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Distributed Stochastic Optimization via
Matrix Exponential Learning

Panayotis Mertikopoulos, Member, IEEE, E. Veronica Belmega, Member, IEEE,
Romain Negrel, and Luca Sanguinetti, Senior Member, IEEE

Abstract—In this paper, we investigate a distributed learning
scheme for a broad class of stochastic optimization problems and
games that arise in signal processing and wireless communica-
tions. The proposed algorithm relies on the method of matrix
exponential learning (MXL) and only requires locally computable
gradient observations that are possibly imperfect. To analyze it, we
introduce the notion of a stable Nash equilibrium and we show that
the algorithm is globally convergent to such equilibria – or locally
convergent when an equilibrium is only locally stable. To comple-
ment our convergence analysis, we also derive explicit bounds for
the algorithm’s convergence speed and we test it in realistic multi-
carrier/multiple-antenna wireless scenarios where several users
seek to maximize their energy efficiency. Our results show that
learning allows users to attain a net increase between 100% and
500% in energy efficiency, even under very high uncertainty.

Index Terms—Learning, stochastic optimization, game theory,
matrix exponential learning, variational stability, uncertainty.

I. Introduction

CONSIDER a finite set of optimizing players (or agents)
K = {1, . . . ,K}, each controlling a matrix variable Xk, and

seeking to improve their individual “well-being”. Assuming
that this “well-being” is quantified by a utility (or payoff )
function uk(X1, . . . ,XK), we obtain the problem

for all k ∈ K
maximize uk(X1, . . . ,XK),

subject to Xk ∈ X k,
(1)

where X k denotes the set of feasible actions of player k.
Specifically, we focus here on feasible action sets of the general
form

X k = {Xk < 0 : ‖Xk‖ ≤ Ak} (2)

where ‖Xk‖ =
∑M

m=1|eigm(Xk)| denotes the nuclear norm of Xk,
Ak is a positive constant, and the players’ utility functions uk are
assumed individually concave and smooth in Xk for all k ∈ K.
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The coupled multi-agent, multi-objective problem (1) con-
stitutes a game, which we denote by G. As we discuss in the
next section, games and optimization problems of this type
have been studied extensively in signal processing and wireless
communications, especially in a stochastic framework where:
a) the objective functions uk are themselves expectations over
an underlying random variable (see Ex. II-B below); and/or
b) the feedback to the optimizers is subject to noise and/or other
measurement errors (Ex. II-C).

Accordingly, the main goal of this paper is to provide a
learning algorithm that converges to a suitable solution of G
subject to the following desiderata:

(i) Distributedness: player updates are based on local infor-
mation and measurements.

(ii) Robustness: feedback and measurements may be subject
to random errors, noise, and delays.

(iii) Statelessness: players are oblivious to the overall state (or
interaction structure) of the system.

(iv) Flexibility: players can employ the algorithm in both static
and ergodic environments.

To achieve this, we build on the method of matrix exponen-
tial learning (MXL) that was recently introduced in [2] for
throughput maximization in multiple-input and multiple-output
(MIMO) systems. The main idea of MXL is that each player
tracks the individual gradient of their utility function via an
auxiliary score matrix and chooses an action by means of an
exponential “mirror step” that maps these score matrices to
the players’ feasible sets. In this general setting, we introduce
the notion of variational stability (VS), and we show that
stable Nash equilibria are locally attracting with high proba-
bility, while globally stable equilibria are globally attracting
with probability 1. Finally, we derive explicit estimates for the
method’s convergence rate, which we validate in the context of
energy efficiency maximization in multi-antenna systems.

A. Related work

The MXL method studied in this paper has strong ties to
matrix regularization [3] and mirror descent methods [4, 5] for
(online) convex optimization. In particular, the important spe-
cial case of real vector variables on the simplex (real diagonal
Xk) is closely related to the well-known exponential weight
(EW) learning algorithm for multi-armed bandit problems [6].
More recently, MXL schemes were also proposed for single-
user regret minimization in online power control [7] and rate
maximization problems [8] for dynamic MIMO systems. The
goal there was to show that the long-run performance of matrix
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exponential learning matches that of the best fixed policy in
hindsight, a property known as “no regret” [5, 9]. Nonetheless,
in a multi-user, game-theoretic setting, a no-regret strategy may
end up assigning positive weight only to strictly dominated ac-
tions [10]. As a result, regret minimization is neither necessary
nor sufficient to ensure convergence to Nash equilibrium.

In [2, 11, 12], a special case of (1) was studied in the context
of MIMO rate maximization in the presence of stochasticity, in
both single-user [12] and multiple access channels [2, 11]. In
both cases, the problem boils down to a (possibly distributed)
semidefinite optimization problem [2]. The existence of a sin-
gle objective function greatly facilitates the analysis; however,
many cases of practical interest (such as the examples we dis-
cuss in the following section) cannot be modeled as problems
of this type, making a potential-based analysis unsuitable.

In this paper, we derive the convergence properties of matrix
exponential learning in K-player games of the form (1), and we
investigate the algorithm’s long-term behavior under feedback
errors and uncertainty. Specifically, we consider a broad class of
games that satisfy a local monotonicity condition which ensures
that Nash equilibria are isolated. In a series of recent papers,
Scutari et al. used a variant of this condition to establish the
convergence of a class of Gauss–Seidel, best-response methods,
and successfully applied these algorithms to a wide range of
communication problems – for a survey, see [13]. However,
under noise and uncertainty, the convergence of best-response
methods is often compromised: as an example, in the case
of throughput maximization with imperfect feedback, iterative
water-filling (a standard best-response scheme) fails to provide
any perceptible gains over crude, uniform power allocation
policies [2]. Thus, given that randomness, uncertainty and
feedback imperfections are ubiquitous in practical systems,
we focus throughout on attaining convergence results that are
robust to learning impediments of this type.

B. Main contributions and paper outline

The main contribution of this work is the derivation of
the convergence properties of matrix exponential learning in
games played over bounded regions of positive-semidefinite
matrices. To put our theoretical analysis in context, we first
discuss three examples from wireless networks and computer
vision in Section II. More specifically, we illustrate i) a general
game-theoretic framework for contention-based medium access
control (MAC); ii) a stochastic optimization formulation for
content-based image retrieval (a key “Big Data” signal pro-
cessing problem); and iii) the multi-agent problem of energy
efficiency (EE) maximization in multi-carrier MIMO networks
(a critical design feature of green multi-cellular networks).

In Section III, we revisit our core game-theoretic framework,
and we introduce the notion of variational stability. Subse-
quently, in Section IV, we introduce the matrix exponential
learning scheme under study, and we detail our assumptions
for the uncertainty surrounding the players’ objectives and
observations. Our main results are presented in Section V:
under fairly mild assumptions on the underlying stochasticity,
we show that (i ) the algorithm’s only termination states are
Nash equilibria; (ii ) if the game admits a globally (locally)

stable equilibrium, then MXL converges globally (locally) to
said equilibrium; and (iii ) on average, MXL converges within ε
of a strongly stable equilibrium in O(1/ε2) iterations.

These results greatly extend the recent analysis of [2] for
rate maximization in MIMO MAC systems. To further validate
our results in MIMO environments, we supplement our analy-
sis with extensive numerical simulations for energy efficiency
maximization in multi-carrier MIMO wireless networks in Sec-
tion VI. To streamline the flow of the paper, most proofs have
been relegated to a series of appendices at the end.

Notation: The profile X = (X1, . . . ,XK) is identified with
the block-diagonal matrix diag(Xk)K

k=1, and we use the short-
hand (Xk; X−k) to highlight the action Xk of player k against
that of all other players. Also, given A ∈ �d×d, we write
‖A‖ =

∑d
j=1|eig j(A)| for the nuclear (trace) norm of A and

‖A‖∞ = max j|eig j(A)| for its singular norm.

II. Motivation and Examples
To motivate the general framework of (1), we illustrate below

three examples taken from communication networks and com-
puter vision. A reader who is interested in the general theory
may skip this section and proceed directly to Sections III–VI.

A. Contention-based medium access
Contention-based medium access control (MAC) aims to

provide an efficient means for accessing and sharing a wireless
channel in the presence of several interfering wireless users. To
model this, consider a set of users indexed by K = {1, . . . ,K},
each updating their individual channel access probability xk

based on the amount of contention in the network [14]. In
practice, users cannot be assumed to know the exact channel
access probabilities of other users, so user i infers the level
of wireless contention via an aggregate contention measure
qk(x−k), i.e. a (symmetric) function of the access probability
profile x−k = (x1, . . . , xk−1, xk+1 . . . , xK) of all other users.1

With this in mind, the objective of each user is to select their
individual channel access probability xk so as to maximize the
benefit derived from acessing the channel more often minus the
induced contention xkqk(x−k) incurred by all other users. This
leads to the utility function formulation

uk(xk; x−k) = Uk(xk) − xkqk(x−k) (3)

where Uk is a continuous and nondecreasing function repre-
senting the utility of user k when there are no other users in
the channel. Thus, in economic terms, uk simply represents
the user’s net gain from channel access, discounted by the
associated contention cost.

In this way, we obtain the game-theoretic formulation

for all k ∈ K
maximize uk(xk; x−k),

subject to xk ∈ [0, 1]
(4)

whose solutions can be analyzed through the specification of
the utility function Uk(xk) and the choice of the contention
measure qk. If Uk(xk) is assumed smooth and strictly concave
(see for example [14, 15] and references therein), (4) is a special
case of (1) with M = 1 and Ak = 1.

1For instance, a standard contention measure of this type is the conditional
collision probability qk(x−k) = 1 −

∏
`,k(1 − x`). [14].
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B. Metric learning for image similarity search

A key challenge in content-based image retrieval is to design
an automatic procedure capable of retrieving documents from
a large database based on their similarity to a given request,
often distributed over several computing cores in a massively
parallel computing grid (or cloud) [16, 17]. To formalize this,
an image is typically represented via its signature, i.e. a real d-
dimensional vector i ∈ �d that collects and encodes the most
distinctive features of said image. Given a database D of such
signatures, each image i ∈ D is further associated with a set
Si ⊆ D of similar images and a set Ui ⊆ D of dissimilar
ones, based on each image’s content. Accordingly, the goal is
to design a distance metric which is minimized between similar
images and is maximized between dissimilar ones.

A widely used distance measure between image signatures is
the Mahalanobis distance, defined here as

dX(i, j) = (i − j)> X (i − j), (5)

where X < 0 is a d × d positive-definite matrix.2 This so-called
“precision matrix” must then be chosen by the optimizer so that
dX(i, j) < dX(i,k) whenever i is similar to j but dissimilar to k.
We thus obtain the minimization objective

F(X; T ) =
∑

(i,j,k)∈T
C
(
dX(i, j) − dX(i,k) − ε

)
+ ‖X − I‖2F , (6)

where: a ) T is the set of all triples (i, j,k) such that j ∈ Si and
k ∈ Ui; b ) C is a convex, nondecreasing function that penalizes
matrices X that do not capture similarities and dissimilarities
between images; c ) the parameter ε > 0 reinforces this penalty;
and d ) ‖·‖F denotes the ordinary Frobenius (`2) norm.3

An additional requirement in the above is to employ a low-
rank precision matrix X so as to reduce model complexity
and computational costs [16], enable distributed storing and
retrieval [20], and better exploit correlations between features
that further reduce over-fitting effects [19]. An efficient way to
achieve this is to include a trace constraint of the form tr X ≤ c
for some c � d,4 leading to the feasible region

X = {X ∈ �d×d : X < 0 and tr X ≤ c}. (7)

Thus, combining (6) and (7), we see that metric learning is a
special case of the general problem (1) with K = 1 optimizers.

Of course, when D is large, the number of variables involved
becomes computationally prohibitive: for instance, (6) may
contain up to 109–1011 terms, even for a modest database of 104

images. To circumvent this obstacle, a common approach is to
replace T with a smaller, randomly drawn population sample
W ⊆ T , and then take the average over all such samples. In so
doing, we obtain the stochastic optimization problem [21]:

minimize �[F(X;W)]
subject to X < 0, tr(X) ≤ c,

(8)

where the expectation is taken over the random samples W .

2The baseline case X = I corresponds to the Euclidean distance, which is
often unsuitable for image discrimination purposes [18].

3This last regularization term is included in order to maximize predictive
accuracy by reducing the effects of over-fitting to training data [19].

4By contrast, an `0 rank constraint of the form rank(X) ≤ c generically leads
to an untractable NP-hard problem formulation.
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Fig. 1. A multi-user MIMO system with K = 3 connections.

The benefit of this formulation is that, at each realization,
only a small-size, tractable data sample W is used for calcula-
tions at each computing node. On the down side, the expectation
in (8) cannot be calculated, so the optimizer only has access
to information on the random, realized gradients ∇XF(X;W).
This type of uncertainty is typical of stochastic optimization
problems, and the proposed MXL method has been designed
precisely with this feedback structure in mind.

C. Energy efficiency maximization

Consider the problem of energy efficiency maximization in
multi-user, multiple-carrier MIMO networks – see e.g. [22–
24] and references therein. Here, wireless connections are
established over transceiver pairs with Nt (resp. Nr) antennas
at the transmitter (resp. receiver), and communication takes
place over a set of S orthogonal subcarriers. Accordingly, the
k-th transmitter is assumed to control their individual input
signal covariance matrix Qks over each subcarrier s = 1, . . . , S ,
subject to the constraints: a) Qks < 0 (since each Qks is a
signal covariance matrix); and b) tr Qk ≤ Pmax, where Qk =

diag(Qks)S
s=1 is the covariance profile of the k-th transmitter,

tr(Qk) represents the user’s transmit power over all subcarriers,
and Pmax denotes the user’s maximum transmit power.

Assuming Gaussian input and single user decoding (SUD) at
the receiver, each user’s Shannon-achievable throughput is

Rk(Q) = log det
(
W−k + HkkQkH†kk

)
− log det

(
W−k

)
, (9)

where H`k denotes the channel matrix profile between the `-
th transmitter and the k-th receiver over all subcarriers, Q =

(Q1, . . . ,QK) denotes the users’ transmit profile and W−k ≡

W−k(Q) = I +
∑
`,k H`kQ`H†`k is the multi-user interference-

plus-noise (MUI) covariance matrix at receiver k. The users’
transmit energy efficiency (EE) is then defined as the ratio
between their Shannon rate and the total consumed power, i.e.

EEk(Q) =
Rk(Q)

Pc + tr(Qk)
, (10)

where Pc > 0 represents the total power consumed by circuit
components at the transmitter [22].

The energy efficiency function above is not concave w.r.t the
covariance matrix Qk of user k, but it can be recast as such
via a suitable transformation. To this aim, following [24, 25],
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consider the adjusted control variables

Xk =
Pc + Pmax

Pmax

Qk

Pc + tr(Qk)
, (11)

where the normalization constant (Pc + Pmax)/Pmax implies that
tr(Xk) ≤ 1 with equality if and only if tr(Q) = Pmax. The action
set of user k is then given by

X k = {diag(Xks)S
s=1 : Xks < 0 and

∑
s tr Xks ≤ 1}, (12)

so, using (11), the energy efficiency expression (10) yields the
utility function

uk(Xk; X−k) =
Pc + (1 − tr Xk) Pmax

Pc(Pc + Pmax)

× log det

I +
PcPmax H̃kXkH̃†k

Pc + (1 − tr Xk)Pmax

 , (13)

where H̃k = W−1/2
−k Hkk is the effective channel matrix of user k.

We thus see that multi-user energy efficiency maximization
boils down to the general formulation (1) with Ak = 1.5 In this
setting, randomness and uncertainty stem from the noisy es-
timation of the users’ MUI covariance matrices (which depend
on the other users’ behavior), the noise being due to the scarcity
of perfect channel state information at the transmitter (CSIT),
random measurement errors, etc. To the best of our knowledge,
the MXL method discussed in Section IV comprises the first
distributed solution scheme for energy efficiency maximization
in general multi-user/multi-antenna/multi-carrier networks with
local, causal – and possibly imperfect – channel state informa-
tion (CSI) feedback at the transmitter.

III. Elements from Game Theory

The most widely used solution concept in noncooperative
games is that of a Nash equilibrium (NE), defined here as an
action profile X∗ ∈ X which is unilaterally stable, i.e.

uk(X∗) ≥ uk(Xk; X∗−k) for all Xk ∈ X k, k ∈ K. (14)

In words, X∗ ∈ X is a Nash equilibrium when no player can
further increase their utility by deviating unilaterally from X∗.

In complete generality, a game need not admit an equilib-
rium. However, thanks to the concavity of each player’s payoff

function uk and the compactness of their action space X k,
existence of a Nash equilibrium is guaranteed by the general
theory of [26]. Hence, a natural question that arises is whether
such an equilibrium solution is unique or not.

To answer this question, Rosen [27] provided a first-order
sufficient condition known as diagonal strict concavity (DSC).
To state it, define the individual payoff gradient of player k as

Vk(X) ≡ ∇Xk uk(Xk; X−k), (15)

and let V(X) ≡ diag(V1(X), . . . ,VK(X)) denote the collec-
tive profile of all players’ individual gradients. Then, Rosen’s
monotonicity condition can be stated as:

tr[(X′ − X)
(
V(X′) − V(X)

)
] ≤ 0 for all X,X′ ∈ X , (DSC)

5Strictly speaking, the block-diagonal constraint in (12) does not appear in
(2), but it is satisfied automatically by the learning method presented in Sec. IV.

with equality if and only if X = X′. We then have:

Theorem 1 (Rosen [27]). If a game of the general form (1)
satisfies (DSC), then it admits a unique Nash equilibrium.

The above theorem provides a sufficient condition for equi-
librium uniqueness, but it does not provide a way for players
to compute it – especially in a decentralized setting with no
information exchange between players. More recently, (DSC)
was used by Scutari et al. (see [13] and references therein)
as the starting point for the convergence analysis of a class of
Gauss–Seidel methods for concave games based on the theory
of variational inequalities [28]. Our approach is similar in scope
but relies instead on the following stability notion:

Definition 1. The profile X∗ ∈ X is called stable if it satisfies
the variational stability condition:

tr[(X−X∗) V(X)] ≤ 0 for all X sufficiently close to X∗. (VS)

In particular, if (VS) holds for all X ∈ X , we say that X∗ is
globally stable.

Mathematically, (VS) is implied by (DSC);6 the converse
however does not hold, even when (VS) holds globally. More-
over, stability plays a key role in the characterization of Nash
equilibria, as shown in the following proposition:

Proposition 1. If X∗ ∈ X is stable, then it is an isolated Nash
equilibrium; specifically, if X∗ is globally stable, it is the game’s
unique Nash equilibrium.

Proof: Suppose X∗ is stable, pick some Xk close to X∗k,
and let X = (Xk; X∗

−k). Then, by (VS), we get tr[(Xk −

X∗k) Vk(Xk; X∗
−k)] < 0, implying that uk is decreasing along the

ray X∗k + t(Xk − X∗k). Since this covers all rays starting at X∗k,
we conclude that X∗ is the game’s unique equilibrium in the
neighborhood of X∗ where (VS) holds.

In addition to characterizing the structure of the game’s
Nash set, variational stability also determines the convergence
properties of the learning scheme we develop in the next sec-
tion. More precisely, as we show in Section V, local stability
implies that a Nash equilibrium is locally attracting, while
global stability implies that it is globally so.

On that account, it is crucial to have a verifiable criterion for
Nash equilibrium stability. We accomplish this by appealing to
a second-order condition similar to the second derivative test in
calculus. To state it, define the Hessian of a game as follows:

Definition 2. The Hessian of a game is the (symmetric) matrix
D(X) =

(
Dk`(X)

)
k,`∈K with blocks

Dk`(X) = 1
2∇Xk∇X`

u`(X) + 1
2
[
∇X`
∇Xk uk(X)

]†
. (16)

The terminology “Hessian” reflects the fact that when (1) is
a single-agent optimization problem (K = 1), D(X) is simply
the Hessian of the optimizer’s objective. Thus, just as negative-
definiteness of the Hessian of a function guarantees (strong)
concavity and the existence of a unique maximizer, we have:

6Simply note that Nash equilibria are solutions of the variational inequality
tr[(X − X∗)V(X∗)] ≤ 0 [13]. Then, (VS) follows by setting X∗ = X′ in (DSC).
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Proposition 2. If D(X) ≺ 0 for all X ∈ X , G admits a unique,
globally stable Nash equilibrium. More generally, if X∗ is a
Nash equilibrium and D(X∗) ≺ 0, X∗ is stable and isolated.

Proof: For the first statement, assume that D(X) ≺ 0 for all
X ∈ X and note that D(X) is simply the symmetrized G-matrix
of the game in the sense of Rosen [27, p. 524]. Theorem 6 in
[27] states that, if this G-matrix is negative-definite, the game
satisfies (DSC), so it admits a unique Nash equilibrium X∗ by
Theorem 1. Since (DSC) further implies (VS) for all X ∈ X ,
our claim follows. For our second assertion, if X∗ is a Nash
equilibrium and D(X∗) ≺ 0, we have D(X) ≺ 0 for all X in
some convex product neighborhood U of X∗ (by continuity).
Then, by restricting G to U and reasoning as in the global case
above, we conclude that X∗ is the game’s unique equilibrium in
U , i.e. X∗ is an isolated Nash equilibrium.

Remark 1. In the special class of potential games, the players’
payoff functions are aligned along the game’s potential [29],
whose maximizers are Nash equilibria. In this context, (DSC)
boils down to strict concavity of the potential function, which
in turn implies the existence of a unique Nash equilibrium.
Likewise, Proposition 2 similarly reduces to the second or-
der condition of concave potential functions that guarantees
uniqueness of the solution (strictly negative definite Hessian
matrix). In light of this, Nash equilibria of concave potential
games are automatically stable in the sense of Definition 1.

IV. Learning under Uncertainty

The goal of this section is to describe a learning process
that leads to Nash equilibrium in a decentralized environment
with imperfect feedback and no information exchange between
players. The main idea of the proposed method is as follows:
First, at every stage n = 1, 2 . . . of the process, each player
k ∈ K takes a step along the individual gradient of their
utility function (possibly subject to nose). The output is then
“mirrored” back to K via a suitable matrix exponentiation map,
and the process repeats.

More precisely, consider the matrix exponential learning
(MXL) scheme

Xk(n) = Ak
exp(Yk(n − 1))

1 + ‖exp(Yk(n − 1))‖
,

Yk(n) = Yk(n − 1) + γnV̂k(n),
(MXL)

where:
1) n = 1, 2, . . . denotes the stage of the process.
2) the auxiliary matrix variables Yk are initialized to some

arbitrary (Hermitian) value Yk(0) for all k = 1, . . . ,K.
3) V̂k(n) is a stochastic estimate of the individual gradient

Vk(X(n)) of player k at stage n (more on this below).
4) γn is a decreasing step-size sequence, typically of the form

γn ∝ 1/nβ.
Setting aside for a moment the precise nature of the stochas-

tic estimates V̂k(n), we note that the update of the auxiliary
matrix variable Yk(n) in (MXL) acts as a “steepest ascent” step
along the estimated direction of each player’s individual payoff

gradient Vk(X(n)). As such, if there were no constraints for the
players’ actions, Yk(n) would define an admissible sequence of

Algorithm 1 Matrix exponential learning (MXL).

Parameter: step-size sequence γn ∼ 1/nβ, β ∈ (0, 1].
Initialization: n← 0; Yk ← any Mk × Mk Hermitian matrix.
Repeat

n← n + 1;
foreach player k ∈ K do

play Xk ← Ak
exp(Yk)

1 + ‖exp(Yk)‖
;

get gradient feedback V̂k;
update auxiliary matrix Yk ← Yk + γnV̂k;

until termination criterion is reached.

play and, ceteris paribus, each player would tend to unilaterally
increase their payoff along this sequence. However, this simple
ascent scheme does not suffice in our constrained framework,
so Yk(n) is exponentiated and normalized in order to meet the
feasibility constraints (2).7

Of course, the outcome of the players’ gradient tracking pro-
cess depends crucially on the quality of the available feedback
V̂k(n). With this in mind, we will consider the following sources
of uncertainty:

i) The players’ gradient observations are subject to noise
and/or measurement errors (cf. Ex. II-C).

ii) The players’ utility functions are themselves stochastic
expectations of the form uk(X) = �[ûk(X;ω)] for some
random variable ω, and the players can only observe the
(stochastic) gradient of ûk (cf. Ex. II-B).

iii) Any combination of the above.
In view of all this, we will focus on the general model:

V̂k(n) = Vk(X(n)) + Zk(n), (17)

where the stochastic noise process Z(n) satisfies the hypotheses:
(H1) Zero-mean:

�[Z(n) | Fn−1] = 0. (H1)

(H2) Finite mean squared error (MSE):

�[‖Z(n)‖2∞ | Fn−1] ≤ σ2
∗ for some σ∗ > 0. (H2)

In the above, Fn denotes the history (natural stochastic basis)
of Z(n) up to stage n. As such, the statistical hypotheses (H1)
and (H2) above are fairly mild and allow for a broad range of
estimation scenarios (in particular, we will not be assuming that
the errors are i.i.d. or bounded). In more detail, the zero-mean
hypothesis (H1) is a minimal requirement for feedback-driven
systems, simply positing that there is no systematic bias in the
players’ information. Likewise, (H2) is a bare-bones assump-
tion for the variance of the players’ feedback, and it is satisfied
by most common error processes – such as all Gaussian, log-
normal, uniform and sub-exponential distributions.

In other words, Hypotheses (H1) and (H2) simply mean that
the players’ individual gradient estimates V̂k are unbiased and

7Recall here that Vk is Hermitian as the derivative of a real function with
respect to a Hermitian matrix variable. Moreover, the normalization step in
(MXL) subsequently ensures that the resulting matrix has ‖Xk‖ ≤ Ak , so the
sequence Xk(n) induced by (MXL) meets the problem’s feasibility constraints.
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bounded in mean square, i.e.

�
[
V̂k(n)

∣∣∣ Fn−1
]

= Vk(X(n)), (18a)

�
[
‖V̂k(n)‖2∞

∣∣∣ Fn−1
]
≤ V2

k for some Vk > 0. (18b)

For generality, all of our results will be stated under (H1) and
(H2) – or, equivalently, (18). For a more refined analysis under
tighter assumptions for the noise, see Section V-C below.

V. Convergence Analysis and Implementation

By construction, the recursion (MXL) with gradient feedback
satisfying Hypotheses (H1) and (H2) enjoys the following
desirable properties:
(P1) Distributedness: players only require individual gradient

information as feedback.
(P2) Robustness: the players’ feedback could be stochastic,

imperfect, or otherwise perturbed by random noise.
(P3) Statelessness: players do not need to know the state of the

system.
(P4) Reinforcement: players tend to increase their individual

utilities.
The above shows that (MXL) is a promising candidate for
learning in games and distributed optimization problems of the
general form (1). Accordingly, our aim in this section is to
examine the long-term convergence properties of (MXL).

A. Convergence properties

We begin by showing that the algorithm’s termination states
are Nash equilibria with probability 1:

Theorem 2. Assume that Algorithm 1 is run with a decreasing
step-size sequence γn such that

∑∞
n=1 γ

2
n <

∑∞
n=1 γn = ∞ and

gradient observations satisfying (H1) and (H2). If it exists,
limn→∞ X(n) is a Nash equilibrium of the game (a.s.).

The proof of Theorem 2 is presented in detail in Appendix B
and is essentially by contradiction. To provide some intuition, if
the limit of (MXL) is not a Nash equilibrium, at least one player
of the game must be dissatisfied, thus experiencing a repelling
drift – in the limit and on average. Owing to the algorithm’s
exponentiation step, this “repulsion” can be quantified via the
so-called von Neumann (or quantum) entropy [30]; by using the
law of large numbers, it is then possible to estimate the impact
of the noise and show that this entropy diverges to infinity, thus
obtaining the desired contradiction.

In words, Theorem 2 shows that if (MXL) converges, it
converges to a Nash equilibrium; however, it does not provide
any guarantee that the algorithm converges in the first place.
A sufficient condition for convergence based on equilibrium
stability is given below:

Theorem 3. Assume that Algorithm 1 is run with a step-size
sequence γn such that

∑∞
n=1 γ

2
n <

∑∞
n=1 γn = ∞ and gradient

observations satisfying (H1) and (H2). If X∗ is globally stable,
then X(n) converges to X∗ (a.s.).

The proof of Theorem 3 is given in Appendix C. In short,
it comprises the following steps: First, we consider a deter-
ministic, continuous-time variant of (MXL) and we show that

globally stable equilibria are global attractors of said system. To
this end, we introduce a matrix version of the so-called Fenchel
coupling [31, 32] and we show that this coupling plays the
role of a Lyapunov function in continuous time. Subsequently,
we derive the evolution of the discrete-time stochastic system
(MXL) by using the method of stochastic approximation [33]
and the theory of concentration inequalities [34] to control the
gap between continuous and discrete time.

From a practical point of view, an immediate corollary of
Theorem 3 is the following second-derivative test:

Corollary 1. If the game’s Hessian matrix D(X) is negative-
definite for all X ∈ X , Algorithm 1 converges to the game’s
(necessarily) unique Nash equilibrium (a.s.).

The above results show that (MXL) converges to stable
equilibria under very mild assumptions on the underlying
stochasticity (zero-mean errors and finite conditional variance).
Building on this, our next result shows that local stability
implies local convergence with arbitrarily high probability:

Theorem 4. Assume that Algorithm 1 is run with feedback sat-
isfying (H1) and (H2), and a small enough step-size sequence
γn with

∑∞
n=1 γ

2
n <

∑∞
n=1 γn = ∞. If X∗ is (locally) stable,

then it is locally attracting with arbitrarily high probability;
specifically, for every ε > 0, there exists a neighborhood Uε of
X∗ such that

�(X(n)→ X∗ | X(1) ∈ Uε) ≥ 1 − ε. (19)

Theorem 4 is proven in Appendix D. The key difference
with the proof of Theorem 3 is that, since we only assume the
existence of a locally stable equilibrium X∗, the drift of (MXL)
does not point towards X∗ globally, so X(n) may exit the basin
of attraction of X∗ in the presence of high uncertainty. However,
by invoking (H2) and Doob’s maximal inequality for martingale
difference sequences [35], it can be shown that this happens
with arbitrarily small probability, leading to the probabilistic
convergence result (19).

Furthermore, as in the case of globally stable equilibria, we
also have the following easy-to-check convergence criterion:

Corollary 2. Let X∗ be a Nash equilibrium of G such that
D(X∗) ≺ 0. Then (MXL) converges locally to X∗ with arbi-
trarily high probability.

B. Rate of convergence

Theorems 2–4 give a fairly complete picture of the quali-
tative convergence properties of (MXL): the algorithm’s only
possible end-states are Nash equilibria, and the existence of
a globally (resp. locally) stable Nash equilibrium implies its
global (resp. local) convergence. On the other hand, these
results do not address the quantitative aspects of the algorithm’s
long-term behavior (for instance, its convergence speed); in
what follows, we study precisely this question.

We begin by introducing the so-called quantum Kull-
back–Leibler divergence (or von Neumann relative entropy)
[30] defined here as:

DKL(X∗,X) = tr[X∗(log X∗ − log X)]. (20)
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By Klein’s inequality [30], DKL(X∗,X) ≥ 0 with equality if and
only if X = X∗, so DKL(X∗,X) represents a (convex) measure of
the distance between X and X∗. With this in mind, we introduce
below the following quantitative measure of stability:

Definition 3. Given B > 0, X∗ is called B-strongly stable if

tr[(X − X∗) V(X)] ≤ −B DKL(X∗,X) for all X ∈ X . (21)

Under this refinement of equilibrium stability,8 we obtain the
following quantitative result:

Theorem 5. Assume that Algorithm 1 is run with the step-size
sequence γn = γ/n and gradient observations satisfying (H1)
and (H2). If X∗ is B-strongly stable and 1 < Bγ ≤ 2, we have

�[DKL(X∗,X(n))] (22)

for all n ≥ 2. In particular:

�[‖X(n) − X∗‖] = O(n−1/2). (23)

The explicit convergence rate provided by Theorem 5
(proven in Appendix E) can be finetuned further by choosing
γ so as to minimize the constant γ2 max{2, 1/(Bγ − 1)} that
appears in (22). Carrying this out, the step-size sequence γn =

3/(2Bn) leads to the optimized convergence rate

�[DKL(X∗,X(n))] ≤
9V2

2B2n
. (24)

It is also possible to estimate the algorithm’s convergence rate
for equilibrium states that are only locally strongly stable. How-
ever, given that the algorithm’s convergence is probabilistic in
this case, the resulting bounds are also probabilistic and, hence,
more complicated to present.
Remark 2. Algorithm 1 could be run with γ > 2/B and a bound
similar to (22) would still hold for n ≥ dBγe. However, since the
optimized step-size γn = 3/(2Bn) that achieves (24) is already
covered by the condition Bγ ≤ 2, we do not present this more
general case here.

C. Practical implementation

We close this section with a discussion of certain issues
pertaining to the practical implementation of Algorithm 1:

a) On the step-size sequence γn: Using a decreasing step-
size γn in (MXL) may appear counter-intuitive because it im-
plies that new information enters the algorithm with decreasing
weights. As evidenced by Theorem 5, the reason for this is that
a constant step-size might cause the process to overshoot and
lead to an oscillatory behavior around the algorithm’s end-state.
In the noiseless, deterministic regime, these oscillations can be
dampened by using forward-backward splitting or accelerated
descent methods [4]. However, in the presence of noise, the
use of a decreasing step-size is essential in order to dissipate
measurement noise and other stochastic effects, explaining why
it is not possible to improve on (22) by using a constant step.

That being said, the “`2− `1” summability condition
∑

n γ
2
n <∑

n γn = ∞ required by Theorems 2–4 is closely linked to the
finite mean squared error hypothesis (H2). In practice however,

8Since DKL(X∗,X) ≥ 0 with equality if and only if X = X∗, it follows that
strongly stable states are necessarily stable.

the feedback noise process Z(n) often satisfies tighter mo-
ment bounds (e.g. Gaussian/exponential processes have finite
moments of all orders), so this summability condition can be
relaxed further in order to allow for more aggressive policies of
the form γn ∝ 1/nβ for some β ≤ 1/2.

To that end, consider the q-th moment condition

�[‖Z(n)‖q∞ | Fn−1] ≤ σq
∗ for some σ∗ > 0. (H2′)

Under this refinement of (H2), our analysis in Appendices B–D
shows that Theorems 2–4 continue to hold under the milder
step-size summability condition

∑
n γ

1+q/2
n <

∑
n γn = ∞.

Specifically, as long as Z(n) has finite moments up to some
order q > 2(1 − β)/β, it is possible to use a step-size policy of
the form γn ∝ 1/nβ for any β ∈ (0, 1]. We use this observation in
Section VI where we carry out an extensive numerical analysis
of Algorithm 1 with step-sizes of the form γn ∝ 1/

√
n.

Finally, we also note here that it is possible for each player
to choose their own step-size policy, provided that the summa-
bility requirements discussed above hold for each player sep-
arately (see Proposition C.2 in Appendix C). This property of
MXL becomes particularly important in conjunction with the
possibility of asynchronous implementation described below.

b) Distributed implementation: An implicit assumption
in (MXL) is that user updates – albeit local – are concurrent.
This can be achieved via a global update timer that synchronizes
the players’ updates; however, in a fully decentralized setting,
even this degree of coordination may be challenging to attain.
In light of this, we discuss below an asynchronous variant of
Algorithm 1 where each player’s updates follow an individual,
independent schedule.

Specifically, assume that each player k ∈ K has an individual
timer that triggers an UpdateEvent, i.e. a request for gradient
feedback and, subsequently, an update of Xk. Of course, the
players’ gradient estimates V̂k will then be subject to delays and
asynchronicities (in addition to noise), so the update structure
of Algorithm 1 must be modified appropriately. To that end, let
Kn ⊆ K be the set of players that update their actions at the
n-th overall UpdateEvent (typically |Kn| = 1 if players update
at random times), and let dk(n) be the corresponding number of
epochs that have elapsed since the last update of player k. We
then obtain the following asynchronous variant of (MXL):

Xk(n) = Ak
exp(Yk(n − 1))

1 + ‖exp(Yk(n − 1))‖
,

Yk(n) = Yk(n − 1) + γnk 1{k ∈ Kn} · V̂k(n),
(25)

where nk denotes the number of updates performed by player k
up to epoch n, and the (asynchronous) estimate V̂k(n) satisfies

�[V̂k(n) |Fn−1] = Vk(X1(n− d1(n)), . . . ,XK(n− dK(n))). (26)

To extend our convergence analysis to this setting, a possible
way would be to exploit the asynchronous stochastic approxi-
mation analysis of [36, 37]. However, this analysis would take
us too far afield, so we relegate it to future work.

c) Computational complexity and numerical stability:
From the point of view of computational complexity, the bot-
tleneck of each iteration of Algorithm 1 is the matrix exponen-
tiation step Yk 7→ exp(Yk). Since matrix exponentiation has the
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TABLE I
wireless network simulation parameters

Parameter Value
Cell size (rectangular) 1 km

User density 500 users/km2

Time frame duration 5 ms
Wireless propagation model COST Hata

Central frequency 2.5 GHz
Total bandwidth 11.2 MHz

OFDM subcarriers 1024
Subcarrier spacing 11 kHz

Spectral noise density (20 ◦C) −174 dBm/Hz
Maximum transmit power Pmax = 33 dBm

Non-radiative power consumption Pc = 20 dBm
Tx/Rx antennas per link 4/8

same complexity as matrix multiplication, this step has polyno-
mial complexity with a low degree on the input dimension of
Xk. In particular, each exponentiation requires O(Mω

k ) floating
point operations, where the complexity exponent can be as low
as ω = 2.373 if the players employ fast Coppersmith–Winograd
matrix multiplication methods [38].

Finally, regarding the numerical stability of Algorithm 1,
the only possible source of arithmetic errors is the exponen-
tiation/normalization step. Indeed, if the eigenvalues of Yk

are large, this step could incur an overflow where both the
numerator and the denominator evaluate to machine infinity.
This potential instability can be fixed as follows: If yk denotes
the largest eigenvalue of Yk and we let Y′k = Yk − ykI, the
algorithm’s exponentiation step can be rewritten as:

Xk ←
exp(Y′k)

exp(−yk) + ‖exp(Y′k)‖
. (27)

Thanks to this shift, the elements of the numerator are now
bounded from above by 1 (because the largest diagonal element
of Y′k is eyk−yk = 1), so there is no danger of encountering a
numerical indeterminacy of the type Inf/Inf. Thus, to avoid
computer arithmetic issues, we employ the stable expression
(27) in all numerical implementations of Algorithm 1.

d) Updates and feasibility: As we discussed earlier, the
exponentiation/normalization step of Algorithm 1 ensures that
the players’ action variables Xk(n) satisfy the game’s feasi-
bility constraints (2) at each stage n. In the noiseless case
(Z = 0), feasibility is automatic because, by construction, Vk

(and, hence, Yk) is Hermitian. That said, in the presence of
noise, there is no reason to assume that the estimates V̂k are
Hermitian, so the updates Xk may also fail to be feasible. To
rectify this, we tacitly assume that each player corrects such
errors by replacing V̂k with (V̂k + V̂†k)/2 in (MXL). Since this
error-correcting operation is linear in its input, Hypotheses (H1)
and (H2) continue to apply, and our analysis holds verbatim.

VI. Numerical Results
In this section, we assess the performance of MXL via nu-

merical simulations. For concreteness, we focus on the case of
energy efficiency maximization in practical multi-user MIMO
networks (cf. Section II-C), but our conclusions apply to a wide
range of parameters and scenarios. To the best of our knowl-
edge, this comprises the first distributed solution scheme for

general multi-user/multi-antenna/multi-carrier networks under
imperfect feedback/CSI and mobility considerations.

Our basic network setup consists of a macro-cellular
OFDMA wireless network with access points deployed on a
rectangular grid with cell size 1 km (for a quick overview
of simulation parameters, see Table I). Signal transmission
and reception occurs over a 10 MHz band divided into 1024
subcarriers around a central frequency of fc = 2.5 GHz. We
further assume a frame-based time-division duplexing (TDD)
scheme with frame duration T f = 5 ms: transmission takes
place during the uplink phase while the network’s access points
process the received signal and provide feedback during the
downlink phase. Finally, signal propagation is modeled after
the widely used COST Hata model with spectral noise density
equal to −174 dBm/Hz at 20 ◦C.

The network is populated by wireless transmitters (users)
following a homogeneous Poisson point process with inten-
sity ρ = 500 users/km2. Each wireless transmitter is further
assumed to have 4 transmit antennas, a maximum transmit
power of Pmax = 40 dBm and circuit (non-radiative) power
consumption of Pc = 20 dBm. In each cell, orthogonal fre-
quency division multiplexing (OFDM) subcarriers are allocated
to wireless users randomly so that different users are assigned
to disjoint carrier sets. We then focus on a set of K = 25 users,
each located at a different cell and sharing S = 8 common
subcarriers. Finally, at the receiver end, we consider 8 receive
antennas per connection and a receiver noise figure of 7 dB.

To assess the performance and robustness of the MXL al-
gorithm, we first focus on a scenario with stationary users
and static channel conditions. Specifically, in Fig. 2, each user
runs Algorithm 1 with a variable step-size γn ∼ n−1/2 and
initial transmit power P0 = Pmax/2 = 26 dBm (allocated
uniformly across different antennas and subcarriers), and we
plot the users’ transmit energy efficiency over time. For bench-
marking purposes, we first assume that users have perfect CSI
measurements at their disposal. In this deterministic regime,
the algorithm converges to a stable equilibrium within a few
iterations (for simplicity, we only plotted 4 users with diverse
channel characteristics). In turn, this rapid convergence leads to
drastic gains in energy efficiency, ranging between 3× and 6×
over uniform power allocation schemes.

Subsequently, this simulation cycle was repeated in the
presence of observation noise and errors. The intensity of the
feedback noise was quantified via the relative error level of the
gradient observations V̂, i.e. the standard deviation of V̂ divided
by its mean (so a relative error level of z% means that, on
average, the observed matrix V̂ lies within z% of its true value).
We then plotted the users’ transmit energy efficiency over time
for noise levels z = 25%, 50%, and 100% (corresponding to
moderate, high, and extremely high uncertainty respectively).
Fig. 2 shows that the network’s rate of convergence to a
Nash equilibrium is negatively impacted by the magnitude of
the noise; remarkably however, MXL retains its convergence
properties and the network’s users achieve a 100% per capita
gain in energy efficiency within a few tens of iterations, even
under extremely high uncertainty (of the order of z = 100%).

To examine the algorithm’s performance in a fully dynamic
network environment, Fig. 3 focuses on mobile users with
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Fig. 2. Performance of MXL in the presence of noise. In all figures, we plot the transmit energy efficiency of wireless users that employ Algorithm 1 in a wireless
network with parameters as described in the main text (to reduce graphical clutter, we only plotted 4 users with diverse channel characteristics). In the absence
of noise (upper left), the system converges to a stable Nash equilibrium state (unmarked dashed lines) within a few iterations. The convergence speed of MXL is
slower in the presence of noise but the algorithm remains convergent under very high degrees of uncertainty (up to relative error levels of 100%; bottom right).

channels that vary with time due to (Rayleigh) fading, path loss
fluctuations, etc. To simulate this scenario, we used the standard
extended typical urban (ETU) model for the users’ environment
and the extended pedestrian A (EPA) and extended vehicular A
(EVA) models to emulate pedestrian (3–5 km/h) and vehicular
movement (30–130 km/h) respectively [39]. In Fig. 3(a), we
plotted the channel gains (tr[HH†]) of 4 users with diverse
mobility and distance characteristics (two pedestrian and two
vehicular users, one closer and one farther away from their
intended receiver). As can be seen, the users’ channels exhibit
significant fluctuations (in the range of a few dB) over different
time scales, so the Nash equilibrium set of the energy efficiency
game described in Section II-C will evolve itself over time.
Nevertheless, despite the channels’ variability, Fig. 3(b) shows
that MXL adapts to this highly volatile network environment
very quickly, allowing users to track the game’s instantaneous
equilibrium with remarkable accuracy. For comparison, we also
plotted the users’ achieved energy efficiency under a uniform
power allocation policy, which is known to be optimal under
isotropic fading conditions [40]. Because urban environments
are not homogeneous and/or isotropic (even on average), uni-
form power allocation fails to adapt and performs consistently
worse than MXL (achieving an energy efficiency ratio between
2× and 6× lower than that of MXL).

Finally, in Fig. 4 we examine the gap between Nash equilib-
rium solutions and socially optimum states that maximize the
system’s overall energy efficiency. To simplify the analysis, we
focus on the case where all users transmit to a common receiver
who employs a centralized successive interference cancellation
scheme to decode the users’ messages.9 In this setting, the
system’s Shannon sum-rate is given by [41]:

Rsys(Q1, . . . ,QK) = log det
(
I +

∑
k HkQkH†k

)
, (28)

leading to the system-wide energy efficiency expression

EEsys(Q1, . . . ,QK) =
Rsys(Q1, . . . ,QK)∑

k(Pc + tr(Qk))
. (29)

To maximize (29), it is possible to employ a centralized
MXL scheme with the same update structure as Algorithm 1,
but geared instead to the objective (29). In brief, the basic
elements are as follows: First, the variable change of Section
II can be used to define a new set of variables Z = Z(Q) that
map the problem (29) to an equivalent concave problem with
objective function usys(Z) and feasible region Z , as in (13).
The centralized matrix exponential learning (CMXL) algorithm

9This (Gaussian) MAC model is a special case of the interference channel
described in Section II. In general interference channels, the sum-rate Rsys is
non-concave, so the determination of socially optimum states becomes an NP-
hard problem whose solution is beyond the scope of the current paper.
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(b) Equilibrium tracking under mobility

Fig. 3. Performance of MXL in a dynamic network environment with mobile users moving at v ∈ {3, 5, 30, 130} km/h. The users’ achieved energy efficiency
tracks the system’s (evolving) equilibrium remarkably well, even under rapidly changing channel conditions.
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Fig. 4. Unilateral versus system-wide energy efficiency maximization.

is then defined by replacing the gradient step in (MXL) with
∇Zusys(Z), and then defining a modified exponential mapping
as in Proposition A.1.

In Fig. 4, we assess the performance of Algorithm 1 with
respect to the system-wide objective (29) by plotting the sys-
tem’s energy efficiency for K = 5 users that employ the
MXL and CMXL methods described above. Even when users
follow the non-cooperative MXL algorithm, they reduce power
significantly so the system’s energy efficiency ends up being
within 5% of its maximum value – a surprisingly small gap
between socially and unilaterally efficient states.

VII. Conclusions and Perspectives
In this paper, we examined a distributed matrix exponen-

tial learning algorithm for stochastic semidefinite optimization
problems and games that arise in key areas of signal processing
and wireless communications (ranging from image-based simi-
larity search to MIMO systems). The main idea of the proposed

method is to track the players’ individual payoff gradients in
a dual, unconstrained space, and then map this process back
to the players’ action spaces via an “exponential mirror” step.
Thanks to the aggregation of the players’ payoff gradients,
the algorithm is capable of operating under uncertainty and
feedback noise, two impediments that can have a detrimental
effect on more aggressive best-response methods.

To analyze the proposed algorithm, we introduced the notion
of a stable Nash equilibrium, and we showed that the algorithm
is globally convergent to such equilibria – or locally convergent
when an equilibrium is only locally stable. Our convergence
analysis also revealed that, on average, the algorithm converges
to an ε-neighborhood of a Nash equilibrium (in terms of the
Kullback–Leibler distance) within O(1/ε2) iterations. To val-
idate our theoretical analysis, we also tested the algorithm’s
performance in realistic multi-carrier/multiple-antenna wireless
scenarios where several users seek to maximize their energy ef-
ficiency: in this setting, users quickly reach a Nash equilibrium
and attain gains between 100% and 500% in energy efficiency,
even under very high uncertainty.

The above results are particularly promising and suggest that
our analysis applies to an even wider setting than the game-
theoretic framework (1) – for instance, games with convex
action sets that are not necessarily of the form (2). Another
natural question that arises is whether it is possible to run the
proposed MXL without any gradient information. We intend to
explore these directions at depth in future work.

Appendix A
The Exponentiation Step

In this appendix, our goal will be to establish certain proper-
ties of the exponential map of Algorithm 1 that are crucial in the
stationarity and convergence analysis of the next appendices.
For simplicity, we only treat the case Ak = 1; the general case
follows by a trivial rescaling so we do not present it.
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With a fair degree of hindsight, we begin by introducing the
modified von Neumann entropy [30]:

h(X) = tr
[
X log X

]
+ (1 − tr(X)) log(1 − tr(X)). (A.1)

The convex conjugate of h over the spectrahedron D = {X ∈
�M

+ : tr(X) ≤ 1} is then defined as:

h∗(Y) = max{tr[YX] − h(X) : X ∈ D}, (A.2)

with Y ∈ �M . As it turns out, the exponentiation step of the XL
algorithm is simply the (matrix) derivative of h∗:

Proposition A.1. With notation as above, we have:

h∗(Y) = log
(
1 + tr(exp(Y))

)
, (A.3)

and
∇h∗(Y) = G(Y) ≡

exp(Y)
1 + tr[exp(Y)]

. (A.4)

Proof: Since the von Neumann entropy is strictly convex
[30] and becomes infinitely steep at the boundary of X , it
follows that the maximization problem (A.2) admits a unique
solution X ∈ D◦. Hence, by the first-order Karush–Kuhn–
Tucker (KKT) conditions for the problem (A.2), we get:

Y − log X + log(1 − tr(X))I = 0, (A.5)

where we used the fact that ∇h(X) = I+log X−log(1−tr(X))I−I
= log X − log(1 − tr(X))I. Exponentiating (A.5) then yields

X = (1 − tr(X)) exp(Y), (A.6)

and, after taking traces on both sides, we obtain tr(X) =

tr(exp(Y))/[1 + tr(exp(Y))]. Combining the above then yields

X =
exp(Y)

1 + tr[exp(Y)]
, (A.7)

and our claim follows by substituting in (A.2).
In addition to the above, the von Neumann entropy also

provides a “congruence” measure between the primal variables
X and the auxiliary “dual” variables Y. Specifically, following
[31], we introduce here the Fenchel coupling:

F(X,Y) = h(X) + h∗(Y) − tr[YX] = DKL(X,G(Y)). (A.8)

By Fenchel’s inequality, we have F(X,Y) ≥ 0 with equality
if and only if Y = ∇h(X) – or, equivalently, iff X = G(Y).
More importantly for our purposes, we also have the following
approximation lemma:

Proposition A.2. For all X ∈ D and for all Y,Z ∈ �M , we
have

F(X,Y + Z) ≤ F(X,Y) + tr[Z (G(Y) − X)] + ‖Z‖2∞. (A.9)

Proof: By the definition of the Fenchel coupling, we get:

F(X,Y + Z) = h(X) + h∗(Y + Z) − tr[(Y + Z)X]

≤ h(X) + h∗(Y) + tr[Z G(Y)] + ‖Z‖2∞
− tr[YX] − tr[ZX]

= F(X,Y) + tr[Z(G(Y) − X)] + ‖Z‖2∞, (A.10)

where the expansion of h∗ in the second line follows from the
fact that the von Neumann entropy is 1/2-strongly convex (from
the duality of strong convexity and strong smoothness, and the
fact that h∗ is 2-strongly smooth) [3].

Appendix B
Stationarity Analysis

We begin with the proof of Theorem 2 regarding the possible
termination states of Algorithm 1:

Proof of Theorem 2: Let V∗ = V(X∗) and assume that
X∗ is not a Nash equilibrium. By Eq. (14), this implies that
tr[(X′k − X∗k)V∗k] > 0 for some player k ∈ K and some X′ ∈ X k.
Therefore, by continuity, there exists some a > 0 such that

tr[(X′k − Xk) V′′k ] ≥ a > 0, (B.1)

for all X in a small enough neighborhood U of X∗ in X and for
all V′′k sufficiently close to V∗k.

Since X(n) → X∗ as n → ∞, we may assume that X(n) ∈ U
for all n.10 The recursion (MXL) then yields:

Y(n) = Y(0) + τnV̄(n), (B.2)

where we have set τn =
∑n

j=1 γ j and

V̄(n) =
1
τn

n∑
j=1

γ jV̂( j) =
1
τn

n∑
j=1

γ jV(X( j)) +
1
τn

n∑
j=1

γ jZ( j)

(B.3)
denotes the γ-weighted time average of the received gra-
dient estimates V̂(n). By the strong law of large num-
bers for martingale differences [35, Theorem 2.18], we get
limn→∞ n−1 ∑n

j=1 Z( j) = 0 (a.s.), so the last term of (B.3) also
converges to zero (a.s.) by Hardy’s summability criterion [42,
Theorem 14] applied to the weight sequence w j,n = γ j/τn.11

Thus, given that X(n) ∈ U for all n, we conclude that V̄(n) →
V∗ as n→ ∞.

Now, with notation as in Appendix A, let hk(Xk) =

tr[Xk log Xk] + (1 − tr(Xk)) log(1 − tr(Xk)). Since Xk(n + 1) =

∇h∗k(Yk(n)) by Prop. A.1, we will also have ∇hk(Xk(n + 1)) =

Yk(0)+τnV̄k(n) by the general theory of convex conjugation. In
turn, this implies that

hk(X′k)− hk(Xk(n + 1)) ≥ tr[(Yk(0) + τnV̄k(n)) (X′k −Xk(n + 1))],
(B.4)

by the convexity of hk. However, since limn→∞ V̄k(n) = V∗k and
limn→∞ τn = ∞, Eq. (B.1) yields hk(X′k) − hk(Xk(n + 1)) & aτn,
so hk(X′k) − hk(Xk(n + 1))→ ∞ as n→ ∞, a contradiction.

Appendix C
Global Convergence

We begin our analysis with an auxiliary result for (MXL) in
continuous time. Specifically, consider the dynamics

Ẏ = V(X),
X = G(Y),

(MXLc)

obtained by taking the continuous-time limit of (MXL). Our
first auxiliary result is that globally stable states are globally
attracting under (MXLc):

10Note here that the more general sumability requirement
∑∞

n=1 γ
1+q/2
n <∑∞

n=1 γn = ∞ is not affected if we start the sequence at some finite n0 > 0.
11If every player is using their individual step-size sequence γk,n, the sums

in (B.3) can be decomposed into player-by-player components, and the law of
large numbers and Hardy’s criterion can be applied to each player separately to
yield the required result.
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Proposition C.1. Let X∗ be a globally stable Nash equilibrium
and let X(t) be a solution of (MXLc). Then, limt→∞ X(t) = X∗.

Proof: Let H(t) = F(X∗,Y(t)). Then

Ḣ = tr[Ẏ∇h∗(Y)] − tr[Ẏ X∗] = tr[(X − X∗) V(X)], (C.1)

i.e. Ḣ ≤ 0 with equality if and only if X = X∗ (recall
that X∗ is assumed globally stable). This implies that H(t) is
nonincreasing, and hence converges to some c ≥ 0 as t → ∞.
Hence, by compactness, there exists some X̂ ∈ X and a
sequence tn ↑ ∞ such that X(tn)→ X̂ as n→ ∞.

Assume now that X̂ , X∗, so there exists some a > 0 and
a neighborhood U of X̂ such that tr[(X − X∗) V(X∗)] ≤ −a for
all X ∈ U. Since ‖Ẋ‖ is bounded from above (recall that G is
Lipschitz), there exists some δ > 0 such that X(t) ∈ U for all
t ∈ [tn, tn + δ] and all n ≥ 0. In that case however, (C.1) yields:

lim
t→∞

H(t) ≤ H(0) +

∞∑
n=1

∫ tn+δ

tn
tr[(X(t) − X∗) V(X(t))] dt

≤ H(0) −
∞∑

n=1

aδ = −∞, (C.2)

a contradiction. This shows that X∗ is the only potential ω-limit
point of X(t); since X(t) admits at least one ω-limit, it follows
that X(t)→ X∗, as claimed.

With this auxiliary result at hand, we are finally in a position
to prove our global convergence result:

Proof of Theorem 3: We first note that the recursion
(MXL) can be written in the more succinct form

Y(n) = Y(n − 1) + γn [V(G(Y(n − 1))) + Z(n)] . (C.3)

Since V(X) is differentiable for almost all X ∈ X by Alexan-
drov’s theorem, Propositions 4.1 and 4.2 in [33] show that X(n)
is an asymptotic pseudotrajectory (APT) of (MXLc), i.e. the
sequence of play generated by (MXL) are asymptotically close
to solution segments of (MXLc) of arbitrary length – for a
precise statement, see [33, Sec. 3].12

Assume now that X(n) remains at a minimal positive distance
from X∗. Since X∗ is globally stable, we will have tr[(X(n) −
X∗) V(X(n))] ≤ −a for some a > 0 and for all n. Furthermore,
if we let Dn = F(X,Y(n − 1)), Proposition A.2 yields:

Dn+1 = F(X∗,Y(n − 1) + γnV̂(n))

≤ Dn + γnvn + γnξn + γ2
n‖V̂(n)‖2∞, (C.4)

where we have set vn = tr[(X(n) − X∗) V(X(n))] and ξn =

tr[(X(n) − X∗) Z(n)]. Hence, telescoping (C.4) yields:

Dn+1 ≤ D1 − τn

(
a −

∑n
j=1 w j,n ξ j

)
+

∑n
j=1 γ

2
j‖V̂( j)‖2∞, (C.5)

where τn =
∑n

j=1 γ j and w j,n = γ j/τn. By the strong law of
large numbers for martingale differences [35, Theorem 2.18],
we have n−1 ∑n

j=1 ξ j → 0 (a.s.); hence, given that γn+1/γn ≤ 1,
Hardy’s summability criterion [42, Thm. 14] applied to the
sequence w j,n = γ j/τn yields

∑n
j=1 w j,n ξ j → 0 (a.s.). Fi-

nally, since �[
∑n

j=1 γ
2
j‖V̂( j)‖2∞] ≤ V2 ∑∞

j=1 γ
2
j < ∞, Doob’s

12In particular, [33, Prop. 4.2] shows that, under (H2′), Y(n) is an APT of
(MXLc) for any step-size sequence γn such that

∑
n γ

1+q/2
n <

∑
n γn = ∞.

martingale convergence theorem [35, Theorem 2.5] shows that∑n
j=1 γ

2
j‖V̂( j)‖2∞ is finite (a.s.).13

Since τn → ∞ by assumption, the above implies that the RHS
of (C.5) tends to −∞ (a.s.); this contradicts the fact that Dn ≥ 0,
so we conclude that X(n) visits a compact neighborhood of
X∗ infinitely often (viz. there exists a sequence n j ↑ ∞ such
that X(n j) lies in said neighborhood). Since X∗ attracts any
initial condition G(Y(0)) under the continuous-time dynamics
(MXLc), Theorem 6.10 in [33] shows that X(n) converges to X∗
(a.s.), as claimed.

We close this section by showing that Y(n) remains an APT
of (MXLc) even if each player employs their individual step-
size policy γk,n:

Proposition C.2. Suppose (MXL) is run with player-specific
step-size policies γk,n such that

∑
n γ

2
k,n <

∑
n γk,n = ∞ for all

k ∈ K. Then, Y(n) is an APT of (MXLc).

Proof: Since the blocks Zk and Zk′ are disjoint for k ,
k′, we obtain ‖

∑
k γk,nZk(n)‖2 =

∑
k‖γk,nZk(n)‖2 in the product

norm on X . Thus, Burkholder’s inequality [35, Chap. 2] yields

�

[
sup

j<m<n

∥∥∥∥∥∑m

`= j

∑
k∈K

γ2
k,`Zk(`)

∥∥∥∥∥]
≤ C

∑
k∈K
�

[∑n

`= j
γ2

k,`‖Zk,`‖
2
∞

]
, (C.6)

for some universal constant C. To proceed, let ∆(t,T ) =

sup0≤h≤T

∥∥∥∥∫ t+h
t Z̄(s) ds

∥∥∥∥
∞

where Z̄ is the linear interpolation of
the discrete-time process Z(n) at each epoch n [33, p. 12]. Then,
by applying’s Hölder’s inequality as in [33, p. 15], (C.6) readily
gives �[∆(t,T )2] ≤ C

∑
k∈K

∫ t+T
t γ̄2

k (s) ds, where, in similar
notation, γ̄k(t) denotes the linear interpolation of the discrete-
time step-size sequence γk,n. We thus get∑

m

�[∆(mT,T )2] ≤ CT

∑
k∈K

∫ ∞

0
γ̄2

k (s) ds

= O
∑

k∈K

∞∑
n=0

γ2
k,n

 < ∞, (C.7)

so limm→∞ ∆(mT,T ) → 0 by the Borel–Cantelli lemma. Argu-
ing as in the proof of [33, Prop. A.1], it then follows that Y(n)
is an APT of (MXLc), as claimed.
Remark 3. Applying Hölder’s inequality [33, p. 15] to the
derivation of (C.7) above, Proposition C.2 can also be extended
to the case where (H2′) holds and the players’ step-sizes satisfy∑∞

n=1 γ
1+q/2
k,n < ∞ for all k ∈ K. The rest of the argument remains

essentially identical so, for concision, we omit it.

Appendix D
Local Convergence

Proof of Theorem 4: By the definition of local stability,
there exists a neighborhood U of X∗ in X such that (VS) holds
for all X ∈ U. Assume now that m > 0 is taken sufficiently
small so that G(Y) ∈ U whenever F(X∗,Y) < 3m (the existence
of such a positive m follows from the fact that G(Y) → X∗ if
F(X∗,Y)→ 0). By Eq. (C.1), it then follows that the set U3m =

13By Hölder’s inequality [33, p. 15], the same conclusion holds under (H2′)
and the summability condition

∑
n γ

1+q/2
n = ∞.
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{Y : F(X∗,Y) ≤ 3m} is invariant under (MXLc). Hence, by
shadowing the proof of Theorem 3, it suffices to show that there
exists an open set Uε ⊆ U3m such that�(Y(n) ∈ U3m for all n) ≥
1 − ε whenever Y(0) ∈ Uε.

To that end, let Dn = F(X∗,Y(n−1)) and assume that D1 ≤ m.
Then, (C.4) yields

Dn ≤ m +

n∑
j=1

γ jv j +

n∑
j=1

γ jξ j +

n∑
j=1

γ2
j‖V̂( j)‖2∞, (D.1)

where v j = tr[(X( j) − X∗) V( j)] and ξ j = tr[(X( j) − X∗) Z( j)].
We first claim that supn

∑n
j=1 γ jξ j ≤ m for all n with probability

at least 1 − ε/2 if γ j is chosen appropriately. Indeed, letting
S n =

∑n
j=1 γ jξ j, Doob’s inequality [35, Theorem 2.1] gives

�
(
sup1≤ j≤n|S j| ≤ m

)
≤
�[|S n|

2]
m2 ≤

σ2
∗ ‖X ‖2

∑n
j=1 γ

2
j

m2 , (D.2)

where we used the fact that �[ξ jξ`] = 0 if j , `. Hence, letting
Γ2 =

∑∞
j=1 γ

2
j , it follows that �(supn S n ≤ ε) ≤ Γ2σ

2
∗ ‖X ‖2/m2 ≤

ε/2 if Γ2 is sufficiently small. Moreover, letting Rn =∑n
j=1 γ

2
j‖V̂( j)‖2∞ and working as above, Doob’s inequality again

shows that �
(
supn Rn ≥ m

)
≤ m−1 limn→∞ �[Rn] ≤ m−1Γ2V2 ≤

ε
2 , if γn is taken small enough.14

Combining all of the above, we get Dn ≤ 3m+
∑n

j=1 γ jv j with
probability at least 1 − ε. Since G(U3m) ⊆ U by construction,
we have v j ≤ 0 for all j = 1, . . . , n, and we conclude that Dn ≤

3m with probability at least 1 − ε. This implies that �(Y(n) ∈
U3m for all n) ≥ 1 − ε, as claimed.

Appendix E
Rates of Convergence

In this last appendix, our goal is to derive the convergence
rate of matrix exponential learning:

Proof of Theorem 5: Let D̄n = �[F(X∗,Y(n − 1))] =

�[DKL(X∗,X(n))]. Then, taking expectations in (C.4) yields

D̄n+1 ≤ D̄n + γn �[tr[(X(n) − X∗) V(n)]] + γ2
n �[‖V̂(n)‖2∞]

≤ (1 − γnB)D̄n + γ2
nV2, (E.1)

where, in the second line, we used (18b) and the assumption
that X∗ is B-strongly stable. With this in mind, we claim that
D̄n ≤ A/n for all n ≥ 2, where A = max{2, 1/(Bγ − 1)}γ2V2.
Proceeding by induction, note that (E.1) yields D̄2 ≤ (1 −
Bγ)D̄1 + γ2V2 < γ2V2 ≤ A/2, so (22) holds for n = 2. Assume
now that D̄n ≤ A/n for some n ≥ 2, so it suffices to show that
D̄n+1 ≤ A/(n+1) as well. Clearly, with 1−B/γn = 1−Bγ/n ≥ 0
for all n ≥ 2 (by assumption), we only need to show that(

1 −
Bγ
n

) A
n

+
γ2V2

n2 ≤
A

n + 1
. (E.2)

Rearranging this last equation, we get nA ≤ (n + 1)(ABγ −
γ2V2). However, by definition, we have A ≥ γ2V2/(Bγ − 1) or,
equivalently, ABγ − γ2V2 ≥ A, and our claim follows.

Finally, for the bound (23), recall that h is (1/2)-strongly
convex over X [3], so DKL(X∗,X) ≥ 1

4‖X
∗ −X‖2 by the general

theory on Bregman divergences [5, p. 148].

14As in the proof of Theorem 3, Hölder’s inequality [33, Eq. 14] shows that
the same holds under (H2′) and the summability condition

∑
n γ

1+q/2
n = ∞.
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