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Abstract

This work proposes a distributed power allocation scheme for maximizing energy efficiency in the

uplink of OFDMA-based HetNets where a macro-tier is augmented with small cell access points. Each

user equipment (UE) in the network is modeled as a rational agent that engages in a non-cooperative

game and allocates its available transmit power over the set of assigned subcarriers to maximize its

individual utility (defined as the user’s throughput per Watt of transmit power) subject to a target

rate requirement. In this framework, the relevant solution concept is that of Debreu equilibrium, a

generalization of the concept of Nash equilibrium. Using techniques from fractional programming, we

provide a characterization of equilibrial power allocation profiles. In particular, Debreu equilibria are

found to be the fixed points of a water-filling best response operator whose water level is a function

of rate constraints and circuit power. Moreover, we also describe a set of sufficient conditions for the

existence and uniqueness of Debreu equilibria exploiting the contraction properties of the best response

operator. This analysis provides the necessary tools to derive a power allocation scheme that steers

the network to equilibrium in an iterative and distributed manner without the need for any centralized

processing. Numerical simulations are used to validate the analysis and assess the performance of the

proposed algorithm as a function of the system parameters.
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I. INTRODUCTION

Owing to the prolific spread of Internet-enabled mobile devices and the ever-growing volume

of mobile communication calls, the biggest challenge in the wireless industry today is to meet

the soaring demand for wireless broadband required to ensure consistent quality of service (QoS)

in a network. Rising to this challenge means increasing the network capacity by a thousandfold

over the next few years [1], but the resulting power consumption and energy-related pollution

are expected to give rise to major societal, economic and environmental issues that would

render this growth unsustainable [2]. Therefore, the information and communications technology

(ICT) industry is faced with a formidable mission: cellular network capacity must be increased

significantly in order to accommodate higher data rates, but this task must be accomplished

under an extremely tight energy budget.

A promising way out of this gridlock is the small-cell (SC) network paradigm which builds

on the premise of shrinking wireless cell sizes in order to bring user equipment (UE) and their

serving stations closer to one another. From an operational standpoint, SC networks can be

integrated seamlessly into existing macro-cellular networks: the latter ensure wide-area coverage

and mobility support, while the former carry most of the generated data traffic [3].

Albeit promising, the deployment of this kind of networks, commonly referred to as hetero-

geneous networks (HetNets), poses several technical challenges mainly because different SCs

are likely to be connected over unreliable infrastructures with widely varying features – such as

error rate, outage, delay, and/or capacity specifications. Accordingly, the inherently heterogeneous

nature of these networks calls for flexible and decentralized resource allocation strategies that

rely only on local channel state information (CSI) and require minimal information exchange

between network users and/or access points/base stations. This framework is commonly referred

to as distributed optimization, and it represents a crucial aspect of scalable and efficient network

operation.

An established theoretical tool for problems of this kind is provided by the theory of non-

cooperative games [4]. Among the early contributions in this area, [5, 6] investigated the rate

maximization problem for autonomous digital subscriber lines based on competitive optimality

criteria. In the spirit of these works, a vast corpus of literature has since focused on developing

power control techniques for unilateral spectral efficiency maximization subject to individual
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power constraints. For instance, [7, 8] proposed a game-theoretic approach to energy-efficient

power control in multi-carrier code division multiple access (CDMA) systems, [9–12] investi-

gated the problem of distributed power control in multi-user multiple-input and multiple-output

(MIMO) systems, [13, 14] studied the interference relay channel, while two-tier CDMA networks

were examined in [15]. More recently, the authors of [16] used a variational inequality (VI)

framework to model and analyze the competitive spectral efficiency maximization problem. The

analogy between Nash equilibria and VIs was subsequently exploited in [17] to design distributed

power control algorithms for spectral efficiency maximization under interference temperature

constraints in a cognitive radio context.

Distributed power allocation policies as above have the important advantage of avoiding

the waste of energy associated with centralized algorithms requiring considerable information

exchange (and, hence, transmissions) between the users and/or the network administrator [16].

On the other hand, the users’ aggressive attitude towards interference from other users can lead to

a cascade of power increases at the UE level, thereby leading to battery depletion and inefficient

energy use. Consequently, solutions that focus exclusively on spectral efficiency maximization

are not aligned with energy-efficiency requirements [18, 19] – which, as we mentioned above,

are crucial for the deployment and operation of HetNets.

A. Summary of contributions

Our main goal in this paper is the analysis and design of energy-efficient power allocation

policies in a HetNet setting where SC networks coexist with macro-tier cellular systems based on

orthogonal frequency-division multiple access (OFDMA) technology. In particular, focusing on

the uplink case, we propose a game-theoretic framework where each UE adjusts the allocation

of its transmit power (over the available subcarriers) so as to unilaterally maximize its individual

link utility subject to a minimum rate requirement. Specifically, each user’s energy-aware utility

function is defined as the achieved throughput per unit power, accounting for both the power

required for data transmission and that required by the circuit components of each UE (such as

amplifiers, mixer, oscillator, and filters) [20–22].

Due to each user’s rate constraints, the resulting game departs from the classical framework

put forth by Nash [23] and gives rise to a Debreu-type game [24] where the actions available to

each UE depend on the transmit power profile of all other users in the network. In this setting,
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the relevant solution concept is that of a Debreu equilibrium (DE) [24] – also known as a

generalized Nash equilibrium (GNE) [25]. Drawing on fractional programming techniques [26],

we characterize the system’s Debreu equilibria as fixed points of a water-filling operator whose

water level is a function of the users’ minimum rate constraints and circuit power [22]. This

characterization is then used to provide sufficient conditions for DE uniqueness and to derive

a distributed power allocation algorithm that allows the network to converge to equilibrium

under minimal information assumptions. The performance of the proposed solution is then

validated by means of extensive numerical simulations modeling a HetNet where a macro-tier

is augmented with a certain number of low range small-cell access points (SCAs). As it turns

out, the proposed solution represents a scalable and flexible technique to meet the ambitious

goals of 5G communications [27], such as extremely high area spectral efficiency (ASE) (more

than 500 b/s/Hz/km2) with a reasonable amount of physical resources (bandwidth and power)

and complexity at the network level (number of SCs, signal processing burden, and number of

transmit and receive antennas).

Our work builds on the game-theoretic analysis proposed in [28] where a group of players

aims at maximizing their individual energy efficiency (EE) (measured in bits per Watt of transmit

power) subject to each user’s power constraints. Despite this similarity, the analysis of [28]

does not account for minimum rate requirements, thus the resulting game-theoretic model is

a standard Nash game with no QoS guarantees – in particular, the users’ rates at equilibrium

could be fairly low. Incorporating QoS requirements changes the setting drastically and takes

us beyond the standard Nash framework because a user’s admissible power allocation policy

depends crucially on the transmit powers of all other users. The energy-efficient framework

proposed in this paper represents a generalization of the power minimization under minimum-

rate constraints investigated in [29], which is a special case that occurs when the minimum

rates are achieved with equality. Preliminary versions of our results appeared in the conference

paper [30]: in contrast to this earlier paper, we provide here a complete equilibrium analysis and

characterization along with sufficient conditions that guarantee the convergence of the system to

a stable equilibrium state.
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B. Paper outline and notation

The remainder of this paper is organized as follows. In Section II, we introduce the system

model and the EE maximization problem with minimum rate constraints. In Section III, we

first formulate the non-cooperative game and then study the existence and uniqueness of Debreu

equilibria. Section IV presents an iterative and distributed algorithm to reach the equilibrium

point, whereas Section V reports numerical results that are used to assess the performance of

the proposed solution and to make comparisons with alternatives. Conclusions and perspectives

are presented in Section VI.

Matrices and vectors are denoted by bold letters, IL, 0L, and 1L are the L×L identity matrix,

the L×1 all-zero column vector, and the L×1 all-one column vector, respectively, and ‖·‖, (·)T

and (·)H denote Euclidean norm of the enclosed vector, transposition and Hermitian conjugation

respectively. The notation (x)+ stands for max{0, x} whereas W (·) denotes the Lambert W

function [31], defined as the multiple-branch solution of the equation z = W (z) eW(z), z ∈ C.

1X denotes the indicator function such that 1X = 1 if X is true, and 0 elsewhere. Finally, if Ak,

k = 1, . . . , K, is a finite family of sets, and ak ∈ Ak, we will use the notation (ak; a−k) ∈
∏

k Ak

as shorthand for the profile (a1, . . . , ak, . . . , aK), and |Ak| to denote its cardinality.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider the uplink of a slowly-varying HetNet where S low-range SCAs are adjoined to

a macro-tier cell operating in an OFDMA-based open-access licensed spectrum. For notational

compactness, we will reserve the index s = 0 for the macrocell base station (MBS), so that

S = {0, 1, . . . , S} represents the set of HetNet receiving stations. The s-th cell uses a set of

orthogonal subcarriers to serve the Ks user equipment (UE) falling within its coverage radius

ρs. For simplicity, we assume that the same set of subcarriers N = {1, . . . , N} is used by

both tiers. We also assume that N is assigned by the network and cannot be controlled by

the cell operators. Each cell access point (AP) is further equipped with Ms receiving antennas,

whereas a single antenna is employed at the UE to keep the complexity of the front-end limited.

The framework described in the paper can be generalized to the case of a multicellular HetNet

scenario (including MIMO configurations) in a straightforward manner.



6

Let hkj,n ∈ CMψ(k)×1 denote the uplink channel vector with entries [hkj,n]m representing the

(frequency) channel gains over subcarrier n from the j-th UE to the m-th receive antenna of

the serving AP ψ(k) of user k, where ψ(k) : K 7→ S is a generic function that assigns each

user k its serving AP.1 In the following, K = {1, . . . , K} and K =
∑S

s=0Ks denote the set and

the number of UE in the network respectively, with Ks representing the number of UE in the

s-th cell: if s = 0, the UE will be termed macrocell user equipment (MUE), and small-cell user

equipment (SUE) otherwise, although there is no substantial distinction among the two classes

of users (this is clarified further in the rest of this paper). We also assume that the channels

remain constant within a reasonable time interval (for more quantitative details, see Section V).

We let zj,n denote the data symbol of UE j over subcarrier n and write pj,n for its corresponding

power. The vector xk,n ∈ CMψ(k)×1 collecting the samples received over subcarrier n at the AP

serving the k-th UE can then be written as

xk,n =
√
pk,nhkk,nzk,n + Ik,n +wk,n (1)

where wk,n ∼ CN (0M
ψ(k)

, σ2IMψ(k)
) is thermal noise and

Ik,n =

K∑

j=1,j 6=k

√
pj,nhkj,nzj,n (2)

accounts for the multiple access interference (MAI) experienced by user k over subcarrier n.

Note that Ik,n accounts for both intra-cell interference (generated by other UE served by the

same AP) and inter-cell interference (from UE served by all other APs). To keep the complexity

at a tolerable level, a simple linear detection scheme is employed for data detection, although a

generalization to nonlinear detectors is straightforward. This means that the entries of xk,n are

linearly combined to form yk,n = gH
k,nxk,n where gk,n is the vector employed for recovering the

data transmitted by user k over subcarrier n. Then, the signal-to-interference-plus-noise ratio

(SINR) over the n-th subcarrier that is achieved by user k at its serving AP takes the form:

γk,n = µk,n(p−k,n)pk,n (3)

1For a more detailed description of this assignment mapping, see Section V.
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where p−k,n = (p1,n, . . . , pk−1,n, pk+1,n, . . . , pK,n)
T denotes the power profile of all users except

k over subcarrier n, and

µk,n(p−k,n) =

∣∣gH
k,nhkk,n

∣∣2

‖gk,n‖2 σ2 +
∑K

j=1,j 6=k

∣∣gH
k,nhkj,n

∣∣2 pj,n
. (4)

Using (3), the achievable rate (normalized to the subcarrier bandwidth, and thus measured in

b/s/Hz) of the k-th user will be:

rk(p) =
1

N

N∑

n=1

log2 (1 + γk,n) (5)

where pk = (pk,1, . . . , pk,N) denotes the power profile of user k over all subcarriers n = 1, . . . , N ,

and p = (p1, . . . ,pK) ∈ RK×N
+ is the corresponding power profile of all users (obviously,

pk,n = 0 if user k is not transmitting over subcarrier n). To simplify notation, the argument of

µk,n and rk will be suppressed in what follows.

B. Problem Formulation

As mentioned in Section I, energy-efficient network design must take into account the energy

consumption incurred by each UE. To that end, note that, in addition to the radiated powers

pk at the output of the radio-frequency front-end, each terminal k also incurs circuit power

consumption during transmission, mostly because of power dissipated at the UE signal amplifier

[20, 22, 32]. Therefore, the overall power consumption PT,k of the k-th UE will be given by

PT,k = pc,k + Pk = pc,k +

N∑

n=1

pk,n, (6)

where Pk =
∑N

n=1 pk,n is the transmitted power of user k over the entire spectrum, while pc,k

represents the average power consumed by the device electronics of the k-th UE (assumed for

simplicity to be independent of the transmission state). Following [22, 33], the energy efficiency

of the link can then be measured (in b/J/Hz) by the utility function

uk(p) =
rk
PT,k

=
N−1

∑N
n=1 log2 (1 + µk,npk,n)

pc,k +
∑N

n=1 pk,n
(7)

where the dependence on the transmit power vectors of all other users is subsumed in the gains

µk = {µk,n}Nn=1 of (4). Accordingly, in data-oriented wireless networks, QoS requirements take

the form rk ≥ θk, where θk is the minimum rate threshold required by user k.
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Fig. 1. Normalized utility as a function of the normalized transmit powers (N = 1, θk = 2 b/s/Hz).

To summarize, the design of an energy-efficient resource allocation scheme which encompasses

both subcarrier allocation and power control amounts to solving the following multi-agent, multi-

objective optimization problem:

maximize uk(p), (8a)

subject to N−1
∑N

n=1 log2 (1 + µk,npk,n) ≥ θk, (8b)
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Fig. 2. Normalized utility as a function of the normalized transmit powers (N = 2, θk = 2 b/s/Hz).

where uk(p) is the energy efficiency utility function (7) and (8b) represents the normalized

rate requirement. Thus, unlike other OFDMA resource allocation problems (such as [34, 35]),

subcarrier selection and power loading are tackled in a joint manner. Furthermore, inter- and

intra-cell interference between UE transforms (8) into a game where each UE k ∈ K aims

at unilaterally maximizing its individual link energy-efficiency via an optimal choice of power



10

allocation vector pk – and, in so doing, obviously affects the possible choices of all other UE

in the network.

Remark 1. To visualize the impact of the rate constraints (8b) on the optimization problem (8),

Figs. 1 and 2 depict the graph of the utility function (7) of user k (normalized by pc,k) as

a function of the transmit powers pk = {pk,n}Nn=1 for a fixed interference power vector p−k

(and hence keeping {µk,n(p−k)}Nn=1 fixed). For the sake of visualization, Fig. 1 depicts only

N = 1 subcarrier. The dashed black line depicts the unconstrained utility (7), whereas the solid

black line reports uk(p) for the values of pk,1 such that (8b) holds, assuming θk = 2 b/s/Hz (for

convenience, also the rate rk is reported with red lines): µk,1 = 1/pc,k in Fig. 1(a), whereas

µk,1 = 10/pc,k in Fig. 1(b). As can be seen, the power level that maximizes uk(p) (red dot)

is on the left boundary of the feasible power set of Fig. 1(a): in this case, maximizing uk(p)

corresponds to minimizing the power subject to rate constraints, e.g., as considered in [29]. In

general however, the maximization of energy efficiency produces a different optimal point, as

reported in Fig. 1(b) where the focal user can exploit better channel conditions experienced to

increase its utility. This formulation is particularly appealing for next-generation wireless systems

[27], as it captures the tradeoff between obtaining a satisfactory spectral efficiency and saving

as much energy as possible [19, 22, 33]. This behavior is analogous to what can be observed

in Fig. 2 where N = 2 and θk = 2 b/s/Hz. When the channel conditions are not favorable (in

Fig. 2(a), µk · pc,k = (1, 2)), the optimal power allocation pk/pc,k = (1.83, 2.33) lies on the

contour of the (normalized) utility surface that guarantees rk(p) ≥ θk (when rk(p) < θk, we

assume here uk(p) = 0 for the sake of graphical representation) – thus getting rk(p) = θk. On

the contrary, when the channel conditions are more favorable (in Fig. 2(b), µk · pc,k = (10, 20)),

the utility is maximized by pk/pc,k = (0.37, 0.42), that yields rk(p) = 2.74 b/s/Hz > θk.

Remark 2. It is easy to see that a particular set of constraints {θk}Kk=1 may affect the feasibility

of the problem in the sense that there might not exist any power allocation p ∈ RK×N
+ that

allows all constraints θk to be met simultaneously – essentially due to mutual interference in

the network, which implies a dependence between the gains µk ∀k. Necessary and sufficient

conditions that ensure the feasibility of the problem (8) in the single-carrier case N = 1 can be

found in [21]. On the other hand, analogous conditions for the general case of N > 1 subcarriers

are very difficult to obtain, and future investigations will focus on addressing this issue.
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III. GAME-THEORETIC RESOURCE ALLOCATION

A. Game-theoretic formulation of the problem

As mentioned earlier, mutual interference in the network introduces interactions among the

users that aim at optimizing their utilities (8). A natural framework for studying such strategic

inter-user interactions is offered by the theory of non-cooperative games with continuous (and

action-dependent) action sets. Thus, following Debreu [24] (see also [25]), we will formulate

the problem as a non-cooperative game G ≡ G(K,P, u) consisting of the following components:

a) The set of players of G is the set K of the network’s UE.

b) A priori, each player can choose any transmit power vector in P0
k ≡ RN

+ . However, given a

power profile p−k ∈ P0
k ≡ ∏ℓ 6=k P0

ℓ of the opponents of player k, the feasible action set of

player k in the presence of the rate requirements (8b) is:

Pk(p−k) =
{
pk ∈ P0

k : rk(p) ≥ θk
}
. (9)

c) The utility uk(pk;p−k) of player k is given by (7).

In this framework, the most widely used solution concept is a generalization of the notion of

Nash equilibrium [4], known as Debreu equilibrium (DE) [24] and sometimes also referred to

as generalized Nash equilibrium (GNE) [25]. Formally:

Definition 1. A power profile p⋆ is a Debreu equilibrium of the energy-efficiency game G if

p⋆
k ∈ Pk(p

⋆
−k) ∀k ∈ K, (10a)

and

uk(p
⋆) ≥ uk(pk;p

⋆
−k) ∀pk ∈ Pk(p

⋆
−k), k ∈ K. (10b)

The main difference between Debreu and Nash equilibria is that the latter notion posits that

players can unilaterally deviate to any feasible action, irrespective of whether this action satisfies

the (coupled) constraints imposed on a player’s action set by the actions of other players in the

game. Put differently, Nash-type deviations include any action that satisfies a player’s individual,

uncoupled constraints, even if so doing violates the player’s coupled constraints. In the case at

hand, this means that, at Nash equilibrium, users would be allowed to transmit at any power

level, even if this violates the system’s transmission rate requirements. On the other hand, these
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feasibility constraints are already ingrained in the DE concept: the only unilateral deviations

considered in (10b) are those for which the rate constraints are satisfied.2

As such, Debreu equilibria are of particular interest in the context of distributed systems

because they offer a stable solution of the game from which players (in this case, UE) have

no incentive to deviate (and thus destabilize the system) if everyone else maintains their cho-

sen power allocation profiles. Accordingly, in what follows, we investigate the existence and

characterization of DE in the energy-efficient power allocation game G, leaving the question of

uniqueness and convergence to such states to Sections III-C and IV, respectively.

B. Problem feasibility and equilibrium existence

Debreu’s original analysis [24] provides a general equilibrium existence result under the

following assumptions:

(D1) The players’ feasible action sets Pk(p−k) are nonempty, closed, convex, and contained in

some compact set Ck for all p−k ∈ P−k ≡∏ℓ 6=k Pℓ.

(D2) The sets Pk(p−k) vary continuously with p−k (in the sense that the graph of the set-valued

correspondence p−k 7→ Pk(p−k) is closed).

(D3) Each user’s payoff function uk(pk;p−k) is quasi-concave in pk for all p−k ∈ P−k.

In our setting, rk(pk;p−k) in (5) is concave in pk and unbounded from above, so Pk(p−k)

is convex and nonempty for all p−k ∈ P0
k . Moreover, Pk(p−k) varies continuously with p−k

because the constraints (8b) are themselves continuous in p−k. Finally, it is easy to show that

uk(pk;p−k) is quasi-concave in pk: since uk(pk;p−k) ≥ a if and only if

rk(pk;p−k)− a
(
pc +

∑N

n=1
pk,n

)
≥ 0, (11)

and the set defined by this inequality is convex for every p−k ∈ P−k (recall that rk is concave

in pk), quasi-concavity of uk( · ,p−k) follows.

However, even though the users’ best response sets

P⋆
k(p−k) ≡ arg max

pk∈Pk(p−k)
uk(pk;p−k) (12)

2The difference between Nash and Debreu equilibria is highlighted further if each player’s transmit power is also constrained

by a peak value (see below for more details): in this case, each user’s individual power constraints would have to be satisfied by

Nash-type deviations (and, of course, Debreu-type deviations as well), but Nash-type deviations would not necessarily satisfy

the users’ coupled QoS constraints.
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are nonempty, convex, closed and bounded for every p−k, they might (and typically do) run off

to infinity – i.e. they are not uniformly bounded. To understand this, simply consider the case

of two UE transmitting over a single channel: if one of the UE transmits at very high power,

the other UE is forced to transmit at a commensurately high power in order to meet its rate

requirement. This leads to a cascade of power increases that makes each UE’s feasible action set

Pk(p−k) (and, hence, P⋆
k(p−k) as well) escape to infinity as the other UE increases its individual

power. Formally, this means that the UE’s feasible action sets Pk(p−k) are not contained in an

enveloping bounded set Ck. Thus, Debreu’s equilibrium existence theorem [24] does not apply.

From a power control perspective, this is not surprising: as is well known [36], the problem

(8) may fail to be feasible, i.e. there may be no power profile p = (p1, . . . ,pK) such that

pk ∈ Pk(p−k) for all k. Obviously, in this case, the energy-efficiency game G does not admit

an equilibrium either. On the other hand, at a purely formal level, equilibrium existence and

problem feasibility are restored if we assume that users can transmit with infinitely high power,

i.e. each UE k ∈ K chooses its total transmit power from the compactified half-line [0,+∞].

In this extended setup, there are two points where indeterminacies may arise: first, the utility of

player k is not well-defined if pk,n = +∞ for some n; second, the rate requirement (8b) of user

k is also ill-defined if pℓ,n = +∞ for some ℓ 6= k. To address these problems, note first that the

utility function (7) of player k decreases to 0 when pk,n → +∞ for some channel n = 1, . . . , N ,

reflecting the fact that limx→+∞ x−1 log2 x = 0. Thus, by continuity, the utility of player k for

infinite transmit powers pk,n may be defined as:

uk(p) = 0 whenever pk,n = +∞ for some n. (13)

As for the rate requirements of user k, a simple exponentiation of (8b) for finite p yields the

equivalent expression:
N∏

n=1

(1 + µk,npk,n) ≥ 2Nθk (14)

or, after substituting for µk,n and rearranging:
N∏

n=1

(
‖gk,n‖2 σ2 +

K∑

j=1

∣∣gH
k,nhkj,n

∣∣2 pj,n
)

≥

2Nθk

N∏

n=1

(
‖gk,n‖2 σ2 +

∑

j 6=k

∣∣gH
k,nhkj,n

∣∣2 pj,n
)
. (15)
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Since both sides of (15) are well-defined for all pj,n ∈ [0,+∞], (15) provides a reformulation

of (8b) that remains meaningful even in the extended arithmetic of [0,+∞].

In this infinite-power framework, any power profile p⋆ = (p⋆
1, . . . ,p

⋆
K) with

∑N
n=1 p

⋆
k,n = +∞

for all k ∈ K is feasible with respect to (15). Furthermore, if player k deviates unilaterally and

starts transmitting with finite total power, its rate requirement (15) will be automatically violated

and its utility equals 0. Consequently, no player can gain a utility greater than 0 by deviating

from p⋆. This shows that the resulting infinite-power game G with utility functions and rate

requirements extended as in (13) and (15) above always admits a DE – and trivially so. However,

any such equilibrium is clearly unreasonable from a practical standpoint as it represents a cascade

of power increases that escapes to infinity as players try to meet their power constraints.

In view of the above, we could consider an alternative formulation of G in which the users’

uncoupled action sets (i.e. unadjusted for the actions of other users) are of the form

P0
k =

{
pk ∈ RN

+ : 0 ≤ pk,n ≤ pk,n,
∑

n
pk,n ≤ P k

}
(16)

for given maximum per-subcarrier transmit power levels pk,n and total power constraints P k. In

this case however, a crucial arising problem is that the resulting system could be even unilaterally

infeasible in the sense that the admissible action set Pk(p−k) of player k may be empty for

a wide range of transmit power profiles p−k of the other users in the system. Put differently,

in the presence of maximum power constraints (a case that will be discussed at the end of

Section IV), any given user may not be able to even participate in the game (in stark contrast

with the formulation (9) of G), thus exacerbating the equilibrium existence problem.

Of course, given that actual wireless devices cannot transmit at arbitrarily high levels, it is

still crucial to determine under which conditions the game G admits a realizable DE. Therefore,

in what follows, we will focus on conditions and scenarios, which guarantee that:

1) The energy-efficiency game G admits a DE with finite transmit powers (Section III-C).

2) This equilibrium is unique (Section III-C).

3) Users converge to equilibrium by following an adaptive, distributed algorithm (Section IV).

C. Equilibrium characterization and uniqueness

The goal of this section is to characterize the game’s DE by exploiting the fact that they are

the fixed points of a certain best-response mapping.
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Proposition 1. A transmit power profile p⋆ is at Debreu equilibrium if and only if its components

p⋆k,n satisfy:

p⋆k,n =

(
1

λ⋆k
− 1

µk,n

)+

(17)

where

λ⋆k = min
{
λk, λk

}
. (18)

In the above,

λk =
W
(
αk · eβk−1

)

αk
(19)

is the water level of the water-filling (WF) operator (17) when the problem (8) is solved without

the minimum-rate constraints (8b) (i.e. when θk = 0 for all k ∈ K), W (·) denotes the Lambert

W function [31], while

αk = |Sk|−1

(
pc,k −

∑

n∈Sk
µ−1
k,n

)
(20)

and

βk = |Sk|−1
∑

n∈Sk
lnµk,n (21)

where Sk = {n ∈ N : µk,n ≥ λk} denotes the subset of active subcarriers when using the

uncostrained energy-efficient formulation. Similarly:

λk =
(
2−Nθk

∏
n∈Sk µk,n

)1/|S|k (22)

is the water level of (17) when all minimum-rate constraints (8b) are met simultaneously with

equality (i.e. (8) reduces to a power minimization problem with equality rate constraints rk = θk),

and, as above, Sk =
{
n ∈ N : µk,n ≥ λk

}
denotes the subset of active subcarriers.

Proof: The proof is given in Appendix A and relies on defining the best-response mapping

and using fractional programming to characterize its fixed points.

Remark 3. Proposition 1 does not provide a way to calculate the water levels λk and λk. For an

iterative computational method, the reader is referred to Section IV.

Despite its convoluted appearance, Proposition 1 is of critical importance from both a the-

oretical and practical point of view. Indeed, it is the basic step to derive sufficient conditions
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ensuring the existence and uniqueness of the DE and also to develop a distributed and scalable

power allocation algorithm that steers the network to a stable equilibrium state.

To that end, note that the equilibrium characterization of Proposition 1 may be vacuous if the

game does not admit a DE to begin with – for instance, if the original power control problem

is not feasible. On that account, we have:

Proposition 2. The energy-efficiency game G admits a unique DE p⋆ whenever ∀k ∈ K:

K∑

j=1
j 6=k

N∑

n=1

ω2
kj,n sup

µk∈Ωk


 1

ς⋆k

∑

n∈S⋆k

ω−2
kk,n

(
ξ2k,n+ς

⋆
k−2ξk,n

)

<1 (23)

where Ωk =
∏N

n=1 (0, σ
−2ωkk,n], ς⋆k = |S⋆

k |,

ωkj,n =

∣∣gH
k,nhkj,n

∣∣2

‖gk,n‖2
(24)

and

S⋆
k =




Sk if λk ≥ λk

Sk if λk < λk

(25)

ξk,n =





µk,nλ
−1

k if λk ≤ λk and n ∈ S⋆
k

µk,n−λk
λk(1+νk)

if λk > λk and n ∈ S⋆
k

0 if n /∈ S⋆
k

(26)

with νk = − lnλk + (βk − 1).

Proof: The main steps for the proof are given in Appendices B and C; for a more detailed

version, the reader is referred to the online technical report [37].

Remark 4. Notice that these sufficient conditions are similar to the well-known conditions

ensuring the uniqueness of a Nash equilibrium in the non-cooperative rate maximization game

studied by [9] in the context of the interference channel. Intuitively, (23) means that if the

interfering connections for a user are sufficiently far away and the resulting SINR is high enough,

then the DE exists and is unique. However, these conditions include a non-trivial optimization

step w.r.t. µk that depends on the actual opponents’ power p−k. Indeed, the variables of the

problem impact the values of λ⋆k, S⋆
k and all functions ξk,n, making the conditions rather difficult
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Algorithm 1 Iterative algorithm to solve problem (8).
set t = 0

initialize pk[t] = 0N for all users k ∈ K
repeat

for k = 1 to K do

{loop over the users}
receive {γk,n[t]}Nn=1 from the serving AP

compute λk using Algorithm 2 and λk using inverse water-filling

set λ⋆k = min
{
λk, λk

}

for n = 1 to N do

{loop over the carriers}
update pk,n[t+ 1] = (1/λ⋆k − pk,n[t]/γk,n[t])

+

end for

end for

update t = t+ 1

until pk[t] = pk[t− 1] for all k ∈ K

to be exploited. To tackle this issue, the online technical report [37] provides a set of sufficient

conditions that are simpler. This is achieved by observing that the upper-bound of the supremum

term in (23) boils down to computing a function of the system parameters only. The downside

is that these simple conditions are more stringent than (23). Nevertheless, it is worth pointing

out that the users of the network are never required to compute these conditions: (23) is only

meant as a safety feature to guard against catastrophic system instabilities, to be calculated by

the network administrator based on expected network usage scenarios.

Remark 5. Since the conditions of Proposition 2 are only sufficient, DE might exist even in the

case where (23) does not hold for some k ∈ K. As a matter of fact, when (8) is feasible, the

distributed algorithm that we present in Section IV is observed to converge to a DE in all the

numerical simulations performed and for every network scenario considered.

IV. DISTRIBUTED IMPLEMENTATION
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To derive a practical procedure allowing UE to reach the DE of G in a distributed fashion

(without any distinction between SUE and MUE), we start by focusing on a specific UE k ∈ K
and assume that all other UE j 6= k have already chosen their optimal transmit powers p−k = p⋆

−k

(in a possibly asynchronous fashion). From (4), we then see that the gains µk,n(p
⋆
−k,n) needed

to implement (17) are simply

µk,n(p
⋆
−k,n) =

γk,n
pk,n

(27)

for all n ∈ N . This means that the only information that is not locally available at the k-th

UE to compute the optimal powers {p∗k,n} is the set of SINRs {γk,n} measured at the serving

SCA of the k-th UE, and which can be sent with a modest feedback rate requirement on the

return channel (a discussion on the impact of a limited feedback can be adapted to this specific

scenario from [38]).

Based on the above considerations, we can derive an iterative and fully decentralized algorithm

to be adopted by each UE k at each time step t to solve the fixed-point system of equations (17)

with a low-complexity, scalable and adaptive procedure. The pseudocode for the whole network

is summarized in Algorithm 1. Note that, in practice, each UE k ∈ K only needs to implement

the steps for only one value in the user loop (i.e., its own index), so the algorithm is suitable for

asynchronous implementation in dynamic network configurations where each UE only requires

the SINRs to be fed back by the serving SCA, without any further information on the network.

For the sake of clarity, the algorithm to compute λk for each UE k ∈ K as in (19) is reported

in Algorithm 2, whereas λk can easily be computed using standard inverse water-filling (IWF)

methods [26]. Note that, although (19) is derived analytically in closed form and can be computed

directly, it is still appealing to use the iterative procedure outlined in Algorithm 2, which takes

advantage of the Dinkelbach approach [39] based on Newton’s method. The latter is known to

converge superlinearly for convex nonlinear fractional programming problems [39], and leads

to substantial computational savings compared to evaluating the Lambert W function directly.

Interestingly, the Dinkelbach algorithm can also be properly modified to address the computation

of the IWF-based quantity λk, thus saving the complexity required for sorting the coefficients

{µk,n}Nn=1 in a descending order [40]. For the sake of brevity, Algorithm 2 makes use of some

functions that are introduced in the proof of Proposition 1 (Appendix A). For future reference,

throughout the simulations reported in Section V, the convergence tolerance is set to ε = 10−5,
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Algorithm 2 Iterative algorithm to compute λk as in (19).
set a tolerance ε≪ 1

{initialization of the Dinkelbach method:}
repeat

select a random λk ∈ R

for n = 1 to N do

set pk,n = (1/λk − pk,n[t]/γk,n[t])
+

end for

compute ϕ(pk) and χ(pk) using (31) (see Appendix A)

set Φ(λk) = ϕ(pk)− λkχ(pk)

until Φ(λk) ≥ 0

{Dinkelbach method:}
while Φ(λk) ≥ ε do

set λk = ϕ(pk)/χ(pk)

for n = 1 to N do

set pk,n = (1/λk − pk,n[t]/γk,n[t])
+

end for

update ϕ(pk) and χ(pk) using (31)

set Φ(λk) = ϕ(pk)− λkχ(pk)

end while

and we check whether the end state of the algorithm is a DE by testing the characterization of

Proposition 1.

Proposition 3. The iterates of Algorithm 1 converge to Debreu equilibrium whenever (23) holds.

Proof: The convergence of Algorithm 1 to an equilibrium point follows from the contraction

properties of the best-response mapping investigated in Section III-C.

Remark 6. Although the contraction properties of the best-response mapping are contingent on

the sufficient conditions of Proposition 2, Algorithm 1 is still seen to converge to a DE of

G, provided that the problem is feasible to begin with (see the next section for a numerical
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assessment via extensive numerical simulations).

Remark 7. In the theoretical analysis of Section III (as well as in Algorithm 1), we consider

neither total maximum power constraints P k, such that, Pk ≤ P k, nor per-subcarrier maximum

power constraints pk,n, such that pk,n ≤ pk,n. Although power masks are usually required

by wireless standards to meet out-of-band emission policies, the power limits {P k}k∈K and

{pk,n}k∈K,n∈N significantly impact the analytical characterization of the DE p⋆. For the sake of

theoretical correctness, they are thus not included in the present work and are left as a future

direction of research. However, it is worth stressing that: i) Algorithm 1 can easily accommodate

{P k}k∈K and {pk,n}k∈K,n∈N , by setting λ∗k = max
{
min

{
λk, λk

}
, λk
}

, where λk is computed

using direct WF [26] (by maximizing the rate rk(p) under the constraint
∑N

n=1 pk,n = P k), and

by setting

pk,n[t + 1] = min
{
pk,n, (1/λ

∗
k − pk,n[t]/γk,n[t])

+} ; (28)

ii) reasonable values of {P k}k∈K and {pk,n}k∈K,n∈N do not modify the optimal power allocation

p⋆ in practice. In the interest of providing a practical algorithm that can be used in real-world

scenarios, our extensive simulations in Section V make use of the modified algorithm, in which

we observe that the selected values for the power constraints are never active in practice, so the

theoretical results of Section III remain valid.

V. NUMERICAL RESULTS

Numerical simulations are now used to assess the performance of the proposed algorithm

under different operating conditions. To keep the complexity of the simulations tractable while

considering a significantly loaded system, we focus on the scenario reported in Fig. 3, where a

square-shaped macrocell with an area of 200× 200m2 centered around its MBS accommodates

S randomly distributed small cells, each with a radius of ρs = ρS = 20m. Throughout the

simulations, unless otherwise specified, we adopt the parameters reported in Table I (see [20]

and references therein), where, for simplicity, each SC is assumed to have the same number

of antennas MS and to serve the same number of users KS . Moreover, all UE are assumed to

have the same non-radiative power consumption pc,k = pc, and the same power limits P k = P

and pk,n = p are imposed for all subcarriers (see Remark 7). To include the effects of fading

and shadowing, we use the path-loss model introduced in [41], using a 24-tap channel model to
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Table I

GENERAL SYSTEM PARAMETERS

Parameter Value Parameter Value

Bandwidth B = 11.2 MHz Carrier spacing ∆f = 10.9375 kHz

Carrier frequency fc = 2.4 GHz Macro-cell area 0.04 km2

Total number of small cells S = 5 Small-cell radius ρS = 20 m

Number of antennas (MBS, SCA) M0 = 16,MS = 4 Density of population 1, 000 users/km2

Number of SUE per small cell KS = 4 Number of MUE K0 = 20

Number of subcarriers N = 96 Noise power Bσ2 = −103.3 dBm

Non-radiative power pc = 20 dBm Path-loss exponent ζ = 3.5

Cut-off parameter dref = 35 m Average path-loss attenuation at dref Lref = −84.0 dB

Maximum total power P = 40 dBm Maximum per-subcarrier power p = 30 dBm

reproduce multipath effects. We also assume perfect channel estimation at the receiver end and

the use of maximum ratio combining (MRC) techniques, which amounts to setting gk,n = hkk,n

for all k ∈ K and n ∈ N . The UE k ∈ K is then assigned to APs s ∈ S following the mapping:

ψ(k) =




s ∃ s > 0 s.t. dk,s ≤ ρS

0 otherwise
(29)

where dk,s denotes the distance between UE k and SCA s. Without loss of generality, we measure

the performance for a specific user (say user 1) within either an SC or a macrocell, by averaging

over all possible positions of the users, uniformly randomizing their minimum-rate constraints

θk in [0, 2] [b/s/Hz] for k 6= 1.

To evaluate the proposed algorithm in a practical setting, Fig. 3 reports a random realization

of the network with the parameters described above, in which the following quantities have

been reduced for the sake of graphical representation: KS = 3, K0 = 6, and N = 12, θk =

1.5 b/s/Hz for SUE, and θk = 0.5 b/s/Hz for the MUE. Using the distributed algorithm described

in Section IV, after roughly 20 iterations we get the solution to (8), representing the users’

power profile at the DE of G, and reported in Fig. 4. Here, the first five subplots correspond

to the powers allocated in the small cells (the s-th subplot depicts the powers allocated by the

users in the s-th small cell, with colors matching the ones used in Fig. 3), whereas the last two

subplots show the powers selected by the MUE labeled {16, 17, 18} (in the sixth subplot) and

{19, 20, 21} (in the seventh subplot), respectively. As can be seen in Fig. 4, this method tends
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Fig. 3. Random realization of a network with S = 5 small cells, KS = 3 SUE, and K0 = 6 MUE, sharing N = 12 subcarriers.

to allocate the subcarriers in an exclusive manner whenever the MAI across UE within the same

small cell is too large (e.g., see the 4th small cell, in which only 5 subcarriers are shared by the 3

users), and to share the same subcarrier when the MAI across users is at a tolerable level (which

also includes the interference generated by SUE from neighboring cells and the MUE). On the

right hand side, we report the achieved rates at the DE in b/s/Hz. As can be verified, all users

achieve their minimum demands, while for users with particularly favorable channel conditions

(in this case, users no. 1, 11, 19, and 21), it is convenient to increase their transmit power so as to

obtain better performance in terms of EE. As we mentioned in Section II, we assume the channel

to be weakly time-varying. Otherwise stated, we assume that the convergence of the proposed

algorithm is achieved before significant channel variations, as is customarily assumed in all

closed-loop resource allocation schemes. To support this, assume that the uplink and downlink

slot durations are in the order of few milliseconds (which is reasonable for LTE/LTE-A standards

[42]). In these circumstances, the average convergence time of the proposed solution turns out

to be in the order of tens of milliseconds (since convergence is achieved after approximately 20

iterations): such interval is sufficiently shorter than typical channel coherence times, especially

when considering usual SC scenarios with pedestrian users.

To assess the robustness of the proposed solution to network perturbations, we depict in Fig. 5
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Fig. 4. Outcome of the resource allocation for the scenario of Fig. 3. The subcarriers are allocated exclusively when the MAI

within the small cell is large. All users achieve their rate requirements. Users with favorable channels increase their powers to

maximize their own utilities.

the total power consumption as a function of the iteration step for the network setting of Fig. 3

(lines are identified by UE labels, using the numbering adopted in Fig. 3). In particular, for the

sake of clarity, since all other users show similar results, we only report the behavior of SUE

in small cells s = 1 and s = 4, and the MUE 19 and 21, when, at t = 25, two cell-edge users

(namely, users {3, 12}) simultaneously change their receiver association: both become served

by the MBS, due to a variation in the received signal strength (with ensuing reduction of their

data rate requirements to 0.5 b/s/Hz, like all other MUE). As can be seen, the algorithm is very

robust to network perturbations, and guarantees fast convergence for all users in the network
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Fig. 5. UE total power consumption as a function of the iteration step. The power allocation fastly converge even in the

presence of sudden changes in the network configuration, e.g., due to UE mobility or channel fluctuations.

to the new equilibrium point. In this particular example, each UE’s power decrease is due to

a lower interference generated by the “new” MUE – which, in turn, is a consequence of their

lower target rates.

To the best of our knowledge, there are no resource allocation algorithms that address the

energy-efficient formulation (8) subject to the minimum-rate demands (8b). To evaluate the

improvement in terms of EE of the proposed technique (red), we thus compare its performance

with that achieved by an IWF-based solution (blue), in which all users aim at meeting θk with

equality [29]. Fig. 6 reports the average utility achieved by averaging over all possible positions

of a particular MUE (say user 1) as a function of a specific minimum rate θ1, using the parameters

reported in Table I.3 Interestingly, there exists a critical θ1 (in this case, 0.28 b/s/Hz), for which the

EE of IWF is higher than that achieved by the proposed formulation, mainly due to a weaker MAI

caused by the IWF users, that transmit at lower powers than energy-efficient ones (not reported

for the sake of brevity). However, IWF policies are not stable: if the network’s UE adopt an IWF

3Throughout all the simulations in the present and subsequent graphs, the selected parameters yield an occurrence of feasible

scenarios, assessed a posteriori by letting each UE achieve their minimum-rate constraint (8b) with equality, larger than 99%.

Once the scenario is checked to be feasible, the convergence of Algorithm 1 to a stationary point (a DE) occurs with probability

1.
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(S = 5) significantly reduces the power consumption of the UE compared to the macro-cell classical scenario (S = 0) for any

rate requirements.



26

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

distance d1,ψ(1) [m]

av
er

ag
e

ra
te

r 1
(p
⋆
)

[b
/s

/H
z]

SUE (S = 5)
MUE (S = 5)
MUE (S = 0)
θ1=0.00 b/s/Hz
θ1=0.25 b/s/Hz
θ1=0.50 b/s/Hz
θ1=0.75 b/s/Hz
θ1=1.50 b/s/Hz

Fig. 8. Average rate at the equilibrium as a function of the distance from the receiver. The HetNet configuration (S = 5)

significantly increases the rates of the UE compared to the macro-cell classical scenario (S = 0) for any rate requirements.

approach, then a UE that deviates from this criterion would greatly increase its EE (represented

by the green line in Fig. 6). This situation is reminiscent of the well-known prisoner’s dilemma

[4] where there exist states with higher average utility, but which are obviously abandoned

once a user deviates in order to maximize his individual benefits – and, hence, are inherently

unstable in a non-cooperative, decentralized setting. In addition to this, the proposed approach

shows two interesting properties compared to IWF: i) averaging over all network realizations

and all minimum rates, Algorithm 1 achieves an average utility of 1.76Mb/J, which is larger

than the IWF-based one, equal to 1.69Mb/J; and ii) it introduces fairness among the users, as

its performance in terms of EE is weakly dependent on the QoS requirement θk.

To measure the benefits of a HetNet configuration with respect to a classical macrocellular

architecture (S = 0), Figs. 7 and 8 depict the average total transmit powers and the achievable

rates at equilibrium in terms of the distance between the observed user and its receiver, averaged

over 2, 000 independent feasible network realizations per marker. The green and red lines

represent the performance in the case of S = 5 small cells, KS = 4 SUE, and K0 = 20

MUE, achieved by an SUE and an MUE, respectively, whereas blue lines show the performance

obtained by an MUE in the case S = 0. We consider three different minimum demands for the

SUE (0, 0.75, and 1.5 b/s/Hz, represented by circular, square, and upward-pointing arrowheads),
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Fig. 9. Average rate at the equilibrium (left axis) and average power consumption (right axis) as functions of the number of

small cells. Introducing more small cells increases the average rate and reduces the average power consumption in the network

while guaranteeing the minimum rate requirements.

and three different demands for the MUE (0, 0.25, and 0.5 b/s/Hz, represented by circular,

downward-pointing arrowheads, and diamond markers respectively). As can be seen, the HetNet

configuration introduces significant gains in both the achievable rates and the power consumption

compared to the classical scenario: by averaging over all possible positions of SUE and MUE

across the macrocell area, the MUE get r1(p⋆) ≅ 0.68 b/s/Hz with a power consumption

P ⋆
1 ≅ 27.5 dBm (566mW) when placing θ1 = 0.5 b/s/Hz,4 compared to r1(p

⋆) ≅ 0.63 b/s/Hz

with P ⋆
1 ≅ 29.1 dBm (813mW) for the same minimum demand in the case S = 0. The HetNet

configuration is also beneficial in terms of ASE: using these parameters, we get on average

slightly more than 600 b/s/Hz/km2, compared to 500 b/s/Hz/km2 for S = 0.

Introducing small cells has a negative impact in terms of the algorithm’s convergence rate: here,

on average 4.1 iterations are required for the case S = 5, compared to 3.5 for the case S = 0. This

is due to decentralizing the resource allocation at each receiving station, thus slightly slowing

the convergence of the algorithm. However, this provides a better MAI management ensured by

SCAs, that allow SUE to obtain higher rates with lower interfering powers at the MBS. As can

4Note that such minimum demand is about one order of magnitude larger than the one considered for cell-edge users in 4G

networks, equal to 0.07 b/s/Hz [42] for a scarcely populated cell (at most 10 users).
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Fig. 10. Average area spectral efficiency as a function of the number of small cells. Introducing more small cells increases the

average area spectral efficiency as well.

be seen, due to the path-loss model employed, which is roughly constant for distances within

dref > ρS , the SUE performance is independent of the distance from the SCA. When SUE place

θ1 = 1.5 b/s/Hz, the spectral efficiency is similar to that achieved by MUE located at comparable

distance from the MBS (see Fig. 8), but at the cost of a larger power consumption (see Fig. 7):

this is due to a better diversity at the receiver obtained by the MUE, since the MBS employes a

larger number of antennas (16 versus 4). However, this does not hold true as the MUE distance

increases: averaging over all positions, SUE obtain an average rate r1(p⋆) ≅ 1.51 b/s/Hz (more

than twice the MUE’s one) using P ⋆
1 ≈ 28.6 dBm (732mW, slightly higher than MUE’s one).

To emphasize the impact of small cells on the system performance, Figs. 9 and 10 compare the

performance, averaged over 105 independent network realizations, achieved by an MUE using

θ1 = 0.25 b/s/Hz in the same network as before, populated by K = 40 users, as a function of

the number of SCs S, each having KS = 4 SUE, ranging from S = 0 (classical macrocell)

to S = 10 (only SCs – in this case, the MUE of interest becomes an SUE). Fig. 9 depicts

the achievable rate (red line, left axis) and the total power consumption (blue line, right axis),

whereas Fig. 10 shows the ASE. As is apparent, introducing SCs in the system has a significant

benefit in terms of all performance indicators. Of course, this comparison does not account for

the additional complexity and drawbacks introduced by increasing S (to mention a few, initial
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Fig. 11. Average rate (left axis) and average ASE (right axis) as functions of the number user per small cell. The average rate

decreases with the number of users per small cell because of the MAI. However, the ASE is increasing with the the number

of users per small cell. Moreover, increasing the number of receiving antennas at the SCA improves both, the average rate and

average ASE.

cost of network deployment and maintenance, and complexity of the system). However, although

a suitable tradeoff needs to be sought, our analysis confirms that network densification is one of

the key technologies to meet 5G requirements [27].

To verify the scalability of the proposed solution, we also investigate the impact of the number

of receiving antennas at the SCA MS . In Fig. 11, we plot the spectral efficiency (red lines, left

axis) and the ASE (blue lines, right axis) as a function of the number of users per small cell

KS . Circular, squared, and triangular markers represent the cases for MS = {2, 4, 8} antennas at

the SCA. The ASE is averaged over all users K = K0 + S ·KS , whereas the achievable rate is

computed for an SUE of interest using θ1 = 1 b/s/Hz, averaging over 105 independent network

realizations. As can be seen, increasing the number of antennas yields significant performance

gains, thus representing a design parameter that can be exploited to boost the performance. Not

only the spectral efficiency, as expected, benefits from increasing MS (as an example, we can

move from 500 b/s/Hz/km2, achieved when using 2 antennas, to 1, 000 b/s/Hz/km2, by increasing

the number of receiving antennas up to 8, supporting K = 60 users), but also does the EE,

confirming a recent result available in [32]: here, when KS = 7, moving from MS = 2 to 8

yields more than a 5-fold increase in the utility.
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Fig. 12. Average power at the equilibrium as a function of the circuit power. The average power consumption scales linearly

with the circuit power in the EE formulation.

Finally, to evaluate the impact of the circuit power pc on the EE of the system, we show

in Fig. 12 the performance of the proposed algorithm as a function of pc, averaged over 105

independent network realizations, where the red line refers to an SUE using θk = 1 b/s/Hz,

and the blue line refers to an MUE using θk = 0.25 b/s/Hz. For all selected non-radiative

powers pc ∈ [0, 20] dBm, the hypothesis pc ≫ σ2 holds, which is in line with the state of

the art for radio-frequency and baseband transceiver modeling [20]. As can be seen, the total

power consumption at the equilibrium P1(p
⋆) is directly proportional to pc. Put differently, the

energy-efficient equilibrium point is highly impacted by the non-radiative power, and the bit-per-

Joule metric suggests the use a radiative power which is comparable with the non-radiative one.

Interestingly, the (normalized) achievable rates at equilibrium (not reported for concision) do not

depend on pc (1.1 and 0.6 b/s/Hz for SUE and MUE, respectively). This confirms a result which

is well-known in the literature (e.g., see [22]): EE increases as the circuit (non-radiative) power

decreases. Hence, reducing pc, which is one of the main drivers in the device design further

boosting the research in this field, can achieve a two-fold goal: not only is it expedient to reduce

the constant power consumption (from an electronics point of view), but also it leads energy-

aware terminals to reduce their radiative power when they aim at maximizing their bit-per-Joule

performance (from an information-theoretic and resource-allocation perspective).
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VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a distributed power allocation scheme for energy-aware, non-

cooperative wireless users with minimum-rate constraints in the uplink of a multicarrier hetero-

geneous network. The major challenge in this formulation is represented by the minimum-rate

requirements that cast the problem into a non-cooperative game in the sense of Debreu, in

which the actions sets of the players are coupled (and not independent as in the case of Nash-

type games). We used fractional programming techniques to characterize the game’s equilibrium

states (when they exist) as the fixed points of a water-filling operator. To attain this equilibrium in

a distributed fashion, we also proposed an adaptive, distributed algorithm based on an iterative

water-filling best response process and we provided sufficient conditions for its convergence.

The convergence and performance of the proposed solution were further assessed by numerical

simulations: our results show that reducing the non-radiative power consumed by the user device

electronics, offloading the macrocell traffic through small cells, and increasing the number of

receive antennas, are critical to improve the performance of mobile terminals in terms of both

energy efficiency and spectral efficiency. Using a realistic simulation setup, we showed that the

proposed framework is able to achieve significantly high area spectral efficiencies (higher than

1, 000 b/s/Hz/km2), peak and cell-edge spectral efficiencies (up to 6 b/s/Hz and around 0.5 b/s/Hz,

respectively), and energy efficiencies (several Mb/J), while considering dense populations of users

(around 1, 000 users/km2), low power consumptions (at most a few Watts), a limited number of

antennas (at most 8 for the small-cell access points and 16 for the macrocell base station), and

simplified signal processing at the receiver (maximal ratio combining).

The system model adopted in this work encompasses a more general multi-cellular and multi-

tier network, and the derived approach can be automatically adapted to such scenarios. Moreover,

distinguishing features of the proposed distributed algorithm are its scalability and flexibility,

which make it suitable for emerging 5G technologies [27], such as ultra-dense networks and

massive MIMO.

Challenging open issues for further work include: i) assessing the feasibility of the problem

given a particular network realization for the multicarrier case; ii) evaluating the impact of

different receiver architectures (such as multiuser zero-forcing, and interference cancellation

techniques) on the spectral and energy efficiency of the network; iii) accounting for highly



32

time-varying scenarios in which users move around the network with high speeds.

APPENDIX A

PROOF OF PROPOSITION 1

First, note that (8) can be expressed in the language of fractional programming as:

p⋆
k = arg max

pk∈Pk(p−k)

ϕ(pk)

χ(pk)
(30)

where Pk(p−k) is defined as in (9), and

ϕ(pk)=
N∑

n=1

ln(1+µk,npk,n) and χ(pk)=pc,k+
N∑

n=1

pk,n. (31)

From [22, Sect. II.A] solving (30) is equivalent to finding the root of the following nonlinear

function:

Φ(λk) = max
pk∈Pk(p−k)

ϕ(pk)− λkχ(pk) (32)

where λk ∈ R. To compute the solution of (30), let us first use (31), but without the constraint

(8b), so that pk ∈ RN
+ (i.e., only nonnegative powers are considered). The stationarity condition,

given by ∂ϕ(pk)
∂pk,n

|pk,n=p⋆k,n
− λk

∂χ(pk)
∂pk,n

|pk,n=p⋆k,n
= 0 ∀n, using (31) becomes

µk,n

1 + µk,np⋆k,n
− λk = 0 ∀n. (33)

Hence, considering p⋆k,n ≥ 0, the optimal power allocation becomes the WF criterion (17), in

which the water level λ⋆k is replaced by λk. By plugging (33) back into (32), we can finally

compute the optimal power level λk:

− lnλk + (βk − 1) = αkλk (34)

where the functions αk and βk are defined as in (20) and (21), respectively. To provide a

better insight on (34), let us define νk = − lnλk + (βk − 1), so that (34) can be rewritten as

νke
νk = αke

βk−1. Using the Lambert function W (·) we can obtain the expression of λk as in

(19).

Introducing back the constraint (8b) simply places a lower bound on ϕ(pk): ϕ(pk) ≥ θk.

Following [22], this is equivalent to setting an upper bound λk on λk, that comes out of the

IWF criterion that minimizes χ(pk) given ϕ(pk) = θk, and is equal to (22). Hence, the solution

to (8) is given by (17), with λ⋆k computed as in (18).
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APPENDIX B

PROOF OF PROPOSITION 2

There exists a unique DE p⋆ if the best response map B(p) = [B1(p−1), . . . ,BK(p−K)] with

Bk(p−k) = arg maxpk∈Pk(p−k) = uk(p) is a contraction, , i.e., there exists some ε ∈ [0, 1) such

that

‖B(p1)− B(p2)‖ ≤ ε ‖p1 − p2‖ ∀p1,p2 ∈ P , (35)

where P =
∏K

k=1Pk. The nth component of user k’s best response is given by Bk,n(p
⋆
−k) =

[Bk(p
⋆
−k)]n = p⋆k,n as in (17). We begin by rewriting µk,n(p−k,n) in (4) as follows:

µk,n(p−k,n) =
ωkk,n

σ2 + Ik,n
(36)

where Ik,n =
∑

j 6=k ωkj,npj,n, and the quantities ωkj,n are defined in (24). Using [28, Theorem

4], the DE p⋆ is unique if, for any UE k,
∥∥∥∥
∂Ik
∂p−k

∥∥∥∥ · sup
Ik∈RN

∥∥∥∥
∂Bk(p−k)

∂Ik

∥∥∥∥ < 1 (37)

with Ik = [Ik,1, . . . , Ik,N ]
T . The first term of (37) is explicitly computed in [28, Eq. (19)], and

it is equal to
∥∥∥ ∂Ik
∂p−k

∥∥∥ =
√∑K

j=1,j 6=k

∑N
n=1 ω

2
kj,n. As for the second term, we have:

‖∂Bk(p−k)/ ∂Ik‖ =
√∑N

ℓ=1

∑N
n=1

∣∣∂p⋆k,n /∂Ik,ℓ
∣∣2, (38)

where the optimal (best-responding) transmit power levels p∗k,n are:

p⋆k,n = (1/λ⋆k − 1/µk,n)1{µk,n>λ⋆k}. (39)

After some derivation steps, we obtain the norm of its partial derivative w.r.t. Ik,ℓ as follows:
∣∣∣∣
∂p⋆k,n
∂Ik,ℓ

∣∣∣∣
2

=
1{µk,n>λ⋆k}

ω2
kk,ℓ (ς

⋆
k)

2

[
ξ2k,ℓ +

(
(ς⋆k)

2 − 2ς⋆kξk,ℓ
)
1{n=ℓ}

]
(40)

where, for convenience, we denote by ς⋆k = |S⋆
k | and

ξk,ℓ = −ς⋆kµ2
k,ℓ

∂ (1/λ⋆k)

∂µk,ℓ
. (41)

Summing over n = 1, . . . , N then yields:
∥∥∥∥
∂Bk(p−k)

∂Ik

∥∥∥∥ =

√√√√ 1

ς⋆k

∑

ℓ∈S⋆k

1

ω2
kk,ℓ

·
(
ξ2k,ℓ + ς⋆k − 2ξk,ℓ

)
(42)
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so it remains to show that the terms ξk,ℓ in (41) are equivalent to (26) in Proposition 2 (see

Appendix C). As a final step in the proof, notice that the function to be optimized in (23) depends

only on µk,n which is an invertible, bijective function of Ik,n ≥ 0 (since it is a strictly decreasing

function w.r.t. Ik,n). Therefore, we can take the supremum over µk,n ∈ (0, ω2
kk,n/σ

2], ∀n directly.

APPENDIX C

In this section, we compute ξk,ℓ in two different cases depending on the relative order be-

tween λk and λk. Let us start from the minimum-rate WF criterion, in which UE k’s water

level is computed using (18). In this case, if µk,ℓ > λk (i.e., if ℓ ∈ Sk),5 we have λ
−1

k =
(
2Nθk

∏
n∈Sk µ

−1
k,n

)1/ςk =
(
2Nθk

∏
n∈Sk,n 6=ℓ µ

−1
k,n

)1/ςk
µ
−1/ςk
k,ℓ , where ςk = |Sk|. From this, we get

∂(1/λk)
∂µk,ℓ

= − 1
ςkµk,ℓλk

, and thus, using (41), we finally obtain ξk,ℓ = µk,ℓ/λk, corresponding to the

first subcase of (26).

Let us now focus on the energy-efficient WF, in which each UE k’s water level is computed

using (19). If µk,ℓ > λk, then:

∂ (1/λk)

∂µk,ℓ
=

1

λk

∂

∂µk,ℓ

[
W
(
αke

βk−1
)
− (βk − 1)

]

=
1

λk

[
∂W

(
αke

βk−1
)

∂µk,ℓ
− ∂βk
∂µk,ℓ

]
. (43)

On one hand, using (20) and (21), we can compute the partial derivatives ∂αk
∂µk,ℓ

= 1
ςkµ

2
k,ℓ

and
∂βk
∂µk,ℓ

= 1
ςkµk,ℓ

, with ςk = |Sk|. On the other hand, using the properties of the Lambert functions,

we get

∂W
(
αke

βk−1
)

∂µk,ℓ
=
W
(
αke

βk−1
)
· ∂
∂µk,ℓ

(
αke

βk−1
)

(αkeβk−1) [1 +W (αkeβk−1)]
. (44)

and hence:

∂ (1/λk)

∂µk,ℓ

=
W
(
αke

βk−1
)
− αkµk,ℓ

ςkµ
2
k,ℓλkαk [1 +W (αkeβk−1)]

. (45)

Noting that, by inverting (19), W
(
αke

βk−1
)
= βk − 1 − lnλk, and using simple mathematical

steps, νk = − lnλk + (βk − 1) can be rewritten as νk = W
(
αke

βk−1
)
= αkλk. Using (41), ξk,ℓ

corresponds to the second subcase of (26).

5Note that we are interested in computing ξk,ℓ only for ℓ ∈ Sk, as in all other cases ξk,ℓ = 0.
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