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ABSTRACT

In this paper, we present a distributed matrix exponential
learning (MXL) algorithm for a wide range of distributed
optimization problems and games that arise in signal pro-
cessing and data networks. To analyze it, we introduce a
novel stability concept that guarantees the existence of a
unique equilibrium solution; under this condition, we show
that the algorithm converges even in the presence of highly
defective feedback that is subject to measurement noise, er-
rors, etc. For illustration purposes, we apply the proposed
method to the problem of energy efficiency (EE) maximiza-
tion in multi-user, multiple-antenna wireless networks with
imperfect channel state information (CSI), showing that users
quickly achieve a per capita EE gain between 100% and
400%, even under very high uncertainty.

Index Terms— Matrix exponential learning, stochastic
optimization, game theory, variational stability, uncertainty.

1. INTRODUCTION

The emergence of massively large heterogeneous net-
works operating in random, dynamic environments is putting
existing system design methodologies under enormous strain
and has intensified the need for distributed resource manage-
ment protocols that remain robust in the presence of random-
ness and uncertainty. To mention but an example, fifth gen-
eration (5G) mobile systems – the wireless backbone of the
emerging Internet of things (IoT) paradigm [1] – envision mil-
lions of connected devices interacting in randomly-varying
environments, typically with very stringent quality of ser-
vice (QoS) targets that must be met in a reliable, distributed
manner [2]. As such, the fusion of game theory, learning and
stochastic optimization has been identified as one of the most
promising theoretical frameworks for the design of efficient
resource allocation policies in large, networked systems [3].
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der grant no. SG-305123-MORE, the French ANR project NETLEARN
(ANR–13–INFR–004), the CNRS project REAL.NET-PEPS JCJC-2016, and
by ENSEA, Cergy-Pontoise, France.

In view of the above, this paper aims to provide a dis-
tributed learning algorithm for a broad class of concave games
and distributed optimization problems that arise in signal pro-
cessing and wireless communication networks. Specifically,
the proposed learning scheme has been designed with the
following operating properties in mind: (i) Distributedness:
player updates should be based only on local information and
measurements; (ii) Robustness: feedback and measurements
may be subject to random errors and noise; (iii) Stateless-
ness: players should not be required to observe the state (or
interaction structure) of the system; and (iv) Flexibility: play-
ers can employ the algorithm in both static and stochastic
environments.

To achieve this, we build on the method of matrix expo-
nential learning (MXL) that was recently introduced in [4, 5]
for throughput maximization in multiple-input and multiple-
output (MIMO) networks. The main idea of MXL is that each
player tracks the individual gradient of his utility function via
an auxiliary “score” matrix, possibly subject to randomness
and errors. The players’ actions are then computed via an
“exponential mirroring” step that maps these score matrices
to the players’ action spaces, and the process repeats.

2. RELATION TO PRIOR WORK

Our work here is related to the online matrix regulariza-
tion framework of [6] and the exponential weight (EW) algo-
rithm for multi-armed bandit problems [7] (the latter in the
case of vector variables on the simplex). MXL schemes have
also been proposed for regret minimization in time-varying
MIMO systems [8], the aim being to achieve a long-run aver-
age throughput that matches the best fixed policy in hindsight.
However, the “no-regret” properties derived in these works
are neither necessary nor sufficient to ensure convergence to
a solution of the underlying game (or optimization problem
in the case of a single decision-maker), so the relevant regret
minimization literature does not apply to our setting.

Specifically, we show here that: a) MXL can be applied to
a broad class of games and stochastic optimization problems
(including both matrix and vector variables); b) unlike [4, 5],



the algorithm’s convergence does not require the restrictive
structure of a concave potential game [9]; and c) MXL re-
mains convergent under very mild assumptions on the under-
lying stochasticity. Finally, to illustrate the practical benefits
of the MXL method, we apply it to the problem of energy effi-
ciency maximization in multi-user MIMO (MU-MIMO) net-
works with imperfect channel state information (CSI). To the
best of our knowledge, this comprises the first distributed so-
lution scheme for general MU-MIMO networks under noisy
feedback/CSI.

3. PROBLEM FORMULATION

Consider a finite set of optimizing players N = {1, . . . ,N},
each controlling a positive-semidefinite matrix variable Xi

with the aim of improving their individual well-being. As-
suming that this well-being is quantified by a utility (or
payoff ) function ui(X1, . . . ,XN), we obtain the coupled opti-
mization problem

for all i ∈ N
maximize ui(X1, . . . ,XN)

subject to Xi ∈ X i
(1)

where X i denotes the set of feasible actions of player i (obvi-
ously, when N = 1, this is a standard semidefinite optimiza-
tion problem). Specifically, motivated by applications to sig-
nal processing and wireless communications, we will focus
on feasible action sets of the general form

X i = {Xi < 0 : ‖Xi‖ ≤ Ai} (2)

where ‖Xi‖ =
∑M

m=1|eigm(Xi)| denotes the nuclear matrix (or
trace) norm of Xi, Ai is a positive constant, and the play-
ers’ utility functions ui are assumed individually concave and
smooth in Xi for all i ∈ N .1

The coupled multi-agent, multi-objective problem (1)
constitutes a game, which we denote by G. Problems of this
type are extremely widespread in several areas of signal pro-
cessing, ranging from computer vision [10, 11] and wireless
networks [5, 12–14], to matrix completion and compressed
sensing [15], especially in a stochastic setting where: a) the
objective functions ui are themselves expectations over an
underlying random variable; and/or b) the feedback to the
optimizers is subject to noise and/or measurement errors.

Setting aside for now any stochasticity issues, we turn to
the characterization of the solutions of (1). To this end, the
most widely used solution concept is that of a Nash equilib-
rium (NE), defined here as any action profile X∗ ∈ X which
is unilaterally stable, i.e.

ui(X∗) ≥ ui(Xi; X∗−i) for all Xi ∈ X i, i ∈ N . (3)

Thanks to the concavity of each player’s payoff function ui

and the compactness of their action space X i, the existence
1For flexibility, Xi may also be required to fit a specific block-diagonal

form (for instance, a diagonal matrix when working with vector variables);
however, for notational simplicity, we do not include this requirement in (2).

of a Nash equilibrium in the case of (1) is guaranteed by the
general theory of [16]. As for uniqueness, let

Vi(X) ≡ ∇Xi ui(Xi; X−i) (4)

denote the individual payoff gradient of player i, and let
V(X) ≡ diag(V1(X), . . . ,VN(X)). Rosen [17] showed that G
admits a unique equilibrium solution when V(X) satisfies the
so-called diagonal strict concavity (DSC) condition

tr[(X′ − X)
(
V(X′) − V(X)

)
] ≤ 0 for all X,X′ ∈ X , (DSC)

with equality if and only if X = X′.
More recently, this monotonicity condition was used by

Scutari et al. (see [13] and references therein) as the starting
point for the convergence analysis of a class of Gauss–Seidel
methods for concave games based on variational inequalities
[18]. Our approach is similar in scope but relies instead on
the following notion of stability:

Definition 1. An action profile X∗ ∈ X is called globally
stable if it satisfies the variational stability condition:

tr[(X − X∗) V(X)] ≤ 0 for all X ∈ X . (VS)

Obviously, if X∗ satisfies (VS), it is the unique Nash equi-
librium of the game; also, (VS) is implied by (DSC) but the
converse is not true [19]. In fact, as we show in the next sec-
tion, the variational stability condition (VS) plays a key role
not only in characterizing the structure of the game’s Nash
set, but also for determining the convergence properties of
the proposed learning scheme.

4. LEARNING UNDER UNCERTAINTY

In this section, we provide a distributed learning scheme
that allows players to converge to stable Nash equilibria in a
decentralized way under uncertainty information. Intuitively,
the main idea of the proposed method is as follows: At each
stage n = 0, 1, . . . of the process, each player i ∈ N esti-
mates the individual gradient Vi(X(n)) of his utility function
at the current action profile X(n), possibly subject to mea-
surement errors and noise. Subsequently, every player takes a
step along this gradient estimate, and “reflects” this step back
to X i via an exponential “mirror map”.

More precisely, we will focus on the following matrix ex-
ponential learning (MXL) scheme (see also Algorithm 1):

Yi(n + 1) = Yi(n) + γnV̂i(n),

Xi(n + 1) = Ai
exp(Yi(n + 1))

1 + ‖exp(Yi(n + 1))‖
,

(MXL)

where:

1. n = 0, 1, . . . denotes the stage of the process.
2. the auxiliary matrix variables Yi(n) are initialized to an

arbitrary (Hermitian) value.



Algorithm 1 Matrix exponential learning (MXL).
Parameter: step-size sequence γn ∼ 1/na, a ∈ (0, 1].
Initialization: n← 0; Yi ← any Mi × Mi Hermitian matrix.
Repeat

n← n + 1;
foreach player i ∈ N do

play Xi ← Ai
exp(Yi)

1 + ‖exp(Yi)‖
;

get gradient feedback V̂i;
update auxiliary matrix Yi ← Yi + γnV̂i;

until termination criterion is reached.

3. V̂i(n) is a stochastic estimate of the individual gradient
Vi(X(n)) of player i at stage n (more on this below).

4. γn is a decreasing step-size sequence, typically of the
form γn ∼ 1/na for some a ∈ (0, 1].

If there were no constraints for the players’ actions, Yi(n)
would define an admissible sequence of play and, ceteris
paribus, player i would tend to increase his payoff along
this sequence. However, this simple ascent scheme does not
suffice in our constrained framework, so Yi(n) is first expo-
nentiated and subsequently normalized in order to meet the
feasibility constraints (2).2

Of course, the outcome of the players’ gradient tracking
process depends crucially on the quality of the gradient feed-
back V̂i(n) that is available to them. To that end, we do not
assume that players can observe each other’s actions; instead,
we only posit that each player has access to a “black box”
feedback mechanism – an oracle – that returns an estimate of
their individual gradient at a given action profile.3 With this in
mind, we will consider the following sources of uncertainty:

i) The players’ gradient observations are subject to noise
and/or measurement errors.

ii) The players’ utilities are stochastic expectations of the
form ui(X) = �[ûi(X;ω)] for some random variable ω,
and players can only observe the realized gradient of ûi.

On account of this, we will focus on the general model:

V̂i(n) = Vi(X(n)) + Zi(n), (5)

where the noise process Z(n) satisfies the hypotheses:

(H1) Zero-mean:
�[Z(n) | X(n)] = 0. (H1)

(H2) Finite mean squared error (MSE):

�[‖Z(n)‖2∞ | X(n)] ≤ σ2
∗ for some σ∗ > 0. (H2)

The statistical hypotheses (H1) and (H2) above are fairly mild
and allow for a broad range of estimation scenarios. In more

2Note here that exp(Yi) � 0 since the gradient matrices Vi are automati-
cally Hermitian (as derivatives of a real function).

3For ways to construct such oracles in a distributed setting, see [5, 20, 21].

detail, the zero-mean hypothesis (H1) is a minimal require-
ment for feedback-driven systems, simply positing that there
is no systematic bias in the players’ information. Likewise,
(H2) is a bare-bones assumption for the variance of the play-
ers’ feedback, and it is satisfied by most common error pro-
cesses – such as uniform, Gaussian, log-normal, and all sub-
exponential distributions.

With all this at hand, our main result is as follows:

Theorem 1. Assume that (MXL) is run with a step-size γn

such that
∑∞

n=1 γ
2
n <

∑∞
n=1 γn = ∞ and gradient estimates

satisfying (H1) and (H2). If X∗ is globally stable, then X(n)
converges to X∗ (a.s.).

Sketch of proof. The proof is relatively involved so, due to
space limitations, we only sketch here the main steps thereof;
for a detailed treatment, see [19, 22].

The first step is to consider a deterministic, “mean field”
approximation of (MXL) in continuous time, namely

Ẏi = Vi(X(t)),

X(t) =
Ai exp(Yi(t))

1 + ‖exp(Yi(t))‖
.

(6)

If X∗ is stable, it can be shown that the so-called quantum
divergence DKL(X∗,X) = tr[X∗ (log X − log X∗)] is a strict
Lyapunov function for (6) [23, 24], implying that X(t) con-
verges to X∗ in continuous time. Moreover, under the stated
step-size and error variance assumptions, a well-known result
from the theory of stochastic approximation [25] shows that
Y(n) is an asymptotic pseudotrajectory (APT) of (6), i.e. the
orbits of (6) asymptotically shadow the sequence Y(n) with
arbitrary accuracy over any fixed horizon. By using an expo-
nential concentration inequality for sequences of martingale
differences [26], it is possible to estimate the aggregate error
between an APT of (6) and an actual solution thereof, allow-
ing us to show that they are both attracted to X∗ (a.s.). �

5. NUMERICAL RESULTS

In this section, we assess the performance of the MXL al-
gorithm in practical wireless networks by means of numerical
simulations. Specifically, driven by current design require-
ments for 5G mobile networks that target a dramatic decrease
in energy-per-bit consumption [14] through the use of multi-
antenna transceivers [2], we focus here on the problem of en-
ergy efficiency (EE) maximization in MU-MIMO networks.

Our network model consists of a set of N transmitters,
each equipped with M transmit antennas and controlling their
individual input signal covariance matrix Qi < 0 subject to the
constraint tr Qi ≤ Pmax, where Pmax denotes the user’s maxi-
mum transmit power. Each user’s achievable rate is then given
by the familiar expression

Ri(Q) = log det
(
W−i + HiiQiH†ii

)
− log det

(
W−i

)
, (7)

where H ji denotes the channel matrix between the j-th trans-
mitter and the i-th receiver, and W−i = I +

∑
j,i H jiQ jH†ji



●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

▲

▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

● ���� �

■ ���� �

◆ ���� �

▲ ���� �

� �� �� �� ��

��

��

��

���

����������

�
��
��
�
�
��
��
��
��

[�
�/
�]

������ ��������� ���� ������� ��������

●●

●

●

●
●
●
●

●
●●

●
●●

●●●●●
●●●●●●

●●●
●●

●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

■
■

■
■
■

■

■■■

■

■
■■

■

■■
■■

■
■■

■■■
■■

■■■■■■■
■■

■■■■
■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■

◆

◆

◆

◆

◆
◆

◆

◆
◆

◆
◆
◆

◆
◆
◆◆◆

◆
◆
◆◆◆◆

◆◆◆
◆◆◆◆◆◆◆

◆◆◆◆◆
◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲
▲▲

▲

▲▲
▲

▲

▲
▲

▲▲
▲▲

▲
▲▲

▲
▲▲▲

▲▲▲▲▲
▲
▲▲▲▲

▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

● ���� �

■ ���� �

◆ ���� �

▲ ���� �

�� �� �� �� ���

��

��

��

���

����������

�
�
��
��
�
��
��
��
��

[�
�/
�]

������ ��������� ���� ����� �������� (��% �������� �����)

Fig. 1: Performance of MXL in the presence of noise. In both figures, we plot the transmit energy efficiency of wireless users that employ Algorithm 1 in a
wireless network with parameters as in Table 1 (to reduce graphical clutter, we only plotted 4 users with diverse channel characteristics). In the absence of noise
(left), the system converges to a stable Nash equilibrium state (unmarked dashed lines) within a few iterations. The convergence speed of MXL is slower in the
presence of noise (right subfigure) but the algorithm remains convergent under high uncertainty (of the order of z = 50% of the users’ mean observations).

Table 1: Wireless network simulation parameters

Parameter Value
Cell size (rectangular) 1 km

Central frequency 2.5 GHz
Total bandwidth 11.2 MHz

Spectral noise density (20 ◦C) −174 dBm/Hz
Maximum transmit power Pmax = 33 dBm

Non-radiative power Pc = 20 dBm
TX/RX antennas per device M = 4, N = 8

denotes the multi-user interference-plus-noise (MUI) covari-
ance matrix at the i-th receiver. The users’ transmit energy
efficiency (EE) is thus defined as the ratio between the achiev-
able rate and the total consumed power, i.e.

EEi(Q) =
Ri(Q)

Pc + tr(Qi)
, (8)

where Pc > 0 represents the total power consumed by circuit
components at the transmitter [27].

Even though EEi(Q) is not concave in Qi, it can be recast
as such via a suitable Charnes-Cooper transformation [28], as
discussed in [20]. This leads to a game-theoretic formulation
of the general form (1), with randomness and uncertainty en-
tering the process due to the noisy estimation of the users’
MUI covariance matrices, the scarcity of perfect CSI at the
transmitter, random measurement errors, etc.

For simulation purposes, we consider a macro-cellular
wireless network with parameters as in Table 1. For bench-
marking purposes, we first simulate the case where users
have perfect CSI measurements at their disposal. In this de-
terministic regime, the algorithm converges to a stable Nash
equilibrium state within a few iterations (for simplicity, we
only plotted 4 users with diverse channel characteristics). In
turn, this rapid convergence leads to drastic gains in energy
efficiency, ranging between 3× and 6× over uniform power
allocation schemes.

Subsequently, this simulation cycle was repeated in the
presence of observation noise and measurement errors. The
intensity of the measurement noise was quantified via the rel-
ative error level of the gradient observations V̂, i.e. the stan-
dard deviation of V̂ divided by its mean (so a relative error
level of z% means that, on average, the observed matrix V̂
lies within z% of its true value). We then plotted the users’
energy efficiency over time for a high relative noise level of
z = 50%. Fig. 1 shows that the network’s rate of convergence
to a Nash equilibrium is negatively impacted by the noise in
the users’ measurements; however, MXL remains convergent
and the network’s users achieve a per capita gain in energy
efficiency between 100% and 400% within a few iterations,
despite the noise and uncertainty.

6. CONCLUSIONS

In this paper, we investigated the convergence properties
of a distributed matrix exponential learning (MXL) scheme
for a general class of concave games with noisy/imperfect
feedback. To this end, we introduced a novel stability con-
cept which generalizes Rosen’s diagonal strict concavity con-
dition [17]. Our theoretical analysis reveals that MXL con-
verges to globally stable states from any initialization, and un-
der feedback imperfections of arbitrary magnitude. In view of
this, the proposed MXL algorithm exhibits several desirable
properties for large-scale resource allocation problems in net-
works: it is distributed, robust to feedback imperfections, re-
quires only local information on the state of the system, and
can be applied in both static and ergodic environments “as is”.
To validate our analysis in practical scenarios, we applied the
proposed method to the problem of energy efficiency maxi-
mization in MU-MIMO interference network. Our numerical
results confirm that users quickly reach a stable solution, at-
taining gains between 100% and 400% in energy efficiency
even under very high uncertainty.
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