| PeVw| 122y < (2Ra +1)B|pllL2(0)- (10.14)

The inf-sup condition follows by writing, for any p € W, thanks to (10.10)
and since P,Vw € V4V,

sup Jo p(z)dive(x)da - — [ p(x)div(P,Vw)(z)de
B 1 PeVwll g, o
— [ p(x)div(Vw)(z)de
1PV wl g, ()
1 [op(x)?de 1

> = D )
@Ra+ 18 lolnm,  @Rat DB Pl

veVdiv H'U”Hdiv((z)

We can now state and prove the properties of the primal RTj gradient dis-
cretisation.
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Theorem 10.2 (Properties of the primal RT, GDs). Let (T,,)men be
a sequence of conforming simplicial meshes in the sense of Definition 7.5,
such that haq,, — 0 as m — oo and (kz,, )men is bounded (see (7.10)). Let
D = (Xp,, 0,Ip,,, VD, ) be the gradient discretisation defined by (10.9) for
each m € N.

Then (D) men 48 coercive, GD-consistent, limit-conforming and compact in
the sense of the definitions in Section 2.1.

Proof.

COERCIVITY. The proof essentially corresponds to establishing the inf-sup
condition as above. Let u € Xp,, o and set p = IIp, u € (Wp).m,. Extend p
by 0 outside 2 to the ball B, take w € H{(B) that satisfies (10.12), and let
v=PFPVwe Vhdi". The definition (10.10) of P, yields

Ipll72(02) = —/ p(z)divo(z)dz = —/ IIp, u(x)dive(z)de.
17 Q
Use (10.9d) to infer
HHDmU”iz(Q) = /Q'u(w) - Vp, u(x)de.

Estimate (10.14) then gives

[ 1Ip,, u

lL2(2) < (2Ra+1)8||Vop,, ull L2 (0, (10.15)

which proves the coercivity property.suf-cst

GD-CONSISTENCY. By Lemma 10.3 below, the set
R ={pc HYN) : If € C°(N) s.t. ¢ is the solution to (10.1)}  (10.16)

is dense in H}(£2). Hence, the GD-consistency follows from Lemma 2.13 if we
prove that, for all ¢ € R, Sp, (¢) — 0 as m — oo. Consider the solution
(v,q) € (VAY) X (Wh)m to (10.6) with f = —div(AVep). Since (xi)ier is
a basis of (Wj)m, there is a unique u € Xp,, o such that ¢ = >, uix: =
IIp, u. Equation (10.6b) then shows that v = —AVp,_u. Using the error

m

estimate (10.8) leads to
HIp,,u = ¢l22) + | = AV, u+ AV gy, (2)

<94 inf — 2 + inf w— AV , .
- <’¢}€(Wh)m Hw QDHL ) we(‘/hdiv)m || <)0||Hd1v(9)>

Classical approximation properties of (V,diV),, and (W},),, ensure that the
right hand side of the above inequality tends to 0 as m — oo. The coercivity
of A then shows that Sp_ (¢) tends to 0 as m — oco.
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LIMIT-CONFORMITY. Let (w,)men be such that u,, € Xp,, o, and Vp, up,
remains bounded in L?(£2)? as m — oo. Let ¢ € Haiy(£2), and ¢, € (VAY),,
be an interpolation of ¢ such that |[¢ — @y, (2) — 0 as m — oo. Then,

recalling the definition (2.8) of Wp and using (10.9),

Wp, (@ ttm) = /Q (Tt () - () + I, 1 () divep()) dat =

/Q (V.. um(@) - (0(@) = @ (@) + I, (@) (divp (@) = divipy (@) ) da.

Apply the Cauchy—Schwarz inequality and the coercivity estimate (10.15) to
deduce

(W, (@, um)| <l = mll 0 1+ 2R+ 1)8) [V, tmll 12 (g)a -

The boundedness of (||Vp,, tmll2(g)e)men and the choice of (¢m)men con-

clude the proof that W (¢, um) — 0 as m — oo.

COMPACTNESS. Let (um)men be such that u,, € Xp,_ o for all m € N, and
(IVD,, umll 12(2)2)men is bounded. The coercivity and limit-conformity just
proved enable us to apply Lemma 2.12. Hence, up to a subsequence denoted
the same way, there exists u € HJ (£2) such that IIp,, u,, — U weakly in L?({2)
and Vop,, u,, — Va weakly in L2(£2)4. Extend all these functions by 0 outside
{2 to some ball B containing (2.

Let w,, € Hi(B)NH?(B) (resp. w € H}(B)NH?(B)) be defined by (10.12) for
p = IIp, Uy, (resp. p = u). Since IIp, u,, — U weakly in L?(£2), it converges
strongly in H~1(£2) (compact embedding of L?(£2) into H~1(2)) and thus
Wy, — w strongly in H} (B).

Applying (10.13) and (10.15) yields

IVwm 10y < B, um 2(0) < (2R +1)82 VD, wmll j2(gya - (10.17)

Let v = P,Vw,, in (10.9d) to write
/ PNVwy, (x) - Vop,, tn(x)de + / IIp, um (x)div(P,Vwy,)(x)de = 0,
I?) I?)
which provides, thanks to (10.10) and the fact that —div(Vwy,) = IIp, tm,

PoVion (@) - Vo, (w)da — / (Ip, wm(@))2dz = 0.  (10.18)

2 £2

Use now (10.11) and (10.17), and the convergence of Vw,, to Vw in L?(£2)%,
to see that PyVw,, converges in L?(2)? to Vw. By weak-strong convergence
(Lemma C.3 page 403) on the first term of (10.18),

im | (I, un(2)?de = | V(@) Vu(z)de = / u(@)?da.
m=oo J 0 Q 0
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For the last equality, we used the definition of w, solution to (10.12) with
p = u — recall also that Vu and u vanish on B outside (2. This shows that the
convergence of Ip, u,, to u is actually strong in L?({2), thus concluding the
proof of the compactness of the sequence of GDs. [

Lemma 10.3 (A density result). The set R defined by (10.16) is dense in
H (D).

Proof. Thanks to the Lax-Milgram lemma, the mapping T : H~1(£2) —
H}($2) defined by:

Ve € H™Y(02), v =T(¢) is the solution in H}(2) to —div(AVv) = ¢
is well-defined, linear and continuous. Since C°({2) is dense in H~1({2) and
R =T(C*(12)), the conclusion follows. ]

The following theorem establishes the link between the GD (10.9) and the
primal form of the mixed finite element method.

Theorem 10.4 (Primal RT is a GDM). Using the GD (10.9), the GS
(3.4) for Problem (10.1) is equivalent to the primal formulation (10.6) of the
mized finite element method.

Proof. Let u € Xp be a solution to (3.4). Let us show that (v,q) =
(= AV pu, IIpu) is the solution of (10.6). We first observe that (10.9d) ensures
(10.6b). Let us now consider » € W}, which can therefore be written ¢ =
IIpv, with v € Xp o. The GS (3.4) gives

/ A(x)Vpu(x) - Vpu(z)de :/ f(x)y(x)de. (10.19)
2 o)

Write (10.9d) with u replaced by v

/ v(x) - Vpu(x)de +/ IIpv(z)dive(z)de = 0,
o) 2

and substitute v = —AVpu to obtain
/ A(x)Vpu(x) - Vpu(x)de :/ P(x)divo(x)de.
19 10

Combined with (10.19), this completes the proof of (10.6¢).

Reciprocally, consider the solution (v, q) to (10.6). Since g € W}, there exists
a unique u € Xp o such that ¢ = II'pu. Comparing (10.6b) and (10.9d) yields
v = —AVpu. Following the same computation as above and letting ¢ = IIpv
for any v € Xp o, we see that (10.6¢) implies (3.4). m
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10.3 Gradient discretisation from dual mixed finite
element formulation

We now construct a GD (in the sense of Section 2.1) inspired from the dual
mixed finite element formulation (10.7) of Problem (10.1). Let W}, be defined
by (10.4) and let again (x;)ier be a a family of piecewise polynomial basis
functions of degree k on each cell of the mesh, spanning Wj,. Let M} be defined
by (10.5) and let (£;) e be a family spanning M} . To avoid confusions in the
notations below, select index sets I and J that are disjoints. Recalling that
V}, is given by (10.2), let the gradient discretisation D = (X5, 15, V5) b
defined by:

X50=1{v=((vi)ier, (vj)jes) : v, ERforall k € TUJ}, (10.20a)

Vue X5, Hpu= ZuiXi and I'zu = Zujfj, (10.20Db)
iel jeJ

Yu € XDO, AV zu € Vj and, for all K € M,

/'w Vsu(x dm+/ Izu(x)divw(z)dz

- Z/ su(z) wg(x) - ngody(x) =0, Vw € V. (10.20c)
oEFK

Remark 10.5. In the case k = 0, the GD (10.20) has the same DOFs and
function reconstruction as the HMM scheme (see Chapter 12), which is also
a GS. Nevertheless, the gradient reconstructions are different.

As in the previous section, in order for (10.20) to define a GD, the system
(10.20c) should define one and only one reconstructed gradient Vzu, and
[-l5 == V5 llL2(2)a has to be a norm on X5 . The existence and uniqueness
of Vzu again results from the fact that (10.20c) provides a square linear
system, whose solution vanishes if the right-hand-side vanishes. The fact that
it defines a norm results, on one hand, from the coercivity property shown
in Theorem 10.6 below, and on the other hand, on [66, Proposition 3.1 p.15],
whose consequence is that for given (u;);c; and Vzu, there exists one and
only one (u;);jes such that (10.20c) hold.

Theorem 10.6 (Properties of the dual RT); GDs). Let (Tp,)men be a
sequence of conforming simplicial meshes in the sense of Definition 7.5, such
that ha,, = 0 as m — oo and (K<, )men is bounded (see (7.10)). Let Dy, =
(X5, 0-115,, V5, ) be the gradient discretisation defined by (10.20) for each
meN.

Then (Dp)men s coercive, GD-consistent, limit-conforming and compact in
the sense of the definitions of Section 2.1.



10.3 Gradient discretisation from dual mixed finite element formulation 299

Proof. We drop the index m for legibility reasons. Denote by T' : Xﬁ,o —
Xp,o the mapping T(%@) = (U;)ser, where we use the gradient discretisation
D defined by (10.9). We have IIzu = IIpT(u) a.e. in §2. By selecting w =
AVpT(u) € VAV C Vj, in (10.20c) and summing on K € M, all the integrals
on o € Fiy vanish, and we obtain

/ AVpT (u)(x) - Vyu(x)de +/ I5u(x)div(AVpT (u))(z)de = 0.
2 2
Using (10.9d) with v = AVpT (%) and T'(w) instead of u then yields
/ AVpT(u)(x) - Vyu(ze / IpT () (x)div(AVpT(w))(x)dx
o)
= /Q AVpT (w)(x) - VpT(u)(x)de.

The properties of A and the Cauchy—Schwarz inequality then lead to

- A ~
VDT (@)1 72090 < X||v5u\|§2(md, Vu € X5 (10.21)
CoErcIVITY. The coercivity follows from I15u = IIpT (), from the coercivity

of the gradient discretisation D, and from (10.21).

GD-CONSISTENCY. Thanks to [66, Proposition 3.1 p.15], for any u € Xp o,
there exists & € X5 , such that T'(4) = u and Vpu = Vzu. Take ¢ € Hj(12)
and

u = Ppyp € argmin (||HDU - <P||L2(Q) + Vv — V<P||L2‘(Q)d> :

veEXD,0

Then, since IIpu = IIpT(u) = Il5u,

Sz(p)

IA

1158 = ¢l 12 ) + V5 = V| L2
1o = @l 2 + VD = V| (s < Sp()

and the consistency of D follows from the consistency of D.

LIMIT-CONFORMITY. If w € V3V then writing (10.20c) over each cell and
summing over the cells, the face terms cancel (since w-ng,+w-np, =0
whenever o € Fiyg with M, = {K, L}), and we see that (10.9d) holds with D
instead of D. The limit-conformity can therefore be proved in a similar way
as the limit-conformity of D,,, by taking ¢,, € (Vhdi")m that converges to ¢
in Hg;y and by writing, for @, € Xp, o,

m

m

Ws (¢,7im) = /Q (V5, fim(@) - pl) + 1T, i (@)divep(x)) da =
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/Q (vﬁm (@) - (p(@) — P (@) + D5 Tin (@) (divip(a) — divgom(m))) da.

COMPACTNESS. As the coercivity, this property is an immediate consequence
of the compactness of the gradient discretisation D, of (10.21) and of IIzu =
HDT(’E) ]

We now check that the GD D indeed corresponds to the dual RTy scheme.

Theorem 10.7 (Dual RTy is a GDM). Using the GD (10.20), the gradient
scheme (3.4) for Problem (10.1) is equivalent to the Arnold-Brezzi formula-
tion (10.7) of the mized finite element method.

Proof. Let u € X5 ; be a solution to (3.4), and let us show that (v,q,\) =
(—=AV 3u, [l5u, I'su) is the solution of (10.7). We first observe that (10.20c)
ensures (10.7b). Let ¢ € W), and p € M}, consider a particular K € M, and
take in (3.4) a function test v € X, such that IIzv|x = ¢[k, zv|L =0
for all L € M\ {K} and I'sv = 0. Thanks to (10.20c), the support of Vv is
also reduced to K and the GS (3.4) therefore gives

/ A(x)Vzu(z) - Vyv(x)de :/ f(x)y(x)de.
K K

Setting w = v in (10.20c) with u replaced by v, and using I'sv = 0, we get

/ v(z) - Vyv(x)de +/ IIzv(x)dive(x)de = 0,
K K
which implies
/ f@)y(z)de = / A(x)Vzu(z) - Vav(x)de
K K
= —/ v(x) - Vav(x)de
K
= / Hﬁv(w)divv(a:)dw:/ P (x)dive(x)de.
K K

This completes the proof of (10.7¢). Then, we take u € M and we let v € X5 0
be such that IIzv = 0 and I'zv|, = pls for a given 0 = K|L € Fiy, and
I'sv|e = 0 for all o' € F\ {0}. Again setting w = v in (10.20c) with u
replaced by v, we get

/ v(z) - Vgo(@)de — / Fsu(@) vk (@) - nxody(@) =0,
K

(e

and

/ v(z) - Vgo(@)de — / Fsv(@) vlL(@) - g dy(@) = 0.
L

g
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Summing these relations and recalling that v = —AV zu gives

/ AVpu(zx) - Vyv(z)de + / w(x) v|g(x) - ng o dy(x)
KUL

o

+ / w(x) vlp(z) -npdy(z) =0. (10.22)

Using the GS (3.4), the fact that the support of Vv is reduced to K U L,
and that ITzv = 0, we see that the first term in (10.22) vanishes. This proves
(10.7d).
Conversely, considering the solution (v,g,A) to (10.7), since ¢ € W, and
A€ M,?, there exists a unique u € Xf),o such that ¢ = IIzu and A = I'zu.
From (10.7b), we get that v = —AV zu. For any v € X5, letting ¢ = Il5v
and p = I'sv, and following the same computation as above, we get that
(10.7¢) and (10.7d) imply (3.4), using (10.20c) where w is replaced by v.

m

Here again, the fact that we wish to obtain a mixed finite element scheme has
led us to a problem dependent discretisation. For the linear problem (10.1),
this is not a difficulty. However if the diffusion tensor depends on the unknown,
it becomes very intricate to ensure the Hg;, conformity, and in fact quite
useless since one can get the approximate continuity of the flux from the
GD itself. This line of thought may lead to consider the GD (10.20) with
“AVpu € V},” replaced by “Vpu € V3,” in (10.20c).






11

The multi-point flux approximation MPFA-O
scheme

The Two-Point Flux Approximation (TPFA) method was introduced in Sec-
tion 1.1.3. This scheme is interesting because of its simplicity in the case of
scalar diffusion operator, since it leads (in 2D) to a 5-point approximation
for the Laplace operator after the elimination of the face unknowns. Its GDM
version can be used with any full diffusion matrices, with the drawback that
the face unknowns can no longer be eliminated from the flux conservation
equations at the faces. The Multi-Point Flux Approximation-O [1] scheme
mitigates this drawback, but leads to a symmetric definite positive matrix
only on certain meshes. The aim of this chapter is to show that, in two such
particular cases of meshes, the MPFA O-scheme is a GDM.

11.1 MPFA methods for Dirichlet boundary conditions

11.1.1 Definition of the MPFA gradient discretisation

We consider the MPFA-O scheme on particular polytopal meshes ¥ =
(M, F,P,V) of 2: Cartesian (each K € M is a parallelepipedic polyhedron
with faces parallel to the axes), or simplicial (in the sense of Definition 7.5).
In each of these cases, P are the centres of mass of the cells. We define a
partition (Vi s)seyy of each K € M the following way (see Figure 11.1):

o Cartesian meshes: Vi ¢ is the parallelepipedic polyhedron whose faces are
parallel to the faces of K, and that has x g and s as vertices. For o € F and
s €V,, welet ¢, 5 = T,. We have Card(Vk) = 2¢ and Card(V,) = 2471,

e Simplicial mesh: We denote by (B85 (x))scy, the barycentric coordinates
of  in K, that is,

z-ak = Y BE(@)(s — @) with B (@) = 0and > BE(x) = 1.
EIS%% sEVK

The set Vi s is made of the points € K whose barycentric coordinates
(BE(x))srev, satisfy BE(x) > pE(z) for all s’ € Vi \ {s}. For 0 € F



304 11 The multi-point flux approximation MPFA-O scheme

and s € V,, T, s is the point of o whose barycentric coordinates in o are
B9 (xss) =1/(d+1) for all ' € V,\{s}, and B (xs) = 2/(d+1). Then,
denoting by s the vertex opposed to o in K, the barycentric coordinates
in K of x5 are given by 85 (z,s) = 1/(d+ 1) for all 8 € V, \ {s},
BE(xy,s) =2/(d+ 1) and BE (2, ) = 0. We have Card(Vk) = d + 1 and
Card(V,) = d.

In both cases, we denote by Fk s the set of all elements o € Fg such that
s € V,, and we denote by 7, s the external face of Vi s defined by

To,s = ViK,s N 0.

Observe that

K] o]
Vicsl = m—and  |rp| = o 11.1
Vicel = Gadoy ™0 7ol = Gana(vy) (1)

S
g
VK,s
[

Fig. 11.1. Notations for MPFA-O schemes defined on Cartesian (left) and simplicial
(right) meshes.

We follow the notations in Definition 7.33 to construct the MPFA-O LLE GD

in both cases:

1. The set of geometrical entities attached to the DOFs is I = M U
{Te,s + 0 € F, s € V,} and the family of approximation points is
S = (#x)kem; (®o,s)ocr, sev, ). We define Iop = MU {1, : o €
Fint, $ € Vo) and Iy = {755 : 0 € Fext, S € Vo}. This gives, with
a slight abuse of notation (we should write v,, , instead of vg,s),

Xpo=1{v=((vK)Kkem, (Vo,s)ocF, scv,) :
vg € Rforall K € M, v, € R for all 0 € Fips and s € V,,
Vs = 0 for all 0 € Fexy and s € V, }.

For any K € M, weset Ix = {K} U {7, s : 0 € Fi, s € V,}.



11.1 MPFA methods for Dirichlet boundary conditions 305
2. The functions mx = (7 )ier, of LP(K) are defined by
mi. =1for i =K, and 7 = 0 for i = 7, 4, (11.2)
which means that
Yv e Xpoy, VK e M, Ve e K, IIpv(z) = vk. (11.3)

3. The functions Gx = (G& )icr, of LP(K)?¢ are defined by: for all s € Vi
and a.e. ¢ € Vi g,

1
g;(((x) = - Z |Ta,s|nK,0'a
|VK’S| 0€VK, s
1 11.4
Yo € -FK,sa g;—()s(w) = 7|To',s NK.o, ( )
|VK,3
Vo € Fr,s, G° =0 on K outside Vi s.
Hence, for all v € Xp o,

VK e M, Vs e Vg, forae e Vg,

(11.5)

(Vo,s — VK )MK o-

1
VDU(“’):'Vi Z |7o,s

’ 0‘6]:1(,3

4. The exactness of the reconstructions 7x and Gy, as well as the fact that
VD - || r(2y¢ is @ norm on Xp o, are proved in Lemma 11.3 below.

Remark 11.1 (Identical approximation points). Note that, in the case of a
Cartesian mesh, for a given o € F all the approximation points (€, s)secv,
are identical. This is allowed in the definition of an LLE GD, see Definition
7.33

For such a GD, the GS (3.4) is a finite volume scheme. Indeed, by selecting
a test function with only non-zero value vg = 1 in (3.4), we obtain the flux

balance
Z Z Fgo,s(u) = /Kf(:c)dw,

oc€FK SEV, (116)
where Fg o s(u) = / Gru(z)  ng ds(z).

Selecting a test function with only non-zero value v, s = 1 in (3.4) leads to
the conservativity of the fluxes:

FK,U,S(U) + FL,U,S(U) =0

11.7
for all o € Fipy with M, = {K, L}, and all s € V,. ( )

For a given s € V), the unknowns (ua,s)cﬂsevg can be locally expressed in
terms of (ux)x|sev,- This is done by solving the local linear system issued
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from (11.7) written for all o such that s € V,. After these local elimina-
tions of u, s, the resulting linear system only involves the cell unknowns. This
discretisation of (3.1) obtained by writing the balance and conservativity of
half-fluxes Fk , s, constructed via P;-exact gradients reconstructions, is iden-
tical to the construction of the MPFA-O method in [1]. The GD constructed
above therefore gives indeed the MPFA-O scheme when used in the GS (3.4).

Remark 11.2 (Other meshes)

The identification of MPFA-O schemes as GSs is, to our knowledge, restricted to
the two cases considered here (Cartesian and simplicial meshes). In the case of more
general meshes for the approximation of (3.1), the gradient reconstruction defined by
the MPFA-O scheme can be used in the finite volume scheme (11.6)-(11.7); however,
the GS (3.4) built upon this gradient reconstruction cannot be expected to always
converge, since the corresponding GD may fail to be limit-conforming and coercive.

11.1.2 Preliminary lemmas

Let us first prove that the GD constructed above is indeed an LLE GD, and
let us estimate its regularity.

Lemma 11.3 (Estimate on reg,; ., MPFA-O). Let T be a polytopal mesh
in the sense of Definition 7.2, which is either Cartesian or simplicial. For
K € M, let ng = (mi)icr, be defined by (11.2), and Gk = (G% )icr, be
defined by (11.4). Then 7 is a Po-exact function reconstruction on K, Gk
is a P1-exact gradient reconstruction on K upon (Tk, (Tss)ecFx, sev,)s and

V¢ = €k, (§o.s)ocFu,sev.) s (GKE)|y,  * (Tos — Tx) =&os — k- (11.8)

[

Moreover, D is an LLE GE and there exists C1g, depending only on d and
0 > 0< (see (7.8)), such that

reg,, (D) < Cis. (11.9)

Proof.

Step 1: properties of mx and Gg.

We have >, mi. = 7K =1 so 7k is a Py-exact function reconstruction.
Let s € Vi and assume that we can prove the following two properties:

Vo € Frs\{o}, (ss —xr)Llnk s, and (11.10)
1

T |ToslNKo - (T — oK) = 1. (11.11)

Vi s

Then the expression

OO = T O sl = I

|VK’S O'GJ:K,S
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shows that
1
(gKg)\VK : (wa,s - wK) = 7|Ta,s|(50,s - gK)nK,a : (ma',s - wK)
® Vi sl
= ga,s - §K7

which proves (11.8). Take an affine function A and apply this relation to
§ = (Alxk), (A(To,5))oecFi, sev, ). Then

(GK&) (s —xr) = AlXss) — Alxx) = VA (o5 — Tk).

‘VK,S
Since the family (4,5 — Tx)se 7., spans the whole space R?, this shows that
the two vectors (G K§)|VK and VA are identical, which concludes the proof
that Gg is a Py-exact gradient reconstruction on K upon the approximation
points (Tx, (To,s)oeFi, sev, ). We now have to establish (11.10) and (11.11).

o Cartesian mesh. For a Cartesian mesh, (11.10) and (11.11) are rather
straightforward by inspecting Figure 11.1, left.

o Simplicial mesh. Let o € Fk s and 5 be the vertex opposed to o in K.
Recall that the barycentric coordinates in K of x, s are given by

BE(xys) =1/(d+1) for all s € V, \ {s},
Bf(wo,s) = 2/(d + 1)
Bg(a:mS) =0.

Since the barycentric coordinate of xx = Tk are all 1/(d+ 1), this shows

that
1

= 8§ —38).

d+1 ( )
For any face ¢ € Fi s\{c}, the vertices s and 5 both belong to o, and
s — 5 is thus orthogonal to ny 5. This proves (11.10).
Since ng o - (€55 — i) is the orthogonal distance between xx and o,
|08 K o - (To,s — k) is equal to d times the measure of the cone with

basis 7, s and vertex xx. We therefore have |7, s|nk o - (Xos — Tx) =
|K|/(d+ 1), which concludes (11.11) due to (11.1).

Tos — LK

Step 2: proof that D is an LLE GD, and estimate on reg,, ,(D).

To prove that D is an LLE GD, it remains to show that [|[Vp:| 1, s a
norm on Xpo. If Vpv = 0 then (11.8) shows that vg = v, s for all o € F
and s € V,. Reasoning from neighbour to neighbour, this shows that v is the
constant vector. Since vy s = 0 whenever o € Foyt, we infer that v = 0.

Let us now bound reg, (D). Since all 7% are non-negative, >, |7k| =1
and thus [7kl[, < 1. All points (z;)icr, are in the closure of K, so
dist(z;, K) = 0 and the third term in reg,,,(D) vanishes. To bound ||Gk||,,
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we simply use |7, 5| < C’lgh}i(_l and h}i{ < C9|Vk,s| for some C1g depending
only on ¢ and d, so that, by (11.4),

|Qf§| < dc129h;<1 and |g}753 < 0129h1_<1-

The bound on |||, follows from Remark 7.32. ]
Let us show how the generic tools presented in Chapter B apply.

Lemma 11.4 (Control of the MPFA GD by a polytopal toolbox).
Let T = (M, F,P,V) be a Cartesian or simplicial polytopal mesh. Define the
polytopal mesh T = (M, F', P, V') such that the cells and centres (M, P) are
those T,

F' ={1ps : 0 € F,s€V,},

and V' is the set of all vertices of the elements of F'. We define a control of D
by T (in the sense of Definition 7.10) as the isomorphism @ : Xp o — X/
given by $(u)x = ug and P(u)r, , = Ugs.

Then, there exists Coy, constant if ¥ is Cartesian and depending only on
0 > ks if T is simplicial, such that

@]l p 5 < Ca0, (11.12)
w'(D, ¥, ®) =0, (11.13)
wY¥(D, T, &) = 0. (11.14)

Proof. Let u € Xpo and apply (11.8) to & = (uk, (Uo,s)ocFx,scv,) tO
deduce

Z Z |Ta7s‘dK,0'

c€FK SEV,

_ p
UO—;’LLK‘ S 021/ |VDU($)|pd£B,
K,o K

with Co; = 1 for parallelepipedic meshes, and Cy; > 0 depends on 6 > kg
for simplicial meshes. Therefore ||P(u)ll%, , < C’21||Vpu||’£p(md and (11.12) is
proved.

Relation (11.13) follows immediately from IIpu = IIz/®(u). Finally, we have

/K Vou@)dz = 3 3 |m.

oc€FK s€EV,

(Ug,s — UK MK, &

Y 1l @(w)or — Blu))nr,or = |K|(Ve®(u)) k.

o' €F}

This shows that wV (D, ¥, ®) = 0, which establishes (11.14). m
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11.1.3 Properties of the MPFA-O gradient discretisation

Thanks to the previous lemmas, the proof of the properties of MPFA-O GDs
is straightforward.

Theorem 11.5 (Properties of MPFA-O GDs). Let (Dp)men be a se-
quence of MPFA-O GDs, as in Section 11.1.1, defined from underlying poly-
topal meshes (T )men that are either Cartesian or simplicial. Assume that
(O, + 1z, )men is bounded (see (7.8) and (7.9)), and that haq,, — 0 as
m — 00.

Then the sequence (Dy,)men s coercive, GD-consistent, limit-conforming and
compact in the sense of the definitions of Section 2.1.1 in Chapter 2. Each
D, also has a piecewise constant reconstruction.

Proof. The limit-conformity, coercivity and compactness are obtained by
applying Corollary 7.13, thanks to Lemma 11.4. The consistency is obtained
by applying Proposition 7.36, thanks to Lemma 11.3. The piecewise constant
reconstruction property is obvious from (11.3). ]

The following two propositions, also direct consequences of results in the previ-
ous sections and in the appendix, are useful to establish precise error estimates
for MPFA-O GSs.

Proposition 11.6 (Estimate on Sp for MPFA-O). Let T be a polytopal
mesh of {2 in the sense of Definition 7.2, that is either Cartesian or simplicial.
Let D be the MPFA-O GD as in Section 11.1.1. Assume p > d/2 and take
0 > O< (see (7.8)). Then there exists Ca2 > 0, depending only on £2, p and o,
such that

Vo € WEP(2) N WoP(R2), Sp(p) < Cozhat | @llwz(a)

where Sp is defined by (2.2).

Proof. For all K € M and all i € I, we have ; € K. By Lemmas 11.3 and
B.1, the hypotheses of Proposition A.6 are satisfied with # depending only on
0. This proposition yields the expected estimate on Sp. ]

Proposition 11.7 (Estimate on Wp for MPFA-O). Let ¥ be a polytopal
mesh of {2 in the sense of Definition 7.2, that is either Cartesian or simplicial.
Let D be the MPFA-O GD as in Section 11.1.1. For Cartesian meshes we take
0> 0z 4+ nz (see (7.8) and (7.9)), and for simplicial meshes we take o > Kz
(see (7.10)). Then, there exists Coz depending only on §2, p, and o, such that

Cp < Cys (11.15)
and, for all o € W' ()4,
Wo(p) < Cos @l (e hrt- (11.16)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).
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Proof. The conclusion follows immediately from Theorem 7.12 and Lemma
11.4. L]

Note that the application of Lemmas 11.3 and 11.7 to the error estimate
(3.6) and (3.7) in Theorem 3.2 provides an error in h g in the case of a linear
elliptic problem in one, two or three space dimensions, when the exact solution
belongs to H?2(£2).

11.2 MPFA-O methods for Neumann and Fourier
boundary conditions

11.2.1 Neumann boundary conditions

We refer to Definition 7.52 for the construction of an MPFA-O GD for Neu-
mann boundary conditions, with the same I, Iy, IIp, Vp as in Section
11.1.1.

Defining ¥’ as in Lemma 11.4, for v € Xp = X5 such that ||VDvHLp(md =0,
Inequality (11.12) (still valid for non-zero boundary values) and the definition
(7.7f) of ||z, show that all (vk)kxem and all (vys)ser sev, are identical.
Hence, by definition of ITp the quantity (2.18) is indeed a norm on Xp.

For non-homogeneous Neumann boundary conditions, the trace reconstruc-
tion Tp : Xp — LP(912) can be defined as T (see (7.7d) with ¥ = T'):

Yv e Xp, Vo € Fext, VS €V, ¢ Tpv =05, 0N Ty s. (11.17)

Since the regularity factor reg,,.(D) is defined as for Dirichlet boundary con-
ditions, Lemma 11.3 still applies and show that this factor remains bounded if
0= is bounded. Defining the control @ =1d : Xp — X</ as in Lemma 11.4,
we see that this lemma still holds and that w™ (D, T, ®) = 0. Hence, Corollary
7.19 and Proposition 7.53 give the following theorem.

Theorem 11.8 (Properties of MPFA-O GDs for Neumann BCs). Let
(Din)men be a sequence of MPFA-O GDs for Neumann boundary conditions
as above, defined from underlying polytopal meshes (T, )men that are either
Cartesian or simplicial. Assume that the sequence (0=, +n<, )men s bounded
(see (7.8) and (7.9)), and that haq,, — 0 as m — co.

Then the sequence (Dy,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.33, 2.27, 2.34 and 2.36. Moreover, each
D, has a piecewise constant reconstruction in the sense of Definition 2.10.

Proposition A.12 and Theorem 7.18 also give estimates on Sp, Cp and Wp
that are similar to those in Lemma 11.3 and Proposition 11.7. The constants
only depend on an upper bound of 5 + nz (for Cartesian meshes) or kz (for
simplicial meshes, due to Lemma B.4).
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11.2.2 Fourier boundary conditions

Starting from an MPFA-O GD for Dirichlet boundary conditions, we follow
Definition 7.55 in Section 7.3.6 to define an MPFA-O GD for Fourier boundary
conditions.

The boundary mesh My is simply {7, s : 0 € Fexs, 8 € V,}, and the trace
reconstruction (11.17) corresponds to I, s = {74,s} and 775 = 1 on 7, 5. The
bound on reg,, (D) for Fourier boundary conditions therefore easily follows
from the bound on this quantity for Dirichlet boundary conditions, and the
consistency (under boundedness of %) is a consequence of Proposition 7.56.
As noticed in Remark 7.21, the work done for Neumann boundary conditions
then immediately show that Theorem 11.8 also applies for Fourier boundary
conditions. Similarly, we could obtain estimates on Sp, Cp and Wp as in
Propositions 11.6 and 11.7.
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Hybrid mimetic mixed schemes

Since the 50’s, several schemes have been developed with the objective to
satisfy some form of calculus formula at the discrete level. These schemes
are called Mimetic Finite Difference (MFD) or Compatible Discrete Operator
(CDO) schemes. Contrary to DDFV methods (see Section 13.2 and [37]) that
design discrete operators and duality products to satisfy fully discrete calculus
formula, MFD/CDO methods design discrete operators that satisfy a Stokes
formula that involves both continuous and discrete functions. Depending on
the choice of the location of the main degrees of freedom (faces or vertices),
two different MFD/CDO families exist. We refer to [63] for a review on MFD
methods, and to [11, 10] (and reference therein) for CDO methods.

A first MFD method, that we call mixed/hybrid MFD or hMFD here, is
designed by using the fluxes through the mesh faces as initial unknowns [16,
15]. This requires to recast (3.1) in a mixed form, i.e. to write § = AVu
and —div(g) = f + div(F), and to discretise this set of two equations. The
resulting scheme takes a form that is apparently far from the GS (3.4). It was
however proved in [35] that this form of hMFD can be actually embedded
in a slightly larger family that also contains Hybrid Finite Volume (HFV, a
particular case of “SUSHI”) methods [49] and Mixed Finite Volume (MFV)
methods [31, 32]. This family has been called Hybrid Mimetic Mixed (HMM)
schemes; each scheme in this family can be written in three different ways,
depending on the considered approach (hMFD, HFV or MFV). The HFV
formulation of an HMM scheme is very close to the weak formulation (3.3)
of the elliptic PDE; it actually consists in writing this weak formulation with
a reconstructed gradient and a stabilisation term (bilinear form on (u,v)). It
was proved in [50] that this specific stabilisation term could be included in an
augmented gradient, and thus that the HF'V scheme is a GS. More surprisingly
perhaps, [36] managed to prove that all possible stabilisations in the HMM
families can be embedded in a gradient, and thus that all HMM methods (and
thus all h(MFD, HFV and MFV schemes) are GDMs.

In the following we sections we detail the GD that leads to HMM meth-
ods when applied to linear diffusion equations, and we establish its proper-
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ties. HMM methods correspond to LLE GDs. Following the nomenclature in
Section 7.3.4, the general SUSHI methods are nothing else than barycentric
condensation of HMM methods; they are therefore also GDMs. We conclude
this section by presenting some considerations on the fluxes associated to the
HMM and SUSHI methods.

Note that some schemes adapting HMM ideas and variants to non-linear equa-
tions and systems have already been proposed and analysed in [30, 19, 48], but
they are not GDMs and do not fully take advantage of the coercive gradient
provided by HMM methods.

12.1 HMM methods for Dirichlet boundary conditions

We consider here the case of non-homogeneous Dirichlet boundary conditions,
which includes as a special case homogeneous Dirichlet conditions.

12.1.1 Definition of HMM gradient discretisations

The discrete elements that define an HMM GD are the following. We take
T =(M,F,P,V) a polytopal mesh of §2 as in Definition 7.2, and we refer to
the notions in Definition 7.50.

1. The geometrical entities attached to the DOFs are I = M U F and the
approximation points are S = ((xx)xem, (To)oecr). We let I = MU
Fint and Iy = Foxt. Hence, recalling the definitions (7.7a) and (7.7b) of
sz and )(3707

XD = X@ = {1} = ((UK)KEM7 (’Ug)ge]:) VK € R for all K € M,
vy €R for all o € F},
and
Xpo=Xzo={veXz:v,=0forall 0 € Fey}.

For K € M, we set Ix = {K}U Fkg.
2. The function reconstructions 7y = (71X, (7% ),cx, ) of LP(K) are defined
by
7K =1and 7% =0 for all 0 € Fg. (12.1)

Recalling the definition (7.7c) of I, (7.33) therefore reads
Yo e Xp, VK e M, for ae. x € K, IIpv(x) = lzv(x) =vk. (12.2)

3. The gradient reconstruction Gg is best initially described through its ac-
tion Gxv on families of real numbers, than through explicit formulas for
the functions (G%)cr, . The polytopal gradient defined by (7.7e), that is,

— 1
VgV = — Z |U|vanK,aa (123)
|K| ocEFK
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is Py-exact (Lemma B.6), but not “strong enough” to control all the DOFs
in Xz o (Remark 7.9). The HMM gradient is built by adding to this poly-
topal gradient a stabilisation term that is constant in each half-diamond
in K. Let Xi = {v = (vk, (Vo)oecry) : vk € R, v, € R} be the space of
DOFs in K and define, for v € Xy, the function Gxv € LP(K)? by

Vo € Fk , for ae. ¢ € Dg o,

Grv(z) = Vigv+ dﬁ[ﬁKRK(v)]anK,m (124)
K.,o

)

where, denoting by Xr, = {€ = (§&)ocrr : & € R} the space of face
values around K,
o Ry : Xg — Xy, is the linear mapping given by

RK(U) = (RK7U(U))(7€]:K with

T T (12.5)
Rk o(v) =v, —vg — Vgv- (Bs — TK),

o L is an isomorphism of the vector space Im(Rg ).
The gradient reconstruction Vp is then defined by (7.34), which simply
gives

Yve Xp, VK e M, Vo € Fg, for ae. x € Dk,

Vpu(x) = Vv + vd LRk (v)]onK.o. (12.6)

dK7O'

The functions (G& )icr,e of LP(K)? can be recovered through Gx defined
by (12.4). Let v& € Xg (resp. v € Xg) be the vectors with value 1 at
K (resp. at o) and 0 at all other positions. Then,

GE = Giov® and G% = G for all o € Fi. (12.7)

4. The trace interpolation operator Zp 5 : Wlfi’p(a.(?) — Xp o is defined
by

1 1
Vg € W'TH(08). o € Fo. (Topn)s = 1o / g(@)ds(z).  (12.8)

5. Lemma 12.8 below establishes the exactness of mx and Gg, and the fact
that ||[Vp - [|Lr(0)e is a norm on Xp .

Remark 12.1 (Hybrid method)
The face degree of freedom v, corresponds to the hybridisation of the hMFD meth-
ods.
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Remark 12.2 (Simpler trace interpolation)
As explained in Remark 2.19, simpler trace interpolations can be considered the
boundary condition g of the considered problem (e.g. in (3.22b)) is more regular

that W“%*”(am. For example, if g € C(£2) we can define (Zp,59)s = g(Ts)-

We now want to prove that all h(MFD, HFV and MFV methods, as presented
in the literature, are GDMs with gradient discretisations as above for suitable
choices of (Lk)kem. As explained in the introduction of this chapter, hMFD,
HFV and MFV schemes are three different presentations of the same method
[35]. The presentation that is the closest to a GS is that of the HFV scheme.
With the notations above, any HMM method for the weak form (3.25) of the
linear problem (3.22) with F = 0 can be written (see [35] in the case g = 0):

Find u € Zp 99 + Xp,o such that, for all v € Xp g,

Z |K‘AK§KU~§K’U+ Z RK(U)TIBKRK(U)
KeM KeM (12.9)

= 3 v [ f@ia,

KeM

where Ag is the constant value of A on K (we assume that A is piecewise
constant on M — see Remark 12.16 below for a discussion on this assumption),
Bx = (Bk)o.o')o.0eFx is a symmetric positive definite matrix, and Ry (v)T
the transpose of the vector Rx (v).

Remark 12.3 (RCK) s, Xz, )

There is a slight abuse of notation here. We write Rk (v) as a column vector as if it
belonged to RC4(Fx >, while it actually belongs to X 7, . Implicitly, when switching
from elements w of X 7, to column vectors, we have chosen a numbering (o1, ..., 0¢)
of the faces of K, and we set w(o;) = w; for all ¢ = 1,...,¢. The same abuse of
notation is made when considering Bx as a matrix and writing Rx (v)TBKRK(v),
or further below in (12.15) when considering Dx as a matrix.

The following lemma will be useful both to establish that all HMM methods
are GDMs, and to analyse the properties of HMM GDs.

Lemma 12.4. Let T = (M, F,P,V) be a polytopal mesh of §2 in the sense of
Definition 7.2, and let D be an HMM GD as defined above, for certain choices
of (Lx)rkem. Then

1. For all K € M, B € Im(R) if and only if 3 ,c 7, |o|Bonk o = 0.
2. For allv e Xp and aoll K € M,

— 1
Vigv= —/ Vpu(x)de. (12.10)
IK| Jk
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Proof.
ITEM 1. Let us first introduce the mapping Rx : Xr, — Xr, defined, for

€ € Xz, by Ri(€) = (Ri,0(€))oer, with

N B . 1
Rio(§) =& — Xe (To —xK)  with X = & > om0
o’'€FK

By noting that Ry (v) = Ric (Ve — i )oer, ) We see that Im(Rg) = Im(Rx).
Let § € Im(Rg). Taking { € Xz, such that 5, =&, — X¢ - (T — k), and
using Lemma B.3, we see that

Z |U|ﬂ<7nK,<T = Z |U|€0'nK,a - Z |U|X§ : (Ea - wK)nK,a

cEFK ocEFK ceFK
= Z |0’|€g‘nK7g — < Z |O"n](7g(§0 —ajK)T> Xg
oE€FK oEFK
= > lolén., - |K|Xe = 0.
oceFK
Setting

Gk :BEXrer Y lolfonko €RY,

ocEFK
we just showed that Im(Rx) C ker(Gg). Since (NK.o)oer, spans RY, the

linear mapping Gk has rank d and therefore dim(ker Gx) = Card(Fg) — d.
It is easy to see that

ker(Ri) = {€ € X7, ; 3Z¢ € R? such that &, = Z¢ - (T — k) },

and thus that Z € R? — (Z - (Ty — ©x))oer, € ker(Ry) is an isomorphism
(the one-to-one property comes from the fact that (T, — Tx)oecr, spans R?).
Hence, dim(Im(Rg)) = Card(Fk) — d = dim(ker(Gg)). Since Im(Rg) C

ker(G k), the equality of dimensions therefore gives Im(Rg) = ker(Gx) and
completes the proof of Item 1.

ITEM 2. By (12.6), since Vpu is constant in each half-diamond inside K, using
(B.1) to write | Dk ,| = wd# gives

/KVDv(w)dmz Z |Drk,o| (VD) D,

ocEFK

= |K|[Vgov+ % g;}{ 0|l (Re(0)]onko.  (12.11)

But Lx(Rk(v)) € Im(Rg) since Lk is an isomorphism of this space, and by
Item 1 the last term in (12.11) vanishes. This proves that [, Vpu(x)dz =
|K|V kv as claimed. m



318 12 Hybrid mimetic mixed schemes

Proposition 12.5 (HMM methods are GDMs). Let T be a polytopal
mesh of {2 in the sense of Definition 7.2, and for each K € M take By
a symmetric positive definite matriz of size Card(Fk). Then there exists a
choice of isomorphisms Lk : Im(Rx) — Im(Rg) such that, if D is the GD
defined above using these isomorphisms, the GS (3.4) (with F = 0) is the
HMM scheme (12.9) for the choice of matrices (Bx)rkem-.

The proof also shows that any choice of isomorphisms (L )rkenm leads to
an HMM method. In other words, there is a perfect equivalence between the
HMM family of methods and the family of GDs defined above.

Proof. Given the definition (12.2) of IIp, the right-hand sides of (3.4) and
(12.9) clearly coincide. Since the space for the unknown and the test functions
are the same in both schemes, it simply remains to prove that the left-hand
sides also coincide for a proper choice of the isomorphisms (Lx)xem-

Let K € M. We will prove that there exists an isomorphism Ly such that,
for all (u,v) € X3,

|K‘AK§KU . vK’U + RK('U)TBKRK(U)

_ /K AxVpu(a) - Voo(z)ds. (12.12)

Summing (12.12) over K € M then shows that the left-hand sides of (3.4)
and (12.9) are identical.

Recall the definition (12.6) of Vp and use » . r |Dr.o| = |K]| to write, by
developing the scalar product,

/K AVpu() Vpo(@)dz = 3 [DicolAx(Vou) - (Voo) x

cEFK
= |K|AK§KU . WKv
Vd

+ A Vgu- Y Dol = —[Lx R (0)]omrc o (12.13)
K,o
ocEFK ’
= Vd
+Vko- Ak Y Drcol=—[LxRic(w)]onr o (12.14)
K,o
cEFK ’
d
+ Y Drcol g Arncs o Lo Ric(u)]o [Cx Ric(v)],-
cEFK K,o
By (B.1), % = ‘%I and thus, since Lx has values in Im(Rg), Item 1 in

Lemma 12.4 shows that (12.13) and (12.14) vanish. Hence

/K AgVpu(x) - Vpu(x)de
= |K\AK§Ku . vKU + [ﬁKRK(U)]TDK[ﬁKRK(U)] (12.15)
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|o

with Dy = diag(ﬁ/lKnK’g ‘Mg ) a diagonal definite positive matrix. Re-
lation (12.12) therefore holds provided that, for all (&,7) € (Im(Rg))?,

" Brn = (Lk(£) " Dx(Lx(n)). (12.16)

Consider the vector space E = Im(Rg) C Xz, , endowed with the two inner
products (£,m)1 = &TBxn and (£,n)2 = ETDgn. The isomorphism Lr :
Im(Rg) — Im(Rk) given by Lemma 12.6 below then satisfies (12.17), which
is precisely (12.16) with = ¢ and y = 1. L]

Lemma 12.6. Let E be a finite-dimensional vector space endowed with two
inner products (, Y1 and { , )2. There exists an isomorphism L : E — E such
that

for all (z,y) € E?, (z,y)1 = (Lz, Ly)s. (12.17)

Proof. Let e be an orthonormal basis for { , )2 and M, be the (symmetric
definite positive) matrix of (, )7 in this basis. If X, and Y, are the coordinates
of # and y in e then (z,y); = Y M.X.. Let L. = /M, and define £ as the
isomorphism whose matrix relative to the basis e is L. Since e is orthonormal
for (, )2, the relation Y M. X, = (L.Y.)? (L. X.) translates into (z,y); =
<£$, £y>2 ]

Remark 12.7 (Elimination of the cell DOF's in the HMM GS by static condensation)
By static condensation, the cell degrees of freedom can be eliminated when an HMM
method is applied to a linear elliptic equation. This is done by taking, in (12.9), the
test function v such that vx = 1 for one cell K € M, v;, = 0 for all other cells L,
and v, = 0 for all 0 € Fx. Then (12.3) shows that Vv =0 for all L € M, which
gives Rx(v) = —(1)oer, =: —1k, and Rr(v) = 0 for all L # K. Hence, (12.9)
leads to

— T — )
15 B Ric () /K !

Since Rk (u) = Mg (uo)ocry — 1kur, with Mg a linear operator, we infer that
(l’f(BKlK)UK 2/ f+ 1£BKMK(UU)UE]:K~
K
The matrix Bx being symmetric definite positive, 1£IB%K 1x > 0 and therefore

UK = (1£BK1K)71 (/ f+ 1§BKMK(UU)UG_FK) .
K

Hence, the unknown ux can be locally computed from the source term f and the face
unknowns (us)oery , without even having to invert a local system. This expression
for ug can be plugged back into (12.9) and provides a symmetric positive definite
system only on (Us)oeF,, -
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12.1.2 Preliminary lemmas

To prove that HMM GD satisfy the properties defined in Part I, preliminary
results must first be established. If D is an HMM GD as in Section 12.1.1, we
define the following measure of the invertibility properties of the isomorphisms

(EK)KeMi

(p=min< (>0 : VK e M, Vv € Xk,

_ Ri o (v) [P [Lx Ri (V)]0
Y Dol =7 < D Dkl | (12.18)
c€FK Ko ceFK Ko
RKU(U) P
< ; .
<¢ Y Do i
ocEFK ’

The simplest way to choose Lx that satisfies the inequality in (12.18) is to
take L = Bxld, where Bk € [(71,(]. This corresponds to the original HFV
method.

The following lemma states that HMM GDs are LLE GDs, and gives a control
of their regularity reg, . in terms of (p and geometric regularity factors.

Lemma 12.8 (Estimate on reg,, .(D) for the HMM GD). Let T be a
polytopal mesh of £2 in the sense of Definition 7.2, and D be an HMM GD as in
Section 12.1.1. Then, for all K € M, 1k is a Pg-exact function reconstruction
on K, and Gy is Py-exact gradient reconstruction on K upon Ik .

Moreover, D is an LLE GD and, if o > 0<+(p (see (7.8) and (12.18)), there
exists Caq, depending only on p, d and o, such that

reg,, (D) < Caa. (12.19)

Proof. Let K € M. According to (12.1), >
Py-exact function reconstruction.

Lemma B.6 shows that Vi is Pj-exact gradient reconstruction. Hence, if v
interpolates an affine mapping A at the approximation points (Zx, (To)oecFy ),
(12.5) gives Rk »(v) = A(T,) — A(xx) — VA - (T, — k) = 0. Therefore,
OrV|Dg, = Viv = VA and Gg is a Pi-exact gradient reconstruction on K
upon I.

To prove that D is an LLE GD, we need to show that v = 0 whenever Vpv = 0.
If the latter equality holds, then (12.10) shows that Vv = 0 for all K € M
and thus, by (12.4) and the fact that Lx is an isomorphism, Ry (v) = 0.
Combined with Vv = 0 this establishes that v, — vxg = 0 for all ¢ € Fk.
Reasoning from neighbour to neighbour we infer that v is the constant vector,
which means that it is zero since v, = 0 for all 0 € Foyt.

i oK ;
il Tk = T = 150 Tk is a

Let us now estimate reg,, (D). The first and last terms in the definition of
this regularity factor are easy to bound since, for all i € I, dist(x;, K) =0
and >, [T (2)] = 1. Let us estimate the term [|Gr||,,-
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Take v = (vi, (Vs )oeFy ) and write, using the power-of-sums inequality (C.12)
and the definitions (12.4) and (12.18) of Gk and (p,

IGxvl1%0 0 = D DKol [(Gr) D, P
oceFK
[Lx Rk (v)]o
dK,a

< gp~1 <|K||va|p+d3 > Dkl
cEFK

)

1 = p P Ry o(’U) P
<27 K[ |[Vgo]" + ¢pd? Y Dk : . (12.20)
dKO’
cEFK ’
Set V' = max{|v, —vk| : 0 € Fk}. Since ng}i’;’ >land )z loldiko =
d|K| (see (B.1)), the definition (7.7e) of Vx shows that
_ 1 b 1 1%
Viv| < — lo|V < —V— loldk.e < dfx—. (12.21)
’ | ‘K| U;K K |K| U;K / hK
Using the definition (12.5) of Rk, leads to
Rk 0 0
’K’(”) < 2 |Rk.o(v)] < = (V + dbzV). (12.22)
dx,» K hk

Plugging (12.21) and (12.22) into (12.20) gives Ca5 > 0, depending only on p,
p and d, such that

Gkl Lo (reys < Cos | K[MPhi max{|v, — vk| = 0 € Fc}. (12.23)

Applied to v = v& or v = v7 (defined in Item 3 of Section 12.1.1), this shows
that [|Gic|l,(xpe < CoslK[VPhi! for all i € Ix. Recalling the definition

(7.26) of ||GK||,, we infer that
1G9k, < Cas(1 4 Card(Fk)) < Cas(1 + @)

and the proof of (12.19) is complete. m

Lemma 12.9. Let T be a polytopal mesh of {2 in the sense of Definition 7.2,
and let D be an HMM GD on ¥ as in Section 12.1.1. We take 0 > 0 4+ (p
(see (7.8) and (12.18)). Then, there exists Cag > 0 depending only on 2, p
and o, such that

Yv € Xp, |’U|¢1p < Oy ||VDU||LP(_Q)(1 . (1224)

Proof. In this proof, A < B means that A < M B for some M depending
only on {2, p and p. Let v € Xp. Relation (12.10) and Jensen’s inequality give
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|V vlP < |va(:c)\pdm. (12.25)

1
[K]
By definition (12.6) of Vpv and by the power-of-sums inequality (C.12), we
deduce that, for a.e. y € D 4,

/i

dKO’

p

= |va(y) — vKUrD

[Lx Rk (v)]onk o

< | Vou(y |K|/ |Vpu(z)|Pde.

Integrating over y € Dk , and summing over o € Fg leads to

[EK Ry (v

/ Vpu(a)[Pda. (12.26)

cEFK

Use then the definition (12.18) of {p to write

Z |DK,0

cEFK

RKU

/ Voo (a)[Pda. (12.27)

By definition (12.5) of Rk o, and since |Zs — x| < hix < Ozdk ., we have
[ve —vK| S |RKk,0 (V)| +|VKv|dk,o. Hence, recalling (12.25) and using (12.27),

S Dicol |2 ‘ /\VDU Pde.

ocEFK
Since |Dg,o| = |0‘U(liK" (cf. (B.1)), summing this relation over K € M and
recalling the definition (7.7f) of || , proves (12.24). L]

Remark 12.10 (Converse to (12.24))
Under more restrictive hypotheses on the mesh, [49] also proves that [[Vpv| 15 g)a <
C26 |v|s ,,- This inequality is however not useful for the analysis of HMM GDs.

We can now define, and state estimates on, a control of an HMM GD by a
polytopal toolbox.

Lemma 12.11 (Control of an HMM GD by a polytopal toolbox). Let
T be a polytopal mesh of §2 in the sense of Definition 7.2, and let D be an
HMM GD on ¥ as in Section 12.1.1. Take o > O<+(p (see (7.8) and (12.18))
and define the control @ =1d : Xp o — Xz of D by T (see Definition 7.10).
Then, there exists Cog > 0 depending only on (2, p and o, such that

@[5 < Cos, (12.28)

and
Ip 3 &)=0, wV(D,T,H)=0. (12.29)
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Proof. Estimate (12.28) is given by Lemma 12.9. The first relation in (12.29)
follows from IIpv = Ilzv = Iz®P(v) (see (12.2)). The second relation in
(12.29) is a straightforward consequence of (12.10). L]

12.1.3 Properties of HMM gradient discretisations

Thanks to the previous lemmas, the proof of the properties of HMM GDs is
straightforward.

Theorem 12.12 (Properties of HMM GDs for Dirichlet BCs). Let
(Din)men be a sequence of HMM GDs, as in Section 12.1.1, defined from
underlying polytopal meshes (Tp,)men. Assume that (0=, + Nz, )men and
((p,,)men are bounded (see (7.8), (7.9) and (12.18)), and that hpq,, — 0
as m — co. Also assume that

K]

hK|O'|

sup max{ cKeMpy,o¢€ ]:K} < +o0. (12.30)

meN

Then, the sequence (Dy,)men is coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.2, 2.20, 2.6 and 2.8. Moreover, each D,
has a piecewise constant reconstruction in the sense of Definition 2.10.

Remark 12.15. The condition (12.30) is only useful to establish that (2.16)
holds, which is used to prove the GD-consistency for non-homogeneous Dirich-
let boundary conditions. In particular, for homogeneous Dirichlet BCs, the
theorem holds without assuming (12.30).

Proof. The limit-conformity, coercivity and compactness are obtained by
applying Corollary 7.13, thanks to Lemma 12.11. The property of piecewise
constant reconstruction is also straightforward from (12.2) (using the nota-
tions in Definition 2.10, one simply chooses 2x = K if K € M and 2, = ()
if o € F).

To prove the GD-consistency, we aim at applying Proposition 7.51. The bound
onreg,, ,(Dy,) being provided by Lemma 12.8, we just have to check that (7.61)
and (2.16) hold.

Let ¢ € C*°({2) and o € Fi. We have, for « € o, by Taylor’s expansion
o(x) = ¢(Zs) + Vo(Ts) - (. — To) + Ro ()
where |R, ()| < 3diam(0)? supg [D?¢|. Hence, taking the average over « € o

and recalling the definition (12.8) of Zp g, since ﬁ [, xds(x) = =,,

_ 1.
|(Zp,07(#))s — #(@s)| < 5diam(o)* sup| D*¢|.
2

Since diam(o) < diam(K) for any o € Fg, this proves that (7.61) holds.
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It remains to prove (2.16). In the following, A < B means that A < M B for
some M not depending on m or the considered elements of Xp, o. We also
drop the index m. Let p € WP(£2) and define v € Xp by

1 1
Vg = m/}(g&(m)daz and v, = H/J(p(w)ds(:v).

We clearly have v — Zp ov(p) € Xpo. By Jensen’s inequality, |vg|? <
ﬁ Jx le(x)[Pda and therefore, multiplying by |K| and summing over K €

)

M| o0y < llell o) - (12.31)
Estimate (B.11), with p = 1, in Lemma B.7 (p.376) yields

1
or = ol S 7 /K V()|dz.

Plugged into (12.23) this shows that

K|/P
1G5l o gaepe S max Lo

dx.
o FK hK‘O'| K‘V(p(il?)‘ *

Raise to the power p, use Holder’s inequality (C.7) and the fact that |K| <
hilo| for all 0 € Fi to obtain

K|
Vool s < max b / Vo(z)Pd </ Vo(z)Pdz.
VDUl e 5 et hiclolP Jx Vel)Fds 5 K IVele)lde

Summing this relation over K' € M gives |[Vpvl| 1,0y S [Vl pp(g)a- Com-
bined with (12.31), this establishes (2.16) and concludes the proof of the
GD-cousistency of (D) men. n

The following two propositions, also easy consequences of the preliminary

results in the preceding section, are useful to establish error estimates for
HMM GSs.

Proposition 12.14 (Estimate on Sp for HMM GD — Dirichlet BCs).
Let ¥ be a polytopal mesh of {2 in the sense of Definition 7.2, and D be
an HMM GD on ¥ as in Section 12.1.1. Assume that p > d/2 and take
0> 0z + (p (see (7.8) and (12.18)). Let ¢ € W*P(82) and, as in Remark
12.2, re-define Ip o7y(p) by: (Ip,07(p))e = ¢p(To) for all 0 € Fexy (this makes

sense since @ € C(§2)). Then, there exists Ca7 > 0, depending only on §2, p
and o, such that

Sp(9) < Carhat [9llyom(en
where Sp is defined by (2.14).
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Proof. By Lemma B.1, each cell K is star-shaped with respect to a ball of
radius miny ez, di,o > 07 'hx > 0 *hg. Moreover, for all K € M and all
i € Ix we have x; € K, which shows that (A.15) holds. Using Lemma 12.8,
Proposition A.10 can be applied and the result follows immediately.

m

Proposition 12.15 (Estimate on Cp and Wp for HMM GD — Dirich-
let BCs). Let T be a polytopal mesh of §2 in the sense of Definition 7.2, and
let D be an HMM GD on ¥ as in Section 12.1.1. Take 0 > 0« +n< + (p (see
(7.8), (7.9) and (12.18)). Then, there exists Cag depending only on 2, p, any
0, such that

Cp < Cog (12.32)

and

Vo € W (), Wp () < Coshat [l () - (12.33)
Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Proof. The conclusion immediately follows from Theorem 7.12 and Lemma
12.11. m

Note that the application of Propositions 12.14 and 12.15 to the error estimate
(3.6) and (3.7) in Theorem 3.2 provides an O(h ) error in the case of a linear
elliptic problem in two or three space dimensions, when the solution belongs
to H?(92).

Remark 12.16 (Non piecewise constant diffusion tensor)

If A is not piecewise constant on M, then (12.9) is the GS (3.4) for the problem
(3.3) with A is replaced with its piecewise projection on the mesh, i.e. (12.9) is the
GS for

Um € Ho(R2), Vv € Hy(92),

/Q Apm () Vur (x) - Vo(z)de = /rz f(x)v(z)de — /Q F(x) - Vu(x)dx

where (Am)x = ﬁ [ A(m)dx for all K € M. Assuming that A is Lipschitz-
continuous inside each cell, we have [[A — Am|| o () < Cha and thus, denoting by
7 the solution to (3.3), subtracting the equations satisfied by wa¢ and u and taking
v =Tupm — u as a test function, we obtain

AV = V|22 e < /QAM (2)(Vam — VE) (@) - (Vam — V) (x)de
- /Q (A(w) — Api(@)) V() - (VErt — VE)(@)da

< Chm |Vl 20 IVEM = V] 12 gya -

This shows that |[wa —ﬂ||Hé(Q) = O(hm). If w is the solution to the HMM
scheme (12.9), the estimates in Chapter 3 and in Propositions 12.14 and 12.15
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show that |[ur — Hpull 120y + [VEM — VDull 29y = O(ha). Hence, we see that
@ — IIpul| 2oy + [IVT = VDul| 20y = O(hrm).

In other words, the replacement of A by its piecewise constant approximation in
(3.3), and the approximation of this latter equation by an HMM GS, does not
impact the expected rates of convergence. Assuming that A is piecewise constant is
therefore not extremely restrictive, especially since it is the case in many practical
applications.

12.2 HMM methods for Neumann and Fourier boundary
conditions

12.2.1 Neumann boundary conditions

Following Definition 7.52, an HMM GD for homogeneous Neumann boundary
conditions simply consists in defining Xp, IIp and Vp as in Items 1, 2 and 3
in Section 12.1.1.

If v € Xp = Xg and [[Vpol|,(g)e = 0, then Inequality (12.24) and the
definition (7.7f) of |-|¢ , show that all (vk) kem and all (v,)seF, are identical.
Hence, the definition of ITp shows that the quantity (2.18) is indeed a norm
on X'D-

For non-homogeneous Neumann boundary conditions, we take as trace recon-
struction Tp : Xp — LP(912) the operator Tz (see (7.7d)), that is,

Vv € Xp, Vo € Foxt : Tpv=Tgv = v, on o. (12.34)

Since the regularity factor reg,, (D) is defined as for Dirichlet boundary condi-
tions, Lemma 12.8 still applies and shows that this factor remains bounded if
0% and (p are bounded. Defining the control @ = Id : Xp — X« of an HMM
GD D for Neumann boundary conditions by ¥, we see that Lemma 12.11 still
holds and that w™ (D, T, ®) = 0. Hence, Corollary 7.19 and Proposition 7.53
give the following theorem.

Theorem 12.17 (Properties of HMM GDs for Neumann BCs). Let
(Din)men be a sequence of HMM GDs for Neumann boundary conditions
as above, defined from underlying polytopal meshes (¥ )men. Assume that
(O, + 1<, )men and (Cp,, )men are bounded (see (7.8), (7.9) and (12.18)),
and that ha,, = 0 as m — oo.

Then the sequence (Dy,)men 18 coercive, GD-consistent, limit-conforming and
compact in the sense of Definitions 2.33, 2.27, 2.34 and 2.36. Moreover, each
D, has a piecewise constant reconstruction in the sense of Definition 2.10.

Proposition A.12 and Theorem 7.18 also give estimates on Sp, Cp and Wp
that are similar to those in Propositions 12.14 and 12.15. The constants only
depend on an upper bound of 0z + (p (for Sp), or of Oz + Nz + (p (for Cp
and Wp).
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12.2.2 Fourier boundary conditions

Starting from an HMM GD for Dirichlet boundary conditions, we follow Def-
inition 7.55 in Section 7.3.6 to define an HMM GD for Fourier boundary
conditions.

The boundary mesh My is simply Fext, and the reconstructed trace (12.34)
corresponds to I, = {0} and 77 = 1. The bound on reg,, (D) for Fourier
boundary conditions therefore easily follows from the bound on this quantity
for Dirichlet boundary conditions, and the consistency (under boundedness of
0=, + (p,,) is therefore a consequence of Proposition 7.56.

As noticed in Remark 7.21, the work done for Neumann boundary conditions
then immediately show that Theorem 12.17 also applies to Fourier boundary
conditions. Similarly, we could obtain estimates on Sp, Cp and Wp as in
Propositions 12.14 and 12.15.

12.3 HMM fluxes, and link with the two-point finite
volume method

Let us define the family of fluxes (Fi o) kem occryx as the linear mappings on
Xp such that

Vu,v € Xp, VK e M :
> Fro(u)(vk —vg) = /K A(z)Vpu(z) - Vpo(z)dae. (12.35)

cEFK

The existence and uniqueness of these fluxes is ensured by the following propo-
sition.

Proposition 12.18 (Existence and uniqueness of the fluxes). There ex-
ists a unique family of linear mappings (Fk o) kem , seFy that satisfy (12.35).

Proof. Let u € Xp and assume that (Fg ,(u))k,s a solution of (12.35).
Take K € M, 0 € Fk, and let w” € X< be such that wJ =1, w?, = 0 for all
o # o', and wy =0 for all L € M. Substituting v = w? in (12.35) gives

Frgo(u)=— /K A(z)Vpu(x) - Vpw? (z)de, (12.36)

which determines uniquely Fi (1), since w? only depends on ¢. This formula
also clearly shows that u € Xp — Fk »(u) is linear.

We now prove that the fluxes defined by (12.36) satisfy (12.35). Fix a cell
K € M and let v € Xg. Multiplying (12.36) by vk — v, and summing on
o € Fk gives

Z Fr o (u)(vk — v5)

cEFK
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_ /K A@)Vpu(a) - Vo ( 3 (s - UK)wU> (@)da

c€EFK

= /KA(:E)VDu(a:)-VDV(w)dCIJ, (12.37)

where V = ZO’EJ:K (v — v )w? € Xp. V has components V,» = v,s — v for
all o' € Fi, and Vi = Vg, = 0 for all 0" & Fi and all L € M. We therefore
have, by definition (7.7¢) of V,

e e Y e
ViV = iy 2 lelVonso = gy 3 lollor — v = Vo

Moreover, for any o € Fi, V, — Vg = v, — vk. Hence, by (12.4) and (12.5)
we see that VpV = Vpov on K. Equation (12.37) therefore shows that (12.35)
is satisfied. L]

The GS for (3.1) (with F' = 0) then corresponds to writing the flux conserva-
tivity and flux balances (see [35]):

Vo € Fint @ Fro(u) + Fpo(u) =0, (12.38)
VK eM: Y Frq(u / flx (12.39)
UE]“K

The HMM method is therefore a Finite Volume scheme (more precisely, the
Mixed Finite Volume scheme, see [35]).

For specific meshes and with A = Id, the flux Fi ,(u) actually only depends
on the values ux and u,.

Lemma 12.19 (Superadmissible mesh and two-point flux). Let T be
a polytopal mesh of (2 in the sense of Definition 7.2. We assume that the
following superadmissibility condition is satisfied:

jzT_ZBK

VKeM,VoecFg:ng,= (12.40)

dK,G‘

(i.e. the orthogonal projection of Tk on each face o € Fk is the centre of
mass Ty of o). Then the following property holds:

/K Vou(x) - Vpu(x)de = Z o] (ug — ug) (VK — Vg). (12.41)

ceFK Ko

)

Hence, if Ax =1d and L =1d, the fluzes defined by (12.35) are given by

g
FK,U(U) — ‘ |

drcs (ug — ugy).
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A similar lemma can be proved [35] for isotropic A, i.e. A(x) = A(x)Id.

The superadmissibility condition is satisfied by rectangles (with @ x the centre
of mass of K) and acute triangles (with & the circumcenter of K) in 2D,
and by rectangular parallelepipeds (with &k the centre of mass of K) in 3D.
It is unfortunately not satisfied by tetrahedra in general.

Proof. Since Ax =1Id, the choice Lx = Id and Equation (12.15) give

/ Vopu(x) - Vpu(x)de
K

o]

= |K\VKu~WKv+ Z dr

ocE€FK ’

Rico(u)Rio(v). (12.42)

Thanks to Assumption (12.40), the reconstructed gradient may be written

- 1 lo]| _
Vgv=— (Vo — VK )(Ty — k).
K| UEE;K dx o

Usin again (12.40), Equation (B.2) gives > . »_ dlKL‘(EU —zg)(To—TK

|K|Id and therefore, recalling the definition (12.5) of Rk 4,

g
> AT Ry ) i)
K,o

cEFK

)T_

o _ _
= g d| | (ug —ug)(ve —vK) — |K|VKu- Vio.
K,o
ocEFK ?

Plugged into (12.42), this yields (12.41). The expressions of Fi , are then
obtained by comparing (12.41) and (12.35). ]

12.4 A cell-centred variant of HMM schemes on
A-admissible meshes

Let us consider a A-admissible mesh in the sense of [47]. We recall that in
the case of a A-adapted polytopal mesh, the line (zx,xr) is orthogonal to
the interface o. Let us set Xp o = {(vk)xkem : vk € R} and define d, and
6K’o-u? for all u € XD)(), by

de =dg,e +dre and dx ou =ur —uk, Vo = K|L € Fin, (12.43)
dy =dg s and dx ,u = —Ur, Vo € Frg N Fext- ’
Let as before ITpu € L?(£2) be the piecewise constant function equal to uy in
K. The gradient reconstruction Vpu € L?(£2)? is constructed the following
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way. We start, as in HMM methods, by defining a constant gradient in each
cell K, using a formula that accounts for the A-admissibility of the mesh:

1 (SK o
Viu= == 0[(Zy — Tr)——. (12.44)
.2, i
We then let 5
Ry () = 572 = Vicu - nc s (12.45)
and
VK,UU =Vgu+ \/&RK’U(U)(fg — {BK). (12.46)

Then, as in HMM methods, Vpu € L?(£2)? is the piecewise constant function
defined by the value Vg ,u in Dg .

The mathematical analysis of the consistency and limit-conformity follows
similar steps to that of standard HMM schemes. As in the case of an HMM
method with Lx = Id, this variant gives back the standard 2-point scheme
for superadmissible meshes when A = Id.

12.5 The SUSHI scheme for homogeneous Dirichlet
conditions

The SUSHI scheme is nothing else than a barycentric condensation of HMM
schemes, in which some of the face unknowns are eliminated. In its simplest
form, a SUSHI GD is given by Definition 7.38 with D an HMM GD and
I™ = MU Fryp, for some Fiyp, C F. The face unknowns that are eliminated
correspond to Foary = F\Fnyb- If 0 € Fpary, the points (x;);cm, used to
eliminate the unknown associated with o are located around o. If ¢ is on
or around a discontinuity of A, as discussed in Section A.3 a linearly exact
barycentric condensation as in Definition 7.38 leads to a poor approximation of
the solution. The notion of S-adapted barycentric condensation, that relaxes
this requirement of a linearly exact condensation, is therefore particularly
useful for the SUSHI GD.

12.5.1 Harmonic interpolation coefficients

We consider here p = 2, since this construction is mostly meaningful for linear
problems. If A is discontinuous, the solution @ to (3.1) is smooth in the re-
gions where A is smooth, and has continuous fluxes where A is discontinuous.
This describes a subset S of H{(£2). We present here a SUSHI GD that is
S-adapted, and produces better approximation results in the case of hetero-
geneous material. The construction of the interpolation families is based on
the following result.
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Lemma 12.20. Let K = R%! x (=00,0) and L = R?! x (0,00) be two
half-spaces, and o = RI~1 x {0} be their interface. We consider a diffusion
tensor A which is constant equal to Ak in K and constant equal to Ay, in L.
The vector nky, is the unit vector in the direction xq > 0. We take xx € K
and Ty, € L and define yx and yy, as the respective projections of Ty and
xr ono. Welet di , = dist(zx,0) and d, - = dist(xr, o) and we define the
dioptrical point y, € o by

o — ALdi oYL + Akdr oYk dr,odr -
7 ALdr,o + Akdr o ALdk,e + Akdr &

(AL —XL), (12.47)

where )\K = ’I’LKL-AK’I’LKL, )\tK = (AK —)\KId)’I’LKL, )\L = ’I’LKL-AL’I’LKL and
)\tL == (AL - )\le)nKL.

Let u be a continuous function on R%, affine in both sets K and L and such
that AxVug.nkr = ALVup.ngr. Then we have

U( ) _ )\LdK,O'u(xL) + )\KdL’O-U(wK)
Yo )‘LdK,a' + AKdL,O'

(12.48)

Proof. Let us first notice that ¥y, indeed belongs to o. This is a consequence
of yxk € o, yr € o and (AL — AL) Lnk . This ensures that A} — Al is a
vector in o.

Let us now take u as in the lemma, and let G and G, be its gradients in
K and L. We decompose these gradients in their normal and tangential part
relative to 0: Gx = gxngyr + G’}( with G% ‘ngr, =0, G =grnkr + GtL
with G% - ngp = 0. We set ux = u(xg) and uy, = u(zr). Since y — xx =
Y—yYx +dxonkr and y—xy =y —yr —dr Nk, the continuity of u along
the o writes

Yy €o :u(y) =ux +dxogx + (Y —yx) - G (12.49)
=ur —dpogr +(y—yr) G} .

This is equivalent to the two conditions G = G% =: g* and
dk,o9x +drogr =ur —ukx + (Yyx —yr) - g". (12.50)
The condition AxGg - ngr = AL G, - ng can be written
g Ak — gLAL = g' - (AL — Ak). (12.51)
From (12.50) and (12.51) we deduce

gK = Aplur —uk + (yx —yr) - g'1 +dr.og" - (AL = Ng)
K ALdg,o + Akdr - .

Plugged into (12.49), this formula gives, for any y € o,
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Ar(ur — uk)
Ardg.o + Akdr o
M(yx —yr) g +diogt - (AL — Ak)
Ardg.o + Akdr o

u(y) =ug + dK,U

+dx.» +(y—yk)-g". (12.52)

We then just need to define the point y, as the point y € o which eliminates
the unknown term g* from this expression, that is

M (yr —yr) +doo (AL — AL)
ALdk,o + Akdr &

dK,o’ +(y0'_yK) :07

which corresponds to (12.47). Equation (12.52) then reads

An(ur —uk)
Adi o + Axdre’

u(ya) =ug + dK,U

which is equivalent to (12.48). m

This lemma justifies the following construction of interpolation families. We
recall that F is split into Fyyp, corresponding to degrees of freedom that will
remain in the SUSHI GD, and Fyary, corresponding to degrees of freedom
that are eliminated. We first compute, for any face 7 € F, a point y, on the
hyperplane containing 7 and a value w, by the following method:

1. if 7 € Fuyp, then y, =%, and w,; = u,;
2. if 7 € Fpary is a common face to grid cells M and N, then

 ANAy YN + AdN Yy dardn (A — AGy)

B Andy -+ Amdn -

w. — Anda-un + Apdy uns
T Andy - + Amdy -

. (12.53)

Yr

, (12.54)

where: yy; and yy are the orthogonal projections of x,; and xy on the
hyperplane containing 7; dar,, = dist(@a, ya) and dy - = dist(xn, yn);
and

Av =nun - Aunun, Ay = Aunyuy — Aunun,

AN =nun - Annyun, Ay =Avnuny — Annun

with n sy the unit normal vector orthogonal to 7 and oriented from M
to N.

We can now construct the interpolation families for any o € Fiary. Let K and
L be the cells on each side of 0. We select d — 1 faces 1; € Fg U Fy,, different
from ¢ but sharing a common cell with o, such that there exists a unique
function w satisfying:

w is affine in K and in L, w is continuous on o,
AK(Vw)K~nKL:AL(Vw)L-nKL and (1255)
ug = w(egk), up, =w(xr), w,, = w(y;,) foralli=1,...,d.
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By construction of the values w,,, the function w is entirely determined by
the cell values (ups)arem. We then set u, = w(Z,), which defines u, as a
linear combination of cell values uys for M € H, (a certain set of cells close
to o), that is

ug = Y Bfrun (12.56)

MeH,

This defines the family of barycentric coefficients (87 )icm,. The degrees of
freedom corresponding to Fiy1, are therefore not used to eliminate the degrees
of freedom on Fpary-

The computation of the linear combination defining wu, can be simplified by
adopting the following algorithm:

1. The continuity of w forces the tangential components of the gradients
Vw g and Vw to be equal, say to g', on 7. The gradients of w are
therefore entirely determined by g’ and their two normal components gx
and gz, to 7 in K and L, that is, by d+1 scalar unknowns G = (g%, gk, g1.)-

2. Given that w is affine in K and L, we can write a linear relation between
the gradient components G and the increments X = (ug — uy,up —
Ug, (Wr, — Ug )i=1,...d—1) Of w, that is, MG = X for some matrix M.

3. We then invert M to get G = M ~1X, which defines all the gradients of
w in terms of the increments X.

4. The flux conservativity Ax(Vw)k - nxr — AL (Vw)r, - ngxr = 0 is then
imposed and, given the construction of X, gives a linear relation between
U and (ug, ur, (W, )i=1,....d—1) as expected.

In practice, the selection of the faces (7;)i=1,.. 4—1 is done by selecting those
who produce the most invertible matrix M in the previous algorithm.

GD-consistency of the method. We assume that A is piecewise constant
on a polytopal mesh 2 = U}_, P, of the domain {2, that the polytopal mesh
% are adapted to this mesh (i.e. each cell of the mesh is fully contained into
only one Py), and that the sets of barycentric faces Fyary are chosen such that

V7 € Foary © Y- defined by (12.53) belongs to 7 (12.57)

We consider the set S of continuous functions ¢ on {2 that are equal to 0 on
992, belong to W2 () for each P, and that have continuous fluxes through
the jumps of A (that is, for all £, ¢ such that P; N Py has a non-zero (d — 1)-
dimensional measure, A|p,V|p, - 1o = A|péVgp\pz,nM/ on Py N Py, where

nge is a fixed unit normal to P; N Py). The following lemma is an enabler
of Theorem A.16 and therefore shows that SUSHI GDs constructed using the
coefficients (12.56) are coercive, consistent, limit-conforming and compact.
SUSHI GDs also obviously have piecewise constant reconstructions. We refer
to Definition A.15 for the definition of the quantity reg, used in the next
lemma.
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Lemma 12.21. Let S C H}(£2) be constructed as above, let D be an HMM
GD, and let DS be a SUSHI GD constructed from D by using the coefficients
(12.56).

Then S is dense in H} (£2) and, under Assumption (12.57), S satisfies: for all
¢ € 8, there exists C, > 0 and Rps (depending only on an upper bound of
Cp and regs (D)) such that

Vo € Frary : ‘g@(ig) - Z 6}'(90(%[()‘ < Oy Rpsdiam(o). (12.58)
KeH,
Proof.
The density of S is established in [2, Lemma 3.2]. We consider therefore Prop-
erty (12.58). For any 7 = M|N € Frary, define a piecewise linear approxima-
tion @ of ¢ in M U N by:

Vee M : g(x) =p(y,) + Voiu(yr) - (x —yr),
Ve e N : 9(x) = o(y-) + Von(yr) - (£ — yr).

Then @ is continuous on through 7 (because ¢ is continuous on 7, so the
tangential parts, with respect to 7, of Vi|as(y-) and of Vi n(y-) coincide),
and the continuity of the fluxes of ¢ ensure that ¥ also has a continuous flux
through 7. Therefore, by Lemma 12.20,

7( ) _ /\NdM7-,—¢(wN) +/\MdN7T¢(wM)
wYr Andarr + Avdn

Since ¢ — @ = O((har + hw)?) in M U N (because ¢ is smooth in M and in
N), we infer that

o(y,) = ANdup-p(enN) + Avdn ()
i ANdyr + Avdn -

+ O((har + hy)?). (12.59)

Let us then consider the values w, constructed as above from the values
Ur = @(T;) if 7 € Fiyb, and uy = p(xn), up = p(zar) if 7= M|N € Frary-
Using the bound on (p, the preceding reasoning shows that for any 7 € F,
o(y-) = w, + O(diam(7)?). Hence, for a given face 0 = K|L, any piecewise
linear function w constructed as in (12.55) from the values ug = ¢(xx),
ur, = p(xx) and (wr, )i=1,... d—1 satisfies

w — ¢ = O(diam(c)?) (12.60)

at the points g, 1 and (yr,)i=1,....a—1. This shows in particular that the
gradients of w in K and L (entirely computable from the values at the pre-
ceding points) are within distance O(diam(o)) of the gradients of ¢ in these
cells, and therefore that (12.60) actually holds uniformly in K U L. Applied at
T, € o, this estimate gives w(Z,) = ¢(T,) + O(diam(c)?), which is precisely
(12.58). L]



13

Nodal mimetic finite difference methods

Nodal mimetic finite differences (nMFD) methods form the second family
of MFD methods, after hMFD, that we study in this book. The analysis of
nMFD is relatively similar to that of hMFD, but several changes have to be
made since the degrees of freedom of nMFD are located at the vertices of the
mesh, rather than the cells and edges as in hMFD.

We only consider here homogeneous Dirichlet boundary conditions, but we
briefly address the questions of other boundary conditions in Remark 13.1.

13.1 Definition and properties of nMFD gradient
discretisations

We first define the GD, and then prove that the corresponding GS (3.4) is
indeed the nMFD scheme as defined in [14].

Let € = (M, F,P,V) be a polytopal mesh of {2 in the sense of Definition 7.2.
For each K € M we choose non-negative weights (w%)sev, such that the
quadrature

/Kw(a:)dm% > wiw(s) (13.1)

sEVK

is exact for constant functions w, which means that
> wi = K| (13.2)
SEVK

For each face o € Fx N Fint, we also choose non-negative weights (w?)sey,
such that the quadrature

/w(:c)ds(w) ~ Z wiw(s) (13.3)

SEV,

is exact for affine functions w. This is equivalent to
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Z wi =|o| and Z wis =lo|Z,. (13.4)

s€EV, SEV,

We also assume the following property on these weights.
VK € M, Vs € Vg, Jo € Fi s such that w) # 0, (13.5)

where Fxs = {0 € Fx : s € V,} is the set of faces of K that have s
as one of their vertices. This assumption, not very restrictive in practice,
states that each vertex of each cell K is genuinely involved in at least one of
the quadrature rules (13.3) on the faces of K. (13.5) is not required in the
construction of the nMFD, but it is used to identify the nMFD method with
a GDM.

For each cell K € M, we re-define its centre xx € P by setting

1
T = K] Z Wik S, (13.6)
SEVK

and we select a partition (Vi s)sey, of K such that

S|DK,U 1 s
VSEVK, |VK75|: Z Wy |0| :E Z wUdKJ. (137)

0EFK,s 0CEFK,s

The second equality follows from (B.1), and we note that (13.4) yields > .y,
|Vk s| = | K|, which is compatible with the requirement that (Vi s)sey, is a
partition of K.

The nMFD LLE gradient discretisation is constructed by following the nota-
tions in Definition 7.33.

1. The set of geometrical entities attached to the DOFs is I =V, and the set
of approximation points is S = I. We set Ip =V N 2 and Iy =V N OL2.
Hence,

Xpo={v=_(vs)scy : vs €Rforallse VN,
vs =0 for all s € VN IN}.

For K € M, we let Ix = Vk.
2. For all K € M, the functions 7 = (7% )sey, are defined by

S
Wi

Vs € Vi, forae. x € K, mi(x) == K[

(13.8)
Relation (7.33) gives

1
Vv € Xpyo, VK € M, Vo € K, IIpv(x) = vg = Il Z wivs. (13.9)

SEVK
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3. In a similar way as for the HMM method, the reconstructed gradient is
the sum of a constant gradient in each cell, and of stabilisation terms in
each Vi 5. It is also best defined by first giving an expression of Gxv. Let
Xy, ={v = (vs)sev, : vs € R} be the space of DOFs in K, and

1
VK e M, Yve Xy, , Vgv=mz Y (Z w3v3> nio. (13.10)

|K| ocEFK \8€V,
Define then, for v € Xy,., the function Gxv € LP(K)? by

Vs € Vi, forae. x € Vs,

] (13.11)
Grv(x) = Vgv + E[ﬁKRK(UﬂsNKS

where
_ _hk s
* Nks = guia ZoefK,s WM K,os

e Ri : Xy, — Xy, is the linear mapping described by Rg(v) =
(RK,S(U))SEVK with

Ry s(v) =vs —vkg — Vgv- (s —xK), (13.12)

where v is defined in (13.9) and xx is given by (13.6),
e L is an isomorphism of the space Im(Rk).
By (7.34), we then have

YVve Xp, VK e M, Vs € Vg, forae x € Vg,,

s (13.13)

Vpv(z) = Vv + T [LrRi(v)]sNi s

The functions (G )sey, of LP(K)? are recovered from the definition
(13.11) of Gxv by considering, for each s € Vg, the vector v® € Xy,
with value 1 at s and 0 at all other vertices of K, and by setting

Qf( = gK’US for all s € VK. (13.14)

4. The proof that 7 and Gk are exact reconstructions and that |[Vp-[| 1, (o)
is a norm on Xp o, is provided in Lemma 13.8 below.

Remark 18.1 (Other boundary conditions)

The adaptation of nMFD to non-homogeneous Dirichlet conditions raises the same
interpolation issues as for P; finite element methods (see Section 8.3.1), and es-
sentially requires a boundary condition smoother than W~1/»? Other boundary
conditions (Neumann, Fourier) are rather straightforward to deal with, using the
value u, = \71| > ey, Wous to define the trace reconstruction Tp.
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We prove that an nMFD scheme is the GS (3.4) corresponding the GD defined
above, for suitable choice of (Lx)xepr. Let us first recall the definition of an
nMFD scheme from [14]. The space of degrees of freedom at the interior
vertices of the mesh, denoted by Ny in [14], is simply Xp o defined above.
The nMFD for (3.1) (with F = 0) is then written under the general form

Find u € Xp o such that, for all v € Xp o, [u,v]xp, = f), (13.15)

where [+, -] x,, , is an inner product on Xp o and fa linear form on Xp . Using
the quadrature rule (13.1), the linear form f is defined as

OEY <|I1(|/Kf> > wiv. (13.16)

KeM SEVK

The inner product [, ]xp, = > el Jvi is designed cell-by-cell to ensure
that a discrete Stokes formula is satisfied for interpolants of linear functions.
It is shown in [14] that this leads to the following generic form:

Yu EXVK , Vv € XVK :

1
[u, v]y, = u'Mgv with Mg = m(CKA;(l(Cﬂ + DrKgD%,

(13.17)

where

e g is the constant value of A on K (as in HMM methods, we assume that
A is piecewise constant on M),

o Ck is the Card(Vi) x d matrix with rows (3,7, | wE(Arnk o)) sevic,
where, as before, Fi o is the set of faces of K that have s as one of their
vertices.

e Dk is a Card(Vk) x (Card(Vk) — d) matrix whose columns span the
orthogonal space in Xy, of Fx, where

Ex = {(A(8))sevy : A:R? — R affine mapping}

is the vector space of the values of affine mappings at the vertices of K.
e Ky is a symmetric positive definite matrix of size Card(Vk ) — d.

Remark 13.2 (RVK vs. RO#4VK))

As in Remark 12.3, we make abuses of notation when we consider Cx, Dx and Kx
as matrices. Formally, this supposes that a numbering of the vertices Vx of K has
been chosen.

Before proving that nMFD method are GDMs, two technical results are re-
quired. The first one contains in particular results similar to those in Lemma
12.4, and the second one describes the kernel of Dy .
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Lemma 13.3. Let € = (M, F,P,V) be a polytopal mesh in the sense of Def-
inition 7.2, and let D be an nMFD GD as defined above, for some choices of

(Lx)xem- Then,

1. For all K € M, B € Im(Rk) if and only if

Vi s
> | hK ‘BSNK,S =0. (13.18)
K

SEVK

2. For allv € Xpo and all K € M,
1
Vikv= —/ Vopu(z)de. (13.19)
K] Jx

3. Vi is a P1-exact gradient reconstruction on K upon Vi, in the sense of
Definition 7.29.
4. For all K € M and all s € Vi, [Nk s| > 1.

Proof.
ITEM 1. If 8 € Im(Rf) then, for some v € Xy, ,

Bs =vs —vx —Vgv-(s—x) for all s € Vg.
Set ws = vs — vi. Using (13.4) and ) . |o|nk . = 0 (see (B.4)) shows

that Vgw = Vgv. Hence, 8s = ws — Vgw - (s — ¢ k) Given the definition of
Nk s, this yields

Z %631\7[@5 = é Z Z BswgnK,a

sEVK s€Vk 0€F ks
1
3 (3 e
cCFK \s€V,
1 1
DI PORTA RIS ol Dol
oc€EFK \8S€V, occFKg \s€V,
1
= S (K|Vxw—T). (13.20)

We then use (13.4) and Lemma B.3 to write

T1 = Z VK’LU~ (Z wf;(s — $K)>‘| TLKJ

ocEFK seV,

= Y lol[Vkw - (& — zx)|nK.s = |K|Viw. (13.21)
ocE€EFK

Substituted in (13.20) this shows that /5 satisfies (13.18). Defining
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Vi,s
Gr:BEXy, = Y |£‘5SNK,SeRd,

seEVk

we just showed that Im(Ry) C ker(Gg). The vectors (Nk s)sey, span RZ.
Indeed, for any vector £ € R%, using (13.4) and Lemma B.3 (with zx = 0),

3 IVKs|d ENks= > <Zw33'€> Nk

seVk oc€FK \8€V,
= Z lo|(Z5 - Enk,e = |KI[E.
ceFK

By Assumption (13.5), none of the (Vi s)scv, has a zero measure. Hence,
Im(Gx) = R? and dim(ker G ) = Card(Vx) — d. Using similar computations
as in (13.21), it can be seen that Z € R? v (Z-(s—x))sey, € ker(Ry) is an
isomorphism (the one-to-one property comes from the fact that (s —xx)secr,
spans R?). Hence, dim(Im(Rg)) = Card(Vk) — d = dim(ker(Gg)). Since
Im(Rg) C ker(Gg), the equality of dimensions therefore gives Im(Rg) =
ker(Gg) and completes the proof of Item 1.

ITEM 2. By Definition (13.13) of Vp,

Vic.o
/vpu 2)de = K[V + 3 | f;'z Ric(v)]s Nic.o.

SEVK

Since Lx Rk (v) € Im(Rk), Item 1 shows that the last term in this relation
vanishes, which concludes the proof of (13.19).

ITEM 3. If v = (A(S))sey, for some affine map A, then (13.4) shows that

D wive= > ws = |o|A(Z,).

sEV, SEV,

Hence, setting u = (A(x k), A(Ts)oery ), recalling the definition (7.7e) of Vg
and using Lemma B.6,

Viv= Z |o| A( wg)nKafVKusA

|K| ceFK

ITEM 4. By definition (7.4) of dk , for 0 € Fi and s € V,, we have (s —xg)-
nk,. = di». Hence, by definition (13.7) of |Vi s,

hi
—wg) Ngs = 2K (s —TK) MKy
(s—xk) Ngs d|VK,s|U€Z}_;< wi(s —xK) ng,

hxi s
= wadK)J = hK.
d|VK,S| Uez]_-;”

Since (s—xi)-Nk s < |s—zx||Nk,s| < hix| Nk sl, it follows that |[Ng ¢ > 1.
n
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Lemma 13.4. Let T be a polytopal mesh in the sense of Definition 7.2, let
K € M, and let Dx and Ry be defined as above. Then, the mappings D% :
Xy, = RCdVK)=d gngd Ry = Xy, = Xy, have the same kernel.

Proof. The kernel of D% is the orthogonal (for the dot product in Xy, ) of
the columns of Dy, that is to say, according to the definition of D, the space
FEx of values at the vertices of K of affine mappings.

We have v € ker(Rf) if and only if

Vs €Vk : vs =vg + Vgv- (s —xk). (13.22)

If there exists A affine such that vs = A(s) for all s € Vi then Vv = VA by
Item 3 in Lemma 13.3. The definitions (13.9) and (13.6) of vx and xx show
that vg = A(x k). Hence, since A is affine,

vs = A(s) = A(xx)+ VA - (s —xk) =vk + Vgv- (s —xK)

and (13.22) holds. Conversely, if (13.22) holds then, defining the affine map-
ping A(x) = vg + Vgv- (x —xk), we have vs = A(s) for all s € V. We just
established that the kernel of Ry is made of the values at the vertices of K of
affine mappings. This kernel is therefore identical to Ex = ker(D%) and the
proof is complete. L]

We can now prove that the GD constructed above corresponds to the nMFD
scheme.

Theorem 13.5 (nMFD methods are GDMSs). Let T be a polytopal mesh
of 2 in the sense of Definition 7.2. Assume that A is piecewise constant on
M. Take weights that satisfy (13.2), (13.4) and (13.5), and let (13.15) be
an nMFD method constructed from these weights. Then, there exists isomor-
phisms (Lx)xem such that, if D is the GD defined as at the start of this
section, the corresponding GS (3.4) is identical to (13.15).

Remark 18.6 (Non piecewise constant diffusion tensor)

As for the HMM method (see Remark 12.16), if A is not piecewise constant on M,
then (13.15) is the GS (3.4) in which A is replaced with a piecewise constant ap-
proximation. We already noticed that this modification does not impact in practice
the rates of convergence provided by the theorems in Chapter 3.

Proof. Given the definitions (13.9) of IIp and (13.16) of f, the right-hand
sides of (3.4) and (13.15) clearly coincide. We therefore just have to prove that
the left-hand sides coincide. Since the inner product [-, -] x, , and the gradient
(13.11) are constructed cell-wise, it suffices to show that, for any u,v € Xp
and any cell K, we can find L such that

/ A@)Vpu(®) - Vou(a)de = u Mo, (13.23)
K
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Let Sk (u) = Vpu — Vgu be the stabilisation part of Vpu on K. By (13.19),
we have [, Sk (u)(x)dx = [, Sk(v)(x)dx = 0 and thus, since A = Ak is
constant on K,

/K A(x)Vpu(x) - Vpu(x)de
= |K|/1KVKU -Vigv—+ /K AxViu - SK(’U)(IE)d:B
+ /K NS () (@) - Vcvda + /K Ak S (w)(@) - Sk (v) () de
K| Ak Vicu - Vico + /K AxSkc()(@) - Sk () (@)de.  (13.24)

By definition of Cg, for all £ € Xy,

C%&': Z Z wsAKnK,cr fs

s€Vk \0EFK,s

= Ak Y (Z w§53> ni.o = |K|AxViE.

oc€FKk \8€V,

Hence,

%UTCKAI_Q(C%U = |K‘(/1KVKU)TAI_(1(AKVKU) = |K‘AKVKU . VK”U.
The first term in the right-hand side of (13.24) therefore corresponds to the
first term in the expression (13.17) of u”Mgwv. To complete the proof of the
theorem, we therefore only have to show that, for any symmetric positive
definite (nx — d) x (ng — d) matrix K, there exists an isomorphism Lg of
Im(Ry) such that, for all u,v € Xy,

WD KDLy = /K A Sic(w)(@) - S (v) () de. (13.25)

By Lemma 13.4 we have ker(D%) = ker(R). Let {-,-}1 be the inner product
on RCd(V)—=d defined by Ky, and apply Lemma 13.7 to produce an inner
product {-,-}2 on Xy, such that {DLu,DLv}; = {Rk(u), Rx(v)}2. Then
(13.25) follows if we can establish the existence of an isomorphism Lg of
Im(Rg) such that, for all u,v € Xp o,

{RK(v), Rk (v)}2 = /KAKSK(U)(:::) - Sk (v)(z)de. (13.26)
By definition of Sk (u) (see (13.13)), we have

/K A Sk (u)(@) - Sic (v) () da
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Vi s
- Z |}? ‘[LKRK(U)]S[EKRK(U)]SAKNKvS'NK’S
seVk K

= (Lx Rk (u), Lk Ri (v)) (13.27)

where (-, ) is the scalar product on Im(Ry) defined by

Vi s
<£7B> = Z |hI§’ |AKNK,S‘NK,S€SBS

seEVK K

(notice that Ax Nk s - Nk s > 0 by assumption on A and Item 4 in Lemma
13.3). Since {-,-}2 and (-, -) are two scalar products on Im(R), Lemma 12.6
provides an isomorphism Lx of Im(R) such that {£, 8}2 = (Lk (), Lk (B))
for all ¢, 8 € Im(Rk). Applying this relation to £ = Rx(u) and 8 = Rk (v)
and plugging the result in (13.27) shows that (13.26) holds for this choice of
Lk. u

The following lemma, used the in the above proof, is taken from [35].

Lemma 13.7. Let X, Y and Z be finite dimension vector spaces and A :
X =Y, B: X — Z be two linear mappings with identical kernel. Then, for
any inner product {-,-}y on'Y, there exists an inner product {-,-}z on Z such
that, for all (z,2') € X2, {Bz, Ba'}z = {Ax, Az’ }y .

Proof. Let N =ker(A) = ker(B). The mappings A and B define one-to-one
mappings A : X/N — Y and B : X/N — Z such that, if Z is the class of x,
Az = A% and Bx = BZ. We can therefore work with A and B on X/N rather
than with A and B on X, and assume in fact that A and B are one-to-one.
Then A : X — Im(A) and B : X — Im(B) are isomorphisms. If {-,-}y is
an inner product on Y, we can define the inner product {-, -}y on Im(B)
the following way: for all z, 2" € Im(B), {2, 2 }ims) = {AB~'2,AB %'}y,
which precisely means that {Bz, B2 }1yp) = {Az, Az'}y for all z,2" € X.
This inner product is only defined on Im(B), but we extend it to Z by choosing
W such that Im(B) @ W = Z, by selecting any inner product {-, -}y on W,
and by letting {2, 2"}z = {2B, 25} ) + {2w, 2y Jw for all z = 2p + 275 €
Z =Im(B)©W and 2’ = 25 + 213, € Z. This extension of {-, - }1;n(p) preserves
the property {Bx, Bx'}; = {Ax, Az’ }y. [

13.1.1 Preliminary lemmas

We now turn to prove the properties of nMFD GDs, starting with preliminary
results. In a similar way as for HMM GDs, we define the following factor which
measures the invertibility properties of the isomorphisms (Lx)xe:
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(p = min C>OZVK€M, VUEXVK,

B Ry LRy ((v)]s|”
¢y |VKS|’ ra(v)|” < Y Vsl [Khﬁ (13.28)
SEVK SEVK K
R R s(v)
seVk

The boundedness of (p is a weaker assumption than the classical coercivity
assumption of nMFD methods, see e.g. [14, Eq. (5.15)]. Choosing Lx = Bx1d
with Bx € [(71, (] ensures that the inequalities within (13.28) is satisfied.

Lemma 13.8 (Estimate of the LLE regularity of an nMFD GD). Let
T be a polytopal mesh in the sense of Definition 7.2, and let D be a nMFD GD
on T as defined in Section 13.1. Then, for any K € M, mx = (7% )sevy s
a Po-ezact function reconstruction on K, and Gx = (G )sevy 5 a Pi-ezact
gradient reconstruction on K upon Vi .

Moreover, D is an LLE GD and, if 0 > 0= + (p (see (7.8) and (13.28)) and

> .
0= max Card(Vk), (13.29)

then there exists Cag depending only on p, d and o such that reg,, (D) < Cag.

Proof. By choice (13.2) of the weights and definition (13.8) of the functions
(Tk )sevir 2scy Ti = 1 on K and thus 7 is a Pg-exact function reconstruc-
tion on K.

We proved in Lemma 13.3 that V is a Pj-exact gradient reconstruction upon
Vi . Assume that v = (A(8))sey, interpolates an affine mapping A. As in the
proof of Lemma 13.4, vxg = A(x k) and thus Rg s(v) = A(s) — A(xx) — VA-
(s —xk)=0. Hence, Gxv = Vv = VA, which proves that Gx is a Pj-exact
gradient reconstruction on K upon Vi.

Let us now show that D is an LLE GD, i.e that |Vp-|[;, g« is a norm on
Xpo. If Vpv = 0 then (13.19) shows that Vgv = 0 for all K € M and
thus, by (13.13), Rk (v) = 0. The definition (13.12) of Rk s and the fact that
Vv = 0 then implies vg = vy for all s € Vi . Reasoning from neighbour to
neighbour, we see v is a constant vector. Since vs = 0 for s € V N 92, this
shows that v = 0.

Let us now estimate reg,, (D). For any K € M and any i = s € [x = Vi, we
have s € K and thus dist(z;, K) = 0. Moreover, since all functions 7, are
nonnegative, >, || = > ,c;, Tk = 1 and thus ||7k]|, = 1. The bound
on reg,, (D) will therefore follow from estimating |Gk ||,

For any s € Vi, by choice (13.7) of |Vk |,

hx O
Ny < K s < T Sdi o = Ox.
| K7 |— d|VK,s| Z wU— d‘V’ Z OJO. K1 T

oceFk s oc€FK s




13.1 Definition and properties of nMFD gradient discretisations 345

P
|NK,U‘p

[LKRKQMSP>

hx
,,) . (13.30)

RK73(1})
hx
Let V = maxsecy, |vs|. The definition (13.13) of V kv yields, thanks to (B.1),

0=V AV
IV kv < Z dowi< < §|K\ Z loldi .o = L (13.31)

UEFK s€EV,

Hence, if v € Xy, the definition (13.11) of Gx gives

[Lx Bi(v)]s

—1
1012 gy < 2° vaMw+§jww -

seVik

< or-1 <|K| Vo + 65 Y Vil

sSEVK

S?”vamﬁ+%®§:%m

SEVK

Using the definition (13.9) of vk, we infer

1
[Bica(0)] < 7 > WiV +V + [Vivlhg < (2+ dbs)V.
SEVK
Hence,

R s P 24 do 24 df
Z |VKs| K, ( ) ( h‘Z) Z IVKS|_%|K|.

K K

s€EVk sEVK

Substituted alongside (13.31) into (13.30), this estimate gives
[Gactl sy < 2 [(dB)” + 65Co(2 + dbi ) i |V

Applied to v = v? for all o € Fg, and recalling the definition (12.7) of
the functions (Gf)sev,, we deduce |G |1, gya < Csoh ! | K|V/P with Csg
depending only on d, p and o. The definition (7.26) of ||Gk/||, and (13.29)
then yield a bound on ||QKHP that depends only on d, p and p. [

Lemma 13.9 (Norm on Xpg). Let T be a polytopal mesh in the sense of
Definition 7.2, and D be a nMFD GD on ¥ as in Section 13.1. We take
0 > Oz + (p (see (7.8) and (13.28)). Then, there exists C31 depending only
on §2, p and o such that

V’UGXD(), Z Z |VK5|

KeM seVg

VK

’ < C31||VDU||I£;;(Q)~ (13.32)

Proof.
In this proof, A < B means that A < CB for some C depending only on {2,
p and . Let v € Xp and K € M. By (13.19) and Jensen’s inequality,
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1

|VKU|P S _
K|

/ |Vpu(x)|Pde. (13.33)
K

Using Item 4 in Lemma 13.3 and the definition (13.13) of Vp, we infer that,
for all s € Vi and a.e. y € Vi s,

p

‘th[ﬁKRK(U)]s

P
1
< ' 7 [Lxk Rk (V)]s Nk s
K

1
S Vo)’ + 7 [ IVou(e)Pde.
K| Jk
Integrate over y € Vi s, sum over s € Vi and use the definition (13.28) of (p

to deduce
> Vics

SEVK

Write |vs — vk | < |Rk,s(v)| + hx|Vkv| and use (13.33) to obtain

Vs — VK P < p
> Wil | =5 5 [ [Vpv(@)da,
SEVK K K

P
Ris(v) < / Vpo(z)[Pde.
hk K

Summing this estimate over K € M proves (13.32). L]

We now define a control of an nMFD GD by a polytopal toolbox, and we
establish some estimates on this control.

Lemma 13.10 (Control of an nMFD GD by a polytopal toolbox).
Let T be a polytopal mesh in the sense of Definition 7.2, and D be a nMFD
GD on ¥ as in Section 153.1. Let @ : Xp o — Xz, be the control of D by the
polytopal toolbox T (see Definition 7.10) defined by: for v € Xp,

1
Vo € Fi, P(v), = o] Z wivs, and

Ve (13.34)

1
VK e M, $(v)g = vk = & > wivs.

sEVK

Let o > 0 + (p (see (7.8) and (13.28)). Then, there exists Cso depending
only on 2, p and o such that

12l ps < Cs2, (13.35)

and
Ww(D,T,8) =0, wY(D,%,H)=0. (13.36)

Proof. In this proof, A < B means again that A < C'B for some C depending
only on {2, p and p. By definition of @, for o € Fk,
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1
< o 2 wolvs = vl

SEV,

|@(v)o — (v)k| =

1 S
ol Z wi(vs — vK)

s€EV,

Hence, the discrete Jensen inequality (C.11) (with the convex function ¥(s) =
|s|P) and the definition of f% give

‘45(11)0 —®(v)K D)y — P(v)K
dK,a hK

P
P
<02

L |
< K}
~ ‘o_| Z wo’

s€EV,

Us — VK P
hi

We multiply this by |o|dk », sum over o € Fg, and swap the sums over the
vertices and edges in the right-hand side to find

P(v)o — P()k [f
D loldio | ==0——2| S > D widko
ocE€FK s€Vk 0€FK,s

Since >
yields

D D loldrs

KeMoeFk

vs — vk |”
hi

ccFr.. Wolko = d|Vk s|, summing the above relation over K € M

Q(’U)U — @(’U)K
dx

p
Sd Z Z |VK,s|

KeMseVk

vs — Vi |”
hi )

The proof of (13.35) is completed by using (13.32) in Lemma 13.9 and by
recalling the definition (7.12) of ||®|p «-
We now turn to (13.36). By definitions (7.7¢) of Il¢, (13.9) of IIp, and

(13.34) of @, we have IIpv = vg = IIz®P(v) on K, for all K € M. Hence,
wl(D, T, &) = 0. We then notice that

<Z w§v3> NKe = VKU.

— 1 1
Vir®) = Il Z lo|®(v)enk o = K] Z
s€EV,

o€ FK oceFk

Hence, (13.19) shows that [, Vz®(v)(z)dz = [, Vpu(z)da, and thus that
WY (D, %, ) = 0. .

13.1.2 Properties of nMFD gradient discretisations

The theorems presented here follow immediately, as for HMM GDs, from the
preliminary results above and from Propositions 7.36 and A.6, Theorem 7.12
and Corollary 7.13.

Theorem 13.11 (Properties of nMFD GDs). Let (D,)men be a se-
quence of nMFD GDs, as in Section 13.1, defined from underlying polytopal
meshes (Tim)men. Assume that the sequences (0=, +nz,, )men, (Cp,, )meN and
(maxgem,, Card(Vk))men are bounded (see (7.8), (7.9) and (13.28)), and
that hay,, — 0 as m — oo.

Then (Dpm)men is coercive, GD-consistent, limit-conforming and compact in
the sense of Definitions 2.2, 2.4, 2.6 and 2.8.
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Remark 13.12. Contrary to HMM gradient discretisations, nMFD gradient
discretisations do not have a piecewise constant reconstruction for the natural
choice of unknowns, nor for any obvious choice of unknowns. The nMFD GDs
should therefore be modified, e.g. by mass-lumping as in Section 7.3.5, to be
applicable in practice to certain non-linear models.

Proposition 13.13 (Estimate on Sp for nMFD GD). Let T be a poly-
topal mesh of §2 in the sense of Definition 7.2, and D be a nMFD GD on ¥
as in Section 13.1. Assume that p > d/2 and take ¢ > 0 + (p (see (7.8) and
(13.28) ) that also satisfies (13.29). Then, there exists Cs3 > 0, depending only
on §2, p and o, such that

Vo € W2P(2) N WP (£2), Sp(e) < Casha lollw0 () »
where Sp 1is defined by (2.2).

Proposition 13.14 (Estimate on Cp and Wp for nMFD GD). Let T
be a polytopal mesh of {2 in the sense of Definition 7.2, and let D be a nMFD
GD on T as in Section 13.1. We take 0 > 0z + n< + (p (see (7.8), (7.9) and
(13.28)) that also satisfies (13.29). Then, there exists Csy depending only on
2, p and o such that

Cp < O (13.37)

and
Vo € W (@)%, Wo(g) < Coahat [l oy (13.38)

Here, Cp and Wp are the coercivity constant and limit-conformity measure
defined by (2.1) and (2.6).

Remark 18.15 (Assumption on the weights)

As already mentioned, Assumption (13.5) is not very restrictive as most natural
weights will satisfy it. We emphasise that no lower bound on 3 cF. ws is required,
only that this quantity is non-zero for any s € V. Even if this quantity becomes
extremely small for some vertex, no component of the GDs becomes extremely small
or large (we have 1 < |Ng 5| < 0<) and all estimates on Sp or Wp remain uniform
with respect to the weights.

13.2 Link with discrete duality finite volume methods

Let us consider the special case, in dimension d = 3, of an octahedral mesh. By
that we mean a polytopal mesh ¥ such that the elements of M are octahedra
(open polyhedra with eight triangular faces and six vertices, not necessarily
convex; five vertices may be coplanar), and the element of F are the triangular
faces of the elements of M. Each Fx has 8 elements, each Vg has 6 elements,



13.2 Link with discrete duality finite volume methods 349

Fig. 13.1. Left: octahedral cell K. Right: illustration of Tk , (greyed domain).

and each V, has 3 elements (see Figure 13.1, left). For any K € M, the centre
of K is defined by xx = § Y.y, 8-

We consider a modification of an nMFD GD D = (Xp,Ip,Vp) on %, in
which the space of DOFs is unchanged, the gradient reconstruction is only
built from the consistent part (13.10) of Vp, and the reconstructed functions
are piecewise constant on sub-tetrahedra. Precisely, we take for each triangle

_ ol

o € F the order 1 quadrature rule (13.3) with equal weights w = ‘7, and we
define D* = (Xp,g, IIp+, Vp+) the following way.

1. Vpr @ Xpo— LP(£2)% is given by
Yv e Xpg, VK €M, forae x € K,
1 1
V'D*’U(CE) = VK’U == m Z |O'| <3 Z 'US> NK,o-
cEFK seEVK

(given the equal-weights quadrature rule chosen for each face, this expres-
sion of Vv corresponds to (13.10)).
2. Ip+ : Xp,o— LP(£2) is given by

Yv e Xpg, VK €M, Vo € Fk, forae €Tk,
1
Ipv(x) = 3 Z Vg,

s€EV,
where T , is the tetrahedra formed by @ x and o (see Figure 13.1, right).
The following lemma characterises the reconstructed gradient.

Lemma 13.16. For any v € Xpo and any K € M, the constant vector
(Vp+v)|k is the unique vector § € R3 such that

For all opposite vertices (sg, 1) of K, €- (89 — 81) = vs, — Vs,. (13.39)
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Remark 13.17. The opposite vertices in the octahedra in Figure 13.1 are
(A’ B)’ (O’ D) and (E’ F)'

Proof. First note that, since the three directions defined by the three pairs of
opposite vertices in K are linearly independent, (13.39) indeed characterises
one and only one vector £ € R3. We therefore just have to show that (Vp«v) | K
satisfies (13.39). We have

(Vo) = ‘K|3 Z S Jolnk.. (13.40)

scVk cEFK|SEV,

Let us consider for example the case where s = A in Figure 13.1. For a
triangular face o, the outer normal |o|nk , can be written as the exterior
product of two of the edges of o (with proper orientation). This gives

Z |o|nK,[,:%(ﬁ><ﬁ—i—ﬁxﬁ—i—ﬁxﬁ—i—ﬁxﬁ)
cEFK|SEV,
:%(ﬁxﬁ+0‘f)xﬁ):f%@xﬁ.

Applying this to all vertices of K, and since |K| = %AK with A =
det(@, C@, ﬁ), we deduce from (13.40) that

(Vpev) g = ALK<(UB - vA)C@ X ﬁJr (vp — vc)ﬁ « AD
+ (vp — UE)E X C@)

Property (13 39) is then straightforward. Considering for example the case
(s0, s1) the formula follows from 7‘ x A ) /@ = (1@ X @) -

@_omﬁ BE). 4D — detc—[mw@ .

This lemma proves that [[Vp«-| 1, e is a norm on XD,0~ Moreover, (13.39)
is a well-known characterisation of the reconstructed gradient, piecewise con-
stant on the so-called “diamond cells”, of the CeVeFE Discrete Duality Finite
Volume (DDFV) method [24, 25]. The function reconstruction IIp+ has been
defined to match the function reconstruction used in the CeVeFE DDFV;
this reconstruction is what ensures the discrete duality (Stokes) formula, that
gave the name to DDFV methods. Hence, the CeVeFE-DDFV scheme can be
considered as an nMFD scheme on octahedral meshes, without the need for a
stabilisation and with a different function reconstruction.

A complete analysis of the CeVeFE-DDFV method in terms of GDMs is pro-
vided in [37]. We note that the same analysis also applies to the case d = 2,
the octahedral mesh then becoming a quadrangular mesh (the cells still cor-
respond to the “diamond cells” in the DDFV terminology).
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In Parts I (or elliptic problems) and IT (for parabolic problems), the properties
(coercivity, GD-consistency, etc.) needed on gradient discretisations (GDs) to
generate convergent gradient schemes (GSs) were introduced. This appendix
introduces some technical tools which are used in Part III to prove that a
given GD satisfies these core properties.

This appendix comprises two main chapters. Chapter A extends the analysis of
LLE GDs done in Section 7.3 by establishing in particular, if p > d/2, explicit
estimates on Sp. These estimates are essential to obtain rates of convergence
for GSs applied to linear elliptic and parabolic equations.

Chapter B is devoted to discrete functional analysis tools, that is, the transla-
tion to the discrete setting of classical results of functional analysis (Poincaré’s
inequality, compactness theorems, etc.). These tools are used, in Section 7.7
in conjunction with the notion of control of a GD by a polytopal toolbox,
to establish the coercivity, limit-conformity and compactness of gradient dis-
cretisations. They also provide explicit estimates on Cp and Wp. Most of the
results and notions presented in this chapter are build on results originally
appeared in [49].

In these two chapters, unless otherwise specified we take p € (1,00) and {2 is
an open bounded connected subset of R? (d € N*) with Lipschitz-continuous
boundary 942.

A short final chapter, Chapter C, includes some classical technical results
which are provided solely for the sake of completeness.






A

Complements on LLE GDs

This chapter deals with LLE GDs in the sense of Section 7.3. Section A.1l
provides results enabling estimates on the consistency error Sp, in the case
where p > d/2 and the functions belong to WP (£2). We then generalise the
notion of degree of freedom in Section A.2. Finally, we introduce the notion of
non-linearly exact barycentric combinations in Section A.3, which may arise
in the case of non homogeneous diffusion problems.

A.1 W?2P estimates for Sp

Estimates on Sp(¢) are useful to obtain rates of convergences of GS for linear
(and some non-linear) problems, see e.g. Theorem 3.2 and Theorem 3.28. The
estimate (7.38) on Sp(p) requires ¢ € Wy P(£2) N W2°°(R?). Hence, to use
this estimate in Theorem 3.2 or Theorem 3.28, for example, the solution to the
corresponding problem ((3.1) or (3.72)) would need to have a W2 regularity,
which is quite restrictive.

The purpose of this section is to write a consistency estimate similar to (7.38)
in the case p € W2P(£2) for p > d/2 (this condition ensures the embedding
of W2P(£2) into C(£2)). This regularity property is much more likely to hold,
if ¢ is the solution of problems (3.1) or (3.72), than the W2 regularity.

We start with a lemma that compares in LP(V') norm a function ¢ € WHP(V)
with its average value on a ball in V.

Lemma A.1. Let V. C R? be an open bounded set that is star-shaped with
respect to all points in a ball B C V. Let p € [1,400). There exists Cy
depending only on d and p such that, for any ¢ € W1P(V),
o~ 7 o
po—— | o(x)dz
|Bl /B

: 411
<C diam(V)

Vel ll Loy - (A1)
LP(V) diam B)% v
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Proof. Since C(V) N WP (V) is dense in WP(V), we only need to prove
the result for ¢ € C*°(V) N WP(V), and the conclusion follows by density.
To simplify the notations we let hy = diam(V'). For all (z,y) € V x B, since

V is star-shaped with respect to y the segment [z, y] belongs to V and we
can write

(@) — o) = / Voltz + (1 t)y) - (@ — y)dr.

Taking the average value with respect to y € B and writing |z — y| < hy
gives

o)~ o [ otnas] = | [ [ et (- ) (o - sy

Vo(te + (1 — t)y)|dtdy.
i [ et

Taking the power p, using the Jensen inequality (C.10) with the convex func-
tion ¥ = |- P and A = B x (0,1), and integrating with respect to € V, we

get
J o= 1
IBI/// [Vip(tz + (1 - t)y)|"dtdyde.  (A.2)

We then apply the change of variable € V' — z = tx + (1 — t)y, which has
values in V since V' is star-shaped with respect to all points in B. This gives

1
/// [Vo(te + (1 — t)y)|Pdtdyde
vJBJo
< / |V(2)P / / t~dtdydz, (A.3)
Vv B JI(z,y)

where I(z,y) ={t€ (0,1) : 3x €V, te+ (1 —t)y = z}. For t € I(z,y) we
have t(x — y) = z — y for some & € V and therefore hyt > |z — y|. Hence
I(z,y) C [%7 1] and we deduce that (for d > 1)

1 1 h,d71
/ t=4dt < / it < (A.4)
I(z,y) |Z}L—Vy| d—1 |Z - ’y|

Thus, denoting by wy the area of the unit sphere in R?, since B ¢ V C
B(z,hy) forall z € V,

het 1
/ / t~ddtdy < -V / —dy
B JI(z,y) d=1Jp |z -yl

da:
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hd71 B
T 1/ |z —y|'dy
- B(Z,hv)
d—1
hV
d—1

" d hy
wd/ pt 4 ldp < pi Vlwd. (A.5)
0

IN

The proof is complete by plugging this estimate into (A.3), by using the
resulting inequality in (A.2), and by recalling that

5= 1B0.1)] (%

Note that in the case d = 1, (A.4) is modified and involves ln(ﬁ) but the

final estimate (A.5) is still in O(h?). L]

The following lemma is a simple technical result used in Lemma A.3 below.

Lemma A.2. Let h > 0, d € N*, & € R? and let us define the function
Fpp : B(z,h) > R by

1
Vz € B(z,h), Fpn(2) :/ stdds. (A.6)

z—z|

Let g € [I,+00] ifd =1, ¢ € [1,+00) if d =2, and q € [1,7%) if d > 3.
Then, there exists Co > 0 depending only on d and q such that

”Fw,h”Lq(B(m’h)) < Cth/q- (A7)

Proof.
CaAse d = 1.
We have |Fy ;(2)| < 1 and therefore (A.7) is satisfied with Cy = 21/,

CASE d = 2.
We have Fyp p(z) = ln<

change of coordinates,

‘mﬁz|> and therefore, since ¢ < 400, using a polar

h
K =2 m(™) a
La(B(wm,h) — T A pn P p-

q
The function p — pln (%) reaches its maximum over [0, h] at p = e~ ?h and
thus

| e,

h
HFwﬁ”qu(B(m,h)) < 271'/0 e Thq?dp = qle 7h2.

This proves (A.7) with Cy = (27)Y/9ge".

CASE d > 3.
‘We write
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and, using again polar coordinates,

h
wqd d— —d d—
||Fw,h||%q(3(m7h)) < (di— 2)qh( 2)11/0 p(2 g+ ldp

where wy is the area of the unit sphere in R%. The assumption ¢ < ﬁfQ ensures
that (2 —d)g+d — 1> —1 and therefore

Wy d

S 2ie-—derd)

HFa:,h”qu(B(m,h))

1/q

The proof is complete by choosing Cy = i Yy

d-2)[(2—d)gtd /e "

We can now state and prove a local W?2? interpolation estimate for P;-exact
gradient reconstructions.

Lemma A.3 (W?? estimates for Pj-exact gradient reconstructions).
Assume that p > %, and let B C K C V be bounded sets of R? such that B is a
ball and V is star-shaped with respect to all points of B. Let S = (x;)ie; C V,
and G = (G%);er C LP(K)? be a Py-exact gradient reconstruction on K upon
S in the sense of Definition 7.29. Let 0 > diam(V')/diam(B).

Take o € W2P(V)NC(V) and set v = (¢(x;))ic1. Then, there exists C3 > 0,

depending only on d, p and 0, and an affine function A, : V — R such that

sup [p(x) — Ay(@)] < Cadiam(V)* 5 || 1Dl ||,y (AS)
xzeV
IV A — Vel s < Cadiam(V) || D% ||, (A.9)
and
160~ Veoll oaeys < Cadiam(V)(1+11611) || 1Dl |0y - (A10)

Remark A.4. If V is sufficiently regular, W*?(V) c C(V) and we only need
to assume that p € W2P(V).

Remark A.5 (Averaged Taylor polynomial)

The affine mapping A, is similar to an averaged Taylor polynomial of ¢ as in [12],
but with a simpler definition since we do not need here to approximate the higher
order derivatives of .

Proof. To simplify the notations, we let hp = diam(B) and hy = diam(V).

Let us first assume that ¢ € C%(R?). For a given € V and any y € B, we
write the Taylor expansion
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p(x) = p(y) + Vo(y) - (z —y)

+ / sD?*p(x + s(y —x))(x —y) - (x —y)ds. (A.11)
0

Denote by ¥y the centre of B, and set p = ﬁfB o(y)dy and Vo =
ﬁfB Vp(y)dy. Taking the average of (A.11) over y € B gives p(x) =
Au(x) + Ryi(x) + Ra(x) with

Ay(x) =7+ Ve (x-7),

Ry (x) |B|//SD2 (z+s(y—x))(x—y) (z—y)dsdy,

and
Ro(w) = lfa /B (Vo(y) - V) - (z — y)dy.

Hence,
lp(z) — Ap(x)| < [Ri(2)] + [Ra(z)]. (A.12)
We now find bounds on R; and Rs.

BOUND ON R;.
The change of variable y € B — z = & + s(y — @) has values in V since V is
star-shaped with respect to all points in B. This gives

Ri( 174 D%p(z)|dsd
Ri(a —m//um) |D2p(2)|dsdz,

where I(z,z) ={s€(0,1) : Jye B, z=x+s(y —x)}. If s € I(x, z) then
|z — x| = sly — x| < shy for some y € B, and thus s > Izh;vw\ Hence,

h2
Rio) < 1 [ D%t / s=tasdz = & [ ID20() Py (20

where Fy j, is defined by (A.6). Using Holder’s inequality, the inclusion V' C
B(x,hy) and Lemma A.2 we infer

2+;‘1,

[R1(z)] < |B| H |D% HLp(V) | Fe HLP (B(z,hy)) = < Chp—m H |D% HLP(V)

where Cy depends only on d and p. Notice that p > d/2 implies p’ < d%‘lQ if
d > 2. Since % = d—% and |B| = |B(0,1)|h% > |B(0,1)|0-¢h, this gives
the existence of C5 depending only on 6, p and d such that

|Ri(a)| < Cshy |||D2 (A.13)

<,0| ||L1>(V) :
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BOUND ON Ras.
By Hélder’s inequality and |B| = |B(0, 1)|h% we have

[Ro(x)| < sl Bl7 " [V = V|| Loy
_1,1-42 =
<IBOD| 7 hy ” [[Ve = Vel Ly

Apply Lemma A.1 with V' = B and ¢ replaced by 9;¢ (for i =1,...,d). This
gives Cg depending only on d and p such that

_d
|Ro(@)| < Cohiy * [ 102l ||y - (A14)

CONCLUSION.
Combining (A.12), (A.13) and (A.14) gives (A.8). To prove (A.9), notice that

- 1
VA, =V = B /B V(y)dy

and apply Lemma A.1 with ¢ replaced by 9;¢, for all i = 1,...,d. This gives
C7 depending only on d an p such that

hd/p-i—l
\%4 2
HVAv - V@||Lp(v)d < C7W H |D %0| HLP(V) :
B

This completes the proof of (A.9) since hg > 0~ hy .

Let us now turn to (A.10). Define { = (A, (x;))icr and notice that G = VA,
since G is a Py-exact gradient reconstruction upon (x;);cs. The linearity of G
and the definition of ||G||, show that

Z(Ui - fi)gi

IGv — ngLp(K)d =

el Lr(K)d
< >_1g'l max [v; — &
i€l
icl

L7 (K)
1. —
1G]l |7 diam (K) " max (@) — Ap ().

Using (A.8) and the inequality diam(K)~! < hz' < 0hy', we deduce

1—-4 1
19 = G&ll sy < Cs 161, 0hy KT [ 1D%] |10y -

Since |K| < |B(0,1)|diam(K)?% < |B(0,1)|h{., this shows that there exists Cs
depending only on 6, d and p such that

160 — Gl sy < Cs 161, v || 1Dl ||,y -
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The proof of (A.10) is complete by recalling that G¢ = VA, by using the
triangle inequality, and by invoking (A.9).

We just proved the lemma for ¢ € C?(R?%). We notice that all quantities and
norms involved in (A.8), (A.9) and (A.10) are continuous with respect to ¢
for the W2P?(V)NC(V) norm. Since V is star-shaped, by a classical dilatation
and regularisation argument we see that the restrictions of C2(R?) functions
to V are dense in W2P(V)NC(V). This density ensures that (A.8), (A.9) and
(A.10) are still valid for ¢ € W2P(V) N C(V), and the proof is complete.

The next proposition states our main bound on Sp(p) for an LLE GD, in the
case p > d/2 and p € W2P(£2). This is established under a slightly restrictive
assumption on the points x;, which holds for most of the schemes presented
in Part III.

Proposition A.6 (W?? estimates of Sp for an LLE GD). Take p > d/2
and let D be an LLE GD in the sense of Definition 7.33. Let S = (x;)icr be
the family of approximation points of D, and M be the mesh associated with
D. Assume that

(i) For all K € M and alli € I, z; € K,
(ii) For all K € M, there exists a ball Bx C K such that (A.15)

K is star-shaped with respect to all points in B.

Take 6 > reg,,.(D)+maxgem (ﬁ%(gg), Then, there exists Cg > 0, depending

only on p, d, 2 and 0, such that
Vo € W2P(2) N WP (82), Sp(e) < Cohp llellwe(a) » (A.16)

where Sp is defined by (2.2).

Remark A.7 (Broken W*P estimates)
A close examination of the proof shows that Proposition A.6 also holds if we only
assume that ¢ € C(2) N W, (£2) N W*P(M), where the broken space WP (M) is
defined by

W2P(M) ={y € LP(2) : VK e M, ¢ € W*P(K)}.

We just have to replace, in (A.16), the term ||¢||yy2.5() With the broken norm

1/p
HSOHWQ,p(M) = ( Z ||‘P|€V2,p(1()> c

KeM

Proof. The regularity assumption on {2 and the choice of p ensure that
@ € C(£2). The vector v = (p(x;))icr € Xp,o is therefore well defined, and
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Lemma A.3 can be applied, for any K € M, with V = K and G = Gg.
Estimate (A.10) then yields, with hx = diam(K),

IVDv = Voll posye < Cahe(1+ 1Gxllp) || ID*¢l || 1o ) (A.17)

where C'3 depends only on p, d and . Raising to the power p and summing
over K € M leads to

Voo — VSDHLp(n)d < C3hm(1 + reg, (D)) H | D¢l ||Lp(g) : (A.18)

To estimate IIpv—¢, we first establish a bound on p(x)—¢(y) forallz, y € K.
Using the affine function A, given by Lemma A.3, write

lp(x) — o(y)| < lp(@) — Ap(®)| + [Ap(x) — Ap(y)] + [Ap(y) — ¢(y)]
2-4
< 2C3hy 7 ||| D¢l ||LP(K) + VA, |hk. (A.19)
Since VA, is constant, (A.9) gives
|VA¢| = |K|"» ||VA<p||Lp(K)d
< K17 196 iy + 1K1 ot [ 10761 0

Plugged into (A.19), this yields

lp(x) — (y)|
< (2ngiam((2)h;” +(1+ ngiam(Q))hK|K|_rl’) [P~

Since K C B(z, hk) for all z € K, we have
K| < |B(2,h)| = |B(0,1)[]2” A

Combined with the previous inequality, this provides C7y depending only on
2, p and 6 such that

(@) = ()] < Crohr | K77 llpllypan i) - (A.20)

Recalling the relation (7.33) between IIp and the elementary basis functions
(7 )iy, (A.20) gives, for ae. x € K,

[pv(@) - p(@) = | > mk(@)(vi — ¢(@))

1€lk

Sup lp(@i) — o(@)| Y Iric(@)]

1€l

IN

< Cuohic el iy 1K 3 I (@)

i€l
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Take the LP(K) norm over « € K and recall the definition (7.23) of [|7x ||, to
deduce

1HIpv = @l o) < Crohr [|ollwe iy 1Tl - (A.21)
As (A.17), this estimate in K translates into the global estimate

150 = Gl 0y < Crohat 9l (e e@n (D). (A:22)

The proof is complete by combining (A.18) and (A.22). m

Assumption (A.15) ensures that local errors estimates can be computed on a
mesh of the domain (with non-overlapping sets). This ensure that, when added
up, the right-hand sides of these estimates directly produce an LP({2) norm.
We can relax this assumption of non-overlapping sets if we impose a control on
the overlaps. The following result makes this broad reasoning explicit, and is
required to establish W2 estimates for some methods in Part III, noticeably
the SUSHI and VAG schemes (and any other barycentric condensation of an
LLE GD, when some DOFs in Ik are eliminated by using other DOF's that
lie outside K — see Definition 7.38).

Proposition A.8 (W?? estimates of Sp for an LLE GD — generalised
form). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.33. Let S = (x;)icr be the family of approzimation points of D,
and M be the mesh associated with D.

For each K € M, take Vg D K a bounded set such that

(i) For alli € I, x; € Vi,
(ii) There exists a ball B C K such that Vi is star-shaped (A.23)
with respect to all points of By .

Let

diam(Vk)
> —_— : . (A.24
6> regLLE(D)—i—Ir(nE% diam(Bx) —l—eisesgp Card({K e M : © € Vi}). (A.24)

Then, there exists C11 > 0, depending only on p, d, {2 and 0, such that
Vo € W2P(2) N WP (2), Sp(#) < Crabp 19l »
where Sp 1is defined by (2.2).

Remark A.9. Imposing that 6 > esssup,c, Card{K € M : x € Vk}) is
equivalent to imposing that, almost everywhere on 2, at most 6 sets (Vi) ke m
overlap.

Proof. Introduce the same v € Xp  as in the proof of Proposition A.6 and
use Lemma A.3 with V' = Vi to arrive, in a similar way as for (A.17) and
(A.21), to
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[IIpv — ‘PHLP(K) +[[Vpv - v‘PHLp(K)d < Crodiam(Vk) H‘:OHW%@(VK) )

where C12 depends only on p, d, £2 and 6. Since diam(Vx) < fdiam(Bg) <
Ohaq, raising to the power p gives Ci3 depending only on p, d, {2 and 6 such
that

[ Ipv — 90“]212(1() +[Vpv — vngiP(K)d < Cishly ||SD||€V2,p(VK) .

Summing over K € M yields

1 Tpv = 1%y + V00 = Vol e

<O S @leniy - (A25)
KeM

We now estimate the sum in this inequality. By the Fubini-Tonelli relation
and letting 1y, be the characteristic function of Vi, for any g € L?((2),

S gl = 3 /Q 1y, (@)lg(z) Pda

KeM KeMm

Z/leg(w)lp ( > 1vK(w)> dz.

KeMm

The choice of § ensures that ) ;-\, 1y, (z) = Card{K € M : ® € Vi }) <0
for a.e. € 2. Hence,

>~ lollo <0 [ lobPde =6l o).
KeM 2

The proof is complete by using this estimate in (A.25) with g = ¢, g = |Vy)|
and g = |D?yp|. ]

We now turn to the adaptation of the previous results to other boundary
conditions than homogeneous Dirichlet conditions.

Proposition A.10 (W?? estimates of Sp for an LLE GD — non-
homogeneous Dirichlet BCs). Assume that p > d/2 and that D is an
LLE GD in the sense of Definition 7.50. Let S = (x;);c1 be the family of ap-
prozximation points of D, and M be the mesh associated with D. Assume that
(A.15) holds and take 0 > reg, . (D) + maxxem fﬁ;;nizgi{)). Take ¢ € W2P($2)
and assume that

Vi€ Iy, (Ip,ov(p))i = o(x;). (A.26)

Then, there exists C14 > 0, depending only on p, d, {2 and 0, such that
Sp(p) < Craha el o) (A.27)

where Sp is defined by (2.14).
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Proof. Assumption (A.26) ensures that the vector v = (p(x;))icr € Xp
satisfies v — Ip o7(p) € Xp o. This vector is therefore suited to the definition
(2.14) of Sp. Since v satisfies the estimates (A.18) and (A.22) (which have
been established without using the boundary value of ¢), this completes the
proof. [

Proposition A.11 (W?? estimates on Sp for an LLE GD — non-
homogeneous Dirichlet BCs and relaxed assumption on Zp 5). Make
the same assumptions as in Proposition A.10, except (A.26) which is replaced

by

VK € M, there ezists Cx () > 0 s.t.

. 1 A28
max |(Zp.o10)i — o] < hadiam(K) K[ Cx(). P
i€l Nlp
Then, there exists C15 depending only on p, d, {2, and 6, such that
1/p
$(#) < Crshaa [ Il + ( 3 CK«o)p) S (a2
KeM

By convention max;cg|Z;| = 0 and the quantity Ck(¢) can thus be set to
0 if K is an interior cell (that is, Ix NIy = B). For a general K, Ck ()
would usually be the norm on K (or a lower dimensional subset of K) of
some derivatives of ¢, and the quantity ), Ck(¢)? would be bounded
by some constant depending only on ¢ (not on M). Notice however that, in
practical situations, the regularity imposed on ¢ in Proposition A.11 is such
that Zp s7(p) is usually re-defined so that (A.26) holds. See Remarks 2.19
and 12.2.

Proof. The estimates established in the proof of Proposition A.6 are inde-
pendent of the boundary conditions. Hence, if v = (¢(x;))icr € Xp is defined
as in that proof,

[ Ipv — LPHL@(Q) + Voo — VSOHLP(Q)d < Cigh H‘PHWM(Q) J (A.30)

where C1g depends only on d, p, 2 and 6.

Let us now consider w € Xp as in the proof of Proposition 7.51, that is
w; =v; if i € Ip and w; = (Ipay(p)): if i € Iy. By (A.28) the quantity w(K)
defined by (7.62) satisfies w(K) < hM|K|_%CK(g0). Plug this estimate into
(7.63), raise the result to the power p and sum over K € M. This gives

Vv — VDwHLp(Q)d < 0hmCalyp), (A.31)

where Co(p) = (X e Cr(9)?)/P. The term IIpv — Ipw is estimated
similarly. For K € M and a.e. ¢ € K,
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[ Ipv(z) — pw(@)| < Y |ric(@)] Jv; — wil
i€l K
. _1 i
< hdiom(K) i (2)| K| Y ()]
i€lk
Taking the LP(K) norm, recalling the definition (7.23) of ||7|| ,, raising to the
power p and summing on K € M leads to [ IIpv — Hpw|[ ;o) < 0h3,Colp).

The proof is complete by combining this estimate with (A.31) and (A.30).
"

Since the estimates (A.18) and (A.22) were obtained without referring to the
boundary values of ¢, they immediately give the following result.

Proposition A.12 (W?? estimates of Sp for an LLE GD — Neumann
BCs). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.52. Let S = (x;);cr be the family of approximation points of D,
and M be the mesh associated with D. Assume that (A.15) holds and take
0 > reg,, ,(D) + maxgem %. Then, there exists C, depending only on

p, d, £2 and 0, such that
Vo € WP(02), Sp(p) < Cha lellwze(0)
where Sp is defined by (2.20).

The W?2P estimates on Sp for Fourier boundary conditions are notably harder
to establish than for the other boundary conditions, since the trace reconstruc-
tion Tp also needs to be handled. The issue is that this trace has values in a
lower-dimensional space. If the mesh of 32 is made of parts of hyperplanes
(which is natural if {2 is a polytopal open set) and satisfies the equivalent of
(A.15), then the estimates of Tp can be obtained as the estimates on ITp in
the proof of Proposition A.6.

Proposition A.13 (W?? estimates of Sp for an LLE GD — Fourier
BCs). Assume that p > d/2 and that D is an LLE GD in the sense of
Definition 7.55. Let S = (x;)icr be the family of approzimation points of D,
and M be the mesh associated with D. Assume that (A.15) holds and, with
Hy, ..., H, hyperplanes whose union covers 02, that
(i) For any Ky € My there is Uk, € {1,...,1} such that Ky C Hy,,
(ii) For all Ky € My and alli € Ik,, x; € Kp,
(i1i) For all Ky € My, there exists a ball Bk, C Ky in Hy, such that

Ky is star-shaped with respect to all points of B, .
We take

diam(K) diam(K»)
6 > D TSI diam(Bw~ )’
= regLLE( ) + Ilglea/\}i dlam(BK) Kgle%a dlam(BKa)



A.2 LLE GDs with generalised degrees of freedom 367

Then, there exists C17 > 0, depending only on p, d, {2 and 6, such that, for
all o € W2P(92) satisfying v(p) € W2P(0Q2 N Hy) for all ¢ =1,...,r,

Sp(p) < Crrhm <||‘p||w2p(n) +lev IIsz@mH,Z))

(=1

where Sp 1is defined by (2.49).

A.2 LLE GDs with generalised degrees of freedom

The definition 7.29 of P;-exact gradient reconstructions (Pj-exact GR in
short) implicitly assume that the DOFs of the method correspond to the
values of functions at given points in the domain (the approximation points
S). Some numerical schemes, especially high-order methods, use other kinds
of degrees of freedom; for example, degrees of freedom that represent moments

of functions
/ z® f(x)dex.
K

It is possible to write a more general definition of Pj-exact gradient recon-
struction to account for such generalised degrees of freedom. It makes sense
to also generalise the definition to higher order reconstructions.

Definition A.14 (Pyi-exact GR with generalised dof). Let K be a
bounded subset of R?, p € [1,+00] and k € N. A Py y1-ezact gradient recon-
struction on K with generalised degrees of freedom is (P,G) where:

o P = (P);cs is a finite family of linear mappings P; : CF(K) — R,
® G = (G%)ics is a family of functions in LP(K)¢ such that, for any polyno-
mial function q of degree k 4+ 1 or less,

> Pi(q)¢' =Vq on K.

icl

The norm of (P,G) is defined by

)

Lr(K)?

1(P,G)|,, = diam(K)[K|™»

# D 1Pl vy 1G]

el

where \Py(uw)|
A
||PiH(Ck), = max o
wect (BN {0} [wllon(z)

The P;-exact gradient reconstruction of Definition 7.29 corresponds to P;(¢) =
p(a:).
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In a similar way as in Definition A.14, these gradient reconstructions could
be used to design a notion of “Pyii-exact GDs with generalised degrees of
freedom” and perform most of the analysis done for LLE GDs (using [|(P,9)],,
instead of [|Gl|,, and with adjustments in some spaces of functions — e.g., in
Lemma 7.31 we would work with ¢ € W*+2:°(R%)). We do not pursue further
this idea here, and we let the interested reader fill in the details.

A.3 Non-linearly exact barycentric combinations

Let us consider a heterogeneous material, with a discontinous diffusion tensor
A which is smooth inside subdomains P, . .., Py (partition of 2). The solution
to (3.1) is not expected to be smooth over {2, but rather smooth (at least if
we exclude the corners) inside each P, and with continuous fluxes at the
interfaces P, N Pp. LLE GDs are adapted to such solutions provided that all
approximation points (x;);cr, , for each K € M, lie in a single subdomain Py.
Indeed, in this case, the gradient reconstruction Gxv from the interpolated
values v; = u(x;) of the solution will be a good approximation of (V)| x
(Lemma 7.31).

When performing a barycentric condensation of an LLE GD, it is common
that for some eliminated degrees of freedom i € I\I®*, the set of approxi-
mated points (;);jcm, spreads over several subdomains P, especially if x;
lies at or close to an interface between two such subdomains. It then clear
that a barycentric condensation that is an LLE GD is not the best choice to
approximate @: if we define v; = u(x;) for all j € I™ then, for the degrees
of freedom i € I\I* such that H; spread over several subdomains, the val-
ues ¥; defined by (7.43) are no longer good (order diam(K)?) approximations
of W(x;), and therefore (Vpmv) g = (Vpv)x will not approximate (V) x
properly. This does not prevent the corresponding GS from converging, but
leads to reduce accuracy on coarse meshes.

Barycentric condensation preserves the LLE property thanks to Assumption
(7.42); it’s this assumptions that ensures that >, . BiA(x;) = A(w;) for all
affine function A. To deal with heterogeneous materials, it might be suitable
to relax this assumptions and create barycentric condensations that do not
satisfy (7.42), but rather relations that ensures that, if v interpolates u at
(x5)jerss, the values v computed through (7.43) give good approximations of
the values of @ at (x;);er. This leads to the notion of S-adapted barycentric
condensation.

Definition A.15 (S-adapted barycentric condensation). Let D be an
LLE GD in the sense of Definition 7.33, and let S be a dense subset Wol’p(ﬁ)
such that S C C(§2). An S-adapted barycentric condensation DS of D is a
barycentric condensation in the sense of Definition 7.38, without Assumption
(7.42) on the barycentric coefficients but such that

1. for all K € M there exists an open set Ok such that
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a) Ok is star-shaped with respect to some T,
b) Ix C Ok, and
c) forall o € S, ¢|o, € W (0x),
2. for all p € S, there exists C, > 0, depending only on ¢, and Rps, de-
pending only on DS, such that

VK € M, Vi€ Ix\I* :
le(@) = Y Bie(;)

JEH;

< OyRpsdiam(K)?. (A.32)

The S-regularity of D° is then defined by

diam
reg,(D%) = regp, (D°) + Rps + max, diam((OKK))'
Linearly exact barycentric condensations (i.e. in the sense of Definition 7.38)
are S-adapted barycentric condensations with S = C$°(§2) and Ok the inte-
rior of the convex hull of (@;);e -
The following theorem is an equivalent of Theorem 7.41 for S-adapted
barycentric condensations.

Theorem A.16 (Properties of S-adapted barycentric condensations).
Let (D) men be a sequence of LLE GDs in the sense of Definition 7.33, that is
coercive, GD-consistent, limit-conforming and compact in the sense of Defini-
tion 2.2, 2.4, 2.6 and 2.8. Fix a subset S of Wol’p(.Q) and, for each m, take DS,
an S-adapted barycentric condensation of Dy,. Assume that (reg,, ,(Dm))men
and (regs(DS))men are bounded, and that hay,, — 0 as m — co (where My,
is the mesh associated with D,, ).

Then (DS))men is coercive, GD-consistent, limit-conforming and compact.

Proof. A close examination of the proof of Theorem 7.41 shows that the
transfer of the coercivity, limit-conformity and compactness properties from a
sequence of GDs to their barycentric condensations does not require Assump-
tion (7.42). Hence those properties are satisfied by S-adapted barycentric
condensations.

Let us now prove the GD-consistency. We drop the index m for legibility
and we take ¢ € §. Analogously to the proof of Proposition 7.36, define the
interpolant v € Xps o by v; = p(x;) for all i € I™. Let v € Xp o be given by
(7.43), that is v; = v; = @(x;) if i € I** and

Ti= Y Bui= Y Bip(w) ifie I\I™

JjEH; JjEH;
By (A.32) we have |v; — ¢(x;)| < Cy,Rpsdiam(K)? if i € Ix. Hence

VK € M, Vic Ik : v; = o(x;) + O(diam(K)?). (A.33)
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We can then reproduce with this v the proof of Lemma 7.31, using the xx
with respect to which Ok is star-shaped. This shows that (7.30) holds up to
an additional term O(diam(Og)?) = O(diam(K)?). Still following the com-
putations in the proof of Lemma 7.31, the W?2°°°(O)-regularity of ¢ then
shows that |Gk 0 — V| 1pgye = O(|K|Y/Pdiam(K)) on K. This gives

[Vpsv — VQOHLP(Q)d =|[Vpv - V‘PHLP(Q)d = O(hm). (A.34)

The property (A.33), the definition (7.33) of IIp and the boundedness of
reg, (D) also give

[{Ipsv — GDHLP(Q) = |[1Ipv — SDHLP(Q) = O(hpm). (A.35)

Estimates (A.34) and (A.35) show that Sps(¢) = O(ha) for any ¢ € S. The
proof is complete by invoking Lemma 2.13 and the density of S in VVO1 ().
u



B

Discrete functional analysis

A number of numerical methods are based on primary unknowns located at the
cells and/or at the faces of polytopal meshes. For many other methods, such
secondary unknowns can be defined from primary unknowns located, e.g., at
the vertices. The aim of this section is to introduce discrete functional analysis
tools for the study of methods with (primary or secondary) unknowns at the
cells and faces of a mesh. These tools are essential to the notion of polytopal
toolbox, and to obtain the coercivity, limit-conformity and compactness of
GDs by controlling them by polytopal toolboxes (see Chapter 7).

B.1 Preliminary results

We state here a few technical results on polytopal meshes and associated
discrete elements.

B.1.1 Geometrical properties of cells

The lemmas in this section state simple geometrical properties and formulas
associated with a cell.

Lemma B.1. Let ¥ be a polytopal mesh in the sense of Definition 7.2. Take
K € M and let o = minyer, di,». Then, the open ball B(xk, 0x) of centre
T and radius o 1S contained in K, and K is star-shaped with respect to all
points in this ball.

Proof. For o € Fx we let H, be the affine hyperplane generated by ¢ and
H; ={xeR¢: (x—2)-nk, <0 for all z € H,} be the half space, opposite
to nk,o, corresponding to o (see Figure B.1).

By definition, dk , is the (usual) distance from xx to H,. Hence B(zk, oK)
is contained in H_ ; otherwise, we would have a point in this ball which is at
a greater distance from xx than dg ,, which contradicts ox < di . Hence
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Fig. B.1. Illustration of the proof of Lemma B.1.

B(xk,0x) C Nper H,; =: H. The proof is concluded if we show that K is
star-shaped with respect to any point in .

Let ¢ € H and y € K. If [x,y] is not contained in K, then by convexity
of [x,y] we have (x,y) N 0K # (. Let z be the last point, towards y, in
(z,y) NOK. Then (z,y) C K and, if o is the face of K on which z lies,
(z—vy) ngo, >0. But ® — z = a(z — y) for some positive « since z lies
between x and y, and thus (x — 2) - ng,, = a[(z —y) - Nk, > 0. On the
other hand, since ® € H C H; and z € o, (x — 2) - ng,, < 0. This is a
contradiction and the proof is complete. [

Lemma B.2. Let T be a polytopal mesh in the sense of Definition 7.2, K € M
and o € Fi. Then

1
|Drco| = Sloldio and ; loldk .o = d|K]|. (B.1)
[eASN e

Proof. We first compute [Dg | = |, Dy, dtdx. Since the integral is invariant
by translation and change of orthonormal axis system, there is no loss of
generality in supposing that o lies on the hyperplane z(!) = 0, and that xx
on the line orthogonal to it. Then x = (dk 0,0, ..,0), see Figure B.2.
Consider the change of variable (¢,y) € (0,1) x ¢ — & € Dk, defined by
z=(1-txr +ty = (1 —t)dgo,ty?,... . ty'?) (note that y") = 0). Tts
Jacobian determinant is J(¢,y) = dx » % t471 s0

1
|
Dic| = / / t1 i odtds(y) = ~dicolol,
0 o
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z@ 2@

Fig. B.2. Illustration of the proof of Lemma B.2

as announced in the lemma. The second equation in (B.1) follows immediately
from the fact that (Dk »)scry forms a partition of K (up to a set of zero
measure). ]

The following lemma and corollary are extremely useful to construct Pi-exact
gradient reconstructions.

Lemma B.3. Let K be a polytopal subset of R with faces Fx and, for o €
F, denote by T, the barycenter of o. Let xx be any point of RL. Then,

> lolnko(®, — zx)" = |K|Id, (B.2)
cE€FK

where (T, — xx )7 is the transpose of To — T € R, and 1d is the d x d
identity matriz.

Proof. Since T, is the centre of mass of o, for any i = 1,...,d,
W = i/a:(i)als(:c)
o Jo
(where () denotes the i-th component of x), and therefore

Z ‘0’|§((7i)n1(75: Z m(i)nK,gds(w).

cE€FK oc€FK g

The divergence (or Stokes’) formula then gives



374 B Discrete functional analysis

3 |a|5§;'>nK,(,=/ V(a)dz = |Ke;
K

cEFK
where e; is the i-th vector of the canonical basis of R%. Since ZLe; = 7,
this shows that
> |a|nK7Usc§> e; = (|K|Id)e;.
cEFK
This relation being valid for any ¢ = 1,...,d, we infer that
> lolng®L = |Kd. (B.3)
oceFK

Apply now divergence formula to a constant field £ € R%:

(Z |anK,a> E= ) g.nK,c,ds(m):/ div(¢)da = 0.

ocE€FK ceFK VY K

Since this relation is true for any & € R?, it shows that

> Jolnk.e =0. (B.4)

ocEFK

(B.2) is proved by adding (B.3) and (B.4) multiplied on the right by —a%.
"

For simplicial meshes, the next lemma shows that the regularity factor ks
defined by (7.10) controls all the other ones.

Lemma B.4. Let K be a simplex of R?, Ty be the centre of mass of K, and
pk be the mazximum radius of the balls centered at Tk and contained in K.
For o € Fi, let di » be defined by (7.4) with xx = Tk. Then

PK = Uléllfli di,o (B.5)
. 1
Vsg # 81 in Vi, pr < ir 1dlst(so,sl)7 (B.6)
1
Vo € Fi, px < p 1diaum(cr). (B.7)

As a consequence, if T is a conforming simplicial mesh with P the centers of
mass of the cells, then, recalling the definitions (7.8)—(7.10),

2

2
nggdifl and Oz < ks +d+ 1.

Proof. The inequality > in (B.5) is a consequence of Lemma B.1. The other
inequality actually only relies on the convexity of K. If ¢ € Fk, as in the
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proof of Lemma B.1 denote by H, the affine hyperplane containing o, and by
H_ the half space H, + R ng .. Since K is convex, K C H; and dg,, is the
(positive) distance from T to H,. We have B(Tk,prx) C K C H, and pk
must therefore be less than dist(Tx, Hy) = di -

Let us now prove (B.6). Let o be the face of K opposite to s1. Write Tg =

1 .
4T Dscvy S» SO that

1
'So—szdi+1 2(30_3)

sEVK

1 1
— 71 sevz#s (so—8)+ ﬁ(so —81). (B.8)

If s # s1 then s, 89 € 7 and thus (sg—$)-nk, = 0. Taking the scalar product
of (B.8) with ng , therefore gives, since sy € 7,

1

drgo = (S0 —Tg) NKe = P

1
(so—81) Ko < a1 1dist(so, $1).
Equation (B.6) follows since px < dk,, by (B.5). Estimate (B.7) is a conse-
quence of (B.6) since, for any face o € Fi and any two vertices sg # s; of o,
dist(sg, s1) < diam(o).

Let us turn to the upper bound on n<. For any neighbourhing cells K and L,
denoting by o their common face, by (B.5) applied to K and (B.7) applied to
L

)

di,o > prc > k3 hg > kg'diam(o) > kg (d + 1)pr
> kg2 (d+ Dhy > k72 (d + 1)dp o

2
Hence filf(‘; < % which gives, by reversing the roles of K and L, the upper

bound on 7z.
The bound on fz is trivial since any simplex K has d+ 1 faces and, by (B.5),

h
K < ke PK
dK,a K,o

S KRg. (Bg)

Remark B.5 (Generalisation to xx not located at the centre of mass)

The proof shows that (B.5) holds with Zx replaced by any xx € K. Writing xx =
dos cvy (sS as a convex combination and reproducing the previous proof with these
coefficients as € [0, 1] instead of 1/(d + 1), we see that (B.6) and (B.7) holds with
1 instead of 1/(d + 1).
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B.1.2 Approximation properties

The following result is the key to proving that several classical gradient dis-
cretisations are LLE GDs.

Lemma B.6 (P;-exactness of Vs, and estimate). Under Hypothesis
(7.2), let p € [1,+00) and T be a polytopal mesh of £2 in the sense of Definition
7.2. Define X, Vg, Vi and ||, as in (7.7). Then

1. Vi is a Py-exact gradient reconstruction on K upon (Tx, (To)ocry ), in
the sense of Definition 7.29. In other words, if A is an affine function
and u = (A(x k), (A(Ty))ocr,) are the values at xx and (Ty)ocr, of A,
then Vigu = VA.

2. For all v € X«,

HVTUHLP(Q)d < i |U‘T7p. (B.10)

Proof. The proof of Item 1 follows by multiplying both sides of (B.2) by the
constant vector VA, and by noticing that, since A is affine,

(s — ) ' VA= (T, —xK) VA= AZ,) — AlTk) = uy — uk.

To prove Item 2, write, for x € K,

= 1 loldk.o |ve — VK ’
Vzu(z)| < — g ol |lve —vK| <d E :
‘ T ( )| — |K| Ue]:K | | ‘ K| Ue]__K d‘K| dK’a-
By (B.1) we have » . r_ ‘ad“dfgl‘” = 1 and the convexity of s — sP for s > 0
therefore gives
— loldr.o |ve —vi [P dP7t Vo — Vi |P
P < gp § : — § dy o |2—K

o FK oceFK

Integrate this estimate over & € K, sum over K € M and recall the definition
(7.7f) of ||5, to obtain (B.10). L]

The following lemma is particularly useful to obtain estimates on interpolants
of WLP functions (see, e.g., the proofs of Theorem 7.12 and Proposition 7.15).

Lemma B.7. Let T be a polytopal mesh of {2 in the sense of Definition 7.2,
p € [1,00) and 6 be such that

max{ e :KGM,OE‘FK}SH.
dK,a

Then, there exists Cig depending only on d, p and 6 such that, for any ¢ €
WLP(2) and any K € M,
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‘|Ul|/090(a:)ds(a:)_ w)dwp 7 Clshp 1/ o (b1

L (
K[ )i ¥

- o

Proof. The proof is based on estimates first established in [31, 32]. Let us
assume that there exists C19 depending only on d, p and 6 such that, for all
K € M and all ¢ € Fg, setting Bx = B(zx,0  hi/2),

< Cishi [ IVolll Lok (B.12)
Lr(K)

‘ ! ds(x) o (a:)dmp
1 () .
o |Br| J By
Rt
<G / Vo(z)Pdz, (B.13)
K
= .o s
—_ x)dx — da: <C \V4 dx, B.14
‘|BK| BKSO( ) |K| 19‘K| | (00 )‘ ( )
d
H<p ~ L @aa]| < Conn 190l (B.15)
|Bre|

Lr(K)

Then (B.11) follows from (B.13) and (B.14) by using the triangle inequality
and, in (B.14), the estimate |K| > |Dg ,| = wd% > 0~ 'd~1|o|hk. Similarly,
Estimate (B.12) follows from (B.14), (B.15) and the triangle inequality.

To prove (B.13), (B.14) and (B.15), notice first that, since C°°(K) is dense
in WhP(K) (K is a polytopal set), these estimates only need to be establised
for ¢ smooth.

PRrROOF OF (B.13)

For z € Bi and y € o, write ¢(y) — p(2z) = fol Vo(z+tly —2)) - (z —y)dt.
Taking the mean value for z € Bi and y € o and using Jensen’s inequality
yields

he 1
Ly < K / / / V(= 4ty — 2))Pdzds(y)dt,  (B.16)
|UHBK‘ 0 JoJBgk

where Lg.13) is the left-hand side of (B.13). Since 0 'hg /2 < dk , for all
o € Fk, by Lemma B.1 the cell K is star-shaped with respect to all points
in Bg. Hence, for all z € By the change of variable ¢ : (¢,y) € (0,1) x
o0 = & = z + t(y — z) has values in K. By the same reasoning as in the
proof of Lemma B.2, the Jacobian determinant of this change of variable is
Jy =t (y — 2) - nk ,|. Since |z — z| = tly — z| < thg, we have t > %
Moreover,
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H_IhK > 9_1hK

(Y = 2) nrol 2 [(y — @) ol — |z —ax| 2 dio - —5— 2 —

Hence,
|z — z| d191 12d 2|1

Using ¢ in (B.16) therefore leads to

29h;l7+d 2 ey
L3 < Tol|Bxl |V<,0 |m — z|' 7%dzde. (B.17)

Since B C K C B(x, hg) for any € K, denoting by wy the surface of the
unit sphere in R?,

hx
/ |z — z|'74dz < / |z — z|'~4dz :wd/ p ~4ptdp = wahi.
Bk B(z,hk) 0

Plugged into (B.17), this estimate gives (B.13) since | Bx| = | B(0,1)|(20)~¢h%.

PRrROOF OF (B.14)
The proof follows similar ideas as in the proof of Lemma A.1. For all (z,y) €
Bk x K, we have

1
(@) — o(y) = / Veltz +(1—ty) - (- y)dt.  (B.8)

Taking the mean values for ¢ € Bk and y € K and denoting by L(g.14) the
left-hand side of (B.14), Jensen’s inequality gives

L Vl(t (1 —¢)y)|Pdtdyd B.19
310 |BK||K|/BK//"“” ) Pdidydz.  (B19)

Applying the change of variable * € Bg — z = tx + (1 — t)y, which has
values in K since K is star-shaped with respect to all points in By, we have

1
/ // [Vo(te + (1 —t)y)|Pdtdyde
Bg JK JO
< / IV(z)P / / t~4dtdydz (B.20)
K K JI(z,y)

where, as in the proof of Lemma A.1 with V = Bg, I(z,y) = {t € (0,1) :
Jx € By, te+ (1 —t)y = z}. Using Bxg C K and following estimates (A.4)
and (A.5), we arrive at

/K /I(—ay)

(B.21)
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Substituting this inequality into (B.20) and coming back to (B.19) completes
the proof of (B.14), since |Bx| = |B(0,1)|(26)~h%.
PROOF OF (B.15)

This estimate follows immediately from Lemma A.1 since V = K is star-
shaped with respect to B = By, and diam(V) = hx = 6diam(B). L]

The following lemma is an enabler to prove the limit-conformity of a GDs
controlled by a polytopal toolbox.

Lemma B.8 (Discrete Stokes’ formula). Let T be a polytopal mesh of 2
in the sense of Definition 7.2, p € [1,4+00) and 6 > Oz (see (7.8)). We define
Xs, Iz, T, Vs and |-|§’p as in (7.7). Then, there exists Cyg depending only

on d, p and 6 such that, for all ¢ € Wl’p/(Q)d and all v € Xz,

‘ / (Veo() - p(x) + Hzv(z)dive(x)) de
Q
- [ Tsv@nne)e)ds@)] < Cao 1Vl e, hat, - (B2
where (@) = v(@) - ngn is the normal trace of .

Remark B.9 (Broken W7 estimate)
The proof actually shows that the result still holds if we take ¢ € Wdiv’p/(ﬂ) N
wh' (M)?, where the broken space Wl‘pl(/\/l)d is defined by

WP (M) ={y e L () : VK € M, ¢ € W' (K)}.

In (B.22), [|IVe| || s’ () must simply be replaced with

1/p’
Pl oy = <Z |1Vl ||§p,<K>>

KeM

(or |‘P|WL<>O(M) = maxkem || [V ||L°°(K) if p=1).

Proof. Set ¢, = ﬁ fg p(x)ds(x). Since ng , = —nr , whenever o is a face
between K and L, gathering by faces shows that

S Y vl
KeMoeFk
= Y wlollesnret e nL)

o EFint, Mg:{K,L}

+ Z vg/ocp(:c) ‘N ds(x)

€ Fext, MUZ{K}
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= / Tzv(x)p(x) - nopo(x)ds(x).
o

By Stokes’ formula, [, divp(x)de =Y .7 |0]¢s - 1k o Therefore,

[ Bzv@dve@iz= Y v Y- loles i
2

KeM 0cEFK
= 3 3 x - vlloles o+ [ Trv@ha(e)@)dste). (3.23)
KeMoeFk 0%
Intlgduce Pr = ﬁ [ p(x)dx and write, since Y- . 7 [0](ve — vK)NK o =
|K|VKU5

[ Hxv@yivp(e)de - [ Tso@hale)@dsa)
(%} [oX0]

= > Y lollvk —vo)nks - ex

KeMoeFk

+ 302 lolvk —vo) (o — #x) Mo

KeMoeFg
= —/ Vazo(z) - p(x)dx
2

+ Z Z lo|(vk —vo)(Po — PK) MK (B.24)

KeMoeFk

Let T be the left-hand side of (B.22). Equation (B.24) and Hélder’s inequality
(C.3) show that, for p > 1,

Vo — VK
< S Y lolda| 2 igr - oxd (8.25)
KeMoeFk Ko
Vg — VK p %
= <Z Y loldko dxg‘ )
KeMoeFg ’

=

P
x <Z > IUIdK,UI%—saKI”) :

KeMoeFk

Apply (B.11) in Lemma B.7 to each component of ¢, with p’ instead of p.
Since di » < hg, this gives C; depending only on d, p and 6 such that

T < Corlulg, ( >y h?é/K |V<P(w)”'d-’v>

KeMoeFk

1
< Con07 vl , a1Vl L () -
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This completes the proof in the case p > 1. If p = 1, simply write |px — s | <
1101 () ot i (B.25). .

B.2 Discrete functional analysis for Dirichlet boundary
conditions

We establish discrete functional analysis results in the case of Dirichlet bound-
ary conditions. We first consider discrete Sobolev embeddings, starting with
the case p = 1 and then generalizing to the case p > 1. Then we study a Rel-
lich compactness result, also looking at the case p = 1 first. All these results
apply to functions reconstructed, through Ilz, from elements in X« .

B.2.1 Discrete Sobolev embeddings

Let us first recall the Sobolev embedding, due to L. Nirenberg, of W' (R?)

into L' (R?), where 1* = -4

d
1
Y € WHER, e o) < 5g D 10wl (B20
i=1
Recall that the BV (RY) norm of functions in L'(R%) is defined by
[wll ey =sup { [ w(e)dive(@)de : ¢ € O (R RS,
R

ol ey < 1,

with ¢ = (¢1,...,¢q4) and ||SOHLoo(JRd)d = SUP;=1,....d ||<PiHLoo(JRd)~ The space
BV (RY) is defined as the set of functions w € L!(2) such that [wll gy gay <
o0. The Sobolev embedding (B.26) can be extended to BV (R?), by using a
regularisation technique.

Precisely, let w € BV(RY) and take (p,),>1 a smoothing kernel, that is,
p1 € C*(B(0,1)), p1 >0, fB(o,l) pi(z)dz = 1, and p,(x) = n?p; (nx). Then,
wy, = w* p, belongs to WH1(RY), and w,, — w in L'(R%) as n — oo (and
thus a.e. up to a subsequence). Moreover, E‘f:l 10iwn |l L1y < Wl gy (gay-
Apply then (B.26) to w = w,, to obtain

d
1 1
||wn||L1*(Rd) < 2 Z ||8z‘wn||L1(Rd) < 2 ”wHBV(R”) :
i=1

Take now the inferior limit, using Fatou’s lemma in the left-hand side, to see

that 1
Yw € BV(Rd)’ ||w||L1*(Rd) < 24 ||wHBV(Rd) . (B.27)

Let us now state the discrete Sobolev embedding for p = 1.
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Lemma B.10 (Discrete embedding of W' (£2) in L' (£2)). Let T be a
polytopal mesh of §2. Setting 1* = d% and recalling the notations (7.7), we

1
have

Vu € Xz, HH‘IUHLI*(Q) = (B.28)

1
— U .
2\/&| |3,1

Proof. Let u € Xg, and extend IIzu by 0 outside (2. We have IIzu €
LY(R?). Let ¢ € C°(R4, R?) such that [l o ray < 1. This implies || < V.
Write (B.23) for v = u and take into account the boundary conditions u, = 0
for all o € Fext (which implies Tgu = 0) to obtain

ng(az)divgo(zc)dw:/QHTu(w)divcp(a:)dw

Rd
1
= 3 X Jeltus —u) oy [ o) nds(a)
KeMoeFk g
<V Z Z lolluk — us| = \/&|u|571 . (B.29)
KeMoceFk
Hence, [IIzul| gy (gay < \/cill|u|‘z’1 and (B.27) leads to (B.28). L]

Lemma B.11 (Discrete embedding of W, ”(£2) in L?" (), 1 < p < d).
Let T be a polytopal mesh of 2, p € (1,d) and p* = dp—jp. Then, there exists
Caa, depending only on d, p and n > n< (see (7.9)), such that

Vu € Xz, HHTUHLp*(Q) < Oz |U‘g7p . (B.30)

*

Proof. We follow again L. Nirenberg’s ideas. Let a be such that al* =
that is, a« = p(d — 1)/(d — p) > 1. Take u € Xz and define u
((Jur|*) Kem, (Us)oecr) with

p

)

1
Uy = §(|uK|O‘ + |ug|®) for all o € Fipy with M, = {K, L},

ﬂ(,:OifUEfcxt.

Since |H¢ﬂ|% = |[IIzulP", applying (B.28) to @ and gathering the sums by
edges gives

d—1

* T 1 a o~
(/Q|ng(ag)\p dz) T < = 2 Y ol ] (B.31)

KeMoeFg

1 1
Sm Z |J||UK|a+m Z lo| [Jur|® = |ur|®].

oEFoxt, M(T:{K} UefintaMo':{KvL}

Since f : s+ s* is differentiable on [0, 00) and sup(, ;) | f'| < a(a®"! +b*71)
for all 0 < a < b, the mean value theorem yields
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|| = Jur|*] < alfux | + Jur|* ™Y ux —url. (B.32)

Hence, setting d,u = |ug| if 0 € Foxt and dpu = |ug — ur| if 0 € Fine,
gathering back by cells,

([ izuta)paz) N

[0
<57 2 2 Lol T iou
2\/& KeMoeFg
« 0ol
== > > loldgolux|* .
2\/3 KeMoeFk dKﬁ

The Holder inequality (C.3) then yields

.
7

d—1
N —d o S\ P
Hzu(x)|P dx < — dre o lug|@ 1P
([ e ae) < 2 (32 oo

KeMoeFk
1
p) P

X (Z > loldx.o
loldk,o = d|K]| (see (B.1)),

(B.33)

0ol
dK o

)

KeMoeFk

Since (a —1)p" =p* and ) .~

Yo > loldrolux| @ = 3 dIK| fuxl”

KeMoeFk KeM

_q / | Teu(e)”" da.
(9]

Plugging this into (B.33) and noticing that % — i = p%, this shows that

,,) " (B.34)

adl/?’
[Hzull o (o) < i ( > loldko

KeMoeFk

Ol
dK,U

For M, = {K, L}, using the definition of 7,

S,u |? »
dio || < 1 ([ — uo| +ug —url)
K,o dK,a
—1 -1
< gr1 (luK U |) dico + i,
= =1 =1 -1
di o 7 d 5
. P . P
Szl)—l <dK,o' 1”;7% +dL’U u[;liu” )(1+7]p_1).
K,o L,o

The same holds, with ur, = 0, if 0 € Fx N Fext. Hence,

2. 2 loldro

KeM oceFg

p

Ot
dx

)
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P

P
<214 ) Y D o (dK,a ) bdyg | )
KeMoeFk Ko Lo
_ ug — ug|”
<P+ Y Y loldro | — (B.35)
KeMoeFg Ko

To write the last line, we noticed that each contribution involving ux —u, ap-
pears twice for interior edges (once when summing over o € Fg, and another
one when summing over o € Fr,). The Sobolev inequality (B.30) is deduced
from (B.34), (B.35) and the definition of |ulg ,. L]

To prove the final result of this section, we first need to establish a natural
inequality on discrete Sobolev norms. Let 1 < ¢ < p < 4o00. Using Holder’s
inequality (C.3) with exponents £ > 1 and 2, we have

1
Uy — UK ‘q !
dK,(T

(z S loliics

|u|§,q:
KeMoeFk
1 11
ug_qu P q P
<[ XX lolds |75 2. D loldrs
KeMoeFgk ’ KeMoeFk
1_1
= |ulg, (d|£2])" 7. (B.36)

In the last line, we invoked (B.1).

Lemma B.12 (Discrete embedding of W, (£2) in L?(£2), for some ¢ >
p). Let T be a polytopal mesh of 2, p € [1,4+00) and n > nz. Then, there
erists ¢ > p, depending only on p and d, and there exists Casz, depending only
on {2, p, q and n, such that

Yu € szy() R ||H‘IUHL(I(Q) < Cys |u\57p . (B37)

If p < d we can take g = p* = dpfdp and, if p > d, we can take any q < +o00.

Proof. If p =1, take ¢ = 1* and the result follows from Lemma B.10 (in this
case, (a3 does not depend on 7). If 1 < p < d, take ¢ = p* and the result is
given by Lemma B.11.

If p > d, choose any g € (p,o0) and take p; < d such that p; = ¢ (this is
possible since p} tends to 400 as p; tends to d). The choice of p; only depends
on ¢q and d, and Lemma B.11 gives

”HTUHLQ(_Q) < Oy Wg,pl

for some Csy depending only on pi, d and 7. Inequality (B.37) follows from
this estimate and (B.36) with ¢ = p;. L]
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B.2.2 Compactness in LP(2)

The continuous Rellich theorem states that bounded families in WO1 P(02) are
relatively compact in LP(§2). We prove here a discrete version of this result,
involving the discrete W, *(£2) norm |z, and the function reconstruction
operator Ilg. As for Sobolev embeddings, with start with the case p = 1,
which requires less assumptions on the mesh and from which we deduce the
case p > 1.

Lemma B.13 (Estimates of translations in L'). Let T be a polytopal
mesh of £2 in the sense of Definition 7.2. Let u € Xz o and extend Ilsu to R?
by 0 outside (2. Then,

Vh e R, |[Tzu(- + h) — Hxul| 1 gay < [RIVd |ulg - (B.38)

Proof. Since p = 1, the proof could be done by following the technique in
[47], and would lead to (B.38) without v/d. We provide here another, more
direct, proof based on the BV space, as in Lemma B.10.

Let w € C°(RY). For , h € R?, write

(@ + h) — w(@)| = /O Vw(:c+th)~hdt‘§|h/0 Vw(a + th)|dt.

Integrating with respect to & € R? and using Fubini’s Theorem gives the well
kown result

d
[w(- +h) = w1 (gay < |h] /Rd Vw(@)|de < |k Y [|0:w]| i gay - (B.39)
’ i=1
By density of C°(R?) in WH1(R?), Inequality (B.39) is also true for w €
WH(R?) and, proceeding as at the start of Section B.2.1, leads to the follow-
ing estimate for BV (RY) functions:

Vw € BV(RY), Vh € R?, |w(- +h) — w1 gy < [h] [0l gy gay - (B.40)

Take now u € Xz ¢ and, as in the statement of the lemma, set IIzu = 0 outside
§2. Then IIzu € L'(R?%) and it was proved in lemma B.10 that [ zul gy (ray <
Vd uls ;- The proof is therefore complete by applying (B.40) to w = Ilzu.

n

The following compactness result in L! results from Lemmas B.10 and B.13,
and the Kolmogorov compactness criterion.

Lemma B.14 (Discrete Rellich theorem, p = 1). Let (%,,)men be a
sequence of polytopal meshes of (2. Then, for any u, € X<, o such that
(|ttm ‘Im,l)meN is bounded, the sequence (Ils, Uy )men 18 relatively compact in

LY(0).
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Proof. Lemma B.10 shows that (ITp,, tm)men is bounded in L' (£2), and
thus also in L'(2) since {2 is bounded. Extending the functions 1z, u,, by
0 outside {2, they remain bounded in L!(R?). The Kolmogorov compactness
theorem [13, Theorem 4.26] and Lemma B.13 then show that (II'p,, tm)men
is relatively compact in L!(2). "

As for discrete Sobolev embeddings, establishing a compactness result for
p > 1 requires some an additional hypothesis on the meshes.

Lemma B.15 (Discrete Rellich theorem, p > 1). Let p € [1,400) and
(Tm)men be a sequence of polytopal meshes of (2, such that sup,,cnnz,, <
+o00. Then, for any um € Xx,, 0 such that (|um|s, ,)men is bounded, the
sequence (Ilx, Um)men is relatively compact in LP((2).

Proof. Using (B.36) with ¢ = 1 shows that (Jum|s_ ;)men is bounded. By
Lemma B.14, (IIp,, Uy )men is thus relatively compact in L*(£2) and, up to a
subsequence denoted the same way, converges in this space. By Lemma B.12,
(IIp,, Um)men is also bounded by some Cs4 in L(S2) for some ¢ > p.

Recall now the interpolation inequality, consequence of Hdélder’s inequality
(C.5) applied to |f|P = | f|*?|f|(*~P with o = ﬁ and exponents (r,1') =
(oa> Ty

a(p—1)

1fllLe o) < ||f||£q1(3p £ o) -

Apply this estimate to f = IIs,, un — Ilz,u¢ and use ||f||1q(o) < 2C24. This
gives

1)
[, um — g uell o) < Mg, tim — HfszLl(Q (2C20) 5. (B.A1)

Since ﬁ > 0 and (Ils,, Uy )men is a Cauchy sequence in L'(£2), (B.41)
shows that (I1x, tm)men is also a Cauchy sequence in LP({2), and thus that
it converges in this space. [

B.3 Discrete functional analysis for Neumann and
Fourier BCs

We develop here discrete functional analysis results for Neumann and Fourier
boundary conditions.

B.3.1 Estimates involving the reconstructed trace

Let us start with the discrete version of a classical trace estimate.
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Lemma B.16 (Discrete trace inequality). Let p € [1,+00), T be a poly-
topal mesh of (2 in the sense of Definition 7.2, and o > O< +n< (see (7.8) and
(7.9) ). Then, there exists Co5 > 0, depending only on 2, d, p and o, such that

Vu € Xg, [ Tsull 1o o0y < Cos(lulg, + Hsull 1o o)- (B.42)

Proof.

Step 1: we prove the existence of a finite family (7;,&;)i=1,... m such that:

ceey

1. fori=1,...,M, 7; C 0f2 is an open connected subset of an external face
of 2, with outward unit normal vector n,,,

2. & € R4\ {0} and the cylinder C(7;,&;) = {x +t€,t € (0,1),x € 7} is
contained in {2,

3. there exists a > 0 such that —§; - n., > a|&],

4. 012 C Ui:l ’’’’’ M Ti-

To establish the existence of this family, recall that {2 can be defined as a finite
union of simplices of R?. Take one of these simplices S = S((2;)i=1,....a+1) (see
(7.1)), that touches the boundary of {2 and whose interior S° is contained in
2. Assume that the face F' = S((x¢)¢=1,....4) of S is an external face of {2 and
define

d d
T = Zajmj : Zaj =1, a; >0 for all 5, and oy

j=1 j=1

S
d+1

For any family of real numbers («;);=1,... 4 such that Z;l:l a; =1, by way of
contradiction we can find ¢ € {1,...,d} such that «; > ﬁ. Hence,

d
F=8((x)e=...a) = |7
i=1

Let n,, be the unit normal to 7; (that is, to F') outside S, and set &; =
71 (®ar1 — ®;). If € C(73,&;) then there exists ¢ € (0,1) and (v)i=1,....d,
with a; > 0 for all j and a; > 217, such that

d
t
z = az;+ 731 @ar1 — i)
i=1

d t t
= Z OZJCBJ + a; — m xTr; + mmd_t'_l.
=1,

Since «; — fﬂ > 0, all the coefficients in this convex combination of the

vertices of S are strictly positive, so & € S° C (2. Hence, C(7;,&;) C (2.



388 B Discrete functional analysis

Finally, since x; € F', —=§; - n, = ﬁ(wi —T441) N, 18 strictly positive, since
it is d%rl times the orthogonal distance between x4y and F. We are working
with a global finite number (only depending on (2) of indices ¢ = 1,..., M, so
i &;|) is strictly positive.

Step 2: proof of the trace inequality for p = 1.
Fix i € {1,..., M} and denote by D(x,&;) the half line starting from x and
with direction &;. For K € M and o € Fg, take & € 7; such that:

e cither D(x,&;) does not intersect o, in which case set y,(x) = x and

XK,O‘(w) = 07
e or D(z,&;) intersect o at only one point, in which case set y,(x) as this
point and
* XK,o(x) =1 1if starting from x, D(x,&;) intersects o while entering
into K,
* Xk,o(x) = —1 if, starting from x, D(x,§;) intersects o while exiting
K.
In other words, x ko () = —sgn(&; - ko).

Note that a.e. € 7; fall into one or the other of these two categories. D(x, &;)
always exists a cell after having entered it and thus

oceFK
Define
Vo € F, B,(w) = max (l_WO>
VK e M, BK(w):maX(l_W,O),

Let 0 € Fext be such that xxo(x) # 0. If & € o then y,(x) = x and thus
Bs(x) = 1. If & ¢ o, then the inclusion C(7;,&;) C 2 shows that y,(x) &
C(7i,&;) and thus that (y,(x) — x) - & > |&;|?, which implies B, (x) = 0. If
o € Fint with M, = {K,L} and D(x,&;) crosses o, then if it exits K (for
example) it must enter L and thus xx - () = —xr,0(x). As a consequence of
this reasoning, for a.e. € 7; and for all o € F,

If © ¢ o then Z XK,o()Bs(z) =0,
KeM,

If © € o then Z XK.o()Bs(x) =1
KeM,

(B.44)

(note that the second situation only happens for a single 0 € Fext since
x € 012). Relations (B.43) and (B.44) show that

> D xro@)(Bo(@)us — Bre(@)uk)

KeM oceFg
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=Y Y wke@)e(@) — Y Br@ux Y xxola)

oeF KeM, Kem oc€EFK

= ua_m

where o, is the unique boundary edge that contains . We have Tzu(x) = u,y,
and thus

Tru@) = [ > D Xkol@)(Bo(@)ue — Br(@)ux)
KeMoeFk
= | Y ko @) [Bo @) (s — uk) + (Bo(@) — Brc(@))uc]
KeMoeFk
< 3D Wro@)l[Bo@)lue — ucl +185(x) — B (@) luxc] ]
KeMoeFk

Integrating over 7; gives

Ty € 35 3 Juo — uxd / X0 (@) o () ds(z)

KeMoeFk
3 el S / o @) |Bo (@) — Brc(@)|ds(x).  (B.45)
KeM ceFK

For any & € 7; such that |xx.o(x)| > 0, there exists y € o such that x €
D(y,—¢&;). The measure of {& € 7; : |xk,o(x)] > 0} is thus bounded by
the measure of the trace on 7; of the cylinder C(o,—§;). This measure is
less that |0|/|é; - N, |, where & = &/|&|. Since [&; - n,
lo|/|&: - nr,| < |o| /. Hence, using B, () < 1,

> alg;|, we have

o]

/ o () 5 ()as(r) < 7). (B.46)

Noticing that |8, (x) — Bk (x)| < % < ‘%“ < Q‘dg‘” we also have

/, IXK,o ()] |Bs () — B (x)|ds(z) < %' Qﬁgi" : (B.47)

Plugging (B.46) and (B.47) into (B.45), and recalling (B.1), provides Cag
depending only on «, o, &; and d such that

ITxull 1,y < Cosllulgy + [ Hsull L1 (g))-

The trace inequality (B.42) for p = 1 follows by summing these estimates over
i=1,..., M.

Step 3: proof of the trace inequality, p > 1.
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Let u € X5 and, in a similar way as in the proof of Lemma B.11, apply (B.42)
with p= Ltou= ((|UK|p)K€M7 (aa)ae]:) with

~ 1 .
iy = Ll + usl?) i M, = (K, L),
Uy = ug|P  if 0 € Foxt-

Since [zt = |IIzulP and T<u = |TgulP, this gives Ca7 depending only on 2,
d and p such that

Tzl < Corllilsy + [HsullZ, (q))- (B.48)

Suppose that we establish the existence of Cg, depending only on (2, d, p and
0, such that

|u|$ 1 < Cas |U|fzp (”HTUHLP(Q + 1T, 39)) (B.49)

Then, by Young’s inequality (C.9),

ey < p/p|| M5l + 5 I Tstullony - (B50)

Taking € > 0 such that 012775 = % and plugging the result in (B.48) gives
(B.42).
Let us now prove (B.49). If M, = {K, L}, owing to (B.32),

. N 1
lig — o] = §||“K|p |ur|P| <? 5 (ux”™ Y funP T Juke — ugl.
Similarly, if M, = {K},

i —To| = |[uk|? = [uo|?| < p(lux [P~ + us [P~ uk — uo.

Hence, setting d,u = |ux — uy| if M, = {K} and d,u = |ug —ur| if M, =
{K, L},

sy <p Y lolfuolP " eutp > > ol juxlP 0eu.  (B.51)

€ Foxt KeMoeFk

Let w;, F;,G; > 0 and H; > 0. Applying the Holder inequality (C.4) to
a; =Gy, by =F' " and d; = H; PP = H7YP' e find

> wiFPTG; < (Zw, )

el el

p—1

(o)

i€l

=

Applied with w; = |o|, H; = 1, F; = |uy| and G; = d,u in the first term of
(B.51), and with w; = |o|, H; = dk o, F; = |uk| and G; = d,u in the second
term of (B.51), this gives
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1 p—1
Ul 1 Sp( > |a|(50u)1’> < > ol |Uap>
o€ Fext U€.7:cxt
p—1
) P
+p < Z Z |o | -1
KeMoeFk K,o KeMoeFk
=T, + . (B.52)

Write (dou)?P = df, (5 “) < diam(Q)p_ldK)gg‘;iu)p to notice that
) K

N

Ty < pdiam({?2 )P luls, ||Tgu||Lp 09) - (B.53)

To estimate T», first use the triangle inequality to write, if M, = {K, L},
dou < |ug — ug| + |ur, — tg|. Then, by definition of ¢ > n< and invoking the
power-of-sums inequality (C.12),

(65u)P P

p—1
dK,o'

U — U ur, — Uy

dL,o’

p
< 2p71dK,U = +2p*19P*1dL70_

dK,U

This also holds, dropping the second addend, if M, = {K}. Using this es-

UK —Ug

p
timate in the first factor in 75, the term dg P ’ appears twice, once

with a factor 2P~ and another time with a factor 2°~1pP~1 (when summing
on the faces of the cell L on the other side of K with respect to o). Hence,

<2714 >0 Y Joldko

KeMoeFx KeMoeFx
_op-1 -1
=27 1+ ") ulg,

UK

7O'

Invoke (B.1) to bound the second factor in 7o and write

.
Iy

Ty < p(2d)7 (14 & 71)7 Jul, 5wl o) - (B.54)

Estimates (B.52), (B.53) and (B.54) complete the proof of (B.49). L]

The following lemma is particularly useful when dealing with Fourier bound-
ary conditions.

Lemma B.17. Let p € [1,+00), T be a polytopal mesh of 2 in the sense of
Definition 7.2 and o0 > 0z + n<. Then, there exists Cag > 0, depending only
on §2, d, p and o, such that

Vu € Xg, HH‘IUHLP(Q) < C29(|u|‘3:,p + ||T‘37U||Lp(an))~
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Proof. Let e be a unit vector (say, for example, corresponding to the first co-
ordinate in R?). As in the proof of Lemma B.16, define xx , : 2 — {—1,0,+1}
by Xk .o () = sgn(e-ng ) if the half-line D(x,e) = x + Rte intersects o at
one point, and x k- (x) = 0 otherwise. Contrary to the proof of Lemma B.16,
XK,o(x) is here defined for all & € £2. Since X, x is non-zero (and equal to
+1) only in the cylinder with base o and axis e,

/Q IXKo(x)|de < |o|diam(S2). (B.55)

Drawing the half-line D(x,e) and writing ITzu(x) as the sum of jumps be-
tween x and the face o € F that intersect D(x,e) leads to

Hzu(x) = Z Z XKo(®)(ug — ug) + Z XK,o () Ug.

KeEMocFk 0EFoxt, Mo={K}

Take the absolute value, integrate over @ € {2 and use (B.55) to deduce

[zl o) < diam(2) 30 Jol Jukc — o] + diam(2) 3 o fu|
KeMoeFk o€ Foxt

= diam () (Juls; + [ Txull 11 (50)- (B.56)

This concludes the proof in the case p = 1. The general case p > 1 follows by
applying (B.56) to @ defined as in Step 3 of the proof of Lemma B.16, and by
using (B.50) with e = p’/2. L]

B.3.2 Discrete Sobolev embeddings

Lemma B.18 (Discrete embedding of W11({2), with zero average, in
LY (2)). Let T be a polytopal mesh of 2 in the sense of Definition 7.2, and
recall the notations (7.7). There exists Csg depending only on 2 and d such
that

Yu € Xg, Hﬂfzu — TTUHL“ < Cs |U|¢71 s (B57)

(£2)

where 1* = 7% and TIsu = ﬁ Jo Hzu(z)de.

Proof. The Sobolev embedding and the Poincaré-Wirtinger inequality show
that [w — 0|11+ (o) < Cs1[|[Vw|| 1) for all w € Whi(£2), where C3; de-
pends only on §2. By approximating ITsu, strongly in L!(£2) and weakly in
BV (£2), by functions in W11(£2), the “mean” Nirenberg inequality can be
deduced:

HHSU_HTUHLI*(Q) S 031 |HTU‘BV(.Q) 5 (B58)

where

ooy o =50 { [ wl@hivp(e)iz : € CX(@R el o <1}
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Write (B.23) with v = u. The integral term on 92 can be dropped since ¢
vanishes on the boundary. Reason then as in (B.29) in Lemma B.10 to obtain
Hsu|gy (o) < Vd |ul ;, and the conclusion follows from (B.58). L]

Lemma B.19 (Discrete embedding of W!?((2), with zero average, in
LP"(2), 1 < p < d). Let T be a polytopal mesh of 2 in the sense of Definition
7.2. Let p € (1,d) and ¢ > 05 + n<. Then, there exists Csa, depending only
on §2, d, p and o, such that

Vu € X,

|HTU - TTU'HLP* (2) S 032 |u|‘3’p )

where p* = % and Izu = ﬁ Jo Hzu(z)de.

Proof. Let v € Xsg. Upon translating by IIsu all the values of v =
((ur)Kem; (uo)ser), which does not change |uls ,, we can assume that
IIzu = 0. In the following, A < B means that A < MB with M depend-
ing only on {2, d, p and p.

Let oo > 1 and consider @ = ((Jux|*)kem, (Us)oecr) Wwith

1 .
Sl +u]®) i My = {K, L},
Uy = lugl®  if M, = {K).

Ug =

Since |IIzu] < ﬁ HHTUH%“(Q)’ Inequality (B.57) applied to @ yields

| Tullonr gy = sl oo
< Hnia_ Hga‘ + 0|7 [TTz4l
L (£2)
S il + 1 HsullFag) - (B.59)

The definition of &, ensures that the terms in [uls ; corresponding to bound-
ary faces vanish. Hence, for any r € (1, 00), a similar reasoning as in the proof
of Lemma B.11 (passage from (B.31) to (B.33)) shows that

il S Juls, [[1Tul* | g -

Plugging this estimate into (B.59) and taking the power 1/« (thanks to the
power-of-sums inequality (C.13)) yields

i
zr/(_Q) + ||HTUJ||L°‘(Q) : (B6O)

L —
[ Hzul| pore ) S [ulg, || [Tzl

Take r > 1 such that (a«—1)r" = al* (since a1*/(a—1) > 1* > 1, this defines
r’ € (1,00) and thus r € (1,00)). This choice gives

1 1
=l |5 ) = Ml e ) -
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Use Young’s inequality (C.9) with exponent «, and e small enough (depending
only on the constants hidden in <), to deduce from (B.60) that

[HTzull pors (o) S lulg,, + [ Hzull po(g) -
If r <p, that is if 7’ = % > p’, then (B.36) shows that
[ Tsull e (o) S lulsp, + [ Hzul| pa g - (B.61)

The estimate (B.57) and the fact that Ilzu = 0 give HH‘IUHLl*(Q) N |U\r§,1 S
|ulg - An induction based on (B.61) applied with a = 17, (1%)2, ...then

establishes that, for any k € N such that ((11:))% >,

||H$’U/||L(1*)k+1(9) S |u|‘3f,p' (B62)

*\k+1
Select k as the largest integer such that ((11*))7k_1 > p’. Such a k exists since

k = 0 satisfies this inequality and, as k — oo, ((11:))7,:: = 1*=d > p (we

have p < d). Let oo = ’1’—: > 1 and assume that

al* 1*p* ,
B > B.63
o — 1 p* _ 1* - p ( )
and .
p x
=77 < (1%)F+L, (B.64)

Inequality (B.63) allows us to apply (B.61), which gives
HH‘IUHLP*(Q) S |u|¢,p + ||H$U||La(9) :

By (B.64), [[zul fa(n) ||H‘IU||L(1*)I¢+1(Q and (B.62) then concludes the

)

proof. X
It remains to check (B.63) and (B.64). We have p = dcffp* so (B.63) boils
down to pl*:p; > dp*ipdlp*, that is to say 1*(dp* — d — p*) > d(p* — 1*), or

1*(d — 1)p* > dp*. This last relation is obvious since 1*(d — 1) = d (we thus
even have equality in (B.63)). To check (B.64), we start by writing that, by

definition of , (1(*1;,3% < p', which can be recast as 1—% = z% < 1%—(1*)%“
Butp%:%—landl%zl—é7so
Lo, 1 11
N A AN D
which is equivalent to (B.64). L]

The proof of the following lemma is similar to the proof of Lemma B.12, using
Lemmas B.18 and B.19.
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Lemma B.20 (Discrete embedding of W1?({2), with zero average, in
Li(£2), for some g > p). Let p € [1,400), ¥ be a polytopal mesh of §2 in the
sense of Definition 7.2, and ¢ > O< 4+ n<. Then, there exists ¢ > p, depending
only on d and p, and there exists Css, depending only on (2, d, p and g, such
that

Yu € X« s HHTU — HTuHLq(Q) < Cs3 |U‘T7p R

where Hzu = ﬁ Jo Hzu(x)da.

If p < d we can take ¢ = p* = dpfdp and, if p > d, we can take any q < +o0.

B.3.3 Compactness in LP(2)

Lemma B.21. Let T be a polytopal mesh of {2 in the sense of Definition 7.2,
and o > 0z + nx. Then, there exists Csy, depending only on {2 and g, such
that

Yu € X, Vh € Rd, ||Hf;u( + h) — H{fu”Ll(Rd) < |h|C’34(|u|5)1 + ‘H‘IUD,
where IIsu has been extended by 0 outside 2, and Isu = ﬁ fQ Hzu(x)dx.

PI‘OOf. ertlng (B23) Wlth v =U yields’ for any ‘-P c C((:?O (Rd,Rd) SuCh that
|l oo (raya < 1 (s0 that o] < Vd),

Hzu(x)dive(xz)de
Rd
<VA Y Y lollu —ual + Vi [ [Tru(@)ds(a)
KeMoeFk o8
< \/E|u|‘z’1 + \/ZlHTTUHLl(aQ) :
Hence,

||HTu||BV(]R‘l) < \/g|“‘s,1 +Vd ||T‘IU||L1(69) :

Lemma B.16 and B.18 then provide C35 depending only on {2, d and g such
that

||HTUHBV(Rd) < C35(|U|1',1 + [zul).
The inequality (B.40) concludes the proof. [

As for Dirichlet boundary conditions, the following compactness result is an
immediate consequence of Lemmas B.20 and B.21.

Lemma B.22 (Discrete Rellich theorem from a bound on the mean
value). Let (T,,)men be a sequence of polytopal meshes of £2 and p € [1,+00).
Assume that sup,,en(fz,, + nz,.) < +oo. Then, for any u, € Xz, such
that (lumls, ,)men and ([ Hz, um(x)dz)nen are bounded, the sequence

(Ilz,, Um)men is relatively compact in LP(£2).
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B.4 Discrete functional analysis for mixed boundary
condition

We consider here that Assumption (7.2) on §2 and Assumption (2.52) on Iy
and I, hold. If ¥ is a polytopal mesh of {2 in the sense of Definition 7.2, we
recall the notations in (7.7) and we additionally define

Xer,={veXgs: v, =0forall 0 € Feyy such that
ocnNly= @},
(B.65)
Xz.or, ={ve Xz : v, =0for all 0 € Fey, such that
oNIly#0}.

Note that Xs = Xz o, © Xz r,, and that Tsu = 0 on Iy for any u €
Xz or,-

B.4.1 Discrete Sobolev embeddings

Discrete functional analysis tools for mixed conditions are a consequence of
the two following lemmas, and of the techniques used in the previous sections
for Dirichlet and Neumann boundary conditions.

Lemma B.23. Let {2 be _a bounded connected open subset of R? with Lipschitz
boundary and let A C Q be a set of non-zero measure. Then, there exists
Csg dependmg only on 2 and A such that, for all w € BV(Q) satisfying
Jyw(x)de =0,

Hw”p*(ﬁ) < Cs6 |w|BV(§) ; (B.66)

where we recall that
|w] gy () = sup {/ﬁ w(z)dive(z)de : ¢ € CF(2,RY), eIl oo (30 < 1} .

Proof. Let us start by recalling the Sobolev embedding, which can be ob-
tained by passing to the limit on the similar embedding in W11(£2): there
exists C37 depending only on {2 such that

Vw € BV ({2 ) ||w||L1*(_Q) < C37(|w|BV(Q) + ||w||L1(Q))

Estimate (B.66) is proved if we establish the following Poincaré’s inequality:
there exists Csg depending only on 2 and A such that, for any w € BV (£2)
satisfying [, w(x)dz = 0,

The proof of (B.67) is done by way of contradiction, using a classical
compactness technique. If this inequality does not hold, there exists a se-
quence (wp)men in BV(£2) such that [, wy(z)de = 0 for all m and
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||wm||L1(!~2) > m|wm|BV(§). Dividing throughout by meHLl(ﬁ) we can
assume that meHLl(fz) = 1 for all m. Then (w.,)men is bounded in
LI(Q) N BV(Q) and therefore, up to a subsequence, converges strongly in
LY(£2) to some w such that \|w||L1(ﬁ) =1 As |j:Um|BV(§) < 1/m — 0, we
have Vw,, — 0 in the sense of distributions on (2 and therefore Vw = 0 on

. Since (2 is connected, this shows that w is constant on !2 equal to ﬁ

since its norm in L*(£2) is equal to 1.

But, passing to the limit in [, wy,(z)dz = 0 gives 0 = [, w(x)dz = :g'l,
which is a contradiction with the fact that A has a non-zero measure. Hence
(B.67) holds and so does (B.66). m

Under Assumptions (7.2) and (2.52), it is easy to construct a bounded con-
nected open set 2 with Lipschitz boundary which contains (2, such that
A= .Q\.Q has a non-zero measure and A N 2 C I;. This can for example
be done by gluing to §2 a small hypercube A along a planar subset of Iy, see
Figure B.3. 2 and A depend only on {2 and ;.

A

?

Fig. B.3. Extension of f2.

Lemma B.24. Under Assumptions (7.2) and (2.52), let 2 be constructed as
above. Take T a_polytopal mesh of §2 in the sense of Definition 7.2 and, if
u € Xp, define llzu € Ll(Q) as the extension of Ilsu by 0 outside {2. Then

Yu € XT7Q7[‘n s

HDU‘BV(?)) < \/a|u|¢’1. (B.68)
Proof. Let ¢ € C2°(£2,R?) be such that ||QO||LOC(§) < 1. We have

ﬁﬁgu(w)divcp(m)daz:/ Hzu(x)dive(z)de.
7] 7

Since u, = 0 whenever o € Fuy is such that o N Iy # 0, and since ¢ = 0 on
Of\I'y, the boundary integral in (B.23) written for v = u vanishes, and the
same computations as in (B.29) lead to (B.68). L]
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The following Sobolev embeddings are a straitghforward consequence of
Lemma B.23 and B.24.

Lemma B.25 (Discrete embedding of W' (£2) in L' (£2), mixed BCs).
Under Assumptions (7.2) and (2.52), let ¥ be a polytopal mesh of §2 in the
sense of Definition 7.2. Then, there exists Csg depending only on 2 and Iy
such that

Vu € Xz o, , [ Hzul g1 (o) < Csolulg ;-

The following results can be then proved from Lemma B.25 by using the same
trick as in the proof of Lemma B.11 and Lemma B.12.

Lemma B.26 (Discrete embedding of W'?(£2) in L?" (£2), mixed BCs,
p € (1,d)). Under Assumptions (7.2) and (2.52), let T be a polytopal mesh
of £2 in the sense of Definition 7.2, p € (1,d) and n > n<. Then, there exists
Cyo depending only on §2, I'y and n such that

Vue Xz or,, HHTUHLP* (2) < Cyo |u|‘3j,p7

where p* = ;i—pp.

Lemma B.27 (Discrete embedding of W1?({2) in L4({2) for some ¢ >
p, mixed BCs). Under Assumptions (7.2) and (2.52), let ¥ be a polytopal
mesh of (2 in the sense of Definition 7.2, p € [1,400) and n > nz. Then,
there exists ¢ > p, depending only on p and d, and Cy41, depending only on (2,
d, p, I'; and n, such that

Vu € Xz o, [Hzullpeo) < Cu lulg,.

If p < d we can takeq:p*:dpfdp. If p > d, we can take any q < +00.

B.4.2 Compactness in LP(2)

Lemma B.28 (Discrete Rellich theorem, mixed BCs). Under Assump-
tions (7.2) and (2.52), let p € [1,400) and (Tm)men be a sequence of
polytopal meshes of (2. Assume that sup,,cn(fz,, + nz,,) < +oo. Then,
for any un € X<, 01, such that (lumls, ,)men is bounded, the sequence
(I, Um)men is relatively compact in LP(§2).

Proof. By Lemma B.27, the sequence (|[IIz,,umllps(g))men is bounded.
Hence, the sequence ( [, Iz, tm (€)dx)men is also bounded and Lemma B.22

m

gives the relative compactness of (ITx U )men in LP(2). ]
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Technical results

C.1 Standard notations, inequalities and relations

We gather here a few notations and standard inequalities that are used
throughout the book, sometimes implicitly.

C.1.1 Notations

For £ and n vectors in R?, & -  is the Euclidean (dot) product of £ and n,
and |£] denotes the Euclidean norm of &.
The Lebesgue measure of a subset A of R is written |A|.

C.1.2 Holder inequalities

Let (a;)ier and (b;);c; be finite families of real numbers, and let (p,p’) €
(1,00)2 be such that %—l— 1% =1 (p and p’ are conjugate exponents). Then the

Holder inequality for sums is
1 1
P p’
il il il

It is frequently used after the introduction of some non-zero real numbers
(di)ier in the product a;b;. More precisely, writing a;b; = (aidi)(%) and
applying (C.1) to this new product, we have

S Jaibi] < (Zmﬂdz—w)

i€l iel

1

bal?\
(Z | dilp’) . (C.2)

el

S =

Another frequent use is to evenly split an existing weight. If (w;);cs are non-
negative numbers, writing w;|a;b;| = (wil/p|ai\)(wi1/p |b;]) and using (C.1)
leads to
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.
P

> wilaibi| < (Zwi|ai|p) (Zwﬂbﬂp/)p : (C.3)

i€l i€l il

B =

Using both weights and the introduction of non-zero numbers, we also have

Z wila;b;| < (Z wi|az‘|p|di|p>

el i€l

1

el
(Z w, di|p’> . (C.4)

iel

=

The Holder inequalities are also valid in Lebesgue spaces over a measurable
set (X, p). For example, the equivalent of (C.1) for integrals is: if f,g: X — R
are measurable functions, then

1
ol

[ sdan= ([, f|Pdu)‘1"( Joiaran)” (©5)

In other words, ||fgll,:(x) < [Ifllzo(x) 19l 2o (x)- If X has a finite measure,
this is sometimes used with g =1 to give

[isian< ([ |fpdu)’1’u<x>5’=( /. |fpdu)’1’u<X>1—1.

A variant consists in taking ¢ > r > 1 and in applying this to |f|", instead of
f, with the exponent p = ¢/r. This leads to

/1

]

(C.6)

1_

L) S X))l paxy - (C.7)

C.1.3 Young inequality

For a,b > 0 and (p,p’) conjugate exponents, the Young inequality reads
1 1. .
ab < —af + b7 (C.8)
p p

As in the Hoélder inequality, it is standard to introduce a (usually small)
parameter when applying Young’s inequality. Taking € > 0 and writing ab =
(e1/?a)(e~1/Pb), we obtain

1 /

S L S N
abgpa +p/€p,/pb . (C.9)

C.1.4 Jensen inequality

Let A be a measurable set of R? with non-zero measure, and ¥ : R — R be
a convex function. If f is integrable on A, then the Jensen inequality states
that
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¢<i” / f(m)dw) <o J #U@)ae (C.10)

Although mostly used for integrals over subsets of R?, Jensen’s inequality is
of course also valid for sums. If w; > 0 are such that W = Ziel w; > 0, then

1 1
v (W Zwm) < Zwilp(ai). (C.11)
iel icl

C.1.5 Power of sums

The last inequality we want to mention is a simple one for powers of a sum.
If « >0 and a,b > 0, a basic estimate is

(a+b)* < 2% +29p~.

This generic inequality can be improved by looking separately at the cases
a <1 and a > 1. Using the convexity of s — s® if a > 1, we actually have
(%“’)a < %a(’ + %b(", that is

Ya>1, (a+b)* <2 ta® 4207 1>, (C.12)

If o < 1, the mapping s — (1 + s)® — s* is non-increasing and takes value 1
at s = 0. Hence, (1 + 5)* <14 s*. Applied to s = b/a, this gives

Va <1, (a+b)* <a*+ b (C.13)

This inequality is often applied with o = 1/2.

An easy generalisation of the above inequalities can be obtained for sums of
more than two terms. For example, if & > 1 and (a;);=1,... ¢ are non-negative

numbers,
1 « 1
(Z ai> <ot Za?. (C.14)
i=1 i=1

C.1.6 Discrete integration-by-parts (summation-by-parts)

Let (an)n=0,.,~ and (by)n=o,.. n be two families of real numbers. Splitting
the sum and re-indexing the first term (with j = n + 1), we have

N-1

N—-1 N—-1
Z (an+1 - an)bn = Z an+1bn - Z anby
n=0 n=0

n=0
N-1 N-1
= ) npibn — [ aobo+ D angibni1 — anby
n=0 n=0
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N-1
= Y ant1(bn — bns1) + anby — agbo.
n=0
To summarise,
N-1 N-1
Z (an+1 — an)bn = — Z an+1(bn+1 — bn) + anby — agby. (015)
n=0 n=0

The quantities a,+1 — a, and b,4+1 — b, can be seen as discrete derivatives of
(@n)n=0,....n and (by)n=o,... n. Relation (C.15) is therefore a form of discrete
integration-by-parts, with ayby and agby playing the role of the boundary
(integrated) terms.

Set, for example, by41 = 0 and let b, = bpt1 for n = 0,..., N. Applying
(C.15) to (bn)n=o,... N instead of (by,)n=o,.. N gives

N—-1
Z (an—i-l - a?L)bn+1 =
n=0
N—-1
= — Z Ant1(bny2 = bny1) — aobs
n=0
N
- - Z an(bn-i-l - bn) - aObl
n=1
N-1
— Z an(bn+1 — bn) + (lo(bl — b()) — aN(bN+1 — bN) — agb;.

n=0

In other words,

N-1 N-1
Z (an+1 — an)bn+1 = — Z an(bn+1 - bn) + anby — agbop. (016)
n=0 n=0

This is the equivalent of (C.15) with an offset of the second family (b, )n=o,... N-
By creating a convex combination of (C.15) and (C.16) we arrive at a for-
mula that is instrumental when dealing with time terms in #-schemes. If
(@n)n=0,... n is a family of numbers and v € [0,1], for alln =0,..., N — 1 we
set Tpiy = VEpy1 + (1 — v)x,. Adding up v x (C.16) and (1 — v) x (C.15)
yields

N-1 N-1
Z (ant1 — an)bpty = — Z (van + (1 = v)ant1)(bpt1 — bn) + anby — agbo.

n=0 n=0
In other words,

N-1 N-1
Z(anJr]_ — G,n)bn+y = — Z an+(1,y)(bn+1 — bn) +anby — agby. (017)

n=0 n=0
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C.2 Topological degree

The following theorem is a consequence of the theory of the topological degree
[27].

Theorem C.1 (Application of the topological degree, finite dimen-
sional case). LetV be a finite dimensional vector space onR and @ : V — V
be a continuous function. Assume that there exists a continuous function
UV x[0,1] = V satisfying:

1.w(,1) =o.

2. There exists R > 0 such that, for any (v,p) € V x [0,1], if ¥(v,p) =0
then ||v]|v # R.

3.W(-,0) is affine and the equation ¥(v,0) = 0 has a solution v € V such
that ||v]lv < R.

Then, there exists at least one v € V' such that ®(v) =0 and ||v|]|y < R.
As an easy consequence of this, we have the Brouwer fixed point theorem.

Theorem C.2 (Brouwer fixed point). Let V' be a finite dimensional vector
space on R, B a closed ball in V and F : B — B be continuous. Then F has
a fized point, i.e. there exists v € B such that F(v) = v.

Proof. Without loss of generality, we can assume that B is centred at 0
and has radius r > 0. Let 6, be the retraction of V' on B, that is 6,(v) = v
if v € B and 0,(v) = rv/|v|, if v € B. Set &(v) = v — F(0,(v)) and
U(v,t) = v —tF(0.(v)). Then & : V — V is continuous, $ = ¥(-, 1), ¥(-,0) is
affine and the equation ¥(v,0) = 0 has the unique solution v =0 € B.
Moreover, if ¥(v,t) = 0 then v = tF(0r(v)) € tB C B, and thus ||v[|;, <7 <
r + 1 =: R. Theorem C.1 then shows that #(v) = 0 has a solution in V, that
is that there exists v € V such that v = F(6,(v)). Since F' takes values in B,
v € B and thus v = F(v). m

C.3 Weak and strong convergences in integrals

The following lemma is used throughout the book.

Lemma C.3 (Weak-strong convergence). Let p € [1,00) and p’ = 1’%}1

be the conjugate exponent of p. Let (X,u) be a measured space. If fr, — f
strongly in LP(X)? and g, — g weakly in LP (X)?, then

/an-gndu—>/xf-gdu~
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Proof. By Banach-Steinhaus theorem, (g,)nen is bounded, say by C, in
LP (X)?. We therefore write, using Holder’s inequality,

‘/an-gndu— /Xf-gdu

= ’/X(fn—f)-gndu+/Xf~(gn—9)du‘

A

< W = Flsvie Mol s + | [ 1+ o =

< Ol Pliirys +| [+ (0o = .

The first term converges to 0 by strong convergence of ( f, )nen, and the second
term tends to 0 by weak convergence of (g, )nen- [

We now state a lemma that is particularly useful to pass to the limit in terms
involving solution-dependent diffusion tensors.

Lemma C.4 (Non-linear strong convergence). Let (X, u) be a measure
space and A : X x R — My4(R) be a Caratheodory function (ie. A(x,-) is
continuous for a.e. x € X, and A(-,s) is measurable for all s € R), that is
bounded over X x R. Assume that, as n — oo, u, — u in L'(X) and that
H, — H in LP(X)%, for some p € [1,00). Then, A(-,u,)H, — A(-,u)H in
LP(X)1.

Proof. Up to a subsequence, we can assume that u,, — u a.e. on X. Then, by
continuity of A with respect to its second argument, A(-, u,) — A(-,u) a.e. on
X. Still extracting a subsequence, we have H,, — H a.e. on X, and |H,| <g
a.e. on X for some fixed g € LP(X).

Then, A(-,u,)Hy, — A(-,u)H a.e. on X and, denoting by C' an upper bound of
Ay |AG un)Hy| < C|H,| < Cg € LP(X). The dominated convergence theorem
therefore gives A(-, u,)H, — A(-,u)H in LP(X)4.

This convergence is established up to a subsequence, but since the reasoning
can be made starting from any subsequence of (A(-, u,)Hy)nen and since the
limit is unique, this shows that the whole sequence converges. ]

C.4 Minty trick and convexity inequality

The next lemma, whose proof is based on a technique called in the literature
as the Minty trick, is used to identify limits of non-linear functions of weakly
convergent sequences.

Lemma C.5 (Minty trick). Let 8, € C°(R) be two non-decreasing func-
tions such that (0) = ¢(0) = 0, B+ is strictly increasing, and limg_, 1o (8 +
¢)(s) = +oo. Let (X, ) be a measurable set and let (wy,)nen C L*(X) be such
that
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(i) (B(wn))nen C L%(X) and there exists B € L?(X) such that B(w,) — B
weakly in L*(X) as n — oo;
(ii) (C(wn))nen C L*(X) and there exists ( € L*(X) such that ((wy,) — (
weakly in L*(X) as n — oo;
(iii) there holds:

lim inf n n)du < BCdu. C.18
%’{ggk/xﬂ(w)g(w)ﬂ</x’5<ﬂ ( )
Then,

B = B(w) and { = ((w) a.e. in X, (C.19)
where

_ <ﬂ+<)‘1 <6+<)

L2 2 )
Proof. Notice first that the assumptions on 8 and ¢ ensure that % R—=R
is an homeomorphism. Hence, w is well defined. Since 3(0) = ¢(0) = 0, the
two functions o (%)_1 and (o (%)_1 have the same sign (positive on R,
negative on R™) and their sum is equal to 2Id. The absolute value of each one

of them is therefore bounded above by 2|Id|, and the property % € L*(X)
shows that

- oo (22) ] (255
o= [eo (225 ] (255)

both belong to L?(X). By monotony of 3 and (,

/X [B(wm) — Bw)] [C(wnm) — ¢(w)]dp > 0.

Develop this relation and use (C.18) and the weak convergences of 8(w,,) and
¢(wy,) to take the inferior limit as m — oco. This gives

/X [F - B(w)] [T - (w)] du > 0. (C.20)
With w defined as in the lemma,

BT _ Blw)+((w)
2 2 ’

(C.21)

Hence, S(w E Cq (
this leads to

v

) and ((w) = @— (%) (w). Used in (C.20),

= 2

L (e
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Therefore, % = w a.e. in X and (C.19) follows by adding and sub-

tracting this relation to/from (C.21). ]

The proof of this lemma is classical, and only given for the convenience of the
reader.

Lemma C.6 (Weak Fatou for convex functions). Let I be an interval of
R and H : I — [0,+00] be a convex lower semi-continuous function. Denote
by L2(£2;1) the convex set of functions in L?(£2) with values in I. Let v €
L2(82;1) and (vim)men be a sequence of functions in L*(£2; 1) which converges
weakly to v in L%(£2). Then,

/ H(v(x))de < liminf [ H (v, (x))de.

Q m—0o0 .Q

Proof.

Let @ : L*(£2;1) — [0,00] be defined by &(w) = [, H(w(z))dz. If (wk)ren
converges strongly to w in L?(£2; 1) then, up to a subsequence, w;, — w a.e.
on {2. H being lower semi-continuous, H(w) < liminf,_, . H(wy) a.e. on (2.
Since H > 0, Fatou’s lemma then show that @(w) < liminfy_,cc P(wy).
Hence, @ is lower semi-continuous for the strong topology of L?(£2;1). Since
@ (as H) is convex, we deduce that this lower semi-continuity property is also
valid for the weak topology of L2(£2; 1), see [42]. The result of the lemma is
just the translation of this weak lower semi-continuity of &. ]
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