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A UNIFIED APPROACH FOR UZAWA ALGORITHMS∗

CONSTANTIN BACUTA†

Abstract. We present a unified approach in analyzing Uzawa iterative algorithms for saddle
point problems. We study the classical Uzawa method, the augmented Lagrangian method, and two
versions of inexact Uzawa algorithms. The target application is the Stokes system, but other saddle
point systems, e.g., arising from mortar methods or Lagrange multipliers methods, can benefit from
our study. We prove convergence of Uzawa algorithms and find optimal rates of convergence in an
abstract setting on finite- or infinite-dimensional Hilbert spaces. The results can be used to design
multilevel or adaptive algorithms for solving saddle point problems. The discrete spaces do not have
to satisfy the LBB stability condition.
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1. Introduction. In this paper, we provide a unified approach for Uzawa meth-
ods for linear saddle point systems. Such systems arise in solving various partial
differential equations (PDEs) or systems of PDEs at the continuous level or at the
discrete level. Typical examples of such PDEs are second-order elliptic problems,
Stokes equations, and elasticity problems. We analyze the classical Uzawa Method
(UM) [1], the augmented Lagrangian Uzawa method (ALUM) [14], the inexact Uzawa
method (IUM) [7, 13], and a modified (or multilevel) inexact Uzawa method (MIUM)
under a general approach on abstract Hilbert spaces. The motivation for considering
abstract versions of Uzawa algorithms on infinite-dimensional Hilbert spaces is that
the analysis at the continuous level of an algorithm for solving a PDE gives the right
strategy for discretizing the PDE. In addition, the convergence factors of certain mul-
tilevel or adaptive algorithms for solving saddle point systems depend on the stability
parameters of the continuous problem, and in many cases the discrete LBB stability
condition is not required to be satisfied (see [4, 12] or section 6). Next, we formulate
the general framework of the saddle point problem to be studied in this paper and
indicate the way the paper is organized.

We let V and P be two Hilbert spaces with inner products a(·, ·) and (·, ·), with
the corresponding induced norms | · |V = | · | = a(·, ·)1/2 and ‖ · ‖P = ‖ · ‖ = (·, ·)1/2.
The dual parings on V∗ ×V and P ∗ × P are denoted by 〈·, ·〉 and (·, ·), respectively.
Here, V∗ and P ∗ denote the dual of V and P , respectively. We identify P ∗ and P as
Hilbert spaces so that (·, ·) represents both the inner product on P and the duality
between P ∗ and P . In applications to Stokes systems, V = (H1

0 )d(d = 2, 3, . . . ), P is
a subspace of L2 of codimension one and (·, ·) is the standard inner product on L2.
Next, we consider that b(·, ·) is a continuous bilinear form on V × P , satisfying the
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inf-sup condition. More precisely, we assume that

inf
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = m > 0(1.1)

and

sup
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = M < ∞.(1.2)

For f ∈ V∗, g ∈ P ∗, we consider the following variational problem:
Find (u, p) ∈ V × P such that

a(u,v) + b(v, p) = 〈f ,v〉 for all v ∈ V,
b(u, q) = (g, q) for all q ∈ P.

(1.3)

It is known that the above variational problem has a unique solution for any f ∈ V∗,
g ∈ P ∗ (see [9, 10, 15] or Lemma 2.1). With the forms a and b, we associate two
linear operators A : V → V ∗ and B : V → P defined by

〈Au,v〉 = a(u,v) for all u,v ∈ V

and

(Bu, q) = b(u, q) for all u ∈ V, q ∈ P.

Let B∗ : P → V ∗ be the dual operator of B defined by

〈B∗q,v〉 = (q,Bv) = (Bv, q) = b(v, q) for all v ∈ V, q ∈ P.

The problem (1.3) is equivalent to the following problem:
Find (u, p) ∈ V × P such that

Au + B∗p = f ,
Bu = g.

(1.4)

In this framework, we analyze Uzawa algorithms for solving the system (1.3) or (1.4).
We consider that the form a gives the inner product and the norm on V. A more
general case of (1.3) is considered in [9, 10, 15]. Our particular assumptions for
the form a give rise to a simplified analysis. For the general case, we obtain sharp
convergence estimates only in terms of the two constants m and M .

The rest of the paper is organized as follows. In section 2, we analyze the conver-
gence of the classical Uzawa algorithm. The augmented Lagrangian Uzawa method
is analyzed in section 3 (Fortin and Glowinski [14]). In section 4, we shall investi-
gate the convergence of the inexact Uzawa algorithm (Bramble, Pasciak, and Vassilev
[7] and Elman and Golub [13]) in the above abstract framework. Applications to
discretizations on stable pairs are presented in section 5. A modified inexact Uzawa
algorithm with applications in constructing multilevel methods and adaptive methods
for solving (1.3) is illustrated in section 6. In section 7, we present applications of our
abstract results to the Stokes system.
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2. The abstract Uzawa algorithm. We begin this section with two lemmas
which provide basic properties of norms and operators introduced in section 1. The
proofs are based on the Riesz representation theorem (see, e.g., [20]). For complete-
ness, we include the proofs.

Lemma 2.1. The operator A : V → V ∗ is invertible and the Schur complement
operator BA−1B∗ : P → P is symmetric and a positive definite operator satisfying

(BA−1B∗p, p) = sup
v∈V

b(v, p)2

|v|2 ,(2.1)

m2‖p‖2 ≤ (BA−1B∗p, p) ≤ M2‖p‖2, p ∈ P.(2.2)

Consequently, the problem (1.3) (or (1.4)) has a unique solution.
Proof. From the definition of A, we get that A is a bounded injective operator.

Using the Riesz representation theorem, it follows that A is also a surjective operator.
Let us further note that A satisfies

〈Au,v〉 = a(u,v) = a(v,u) = 〈Av,u〉,
and the changes of variable Au = u∗ and Av = v∗ lead to

〈u∗, A−1v∗〉 = 〈v∗, A−1u∗〉, u∗,v∗ ∈ V∗.(2.3)

Using (2.3), we obtain

(BA−1B∗p, q) = 〈B∗q, A−1B∗p〉 = 〈B∗p,A−1B∗q〉
= (BA−1B∗q, p) = (p,BA−1B∗q), p, q ∈ P.

To prove (2.1), we let p ∈ P be fixed and consider the following problem:
Find u ∈ V such that

a(u,v) = b(v, p) for all v ∈ V.(2.4)

Since the functional v → b(v, p) is continuous on V, by the Riesz representation
theorem we have that the unique solution u of (2.4) satisfies

a(u,u) = ‖v → b(v, p)‖2
V∗ = sup

v∈V

b(v, p)2

|v|2 .(2.5)

On the other hand, from (2.4) we have

Au = B∗p or u = A−1B∗p

and

a(u,u) = 〈Au,u〉 = 〈B∗p,A−1B∗p〉 = (p,BA−1B∗p).(2.6)

Thus, (2.1) follows from (2.5) and (2.6). The estimate (2.2) follows imediately from
(2.1), (1.1), and (1.2).

To prove the existence and uniqueness of (1.3) (or (1.4)), we substitute u from
the first equation of (1.4) into the second equation of (1.4). The resulting equation
in p,

BA−1B∗p = BA−1f − g,
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has a unique solution due to the fact that BA−1B∗ : P → P is symmetric and a
positive definite operator.

Remark 2.2. From the general theory of symmetric operators and Lemma 2.1,
we have that σ(BA−1B∗) ⊂ [m2,M2] and m2,M2 ∈ σ(BA−1B∗). In the finite-
dimensional case, m2 and M2 are the extreme eigenvalues of the Schur complement
BA−1B∗.

Lemma 2.3. The following norm estimates are valid:

‖φ‖2
V∗ = a(A−1φ,A−1φ) = |A−1φ|2, φ ∈ V∗,(2.7)

‖Au‖V∗ = |u|, u ∈ V,(2.8)

‖B∗q‖V∗ = |A−1B∗q| = (BA−1B∗q, q)1/2 ≤ M‖q‖, q ∈ P,(2.9)

‖B‖ = M, hence ‖Bu‖ ≤ M |u|, u ∈ V.(2.10)

Proof. By the Riesz representation theorem, we have that for any φ ∈ V∗ the
problem

Find u ∈ V such that

〈Au,v〉 = a(u,v) = 〈φ,v〉 for all v ∈ V(2.11)

has a unique solution, and the solution u satisfies

a(u,u) = sup
v∈V

〈φ,v〉2
a(v,v)

= ‖φ‖2
V∗ .(2.12)

From (2.11), we have that u = A−1φ, which combined with (2.12) gives (2.7). The
equality (2.8) is a consequence of (2.7), and (2.9) follows from (2.8) and (2.2). The
last estimate follows from the definition of B and the assumption in (1.2).

Next, we present the Uzawa algorithm [1] for solving the solution of the abstract
problem (1.3). Given a parameter α > 0, called a relaxation parameter, the Uzawa
algorithm for approximating the solution (u, p) of (1.3) can be described as follows.

Algorithm 2.4 (Uzawa method (UM)). Let p0 be any approximation for p, and
for k = 1, 2, . . . , construct (uk, pk) by

a(uk,v) = (f ,v) − b(v, pk−1), v ∈ V,

pk = pk−1 + α(Buk − g).
(2.13)

The convergence of the UM is discussed for particular cases in, e.g., [10, 14, 15, 17].
It shows that the UM is convergent for small enough α and that the convergence rate
is the same as the convergence rate of the Richardson iterative methods for the Schur
complement BA−1B∗. For completeness, we include the proof.

Theorem 2.5. Let (u, p) be the solution of (1.3) and let (uk, pk) be the sequence
of approximations built by the UM (2.13). Then, the following holds.

(i) The sequences u − uk and p− pk satisfy

a(u − uk,u − uk)
1/2 ≤ M ‖p− pk−1‖,

‖p− pk‖ ≤ ‖I − αBA−1B∗‖ ‖p− pk−1‖.
(ii) For α < 2

M2 , the UM is convergent and

‖I − αBA−1B∗‖ = max{|1 − αm2|, |1 − αM2|} < 1.
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(iii) For α = 1
M2 , the convergence factor is ‖I − αBA−1B∗‖ = 1 − m2

M2 .
(iv) The optimal convergence factor is achieved for

αopt =
2

M2 + m2
and ‖I − αoptBA−1B∗‖ =

M2 −m2

M2 + m2
.

Proof. From the first equation of (1.3) and the first equation of (2.13), we have
that

a(u − uk,v) = b(v, pk−1 − p) for all v ∈ V.(2.14)

The above relation implies

|u − uk|2 = a(u − uk,u − uk) = (BA−1B∗(pk−1 − p), (pk−1 − p))

≤ M2‖pk−1 − p‖2,

which proves the first part of (i). From the second equation of (1.4) and the second
equation of (2.13), we have that

p− pk = p− pk−1 + αB(u − uk).

Combining with (2.14), we get

p− pk = (I − αBA−1B∗)(p− pk−1),(2.15)

which gives the second part of (i). From Lemma 2.1, we have that (I −αBA−1B∗) is
a symmetric operator, and for any p ∈P, p 
= 0,

1 − αM2 ≤ ((I − αBA−1B∗)p, p)
‖p‖2

≤ 1 − αm2,

which justifies part (ii). The rest of the proof follows from (ii).

3. Augmented Lagrangian Uzawa algorithm. The main idea of the aug-
mented Lagrangian method, introduced by Fortin and Glowinski [14], is to use the
constraint condition for the variable p and another tuning parameter ρ > 0 in order
to improve the convergence factor of the Uzawa algorithm. We will consider the ap-
proach for abstract Hilbert spaces V and P and prove sharp convergence estimates
for the corresponding Uzawa algorithm.

Let (u, p) be the solution of the variational problem (1.3). Then, from the second
equation of (1.4), we have that

(Bu, Bv) = (g,Bv), v ∈ V.

Thus, for any ρ > 0, (u, p) is also a solution of

a(u,v) + ρ(Bu, Bv) + b(v, p) = 〈f ,v〉 + ρ(g,Bv),
b(u, q) = (g, q).

(3.1)

Using the notation

aρ(u,v) := a(u,v) + ρ(Bu, Bv) and fρ := f + ρB∗g,

we have that

aρ(u,v) + b(v, p) = 〈fρ,v〉, v ∈ V,
b(u, q) = (g, q), q ∈ P.

(3.2)
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With the form aρ, we associate the linear operator Aρ : V → V ∗,

〈Aρu,v〉 = aρ(u,v) for all u,v ∈ V.

Thus, an equivalent form of (3.2) is

Aρu + B∗p = fρ,
Bu = g.

(3.3)

Since aρ(·, ·) and a(·, ·) give rise to equivalent norms on V, we have that (3.2) (or
(3.3)) has a unique solution. Consequently, problems (1.3) and (3.2) are equivalent.
In what follows, the Uzawa algorithm applied to (3.2) will be called the augmented
Lagrangian Uzawa method (ALUM).

Given a relaxation parameter α > 0, the augmented Lagrangian Uzawa algorithm
for approximating the solution (u, p) of (1.3) is as follows.

Algorithm 3.1 (ALUM). Let p0 be any approximation for p, and for k =
1, 2, . . . , construct (uk, pk) by

aρ(uk,v) = (fρ,v) − b(v, pk−1), v ∈ V,

pk = pk−1 + α(Buk − g).

To study the convergence of (3.1), we shall calculate first

Mρ := sup
p∈P

sup
v∈V

b(v, p)

‖p‖(aρ(v,v))1/2
(3.4)

and

mρ := inf
p∈P

sup
v∈V

b(v, p)

‖p‖(aρ(v,v))1/2
.(3.5)

Theorem 3.2. For any ρ > 0, we have

BA−1
ρ B∗ =

(
ρI + (BA−1B∗)−1

)−1
,(3.6)

M2
ρ =

1

ρ + 1
M2

and m2
ρ =

1

ρ + 1
m2

.(3.7)

Proof. To prove (3.6), we need two identities. First, we note that for any invertible
linear operator C : P → P such that I + ρC is also invertible, we have

(
ρI + C−1

)−1
= C − ρC(I + ρC)−1C.(3.8)

This can be proved by checking that the proposed inverse verifies the algebraic defini-
tion of the inverse. The second identity is based on the Sherman–Morrison–Woodbury
formula and can be proved again just by algebraic manipulations:

(A + ρB∗B)−1 = A−1 − ρA−1B∗(I + ρBA−1B∗)−1BA−1.(3.9)

From (3.9), we get

B(A + ρB∗B)−1B∗ = BA−1B∗

− ρBA−1B∗(I + ρBA−1B∗)−1BA−1B∗.
(3.10)
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If we take C = BA−1B∗ in (3.8) and combine it with (3.10), we obtain (3.6). To
verify (3.7), we notice that by applying Lemma 2.1 with aρ instead of a we have

sup
v∈V

b(v, p)2

‖p‖2 aρ(v,v)
= (BA−1

ρ B∗p, p), p ∈ P.(3.11)

Thus, we get

M2
ρ = sup

p∈P

(BA−1
ρ B∗p, p)
(p, p)

= sup
p∈P

(
(ρI + (BA−1B∗)−1 )−1p, p

)
(p, p)

=
1

inf
q∈P

((ρI+(BA−1B∗)−1)q,q)
(q,q)

=
1

ρ + inf
q∈P

((BA−1B∗)−1q,q)
(q,q)

=

⎛
⎜⎝ρ +

1

sup
r∈P

(BA−1B∗r,r)
(r,r)

⎞
⎟⎠

−1

=

(
ρ +

1

M2

)−1

.

Here, we have used the changes of variable (ρI + (BA−1B∗)−1 )−1/2p = q and
(BA−1B∗)−1/2q = r. The proof for mρ is similar.

The above result gives formulas for the inf-sup and sup-sup constants for the
ALUM in terms of m,M , and ρ. In applications, the constant m is more difficult to
obtain. The following theorem gives the convergence rate of the ALUM.

Theorem 3.3. Let (u, p) be the solution of (1.3) and let (uk, pk) be the sequence
of approximations built by Algorithm 3.1. Then, the following holds true:

(i) The sequences u − uk and p− pk satisfy

aρ(u − uk,u − uk)
1/2 ≤ Mρ ‖p− pk−1‖,

‖p− pk‖ ≤ ‖I − αBA−1
ρ B∗‖ ‖p− pk−1‖.

(ii) For α < 2
M2

ρ
, the ALUM is convergent and

‖I − αBA−1
ρ B∗‖ = max{|1 − αm2

ρ|, |1 − αM2
ρ |} < 1.

(iii) For α = 1
M2

ρ
, the convergence factor is

‖I − αBA−1
ρ B∗‖ =

(
1 − m2

M2

)
1

m2ρ + 1
.

(iv) The optimal convergence factor is achieved for αopt = 2
M2

ρ+m2
ρ

and

‖I − αoptBA−1
ρ B∗‖ =

M2
ρ −m2

ρ

M2
ρ + m2

ρ

=

(
1 − m2

M2

)
1

2m2ρ + 1 + m2/M2
.

Proof. The result is a direct consequence of Theorem 2.5 and (3.7).
A similar result for the discrete version of the Stokes system can be found in [19].

As it was pointed out in [14] and [19], the choice of a very large ρ improves on the
rate of convergence of the ALUM, but at the same time, the operator Aρ becomes
more difficult to invert. For the continuous and discrete Stokes system, estimates for
the convergence factor of the ALUM were recently obtained by Nochetto and Pyo in
[16]. The question raised in [16] on how much we can improve the rate of convergence
of the ALUM if information about the spectral value m is available can be easily
answered now by comparing part (iii) and part (iv) of Theorem 3.3 or Theorem 7.1.
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4. Inexact Uzawa method. Throughout the rest of the paper we will keep
the notation and assumptions of section 2. In this section, following the ideas in
[7, 13], we shall introduce and investigate the convergence of an abstract inexact
Uzawa algorithm where the exact solve of the elliptic problem (the action of A−1)
is replaced by an approximation process, which might not be a linear operator. We
describe the approximate inverse of A as a map C : V∗ → V which, for φ ∈ V∗,
returns an approximation of ξ = A−1φ such that

|Cφ−A−1φ|V ≤ δ‖φ‖V∗ for all φ ∈ V∗(4.1)

for some δ ∈ (0, 1). We notice here that (4.1) is a strong condition for the infinite-
dimensional case. The condition can be weakened by requiring to be satisfied only
for certain values φ ∈ V∗. If V and P are finite-dimensional spaces, then C can be
considered as a linear or nonlinear process for inverting A and (4.1) is a reasonable
assumption (see [7]). One example of nonlinear process C is the approximate inverse
associated with the preconditioned conjugate gradient algorithm. A practical case
would be to consider Cφ = ξnum, where ξnum is the numerical approximation of ξ
defined by

a(ξ,v) = 〈φ,v〉 for all v ∈ V.

In any case, if Aξ = φ and Cφ is defined by Cφ = ξap, an approximation of ξ, then,
according to (2.7), the assumption (4.1) is equivalent to

|ξap − ξ|V ≤ δ|ξ|V for all ξ ∈ V.(4.2)

The inexact Uzawa algorithm for approximating the solution (u, p) of (1.3) is as
follows.

Algorithm 4.1 (inexact Uzawa method (IUM)). Let (u0, p0) be any approxima-
tion for (u, p), and for k = 1, 2, . . . , construct (uk, pk) by

uk = uk−1 + C(f −Auk−1 −B∗pk−1),

pk = pk−1 + α(Buk − g).

Before we study the stability and convergence rate of Algorithm 4.1 we shall
introduce the following notation. For k = 0, 1, . . . , let euk = u − uk, e

p
k = p− pk, and

Ek =

( |euk |
‖epk‖

)
.

Let

M :=

(
δ M(1 + δ)

αMδ γ + αM2δ

)
,

where γ := ‖I − αBA−1B∗‖ = max{|1 − αm2|, |1 − αM2|}. On R2 we introduce the
inner product [·, ·]w defined by[(

x1

x2

)
,

(
y1

y2

)]
w

= w1x1y1 + w2x2y2,

where w1, w2 are any two positive numbers such that

w1

w2
=

αδ

1 + δ
,
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and δ is a positive number such that (4.1) is satisfied. We note that M is symmetric
with respect to the [·, ·]w inner product. We will denote the norm induced by [·, ·]w
with ‖ · ‖w.

Theorem 4.2. Let 0 < α < 2/M2 and assume that C satisfies (4.1) with

δ <
1 − γ

1 − γ + 2αM2
.(4.3)

Then, the IUM converges. If r is the spectral radius of the matrix M, then 0 < r < 1
and

‖Ek‖w ≤ rk ‖E0‖w, k = 1, 2, . . . .(4.4)

Proof. We follow the proof of a similar result in [7] for the finite-dimensional case.
From the first equation of (1.4) and the first equation of Algorithm 4.1, we have

euk = euk−1 − C(Aeuk−1 + B∗epk−1)

= (A−1 − C)(Aeuk−1 + B∗epk−1) −A−1B∗epk−1.
(4.5)

From the second equation of (1.4) and the second equation of Algorithm 4.1, we get

epk = epk−1 + αBeuk .(4.6)

If we substitute euk from (4.5) into (4.6), then

epk = (I − αBA−1B∗)epk−1 + αB(A−1 − C)(Aeuk−1 + B∗epk−1).(4.7)

From (4.5) and (4.7), by the triangle inequality, and from the estimates (2.9) and
(2.10) and the assumption (4.1), we obtain

|euk | ≤ δ |euk−1| + M(1 + δ) ‖epk−1‖
and

‖epk‖ ≤ αMδ |euk−1| + (γ + αM2δ)‖epk−1‖.
Using the notation introduced above, we have

Ek ≤ M Ek−1,(4.8)

where (
x1

x2

)
≤

(
y1

y2

)

means x1 ≤ y1 and x2 ≤ y2. From (4.8), we deduce

Ek ≤ Mk E0.(4.9)

Since M is symmetric with respect to [·, ·]w-inner product, we have

‖Ek‖2
w = [Ek, Ek]w ≤ [Mk E0,M

k E0]w = [M2k E0, E0]w ≤ r2k ‖E0‖2
w,

which proves (4.2). To complete the proof, we have to show that r ∈ (0, 1), provided
that 0 < α < 2/M2 and (4.3) holds. The characteristic equation of the matrix M is

λ2 − λ(δ + γ + αM2δ) + δ(γ − αM2) = 0.

9



Since M has positive entries, the characteristic equation has real roots and the largest
(positive) root agrees with the spectral radius of M. Consequently,

r =
1

2

(
δ + γ + αM2δ +

√
(δ + γ + αM2δ)2 − 4δ(γ − αM2)

)
.

Using that γ = max{|1−αm2|, |1−αM2|} and α ∈ (0, 2/M2), it is easy to verify
that the function δ → r = r(δ) is an increasing function on (0, 1) and that r = 1 for

δ = δ0 :=
1 − γ

1 − γ + 2αM2
.(4.10)

This completes the proof of the theorem.
Remark 4.3. For 0 < α ≤ 2

M2+m2 we have that γ = 1 − αm2 and the threshold
δ0 becomes

δ0 =
m2

m2 + 2M2
,

which is independent of α. For 2
M2+m2 ≤ α < 2

M2 we have that γ = αM2 − 1 and the
threshold δ0 becomes

δ0 =
2 − αM2

2 + αM2
.

Nevertheless, the optimal (maximal) value of δ0 as the function of α ∈ [ 2
M2+m2 ,

2
M2 )

is δ0 = m2

m2+2M2 and is achieved for α = 2
M2+m2 . Thus, a good choice for α (indepen-

dent of m) is α = 1/M2. In this case we still have δ0 = m2

m2+2M2 .
Remark 4.4. We can apply the IUM for the augmented Lagrangian formulation.

The only changes in Algorithm 4.1 is that A is replaced by Aρ and f is replaced by fρ.
The convergence analysis follows from Theorem 4.2. Let us further notice that in this
case |euk |2 = aρ(e

u
k , e

u
k ) and for α = 1/M2

ρ the threshold δ0 which assures convergence
for the IUM is

δ0(ρ) =
m2

ρ

m2
ρ + 2M2

ρ

=
m2 + ρm2M2

m2 + 2M2 + 3ρm2M2
→ 1

3
as ρ → ∞.

Thus, if the IUM for the augmented Lagrangian formulation is applied with sufficiently
large ρ, α = 1/M2

ρ and with the approximation operator C satisfying

‖C −A−1
ρ ‖ ≤ δ0(ρ) < 1/3,

then the method converges.
Remark 4.5. A different approach in analyzing the IUM in the finite-dimensional

case is presented by Cheng in [11]. From his analysis for α = 1 and M = 1, it follows
that the IUM converges (with a different estimate for the convergence factor), under
the weaker assumption that δ < δ0 = 1/3. Cheng’s result for the infinite-dimensional
case seems not to have been investigated. A positive answer for this problem would
be an interesting result, since in practice it is difficult to estimate the spectral value
m.
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5. Discretization with the inf-sup condition. In this section we assume that
the variational form of a PDE (or system of PDEs) leads to (1.3) and let Vh and Ph be
two finite-dimensional spaces, Vh ⊂ V, Ph ⊂ P , with good approximation properties.
We further assume that

inf
p∈Ph

sup
v∈Vh

b(v, p)

‖p‖ |v| = m(h) > 0 and sup
p∈Ph

sup
v∈Vh

b(v, p)

‖p‖ |v| = M(h).(5.1)

For an overview of numerical methods for solving saddle point systems, we refer the
reader to the recently published review paper [5] by Benzi, Golub, and Liesen.

From Lemma 2.1 and Remark 2.2 we see that m(h),M(h) are the lowest and the
largest eigenvalues of the Schur complement BhA

−1
h B∗

h associated with the discrete
spaces Vh and Ph. Then (see, e.g., [9, 15]), the discrete variational problem

Find (uh, ph) ∈ Vh × Ph such that

a(uh,v) + b(v, ph) = 〈f ,v〉, v ∈ Vh,
b(uh, q) = (g, q), q ∈ Ph,

(5.2)

has a unique solution and

|u − uh| + ‖p− ph‖ ≤ c

(
inf

v∈Vh

|u − v| + inf
q∈Ph

‖p− q‖
)
,

where c is a constant depending only on m(h) and M(h). In this case, the exact or
inexact Uzawa algorithms can be applied for the discrete variational problem (5.2)
on Vh × Ph; see, e.g., [7]. The convergence factors depend on m(h) and M(h) and
could deteriorate as h → 0 if the pair (Vh, Ph) is not stable. We recall here that a
pair (Vh, Ph), or more precisely a family of pairs {(Vh, Ph)}h, is called stable if m(h)
defined in (5.1) satisfies

m(h) ≥ m > 0,

with m independent of h. In the next section we use the inexact Uzawa algorithm
at the continuous level to construct algorithms which avoid building stable pairs
(Vh, Ph).

6. Modified inexact Uzawa method. Eliminating the discrete inf-sup
condition. We shall apply the IUM to construct discrete approximations (uk, pk) ∈
(Vk, Pk), where Vk ⊂ V and Pk ⊂ P are finite-dimensional spaces such that the pairs
(Vk, Pk) do not have to be stable pairs.

The algorithm proposed in this section can be used for building multilevel or
adaptive methods for solving the system (1.3). Adaptive methods for saddle point
problems have been the subject for recent research in numerical analysis (see, e.g.,
[12, 4]). Our new approach, combined with standard techniques of a posteriori error
estimate theory, could lead to new and efficient adaptive algorithms for solving saddle
point systems. To describe our new algorithm, we assume that a sequence of nested
subspaces,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V,

was determined and for k = 1, 2, . . . , a linear or nonlinear process Ck : V∗ → Vk

approximating A−1 is available such that for a fixed φ ∈ V∗, Ckφ ∈ Vk is an ap-
proximation of ξ = A−1φ. To construct a good approximate inverse Ck : V∗ → Vk

11



one might need to increase the space Vk−1 to a space with better approximation
properties using an adaptive method. Thus, the embedding assumption Vk−1 ⊂ Vk

is needed. On the other hand, in the proposed algorithms, the variable p is updated
at the continuous level and no inversion is used. Thus, the Pk’s are just subsets of
the space P and do not have to be nested.

The modified inexact Uzawa algorithm for approximating the solution (u, p) of
(1.3) can be stated now as follows.

Algorithm 6.1 (modified inexact Uzawa method (MIUM)). Let u0 ∈ V0 be any
approximation for u and let p0 ∈ P be any approximation for p. For k = 1, 2, . . . ,
construct (uk, pk), with uk ∈ Vk, by

uk = uk−1 + Ck(f −Auk−1 −B∗pk−1),

pk = pk−1 + α(Buk − g).
(6.1)

Theorem 6.2. Let 0 < α < 2/M2, γ = max{|1 − αm2|, |1 − αM2|} = ‖I −
αBA−1B∗‖, and assume that for k = 1, 2, . . . , Ck satisfies

‖(Ck −A−1)(f −Auk−1 −B∗pk−1)‖V ≤ δ‖(f −Auk−1 −B∗pk−1)‖V∗ ,(6.2)

with

δ <
1 − γ

1 − γ + 2αM2
.(6.3)

Then, the MIUM converges and the convergence rate is given by (4.4).
Proof. It is similar to the proof of Theorem 4.2.
We notice here that, for a fixed α, the threshold δ which assures the convergence

of the MIUM depends only on the constants m and M . In the case g = 0, we have
pk ∈ Pk := BVk. Nevertheless, no matter the choice of the spaces Vk, Pk, the pairs
(Vk, Pk) do not have to be stable pairs.

For the rest of this section, the first equation in (6.1) will be considered in a
variational form as follows. Let dk ∈ Vk be the solution of

a(dk,v) = 〈f,v〉 − a(uk−1, v) − b(v, pk−1), v ∈ Vk.(6.4)

Take d̃k := Ck(f − Auk−1 − B∗pk−1) to be an approximation of dk. For example,
d̃k could be a numerical approximation of dk. Let us assume that Dk−1 ∈ V is the
solution of the continuous problem

a(Dk−1,v) = 〈f,v〉 − a(uk−1, v) − b(v, pk−1), v ∈ V.(6.5)

From the Riesz representation theorem

‖(f −Auk−1 −B∗pk−1)‖V∗ = |Dk−1|V.

Thus, the assumption (6.2) can be rewritten as

|d̃k − Dk−1|V ≤ δ |Dk−1|V.(6.6)

Since dk ∈ Vk is the Galerkin approximation of Dk−1 ∈ V, we have that |dk|V ≤
|Dk−1|V. A sufficient condition for the assumption (6.2) is

|d̃k − Dk−1|V ≤ δ |dk|V.(6.7)

12



6.1. Multilevel exact Uzawa. In this subsection we assume that the problem
(6.4) can be solved exactly on Vk, i.e., d̃k = dk. Then, uk = uk−1 + dk and
consequently,

a(uk,v) = 〈f,v〉 − b(v, pk−1), v ∈ Vk.

If Uk−1 ∈ V satisfies

a(Uk−1,v) = 〈f,v〉 − b(v, pk−1), v ∈ V,

then Dk−1 = Uk−1 − uk−1 and (6.6) is equivalent to

|uk − Uk−1|V ≤ δ |uk−1 − Uk−1|V.(6.8)

If ηk > 0 is a computable estimator for |uk − Uk−1|V, i.e.,

|uk − Uk−1|V ≤ ηk,(6.9)

then, using (6.7), we get that a sufficient condition for (6.8) is

ηk ≤ δ |uk − uk−1|V.(6.10)

Algorithm 6.3 (multilevel exact Uzawa). Let p0 ∈ P be any approximation for
p. For k = 1, 2, . . . , construct (uk, pk), with uk ∈ Vk, by

a(uk,v) = 〈f,v〉 − b(v, pk−1), v ∈ Vk,

pk = pk−1 + α(Buk − g).

As a consequence of Theorem 6.2 we have the following.
Corollary 6.4. Let 0 < α < 2/M2, γ = ‖I − αBA−1B∗‖, and assume that

(6.8) or (6.9)–(6.10) are satisfied with δ < 1−γ
1−γ+2αM2 . Then, the multilevel exact

Uzawa algorithm converges and the convergence rate is given by (4.4).

6.2. Multilevel inexact Uzawa. In this subsection, we assume that the prob-
lem (6.4) can be solved on each Vk with an absolute error εk ∈ [0, δ) , i.e.,

|dk − d̃k|V ≤ εk|dk|V.(6.11)

If ηk > 0 is a computable estimator for |dk − Dk−1|V, i.e.,

|dk − Dk−1|V ≤ ηk,(6.12)

then a computable sufficient condition for (6.6) is

ηk ≤ δ − εk
1 + εk

|d̃k|V.(6.13)

Indeed, from (6.7) and (6.11)–(6.13) and the triangle inequality we have

|d̃k − Dk−1|V ≤ |dk − Dk−1|V + |dk − d̃k|V
≤ ηk + εk|dk|V ≤ δk − εk

1 + εk
|d̃k|V + εk|dk|V

≤ δk − εk
1 + εk

(1 + εk)|dk|V + εk|dk|V = δk|dk|V ≤ δk |Dk−1|V.

We conclude this subsection with a corollary and some remarks.
Corollary 6.5. Let 0 < α < 2/M2, γ = ‖I−αBA−1B∗‖, and let dk, d̃k satisfy

(6.11)–(6.13) with δ < 1−γ
1−γ+2αM2 . Then, the MIUM converges and the convergence

rate is given by (4.4).
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6.3. Multilevel and adaptive interpretation of the inexact Uzawa algo-
rithm. We note that the modified inexact Uzawa algorithm can be interpreted as a
multilevel algorithm. We consider that a sequence {Mk} of approximating subspaces
of V is constructed such that Mk is strictly larger than Mk−1 and that Mk is built
from Mk−1 by a uniform refinement strategy (see, e.g., [3, 6, 8, 19]). Based on this
existing sequence of nested subspaces of V, we can now build a sequence {Vk} so
that (6.6) holds as follows.

Take V0 = M0, and for any positive integer k, assuming that Vk−1 = Mj is
known, define Vk+i := Mj for i = 0, 1, . . . as long as (6.13) is satisfied for k replaced
by k+ i. In other words, we update uk−1 without enlarging the space Vk−1 as long as
(6.13) is satisfied. When (6.13) fails to hold, we solve for the uk on the next discrete
level space.

The modified inexact Uzawa algorithm can be also interpreted as an adaptive
method. We construct the sequence {Vk} (so that (6.6) holds) by starting with a
subspace V0 of V with good approximation properties and by building the sequence
{Vk}k≥1 in a similar manner. If (6.13) fails to hold for Vk = Vk−1, then the new
discrete space Vk is constructed by using an adaptive strategy which assures that
(6.13) and consequently (6.6) hold.

7. Applications to the Stokes system. We consider the stationary Stokes
equations

−Δu −∇p = f in Ω,
div u = g in Ω,

(7.1)

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and g satisfying the con-
straint ∫

Ω

g dx = 0.

In this section we apply the abstract Uzawa results presented in the previous sections
to solve (7.1).

Let V := (H1
0 (Ω))d, d = 2 or = 3, and

P = L2
0(Ω) :=

{
h ∈ L2(Ω)|

∫
Ω

h dx = 0

}
.

We assume that f ∈ (L2(Ω))d and g ∈ L2(Ω). The variational formulation of (7.1)
becomes

Find u ∈ V, p ∈ P such that

(∇u,∇v) +(divv, p) = (f ,v), v ∈ V.
(div u, q) = (g, q), q ∈ P,

(7.2)

where (·, ·) represents the standard L2-inner product. We will denote by a(·, ·) and
b(·, ·) the bilinear forms

a(u,v) := (∇u,∇v) =

d∑
i=1

(∇ui,∇vi)

and

b(v, p) := (divv, p), v ∈ V, p ∈ P.
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We note that, for Ω smooth enough, we have

a(u,v) := (∇u,∇v) = (curlu, curlv) + (divu,div v), u,v ∈ V.(7.3)

We denote the norm induced by a with | · |V or | · |. The norm on P is the L2-
standard norm and is simply denoted by ‖·‖. With the above notation, the variational
formulation of (7.1) becomes (1.3).

It is known that for Ω smooth enough, the following LBB condition holds. More
precisely, we have

inf
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = c0 > 0.(7.4)

On the other hand, from (7.3) we get that

sup
p∈P

sup
v∈V

b(v, p)

‖p‖ |v| = 1.(7.5)

We notice that for the Stokes problem the operator A : V → V∗ consists of d copies
of −Δ : H1

0 (Ω) → H−1(Ω), Bv = divv, B∗p = −∇p, and for ρ > 0,

aρ(u,v) := a(u,v) + ρ(div u,div v), u,v ∈ V.

The next two theorems are direct consequences of Theorems 2.5 and 3.3, respectively.
Theorem 7.1. Let (u, p) be the solution of (7.2) and let (uk, pk) be the sequence

of approximations built by the UM (2.13). Then the statements (i)–(iv) of Theorem
2.5 hold with m = c0 and M = 1.

Theorem 7.2. Let (u, p) be the solution of (7.2) and let (uk, pk) be the sequence
of approximations built by the ALUM (3.1). Then the statements (i)–(iv) of Theorem
3.3 hold with m = c0 and M = 1.

According to section 5, both the UM and ALUM can be applied to any discretiza-
tion of (7.2), provided that (Vh, Ph), with Vh ⊂ V and Ph ⊂ P , is a stable pair.
Let us assume that a fixed pair (Vh, Ph) satisfies the discrete inf-sup and sup-sup
conditions with constants m(h) = cd > 0 and M(h) = 1. If Qh : P → Ph is the
L2-orthogonal projection, then, with the new spaces, the operators associated with
the forms a and b are Ah and Bh, respectively, where Ah : Vh → V∗

h consists of
d copies of the discrete Laplacian and Bhv = Qh div v. Thus, the update for the
pressure becomes

pk = pk−1 + α Qh(div uk − g).

The analysis of the discrete versions of the UM and the ALUM can be carried on
similarly. The only difference in describing the convergence of the two algorithms for
the discrete case is that c0 in Theorems 7.1 and 7.2 is replaced by cd.

The inexact Uzawa algorithm can be also applied for the discretization of (7.2)
on (Vh,Ph) (see, e.g., [7]). Taking for example Ch : V∗

h → Vh to be a preconditioner

for Ah such that (4.1) is satisfied with δ <
c2d

2+c2d
, we have that the IUM converges for

any α ∈ (0, 2). We can also apply the inexact Uzawa algorithm for the augmented
Lagrangian Uzawa formulation on (Vh,Ph) (see Remark 4.4).

According to Corollary 6.5, the MIUM for solving (7.2) can be also applied for
any δ < c20/(2 + c20). The main difficulty in doing so is to find the sequence of spaces
{Vk} such that (6.6) or (6.13) is satisfied. Residual-type a posteriori estimators ηk
(see, e.g., [2], [18]) could be involved in finding the right sequence {Vk}. Constructing
and testing multilevel or adaptive algorithms for solving the Stokes system based on
the MIUM remains a challenging new problem and is a subject for future work.
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8. Conclusion. The paper gives a unified analysis approach of various Uzawa-
like algorithms for solving continuous or discrete saddle point problems. The conver-
gence condition and the convergence factors depend upon the extreme spectral bounds
of the Schur complement BA−1B∗ only. To the best of our knowledge, the result con-
cerning the optimal convergence factor of the ALUM for the infinite-dimensional case
is new. The analysis of the modified inexact Uzawa algorithm at the continuous level,
which was introduced in section 6, gives a general strategy for solving saddle point
systems. Our inexact Uzawa algorithm is similar to the algorithm for solving the
Stokes system presented in [4]. The differences are in the way the error bounds are
imposed (see (6.6), (6.13)) and the way the pressure is updated. Our analysis, com-
bined with standard techniques of a posteriori error estimates, could lead to new and
efficient adaptive algorithms for solving saddle point systems. The main difficulty in
implementing concrete algorithms based on the MIUM is finding error estimators ηk
such that the conditions (6.6) or (6.13) are satisfied. Finding spaces {Vk} such that
conditions similar to (6.6) are satisfied will be the focus of our future work.
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