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Abstract

We consider the local estimation of the stable tail dependence function when a random co-

variate is observed together with the variables of main interest. Our estimator is a weighted

version of the empirical estimator adapted to the covariate framework. We provide the main

asymptotic properties of our estimator, when properly normalized, in particular the conver-

gence of the empirical process towards a tight centered Gaussian process. The finite sample

performance of our estimator is illustrated on a small simulation study and on a dataset of

air pollution measurements.

Keywords: Conditional stable tail dependence function, empirical process, stochastic con-

vergence.

1 Introduction

A central topic in multivariate extreme value statistics is the estimation of the extremal de-

pendence between two or more random variables. Ledford and Tawn (1997) introduced the

coefficient of tail dependence as a summary measure of extremal dependence, and also proposed

an estimator for this parameter. See also Peng (1999), Beirlant and Vandewalle (2002), Beirlant
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et al. (2011), Goegebeur and Guillou (2013), Dutang et al. (2014) for alternative estimators of

this parameter. Other examples of summary dependence measures for extremes can be found in

Coles et al. (1999). As an alternative to these summary measures, one can work with functions

that give a complete characterisation of the extremal dependence, like the spectral distribution

function (Einmahl et al., 1997), the Pickands dependence function (Pickands, 1981) or the stable

tail dependence function (Huang, 1992). These functions can be seen as the analogues of copulas

in classical statistics. In the present paper we focus on the stable tail dependence function.

For any arbitrary dimension d, let pY p1q, . . . , Y pdqq be a multivariate random vector with contin-

uous marginal distribution functions F1, . . . , Fd. The stable tail dependence function is defined

for each yi P R�, i � 1, . . . , d, as

lim
tÑ8 tP

�
1� F1pY p1qq ¤ t�1y1 or . . . or 1� FdpY pdqq ¤ t�1yd

	
� Lpy1, . . . , ydq,

provided that this limit exists, which can be rewritten as

lim
tÑ8 t

�
1� F

�
F�1

1 p1� t�1y1q, . . . , F�1
d p1� t�1ydq

�� � Lpy1, . . . , ydq,

where F is the multivariate distribution function of the vector pY p1q, . . . , Y pdqq.

Now, consider a random sample of size n drawn from F and an intermediate sequence k � kn, i.e.

k Ñ8 as nÑ8 with k{nÑ 0. Let us denote y � py1, . . . , ydq a vector of the positive quadrant

Rd� and Y
pjq
k,n the k�th order statistic among n realisations of the margins Y pjq, j � 1, . . . , d.

The empirical estimator of L is then given by

pLkpyq � 1

k

ņ

i�1

1ltY p1q
i ¥Y p1q

n�rky1s�1,n
or ... or Y

pdq
i ¥Y pdq

n�rkyds�1,n
u.

The asymptotic behaviour of this estimator was first studied by Huang (1992); see also Drees

and Huang (1998), de Haan and Ferreira (2006) and Bücher et al. (2014). We also refer to Peng

(2010), Fougères et al. (2015), Beirlant et al. (2016) and Escobar-Bach et al. (2017b) where

alternative estimators for L were introduced. In the present paper we extend the empirical

estimator to the situation where we observe a random covariate X together with the variables of

main interest pY p1q, . . . , Y pdqq. We consider thus a regression problem where we want to describe
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the extremal dependence between the random variables pY p1q, . . . , Y pdqq given some observed

value x for the covariate X. Our approach is nonparametric and based on local estimation in

the covariate space.

In the univariate context there is a quite extensive literature on estimation of tail parameters in

presence of random covariates. In the framework of heavy-tailed distributions, nonparametric

kernel methods were introduced by Daouia et al. (2011), who used a fixed number of extreme

conditional quantile estimators to estimate the conditional extreme value index, for instance

using the Hill (Hill, 1975) and Pickands (Pickands, 1975) estimators, whereas Goegebeur et al.

(2014b) developed a nonparametric and asymptotically unbiased estimator based on weighted

exceedances over a high threshold. The extension of this regression estimation of tail param-

eters to the full max-domain of attraction, has been considered in Daouia et al. (2013), who

generalized Daouia et al. (2011), and also by Stupfler (2013) and Goegebeur et al. (2014a)

where an adjustment of the moment estimator, originally proposed by Dekkers et al. (1989),

to this setting of local estimation has been proposed. On the contrary, the development of

extreme value methodology for regression problems with a multivariate response vector is still

in its infancy. In de Carvalho and Davison (2014), a procedure was introduced to infer about

extremal dependence in the presence of qualitative independent variables, that is, an ANOVA-

type setting. Portier and Segers (2015) considered the estimation of a bivariate extreme value

distribution under the simplifying assumption that the dependence between Y p1q and Y p2q does

not depend on the value taken by the covariate, so that the dependence of the model on the

covariates is only through the marginal distributions. Escobar-Bach et al. (2017a) studied the

robust estimation of the conditional Pickands dependence function using the minimum density

power divergence criterion, adapted to the context of local estimation. However, in that paper

it is assumed that a random sample from a conditional bivariate extreme value distribution is

available. In the present paper we relax this assumption and introduce a local estimator for the

conditional stable tail dependence function assuming only that we have data available from a

distribution with a dependence structure converging to that of an extreme value distribution.

Thus, we extend the above framework to the case where the vector pY p1q, . . . , Y pdqq is recorded
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along with a random covariate X P Rp. In that context, the stable tail dependence function

together with the marginal distribution functions depend on the covariate X. In the sequel, for

j � 1, . . . , d, we denote by Fjp.|xq, the continuous conditional distribution function of Y pjq given

X � x and Lp.|xq the conditional stable tail dependence function defined as

lim
tÑ8 tP

�
1� F1pY p1q|Xq ¤ t�1y1 or . . . or 1� FdpY pdq|Xq ¤ t�1yd |X � x

	
� Lpy1, . . . , yd|xq. (1)

We establish the weak convergence of the empirical process of the properly normalized estima-

tor using Donsker results for changing function classes and arguments based on the theory of

Vapnik-Červonenkis classes (VC -classes). To the best of our knowledge this type of regression

problem has not been considered in the multivariate extreme value literature.

The remainder of the paper is organised as follows. In the next section we introduce the local

estimator for the conditional stable tail dependence function and study its asymptotic proper-

ties. In first instance we assume that the marginal conditional distribution functions are known,

whereafter this assumption is removed and the unknown marginal conditional distribution func-

tions are estimated locally using a kernel method. Finally, in Section 3, we illustrate the finite

sample behaviour of our estimator with a small simulation study and on a dataset of air pollution

measurements. All the proofs of the results are collected in the Appendix.

2 Estimator and asymptotic properties

Denote pY,Xq :� pY p1q, . . . , Y pdq, Xq, a random vector satisfying (1), and let pY1, X1q, . . . , pYn, Xnq,
be independent copies of pY,Xq, where X P Rp has density function f . As is usual in the ex-

treme value context, we consider an intermediate sequence k � kn, i.e. k Ñ 8 as n Ñ 8 with

k{n Ñ 0. Let us denote y :� py1, . . . , ydq a vector of the positive quadrant Rd�. The event At,y

is defined for any t ¥ 0 and y P Rd� as

At,y :�
!

1� F1pY p1q |X q ¤ t�1y1 or . . . or 1� FdpY pdq |X q ¤ t�1yd

)
,
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and A
piq
t,y denotes its analogue for observation pYi, Xiq, i � 1, . . . , n. The conditional empirical

estimator is then given for any x P Rp by

pTkpy|xq :� 1

k

ņ

i�1

Kh px�Xiq 1l!
1�F1pY p1q

i |Xi q¤ k
n
y1 or ... or 1�FdpY pdq

i |Xi q¤ k
n
yd

)

� 1

k

ņ

i�1

Kh px�Xiq 1l
A
piq
n{k,y

, (2)

where Khp.q :� Kp.{hq{hp with K a joint density function and h � hn is a positive non-random

sequence satisfying hn Ñ 0 as nÑ8.

The aim of the paper is to derive stochastic convergence results for empirical processes based on

(2), with y P r0, T sd, T ¡ 0, but with the covariate argument fixed, meaning that we will focus

our study only around one reference position x0 P IntpSXq, the interior of the support SX of f .

In order to derive the asymptotic behaviour of pTkpy|x0q, we need to introduce some conditions

mentioned below and well-known in the extreme value framework. Let }.} be some norm on Rp,

and denote by Bxprq the closed ball with respect to }.} centered at x and radius r ¡ 0.

First order condition: The limit in (1) exists for all x P SX and y P Rd�, and the convergence

is uniform on r0, T sd �Bx0prq for any T ¡ 0 and a r ¡ 0.

Second order condition: For any x P SX there exist a positive function αx such that αxptq Ñ 0

as tÑ8 and a non null function Mx such that for all y P Rd�

lim
tÑ8

1

αxptq ttP pAt,y |X � xq � Lpy|xqu �Mxpyq,

uniformly on r0, T sd �Bx0prq for any T ¡ 0 and a r ¡ 0.

Due to the regression context, we need some Hölder-type conditions.

Assumption pDq. There exist Mf ¡ 0 and ηf ¡ 0 such that |fpxq � fpzq| ¤ Mf }x� z}ηf , for

all px, zq P SX � SX .

Assumption pLq. There exist ML ¡ 0 and ηL ¡ 0 such that |Lpy|xq � Lpy|zq| ¤ML}x� z}ηL ,
for all px, zq P Bx0prq �Bx0prq, r ¡ 0, and y P r0, T sd, T ¡ 0.
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Assumption pAq. There exist Mα ¡ 0 and ηα ¡ 0 such that |αxptq � αzptq| ¤ Mα}x � z}ηα ,
for all px, zq P SX � SX and t ¥ 0.

Also a usual condition is assumed on the kernel function K.

Assumption pK1q. K is a bounded density function on Rp with support SK included in the

unit ball of Rp with respect to the norm }.}.

2.1 Marginal conditional distributions known

In this section, we restrict our interest to the case where the marginal conditional distribution

functions Fjp.|xq, j � 1, . . . , d, are known. We start by showing the convergence in probability

of our main statistic under some weak assumptions.

Lemma 2.1 Let y P Rd�. Assume the first order condition, (K1) and that the functions f and

x Ñ Lpy|xq are continuous at x0 P IntpSXq non-empty. If for n Ñ 8 we have k Ñ 8 and

hÑ 0 in such a way that k{nÑ 0 and khp Ñ8, then for x0 such that fpx0q ¡ 0, we have

pTkpy|x0q PÝÑ fpx0qLpy|x0q.

This result indicates that in order to estimate Lpy|x0q, the statistic pTkpy|x0q will need to be

divided by an estimator for fpx0q. Our main objective in this section is to show the weak

convergence of the stochastic process#?
khp

� pTkpy|x0qpfnpx0q
� Lpy|x0q � αx0

�n
k

	
Mx0pyq

�
, y P r0, T sd

+
, (3)

for any T ¡ 0, where pfn is the usual kernel density function estimator for f :

pfnpxq :� 1

n

ņ

i�1

Khpx�Xiq,

see e.g. Parzen (1962). Note that for convenience we use here for pfn the same kernel function

K and bandwidth parameter h as for pTkpy|x0q.

As a preliminary step we deduce the covariance structure of the limiting process (apart from

the scaling by 1{ pfnpx0q).
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Lemma 2.2 Under the assumptions of Lemma 2.1, we have for any y, y1 P Rd�

khpCov
�pTkpy|x0q, pTkpy1|x0q

	
Ñ fpx0q}K}22

�
Lpy|x0q � Lpy1|x0q � Lpy _ y1|x0q

�
, as nÑ8.

Here, y _ y1 :� py1 _ y11, y2 _ y12, . . . , yd _ y1dq and }K}2 :�
b³

SK
K2puqdu.

We derive now the weak convergence of (3) using Donsker type results for empirical processes

with changing function classes and arguments based on the theory of V C-classes, as formulated

in van der Vaart and Wellner (1996). These allow us to obtain weak convergence results by

mainly focusing on the class of functions involved in our estimator. It should be mentioned

that our main weak convergence results are derived in the usual Skorohod space, here Dpr0, T sdq
equipped with the sup norm }.}8.

Theorem 2.1 Assume the second order condition, pDq, pLq, pAq, pK1q, and px, yq Ñ Mxpyq
being continuous on Bx0prq � r0, T sd, with Bx0prq � SX . Consider sequences k Ñ8 and hÑ 0

as nÑ8, in such a way that k{nÑ 0, khp Ñ8 and

?
khphminpηf ,ηL,ηαq Ñ 0 and

?
khpαx0pn{kq Ñ λx0 P R�.

Then, for x0 such that fpx0q ¡ 0, the process#?
khp

� pTkpy|x0qpfnpx0q
� Lpy|x0q � αx0

�n
k

	
Mx0pyq

�
, y P r0, T sd

+
,

weakly converges in Dpr0, T sdq towards a tight centered Gaussian process tBy, y P r0, T sdu, for

any T ¡ 0, with covariance structure given by

Cov
�
By, By1

� � }K}22
fpx0q

�
Lpy|x0q � Lpy1|x0q � Lpy _ y1|x0q

�
,

where y, y1 P r0, T sd.

2.2 Marginal conditional distributions unknown

In this section, we consider the general framework where all Fjp.|xq, j � 1, . . . , d, are unknown

conditional distribution functions. We want to mimic what has been done in the previous section
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in case where these conditional distributions are assumed to be known. To this aim, we consider

the random vectors� pFn,1pY p1q
i |Xiq, pFn,2pY p2q

i |Xiq, . . . , pFn,dpY pdq
i |Xiq, Xi

	
, i � 1, . . . , n,

for suitable estimators pFn,j of Fj , j � 1, . . . , d. Then, similarly as in Section 2.1, we study the

statistic

qTkpy|x0q :� 1

k

ņ

i�1

Kh px0 �Xiq 1l!
1� pFn,1pY p1q

i |Xi q¤ k
n
y1 or ... or 1� pFn,dpY pdq

i |Xi q¤ k
n
yd

).

Our final goal is still the same, that is the weak convergence of the stochastic process#?
khp

� qTkpy|x0qpfnpx0q
� Lpy|x0q � αx0

�n
k

	
Mx0pyq

�
, y P r0, T sd

+
.

The idea will be to decompose the process
!?

khp
�qTk � Er qTks	 py|x0q, y P r0, T sd

)
into the two

terms!?
khp

�pTk � Er pTks	 py|x0q �
?
khp

�
r qTk � pTks � Er qTk � pTks	 py|x0q, y P r0, T sd

)
. (4)

The first term in the above display can be dealt with using the results of Section 2.1 whereas

we have to show that the second term is uniformly negligible. To achieve this objective, let

us introduce the following empirical kernel estimator of the unknown conditional distribution

functions

pFn,jpy|xq :�
°n
i�1Kcpx�Xiq1ltY pjq

i ¤yu°n
i�1Kcpx�Xiq , j � 1, . . . , d,

where c :� cn is a positive non-random sequence satisfying cn Ñ 0 as nÑ8. Here we kept the

same kernel K as for qTkpy|x0q, but of course any other kernel function can be used.

We need to impose again some assumptions, in particular a Hölder-type condition on each

marginal conditional distribution function Fj similar to the one imposed on the conditional

stable tail dependence function.

Assumption pFmq. There exist MFj ¡ 0 and ηFj ¡ 0 such that |Fjpy|xq � Fjpy|zq| ¤
MFj}x� z}ηFj , for all y P R, all px, zq P SX � SX and j � 1, . . . , d.
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Concerning the kernel K a stronger assumption than pK1q is needed.

Assumption pK2q. K satisfies Assumption pK1q, there exists δ,m ¡ 0 such that B0pδq � SK

and Kpuq ¥ m for all u P B0pδq, and K belongs to the linear span (the set of finite linear

combinations) of functions k ¥ 0 satisfying the following property: the subgraph of k, tps, uq :

kpsq ¥ uu, can be represented as a finite number of Boolean operations among sets of the form

tps, uq : qps, uq ¥ ϕpuqu, where q is a polynomial on Rp�R and ϕ is an arbitrary real function.

This assumption has already been used in Giné and Guillou (2002) and Escobar-Bach et al.

(2017a). In particular, we refer to the latter to enunciate the following lemma that measures the

discrepancy between the conditional distribution function Fj and its empirical kernel versionpFn,j .
Lemma 2.3 Assume that there exists b ¡ 0 such that fpxq ¥ b,@x P SX � Rp, f is bounded,

and pK2q and pFmq hold. Consider a sequence c tending to 0 as nÑ8 such that for some q ¡ 1

| log c|q
ncp

ÝÑ 0.

Also assume that there exists an ε ¡ 0 such that for n sufficiently large

inf
xPSX

λ ptu P B0p1q : x� cu P SXuq ¡ ε, (5)

where λ denotes the Lebesgue measure. Then for any 0   η   minpηF1 , . . . , ηFdq, we have

sup
py,xqPR�SX

��� pFn,jpy|xq � Fjpy|xq
��� � oP

�
max

�c
| log c|q
ncp

, cη

��
, for j � 1, . . . , d.

This rate of convergence allows us to study the second term in (4) and to show that it is uniformly

negligible.

Theorem 2.2 Assume that there exists b ¡ 0 such that fpxq ¥ b,@x P SX � Rp, f is bounded,

pK2q, pFmq, pDq, the first order condition and condition (5), and also for any y P r0, T sd that

x Ñ Lpy|xq continuous at x0 P IntpSXq non-empty. Consider sequences k Ñ 8, h Ñ 0 and

c Ñ 0 as n Ñ 8, such that k{n Ñ 0, khp Ñ 8, and with for some q ¡ 1 and 0   η  
minpηF1 , . . . , ηFdq

n

c
hp

k
rn :� n

c
hp

k
max

�c
| log c|q
ncp

, cη

�
ÝÑ 0, as nÑ8.
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Then

sup
yPr0,T sd

?
khp

��� qTk � pTk � E
� qTk � pTk���� py|x0q � oPp1q.

Finally, the decomposition (4) combined with Theorem 2.2 and the results from Section 2.1,

yield the desired final result of this paper.

Theorem 2.3 Assume the second order condition, px, yq Ñ Mxpyq continuous on Bx0prq �
r0, T sd, with Bx0prq � SX , and that there exists b ¡ 0 with fpxq ¥ b,@x P SX � Rp, f bounded.

Under pDq, pLq, pAq, pFmq, pK2q and condition (5), consider sequences k Ñ 8, h Ñ 0 and

cÑ 0 as nÑ8, such that k{nÑ 0, khp Ñ8 with

?
khphminpηf ,ηL,ηαq Ñ 0,

?
khpαx0pn{kq Ñ λx0 P R�,

and for some q ¡ 1 and 0   η   minpηF1 , . . . , ηFdq

n

c
hp

k
max

�c
| log c|q
ncp

, cη

�
ÝÑ 0.

Then, the process#?
khp

� qTkpy|x0qpfnpx0q
� Lpy|x0q � αx0

�n
k

	
Mx0pyq

�
, y P r0, T sd

+
,

weakly converges in Dpr0, T sdq towards a tight centered Gaussian process tBy, y P r0, T sdu, for

any T ¡ 0, with covariance structure given in Theorem 2.1.

3 Simulation and real data analysis

3.1 A small simulation study

Our aim in this section is to illustrate the finite sample behaviour of our estimator

sLkpy|xq :�
qTkpy|xqpfnpxq

with a small simulation study. We focus on dimension d � 2 and we consider the two following

models:
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 Model 1: We consider the bivariate Student distribution with density function

fY1,Y2py1, y2q �
?

1� θ2

2π

�
1� y2

1 � 2θy1y2 � y2
2

ν


� ν�2
2

, py1, y2q P R2,

and θ being the Pearson correlation coefficient. The stable tail dependence function can be

described as

Lpy1, y2|θq � y2Fν�1

�
py2{y1q1{ν � θ?

1� θ2

?
ν � 1

�
� y1Fν�1

�
py1{y2q1{ν � θ?

1� θ2

?
ν � 1

�
,

where Fν�1 is the distribution function of the univariate Student distribution with ν�1 degrees of

freedom. Asymptotic independence can be reached for θ � �1 and complete positive dependence

for θ � 1. We set θ � X, where X is uniformly distributed on r0, 1s. This model satisfies the

second order condition with

Mxpy1, y2q � C

�
y

2{ν�1
2 Fν�3

�
py2{y1q1{ν � θ?

1� θ2

?
ν � 3

�
� y

2{ν�1
1 Fν�3

�
py1{y2q1{ν � θ?

1� θ2

?
ν � 3

��
,

C :� �ν
2{ν�1π1{νpν � 1q

2pν � 2q

�
Γ
�
ν
2

�
Γ
�
ν�1

2

��2{ν
,

αxptq � t�2{ν .

Moreover, one could check that the uniform property in the first and second order conditions are

verified since we have continuity of the involved functions. The model satisfies also conditions

pDq, pLq, pAq and pFmq. In the simulations we set ν � 1.

 Model 2: We consider a particular case of the Archimax bivariate copulas introduced in

Capéraà et al. (2000) and also mentioned in Fougères et al. (2015), namely:

Cpy1, y2|xq �
 
1� Lpy�1

1 � 1, y�1
2 � 1|xq(�1

,

where we use for L the asymmetric logistic stable tail dependence function defined by

Lpy1, y2|xq � p1� t1qy1 � p1� t2qy2 �
�
pt1y1qθx � pt2y2qθx

�1{θx
,

where 0 ¤ t1, t2 ¤ 1, and θx � minp1{x, 100q, with the covariate X uniformly distributed on

r0, 1s. The marginal distributions are taken to be unit Fréchet. This model satisfies our second
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order condition with

Mxpy1, y2q � y2
1B1Lpy1, y2|xq � y2

2B2Lpy1, y2|xq � L2py1, y2|xq,
αxptq � t�1,

and also satisfies pDq, pLq, pAq and pFmq. In the simulations, different values for the pair pt1, t2q
have been tried but the results seem to be not too much influenced by them, thus we exhibit

only the results in case pt1, t2q � p0.4, 0.6q which corresponds to an asymmetric tail dependence

function.

To compute our estimator sLk, two sequences h and c have to be chosen. Concerning c, we can

use the following cross validation criterion introduced by Yao (1999), implemented by Gannoun

et al. (2002), and already used in an extreme value context by Daouia et al. (2011, 2013) or

Goegebeur et al. (2015):

cj :� arg min
cPCg

ņ

i�1

ņ

k�1

�
1l!

Y
pjq
i ¤Y pjq

k

) � rFn,�i,jpY pjq
k |Xiq

�2

, j � 1, 2,

where Cg is a grid of values of c and rFn,�i,jpy|xq :�
°n
k�1,k�iKcpx�Xkq1ltY pjq

k ¤yu°n
k�1,k�iKcpx�Xkq . We select

the sequence h from the condition

n

c
hp

k

c
| log c|q
ncp

Ñ 0

by taking h � c

�
k

n


1{p
| log c|�ξ, where ξp ¡ q and c :� minpc1, c2q.

For each distribution, we simulate N � 500 samples of size n � 1000, and we consider sev-

eral positions tyt :� pt{10, 1 � t{10q; t � 1, . . . , 9u. Since all stable tail dependence functions

satisfy maxpt, 1 � tq ¤ Lpt, 1 � tq ¤ 1, all the estimators have been corrected so that they

satisfy these bounds. However, the estimators have not been forced to be convex although

this could have been done for instance by using a constrained spline smoothing method (Hall

and Tajvidi, 2000), or a projection technique (Fils-Villetard et al., 2008). In all the settings,

Cg � t0.06, 0.12, 0.18, 0.24, 0.3u and ξ � 1.1 are used as chosen in Escobar-Bach et al. (2017a).

An extensive simulation study has also indicated that these choices seem to give always reason-

12



able results. Concerning the kernel, each time we use the bi-quadratic function

Kpxq :� 15

16
p1� x2q21lr�1,1spxq.

As a qualitative measure of the efficiency over the different positions tyt, t � 1, . . . , 9u, we define

the absolute bias and the mean squared error (MSE) respectively as follows

Abiaspx, kq :� 1

9N

9̧

t�1

Ņ

i�1

���sLpiqk pyt|xq � Lpyt|xq
���

MSEpx, kq :� 1

9N

9̧

t�1

Ņ

i�1

�sLpiqk pyt|xq � Lpyt|xq
	2
.

Figures 1-3 (respectively Figures 4-6) represent the sample means in case of Model 1 (respectively

Model 2), based on N samples of size n, of our estimator sLkpy|xq as a function of k. Each of

these figures shows the behaviour of our estimator at the positions y P tyt, t � 1, . . . , 9u for a

given value of the covariate (x � 0.2, 0.5 and 0.8, respectively). Based on these simulations, we

can conclude that in general, our estimator behaves well for not too large values of k with a

good proximity to the true value, while some bias appears for k large, which can be expected

from our theoretical results, since for k large αxpn{kq is not necessary negligible. The estimates

obtained for the asymmetric logistic model show more bias than those for the bivariate Student

distribution, since αxptq converges faster to zero as tÑ8 for the latter. Indeed, for the bivariate

Student distribution with ν � 1 we have αxptq � t�2 while αxptq � t�1 for the asymmetric

logistic distribution. From the figures it also seems that the estimation is more difficult for y

close to the diagonal.

In Figures 7 and 8 we show the summary performance measures Abias and MSE for Model 1

and Model 2, respectively, as a function of k for each of the covariate positions. As is clear from

these figures, the performance measures do not critically depend on the position in the covariate

space for k not too large. The results also seem to indicate that the estimator performs better

for stronger dependence than for weaker dependence.

3.2 Application to air pollution data

In this section, the proposed methodology is applied to a dataset of air pollution measurements.

Being able to analyse the dependence between temperature and ozone concentration is of pri-

13



0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

k

M
ea

n

Figure 1: Model 1: Sample mean of sLkpy|0.2q as a function of k with, from left to right and up

to down, y � yt, t � 1, . . . , 9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 2: Model 1: Sample mean of sLkpy|0.5q as a function of k with, from left to right and up

to down, y � yt, t � 1, . . . , 9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 3: Model 1: Sample mean of sLkpy|0.8q as a function of k with, from left to right and up

to down, y � yt, t � 1, . . . , 9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 4: Model 2: Sample mean of sLkpy|0.2q as a function of k with, from left to right and up

to down, y � yt, t � 1, . . . , 9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 5: Model 2: Sample mean of sLkpy|0.5q as a function of k with, from left to right and up

to down, y � yt, t � 1, . . . , 9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 6: Model 2: Sample mean of sLkpy|0.8q as a function of k with, from left to right and up

to down, y � yt, t � 1, . . . , 9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 7: Model 1: Absolute bias and MSE as a function of k for different covariate positions

x � 0.2 (full line), 0.5 (dashed line), 0.8 (dotted line).
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Figure 8: Model 2: Absolute bias and MSE as a function of k for different covariate positions

x � 0.2 (full line), 0.5 (dashed line), 0.8 (dotted line).
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mary importance in order to identify population health effects of high ozone concentration and

extreme temperature. The dataset contains daily measurements on, among others, maximum

temperature and ground level ozone concentration, for the time period 1999 to 2013, collected at

stations spread over the U.S. by the United States Environmental Protection Agency (EPA). It

is publicly available at https:{{aqsdr1.epa.gov{aqsweb{aqstmp{airdata{download files.html. We

estimate the stable tail dependence function conditional on time and location, where the latter

is expressed by latitude and longitude. The estimation method is the same as the one described

in Section 3.1 apart from the dimension of the covariate space, namely here p � 3 which implies

ξ � 1.1{3. We use the same grid values Cg for the cross-validation, after standardising the

covariates to the interval r0, 1s. As kernel function K� we use the following generalisation of the

bi-quadratic kernel K :

K�px1, x2, x3q :�
3¹
i�1

Kpxiq,

where x1, x2, x3, refer to the covariates time, latitude and longitude, respectively, in standard-

ised form. Note that K� has as support the unit ball with respect to the max-norm on R3.

We report here only the results at two different time points: January 15, 2007 and June 15,

2007 in California. California has one of the largest economies in the world and as such there is

a high emission of air pollutants. First, Figure 9 represents the stations in California as markers

with different colors corresponding to the value of the estimates mediantsLkp0.5, 0.5|xq, k �
n{4, . . . , n{2u of Lp0.5, 0.5|xq. The range over which the median is computed can be motivated

from the simulations, see e.g. Figures 1 till 6. Clearly, the extremal dependence between daily

maximum temperature and ground level ozone concentration varies a lot across measurement

stations. This could be explained by the fact that the climate of California varies widely, from

hot desert to subarctic, depending on the location. As is also clear from Figure 9, the extremal

dependence also varies over time. In order to get a better idea of the extremal dependence

between temperature and ozone, we show in Figure 10 the time plot of the estimates of the

conditional extremal coefficient ηpxq :� 2� Lp0.5, 0.5|xq P r1, 2s at two specific stations, Fresno

and Los Angeles. This coefficient is often used in the literature as a summary measure of the

extremal dependence, with perfect dependence corresponding to the value 1 and independence

21



Figure 9: Air pollution data: Estimates mediantsLkp0.5, 0.5|xq, k � n{4, . . . , n{2u of Lp0.5, 0.5|xq
for stations in California on January 15, 2007 (left) and June 15, 2007 (right).

to the value 2. These two cities exhibit a different extremal dependence throughout the year.

Indeed, for Fresno the extremal dependence is strong in the winter months but becomes weaker

in summer, while the opposite holds for Los Angeles. To get a more detailed picture of the

extremal dependence we show in Figure 11 the estimate mediantsLkpt, 1� t|xq, k � n{4, . . . , n{2u
of the Pickands dependence function for the cities Fresno (top row) and Los Angeles (bottom

row) on January 15, 2007 (first column) and June 15, 2007 (second column). In Los Angeles the

extremal dependence is stronger in summer than in spring and winter, which corresponds to the

typical pattern (see e.g. Mahmud et al., 2008). Fresno deviates from this typical pattern, and

the two variables are close to asymptotic independence during summer. This could be explained

by the fact that ozone formation seems to be suppressed at extremely high temperatures, say

above 312 Kelvin, due to different chemical and biophysical feedback mechanisms, and such

temperature conditions are not unusual for the Central Valley of California; see Steiner et al.

(2010).
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Figure 10: Air pollution data: Time plot of the estimate 2 � mediantsLkp0.5, 0.5|xq, k �
n{4, . . . , n{2u of the conditional extremal coefficient at Fresno (left) and Los Angeles (right)

over the year 2007.

4 Appendix: Proofs

4.1 Proof of Lemma 2.1

In order to prove Lemma 2.1, we only need to verify that

E
� pTkpy|x0q

�
Ñ fpx0qLpy|x0q and Var

�pTkpy|x0q
	
Ñ 0 as nÑ8.

We have

E
� pTkpy|x0q

�
�

»
SK

Kpuqn
k
P
�
An{k,y |X � x0 � hu

�
fpx0 � huqdu

�
»
SK

KpuqLpy|x0 � huqfpx0 � huqdu

�
»
SK

Kpuq
�n
k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq
	
fpx0 � huqdu. (6)

Since u P SK , for n large enough, using the continuity of f and L at x0 P IntpSXq non-empty,

we have boundedness in a neighborhood of x0 and thus

sup
uPSK

Lpy|x0 � huq   �8 and sup
uPSK

fpx0 � huq   �8,
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Figure 11: Air pollution data: Estimate of the Pickands dependence function mediantsLkpt, 1�
t|xq, k � n{4, . . . , n{2u for Fresno (top) and Los Angeles (bottom) on January 15, 2007 (first

column) and June 15, 2007 (second column).
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and by the first order condition

sup
uPSK

���n
k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq
���Ñ 0,

as nÑ8.

Note that

»
K � 1, and hence by Lebesgue’s dominated convergence theorem, we obtain, for

nÑ8, »
SK

KpuqLpy|x0 � huqfpx0 � huqduÑ fpx0qLpy|x0q,

and »
SK

Kpuq
�n
k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq
	
fpx0 � huqduÑ 0,

implying the first statement.

Next,

Var
�pTkpy|x0q

	
� 1

k

"
h�p

»
SK

K2puqn
k
P
�
An{k,y |X � x0 � hu

�
fpx0 � huqdu

*
� 1

n
pfpx0qLpy|x0q � op1qq2

� 1

khp
�}K}22fpx0qLpy|x0q � op1q�� 1

n
pfpx0qLpy|x0q � op1qq2 ,

which goes to zero since khp Ñ8.

4.2 Proof of Lemma 2.2

Clearly, we have

khpCov
�pTkpy|x0q, pTkpy1|x0q

	
�

»
SK

K2puqn
k
P
�
An{k,y XAn{k,y1 |X � x0 � hu

�
fpx0 � huqdu

� hp
k

n

�
fpx0q2Lpy|x0qLpy1|x0q � op1q�

�
»
SK

K2puqn
k
P
�
An{k,y XAn{k,y1 |X � x0 � hu

�
fpx0 � huqdu� op1q.

Then, we easily deduce that

P
�
An{k,y XAn{k,y1 |X � x0 � hu

� � P
�
An{k,y |X � x0 � hu

�� P
�
An{k,y1 |X � x0 � hu

�
� P

�
An{k,y YAn{k,y1 |X � x0 � hu

�
.
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Naturally we can describe the sets An{k,y and An{k,y1 as a finite union like for any y P Rd�

An{k,y �
d¤
j�1

"
1� FjpY pjq|Xq ¤ k

n
yj

*
�:

d¤
j�1

An{k,yj ,j .

Thus, we have

An{k,y YAn{k,y1 �
d¤
j�1

!
An{k,yj ,j YAn{k,y1j ,j

)

�
d¤
j�1

"
1� FjpY pjq|Xq ¤ k

n
pyj _ y1jq

*

�
d¤
j�1

An{k,yj_y1j ,j � An{k,y_y1 ,

which implies that

P
�
An{k,y XAn{k,y1 |X � x0 � hu

� � P
�
An{k,y |X � x0 � hu

�� P
�
An{k,y1 |X � x0 � hu

�
� P

�
An{k,y_y1 |X � x0 � hu

�
,

and using the same arguments as in the proof of Lemma 2.1, the result follows.

4.3 Proof of Theorem 2.1

As a first step we consider the process!?
khp

�pTkpy|x0q � fpx0q
�
Lpy|x0q � αx0

�n
k

	
Mx0pyq

�	
, y P r0, T sd

)
,

and study its weak convergence. Based on the decomposition

?
khp

�pTkpy|x0q � fpx0q
�
Lpy|x0q � αx0

�n
k

	
Mx0pyq

�	
�

?
khp

�pTkpy|x0q � E
� pTkpy|x0q

�	
�
?
khp

�
E
� pTkpy|x0q

�
� fpx0q

�
Lpy|x0q � αx0

�n
k

	
Mx0pyq

�	
,

we have that the main task is to study the weak convergence of the process!?
khp

�pTkpy|x0q � E
� pTkpy|x0q

�	
, y P r0, T sd

)
, (7)
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since

lim
nÑ8 sup

yPr0,T sd

?
khp

���E � pTkpy|x0q
�
� fpx0q

�
Lpy|x0q � αx0

�n
k

	
Mx0pyq

���� � 0.

Indeed, if we look at (6) in the proof of Lemma 2.1

E
� pTkpy|x0q

�
� fpx0qLpy|x0q �O phηf^ηLq

�
»
SK

Kpuq
�n
k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq
	
fpx0 � huqdu,

where the big O term is independent from y. Then

n

k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq

� αx0�hu
�n
k

	$&%Mx0�hupyq �
�� n

k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq
αx0�hupn{kq

�Mx0�hupyq
��,.- ,

where

sup
yPr0,T sd

������
n

k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq
αx0�hupn{kq

�Mx0�hupyq
������

¤ sup
yPr0,T sd,xPBx0 prq

������
n

k
P
�
An{k,y |X � x

�� Lpy|xq
αxpn{kq �Mxpyq

������Ñ 0,

combining the second order condition with the fact that for n large enough x0 � hu P Bx0prq.
This leads to

n

k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq
� αx0�hu

�n
k

	
pMx0�hupyq � op1qq

� αx0

�n
k

	
pMx0�hupyq � op1qq �

�
αx0�hu

�n
k

	
� αx0

�n
k

		
pMx0�hupyq � op1qq ,

where the little o component doesn’t depend on y. Now,

• according to the Hölder condition on α and }u} ¤ 1

sup
t¥0

|αx0�huptq � αx0ptq| ¤Mα}hu}ηα � O phηαq ,
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• by uniform continuity of px, yq ÑMxpyq over Bx0prq � r0, T sd

sup
yPr0,T sd

|Mx0�hupyq �Mx0pyq| Ñ 0 as nÑ8.

Hence, we can deduce that

n

k
P
�
An{k,y |X � x0 � hu

�� Lpy|x0 � huq � αx0

�n
k

	
Mx0pyq � αx0

�n
k

	
op1q �O phηαq ,

which implies that

?
khp

���E � pTkpy|x0q
�
� fpx0q

�
Lpy|x0q � αx0

�n
k

	
Mx0pyq

����
� O

�?
khphminpηf ,ηL,ηαq

	
�
?
khpαx0

�n
k

	
op1q Ñ 0.

Define now the covering number NpF , L2pQq, τq as the minimal number of L2pQq-balls of radius

τ needed to cover the class of functions F and the uniform entropy integral as

Jpδ,F , L2q :�
» δ

0

c
log sup

QPQ
NpF , L2pQq, τ}F }Q,2q dτ,

where Q is the set of all probability measures Q for which 0   }F }2Q,2 :� ³
F 2dQ   8 and F is

an envelope function for the class F .

Let P be the distribution measure of pY,Xq, and denote the expected value under P , the

empirical version and empirical process as follows

Pf :�
»
fdP, Pnf :� 1

n

ņ

i�1

f pYi, Xiq , Gnf :� ?
npPn � P qf,

for any real-valued measurable function f : Rd � Rp Ñ R.

We introduce our sequence of classes Fn on Rd � Rp as

Fn :�
!
pu, zq Ñ fn,ypu, zq, y P r0, T sd

)
where

fn,ypu, zq :�
c
n

k
hpKhpx0 � zq1lt1�F1pu1|zq¤k{n y1 or ... or 1�Fdpud|zq¤k{n ydu.
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Denote also by Fn an envelope function of the class Fn. Now, according to Theorem 19.28

in van der Vaart (1998), the weak convergence of the stochastic process (7) follows from the

following four conditions. Let ρx0 be a semimetric, possibly depending on x0, making r0, T sd

totally bounded. We have to prove that

sup
ρx0 py,y1q¤δn

P pfn,y � fn,y1q2 ÝÑ 0 for every δn × 0, (8)

PF 2
n � Op1q, (9)

PF 2
n1ltFn¡ε?nu ÝÑ 0 for every ε ¡ 0, (10)

Jpδn,Fn, L2q ÝÑ 0 for every δn × 0. (11)

We start with proving (8). We have

P pfn,y � fn,y1q2 �
»
SK

Kpuq2n
k
E
��

1lAn{k,y � 1lAn{k,y1

	2
|X � x0 � hu

�
fpx0 � huqdu.

But, for any x1 P SX

E
��

1lAn{k,y � 1lAn{k,y1

	2 ��X � x1
�

� P
�
An{k,y YAn{k,y1

��X � x1
�� P

�
An{k,y XAn{k,y1

��X � x1
�

� P
�tAn{k,y YAn{k,y1uztAn{k,y XAn{k,y1u

��X � x1
�
. (12)

Using the same notation as in the proof of Lemma 2.2, we have

An{k,y XAn{k,y1 �
#

d¤
j�1

An{k,yj ,j

+£#
d¤
j�1

An{k,y1j ,j

+

�
d¤
j�1

d¤
i�1

!
An{k,yj ,j XAn{k,y1i,i

)

�
d¤
j�1

!
An{k,yj ,j XAn{k,y1j ,j

)

�
d¤
j�1

An{k,yj^y1j ,j .
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Then, with Ac denoting the complement of any set A, it follows that

tAn{k,y YAn{k,y1uztAn{k,y XAn{k,y1u �
#

d¤
j�1

An{k,yj_y1j ,j

+£#
d£
j�1

Acn{k,yj^y1j ,j

+

�
d¤
j�1

!
An{k,yj_y1j ,j XAcn{k,yj^y1j ,j

)

�
d¤
j�1

"
k

n
pyj ^ y1jq ¤ 1� FjpY pjq|Xq ¤ k

n
pyj _ y1jq

*
.

Returning now to (12), we have

P
�tAn{k,y YAn{k,y1uztAn{k,y XAn{k,y1u

��X � x1
�

¤
ḑ

j�1

P
�
k

n
pyj ^ y1jq ¤ 1� FjpY pjq|Xq ¤ k

n
pyj _ y1jq

��X � x1


¤ k

n

ḑ

j�1

|yj � y1j |.

Thus, defining

ρx0py, y1q �
ḑ

j�1

|yj � y1j |,

also called the Manhattan distance on Rd, which is clearly a semimetric making r0, T sd totally

bounded, we have proven (8).

We define now the envelope functions

Fnpu, zq :�
c
n

k
hpKhpx0 � zq1lt1�F1pu1|zq¤k{nT or ... or 1�Fdpud|zq¤k{nT u.

With yT :� pT, . . . , T qloooomoooon
d times

, assertion (9) results from Lemma 2.1 since

PF 2
n �

»
SK

Kpuq2n
k
P
�
An{k,yT |X � x0 � hu

�
fpx0 � huqdu

� LpyT |x0qfpx0q}K}22 � op1q.

For (10), note that we have tFn ¡ ε
?
nu � tpFn{ε

?
nqξ ¡ 1u for any ξ ¡ 0, thus

PF 2
n1ltFn¡ε?nu ¤ 1

εξnξ{2
PF 2�ξ

n

� 1

εξnξ{2
� n

khp

	ξ{2 »
SK

Kpuq2�ξ n
k
PpAn{k,yT |X � x0 � huqfpx0 � huqdu

�
�
ε
?
khp

	�ξ �
}K}2�ξ2�ξLpyT |x0qfpx0q � op1q

	
, (13)
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where the right-hand side converges towards 0 since khp Ñ8 and K satisfies Assumption pK1q.

Finally, it remains to prove (11). Define the following class of functions on Rd � Rp

rF :�
!
pu, zq Ñ 1lt1�F1pu1|zq¤y1 or ... or 1�Fdpud|zq¤ydu, y P Rd�

)
�

!
pu, zq Ñ 1lt1� �¤y1 or ... or 1� �¤ydu � pF1, . . . , Fdqpu, zq, y P Rd�

)
.

Let’s focus for a moment on the class of functions on r0, 1sd!
uÑ 1lt1�u1¤y1 or ... or 1�ud¤ydu, y P Rd�

)
.

Since this is a family of indicator functions, it is a V C-class if and only if the family of sets asso-

ciated to the indicator functions is a V C-class of sets. The latter sets can be easily represented

as the union of d V C-classes of sets and thus it is also a V C-class of sets (see Lemma 2.6.17 (iii)

in van der Vaart and Wellner, 1996). Next, according to Lemma 2.6.18 (vii) in van der Vaart

and Wellner (1996), it follows that rF is a V C-class with V C-index V fixed. Define now

rFn :�
!
pu, zq Ñ 1lt1�F1pu1|zq¤k{n y1 or ... or 1�Fdpud|zq¤k{n ydu, y P r0, T sd

)
,

and the envelope function rFnpu, zq :� 1lt1�F1pu1|zq¤k{nT or ... or 1�Fdpud|zq¤k{nT u. The previous

arguments for rF remain, thus we have that rFn is also a V C-class with V C-index V . According

to Theorem 2.6.7 in van der Vaart and Wellner (1996), there exists a universal constant C such

that for Q the set of all probability measures on Rd � Rp and any 0   τ   1

sup
QPQ

Np rFn, L2pQq, τ} rFn}Q,2q ¤ CV p16eqV
�

1

τ


2pV�1q
.

Next, we retrieve Fn by multiplying the previous family with one single function, i.e.

Fn � tz Ñ
a
nhp{kKhpx0 � zqu � rFn.

Since only one ball is needed to cover the class tz Ñ
a
nhp{kKhpx0� zqu whatever the measure

Q P Q, according to the last inequality in the proof of Theorem 2.10.20 in van der Vaart and

Wellner (1996)

sup
QPQ

NpFn, L2pQq, τ}Fn}Q,2q ¤ CV p16eqV
�

1

τ


2pV�1q
:� L

�
1

τ


V
.
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Thus, (11) is established since for any sequence δn × 0 and n large enough, we have

Jpδn,Fn, L2q ¤
» δn

0

a
logpLq � V logpτqdτ � op1q.

Finally, we consider the process (3). Straightforward calculations give the following decomposi-

tion

?
khp

� pTkpy|x0qpfnpx0q
� Lpy|x0q � αx0

�n
k

	
Mx0pyq

�

�
?
khp

fpx0q
�pTkpy|x0q � fpx0q

�
Lpy|x0q � αx0

�n
k

	
Mx0pyq

�	
�
?
khp

pTkpy|x0qpfnpx0qfpx0q
p pfnpx0q � fpx0qq.

Note that for the first term in the right-hand side of the above display we have just established

the weak convergence as a stochastic process (apart from the factor 1{fpx0q), whereas for the

second term we have essentially to study
?
khpp pfnpx0q � fpx0qq. The latter can be rewritten as

?
khpp pfnpx0q � fpx0qq �

c
k

n

?
nhpp pfnpx0q � fpx0qq.

Under our assumptions on K and f one can easily verify that
?
nhpp pfnpx0q � fpx0qq � OPp1q

(see e.g. Parzen, 1962) and hence the theorem follows.

4.4 Proof of Theorem 2.2

Let

In :� tgθ,δ,n : θ P Θ, δ P Hu,

where for θ P Θ :� r0, T sd, and δ P H :� tδ � pδ1, . . . , δdq; δj : R� SX Ñ Ru with

gθ,δ,npu, zq :�
c
n

k
hpKhpx0 � zqqθ,δ,npu, zq

:�
c
n

k
hpKhpx0 � zq1lt1�δ1pu1,zq¤k{n θ1 or ... or 1�δdpud,zq¤k{n θdu.

For convenience, denote δn :�
� pFn,1, . . . , pFn,d	 and δ0 :� pF1, . . . , Fdq. According to Lemma 2.3,

r�1
n |δn� δ0| converges in probability towards the null function H0 :� t0u in H endowed with the

norm }δ}H :� °d
i�1 }δi}8. In order to apply Theorem 2.3 in van der Vaart and Wellner (2007),

we have now to show

Assertion 1: supθPΘ

?
nPGnpθ, anq ÝÑ 0 for every an Ñ 0,
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Assertion 2: supθPΘ |GnGnpθ, aq| PÝÑ 0, for every a ¡ 0,

where Gnpθ, aq is an envelope function for the class

Gnpθ, aq :� tgθ,δ0�rnδ,n � gθ,δ0,n : δ P H, }δ}H ¤ au .

Proof of Assertion 1. Using the ideas of the proof of Theorem 2.1, for any δ P H such that

}δ}H ¤ a

|qθ,δ0�rnδ,n � qθ,δ0,n|pu, zq ¤ 1ltk{n θ1�rna¤1�F1pu1|zq¤k{n θ1�rna or ... or k{n θd�rna¤1�Fdpud|zq¤k{n θd�rnau

�: 1lBn,θ,apu, zq.

Thus, we set Gnpθ, aqpu, zq :�
c
n

k
hpKhpx0 � zq1lBn,θ,apu, zq and we have

?
nPGnpθ, anq � n

c
hp

k

»
SK

KpuqP pBn,θ,an |X � x0 � huq fpx0 � huqdu,

with

P pBn,θ,an |X � x0 � huq ¤
ḑ

j�1

P
�
k{n θj � rnan ¤ 1� FjpY pjq|Xq ¤ k{n θj � rnan |X � x0 � hu

	
¤ 2drnan. (14)

Hence,

sup
θPΘ

?
nPGnpθ, anq ¤ 2dn

c
hp

k
rnanpfpx0q � op1qq Ñ 0, (15)

and the assertion follows.

Proof of Assertion 2. The idea is to apply Lemma 2.2 in van der Vaart and Wellner (2007).

Now we work with the class of functions
 
Gnpθ, aq, θ P r0, T sd

(
, for any a ¡ 0 with the envelope

function

Enpu, zq :�
c
n

k
hpKhpx0 � zq1lt1�F1pu1|zq¤k{nT�rna or ... or 1�Fdpud|zq¤k{nT�rnau.

Consequently, we have first to prove that

sup
θPΘ

PGnpθ, aq2 ÝÑ 0, (16)

PE2
n � Op1q, (17)

PE2
n1ltEn¥ε?nu Ñ 0 for every ε ¡ 0. (18)

33



For what concerns condition (16), we have according to (14)

PGnpθ, aq2 �
»
SK

Kpuq2n
k
P pBn,θ,a |X � x0 � huq fpx0 � huqdu

¤ 2d
n

k
rna

»
SK

Kpuq2fpx0 � huqdu

� 2d
n

k
rna

�
fpx0q}K}22 � op1q� .

We have that rnn{k Ñ 0 since n
a
hp{k rn converges and khp Ñ 8, and as such (16) is estab-

lished.

By the first order condition, we have

PE2
n �

»
SK

Kpuq2n
k
P
�
An{k,yT�pn{kqrnya |X � x0 � hu

�
fpx0 � huqdu

� LpyT |x0qfpx0q}K}22 � op1q,

where ya :� pa, . . . , aq P Rd� and (17) follows.

Now we verify condition (18). For any ξ ¡ 0 we obtain the following inequality

PE2
n1ltEn¥ε?nu ¤ 1

εξnξ{2
PE2�ξ

n

¤ 1

εξ
d

pkhpqξ{2
�
T � rn

n

k
a
	
p}K}2�ξ2�ξfpx0q � op1qq,

which tends to zero under the assumptions of the theorem.

It remains to show that

Jpdn, tGnpθ, aq : θ P Θu , L2q ÝÑ 0 for all dn × 0.

To deal with the uniform entropy integral, we can reuse the lines of proof of Theorem 2.1 by

considering the following class of functions on r0, 1sd 
uÑ 1lty1¤1�u1¤y2 or ... or y2d�1¤1�ud¤y2du, y1   y2, . . . , y2d�1   y2d

(
,

which is a V C-class since the class of sets associated to the indicator functions is a V C-class

of sets as the union of d V C-classes of sets. This allows us to prove that there exist positive

constants C and V such that

sup
QPQ

NptGnpθ, aq : θ P Θu , L2pQq, τ}En}Q,2q ¤ C

�
1

τ


V
,

from which the last assertion follows. This achieves the proof of Theorem 2.2.
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4.5 Proof of Theorem 2.3

Due to the decomposition (4), we have to prove that

sup
yPr0,T sd

?
khp

���E � qTkpy|x0q � pTkpy|x0q
���� � op1q.

According to the notation in the proof of Theorem 2.2, note that
?
khp E

���� qTk � pTk���� py|x0q
equals

?
nE

������ 1n
ņ

i�1

�c
n

k
hpKhpx0 �Xiq1l!1� pFn,1pY p1q

i |Xiq¤k{n y1 or ... or 1� pFn,dpY pdq
i |Xiq¤k{n yd

)

�
c
n

k
hpKhpx0 �Xiq1l!1�F1pY p1q

i |Xiq¤k{n y1 or ... or 1�FdpY pdq
i |Xiq¤k{n yd

)
������

¤ ?
nE r|gy,δn,npY1, X1q � gy,δ0,npY1, X1q|s

¤ ?
nPGnpy, aq,

for n large enough, since with probability tending to 1, δn P δ0 � rnBp0, aq where Bp0, aq :� tδ :

}δ}H ¤ au, and by using the Skorohod representation. This implies that

sup
yPr0,T sd

?
khp E

���� qTk � pTk���� py|x0q ¤ sup
yPr0,T sd

?
nPGnpy, aq Ñ 0,

by Assertion 1 since it is clear that an Ñ 0 can be replaced by any fixed value a in (15) and

conclude with the fact that nrn
a
hp{k Ñ 0.

Finally, #?
khp

� qTkpy|x0qpfnpx0q
� Lpy|x0q � αx0

�n
k

	
Mx0pyq

�
, y P r0, T sd

+
,

can be handled using the same arguments as those at the end of the proof of Theorem 2.1.
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