
HAL Id: hal-01382282
https://hal.science/hal-01382282v1

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning in games with continuous action spaces and
unknown payoff functions

Panayotis Mertikopoulos, Zhengyuan Zhou

To cite this version:
Panayotis Mertikopoulos, Zhengyuan Zhou. Learning in games with continuous action spaces and
unknown payoff functions. Mathematical Programming, Series A, 2019, 173 (1-2), pp.465-507.
�10.1007/s10107-018-1254-8�. �hal-01382282�

https://hal.science/hal-01382282v1
https://hal.archives-ouvertes.fr


LEARNING IN GAMES WITH CONTINUOUS ACTION SETS
AND UNKNOWN PAYOFF FUNCTIONS

PANAYOTIS MERTIKOPOULOS1 AND ZHENGYUAN ZHOU2

Abstract. This paper examines the convergence of no-regret learning in
games with continuous action sets. For concreteness, we focus on learning
via “dual averaging”, a widely used class of no-regret learning schemes where
players take small steps along their individual payoff gradients and then “mir-
ror” the output back to their action sets. In terms of feedback, we assume
that players can only estimate their payoff gradients up to a zero-mean error
with bounded variance. To study the convergence of the induced sequence of
play, we introduce the notion of variational stability, and we show that stable
equilibria are locally attracting with high probability whereas globally stable
equilibria are globally attracting with probability 1. We also discuss some ap-
plications to mixed-strategy learning in finite games, and we provide explicit
estimates of the method’s convergence speed.

1. Introduction

The prototypical setting of online optimization can be summarized as follows: at
every stage n = 1, 2, . . . , of a repeated decision process, an agent selects an action
Xn from some set X (assumed here to be convex and compact), and obtains a reward
un(Xn) determined by an a priori unknown payoff function un : X → R. Subse-
quently, the agent receives some problem-specific feedback (for instance, an estimate
of the gradient of un at Xn), and selects a new action with the goal of maximizing
the obtained reward. Aggregating over the stages of the process, this is usually
quantified by asking that the agent’s regret Rn ≡ maxx∈X

∑n
k=1 [uk(x)− uk(Xk)]

grow sublinearly in n, a property known as “no regret”.
In this general setting, the most widely used class of no-regret policies is the

online mirror descent (OMD) method of Shalev-Shwartz (2007) and its variants
– such as “Following the Regularized Leader” (Shalev-Shwartz and Singer, 2007),
dual averaging (Nesterov, 2009; Xiao, 2010), etc. Specifically, if the problem’s
payoff functions are concave, mirror descent guarantees an O(

√
n) regret bound
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which is well-known to be tight in a “black-box” environment (i.e., without any
further assumptions on un). Thus, owing to these guarantees, this class of first-order
methods has given rise to an extensive literature in online learning and optimization;
for a survey, see Shalev-Shwartz (2011), Bubeck and Cesa-Bianchi (2012), Hazan
(2012), and references therein.

In this paper, we consider a multi-agent extension of the above framework where
the agents’ rewards are determined by their individual actions and the actions of
all other agents via a fixed mechanism: a non-cooperative game. Even though this
mechanism may be unknown and/or opaque to the players, the additional structure
it provides means that finer convergence criteria apply, chief among them being
that of convergence to a Nash equilibrium (NE). We are thus led to the following
fundamental question: if all players of a repeated game employ a no-regret updating
policy, do their actions converge to a Nash equilibrium of the underlying game?

Summary of contributions. In general, the answer to this question is a resounding
“no”. Even in simple, finite games, no-regret learning may cycle (Mertikopoulos
et al., 2018) and its limit set may contain highly non-rationalizable strategies that
assign positive weight only to strictly dominated strategies (Viossat and Zapechel-
nyuk, 2013). As such, our aim in this paper is twofold:

i) to provide sufficient conditions under which no-regret learning converges to
equilibrium; and

ii) to assess the speed and robustness of this convergence in the presence of
uncertainty, feedback noise, and other learning impediments.

Our contributions along these lines are as follows: First, in Section 2, we intro-
duce an equilibrium stability notion which we call variational stability (VS), and
which is formally similar to (and inspired by) the seminal notion of evolutionary sta-
bility in population games (Maynard Smith and Price, 1973).1 This stability notion
extends the standard notion of operator monotonicity, so it applies in particular
to all monotone games (that is, concave games that satisfy Rosen’s (1965) diago-
nal strict concavity condition). In fact, going beyond concave games, variational
stability allows us to treat convergence questions in general games with continuous
action spaces without having to restrict ourselves to a specific subclass (such as
potential or common interest games).

Our second contribution is a detailed analysis of the long-run behavior of no-
regret learning under variational stability. Regarding the information available to
the players, our only assumption is that they have access to unbiased, bounded-
variance estimates of their individual payoff gradients at each step; beyond this,
we assume no prior knowledge of their payoff functions and/or the game. Despite
this lack of information, variational stability guarantees that (i) the induced se-
quence of play converges globally to globally stable equilibria with probability 1
(Theorem 4.7); and (ii) it converges locally to locally stable equilibria with high
probability (Theorem 4.11). As a corollary, if the game admits a (pseudo-)concave
potential or if it is monotone, the players’ actions converge to Nash equilibrium
no matter the level of uncertainty affecting the players’ feedback. In Section 5, we
further extend these results to learning with imperfect feedback in finite games.

1Heuristically, variational stability is to games with a finite number of players and a continuum
of actions what evolutionary stability is to games with a continuum of players and a finite action
space. Our choice of terminology reflects precisely this analogy.
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Our third contribution concerns the method’s convergence speed. Mirroring a
known result of Nesterov (2009) for variational inequalities, we show that the gap
from a stable state decays ergodically as O(1/

√
n) if the method’s step-size is chosen

appropriately. Dually to this, we also show that the algorithm’s expected running
length until players reach an ε-neighborhood of a stable state is O(1/ε2). Finally,
if the stage game admits a sharp equilibrium (a straightforward extension of the
notion of strict equilibrium in finite games), we show that, with probability 1, the
process reaches an equilibrium in a finite number of steps.

Our analysis relies on tools and techniques from stochastic approximation, mar-
tingale limit theory and convex analysis. In particular, with regard to the latter,
we make heavy use of a “primal-dual divergence” measure between action and gra-
dient variables, which we call the Fenchel coupling. This coupling is a hybridization
of the Bregman divergence which provides a potent tool for proving convergence
thanks to its Lyapunov properties.

Related work. Originally, mirror descent was introduced by Nemirovski and Yudin
(1983) for solving offline convex programs. The dual averaging (DA) variant that
we consider here was pioneered by Nesterov (2009) and proceeds as follows:2 at each
stage, the method takes a gradient step in a dual space (where gradients live); the
result is then mapped (or “mirrored”) back to the problem’s feasible region, a new
gradient is generated, and the process repeats. The “mirroring” step above is itself
determined by a strongly convex regularizer (or “distance generating”) function:
the squared Euclidean norm gives rise to Zinkevich’s (2003) online gradient descent
algorithm, while the (negative) Gibbs entropy on the simplex induces the well-
known exponential weights (EW) algorithm (Vovk, 1990; Arora et al., 2012).

Nesterov (2009) and Nemirovski et al. (2009) provide several convergence re-
sults for dual averaging in (stochastic) convex programs and saddle-point prob-
lems, while Xiao (2010) provides a thorough regret analysis for online optimization
problems. In addition to treating the interactions of several competing agents at
once, the fundamental difference of our paper with these works is that the conver-
gence analysis in the latter is “ergodic”, i.e., it concerns the time-averaged sequence
X̄n =

∑n
k=1 γkXk/

∑n
k=1 γk, and not the actual sequence of actions Xn employed

by the players.
In online optimization, this averaging comes up naturally because the focus is on

the players’ regret. In the offline case, the points where an oracle is called during
the execution of an algorithm do not carry any particular importance, so averaging
provides a convenient way of obtaining convergence. However, in a game-theoretic
setting, the figure of merit is the actual sequence of play, which determines the
players’ payoffs at each stage. The behavior of Xn may differ drastically from that
of X̄n, so our treatment requires a completely different set of tools and techniques
(especially in the stochastic regime).

Much of our analysis boils down to solving in an online way a (stochastic) vari-
ational inequality (VI) characterizing the game’s Nash equilibria. Nesterov (2007)
and Juditsky et al. (2011) provide efficient offline methods to do this, relying on
an “extra-gradient” step to boost the convergence rate of the ergodic sequence X̄n.
In our limited-feedback setting, we do not assume that players can make an extra

2In the online learning literature, dual averaging is sometimes called lazy mirror descent and
can be seen as a linearized “Follow the Regularized Leader” (FTRL) scheme – for more details,
we refer the reader to Beck and Teboulle (2003), Xiao (2010), and Shalev-Shwartz (2011).
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oracle call to actions that were not actually employed, so the extrapolation results
of Nesterov (2007) and Juditsky et al. (2011) do not apply. The single-call results
of Nesterov (2009) are closer in spirit to our paper but, again, they focus exclusively
on monotone variational inequalities and the ergodic sequence X̄n – not the actual
sequence of play Xn. All the same, for completeness, we make the link with ergodic
convergence in Theorems 4.13 and 6.2.

When applied to mixed-strategy learning in finite games, the class of algorithms
studied here has very close ties to the family of perturbed best response maps
that arise in models of fictitious play and reinforcement learning (Hofbauer and
Sandholm, 2002; Leslie and Collins, 2005; Coucheney et al., 2015). Along these
lines, Mertikopoulos and Sandholm (2016) recently showed that a continuous-time
version of the dynamics studied in this paper eliminates dominated strategies and
converges to strict equilibria from all nearby initial conditions. Our analysis in
Section 5 extends these results to a discrete-time, stochastic setting.

In games with continuous action sets, Perkins and Leslie (2012) and Perkins
et al. (2017) examined a mixed-strategy actor-critic algorithm which converges to a
probability distribution that assigns most weight to equilibrium states. At the pure
strategy level, several authors have considered VI-based and Gauss–Seidel meth-
ods for solving generalized Nash equilibrium problems (GNEPs); for a survey, see
Facchinei and Kanzow (2007) and Scutari et al. (2010). The intersection of these
works with the current paper is when the game satisfies a global monotonicity con-
dition similar to the diagonal strict concavity condition of Rosen (1965). However,
the literature on GNEPs does not consider the implications for the players’ regret,
the impact of uncertainty and/or local convergence/stability issues, so there is no
overlap with our results.

Finally, during the final preparation stages of this paper (a few days before the
actual submission), we were made aware of a preprint by Bervoets et al. (2016)
examining the convergence of pure-strategy learning in strictly concave games with
one-dimensional action sets. A key feature of the analysis of Bervoets et al. (2016)
is that players only observe their realized, in-game payoffs, and they choose actions
based on their payoffs’ variation from the previous period. The resulting mean
dynamics boil down to an instantiation of dual averaging induced by the entropic
regularization penalty h(x) = x log x (cf. Section 3), suggesting several interesting
links with the current work.

Notation. Given a finite-dimensional vector space V with norm ‖·‖, we write V∗ for
its dual, 〈y, x〉 for the pairing between y ∈ V∗ and x ∈ V, and ‖y‖∗ ≡ sup{〈y, x〉 :
‖x‖ ≤ 1} for the dual norm of y in V∗. If C ⊆ V is convex, we also write C◦ ≡ ri(C)
for the relative interior of C, ‖C‖ = sup{‖x′ − x‖ : x, x′ ∈ C} for its diameter, and
dist(C, x) = infx′∈C‖x′ − x‖ for the distance between x ∈ V and C.

For a given x ∈ C, the tangent cone TCC(x) is defined as the closure of the set of
all rays emanating from x and intersecting C in at least one other point; dually, the
polar cone PCC(x) to C at x is defined as PCC(x) = {y ∈ V∗ : 〈y, z〉 ≤ 0 for all z ∈
TCC(x)}. For concision, when C is clear from the context, we will drop it altogether
and write TC(x) and PC(x) instead.

2. Continuous games and variational stability

2.1. Basic definitions and examples. Throughout this paper, we focus on games
played by a finite set of players i ∈ N = {1, . . . , N}. During play, each player selects



LEARNING IN GAMES WITH CONTINUOUS ACTION SETS 5

an action xi from a compact convex subset Xi of a finite-dimensional normed space
Vi, and their reward is determined by the profile x = (x1, . . . , xN ) of all players’
actions – often denoted as x ≡ (xi;x−i) when we seek to highlight the action xi of
player i against the ensemble of actions x−i = (xj)j 6=i of all other players.

In more detail, writing X ≡
∏
i Xi for the game’s action space, each player’s

payoff is determined by an associated payoff function ui : X → R. In terms of
regularity, we assume that ui is continuously differentiable in xi, and we write

vi(x) ≡ ∇xi
ui(xi;x−i) (2.1)

for the individual gradient of ui at x; we also assume that ui and vi are both
continuous in x.3 Putting all this together, a continuous game is a tuple G ≡
G(N , (Xi)i∈N , (ui)i∈N ) with players, actions and payoffs defined as above.

As a special case, we will sometimes consider payoff functions that are individu-
ally (pseudo-)concave in the sense that

ui(xi;x−i) is (pseudo-)concave in xi for all x−i ∈
∏
j 6=i Xj, i ∈ N . (2.2)

When this is the case, we say that the game itself is (pseudo-)concave. Below, we
briefly discuss some well-known examples of such games:

Example 2.1 (Mixed extensions of finite games). In a finite game Γ ≡ (N ,A, u),
each player i ∈ N chooses an action αi from a finite setAi of “pure strategies” and no
assumptions are made on the players’ payoff functions ui : A ≡

∏
j Aj → R. Players

can “mix” these choices by playing mixed strategies, i.e., probability distributions
xi drawn from the simplex Xi ≡ ∆(Ai). In this case (and in a slight abuse of
notation), the expected payoff to player i in the mixed profile x = (x1, . . . , xN ) can
be written as

ui(x) =
∑
α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN ) x1,α1 · · · xN,αN
, (2.3)

so the players’ individual gradients are simply their payoff vectors:

vi(x) = ∇xiui(x) = (ui(αi;x−i))αi∈Ai . (2.4)

The resulting continuous game is called the mixed extension of Γ. Since Xi = ∆(Ai)
is convex and ui is linear in xi, G is itself concave in the sense of (2.2).

Example 2.2 (Cournot competition). Consider the following Cournot oligopoly
model: There is a finite set N = {1, . . . , N} of firms, each supplying the market
with a quantity xi ∈ [0, Ci] of the same good (or service) up to the firm’s produc-
tion capacity Ci. This good is then priced as a decreasing function P (x) of each
firm’s production; for concreteness, we focus on the linear model P (x) = a−

∑
i bixi

where a is a positive constant and the coefficients bi > 0 reflect the price-setting
power of each firm.

In this model, the utility of firm i is given by

ui(x) = xiP (x)− cixi, (2.5)

where ci represents the marginal production cost of firm i. Letting Xi = [0, Ci], the
resulting game is easily seen to be concave in the sense of (2.2).

3In the above, we tacitly assume that ui is defined on an open neighborhood of Xi. This
allows us to use ordinary derivatives, but none of our results depend on this device. We also
note that vi(x) acts naturally on vectors zi ∈ Vi via the mapping zi 7→ 〈vi(x), zi〉 ≡ u′i(x; zi) =

d/dτ |τ=0 ui(xi + τzi;x−i); in view of this, vi(x) is treated as an element of V∗i , the dual of Vi.
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X

TC(x∗)

PC(x∗)

x∗
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v(x∗)

Figure 1. Geometric characterization of Nash equilibria.

Example 2.3 (Congestion games). Congestion games are game-theoretic models
that arise in the study of traffic networks (such as the Internet). To define them,
fix a set of players N that share a set of resources r ∈ R, each associated with
a nondecreasing convex cost function cr : R+ → R (for instance, links in a data
network and their corresponding delay functions). Each player i ∈ N has a certain
resource load ρi > 0 which is split over a collection Ai ⊆ 2R of resource subsets αi
of R – e.g., sets of links that form paths in the network. Then, the action space of
player i ∈ N is the scaled simplex Xi = ρi∆(Ai) = {xi ∈ RAi

+ :
∑
αi∈Ai

xiαi
= ρi}

of load distributions over Ai.
Given a load profile x = (x1, . . . , xN ), costs are determined based on the utiliza-

tion of each resource as follows: First, the demand wr of the r-th resource is defined
as the total load wr =

∑
i∈N

∑
αi3r xiαi on said resource. This demand incurs a

cost cr(wr) per unit of load to each player utilizing resource r, where cr : R+ → R
is a nondecreasing convex function. Accordingly, the total cost to player i ∈ N is

ci(x) =
∑
αi∈Ai

xiαiciαi(x), (2.6)

where ciαi(x) =
∑
r∈αi

cr(wr) denotes the cost incurred to player i by the utilization
of αi ⊆ R. The resulting atomic splittable congestion game G ≡ G(N ,X ,−c) is
easily seen to be concave in the sense of (2.2).

2.2. Nash equilibrium. Our analysis focuses primarily on Nash equilibria (NE), i.e.,
strategy profiles that discourage unilateral deviations. Formally, x∗ ∈ X is a Nash
equilibrium if

ui(x
∗
i ;x
∗
−i) ≥ ui(xi;x∗−i) for all xi ∈ Xi, i ∈ N . (NE)

Obviously, if x∗ is a Nash equilibrium, we have the first-order condition

u′i(x
∗; zi) = 〈vi(x∗), zi〉 ≤ 0 for all zi ∈ TCi(x

∗
i ), i ∈ N , (2.7)

where TCi(x
∗
i ) denotes the tangent cone to Xi at x∗i . Therefore, if x∗ is a Nash equi-

librium, each player’s individual gradient vi(x∗) belongs to the polar cone PCi(x
∗
i )

to Xi at x∗i (cf. Fig. 1); moreover, the converse also holds if the game is pseudo-
concave. We encode this more concisely as follows:

Proposition 2.1. If x∗ ∈ X is a Nash equilibrium, then v(x∗) ∈ PC(x∗), i.e.,

〈v(x∗), x− x∗〉 ≤ 0 for all x ∈ X . (2.8)

The converse also holds if the game is (pseudo-)concave in the sense of (2.2).
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Remark 2.1. In the above (and in what follows), v = (vi)i∈N denotes the ensemble
of the players’ individual payoff gradients and 〈v, z〉 ≡

∑
i∈N 〈vi, zi〉 stands for the

pairing between v and the vector z = (zi)i∈N ∈
∏
i∈N Vi. For concision, we also

write V ≡
∏
i Vi for the ambient space of X ≡

∏
i Xi and V∗ for its dual.

Proof of Proposition 2.1. If x∗ is a Nash equilibrium, (2.8) is obtained by setting
zi = xi−x∗i in (2.7) and summing over all i ∈ N . Conversely, if (2.8) holds and the
game is (pseudo-)concave, pick some xi ∈ Xi and let x = (xi;x

∗
−i) in (2.8). This

gives 〈vi(x∗), xi − x∗i 〉 ≤ 0 for all xi ∈ Xi so (NE) follows by the basic properties of
(pseudo-)concave functions. �

Proposition 2.1 shows that Nash equilibria of concave games are precisely the so-
lutions of the variational inequality (2.8), so existence follows from standard results.
Using a similar variational characterization, Rosen (1965) proved the following suf-
ficient condition for equilibrium uniqueness:

Theorem 2.2 (Rosen, 1965). Assume that G satisfies the payoff monotonicity con-
dition

〈v(x′)− v(x), x′ − x〉 ≤ 0 for all x, x′ ∈ X , (MC)
with equality if and only if x = x′. Then, G admits a unique Nash equilibrium.

Games satisfying (MC) are called (strictly) monotone and they enjoy properties
similar to those of (strictly) convex functions.4 In particular, letting x′−i = x−i,
(MC) gives

〈vi(x′i;x−i)− vi(xi;x−i), x′i − xi〉 ≤ 0 for all xi, x′i ∈ Xi, x−i ∈ X−i, (2.9)

implying in turn that ui(x) is (strictly) concave in xi for all i. Therefore, any game
satisfying (MC) is also concave.

2.3. Variational stability. Combining Proposition 2.1 and (MC), it follows that the
(necessarily unique) Nash equilibrium of a monotone game satisfies the inequality

〈v(x), x− x∗〉 ≤ 〈v(x∗), x− x∗〉 ≤ 0 for all x ∈ X . (2.10)

In other words, if x∗ is a Nash equilibrium of a monotone game, the players’ in-
dividual payoff gradients “point towards” x∗ in the sense that v(x) forms an acute
angle with x∗ − x. Motivated by this, we introduce below the following relaxation
of the monotonicity condition (MC):

Definition 2.3. We say that x∗ ∈ X is variationally stable (or simply stable) if there
exists a neighborhood U of x∗ such that

〈v(x), x− x∗〉 ≤ 0 for all x ∈ U,
with equality if and only if x = x∗. In particular, if U can be taken to be all of X ,
we say that x∗ is globally variationally stable (or globally stable for short).

Remark 2.2. The terminology “variational stability” alludes to the seminal notion of
evolutionary stability introduced by Maynard Smith and Price (1973) for population
games (i.e., games with a continuum of players and a common, finite set of actions
A). Specifically, if v(x) = (vα(x))α∈A denotes the payoff field of such a game (with

4Rosen (1965) originally referred to (MC) as diagonal strict concavity; Hofbauer and Sand-
holm (2009) use the term “stable” for population games that satisfy a formal analogue of (MC),
while Sandholm (2015) and Sorin and Wan (2016) call such games “contractive” and “dissipative”
respectively. In all cases, the adverb “strictly” refers to the “only if” requirement in (MC).
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First-order requirement Second-order test

Nash equilibrium (NE) 〈v(x∗), x− x∗〉 ≤ 0 N/A

Variational stability (VS) 〈v(x), x− x∗〉 ≤ 0 HG(x∗) ≺ 0

Monotonicity (MC) 〈v(x′)− v(x), x′ − x〉 ≤ 0 HG(x) ≺ 0

Concave potential (PF) v(x) = ∇f(x) ∇2f(x) ≺ 0

Table 1. Monotonicity, stability, and Nash equilibrium: the existence of
a concave potential implies monotonicity; monotonicity implies the exis-
tence of a globally stable point; and globally stable points are equilibria.

x ∈ ∆(A) denoting the state of the population), Definition 2.6 boils down to the
variational characterization of evolutionarily stable states due to Hofbauer et al.
(1979). As we show in the next sections, variational stability plays the same role
for learning in games with continuous action spaces as evolutionary stability plays
for evolution in games with a continuum of players.

By (2.10), a first example of variational stability is provided by the class of
monotone games:

Corollary 2.4. If G satisfies (MC), its (unique) Nash equilibrium is globally stable.

The converse to Corollary 2.4 does not hold, even partially. For instance, consider
the single-player game with payoffs given by the function

u(x) = 1−
d∑
`=1

√
1 + x`, x ∈ [0, 1]d. (2.11)

In this simple example, the origin is the unique maximizer (and hence unique Nash
equilibrium) of u. Moreover, we trivially have 〈v(x), x〉 = −2

∑d
`=1 x`/

√
1 + x` ≤ 0

with equality if and only if x = 0, so the origin satisfies the global version of (VS);
however, u is not even pseudo-concave if d ≥ 2, so the game cannot be monotone.
In words, (MC) is a sufficient condition for the existence of a (globally) stable state,
but not a necessary one.

Nonetheless, even in this (non-monotone) example, variational stability charac-
terizes the game’s unique Nash equilibrium. We make this link precise below:

Proposition 2.5. Suppose that x∗ ∈ X is variationally stable. Then:
a) If G is (pseudo-)concave, x∗ is an isolated Nash equilibrium of G.
b) If x∗ is globally stable, it is the game’s unique Nash equilibrium.

Proposition 2.5 indicates that variationally stable states are isolated (for the
proof, see that of Proposition 2.7 below). However, this also means that Nash
equilibria of games that admit a concave – but not strictly concave – potential may
fail to be stable. To account for such cases, we will also consider the following
setwise version of variational stability:

Definition 2.6. Let X ∗ ⊆ X be closed and nonempty. We say that X ∗ is variationally
stable (or simply stable) if there exists a neighborhood U of X ∗ such that

〈v(x), x− x∗〉 ≤ 0 for all x ∈ U , x∗ ∈ X ∗, (VS)
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with equality for a given x∗ ∈ X ∗ if and only if x ∈ X ∗. In particular, if U can
be taken to be all of X , we say that X ∗ is globally variationally stable (or globally
stable for short).

Obviously, Definition 2.6 subsumes Definition 2.3: if x∗ ∈ X is stable in the
pointwise sense of Definition 2.3, then it is also stable when viewed as a singleton
set. In fact, when this is the case, it is also easy to see that x∗ cannot belong to
some larger variationally stable set,5 so the notion of variational stability tacitly
incorporates a certain degree of maximality. This is made clearer in the following:

Proposition 2.7. Suppose that X ∗ ⊆ X is variationally stable. Then:

a) X ∗ is convex.
b) If G is concave, X ∗ is an isolated component of Nash equilibria.
c) If X ∗ is globally stable, it coincides with the game’s set of Nash equilibria.

Proof of Proposition 2.7. To show that X ∗ is convex, take x∗0, x∗1 ∈ X ∗ and set
x∗λ = (1 − λ)x∗0 + λx∗1 for λ ∈ [0, 1]. Substituting in (VS), we get 〈v(x∗λ), x∗λ −
x∗0〉 = λ〈v(x∗λ), x∗1 − x∗0〉 ≤ 0 and 〈v(x∗λ), x∗λ − x∗1〉 = −(1 − λ)〈v(x∗λ), x∗1 − x∗0〉 ≤ 0,
implying that 〈v(x∗λ), x∗1 − x∗0〉 = 0. Writing x∗1 − x∗0 = λ−1(x∗λ − x∗0), we then get
〈v(x∗λ), x∗λ− x∗0〉 = 0. By (VS), we must have x∗λ ∈ X ∗ for all λ ∈ [0, 1], implying in
turn that X ∗ is convex.

We now proceed to show that X ∗ only consists of Nash equilibria. To that end,
asssume first that X ∗ is globally stable, pick some x∗ ∈ X ∗, and let zi = xi − x∗i
for some xi ∈ Xi, i ∈ N . Then, for all τ ∈ [0, 1], we have

d

dτ
ui(x

∗
i + τzi;x

∗
−i) = 〈vi(x∗i + τzi;x

∗
−i), zi〉

=
1

τ
〈vi(x∗i + τzi;x

∗
−i), x

∗
i + τzi − x∗i 〉 ≤ 0, (2.12)

where the last inequality follows from (VS). In turn, this shows that ui(x∗i ;x∗−i) ≥
ui(x

∗
i + zi;x

∗
−i) = ui(xi;x

∗
−i) for all xi ∈ Xi, i ∈ N , i.e., x∗ is a Nash equilibrium.

Our claim for locally stable sets then follows by taking τ = 0 above and applying
Proposition 2.1.

We are left to show that there are no other Nash equilibria close to X ∗ (locally or
globally). To do so, assume first that X ∗ is locally stable and let x′ /∈ X ∗ be a Nash
equilibrium lying in a neighborhood U of X ∗ where (VS) holds. By Proposition 2.1,
we have 〈v(x′), x − x′〉 ≤ 0 for all x ∈ X . However, since x′ /∈ X ∗, (VS) implies
that 〈v(x′), x∗ − x′〉 > 0 for all x∗ ∈ X ∗, a contradiction. We conclude that there
are no other equilibria of G in U , i.e., X ∗ is an isolated set of Nash equilibria; the
global version of our claim then follows by taking U = X . �

2.4. Tests for variational stability. We close this section with a second derivative
criterion that can be used to verify whether (VS) holds. To state it, define the
Hessian of a game G as the block matrix HG(x) = (HGij(x))i,j∈N with

HGij(x) = 1
2∇xj∇xiui(x) + 1

2 (∇xi∇xjuj(x))>. (2.13)

We then have:

5In that case (VS) would give 〈v(x′), x′ − x∗〉 = 0 for some x′ 6= x∗, a contradiction.
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Proposition 2.8. If x∗ is a Nash equilibrium of G and HG(x∗) ≺ 0 on TC(x∗), then
x∗ is stable – and hence an isolated Nash equilibrium. In particular, if HG(x) ≺ 0
on TC(x) for all x ∈ X , x∗ is globally stable – so it is the unique equilibrium of G.

Remark. The requirement “HG(x∗) ≺ 0 on TC(x∗)” above means that z>HG(x∗)z <
0 for every nonzero tangent vector z ∈ TC(x∗).

Proof. Assume first that HG(x) ≺ 0 on TC(x) for all x ∈ X . By Theorem 6 in
Rosen (1965), G satisfies (MC) so our claim follows from Corollary 2.4. For our
second claim, if HG(x∗) ≺ 0 on TC(x∗) for some Nash equilibrium x∗ of G, we
also have HG(x) ≺ 0 for all x in a neighborhood U =

∏
i∈N Ui of x

∗ in X . By
the same theorem in Rosen (1965), we get that (MC) holds locally in U , so the
above reasoning shows that x∗ is the unique equilibrium of the restricted game
G|U (N , U, u|U ). Hence, x∗ is locally stable and isolated in G. �

We provide two straightforward applications of Proposition 2.8 below:

Example 2.4 (Potential games). Following Monderer and Shapley (1996), a game
G is called a potential game if it admits a potential function f : X → R such that

ui(xi;x−i)− ui(x′i;x−i) = f(xi;x−i)− f(x′i;x−i) for all x, x′ ∈ X , i ∈ N . (PF)

Local maximizers of f are Nash equilibria and the converse also holds if f is concave
(Neyman, 1997). By differentiating (PF), it is easy to see that the Hessian of G is
just the Hessian of its potential. Hence, if a game admits a concave potential f ,
the game’s Nash set X ∗ = arg maxx∈X f(x) is globally stable.

Example 2.5 (Cournot revisited). Consider again the Cournot oligopoly model of
Example 2.2. A simple differentiation yields

HGij(x) =
1

2

∂2ui
∂xi∂xj

+
1

2

∂2uj
∂xj∂xi

= −biδij − 1
2 (bi + bj), (2.14)

where δij = 1{i = j} is the Kronecker delta. This shows that a Cournot oligopoly
admits a unique, globally stable equilibrium whenever the RHS of (2.14) is negative-
definite. This is always the case if the model is symmetric (bi = b for all i ∈ N ), but
not necessarily otherwise.6 Quantitatively, if the coefficients bi are independent and
identically distributed (i.i.d.) on [0, 1], a Monte Carlo simulation shows that (2.14)
is negative-definite with probability between 65% and 75% for N ∈ {2, . . . , 100}.

3. Learning via dual averaging

In this section, we adapt the widely used dual averaging (DA) method of Nesterov
(2009) to our game-theoretic setting.7 Intuitively, the main idea is as follows: At
each stage of the process, every player i ∈ N gets an estimate v̂i of the individual
gradient of their payoff function at the current action profile, possibly subject to
noise and uncertainty. Subsequently, they take a step along this estimate in the dual
space V∗i (where gradients live), and they “mirror” the output back to the primal
space Xi in order to choose an action for the next stage and continue playing (for
a schematic illustration, see Fig. 2).

6This is so because, in the symmetric case, the RHS of (2.14) is a circulant matrix with
eigenvalues −b and −(N + 1)b.

7In optimization, the roots of the method can be traced back to Nemirovski and Yudin (1983);
see also Beck and Teboulle (2003), Nemirovski et al. (2009) and Shalev-Shwartz (2011).
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X ⊆ V

Y = V∗

v Q

Y1

Y2
Y3

γ1v̂2 γ2v̂3

X1 X2

X3

Q
Q

Q

Figure 2. Schematic representation of dual averaging.

Formally, starting with some arbitrary (and possibly uninformed) gradient esti-
mate Y1 = v̂1 at n = 1, this scheme can be described via the recursion

Xi,n = Qi(Yi,n),

Yi,n+1 = Yi,n + γnv̂i,n+1,
(DA)

where:

1) n denotes the stage of the process.
2) v̂i,n+1 ∈ V∗i is an estimate of the individual payoff gradient vi(Xn) of player

i at stage n (more on this below).
3) Yi,n ∈ V∗i is an auxiliary “score” variable that aggregates the i-th player’s

individual gradient steps.
4) γn > 0 is a nonincreasing step-size sequence, typically of the form 1/nβ for

some β ∈ (0, 1].
5) Qi : V∗i → Xi is the choice map that outputs the i-th player’s action as a

function of their score vector Yi (see below for a rigorous definition).

In view of the above, the core components of (DA) are a) the players’ gradient
estimates; and b) the choice maps that determine the players’ actions. In the rest
of this section, we discuss both in detail.

3.1. Feedback and uncertainty. Regarding the players’ individual gradient obser-
vations, we assume that each player i ∈ N has access to a “black box” feedback
mechanism – an oracle – which returns an estimate of their payoff gradients at their
current action profile. Of course, this information may be imperfect for a multitude
of reasons: for instance i) estimates may be susceptible to random measurement
errors; ii) the transmission of this information could be subject to noise; and/or
iii) the game’s payoff functions may be stochastic expectations of the form

ui(x) = E[ûi(x;ω)] for some random variable ω, (3.1)

and players may only be able to observe the realized gradients ∇xi
ûi(x;ω).

With all this in mind, we will focus on the noisy feedback model

v̂i,n+1 = vi(Xn) + ξi,n+1, (3.2)
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where the noise process ξn = (ξi,n)i∈N is an L2-bounded martingale difference
sequence adapted to the history (Fn)∞n=1 of Xn (i.e., ξn is Fn-measurable but ξn+1

isn’t).8 More explicitly, this means that ξn satisfies the statistical hypotheses:
1. Zero-mean:

E[ξn+1 | Fn] = 0 for all n = 1, 2, . . . (a.s.). (H1)

2. Finite mean squared error: there exists some σ ≥ 0 such that

E[‖ξn+1‖∗2 | Fn] ≤ σ2 for all n = 1, 2, . . . (a.s.). (H2)

Alternatively, (H1) and (H2) simply posit that the players’ individual gradient
estimates are conditionally unbiased and bounded in mean square, viz.

E[v̂n+1 | Fn] = v(Xn), (3.3a)

E[‖v̂n+1‖2∗ | Fn] ≤ V 2
∗ for some finite V∗ > 0. (3.3b)

The above allows for a broad range of error processes, including all compactly
supported, (sub-)Gaussian, (sub-)exponential and log-normal distributions.9 In
fact, both hypotheses can be relaxed (for instance, by assuming a small bias or
asking for finite moments up to some order q < 2), but we do not do so to keep
things simple.

3.2. Choosing actions. Given that the players’ score variables aggregate gradi-
ent steps, a reasonable choice for Qi would be the arg max correspondence yi 7→
arg maxxi∈Xi

〈yi, xi〉 that outputs those actions which are most closely aligned with
yi. Notwithstanding, there are two problems with this approach: a) this assignment
is too aggressive in the presence of uncertainty; and b) generically, the output would
be an extreme point of X , so (DA) could never converge to an interior point. Thus,
instead of taking a “hard” arg max approach, we will focus on regularized maps of
the form

yi 7→ arg max
xi∈Xi

{〈yi, xi〉 − hi(xi)}, (3.4)

where the “regularization” term hi : Xi → R satisfies the following requirements:

Definition 3.1. Let C be a compact convex subset of a finite-dimensional normed
space V. We say that h : C → R is a regularizer (or penalty function) on C if:

(1) h is continuous.
(2) h is strongly convex, i.e., there exists some K > 0 such that

h(tx+ (1− t)x′) ≤ th(x) + (1− t)h(x′)− 1
2Kt(1− t)‖x

′ − x‖2 (3.5)

for all x, x′ ∈ C and all t ∈ [0, 1].
The choice (or mirror) map Q : V∗ → C induced by h is then defined as

Q(y) = arg max{〈y, x〉 − h(x) : x ∈ C}. (3.6)

In what follows, we will be assuming that each player i ∈ N is endowed with an
individual penalty function hi : Xi → R that is Ki-strongly convex. Furthermore,
to emphasize the interplay between primal and dual variables (the players’ actions
xi and their score vectors yi respectively), we will write Yi ≡ V∗i for the dual space
of Vi and Qi : Yi → Xi for the choice map induced by hi.

8Indices have been chosen so that all relevant processes are Fn-measurable at stage n.
9In particular, we will not be assuming i.i.d. errors; this point is crucial for applications to

distributed control where measurements are typically correlated with the state of the system.
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Algorithm 1. Dual averaging with Euclidean projections (Example 3.1).

Require: step-size sequence γn ∝ 1/nβ , β ∈ (0, 1]; initial scores Yi ∈ Yi
1: for n = 1, 2, . . . do
2: for every player i ∈ N do
3: play Xi ← ΠXi

(Yi); {choose an action}
4: observe v̂i; {estimate gradient}
5: update Yi ← Yi + γnv̂i; {take gradient step}
6: end for
7: end for

More concisely, this information can be encoded in the aggregate penalty function
h(x) =

∑
i hi(xi) with associated strong convexity constant K ≡ miniKi.10 The

induced choice map is simply Q ≡ (Q1, . . . , QN ) so we will write x = Q(y) for the
action profile induced by the score vector y = (y1, . . . , yN ) ∈ Y ≡

∏
i Yi.

Remark 3.1. In finite games, McKelvey and Palfrey (1995) referred to Qi as a
“quantal response function” (the notation Q alludes precisely to this terminology).
In the same game-theoretic context, the composite map Qi ◦ vi is often called
a smooth, perturbed, or regularized best response; for a detailed discussion, see
Hofbauer and Sandholm (2002) and Mertikopoulos and Sandholm (2016).

We discuss below a few examples of this regularization process:

Example 3.1 (Euclidean projections). Let h(x) = 1
2‖x‖

2
2. Then, h is 1-strongly

convex with respect to ‖·‖2 and the corresponding choice map is the closest point
projection

ΠX (y) ≡ arg max
x∈X

{
〈y, x〉 − 1

2‖x‖
2
2

}
= arg min

x∈X
‖y − x‖22. (3.7)

The induced learning scheme (cf. Algorithm 1) may thus be viewed as a multi-
agent variant of gradient ascent with lazy projections (Zinkevich, 2003). For future
reference, note that h is differentiable on X and ΠX is surjective (i.e., im ΠX = X ).

Example 3.2 (Entropic regularization). Motivated by mixed strategy learning in
finite games (Example 2.1), let ∆ = {x ∈ Rd+ :

∑d
j=1 xj = 1} denote the unit

simplex of Rd. Then, a standard regularizer on ∆ is provided by the (negative)
Gibbs entropy

h(x) =

d∑
`=1

x` log x`. (3.8)

The entropic regularizer (3.8) is 1-strongly convex with respect to the L1-norm on
Rd. Moreover, a straightforward calculation shows that the induced choice map is

Λ(y) =
1∑d

`=1 exp(y`)
(exp(y1), . . . , exp(yd)). (3.9)

This model is known as logit choice and the associated learning scheme has been
studied extensively in evolutionary game theory and online learning; for a detailed

10We assume here that V ≡
∏
i Vi is endowed with the product norm ‖x‖2V =

∑
i‖xi‖2Vi .
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account, see Vovk (1990), Littlestone and Warmuth (1994), Laraki and Mertikopou-
los (2013), and references therein. In contrast to the previous example, h is differ-
entiable only on the relative interior ∆◦ of ∆ and im Λ = ∆◦ (i.e., Λ is “essentially”
surjective).

3.3. Surjectivity vs. steepness. We close this section with an important link be-
tween the boundary behavior of penalty functions and the surjectivity of the induced
choice maps. To describe it, it will be convenient to treat h as an extended-real-
valued function h : V → R ∪ {∞} by setting h =∞ outside X . The subdifferential
of h at x ∈ V is then defined as

∂h(x) = {y ∈ V∗ : h(x′) ≥ h(x) + 〈y, x′ − x〉 for all x′ ∈ V}, (3.10)

and h is called subdifferentiable at x ∈ X whenever ∂h(x) is nonempty. This is
always the case if x ∈ X ◦, so X ◦ ⊆ dom ∂h ≡ {x ∈ X : ∂h(x) 6= ∅} ⊆ X
(Rockafellar, 1970, Chap. 26).

Intuitively, h fails to be subdifferentiable at a boundary point x ∈ bd(X ) only
if it becomes “infinitely steep” near x. We thus say that h is steep at x whenever
x /∈ domh; otherwise, h is said to be nonsteep at x. The following proposition
shows that regularizers that are everywhere nonsteep (as in Example 3.1) induce
choice maps that are surjective; on the other hand, regularizers that are everywhere
steep (cf. Example 3.2) induce choice maps that are interior-valued:

Proposition 3.2. Let h be a K-strongly convex regularizer with induced choice map
Q : Y → X , and let h∗ : Y → R be the convex conjugate of h, i.e.,

h∗(y) = max{〈y, x〉 − h(x) : x ∈ X}, y ∈ Y. (3.11)

Then:
1) x = Q(y) if and only if y ∈ ∂h(x); in particular, imQ = dom ∂h.
2) h∗ is differentiable on Y and ∇h∗(y) = Q(y) for all y ∈ Y.
3) Q is (1/K)-Lipschitz continuous.

Proposition 3.2 is essentially folklore in optimization and convex analysis; for
a proof, see Rockafellar (1970, Theorem 23.5) and Rockafellar and Wets (1998,
Theorem 12.60(b)).

4. Convergence analysis

A key property of (DA) in concave games is that it leads to no regret, viz.

max
xi∈Xi

n∑
k=1

[ui(xi;X−i,k)− ui(Xk)] = o(n) for all i ∈ N , (4.1)

provided that the algorithm’s step-size is chosen appropriately – for a precise state-
ment, see Xiao (2010) and Shalev-Shwartz (2011). As such, under (DA), every
player’s average payoff matches asymptotically that of the best fixed action in hind-
sight (though, of course, this does not take into account changes to other players’
actions due to a change in a given player’s chosen action).

In this section, we expand on this worst-case guarantee and we derive some gen-
eral convergence results for the actual sequence of play induced by (DA). Specif-
ically, in Section 4.1 we show that if (DA) converges to some action profile, this
limit is a Nash equilibrium. Subsequently, to obtain stronger convergence results,
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we introduce in Section 4.2 the so-called Fenchel coupling, a “primal-dual” diver-
gence measure between the players’ (primal) action variables xi ∈ Xi and their
(dual) score vectors yi ∈ Yi. Using this coupling as a Lyapunov function, we show
in Sections 4.3 and 4.4 that globally (resp. locally) stable states are globally (resp.
locally) attracting under (DA). Finally, in Section 4.5, we examine the convergence
properties of (DA) in zero-sum concave-convex games.

4.1. Limit states. We first show that if the sequence of play induced by (DA) con-
verges to some x∗ ∈ X with positive probability, this limit is a Nash equilibrium:

Theorem 4.1. Suppose that (DA) is run with imperfect gradient information satis-
fying (H1)–(H2) and a step-size sequence γn such that

∞∑
n=1

(γn
τn

)2
<

∞∑
n=1

γn =∞, (4.2)

where τn =
∑n
k=1 γk. If the game is (pseudo-)concave and Xn converges to x∗ ∈ X

with positive probability, x∗ is a Nash equilibrium.

Remark 4.1. Note here that the requirement (4.2) holds for every step-size policy
of the form γn ∝ 1/nβ , β ≤ 1 (i.e. even for increasing γn).

Proof of Theorem 4.1. Let v∗ = v(x∗) and assume ad absurdum that x∗ is not a
Nash equilibrium. By the characterization (2.7) of Nash equilibria, there exists a
player i ∈ N and a deviation qi ∈ Xi such that 〈v∗i , qi−x∗i 〉 > 0. Thus, by continuity,
there exists some a > 0 and neighborhoods U , V of x∗ and v∗ respectively, such
that

〈v′i, qi − x′i〉 ≥ c (4.3)
whenever x′ ∈ U and v′ ∈ V .

Now, let Ω0 be the event that Xn converges to x∗, so P(Ω0) > 0 by assumption.
Within Ω0, we may assume for simplicity that Xn ∈ U and v(Xn) ∈ V for all n, so
(DA) yields

Yn+1 = Y1 +

n∑
k=1

γkv̂k+1 = Yn0 +

n∑
k=1

γk [v(Xk) + ξk+1] = Y1 + τnv̄n+1, (4.4)

where we set v̄n+1 = τ−1n
∑n
k=1 γkv̂k+1 = τ−1n

∑n
k=1 γk [v(Xk) + ξk+1].

We now claim that P(v̄n → v∗ |Ω0) = 1. Indeed, by (4.2) and (H2), we have
∞∑
n=1

1

τ2n
E[‖γnξn+1‖2∗ | Fn] ≤

∞∑
n=1

γ2n
τ2n
σ2 <∞. (4.5)

Therefore, by the law of large numbers for martingale difference sequences (Hall
and Heyde, 1980, Theorem 2.18), we obtain τ−1n

∑n
k=1 γkξk+1 → 0 (a.s.). Given

that v(Xn) → v∗ in Ω0 and P(Ω0) > 0, we infer that P(v̄n → v∗ |Ω0) = 1, as
claimed.

Now, with Yi,n ∈ ∂hi(Xi,n) by Proposition 3.2, we also have

hi(qi)−hi(Xi,n) ≥ 〈Yi,n, qi−Xi,n〉 = 〈Yi,1, qi−Xi,n〉+ τn−1〈v̄i,n, qi−Xi,n〉. (4.6)
Since v̄n → v∗ almost surely on Ω0, (4.3) yields 〈v̄i,n, qi − Xi,n〉 ≥ c > 0 for all
sufficiently large n. However, given that |〈Yi,1, qi −Xi,n〉| ≤ ‖Yi,1‖∗‖qi −Xi,n‖ ≤
‖Yi,1‖∗‖X‖ = O(1), a simple substitution in (4.6) yields hi(qi)− hi(Xi,n) & cτn →
∞ with positive probability, a contradiction. We conclude that x∗ is a Nash equi-
librium of G, as claimed. �
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4.2. The Fenchel coupling. A key tool in establishing the convergence properties of
(DA) is the so-called Bregman divergence D(p, x) between a given base point p ∈ X
and a test state x ∈ X . Following Kiwiel (1997), D(p, x) is defined as the difference
between h(p) and the best linear approximation of h(p) from x, viz.

D(p, x) = h(p)− h(x)− h′(x; p− x), (4.7)

where h′(x; z) = limt→0+ t
−1[h(x+ tz)−h(x)] denotes the one-sided derivative of h

at x along z ∈ TC(x). Owing to the (strict) convexity of h, we have D(p, x) ≥ 0 and
Xn → p whenever D(p,Xn)→ 0 (Kiwiel, 1997). Accordingly, the convergence of a
sequence Xn to a target point p can be checked directly by means of the associated
divergence D(p,Xn).

Nevertheless, it is often impossible to glean any useful information on D(p,Xn)
from (DA) when Xn = Q(Yn) is not interior. Instead, given that (DA) mixes primal
and dual variables (actions and scores respectively), it will be more convenient to
use the following “primal-dual divergence” between dual vectors y ∈ Y and base
points p ∈ X :

Definition 4.2. Let h : X → R be a penalty function on X . Then, the Fenchel
coupling induced by h is defined as

F (p, y) = h(p) + h∗(y)− 〈y, p〉 for all p ∈ X , y ∈ Y. (4.8)

The terminology “Fenchel coupling” is due to Mertikopoulos and Sandholm (2016)
and refers to the fact that (4.8) collects all terms of Fenchel’s inequality. As a result,
F (p, y) is nonnegative and strictly convex in both arguments (though not jointly
so). Moreover, it enjoys the following key properties:

Proposition 4.3. Let h be a K-strongly convex penalty function on X . Then, for all
p ∈ X and all y, y′ ∈ Y, we have:

a) F (p, y) = D(p,Q(y)) if Q(y) ∈ X ◦ (but not necessarily otherwise). (4.9a)

b) F (p, y) ≥ 1
2K ‖Q(y)− p‖2. (4.9b)

c) F (p, y′) ≤ F (p, y) + 〈y′ − y,Q(y)− p〉+ 1
2K ‖y

′ − y‖2∗. (4.9c)

Proposition 4.3 (proven in Appendix A) justifies the terminology “primal-dual
divergence” and plays a key role in our analysis. Specifically, given a sequence Yn
in Y, (4.9b) yields Q(Yn) → p whenever F (p, Yn) → 0, meaning that F (p, Yn) can
be used to test the convergence of Q(Yn) to p.

For technical reasons, it is convenient to also assume the converse, namely that

F (p, Yn)→ 0 whenever Q(Yn)→ p. (H3)

When h is steep, we have F (p, y) = D(p,Q(y)) for all y ∈ Y, so (H3) boils down to
the requirement

D(p, xn)→ 0 whenever Xn → p. (4.10)
This so-called “reciprocity condition” is well known in the theory of Bregman func-
tions (Chen and Teboulle, 1993; Kiwiel, 1997; Alvarez et al., 2004): essentially, it
means that the sublevel sets ofD(p, ·) are neighborhoods of p in X . Hypothesis (H3)
posits that the images of the sublevel sets of F (p, ·) under Q are neighborhoods of
p in X , so it may be seen as a “primal-dual” variant of Bregman reciprocity. Under
this light, it is easy to check that Examples 3.1 and 3.2 both satisfy (H3).

Obviously, when (H3) holds, Proposition 4.3 gives:
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Corollary 4.4. Under (H3), F (p, Yn)→ 0 if and only if Q(Yn)→ p.

To extend the above to subsets of X , we further define the setwise coupling

F (C, y) = inf{F (p, y) : p ∈ C}, C ⊆ X , y ∈ Y. (4.11)

In analogy to the pointwise case, we then have:

Proposition 4.5. Let C be a closed subset of X . Then, Q(Yn) → C whenever
F (C, Yn)→ 0; in addition, if (H3) holds, the converse is also true.

The proof of Proposition 4.5 is a straightforward exercise in point-set topology so
we omit it. What’s more important is that, thanks to Proposition 4.5, the Fenchel
coupling can also be used to test for convergence to a set; in what follows, we
employ this property freely.

4.3. Global convergence. In this section, we focus on globally stable Nash equilibria
(and sets thereof). We begin with the perfect feedback case:

Theorem 4.6. Suppose that (DA) is run with perfect feedback (σ = 0), choice maps
satisfying (H3), and a step-size γn such that

∑n
k=1 γ

2
k

/∑n
k=1 γk → 0. If the set X ∗

of the game’s Nash equilibria is globally stable, Xn converges to X ∗.

Proof. Let X ∗ be the game’s set of Nash equilibria, fix some arbitrary ε > 0, and
let Uε = {x = Q(y) : F (X ∗, y) < ε}. Then, by Proposition 4.5, it suffices to show
that Xn ∈ Uε for all sufficiently large n.

To that end, for all x∗ ∈ X ∗, Proposition 4.3 yields

F (x∗, Yn+1) ≤ F (x∗, Yn) + γn〈v(Xn), Xn − x∗〉+
γ2n
2K
‖v(Xn)‖2∗. (4.12)

To proceed, assume inductively that Xn ∈ Uε. By (H3), there exists some δ > 0
such that cl(Uε/2) contains a δ-neighborhood of X ∗.11 Consequently, with X ∗
globally stable, there exists some c ≡ c(ε) > 0 such that

〈v(x), x− x∗〉 ≤ −c for all x ∈ Uε − Uε/2, x∗ ∈ X ∗. (4.13)

If Xn ∈ Uε − Uε/2 and γn ≤ 2cK/V 2
∗ , (4.12) yields F (x∗, Yn+1) ≤ F (x∗, Yn).12

Hence, minimizing over x∗ ∈ X ∗, we get F (X ∗, Yn+1) ≤ F (X ∗, Yn) < ε, so Xn+1 =
Q(Yn+1) ∈ Uε. Otherwise, if Xn ∈ Uε/2 and γ2n < εK/V 2

∗ , combining (VS) with
(4.12) yields F (x∗, Yn+1) ≤ F (x∗, Yn) + ε/2 so, again, F (X ∗, Yn+1) ≤ F (X ∗, Yn) +
ε/2 ≤ ε, i.e. Xn+1 ∈ Uε. We thus conclude that Xn+1 ∈ Uε whenever Xn ∈ Uε and
γn < min{2cK/V 2

∗ ,
√
εK/V∗}.

To complete the proof, Lemma A.3 shows that Xn visits Uε infinitely often under
the stated assumptions. Since γn → 0, our assertion follows. �

We next show that Theorem 4.6 extends to the case of imperfect feedback under
the additional regularity requirement:

The gradient field v(x) is Lipschitz continuous. (H4)

With this extra assumption, we have:

11Indeed, if this were not the case, there would exist a sequence Y ′n in Y such that Q(Y ′n)→ X ∗
but F (X ∗, Y ′n) ≥ ε/2, in contradiction to (H3).

12Since σ = 0, we can take here V∗ = maxx∈X ‖v(x)‖∗.
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Hypothesis Precise statement

(H1) Zero-mean errors E[ξn+1 | Fn] = 0

(H2) Finite error variance E[‖ξn+1‖2∗ | Fn] ≤ σ2

(H3) Bregman reciprocity F (p, yn)→ 0 whenever Q(yn)→ p

(H4) Lipschitz gradients v(x) is Lipschitz continuous

Table 2. Overview of the various regularity hypotheses used in the paper.

Theorem 4.7. Suppose that (DA) is run with a step-size sequence γn such that∑∞
n=1 γ

2
n <∞ and

∑∞
n=1 γn =∞. If (H1)–(H4) hold and the set X ∗ of the game’s

Nash equilibria is globally stable, Xn converges to X ∗ (a.s.).

Corollary 4.8. If G satisfies (MC), Xn converges to the (necessarily unique) Nash
equilibrium of G (a.s.).

Corollary 4.9. If G admits a concave potential, Xn converges to the set of Nash
equilibria of G (a.s.).

Because of the noise affecting the players’ gradient estimates, our proof strategy
for Theorem 4.7 is quite different from that of Theorem 4.6. In particular, instead
of working directly in discrete time, we start with the continuous-time system

ẏ = v(x),

x = Q(y),
(DA-c)

which can be seen as a “mean-field” approximation of the recursive scheme (DA).
As we show in Appendix A, the orbits x(t) = Q(y(t)) of (DA-c) converge to X ∗
in a certain, “uniform” way. Moreover, under the assumptions of Theorem 4.7, the
sequence Yn generated by the discrete-time, stochastic process (DA) comprises an
asymptotic pseudotrajectory (APT) of the dynamics (DA-c), i.e. Yn asymptotically
tracks the flow of (DA-c) with arbitrary accuracy over windows of arbitrary length
Benaïm (1999).13 APTs have the key property that, in the presence of a global
attractor, they cannot stray too far from the flow of (DA-c); however, given that Q
may fail to be invertible, the trajectories x(t) = Q(y(t)) do not consitute a semiflow,
so it is not possible to leverage the general stochastic approximation theory of
Benaïm (1999). To overcome this difficulty, we exploit the derived convergence
bound for x(t) = Q(y(t)), and we then use an inductive shadowing argument to
show that (DA) converges itself to X ∗.

Proof of Theorem 4.7. Fix some ε > 0, let Uε = {x = Q(y) : F (X ∗, y) < ε}, and
write Φt : Y → Y for the semiflow induced by (DA-c) on Y – i.e. (Φt(y))t≥0 is the
solution orbit of (DA-c) that starts at y ∈ Y.14

We first claim there exists some finite τ ≡ τ(ε) such that F (X ∗,Φτ (y)) ≤
max{ε, F (X ∗, y) − ε} for all y ∈ Y. Indeed, since cl(Uε) is a closed neighborhood
of X ∗ by (H3), (VS) implies that there exists some c ≡ c(ε) > 0 such that

〈v(x), x− x∗〉 ≤ −c for all x∗ ∈ X ∗, x /∈ Uε. (4.14)

13For a precise definition, see (4.16) below.
14That such a trajectory exists and is unique is a consequence of (H4).
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Consequently, if τy = inf{t > 0 : Q(Φt(y)) ∈ Uε} denotes the first time at which an
orbit of (DA-c) reaches Uε, Lemma A.2 in Appendix A gives:

F (x∗,Φt(y)) ≤ F (x∗, y)− ct for all x∗ ∈ X ∗, t ≤ τy. (4.15)

In view of this, set τ = ε/c and consider the following two cases:
(1) τy ≥ τ : then, (4.15) gives F (x∗,Φτ (y)) ≤ F (x∗, y) − ε for all x∗ ∈ X ∗, so

F (X ∗,Φτ (y)) ≤ F (X ∗, y)− ε.
(2) τy < τ : then, Q(Φτ (y)) ∈ Uε, so F (X ∗,Φτ (y)) ≤ ε.

In both cases we have F (X ∗,Φτ (y)) ≤ max{ε, F (X ∗, y)− ε}, as claimed.
Now, let (Y (t))t≥0 denote the affine interpolation of the sequence Yn generated

by (DA), i.e. Y is the continuous curve which joins the values Yn at all times
τn =

∑n
k=1 γk. Under the stated assumptions, a standard result of Benaïm (1999,

Propositions 4.1 and 4.2) shows that Y (t) is an asymptotic pseudotrajectory of Φ,
i.e.

lim
t→∞

sup
0≤h≤T

‖Y (t+ h)− Φh(Y (t))‖∗ = 0 for all T > 0 (a.s.). (4.16)

Thus, with some hindsight, let δ ≡ δ(ε) be such that δ‖X‖ + δ2/(2K) ≤ ε and
choose t0 ≡ t0(ε) so that sup0≤h≤τ‖Y (t+h)−Φh(Y (t))‖∗ ≤ δ for all t ≥ t0. Then,
for all t ≥ t0 and all x∗ ∈ X ∗, Proposition 4.3 gives

F (x∗, Y (t+ h)) ≤ F (x∗,Φh(Y (t)))

+ 〈Y (t+ h)− Φh(Y (t)), Q(Φh(Y (t)))− x∗〉

+
1

2K
‖Y (t+ h)− Φh(Y (t))‖2∗

≤ F (x∗,Φh(Y (t))) + δ‖X‖+
δ2

2K
≤ F (x∗,Φh(Y (t))) + ε. (4.17)

Hence, minimizing over x∗ ∈ X ∗, we get

F (X ∗, Y (t+ h)) ≤ F (X ∗,Φh(Y (t))) + ε for all t ≥ t0. (4.18)

By Lemma A.3, there exists some t ≥ t0 such that F (X ∗, Y (t)) ≤ 2ε (a.s.).
Thus, given that F (X ∗,Φh(Y (t))) is nonincreasing in h by Lemma A.2, Eq. (4.18)
yields F (X ∗, Y (t+h)) ≤ 2ε+ ε = 3ε for all h ∈ [0, τ ]. However, by the definition of
τ , we also have F (X ∗,Φτ (Y (t))) ≤ max{ε, F (X ∗, Y (t))− ε} ≤ ε, implying in turn
that F (X ∗, Y (t + τ)) ≤ F (X ∗,Φτ (Y (t))) + ε ≤ 2ε. Therefore, by repeating the
above argument at t+ τ and proceeding inductively, we get F (X ∗, Y (t+ h)) ≤ 3ε
for all h ∈ [kτ, (k+ 1)τ ], k = 1, 2, . . . (a.s.). Since ε has been chosen arbitrarily, we
conclude that F (X ∗, Yn)→ 0, so Xn → X ∗ by Proposition 4.5. �

We close this section with a few remarks:

Remark 4.2. In the above, the Lipschitz continuity assumption (H4) is used to
show that the sequence Xn comprises an APT of the continuous-time dynamics
(DA-c). Since any continuous functions on a compact set is uniformly continuous,
the proof of Proposition 4.1 in Benaïm (1999, p. 14) shows that (H4) can be dropped
altogether if (DA-c) is well-posed (which, in turn, holds if v(x) is only locally
Lipschitz). Albeit less general, Lipschitz continuity is more straightforward as an
assumption, so we do not go into the details of this relaxation.
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We should also note that several classic convergence results for dual averaging
and mirror descent do not require Lipschitz continuity at all (see e.g. Nesterov,
2009, and Nemirovski et al., 2009). The reason for this is that these results focus
on the convergence of the averaged sequence X̄n =

∑n
k=1 γkXk

/∑n
k=1 γk, whereas

the figure of merit here is the actual sequence of play Xn. The latter sequence
is more sensitive to noise, hence the need for additional regularity; in our ergodic
analysis later in the paper, (H4) is not invoked.

Remark 4.3. Theorem 4.7 shows that (DA) converges to equilibrium, but the
summability requirement

∑∞
n=1 γ

2
n <∞ suggests that players must be more conser-

vative under uncertainty. To make this more precise, note that the step-size assump-
tions of Theorem 4.6 are satisfied for all step-size policies of the form γn ∝ 1/nβ ,
β ∈ (0, 1]; however, in the presence of errors and uncertainty, Theorem 4.7 guaran-
tees convergence only when β ∈ (1/2, 1].

The “critical” value β = 1/2 is tied to the finite mean squared error hypothesis
(H2). If the players’ gradient observations have finite moments up to some order
q > 2, a more refined stochastic approximation argument can be used to show that
Theorem 4.7 still holds under the lighter requirement

∑∞
n=1 γ

1+q/2
n < ∞. Thus,

even in the presence of noise, it is possible to employ (DA) with any step-size
sequence of the form γn ∝ 1/nβ , β ∈ (0, 1], provided that the noise process ξn has
E[‖ξn+1‖q∗ | Fn] < ∞ for some q > 2/β − 2. In particular, if the noise affecting
the players’ observations has finite moments of all orders (for instance, if ξn is sub-
exponential or sub-Gaussian), it is possible to recover essentially all the step-size
policies covered by Theorem 4.6.

4.4. Local convergence. The results of the previous section show that (DA) con-
verges globally to states (or sets) that are globally stable, even under noise and
uncertainty. In this section, we show that (DA) remains locally convergent to
states that are only locally stable with probability arbitrarily close to 1.

For simplicity, we begin with the deterministic, perfect feedback case:

Theorem 4.10. Suppose that (DA) is run with perfect feedback (σ = 0), choice maps
satisfying (H3), and a sufficiently small step-size with

∑n
k=1 γ

2
k

/∑n
k=1 γk → 0. If

X ∗ is a stable set of Nash equilibria, there exists a neighborhood U of X ∗ such that
Xn converges to X ∗ whenever X1 ∈ U .

Proof. As in the proof of Theorem 4.6, let Uε = {x = Q(y) : F (X ∗, y) < ε}. Since
X ∗ is stable, there exists some ε > 0 and some c > 0 satisfying (4.13) and such
that (VS) holds throughout Uε. If X1 ∈ Uε and γ1 ≤ min{2cK/V 2

∗ ,
√
εK/V∗},

the same induction argument as in the proof of Theorem 4.6 shows that Xn ∈ Uε
for all n. Since (VS) holds throughout Uε, Lemma A.3 shows that Xn visits any
neighborhood of X ∗ infinitely many times. Thus, by the same argument as in the
proof of Theorem 4.6, we get Xn → X ∗. �

The key idea in the proof of Theorem 4.10 is that if the step-size of (DA) is
small enough, Xn = Q(Yn) always remains within the “basin of attraction” of X ∗;
hence, local convergence can be obtained in the same way as global convergence for
a game with smaller action spaces. However, if the players’ feedback is subject to
estimation errors and uncertainty, a single unlucky instance could drive Xn away
from said basin, possibly never to return. Consequently, any local convergence
result in the presence of noise is necessarily probabilistic in nature.
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Conditioning on the event that Xn stays close to X ∗, local convergence can be
obtained as in the proof of Theorem 4.7. Nevertheless, showing that this event
occurs with controllably high probability requires a completely different analysis.
This is the essence of our next result:

Theorem 4.11. Fix a confidence level δ > 0 and suppose that (DA) is run with a
sufficiently small step-size γn satisfying

∑∞
n=1 γ

2
n < ∞ and

∑∞
n=1 γn = ∞. If X ∗

is stable and (H1)–(H4) hold, then X ∗ is locally attracting with probability at least
1− δ; more precisely, there exists a neighborhood U of X ∗ such that

P(Xn → X ∗ |X1 ∈ U) ≥ 1− δ. (4.19)

Corollary 4.12. Let x∗ be a Nash equilibrium with negative-definite Hessian ma-
trix HG(x∗) ≺ 0. Then, with assumptions as above, x∗ is locally attracting with
probability arbitrarily close to 1.

Proof of Theorem 4.11. Let Uε = {x = Q(y) : F (X ∗, y) < ε} and pick ε > 0 small
enough so that (VS) holds for all x ∈ U3ε. Assume further that X1 ∈ Uε so there
exists some x∗ ∈ X ∗ such that F (x∗, Y1) < ε. Then, for all n, Proposition 4.3 yields

F (x∗, Yn+1) ≤ F (x∗, Yn) + γn〈v(Xn), Xn − x∗〉+ γnψn+1 +
γ2n
2K
‖v̂n+1‖2∗, (4.20)

where we have set ψn+1 = 〈ξn+1, Xn − x∗〉.
We first claim that supn

∑n
k=1 γkψk+1 ≤ ε with probability at least 1− δ/2 if γn

is chosen appropriately. Indeed, set Sn+1 =
∑n
k=1 γkψk+1 and let En,ε denote the

event {sup1≤k≤n+1|Sk| ≥ ε}. Since Sn is a martingale, Doob’s maximal inequality
(Hall and Heyde, 1980, Theorem 2.1) yields

P(En+1,ε) ≤
E[|Sn+1|2]

ε2
≤
σ2‖X‖2

∑n
k=1 γ

2
k

ε2
, (4.21)

where we used the variance estimate

E[ψ2
k+1] = E[E[|〈ξk+1, Xk − x∗〉|2 | Fk]]

≤ E[E[‖ξk+1‖2∗‖Xk − x∗‖2 | Fk]] ≤ σ2‖X‖2, (4.22)

and the fact that E[ψk+1ψ`+1] = E[E[ψk+1ψ`+1] | Fk∨`] = 0 whenever k 6= `. Since
En+1,ε ⊇ En,ε ⊇ . . . , the event Eε =

⋃∞
n=1En,ε occurs with probability P(Eε) ≤

Γ2σ
2‖X‖2/ε2, where Γ2 ≡

∑∞
n=1 γ

2
n. Thus, if Γ2 ≤ δε2/(2σ2‖X‖2), we get P(Eε) ≤

δ/2.
We now claim that the process Rn+1 = (2K)−1

∑n
k=1 γ

2
k‖v̂k+1‖2∗ is also bounded

from above by ε with probability at least 1 − δ/2 if γn is chosen appropriately.
Indeed, working as above, let Fn,ε denote the event {sup1≤k≤n+1Rk ≥ ε}. Since
Rn is a nonnegative submartingale, Doob’s maximal inequality again yields

P(Fn+1,ε) ≤
E[Rn+1]

ε
≤
V 2
∗
∑n
k=1 γ

2
k

2Kε
. (4.23)

Consequently, the event Fε =
⋃∞
n=1 Fn,ε occurs with probability P(Fε) ≤ Γ2V

2
∗ /ε ≤

δ/2 if γn is chosen so that Γ2 ≤ Kδε/V 2
∗ .

Assume therefore that Γ2 ≤ min{δε2/(2σ2‖X‖2), Kδε/V 2
∗ }. The above shows

that P(Ēε ∩ F̄ε) = 1− P(Eε ∪Fε) ≥ 1− δ/2− δ/2 = 1− δ, i.e. Sn and Rn are both
bounded from above by ε for all n and all x∗ with probability at least 1− δ. Since



22 P. MERTIKOPOULOS AND Z. ZHOU

F (x∗, Y1) ≤ ε by assumption, we readily get F (x∗, Y1) ≤ 3ε if Ēε and F̄ε both hold.
Furthermore, telescoping (4.20) yields

F (x∗, Yn+1) ≤ F (x∗, Y1) +

n∑
k=1

〈v(Xk), Xk − x∗〉+ Sn+1 +Rn+1 for all n, (4.24)

so if we assume inductively that F (x∗, Yk) ≤ 3ε for all k ≤ n (implying that
〈v(Xk), Xk − x∗〉 ≤ 0 for all k ≤ n), we also get F (x∗, Yn+1) ≤ 3ε if neither Eε nor
Fε occur. Since P(Eε ∪ Fε) ≤ δ, we conclude that Xn stays in U3ε for all n with
probability at least 1 − δ. In turn, when this is the case, Lemma A.3 shows that
X ∗ is recurrent under Xn. Hence, by repeating the same steps as in the proof of
Theorem 4.7, we get Xn → X ∗ with probability at least 1− δ, as claimed. �

4.5. Convergence in zero-sum concave games. We close this section by examining
the asymptotic behavior of (DA) in 2-player, concave-convex zero-sum games. To
do so, let N = {A,B} denote the set of players with corresponding payoff functions
uA = −uB respectively concave in xA and xB . Letting u ≡ uA = −uB , the value
of the game is defined as

u∗ = max
xA∈XA

min
xB∈XB

u(xA, xB) = min
xB∈XB

max
xA∈XA

u(xA, xB). (4.25)

The solutions of the concave-convex saddle-point problem (4.25) are the Nash equi-
libria of G and the players’ equilibrium payoffs are u∗ and −u∗ respectively.

In the “perfect feedback” case (σ = 0), Nesterov (2009) showed that the ergodic
average

X̄n =

∑n
k=1 γkXk∑n
k=1 γk

(4.26)

of the sequence of play generated by (DA) converges to equilibrium. With imperfect
feedback and steep h,15 Nemirovski et al. (2009) further showed that X̄n converges
in expectation to the game’s set of Nash equilibria, provided that (H1) and (H2)
hold. Our next result provides an almost sure version of this result which is also
valid for nonsteep h:

Theorem 4.13. Let G be a concave 2-player zero-sum game. If (DA) is run with
imperfect feedback satisfying (H1)–(H2) and a step-size γn such that

∑∞
n=1 γ

2
n <∞

and
∑∞
n=1 γn = ∞, the ergodic average X̄n of Xn converges to the set of Nash

equilibria of G (a.s.).

Proof of Theorem 4.13. Consider the gap function

ε(x) = u∗− min
pB∈XB

u(xA, pB) + max
pA∈XA

u(pA, xB)−u∗ = max
p∈X

∑
i∈N

ui(pi;x−i). (4.27)

Obviously, ε(x) ≥ 0 with equality if and only if x is a Nash equilibrium, so it suffices
to show that ε(X̄n)→ 0 (a.s.).

To do so, pick some p ∈ X . Then, as in the proof of Theorem 4.7, we have

F (p, Yn+1) ≤ F (p, Yn) + γn〈v(Xn), Xn − p〉+ γnψn+1 +
1

2K
γ2n‖v̂n+1‖2∗. (4.28)

15When h is steep, the mirror descent algorithm examined by Nemirovski et al. (2009) is a
special case of the dual averaging method of Nesterov (2009). This is no longer the case if h is not
steep, so the analysis of Nemirovski et al. (2009) does not apply to (DA). In the online learning
literature, this difference is sometimes referred to as “greedy” vs. “lazy” mirror descent.
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Hence, after rearranging and telescoping, we get
n∑
k=1

γk〈v(Xk), p−Xk〉 ≤ F (p, Y1) +

n∑
k=1

γkψk+1 +
1

2K

n∑
k=1

γ2k‖v̂k+1‖2∗, (4.29)

where ψn+1 = 〈ξn+1, Xn−p〉 and we used the fact that F (p, Yn) ≥ 0. By concavity,
we also have

〈v(x), p− x〉 =
∑
i∈N
〈vi(x), pi − xi〉 ≥

∑
i∈N

[ui(pi;x−i)− ui(x)] =
∑
i∈N

ui(pi;x−i),

(4.30)
for all x ∈ X . Therefore, letting τn =

∑n
k=1 γk, we get

1

τn

n∑
k=1

γk〈v(Xk), p−Xk〉 ≥
1

τn

n∑
k=1

γk
∑
i∈N

ui(pi;X−i,k)

≥ u(pA, X̄B,n)− u(X̄A,n, pB)

=
∑
i∈N

ui(pi; X̄−i,n), (4.31)

where we used the fact that u is concave-convex in the second line. Thus, combining
(4.29) and (4.31), we finally obtain∑
i∈N

ui(pi; X̄−i,n) ≤
F (p, Y1) +

∑n
k=1 γkψk+1 + (2K)−1

∑n
k=1 γ

2
k‖v̂k+1‖2∗

τn
. (4.32)

As before, the law of large numbers (Hall and Heyde, 1980, Theorem 2.18) yields
τ−1n

∑n
k=1 γkψk+1 → 0 (a.s.). Furthermore, given that E[‖v̂n+1‖2∗ | Fn] ≤ V 2

∗ and∑n
k=1 γ

2
k < ∞, we also get τ−1n

∑n
k=1 γ

2
k‖v̂k+1‖2∗ → 0 by Doob’s martingale con-

vergence theorem (Hall and Heyde, 1980, Theorem 2.5), implying in turn that∑
i∈N ui(pi; X̄−i,n) → 0 (a.s.). Since p is arbitrary, we conclude that ε(X̄n) → 0

(a.s.), as claimed. �

5. Learning in finite games

As a concrete application of the analysis of the previous section, we turn to the
asymptotic behavior of (DA) in finite games. Briefly recalling the setup of Ex-
ample 2.1, each player in a finite game Γ ≡ Γ(N , (Ai)i∈N , (ui)i∈N ) chooses a pure
strategy αi from a finite set Ai and receives a payoff of ui(α1, . . . , αN ). Pure strate-
gies are drawn based on the players’ mixed strategies xi ∈ Xi ≡ ∆(Ai), so each
player’s expected payoff is given by the multilinear expression (2.3). Accordingly,
the individual payoff gradient of player i ∈ N in the mixed profile x = (x1, . . . , xN )
is the (mixed) payoff vector vi(x) = ∇xi

ui(xi;x−i) = (ui(αi;x−i))αi∈Ai
of Eq. (2.4).

Consider now the following learning scheme: At stage n, every player i ∈ N
selects a pure strategy αi,n ∈ Ai according to their individual mixed strategy
Xi,n ∈ Xi. Subsequently, each player observes – or otherwise calculates – the
payoffs of their pure strategies αi ∈ Ai against the chosen actions α−i,n of all other
players (possibly subject to some random estimation error). Specifically, we posit
that each player receives as feedback the “noisy” payoff vector

v̂i,n+1 = (ui(αi;α−i,n))αi∈Ai
+ ξi,n+1, (5.1)
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Algorithm 2. Logit-based learning in finite games (Example 3.2).

Require: step-size sequence γn ∝ 1/nβ , β ∈ (0, 1]; initial scores Yi ∈ RAi

1: for n = 1, 2, . . . do
2: for every player i ∈ N do
3: set Xi ← Λi(Yi); {mixed strategy}
4: play αi ∼ Xi; {choose action}
5: observe v̂i; {estimate payoffs}
6: update Yi ← Yi + γnv̂i; {update scores}
7: end for
8: end for

where the error process ξn = (ξi,n)i∈N is assumed to satisfy (H1) and (H2). Then,
based on this feedback, players update their mixed strategies and the process re-
peats (for a concrete example, see Algorithm 2).

In the rest of this section, we study the long-term behavior of this adaptive
learning process. Specifically, we focus on: a) the elimination of dominated strate-
gies; b) convergence to strict Nash equilibria; and c) convergence to equilibrium in
2-player, zero-sum games.

5.1. Dominated strategies. We say that a pure strategy αi ∈ Ai of a finite game Γ
is dominated by βi ∈ Ai (and we write αi ≺ βi) if

ui(αi;x−i) < ui(βi;x−i) for all x−i ∈ X−i ≡
∏
j 6=i Xj . (5.2)

Put differently, αi ≺ βi if and only if viαi
(x) < viβi

(x) for all x ∈ X . In turn,
this implies that the payoff gradient of player i points consistently towards the face
xiαi = 0 of Xi, so it is natural to expect that αi is eliminated under (DA). Indeed,
we have:

Theorem 5.1. Suppose that (DA) is run with noisy payoff observations of the form
(5.1) and a step-size sequence γn satisfying (4.2). If αi ∈ Ai is dominated, then
Xiαi,n → 0 (a.s.).

Proof. Suppose that αi ≺ βi for some βi ∈ Ai. Then, suppressing the player index
i for simplicity, (DA) gives

Yβ,n+1 − Yα,n+1 = cβα +

n∑
k=1

γk [v̂β,k+1 − v̂α,k+1]

= cβα +

n∑
k=1

γk [vβ(Xk)− vα(Xk)] +

n∑
k=1

γkζk+1, (5.3)

where we set cβα = Yβ,1 − Yα,1 and

ζk+1 = E[v̂β,k+1 − v̂α,k+1 | Fk]− [vβ(Xk)− vα(Xk)]. (5.4)

Since α ≺ β, there exists some c > 0 such that vβ(x) − vα(x) ≥ c for all x ∈ X .
Then, (5.3) yields

Yβ,n+1 − Yα,n+1 ≥ cβα + τn

[
c+

∑n
k=1 γkζk+1

τn

]
, (5.5)
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where τn =
∑n
k=1 γk. As in the proof of Theorem 4.1, the law of large numbers for

martingale difference sequences (Hall and Heyde, 1980, Theorem 2.18) implies that
τ−1n

∑n
k=1 γkζk+1 → 0 under the step-size assumption (4.2), so Yβ,n − Yα,n → ∞

(a.s.).
Suppose now that lim supn→∞Xα,n = 2ε for some ε > 0. By descending to

a subsequence if necessary, we may assume that Xα,n ≥ ε for all n, so if we let
X ′n = Xn + ε(eβ − eα), the definition of Q gives

h(X ′n) ≥ h(Xn) + 〈Yn, X ′n −Xn〉 = h(Xn) + ε(Yβ,n − Yα,n)→∞, (5.6)

a contradiction. This implies that Xα,n → 0 (a.s.), as asserted. �

5.2. Strict equilibria. A Nash equilibrium x∗ of a finite game is called strict when
(NE) holds as a strict inequality for all xi 6= x∗i , i.e. when no player can deviate
unilaterally from x∗ without reducing their payoff (or, equivalently, when every
player has a unique best response to x∗). This implies that strict Nash equilibria
are pure strategy profiles x∗ = (α∗1, . . . , α

∗
N ) such that

ui(α
∗
i ;α
∗
−i) > ui(αi;α

∗
−i) for all αi ∈ Ai \ {α∗i }, i ∈ N . (5.7)

Strict Nash equilibria can be characterized further as follows:

Proposition 5.2. Then, the following are equivalent:
a) x∗ is a strict Nash equilibrium.
b) 〈v(x∗), z〉 ≤ 0 for all z ∈ TC(x∗) with equality if and only if z = 0.
c) x∗ is stable.

Thanks to the above characterization of strict equilibria (proven in Appendix A),
the convergence analysis of Section 4 yields:

Proposition 5.3. Let x∗ be a strict equilibrium of a finite game Γ. Suppose further
that (DA) is run with noisy payoff observations of the form (5.1) and a sufficiently
small step-size γn such that

∑∞
n=1 γ

2
n <∞ and

∑∞
n=1 γn =∞. If (H1)–(H3) hold,

x∗ is locally attracting with arbitrarily high probability; specifically, for all δ > 0,
there exists a neighborhood U of x∗ such that

P(Xn → x∗ |X1 ∈ U) ≥ 1− δ. (5.8)

Proof. We first show that E[v̂n+1 | Fn] = v(Xn). Indeed, for all i ∈ N , αi ∈ Ai, we
have

E[v̂iαi,n+1 | Fn] =
∑

α−i∈A−i

ui(αi;α−i)Xα−i,n + E[ξiαi,n+1 | Fn] = ui(αi;X−i,n),

(5.9)
where, in a slight abuse of notation, we set Xα−i,n for the joint probability assigned
to the pure strategy profile α−i of all players other than i at stage n.

By (2.4), it follows that E[v̂n+1 | Fn] = v(Xn) so the estimator (5.1) is unbiased
in the sense of (H1). Hypothesis (H2) can be verified similarly, so the estimator
(5.1) satisfies (3.3). Since x∗ is stable by Proposition 5.2 and v(x) is multilinear
(so (H4) is satisfied automatically), our assertion follows from Theorem 4.11. �

In the special case of logit-based learning (Example 3.2), Cohen et al. (2017)
showed that Algorithm 2 converges locally to strict Nash equilibria under similar
information assumptions. Proposition 5.2 essentially extends this result to the en-
tire class of regularized learning processes induced by (DA) in finite games, showing
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that the logit choice map (3.9) has no special properties in this regard. Cohen et al.
(2017) further showed that the convergence rate of logit-based learning is exponen-
tial in the algorithm’s “running horizon” τn =

∑n
k=1 γk. This rate is closely linked

to the logit choice model, and different choice maps yield different convergence
speeds; we discuss this issue in more detail in Section 6.

5.3. Convergence in zero-sum games. We close this section with a brief discussion
of the ergodic convergence properties of (DA) in finite two-player zero-sum games.
In this case, the analysis of Section 4.5 readily yields:

Corollary 5.4. Let Γ be a finite 2-player zero-sum game. If (DA) is run with noisy
payoff observations of the form (5.1) and a step-size γn such that

∑∞
n=1 γ

2
n < ∞

and
∑∞
n=1 γn =∞, the ergodic average X̄n =

∑n
k=1 γkXk

/∑n
k=1 γk of the players’

mixed strategies converges to the set of Nash equilibria of Γ (a.s.).

Proof. As in the proof of Proposition 5.3, the estimator (5.1) satisfies E[v̂n+1 | Fn] =
v(Xn), so (H1) and (H2) also hold in the sense of (3.3). Our claim then follows
from Theorem 4.13. �

Remark 5.1. In a very recent paper, Bravo and Mertikopoulos (2017) showed that
the time average X̄(t) = t−1

∫ t
0
X(s)ds of the players’ mixed strategies under (DA-c)

with Brownian payoff shocks converges to Nash equilibrium in 2-player, zero-sum
games. Corollary 5.4 may be seen as a discrete-time version of this result.

6. Speed of convergence

6.1. Ergodic convergence rate. In this section, we focus on the rate of convergence
of (DA) to stable equilibrium states (and/or sets thereof). To that end, we will
measure the speed of convergence to a globally stable set X ∗ ⊆ X via the equilibrium
gap function

ε(x) = inf
x∗∈X∗

〈v(x), x∗ − x〉. (6.1)

By Definition 2.6, ε(x) ≥ 0 with equality if and only if x ∈ X ∗, so ε(x) can be seen
as a (game-dependent) measure of the distance between x and the target set X ∗.
This can be seen more clearly in the case of strongly stable equilibria, defined here
as follows:

Definition 6.1. We say that x∗ ∈ X is strongly stable if there exists some L > 0
such that

〈v(x), x− x∗〉 ≤ −L‖x− x∗‖2 for all x ∈ X . (6.2)

More generally, a closed subset X ∗ of X is called strongly stable if

〈v(x), x− x∗〉 ≤ −Ldist(X ∗, x)2 for all x ∈ X , x∗ ∈ X ∗. (6.3)

Obviously, ε(x) ≥ Ldist(X ∗, x)2 if X ∗ is L-strongly stable, i.e. ε(x) grows at
least quadratically near strongly stable sets – just like strongly convex functions
grow quadratically around their minimum points. With this in mind, we provide
below an explicit estimate for the decay rate of the average equilibrium gap ε̄n =∑n
k=1 γkε(Xk)

/∑n
k=1 γk in the spirit of Nemirovski et al. (2009):
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Theorem 6.2. Suppose that (DA) is run with imperfect gradient information satis-
fying (H1)–(H2). Then

E[ε̄n] ≤
F1 + V 2

∗ /(2K)
∑n
k=1 γ

2
k∑n

k=1 γk
, (6.4)

where F1 = F (X ∗, Y1). If, in addition,
∑∞
n=1 γ

2
n <∞, we have

ε̄n ≤
A∑n
k=1 γk

for all n (a.s.), (6.5)

where A > 0 is a finite random variable such that, with probability at least 1− δ,
A ≤ F1 + σ‖X‖κ+ κ2V 2

∗ , (6.6)

where κ2 = 2δ−1
∑∞
n=1 γ

2
n.

Corollary 6.3. Suppose that (DA) is initialized at Y1 = 0 and is run for n iterations
with constant step-size γ = V −1∗

√
2KΩ/n where Ω = maxh−minh. Then,

E[ε̄n] ≤ 2V∗
√

Ω/(Kn). (6.7)

In addition, if X ∗ is L-strongly stable, the long-run average distance to equilibrium
r̄n =

∑n
k=1 dist(X ∗, Xn)

/∑n
k=1 γk satisfies

E[r̄n] ≤ 4
√

4L−2V 2
∗ Ω/(Kn). (6.8)

Proof of Theorem 6.2. Let x∗ ∈ X ∗. Rearranging (4.20) and telescoping yields
n∑
k=1

γk〈v(Xk), x∗ −Xk〉 ≤ F (x∗, Y1) +

n∑
k=1

γkψk+1 +
1

2K

n∑
k=1

γ2k‖v̂k+1‖2∗, (6.9)

where ψk+1 = 〈ξk+1, Xk − x∗〉. Thus, taking expectations on both sides, we obtain
n∑
k=1

γk E[〈v(Xk), x∗ −Xk〉] ≤ F (x∗, Y1) +
V 2
∗

2K

n∑
k=1

γ2k. (6.10)

Subsequently, minimizing both sides of (6.10) over x∗ ∈ X ∗ yields
n∑
k=1

γk E[ε(Xk)] ≤ F1 +
V 2
∗

2K

n∑
k=1

γ2k, (6.11)

where we used Jensen’s inequality to interchange the inf and E operations. The
estimate (6.4) then follows immediately.

To establish the almost sure bound (6.5), set Sn+1 =
∑n
k=1 γkψk+1 and Rn+1 =

(2K)−1
∑n
k=1 γ

2
k‖v̂k+1‖2∗. Then, (6.9) becomes

n∑
k=1

γk〈v(Xk), x∗ −Xk〉 ≤ F (x∗, Y1) + Sn +Rn, (6.12)

Arguing as in the proof of Theorem 4.11, it follows that supn E[|Sn|] and supn E[Rn]
are both finite, i.e. Sn and Rn are both bounded in L1. By Doob’s (sub)martingale
convergence theorem (Hall and Heyde, 1980, Theorem 2.5), it also follows that Sn
and Rn both converge to an (a.s.) finite limit S∞ and R∞ respectively. Conse-
quently, by (6.12), there exists a finite (a.s.) random variable A > 0 such that

n∑
k=1

γk〈v(Xk), x∗ −Xk〉 ≤ A for all n (a.s.). (6.13)
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The bound (6.5) follows by taking the minimum of (6.13) over x∗ ∈ X ∗ and dividing
both sides by

∑n
k=1 γk. Finally, applying Doob’s maximal inequality to (4.21) and

(4.23), we obtain P
(
supn Sn ≥ σ‖X‖κ

)
≤ δ/2 and P

(
supnRn ≥ V 2

∗ κ
2
)
≤ δ/2.

Combining these bounds with (6.12) shows that A can be taken to satisfy (6.6)
with probability at least 1− δ, as claimed. �

Proof of Corollary 6.3. By the definition (4.11) of the setwise Fenchel coupling,
we have F1 ≤ h(x∗) + h∗(0) ≤ maxh − minh = Ω. Our claim then follows by
invoking Jensen’s inequality, noting that E[dist(X ∗, Xn)]2 ≤ E[dist(X ∗, Xn)2] ≤
L−1 E[ε(Xn)], and applying (6.4). �

Although the mean bound (6.4) is valid for any step-size sequence, the summa-
bility condition

∑∞
n=1 γ

2
n < ∞ for the almost sure bound (6.5) rules out more

aggressive step-size policies of the form γn ∝ 1/nβ for β ≤ 1/2. Specifically, the
“critical” value β = 1/2 is again tied to the finite mean squared error hypothesis
(H2): if the players’ gradient measurements have finite moments up to some order
q > 2, a more refined application of Doob’s inequality reveals that (6.5) still holds
under the lighter summability requirement

∑∞
n=1 γ

1+q/2
n < ∞. In this case, the

exponent β = 1/2 is optimal with respect to the guarantee (6.4) and leads to an
almost sure convergence rate of the order of O(n−1/2 log n).

Except for this log n factor, the O(n−1/2) convergence rate of (DA) is the exact
lower complexity bound for black-box subgradient schemes for convex problems
(Nemirovski and Yudin, 1983; Nesterov, 2004). Thus, running (DA) with a step-
size policy of the form γn ∝ n−1/2 leads to a convergence speed that is optimal
in the mean, and near-optimal with high probability. It is also worth noting that,
when the horizon of play is known in advance (as in Corollary 6.3), the constant
Ω = maxh−minh that results from the initialization Y1 = 0 is essentially the same
as the constant that appears in the stochastic mirror descent analysis of Nemirovski
et al. (2009) and Nesterov (2009).

6.2. Running length. Intuitively, the main obstacle to achieving rapid convergence
is that, even with an optimized step-size policy, the sequence of play may end up
oscillating around an equilibrium state because of the noise in the players’ obser-
vations. To study such phenomena, we focus below on the running length of (DA),
defined as

`n =

n−1∑
k=1

‖Xk+1 −Xk‖. (6.14)

Obviously, ifXn converges to some x∗ ∈ X , a shorter length signifies less oscillations
of Xn around x∗. Thus, in a certain way, `n is a more refined convergence criterion
than the induced equilibrium gap ε(Xn).

Our next result shows that the mean running length of (DA) until players reach
an ε-neighborhood of a (strongly) stable set is at most O(1/ε2):

Theorem 6.4. Suppose that (DA) is run with imperfect feedback satisfying (H1)–(H2)
and a step-size γn such that

∑∞
n=1 γ

2
n <∞ and

∑∞
n=1 γn =∞. Also, given a closed

subset X ∗ of X , consider the stopping time nε = inf{n ≥ 0 : dist(X ∗, Xn) ≤ ε} and
let `ε ≡ `nε

denote the running length of (DA) until Xn reaches an ε-neighborhood
of X ∗. If X ∗ is L-strongly stable, we have

E[`ε] ≤
V∗
KL

F1 + (2K)−1V 2
∗
∑∞
k=1 γ

2
k

ε2
. (6.15)
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Proof. For all x∗ ∈ X ∗ and all n ∈ N, (4.20) yields

F (x∗, Ynε∧n+1) ≤ F (x∗, Y1)−
nε∧n∑
k=1

γk〈v(Xk), Xk − x∗〉

+

nε∧n∑
k=1

γkψk+1 +
1

2K

nε∧n∑
k=1

γ2k‖v̂k+1‖2∗. (6.16)

Hence, after taking expectations and minimizing over x∗ ∈ X ∗, we get

0 ≤ F1 − Lε2 E

[
nε∧n∑
k=1

γk

]
+ E

[
nε∧n∑
k=1

γkψk+1

]
+
V 2
∗

2K

∞∑
k=1

γ2k, (6.17)

where we we used the fact that ‖Xk − x∗‖ ≥ ε for all k ≤ nε.
Consider now the stopped process Snε∧n =

∑nε∧n
k=1 γkψk+1. Since nε ∧ n ≤ n <

∞, Snε∧n is a martingale and E[Snε∧n] = 0. Thus, by rearranging (6.17), we obtain

E

[
nε∧n∑
k=1

γk

]
≤
F1 + (2K)−1V 2

∗
∑∞
k=1 γ

2
k

Lε2
. (6.18)

Hence, with nε ∧ n → nε as n → ∞, Lebesgue’s monotone convergence theorem
shows that the process τε =

∑nε

k=1 γk is finite in expectation and

E[τε] ≤
F1 + (2K)−1V 2

∗
∑∞
k=1 γ

2
k

Lε2
. (6.19)

Furthermore, by Proposition 3.2 and the definition of `n, we also have

`n =

n−1∑
k=1

‖Xk+1 −Xk‖ ≤
1

K

n−1∑
k=1

‖Yk − Yk−1‖∗ =
1

K

n−1∑
k=1

γk‖v̂k+1‖∗. (6.20)

Now, let ζk+1 = ‖v̂k+1‖∗ and Ψn+1 =
∑n
k=1 γk [ζk+1 − E[ζk+1 | Fk]]. By construc-

tion, Ψn is a martingale and

E[Ψ2
n+1] = E

[
n∑
k=1

γ2k [ζk+1 − E[ζk+1 | Fk]]
2

]
≤ 2V 2

∗

∞∑
k=1

γ2k <∞ for all n. (6.21)

Thus, by the optional stopping theorem (Shiryaev, 1995, p. 485), we get E[Ψnε
] =

E[Ψ1] = 0, so

E

[
nε∑
k=1

γkζk+1

]
= E

[
nε∑
k=1

γk E[ζk+1 | Fk]

]
≤ V∗ E

[
nε∑
k=1

γk

]
= V∗ E[τε]. (6.22)

Our claim then follows by combining (6.20) and (6.22) with the bound (6.19). �

Theorem 6.4 should be contrasted to classic results on the Kurdyka–Łojasiewicz
inequality where having a “bounded length” property is crucial in establishing tra-
jectory convergence (Bolte et al., 2010). In our stochastic setting, it is not realistic
to expect a bounded length (even on average), because, generically, the noise does
not vanish in the neighborhood of a Nash equilibrium.16 Instead, Theorem 6.4
should be interpreted as a measure of how the fluctuations due to noise and un-
certainty affect the trajectories’ average length; the authors are not aware of any
similar results along these lines.

16For a notable exception however, see Theorem 6.6 below.
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6.3. Sharp equilibria and fast convergence. Because of the random shocks induced
by the noise in the players’ gradient observations, it is difficult to obtain an almost
sure (or high probability) estimate for the convergence rate of the last iterate Xn

of (DA). Specifically, even with a rapidly decreasing step-size policy, a single re-
alization of the error process ξn may lead to an arbitrarily big jump of Xn at any
time, thus destroying any almost sure bound on the convergence rate of Xn.

On the other hand, in finite games, Cohen et al. (2017) recently showed that
logit-based learning (cf. Algorithm 2) achieves a quasi-linear convergence rate with
high probability if the equilibrium in question is strict. Specifically, Cohen et al.
(2017) showed that if x∗ is a strict Nash equilibrium and Xn does not start too far
from x∗, then, with high probability, ‖Xn−x∗‖ = O(−c

∑n
k=1 γk) for some positive

constant c > 0 that depends only on the players’ relative payoff differences.
Building on the variational characterization of strict Nash equilibria provided by

Proposition 5.2, we consider below the following analogue for continuous games:

Definition 6.5. We say that x∗ ∈ X is a sharp equilibrium of G if

〈v(x∗), z〉 ≤ 0 for all z ∈ TC(x∗), (6.23)

with equality if and only if z = 0.

Remark 6.1. The terminology “sharp” follows Polyak (1987, Chapter 5.2), who
introduced a similar notion for (unconstrained) convex programs. In particular,
in the single-player case, it is easy to see that (6.23) implies that x∗ is a sharp
maximum of u(x), i.e. u(x∗)− u(x) ≥ c‖x− x∗‖ for some c > 0.

A first consequence of Definition 6.5 is that v(x∗) lies in the topological interior of
the polar cone PC(x∗) to X at x∗ (for a schematic illustration, see Fig. 1); in turn,
this implies that sharp equilibria can only occur at corners of X . By continuity, this
further implies that sharp equilibria are locally stable (cf. the proof of Theorem 6.6
below); hence, by Proposition 2.7, sharp equilibria are also isolated. Our next
result shows that if players employ (DA) with surjective choice maps, then, with
high probability, sharp equilibria are attained in a finite number of steps:

Theorem 6.6. Fix a tolerance level δ > 0 and suppose that (DA) is run with surjec-
tive choice maps and a sufficiently small step-size γn such that

∑∞
n=1 γ

2
n <∞ and∑∞

n=1 γn =∞. If x∗ is sharp and (DA) is not initialized too far from x∗, we have

P(Xn reaches x∗ in a finite number of steps) ≥ 1− δ, (6.24)

provided that (H1)–(H4) hold. If, in addition, x∗ is globally stable, Xn converges to
x∗ in a finite number of steps from every initial condition (a.s.).

Proof. As we noted above, v(x∗) lies in the interior of the polar cone PC(x∗) to
X at x∗.17 Hence, by continuity, there exists a neighborhood U∗ of x∗ such that
v(x) ∈ int(PC(x∗)) for all x ∈ U∗. In turn, this implies that 〈v(x), x − x∗〉 < 0
for all x ∈ U∗ \ {x∗}, i.e. x∗ is stable. Therefore, by Theorem 4.11, there exists a
neighborhood U of x∗ such that Xn converges to x∗ with probability at least 1− δ.

Now, let U ′ ⊆ U∗ be a sufficiently small neighborhood of x∗ such that 〈v(x), z〉 ≤
−c‖z‖ for some c > 0 and for all z ∈ TC(x∗).18 Then, with probability at least 1−δ,

17Indeed, if this were not the case, we would have 〈v(x∗), z〉 = 0 for some nonzero z ∈ TC(x∗).
18That such a neighborhood exists is a direct consequence of Definition 6.5.
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there exists some (random) n0 such that Xn ∈ U ′ for all n ≥ n0, so 〈v(Xn), z〉 ≤
−c‖z‖ for all n ≥ n0. Thus, for all z ∈ TC(x∗) with ‖z‖ = 1, we have

〈Yn+1, z〉 = 〈Yn0 , z〉+

n∑
k=n0

γk〈v(Xk), z〉+

n∑
k=n0

γk〈ξk+1, z〉

≤ ‖Yn0‖∗ − c
n∑

k=n0

γk +

n∑
k=n0

γk〈ξk+1, z〉. (6.25)

By the law of large numbers for martingale difference sequences (Hall and Heyde,
1980, Theorem 2.18), we also have

∑n
k=n0

γkξk+1/
∑n
k=n0

γk → 0 (a.s.), so there
exists some n∗ such that ‖

∑n
k=n0

γkξk+1‖∗ ≤ (c/2)
∑n
k=n0

γk for all n ≥ n∗ (a.s.).
We thus obtain

〈Yn+1, z〉 ≤ ‖Yn0‖∗ − c
n∑

k=n0

γk +
c

2
‖z‖

n∑
k=n0

γk ≤ ‖Yn0
‖∗ −

c

2

n∑
k=n0

γk, (6.26)

showing that 〈Yn, z〉 → −∞ uniformly in z with probability at least 1− δ.
To proceed, Proposition A.1 in Appendix A shows that y∗ + PC(x∗) ⊆ Q−1(x∗)

whenever Q(y∗) = x∗. Since Q is surjective, there exists some y∗ ∈ Q−1(x∗), so it
suffices to show that, with probability at least 1 − δ, Yn lies in the pointed cone
y∗+PC(x∗) for all sufficiently large n. To do so, simply note that Yn−y∗ ∈ PC(x∗) if
and only if 〈Yn−y∗, z〉 ≤ 0 for all z ∈ TC(x∗) with ‖z‖ = 1. Since 〈Yn, z〉 converges
uniformly to −∞ with probability at least 1− δ, our assertion is immediate.

Finally, for the globally stable case, recall that Xn converges to x∗ with proba-
bility 1 from any initial condition (Theorem 4.7). The argument above shows that
Xn = x∗ for all large n, so Xn converges to x∗ in a finite number of steps (a.s.). �

Remark 6.2. Theorem 6.6 suggests that dual averaging with surjective choice maps
leads to significantly faster convergence to sharp equilibria. In this way, it is consis-
tent with an observation made by Mertikopoulos and Sandholm (2016, Proposition
5.2) for the convergence of the continuous-time, deterministic dynamics (DA-c) in
finite games.

7. Discussion

An important question in the implementation of dual averaging is the choice
of regularizer, which in turn determines the players’ choice maps Qi : Yi → Xi.
From a qualitative point of view, this choice would not seem to matter much: the
convergence results of Sections 4 and 5 hold for all choice maps of the form (3.6).
Quantitatively however, the specific choice map employed by each player impacts
the algorithm’s convergence speed, and different choice maps could lead to vastly
different rates of convergence.

As noted above, in the case of sharp equilibria, this choice seems to favor nonsteep
penalty functions (that is, surjective choice maps). Nonetheless, in the general case,
the situation is less clear because of the dimensional dependence hidden in the Ω/K
factor that appears e.g. in the mean rate guarantee (6.7). This factor depends
crucially on the geometry of the players’ action spaces and the underlying norm,
and its optimum value may be attained by steep penalty functions – for instance,
the entropic regularizer (3.8) is well known to be asymptotically optimal in the case
of simplex-like feasible regions (Shalev-Shwartz, 2011, p. 140).
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Another key question in game-theoretic and online learning has to do with the
information that is available to the players at each stage. If players perform a
two-point sampling step in order to simulate an extra oracle call at an action pro-
file different than the one employed, this extra information could be presumably
leveraged in order to increase the speed of convergence to a Nash equilibrium. In
an offline setting, this can be achieved by more sophisticated techniques relying on
dual extrapolation (Nesterov, 2007) and/or mirror-prox methods (Juditsky et al.,
2011). Extending these extra-gradient approaches to online learning processes as
above would be an interesting extension of the current work.

At the other end of the spectrum, if players only have access to their realized, in-
game payoffs, they would need to reconstruct their individual payoff gradients via a
suitable single-shot estimator (Polyak, 1987; Flaxman et al., 2005). We believe our
convergence analysis can be extended to this case by properly controlling the “bias-
variance” tradeoff of this estimator and using more refined stochastic approximation
arguments. The very recent manuscript by Bervoets et al. (2016) provides an
encouraging first step in the case of (strictly) concave games with one-dimensional
action sets; we intend to explore this direction in future work.

Appendix A. Auxiliary results

In this appendix, we collect some auxiliary results that would have otherwise
disrupted the flow of the main text. We begin with the basic properties of the
Fenchel coupling:

Proof of Proposition 4.3. For our first claim, let x = Q(y). Then, by definition

F (p, y) = h(p) + 〈y,Q(y)〉 − h(Q(y))− 〈y, p〉 = h(p)− h(x)− 〈y, p− x〉. (A.1)

Since y ∈ ∂h(x) by Proposition 3.2, we have 〈y, p − x〉 = h′(x; p − x) whenever
x ∈ X ◦, thus proving (4.9a). Furthermore, the strong convexity of h also yields

h(x) + t〈y, p− x〉 ≤ h(x+ t(p− x))

≤ th(p) + (1− t)h(x)− 1
2Kt(1− t)‖x− p‖

2, (A.2)

leading to the bound
1
2K(1− t)‖x− p‖2 ≤ h(p)− h(x)− 〈y, p− x〉 = F (p, y) (A.3)

for all t ∈ (0, 1]. Eq. (4.9b) then follows by letting t→ 0+ in (A.3).
Finally, for our third claim, we have

F (p, y′) = h(p) + h∗(y′)− 〈y′, p〉

≤ h(p) + h∗(y) + 〈y′ − y,∇h∗(y)〉+
1

2K
‖y′ − y‖2∗ − 〈y′, p〉

= F (p, y) + 〈y′ − y,Q(y)− p〉+
1

2K
‖y′ − y‖2∗, (A.4)

where the inequality in the second line follows from the fact that h∗ is (1/K)-
strongly smooth (Rockafellar and Wets, 1998, Theorem 12.60(e)). �

Complementing Proposition 4.3, our next result concerns the inverse images of
the choice map Q:

Proposition A.1. Let h be a penalty function on X , and let x∗ ∈ X . If x∗ = Q(y∗)
for some y∗ ∈ Y, then y∗ + PC(x∗) ⊆ Q−1(x∗).
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Proof. By Proposition 3.2, we have x∗ = Q(y) if and only if y ∈ ∂h(x∗), so it suffices
to show that y∗ + v ∈ ∂h(x∗) for all v ∈ PC(x∗). Indeed, we have 〈v, x − x∗〉 ≤ 0
for all x ∈ X , so

h(x) ≥ h(x∗) + 〈y∗, x− x∗〉 ≥ h(x∗) + 〈y∗ + v, x− x∗〉. (A.5)

The above shows that y∗ + v ∈ ∂h(x∗), as claimed. �

Our next result concerns the evolution of the Fenchel coupling under the dynam-
ics (DA-c):

Lemma A.2. Let x(t) = Q(y(t)) be a solution orbit of (DA-c). Then, for all p ∈ X ,
we have

d

dt
F (p, y(t)) = 〈v(x(t)), x(t)− p〉. (A.6)

Proof. By definition, we have
d

dt
F (p, y(t)) =

d

dt
[h(p) + h∗(y(t))− 〈y(t), p〉]

= 〈ẏ(t),∇h∗(y(t))〉 − 〈ẏ(t), p〉 = 〈v(x(t)), x(t)− p〉, (A.7)

where, in the last line, we used Proposition 3.2. �

Our last auxiliary result shows that, if the sequence of play generated by (DA)
is contained in the “basin of attraction” of a stable set X ∗, then it admits an
accumulation point in X ∗:

Lemma A.3. Suppose that X ∗ ⊆ X is stable and (DA) is run with a step-size such
that

∑∞
n=1 γ

2
n <∞ and

∑∞
n=1 γn =∞. Assume further that (Xn)∞n=1 is contained

in a region R of X such that (VS) holds for all x ∈ R. Then, under (H1) and (H2),
every neighborhood U of X ∗ is recurrent; specifically, there exists a subsequence Xnk

of Xn such that Xnk
→ X ∗ (a.s.). Finally, if (DA) is run with perfect feedback

(σ = 0), the above holds under the lighter assumption
∑n
k=1 γ

2
k

/∑n
k=1 γk → 0.

Proof of Lemma A.3. Let U be a neighborhood of X ∗ and assume to the contrary
that, with positive probability, Xn /∈ U for all sufficiently large n. By starting the
sequence at a later index if necessary, we may assume that Xn /∈ U for all n without
loss of generality. Thus, with X ∗ stable and Xn ∈ R for all n by assumption, there
exists some c > 0 such that

〈v(Xn), Xn − x∗〉 ≤ −c for all x∗ ∈ X ∗ and for all n. (A.8)

As a result, for all x∗ ∈ X ∗, we get

F (x∗, Yn+1) = F (x∗, Yn + γnv̂n+1)

≤ F (x∗, Yn) + γn〈v(Xn) + ξn+1, Xn − x∗〉+
1

2K
γ2n‖v̂n+1‖2∗

≤ F (x∗, Yn)− cγn + γnψn+1 +
1

2K
γ2n‖v̂n+1‖2∗, (A.9)

where we used Proposition 4.3 in the second line and we set ψn+1 = 〈ξn+1, Xn−x∗〉
in the third. Telescoping (A.9) then gives

F (x∗, Yn+1) ≤ F (x∗, Y1)−τn
[
c−

∑n
k=1 γkψk+1

τn
− 1

2K

∑n
k=1 γ

2
k‖v̂k+1‖2∗
τn

]
, (A.10)

where τn =
∑n
k=1 γk.
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Since E[ψn+1 | Fn] = 〈E[ξn+1 | Fn], Xn − x∗〉 = 0 by (H1) and E[|ψn+1|2 | Fn] ≤
E[‖ξn+1‖2∗‖Xn − x∗‖2 | Fn] ≤ σ2 ‖X‖2 < ∞ by (H2), the law of large numbers
for martingale difference sequences yields τ−1n

∑n
k=1 γkψk+1 → 0 (Hall and Heyde,

1980, Theorem 2.18). Furthermore, letting Rn+1 =
∑n
k=1 γ

2
k‖v̂k+1‖2∗, we also get

E[Rn+1] ≤
n∑
k=1

γ2k E[v̂k+1]2 ≤ V 2
∗

∞∑
k=1

γ2k <∞ for all n, (A.11)

so Doob’s martingale convergence theorem shows that Rn converges (a.s.) to some
random, finite value (Hall and Heyde, 1980, Theorem 2.5).

Combining the above, (A.10) gives F (x∗, Yn) ∼ −aτn → −∞ (a.s.), a contra-
diction. Finally, if σ = 0, we also have ψn+1 = 0 and ‖v̂n+1‖2∗ = ‖v(Xn)‖2∗ ≤ V 2

∗
for all n, so (A.10) yields F (x∗, Yn) → −∞ provided that τ−1n

∑n
k=1 γ

2
k → 0, a

contradiction. In both cases, we conclude that Xn is recurrent, as claimed. �

Finally, we turn to the characterization of strict equilibria in finite games:

Proof of Proposition 5.2. We will show that (a) =⇒ (b) =⇒ (c) =⇒ (a).
(a) =⇒ (b). Suppose that x∗ = (α∗1, . . . , α

∗
N ) is a strict equilibrium. Then, the

weak inequality 〈v(x∗), z〉 ≤ 0 follows from Proposition 2.1. For the strict part, if
zi ∈ TCi(x

∗
i ) is nonzero for some i ∈ N , we readily get

〈vi(x∗), zi〉 =
∑
αi 6=α∗i

zi,αi

[
ui(α

∗
i ;α
∗
−i)− ui(αi;α∗−i)

]
< 0, (A.12)

where we used the fact that zi is tangent to X at x∗i , so
∑
αi∈Ai

ziαi
= 0 and

ziαi
≥ 0 for αi 6= α∗i , with at least one of these inequalities being strict when

zi 6= 0.
(b) =⇒ (c). Property (b) implies that v(x∗) lies in the interior of the polar cone
PC(x∗) to X at x∗. Since PC(x∗) has nonempty interior, continuity implies that
v(x) also lies in PC(x∗) for x sufficiently close to x∗. We thus get 〈v(x), x−x∗〉 ≤ 0
for all x in a neighborhood of x∗, i.e. x∗ is stable.
(c) =⇒ (a). Assume that x∗ is stable but not strict, so uiαi

(x∗) = uiβi
(x∗) for some

i ∈ N , and some αi ∈ supp(x∗i ), βi ∈ Ai. Then, if we take xi = x∗i + λ(eiβi
− eiαi

)
and x−i = x∗−i with λ > 0 small enough, we get

〈v(x), x− x∗〉 = 〈vi(x), xi − x∗i 〉 = λuiβi(x
∗)− λuiαi(x

∗) = 0, (A.13)

contradicting the assumption that x∗ is stable. This shows that x∗ is strict. �

References

Alvarez, F., Bolte, J., and Brahic, O. (2004). Hessian Riemannian gradient flows in convex
programming. SIAM Journal on Control and Optimization, 43(2):477–501.

Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update method: A meta-
algorithm and applications. Theory of Computing, 8(1):121–164.

Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175.

Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Azéma, J., Émery,
M., Ledoux, M., and Yor, M., editors, Séminaire de Probabilités XXXIII, volume 1709 of
Lecture Notes in Mathematics, pages 1–68. Springer Berlin Heidelberg.

Bervoets, S., Bravo, M., and Faure, M. (2016). Learning and convergence to Nash in network
games with continuous action set. Working paper.



LEARNING IN GAMES WITH CONTINUOUS ACTION SETS 35

Bolte, J., Daniilidis, A., Ley, O., and Mazet, L. (2010). Characterizations of Łojasiewicz inequal-
ities: Subgradient flows, talweg, convexity. Transactions of the American Mathematical
Society, 362(6):3319–3363.

Bravo, M. and Mertikopoulos, P. (2017). On the robustness of learning in games with stochastically
perturbed payoff observations. Games and Economic Behavior, 103, John Nash Memorial
issue:41–66.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122.

Chen, G. and Teboulle, M. (1993). Convergence analysis of a proximal-like minimization algorithm
using Bregman functions. SIAM Journal on Optimization, 3(3):538–543.

Cohen, J., Héliou, A., and Mertikopoulos, P. (2017). Hedging under uncertainty: Regret min-
imization meets exponentially fast convergence. In SAGT ’17: Proceedings of the 10th
International Symposium on Algorithmic Game Theory.

Coucheney, P., Gaujal, B., and Mertikopoulos, P. (2015). Penalty-regulated dynamics and robust
learning procedures in games. Mathematics of Operations Research, 40(3):611–633.

Facchinei, F. and Kanzow, C. (2007). Generalized Nash equilibrium problems. 4OR, 5(3):173–210.
Flaxman, A. D., Kalai, A. T., and McMahan, H. B. (2005). Online convex optimization in the

bandit setting: gradient descent without a gradient. In SODA ’05: Proceedings of the 16th
annual ACM-SIAM symposium on discrete algorithms, pages 385–394.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Probability and
Mathematical Statistics. Academic Press, New York.

Hazan, E. (2012). A survey: The convex optimization approach to regret minimization. In Sra, S.,
Nowozin, S., and Wright, S. J., editors, Optimization for Machine Learning, pages 287–304.
MIT Press.

Hofbauer, J. and Sandholm, W. H. (2002). On the global convergence of stochastic fictitious play.
Econometrica, 70(6):2265–2294.

Hofbauer, J. and Sandholm, W. H. (2009). Stable games and their dynamics. Journal of Economic
Theory, 144(4):1665–1693.

Hofbauer, J., Schuster, P., and Sigmund, K. (1979). A note on evolutionarily stable strategies and
game dynamics. Journal of Theoretical Biology, 81(3):609–612.

Juditsky, A., Nemirovski, A. S., and Tauvel, C. (2011). Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58.

Kiwiel, K. C. (1997). Free-steering relaxation methods for problems with strictly convex costs and
linear constraints. Mathematics of Operations Research, 22(2):326–349.

Laraki, R. and Mertikopoulos, P. (2013). Higher order game dynamics. Journal of Economic
Theory, 148(6):2666–2695.

Leslie, D. S. and Collins, E. J. (2005). Individual Q-learning in normal form games. SIAM Journal
on Control and Optimization, 44(2):495–514.

Littlestone, N. and Warmuth, M. K. (1994). The weighted majority algorithm. Information and
Computation, 108(2):212–261.

Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature, 246:15–18.
McKelvey, R. D. and Palfrey, T. R. (1995). Quantal response equilibria for normal form games.

Games and Economic Behavior, 10(6):6–38.
Mertikopoulos, P., Papadimitriou, C. H., and Piliouras, G. (2018). Cycles in adversarial regularized

learning. In SODA ’18: Proceedings of the 29th annual ACM-SIAM Symposium on Discrete
Algorithms.

Mertikopoulos, P. and Sandholm, W. H. (2016). Learning in games via reinforcement and regu-
larization. Mathematics of Operations Research, 41(4):1297–1324.

Monderer, D. and Shapley, L. S. (1996). Potential games. Games and Economic Behavior,
14(1):124 – 143.

Nemirovski, A. S., Juditsky, A., Lan, G. G., and Shapiro, A. (2009). Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609.



36 P. MERTIKOPOULOS AND Z. ZHOU

Nemirovski, A. S. and Yudin, D. B. (1983). Problem Complexity and Method Efficiency in Opti-
mization. Wiley, New York, NY.

Nesterov, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course. Number 87
in Applied Optimization. Kluwer Academic Publishers.

Nesterov, Y. (2007). Dual extrapolation and its applications to solving variational inequalities
and related problems. Mathematical Programming, 109(2):319–344.

Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical Pro-
gramming, 120(1):221–259.

Neyman, A. (1997). Correlated equilibrium and potential games. International Journal of Game
Theory, 26(2):223–227.

Perkins, S. and Leslie, D. S. (2012). Asynchronous stochastic approximation with differential
inclusions. Stochastic Systems, 2(2):409–446.

Perkins, S., Mertikopoulos, P., and Leslie, D. S. (2017). Mixed-strategy learning with continuous
action sets. IEEE Trans. Autom. Control, 62(1):379–384.

Polyak, B. T. (1987). Introduction to Optimization. Optimization Software, New York, NY, USA.
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton, NJ.
Rockafellar, R. T. and Wets, R. J. B. (1998). Variational Analysis, volume 317 of A Series of

Comprehensive Studies in Mathematics. Springer-Verlag, Berlin.
Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave N -person games.

Econometrica, 33(3):520–534.
Sandholm, W. H. (2015). Population games and deterministic evolutionary dynamics. In Young,

H. P. and Zamir, S., editors, Handbook of Game Theory IV, pages 703–778. Elsevier.
Scutari, G., Facchinei, F., Palomar, D. P., and Pang, J.-S. (2010). Convex optimization, game

theory, and variational inequality theory in multiuser communication systems. IEEE Signal
Process. Mag., 27(3):35–49.

Shalev-Shwartz, S. (2007). Online learning: Theory, algorithms, and applications. PhD thesis,
Hebrew University of Jerusalem.

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations and
Trends in Machine Learning, 4(2):107–194.

Shalev-Shwartz, S. and Singer, Y. (2007). Convex repeated games and Fenchel duality. In Advances
in Neural Information Processing Systems 19, pages 1265–1272. MIT Press.

Shiryaev, A. N. (1995). Probability. Springer, Berlin, 2 edition.
Sorin, S. and Wan, C. (2016). Finite composite games: Equilibria and dynamics. Journal of

Dynamics and Games, 3(1):101–120.
Viossat, Y. and Zapechelnyuk, A. (2013). No-regret dynamics and fictitious play. Journal of

Economic Theory, 148(2):825–842.
Vovk, V. G. (1990). Aggregating strategies. In COLT ’90: Proceedings of the 3rd Workshop on

Computational Learning Theory, pages 371–383.
Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online optimiza-

tion. Journal of Machine Learning Research, 11:2543–2596.
Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In

ICML ’03: Proceedings of the 20th International Conference on Machine Learning, pages
928–936.


	1. Introduction
	Summary of contributions
	Related work
	Notation

	2. Continuous games and variational stability
	2.1. Basic definitions and examples
	2.2. Nash equilibrium
	2.3. Variational stability
	2.4. Tests for variational stability

	3. Learning via dual averaging
	3.1. Feedback and uncertainty
	3.2. Choosing actions
	3.3. Surjectivity vs. steepness

	4. Convergence analysis
	4.1. Limit states
	4.2. The Fenchel coupling
	4.3. Global convergence
	4.4. Local convergence
	4.5. Convergence in zero-sum concave games

	5. Learning in finite games
	5.1. Dominated strategies
	5.2. Strict equilibria
	5.3. Convergence in zero-sum games

	6. Speed of convergence
	6.1. Ergodic convergence rate
	6.2. Running length
	6.3. Sharp equilibria and fast convergence

	7. Discussion
	Appendix A. Auxiliary results
	References

