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Gabriel Kron developed tensorial analysis of networks (TAN) in 1939 to deal with electrical
machines. This formalism has been extended to applications in the Electromagnetic Compatibility
(EMC) domain. Using such a topological approach to deal with complex systems is particularly
relevant in the design phases compared to numerical approaches and allows a problem to be studied
in an abstract way. In this paper the robust mathematical approach is synthesized. Then, after
explaining how cords are added to the TAN method, we apply the formalism to three typical
examples.

I. INTRODUCTION

Nowadays, there is an increasing number of electronic
systems that are more and more complex. As systems
integrate different functions, it becomes essential to pre-
vent electromagnetic disturbances between the different
parts. As a result, the design phase is crucial and must be
carried out with precision to ensure of the correct func-
tioning when manufacturing the system. One way to
attain this objective is to use numerical simulation. For
this, different numerical methods have given rise to nu-
merous electromagnetic commercial codes. We can cite
Finite Element, Finite Difference or Moment Methods
that are very popular in the EMC domain. But when
dealing with the design phase, the whole system has to be
simulated to take all the interactions into account and to
prevent strong parasitic coupling. As a result, it becomes
difficult to detect the origin of disturbances responsible
for malfunctions by only trying different configurations.
This approach is time consuming, and supposes that the
numerical tools are adapted to the problem. One alterna-
tive is to use the engineer knowledge to have a more com-
plete vision of the system. In fact, as mentioned above,
a system is generally consists of subsystems. Thus it is
more efficient to have a macro-model vision of each sub-
system and to analyse the different connections between
them. Such a topological approach provides a metric
giving the value for each connection and allows the com-
parison between the different propagation path of dis-
turbances. To follow such an approach, Gabriel Kron,
developed an engineering approach based on Tensorial
Analysis of Networks. This approach first developed for
electrical machines, has recently been extended to EMC
problems [1] to take into account not only conducting dis-
turbances but also radiation couplings and even non lin-
ear ones. Furthermore, this approach allows EMC prob-
lems to be studied in an abstract way. In section II, the
Einstein notation used in this paper will be reviewed. In
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section III the principle of the classic Kron’s method will
be explained in details. Section IV presents three typical
examples that show different kinds of models that can be
integrated into Kron’s approach. Then we will conclude
on the interest of the method in section V.

II. NOTATIONS

In all of this paper we use Einstein’s mute index no-
tation. It means that each time an index is repeated,
it implies a summation operation on the values of this
index, i.e.: ∑

α

aαu
α → aαu

α (1)

Vectors projected in a base ~bk are identified by their co-

ordinates: ~u = uk~bk → uk, with the index up. The k
component of a vector appears as a superscript. Covec-

tors are noted α
(
~u ·~bk

)
= ωk. The k component of a

covector appears as a subscript.

III. KRON’S METHOD

Tensorial Analysis of Networks (TAN) as created by
Kron[2] starts from a graph that represents the engineer’s
thinking. From this graph, a system of non linear integro-
differential equations is deduced. This system is then
studied theoretically. According to Kron, once equations
are obtained, the circuit and its associated graph are no
longer useful. The whole analysis should be conducted
theoretically. Currents in the nodes pair space or the
mesh space constitute the orthogonal axes of a multi-
dimensional space that can be studied using differential
geometry tools[4]. The concept of topology in Kron’s ap-
proach is a mathematical one, and is not directly linked
to the physical appearance of the system. It calls for a
higher degree of theoretical thinking. However it is not
constrained by any good shielding approximation [5] or
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any other specific approximations, for example[6]. The
topological side of Kron’s method is in related to math-
ematical algebraic topology and its operators [7][8].

A. Graphs

In graphs nodes, branches and meshes are easily iden-
tifiable. These elements are part of a cellular topology
[7]. Each branch is linked to a real electronic object and
not at all to its geometrical aspect. Electronic objects are
characterized by equations and intervals. A branch is as-
sociated with an equation that gives the relationship be-
tween an electromotive force eu applied to the object and
the current iu flowing through the object under applied
electromotive force eu = zuu(iu). When engineers con-
nect branches together to make a graph, they construct
a real system represented by a drawing. Intervals specify
minimum and maximum values of the parameters. A sin-
gle graph is made of various connected networks (space
R, where any node is connected to two branches). Each
network has branches (space B) connected together by
nodes (space N), where a connected group of branches
makes a mesh (spaceM) [9]. Euler-Poincaré’s topological
equation implies (see figure 1):

M −B +N −R = 0 (2)

FIG. 1. Euler-Poincaré’s relation

B. Circuits as dynamical systems with n degrees of
freedom - currents in mesh space

Let us consider the case of a circuit made only with
passive elements i.e. resistors, inductances and capac-
itances. In order to characterize an equivalent circuit
associated with a branch, one connects an electromotive
force across a branch and measures the current. Kron
called this a primitive circuit. Using the Laplace oper-
ator, branch characterization reduces to simple expres-
sions: ua = zaai

a (figure 2). On a branch, a difference
in potential exists between the two ends of the branch
but, making a mesh forces the difference in potential to

be null. Connecting two branches to the same mesh (fig-
ure 2b.), the two differences in potential are equal (figure
2a.) and therefore, their difference all around the mesh
is zero.

FIG. 2. Simple primitive circuit

1. Lagrange’s equation

Under our hypothesis and using the Laplace operator
p, circuit laws become: E0 = Ri,E0 = Lpi, E0 = 1/(Cp)i
for a resistance, an inductance or a capacitance respec-
tively. We now introduce how to couple these primitive
circuits. If M,B,N,R are the topological characteristics
of one circuit, we represent by ik, k = 1, 2, . . . ,M the
mesh currents associated with M meshes chosen in the
circuit. ek, k = 1, 2, . . . ,M are the electromotive forces
of the meshes. We associate mesh loads qk with variables
ik such as ik = q̇k. figure 3 shows two coupled meshes
where inductances, elastances and resistances are associ-
ated with branches or meshes, mesh currents and loads.
A cord (defined in more detail below) represents a mutual
inductance between meshes.

FIG. 3. Example of network for Lagrange’s equation

In the whole circuit, cinetic energy is given by:

T =
1

2
Lkmq̇kq̇m (3)

For the potential energy we have:

U =
1

2
Skmq

kqm (4)

where Skm are elastance values (inverse of capacitance).
And finally for dissipations:

W =
1

2
Rkmq̇

kq̇m (5)
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Lagrange’s equations for the circuit are given by:

d

dt

(
∂T

∂q̇k

)
+
∂U
∂qk

+
∂W
∂q̇k

= ek (6)

with (3),(4),(5) and using Laplace’s operator p and trans-
formations on i and e, with ik0 initial conditions in current
and qk0 initial conditions in loads, Lagrange’s equation
becomes:

Lkmp (im − im0 ) +Rkmim + Skm
(
im

p
+ qm0

)
= ek (7)

Defining: Zkm = Lkmp+ Skmp +Rkm, this is equivalent to:

Zkmi
m−Lkmim0 +Skmqm0 = ek. Usually, Lkk are the self

inductances of meshes, Lkm, k 6= m the mutual induc-
tances between meshes. Skk the self elastances of meshes
and Skm, k 6= m common elastances between meshes.
Rkk are the self dissipations of meshes and Rkm, k 6= m
common dissipations between meshes. Note that for null
initial conditions, Lagrange’s equation can be written:(

Lkmp+
Skm
p

+Rkm
)
im = ek (8)

2. Invariant

The fundamental concept of tensorial analysis is the
existence of an invariant. In the case of Kron’s proposal,
this invariant is:

ω = eki
k = fkh

k (9)

for two different referentials
(
ek, i

k
)

and
(
fk, h

k
)
. Sup-

pose a change of referential to use another mesh base
defined by:

ia = Cakh
k (10)

hk being new mesh currents. Using (10) in (9) gives
fk = eaC

a
k. Now using (10) in (8) leads to:

ZkmC
m
a h

a = ek (11)

Multiplying the two terms by C i
n gives (with the relation

on fk):

C k
n ZkmC

m
a h

a = C k
n ek = fn (12)

As Ckn are constant, in general C k
n ZkmC

m
a = Zna, which

transforms (12) into:

Znah
a = fn (13)

The equation is unchanged under any choice of mesh
base. It means that the mesh space, under our hypoth-
esis, can be considered as a Riemannian space with a
Euclidian metric as all the Zkm are constant and Zkm is
its fundamental tensor [10][11].

3. Application of Kron’s method to EMC: Generalized
interactions through cords

Each time a current io creates a field, this field in-
duces an electromotive force ek at the considered part of
the network. This field is coupled after a transport pro-
cess associated to any adequately defined Green’s func-
tion. As for branches, these functions can be anything as
long as their mathematical expression is defined. Starting
from this proposal, the generic name of cord [12][13] was
submitted to represent the coupling functions between
branches or meshes. Green’s functions can be those of
free space, inside cavities between wires and field modes,
and many other interactions. The coupling can be asso-
ciated with the source covector ek or represented using
an impedance coupling function obtained from the ratio
ek/i

m = zkm. From this general approach of coupling
functions, several models were developed, such as [14]:

i Branin’s model for transmission lines

ii field to wire interactions

iii coupling to objects within cavities

These physical processes are the major ones for EMC
work. But also unusual EMC problems can be addressed,
such as the interaction between particles and power sup-
ply on electronics [15] or the emissions of printed circuit
board tracks [16]. Any near field or far field interac-
tion can be easily incorporated in Kron’s formalism using
cords. Many cases were tested with good results provid-
ing a very elegant formulation of the problem under the
mesh space. One particular example to illustrate this is
the near field interaction between antennas achieved in
[17].

A good illustration for general use of cords can be the
coupling between two matched antennas in free space.
The first mesh consists of the source generator, source
impedance and radiation resistance. The second mesh is
similar to the first but without a generator and a matched
load. The cord is defined by Friis’s equation:

P2

P1
= G1G2

(
λ

4πR12

)2

e−
R12
c p (14)

where P2 is the received electromagnetic power on the
second antenna, P1 the transmitted power to the first
antenna, G1 the first antenna gain, G2 the second one,
R12 the distance between the two antennas, λ the wave-
length, c the speed of light and p the Laplace operator.
To define the cord z21 we define e2 as a received elec-
tromotive force and i1 as a transmitted current. Since
P1 = Z0(i1)2 and P2 = (e2)2/Z0, Z0 being the radiation
resistance and source impedance, we easily obtain:

e2
i1

= z21 = Z0

(
λ

4πR12

)√
G1G2e

−R12
c p (15)

figure 4 illustrates this example.
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FIG. 4. cord illustration

For antennas, the coupling is symmetric. The funda-
mental tensor linked with this system is:

Z =

[
Z0 z21
z21 Z0

]
(16)

C. Intrinsic mesh properties

The advantage of having an additional space dimen-
sion compared to nodal techniques is to have a direct
correspondence with surface flux through Hodge’s oper-
ator [18]. There is no need for partial inductances: one
inductance of a loop can be directly associated with this
loop in the mesh space. A proposal to show the induc-
tance in the center of the mesh in the graph was made [1].
Mathematically, once the impedance matrix Z is defined
in the branch space, its transformation by the matrix C
to the mesh space is carried out using the bilinear prod-
uct ζ = [C]TZC. Now if some properties belong to the
mesh space, a µ matrix can be defined where self induc-
tance of meshes, mutual inductances, etc., are computed
and in the mesh space, the equation becomes:

ea = (ζab + µab) i
b (17)

D. Building a mesh set, additional branches and
virtual meshes

On any graph G including nodes, branches, meshes
and networks, one spanning tree ST can be defined for
each network. It is a sequence of branches that go one
and one time only through all the nodes of the net-
work. If we impose to choose of a spanning tree made
of successive branches, then if bu is an unused branch:
∃ (n1, n2) ∈ {∂ST} / (n1, n2) ∈ bu (∂ being the bound-
ary operator). Then if A is the incidence matrix so that
n1 = Ak1bk, n2 = Aq2bq and (bk, bq) ∈ ST 2. If {bk, . . . , bq}
is the set of branches included between bk and bq on
ST , then {bk, . . . , bq, bu} makes a mesh Mu using what
is called a closing branch bu. This technique provides a
guide to choose meshes in any network. It leads to more
adequate matrix conditioning except when two meshes
are coupled through a filter structure. figure 5 shows the

two cases of a shared branch or a spanning tree process
to define mesh-to-branch connectivity.

FIG. 5. Mesh definitions

In the case of the filter structure, it is clear that
the boundary made by the filter must be the region
where currents are shared and distributed depending on
frequency and filter characteristics. We consider two
branches of branch currents i1 and i2, connected through
a common mesh (they can be the boundaries of two larger
networks). We can always add a branch of current ia

connected to the same two nodes of branches i1 and i2

to make two meshes: the first one of currents i1, ia and
the second one of currents −ia, i2. The impedance of
this added branch appears as an extra-diagonal compo-
nent of the impedance matrix of the two mesh networks.
In many cases, this added branch has a capacitor as its
impedance, which is the classical first order filter in EMC
(figure 6).

FIG. 6. Shared branch detail

Another kind of mesh can be attached to the branch
of ST : virtual meshes. These are meshes of known mesh
currents Jv[19]. The general equation becomes: ea =
zabi

b + zavJ
v.

E. Kron’s approach

In Kron’s approach, each component of a system is seen
as a primitive element involved in the system construc-
tion [20]. The set of all primitive networks constitutes
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the diagonal part of Kron’s fundamental tensor. All the
electromagnetic interactions between the primitive ele-
ments remain to be added. Kron’s fundamental tensor is
a mathematical image of the EMC interaction matrix[21].
Kron’s method can be broken down into six steps:

1. build up the set of primitive circuits zmn involved
in the system as defined in the branch space (figure
7);

2. carry out the direct summation of all these com-
ponents of impedance tensor zmm: zcomplete =
⊕mzmm (figure 7);

3. add coupling between branches Amn (figure 8);

4. define connectivity C, choose a spanning tree to
identify meshes then transform to the mesh space

Zµν = Cmµ C
n
ν

(
zmm|m=n + Amn|m6=n

)
(figure 9).

Capital letters are now used to identify objects that
belong to the mesh space;

5. add self mesh properties Sµν , interactions between
meshes and current sources: (Zµν + Sµν) = Gµν ,
to obtain

Eσ = Gσβi
β +GµαJ

α (18)

(figure 10). ;

6. solve the system.

FIG. 7. A set of primitive circuits in the mesh space (1st step
of Kron’s model)

FIG. 8. Addition of interactions (coupling) between branches
(3rd step in Kron’s model)

FIG. 9. Transformation to the mesh space through the con-
nectivity matrix C (4th step in Kron’s model)

FIG. 10. Addition of mesh self properties and current sources
in the mesh space (5th step in Kron’s model)

The result of using this method is this system of equa-
tions. Kron’s method is a rigorous mathematical basis to
theoretically study the behavior of electronic systems in
EMC. Once the system of equations is available, it can
be solved using numerical techniques.

In Kron’s fundamental tensor Gσβ , components com-
ing from various techniques may be included: Z matrix
for moment method, macro-models derived from mea-
surements, and so on. Due to its mathematical ori-
gin, Kron’s method may be applied to many different
problems[22][23].

IV. THREE EXAMPLES OF KRON’S METHOD
USE FOR EMC

In order to illustrate the use of Kron’s method for
EMC, we have chosen three examples. The first one
focuses on a shielded cable problem. Internal pigtails
still pose a difficult problem that cannot be solved us-
ing 3D codes or SPICE-like software. Kron’s method is
an efficient way to approach the problem, to write its
mathematical expression rigorously and to compute the
order of magnitudes. The second example focuses on cav-
ities. Numerical software doesn’t always take all losses
into account inside cavities. Even if techniques are now
available, it remains difficult to analyse the result with-
out the order of magnitudes. Once again Kron’s method
gives the means to make this analysis. And finally the
third case concerns abstract study. It shows how Kron’s
formalism leads to the rigorous analytical equations of
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FIG. 11. Shielded cable with internal pigtails

FIG. 12. Graph for multi-braid cable

coupling systems in relative acceleration.

A. A multi-braid cable with pigtail

Working in the mesh space is an efficient technique to
obtain equations in the case of cable transfer impedances.
The technique was applied in a difficult case, where the
internal braid was connected to the external one through
a pigtail [24]. As long as the wavelength is greater than
the cable length, an external domain including the exter-
nal braid, ground plane and shield short circuits can be
reduced to one mesh. The same representation can be
used for any other intermediate domain. figure 11 shows
the cable configuration and figure 12 how the case was
managed with two braids linked through pigtails.

The problem concerns three domains: the external do-
main with the external braid and the ground plane, the
intermediate domain with the internal braid and pigtails
and the internal domain with the internal braid and the
wire. Each domain includes the braid resistance and self
inductance and for the internal wire, the same elements
but given for a wire inside a braid. Couplings are trans-
fer impedances, computed using equations given in [25]
and refer to equations (19) to (22). For the direct cou-
pling between the external braid and the wire through
the internal pigtails, a special equation was developed in
[24] and it shows how the method easily accepts any kind
of newly developed equation. The transfer impedance is

FIG. 13. Pigtail dimensions

given by:

Zpigtail = p
µLp
2π

Log

(
a

q

)
(19)

Lp being the pigtail length, a the supposed constant dis-
tance between the straight pigtail and the height refer-
ence q, located at the surface of the pigtail (see figure
13). The internal braid has a transfer impedance given
by:

Z ′t2 = (Rα + ξp)x (20)

where x is the cable length, Rα the DC resistance of the
braid and ξ its transfer inductance value. However, since
the internal braid is terminated by the internal pigtail,
the total transfer impedance between this braid and the
inner wire is given by Zt2 = Z ′t2 + Zpigtail; so:

Zt2 = Rα (x− Lp) + p

(
ξ (x− Lp) +

µLp
2π

Log

(
a

q

))
(21)

The external braid is coupled with the internal braid over
its whole length and is coupled with the inner wire only
along the pigtail length. Transfer impedance of braids
is given, for braid angles around 45 degrees(ψ) and a
diffusion process, by:

Zt =
4

πd2NCσcos(ψ)

(1 + j)dδ
sh
[
(1 + j)dδ

] (22)

where σ is the braid conductivity, ψ the braid angle, C the
number of conductor groups in the braid, d the conductor
diameter and δ the skin depth given by:

δ =

(
2

ωµ0µrσ

) 1
2

(23)

To the diffusion process must be added the diffraction
process, represented by a transfer inductance. It is given,
for angles around 45 degrees by:

Lt = ν
αmµ0

π2D2
(24)

where D is the braid diameter, ν the number of holes per
meter and αm the magnetic polarisability of each hole.
αm is approximated by:

αm ≈
L3
g

6
(25)
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Lg being the hole length. A correction term ct is given
by:  Kp = 1,16

NCdatan
(
N
3

)
sin
(
π
2 − 2ψ

)√
µ0

σ

ct = Kpe−j
π
4 ω0,7

(26)

and Zt1 is given by:

Zt1 = (Zt + ct+ Ltp) (x− Lp) (27)

while Zt3 is given by Zt3 = (Zt + ct+ Ltp)Lp. These
equations provides the means to compute both Zt1, Z ′t2
and Zt3 values. Zt3 is applied on the pigtail length Lp.
The global impedance tensor of the problem is:

Z =

 R1 +R2 + L1p 0 0
−Zt1 (x− Lp) L2p+R3 + L3p 0
−Zt3Lp −Zt2 R4 +R5 + L4p


(28)

Rk with k = 1, 2, 3, 4, 5 are the loads. For the internal
braid, the only significant resistance is the pigtail connec-
tion to the end of the cable. L3 is the pigtail inductance
(approximated by µπr/2, with r radius of the equivalent
circle made by the pigtail and its distance to the inner
wire).

The measurement was made in a triaxial test bench for
transfer impedances. Inductances Lk for k = 1, 2, 4 were
computed using the fundamental coaxial laws. The first
one gives the cable characteristic impedance:

Zc = 60ln

(
re
ri

)
(29)

re and ri are the internal and external radii of the braid
and the internal wire. Then, we can obtain the induc-
tance using:

L =
Zc
v
x (30)

where v is the propagation speed in the cable. The mea-
surement was made on a 10 cm diameter and 30 cm
long triaxial test bench, which can make measurements
up to 100 MHz [24]. figure 14 shows the measurements
and computation curves. The average difference between
measurement mi and computation ci (|mi − ci| /mi) is
33% for a standard deviation of 26% (ψ = 45.2, σ = 108,
N = 16, C = 120, d = 112.5µm, D = 15mm).

Note that if we had used an approach by topological
decomposition of domains, it would have been difficult to
take into account the Zt3 interaction. This interaction is
of major significance. By not taking it into account the
computation differs enormously from the measurement
as shown in figure 15.

B. Coupling inside cavities

Various models were developed to compute problems
in cavities (without including those that use 3D codes)

FIG. 14. Comparison computation - measurements

FIG. 15. Comparison computation - measurements without
internal pigtail

[14][26][27][28][29]. To model confined fields many tech-
niques may be incorporated in Kron’s formalism such as
chain matrices, Branin’s model for guides, RLC circuit
networks or transfer functions that behave like random
couplings. One of these techniques may be more effi-
cient than the others depending on the problem being
investigated. Modelling the cavity itself is not difficult
since an EMC engineer naturally looks mainly for order
of magnitudes. Estimating the coupling between wires
and field inside cavities is much more difficult. Using
Kron’s method, once the coupling impedances between
the field modes and wires are obtained, the problem is
entirely solved. For simple geometries, it is quite easy to
estimate the analytical formulation in order to compute
the coupling functions, and various works show this ca-
pability [30]. For more complex cavities, one technique
consists in following Collins [31] to approach cavity ge-
ometry using several guided waves. With more than one
guided wave and various interfaces, many geometries can
be approached sufficiently well to give good results com-
pared to measurements [32].
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FIG. 16. Interaction inside a cavity: graph

1. Cavity parameters for resonators

We describe here the ”RLC” approach (resonators)
which is very efficient, giving accuracy of the same or-
der as when using 3D codes. It requires a great effort to
determine the circuit components [33]. But it is possible
to benefit from all the works done previously in high fre-
quency modelling involving cavities (see for example [34]
[35]). figure 16 shows our problem made of two small an-
tennas inside a cavity. Each field mode is represented by
an ”RLC” oscillator. Various elements inside the cavity
interact with these modes, and if coupling exists between
modes, these oscillators can be coupled with each other.

Each time a coupling occurs, a cord represents it on
the graph making an electromagnetic link between the
coupled elements. The emitting antenna is a simple loop.
This kind of primitive circuit is directly given in the mesh
space with an impedance equal to:

ze = Re + Lep+
1

Cep
(31)

p being the Laplace operator. The same equation is used
for the receiving antenna with index ”r”. Under the hy-
pothesis of weak losses, the resonance frequencies for a
rectangular cavity of length L, height H and width w are
given by:

fmnq =
c

2

√(m
L

)2
+
( n
H

)2
+
( q
w

)2
(32)

Under the hypothesis that only one polarisation exists in
one dimension H, we can obtain the capacitor value for
one resonator at one field mode making the equivalence
between the electric field energy stored in the volume
of the cavity and 1/2CV 2 formulation, V being the field

work along the dimension H and C the capacitor we want
to calculate. It means that:

ε0
∫ w
0

∫ L
O

∫H
0
dxdydz

[
sin
(
mπx
w

)
sin
(
qπy
L

)]2
. . .

. . . = C
(∫H

O
dz
)2 (33)

After integration we obtain for an mnq mode:

Cmnq = ε0
2H

{
wL− wL

2mqπ2 (cos (2qπ) cos (2mπ) . . .

. . . −cos (qπ)− cos (mπ) + 2)}
(34)

From Cmnq we can compute Lmnq using:

Lmnq ≈
1

4π2f2mnqCmnq
(35)

Losses are not taken into account in this equation, al-
ways under the hypothesis that they are sufficiently weak.
These losses have to be calculated, to obtain the re-
sistance values for the resonators. We start from the
composite quality cœfficient Q. It involves different loss
mechanisms such as losses in the walls (QW ) and losses
associated with antennas (Qa). QW accounts for the con-
tribution of overlapping orders of modes given by:

QW =
3v

2δSµr

[
1 +

3λ

16

(
1

L
+

1

w
+

1

H

)]−1
(36)

where v is the cavity volume, δ the skin depth, λ the
wavelength and S the wall surface. For the receiving and
emitting antennas, the quality cœfficient is:

Qa =
Laω

Ra
(37)

The whole quality cœfficient for our problem is obtained
through:

1

Qr
=

1

QW
+

2

Qa
(38)

This gives the resistance for each resonator. Now, the
resistance associated with each mode is given by:

Rmnq =
Lmnq2πfmnq

Qr
(39)

Once the cavity model is determined (we suppose that
models for the antennas are available and given by za),
the coupling coefficient between all the components in-
volved in the problem remains to be obtained. At this
level, the impedance tensor results from the direct sum-
mation of all the primitive elements involved in the prob-
lem. It means that:

z = ⊕kzk =


za 0 . . . 0
0 Rmnq + Lmnqp+ 1

Cmnqp
. . . 0

. . . . . . . . . . . .
0 0 . . . za


(40)
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2. Coupling function calculation

In general, if we consider a coupled system, it is iden-
tified by a fundamental impedance tensor given by:

g =

[
a β
β b

]
(41)

The β function represents the coupling phenomenon. In
the mesh space of mesh currents Jk, the system of equa-
tions for one source on the first mesh is given by:{

e1 = aj1 + βj2

0 = βj1 + bj2
(42)

To identify the condition that leads to the maximum en-
ergy on the receiving part, we look for:

∂j2

∂β
= 0 (43)

This gives β =
√
ab. For magnetic energy, the cœfficient

is in general −α
√
L1L2p. The cœfficient α accounts for

losses in the coupling process. So in general we have
β = α

√
ab. Determining the coupling function is reduced

to the identification of this cœfficient α. In the case of a
closed circuit of normal ~n, we consider the coupling with
the magnetic field. The coupling cœfficient is in this case
given by:

α =

∫∫
drdθ~n · ~B1 (x, y, z) (44)

~B1 is a normalized field (here in T ·m−3) in order to have
α value without dimensions reaching 1 maximum. The

magnetic field modes ~b are defined by:

~b = cos
(
qπy
L

)
sin
(
mπx
w(t)

)
~ux + . . .

. . .+ sin
(
qπy
L

)
cos
(
mπx
w(t)

)
~uy

(45)

For example, locating a piece of wire as the emitting an-
tenna at the center of the cavity with its normal following
y on x0 point for a length χ leads to the next cœfficient
α = αe :

αe =
1

χ

∫ χ

0

dxcos

(
mπx

w(t)

)
sin

(
π(x− x0)

Rb

)
(46)

The same calculation has to be made for the receiving an-
tenna. Adding these coupling functions to the impedance
tensor gives the complete matrix of this tensor and solves
the complete coupled system. The fundamental tensor
looks like:

z =


za αe . . . αaa
αe Rmnq + Lmnqp+ 1

Cmnqp
. . . αca

. . . . . . . . . . . .
αaa αca . . . za

 (47)

FIG. 17. Cavity photograph

αxy are the coupling function between antennas and field
modes, or between modes, etc. Note that we accept
here that a direct coupling occurs between the anten-
nas through αaa. In [33], complete exercise was done
and gives very good results in comparison with measure-
ments, we describe now this experiment. The experiment
consists in locating a small rectangular open end wire an-
tenna on one disk of a cylindrical copper cavity. The cav-
ity is 10 cm in diameter and 30 cm long (figure 17), and
we can see on the figure the half-wave antenna centred
on the bottom disk of the cavity. The half-wave antenna
is 3 cm long, parallel to the metal plate of the disk, at
5 mm above it. Its base is centred and connected to an
SMA connector, in order to be power-supplied using a
50Ω high frequency amplifier.

The cavity is excited at TEM010 first mode (cylindrical
one). The coupling coefficient between the first antenna
and the cavity was computed using the scalar product
between the magnetomotive force of the antenna and the
mode reluctance:

α = l2

π

{(
1
a+l

) [
cos
(
π
2 (a+l)

a

)
− 1
]
− . . .(

1
a−l

) [
cos
(
π
2 (a−l)
a

)
− 1
]} (48)

where a is the cavity diameter and l the antenna length.
The antenna is defined using:

Zc = 60log
(
4h
d

)
Ra = 1

lσCu
l

π.d.e

Za = Zc
p.tan( 2πfl

c )

(49)

where h is the antenna height on the plate, σCu the cop-
per conductivity, d the antenna diameter and e the skin
depth. c is the light speed and f the frequency.

The equivalent circuit for the mode is given by its com-
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FIG. 18. Measurement versus calculation in cavity

ponents: 
L1 = 1

2πf1

C1 = L1

R1 = L12π f1
Qr

(50)

These relations lead to the coupling cœfficient β =
α
√
LaL1. So the fundamental tensor for this problem

directly written in the mesh space is:

zm =

[
Rg +Ra + 1

Cap
+ Lap −β

−β R1 + 1
C1p

+ L1p

]
(51)

figure 18 shows the results. A difference, graphically mea-
sured between calculation and measurement for the S11

parameter obtained at the first antenna input is 10% in
frequency and 2% in amplitude.

C. EMC analysis in a dynamic scenario

A set of available analytical equations allows us to
make in-depth theoretical studies of problems. In various
cases it is possible to demonstrate general results with-
out making any numerical computation or optimisation
in the design phase [36][37][38][39]. It would be difficult
to write the equation of a system using nodal, direct or
other methods. From this point of view, Kron’s method
is quite unique. In [1] for example, a simple exercise
on general behaviour of a system submitted to external
sources was proposed. One example can be given, in-
spired from Kron’s work on electrical machines [40]. We
imagine a first electronic device A emitting a magnetic
field that can disturb a second one B seen as a receiver.
In the first step we look at the coupling relation between
the two electronic devices. A turns around B, so that
the magnetic interaction between A and B is not only

FIG. 19. Interaction between two loops in movement

reduced to the mutual inductance M12 between them,
but also includes a cut flux coupling G12Ω where G12 is
the magnetic cœfficient of the cut flux and Ω the angu-
lar speed. We suppose in this simple illustration that all
parameters are constant (for example Ω(t) = Ω). figure
19 shows the system analysed.

We write the equations of the system when each elec-
tronic device is reduced to a simple mesh and in its orig-
inal configuration, like a magnetic loop: eA = rAAi

A + LAA
diA

dt +MAB
diB

dt +GABΩiB

eB = MAB
diA

dt + rBBi
B + LBB

diB

dt

(52)

This system constitutes the primitive system for Kron.
Now we make a connection between currents of the same
system but for a different angle at any other time:{

iA = i′Acos (θ(t))
iB = i′B

(53)

This leads to the connectivity:

C =

[
cos (θ(t)) 0

0 1

]
(54)

System (50) can be generalized by writing:

ex = rxxi
x + Lxy

diy

dt
+GxyΩiy (55)

where L tensor includes M components. Using (53) we
have ix = Cxβ i

′β . With replacement in (52) this leads to:

ex = rxxC
x
β i
′β + Lxy

dCyβi
′β

dt
+GxyΩCyβi

′β (56)

But:

dCxβ i
′β

dt
=
dCxβ
dθ

dθ

dt
i′β + Cxβ

di′β

dt
(57)

Knowing that θ̇ = Ω we obtain:

ex = rxxC
x
β i
′β +Lxy

(
dCyβ
dθ

Ωi′β + Cyβ
di′β

dt

)
+GxyΩCyβi

′β

(58)



11

Now we can multiply each member on the left by Cxα to
obtain:

eα = rαβi
′β + Lαy

dCyβ
dθ

Ωi′β + Lαβ
di′β

dt
+GαβΩi′β (59)

We note Hαβ,θ = Lαy
dCyβ
dθ to obtain:

eα = rαβi
′β +Hαβ,θΩi

′β + Lαβ
di′β

dt
+GαβΩi′β (60)

Now we can wonder what the added term Hαβ,θΩi
′β rep-

resents when compared to a classic EMC evaluation of
coupling between two loops in static configuration. For

a static system, the equation is: ea = rabi
′b + Lab

di′b

dt .
The ratio r between the electromotive force received in
the moving loop compared to the electromotive force re-
ceived in a static one in the harmonic domain becomes:

r =
rαβ + Lαβp+ LαypC

y
βΩ2 +GαβΩ

rαβ + Lαβp
(61)

If rαβ is low, G ≈ L, this leads for θ = 0 to:

r = Ω2 +
Ω

p
+ 1 (62)

If Ω << ω, r ≈ 1 + Ω2, it shows that the influence
increases when the angular speed is squared. The phe-
nomenon may be significant in magnitude. In this case,
its contribution should be taken into account for risk pre-
diction. This kind of theoretical analysis can be done
thanks to Kron’s formalism and linked with tensorial
algebra, giving access to complex situations, even rela-
tivistic ones[41][42] Far beyond EMC, Kron’s work has
influenced many communities through his approach for
systems[43]. His formalism makes it possible to synthe-
size general interactions in an easier way than any other,
even in multiphysics, since his fundamental tensor leads
directly to Lagrange’s equations of dissipative systems.

V. CONCLUSION

It is little known that the nodal method usually em-
ployed for circuits was replaced by the ”modified nodal
analysis” in order to take into account driven sources.
But in [50], it was demonstrated that this problem can
be taken into account in classical nodal analysis, through
the mesh space! In fact, Kron’s mesh space is able to
solve any circuit today. Furthermore the method makes
it possible to carry out in-depth analyses of a problem

using the geometrical approach in the real mathemati-
cal meaning of topology. We have shown through three
examples that Kron’s method applied to EMC gives the
technique to study complex systems using all the theoret-
ical knowledge developed in EMC. It can be the first task
done by EMC engineers before using numerical tools to
validate their designs. No doubt many other techniques
will be found based on Kron’s works usable partly for
EMC, such as the recent ”xTAN” method to take into
account the human factor in the studying of complex
systems from the EMC point of view [41][51][52][53].
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Appendix A: Kron’s diakoptics

Diakoptics is perhaps the best known technique devel-
oped by Kron[54][55]. There are various ways to apply
diakoptics. We consider here a general principle among
the simplest ones.

From a first set of solutions, we obtain mesh current
values depending on sources: ik = (Gmk)

−1
Em. Then

we add loads on the boundaries of the previous network.
This can be written:[

Em
0

]
= [(Gmk ⊕ Zkf ) + Smf ]

[
i′k

i′f

]
(A1)

because loads do not have self sources and i′f are the
boundary currents. Which leads to the system{

Em = Gmki
′k − Smf i′f

0 = −Smki′k + Zmf i
′f (A2)

but Em = Gmki
k. Writing i′f = −yfmµmki′k we find:

Gmki
k = Gmki

′k + Smfy
fmµmki

′k (A3)

The new currents with added loads can be obtained from
the previous circuit computing:

i′k =
[
gmk + µmfy

fmµmk
]−1

gmki
k (A4)

Yuri Sohor has developed very efficient techniques to use
diakoptics for large problems[51].
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