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Abstract—The notion of spatially distributed sources arises
in many fields of applied signal processing. Following previous
empirical findings in this area, in this work, we attempt to
validate some of these findings within a simplified mathematical
framework for a finite electrostatic distributed source within a
homogeneous volume conductor. The model is very accurate for
signals such as the electrocardiogram and electroencephalogram.
The method is used to analyze second-order statistics of dis-
tributed sources. The findings of this research are expected to
be helpful for better interpretation of PCA and ICA results,
specifically for biomedical applications.

I. INTRODUCTION

In the past two decades, blind source separation (BSS) has
been extensively used in various applied domains including au-
dio, video, telecommunications and biomedical signal process-
ing. While, the classical and most common formulation of BSS
is based on the assumption of linear time-invariant mixtures of
punctual sources, nonlinear and time-variant models have also
found great attention in recent years [Comon and Jutten, 2010].
However, to the author’s knowledge, in all these developments
the sources of interest are assumed to be (or approximated
by) finite number of spatially punctual sources. On the other
hand, there are many applications, in which the punctuality
of the sources does not hold or is not a good approximation.
For example, in biomedical applications, sensors are typically
rather close to the signal sources (heart, brain, or muscles),
which violates the far-field assumptions. In these cases, the
sources estimated by classical algorithms, such as principal
component analysis (PCA) and independent component anal-
ysis (ICA) are only approximations of the true distributed ac-
tivity. In [Sameni, 2008], we introduced the notion of spatially
distributed sources for electrocardiogram (ECG) signals and
their impact on the signals extracted by applying conventional
linear time-invariant PCA and ICA [Sameni et al., 2006].
It was empirically shown that components extracted from
multichannel ECG (1) have infinite number of dimensions,
i.e., always appear in full-rank regardless of the number of
recordings1; (2) the extracted components are not necessarily
invariant under the change of electrode configuration. In this
work, we attempt to justify these findings and extend them
using a rather rigorous electrostatic framework for a spatially
distributed stochastic electrostatic density function (used to
model a distributed source signal). The current study is merely
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1Although in practice, the weaker components can be masked by other
interference and noise.
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Fig. 1. Distributed source model and the electrode positions

based on the second-order statistics of distributed sources
within a homogeneous volume conductor. It is shown that
besides our previous findings, a non-homogeneous volume
conductor can also result in the extraction of ‘fake’ sources
that somehow correspond to reflections of the source distribu-
tion onto surfaces with conductivity discontinuity.

In this report, a summary of the proposed framework is
presented, which will be accompanied by further details and
experimental results in the future versions of the manuscript.

II. DISTRIBUTED SOURCES

We consider a distributed source with a time varying
stochastic density ρ(u; t) within a finite homogeneous volume
(Fig. 1). The field potentials due to this distribution can be
represented as follows:

φ(r; t) =

∫
ρ(u; t)

|r − u|p
du (1)

where r = [x, y, z]T is the Cartesian coordinates of the
observation point2, p is the decay exponent which depends
on the nature of ρ(u; t) and the field potentials, du is the
differential volume unit, and the integral is taken over V ,
the volume containing the distributed source. Therefore, the
potential difference of each measurement (observation) point

2For simplicity, we have normalized the equation by the conductivity of
the medium, as it does not affect our calculations.
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(xi), with respect to the reference can be written as follows:

∆φ(xi; t)
.
= φ(xi; t)− φ(xr; t)

=

∫
ρ(u; t)

[ 1

|xi − u|p
− 1

|xr − u|p
]
du

.
=

∫
ρ(u; t)g(xi, u)du

(2)

where g(xi, u) is the Green’s function for the observation point
xi, which acts as a distance-dependent weighting factor for
ρ(u; t) 3.

Next, suppose that we make n observations of the field
potentials from different locations, each time with respect
to the same reference point xr. In this case, (2) should be
rewritten in vector form. Defining x .

= [x1, x2, · · · , xn]T ,
φ(x; t)

.
= [∆φ(x1; t), ...,∆φ(xn; t)]T and G(x, u)

.
=

[g(x1, u), ..., g(xn, u)]T , (2) can be represented in the follow-
ing form:

φ(x; t) =

∫
ρ(u; t)G(x, u)du (3)

where φ(x; t) can be considered as a vector of differential
observations corresponding to, e.g., the signals recorded from
the body or brain surface. Without loss of generality, these
observations can be considered to be zero-mean (in time). The
covariance matrix of the observations is therefore found as
follows:

Rφ(x) = Et{φ(x; t)φ(x; t)T }

=

∫∫
G(x, u)Et{ρ(u; t)ρ(v; t)}G(x, v)T dudv

=

∫∫
G(x, u)rρ(u, v)G(x, v)T dudv

(4)
where rρ(u, v)

.
= Et{ρ(u; t)ρ(v; t)} is the cross-correlation

function of the source density for different points inside the
volume V , and Et{·} represents averaging over time.

Next, using the Karhunen-Loève Transform (KLT)
[Van Trees, 2004, Ch. 3], rρ(·, ·) may be expanded in
terms of a unique and (possibly) infinite set of orthogonal
eigenfunctions {fi(u)}∞i=1, i.e.:

λifi(u) =

∫
rρ(u, v)fi(v)dv, (5)

∫
fi(v)fj(v)dv = δi−j (6)

where {λi}∞i=1 are the eigenvalues and δi−j is the Kronecker
delta function. Following Mercer’s theorem [Van Trees, 2004,
Ch. 3], these eigenvalues and eigenfunctions can be used to
expand rρ(·, ·) as follows:

rρ(u, v) =

∞∑
i=1

λifi(u)fi(v) (7)

3Note that g(xi, u) is also a function of the reference point xr , which we
do not show for notational simplicity, as the reference is a fixed point for all
the observation points.

Combining (4) and (7), we find:

Rφ(x) =

∞∑
i=1

λi

∫∫
G(x, u)fi(u)fi(v)G(x, v)T dudv

=

∞∑
i=1

λi

∫
G(x, u)fi(u)du

∫
G(x, v)T fi(v)dv

=

∞∑
i=1

λiαi(x)αi(x)T

(8)
where

G(x, s) =

∞∑
i=1

αi(x)fi(s)

αi(x)
.
=

∫
G(x, s)fi(s)ds = 〈G(x, ·), fi(·)〉

i.e., αi(x) is the coefficient vector for the orthogonal expan-
sion of the Green’s function G(x, u) in terms of the eigenfunc-
tion fi(u). Apparently, αi(x)αi(x)T ∈ Rn×n are symmetric
rank-1 matrices with eigenvalues equal to ‖αi(x)‖2. There-
fore, Rφ(x) is an infinite weighted sum of a set of positive
definite rank-1 matrices. Note that although the eigenfunctions
fi(·) are orthogonal, the αi(x) are not necessarily orthogonal.
Therefore, (8) is a redundant decomposition of Rφ(x) in the
n-dimensional space.

On the other hand, the matrix Rφ(x), being the covariance
matrix of the observed signals, can be decomposed by PCA

Rφ(x) = QDQT =

n∑
i=1

diqiq
T
i =

∞∑
i=1

λiαi(x)αi(x)T (9)

where Q = [q1, · · · ,qn] is the orthogonal eigenmatrix,
D = diag(d1, · · · , dn) contains the eigenvalues on its di-
agonal, and the qiqTi are orthogonal rank-1 projectors onto
range(Q). From (9), we can see how the eigenvectors and
eigenvalues of a set of observations φ(r; t) are related to the
source distribution and electrode positioning. In fact, the set
of eigenvectors {qi}ni=1 can be interpreted as an orthogonal
basis for the subspace spanned by the column space of (the
generally) nonorthogonal and infinite set of {αi(x)}∞i=1.

Equation (9) shows how the stochastic properties of the
source density and the sensor configurations, both, influence
the eigenstructure of the covariance matrix of the observations.
From (9) it is also seen that the covariance matrix of measure-
ments from distributed sources is generally full-rank, no matter
how many observations are made; unless if the KLT expansion
of rρ(·, ·) be finite (i.e., ∃l,∀j > l : λj = 0) or due to a
specific sensor configuration the expansion of G(x, ·) in terms
of fi(·) be finite (i.e., ∃l,∀j > l : αi(x) = 0). Either of these
cases, can be due to special sensor configurations or special
source densities. This explains many observations made from
practical distributed sources, such as cardiac, muscular, or
brain signals. In these cases it has been previously reported
that the decomposition of the signals recorded from the body
surface (the ECG, EEG, or the EMG), using PCA or ICA can
lead into multiple components corresponding to the sources of
interest [Sameni, 2008].
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III. SPECIAL CASES

Some special cases of the proposed framework are explained
in the followsing.

A. White Random Field
If ρ(u; t) is a white random field, we have:

rρ(u, v) = σ(u)2δ(u− v)

where δ(·) is the Dirac delta function. In this case, (4) reduces
to:

Rφ(x) =

∫
σ(u)2G(x, u)G(x, u)T du (10)

which is generally a full-rank n × n matrix. A special case
that reduces (10) to a finite summation of rank-1 matrices is:

σ(u)2 =

m∑
i=1

σ2
i δ(u− ui) (11)

which corresponds to m uncorrelated punctual sources inside
V . In this case, we have:

Rφ(x) =

m∑
i=1

σ2
i G(x, ui)G(x, ui)T (12)

In this case, Rφ(x) has a rank of min(m,n).

B. Synchronous (Coherent) Field
If the random field ρ(u; t) is synchronous throughout the

entire volume V , we have rρ(u, v) = σ2. In this case the
double integral in (4) is separable and Rφ(x) may be written
as follows:

Rφ(x) =

[∫
σG(x, u)du

] [∫
σG(x, v)dv

]T
(13)

which is a rank-1 matrix (the product of a column vector by
its transpose). We therefore conclude that a fully synchronous
distributed source behaves like a single punctual source, which
is a well known result in the electromagnetics context. This
result can also be extended to isolated groups of synchronous
sources.

C. Dipolar Random Field
Dipolar random fields are another interesting special case

that we study. For these sources we assume:

ρ(u; t) = f(t)δ(u− u0) + g(t)δ(u+ u0) (14)

where f(t) and g(t) are zero-mean random processes. Equa-
tion (14) leads to:

rρ(u, v) = Et{ρ(u; t)ρ(v; t)}
= σ2

fδ(u− u0)δ(v − u0) + σ2
gδ(u+ u0)δ(v + u0)

+σfgδ(u− u0)δ(v + u0) + σfgδ(u+ u0)δ(v − u0)
(15)

where σ2
f , σ2

g , and σfg , correspond to the variances of f(t),
g(t), and their cross-correlations, respectively. Combining (15)
and (4) we find:

Rφ(x) =
σ2
fG(x, u0)G(x, u0)T + σ2

gG(x,−u0)G(x,−u0)T

+σfgG(x, u0)G(x,−u0)T + σfgG(x,−u0)G(x, u0)T

(16)

This equation can be rearranged as the summation of three
rank-1 matrices as follows:

Rφ(x) =
(σ2
f + σfg)G(x, u0)G(x, u0)T

+(σ2
g + σfg)G(x,−u0)G(x,−u0)T

−σfg[G(x, u0)−G(−u0)][G(x, u0)−G(x,−u0)]T

(17)

which has a maximum rank of three. Apparently, if the two
punctual sources are uncorrelated, i.e., σfg = 0, Rφ(x) will
have a maximum rank of two, which reduces to the special
case studied in the previous subsection.

D. Stationary Random Field

Another special case that is rather practical is a stationary
random field. For a covariance stationary random field we
have [Van Trees, 2004, Ch. 3]:

rρ(u, v) = rρ(u− v)
.
= rρ(τ) (18)

In this case, (5) can be solved using classical methods of
spectral decomposition [Van Trees, 2004, Ch. 3], and the λi
in (5) are related to the contribution of the different frequency
components in the spectrum of rρ(τ). Examples of practical
covariance stationary random fields include exponentially de-
caying cross-correlation functions of the form:

rρ(τ) = A exp(−|τ |
q

σ
) , q = 1, 2 (19)

which can be used to model correlation functions that decay
with the increase of distance between points. The eigenvalues
and eigenfunctions of such correlation functions can be found
in [Van Trees, 2004, Ghanem and Spanos, 2003, Holmes et al.,
1998].

IV. EXTENSION TO NON-HOMOGENEOUS MEDIA

The basic equation (1) is the solution of Poisson’s equation
in homogeneous media:

∇ · [−∇σ(r)φ(r; t)] = ρ(r; t) (20)

The general problem can be studied using this equation,
which enables us to consider conductivity mismatch between
boundaries of brain layers. Refer to [Nunez and Srinivasan,
2006, P. 60] for the background. One can also use Green’s
function and related identities to convert surface integrals to
volume integrals.

V. GENERALIZATION AND FUTURE WORK

In our recent research, the hereby presented framework has
been extended in various aspects, including spatially stationary
versus nonstationary sources and extension to nonhomoge-
neous media. We have developed a simulation platform for
generating synthetic signals with desired distributions and
a given Rφ(x) for EEG signals [Tavakkol-Shoorijeh, 2014].
Conventional PCA and ICA have been applied to these syn-
thetic distributed signals and we show that the results are
consistent with the ones obtained from real data (specifically
ECG and EEG).
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The findings of this research are expected to be helpful for
better interpretation of ICA results, specifically for biomedical
applications. We can show how reliable the components ex-
tracted by PCA and ICA be, when the sources are not punctual.
The presented approach is hoped to be extended to higher
order statistics (used in some ICA algorithms), and lead to
the development of a general framework for studying spatially
distributed sources, which we coin distributed component
analysis (DCA).

Following this work, some of the major questions that
should be answered are as follows:

1) An interesting question is what the sources extracted by
conventional ICA and PCA correspond to. Our formu-
lations show that they are projections of the distributed
source onto specific basis functions; but the exact basis
functions need to be derived.

2) Another important item that should be verified, is to
show that for distributed sources, the components ex-
tracted by conventional PCA and ICA generally change
with the location of the sensors (unlike conventional
ICA). Do you know any good reference that shows this
for conventional ICA (except for the variance and order
of sources)? Perhaps, one approach can be to show that
the mutual information of the data changes with the
change of electrode positions for distributed sources.

3) Following the previous item, an interesting question is
whether we can find sensor position-invariant sources
corresponding to distributed sources. Note that in this
approach we are not interested in independent or un-
correlated components. We just want to find similar
components using any electrode configuration. This is
very similar to the idea that we had in [Sameni, 2008]
for canonical representations of the ECG.

4) It is believed that similar, but more complicated, equa-
tions can be derived for cumulant tensors [Hyvärinen
et al., 2001, Ch. 11], of φ(t). These tensors can be used
to relate ICA solutions based on higher-order statistics to
the aforementioned physical properties of the distributed
source.

5) In the derivation of the hereby presented equations, we
made no specific assumptions on the nature of the source
density ρ(u; t). For the case of ECG signals, taking p =
1 (in (1) ), this density function can represent ∇ · J,
the divergence of the cardiac impressed current dipole
moment density defined in [Sameni, 2008, Ch. 3].

6) In future studies, a more realistic formulation is to
consider non-homogeneous propagation media, which as
mentioned in [Sameni, 2008, Ch. 3], leads to some sort
of ‘reflection’ sources due to the surfaces of conductivity
discontinuity. By using Green’s function and analytic
identities to convert surface integrals to volume inte-
grals it should be possible to study non-homogeneous
distributions with similar formulations.

7) The hereby adopted framework was based on the inte-
gral form of Poisson’s equation. In future works, one
can analyse the problem from a convolution (filtering)
perspective, which may lead to a filter bank formulation

of the problem.
8) Overall, what is the interpretation of the components

extracted by conventional ICA over distributed sources?

VI. FURTHER READING

1) An excellent book: [Ghanem and Spanos, 2003].
2) [Van Trees, 2004, Ch. 3] has some related formulations.
3) See [Arfken et al., 2005] for the nonhomogeneous case

using Green’s functions expansions.
4) The idea of clouds of sources: http://sccn.ucsd.edu/
∼arno/indexica.html

5) [De Lathauwer et al., 2000] has referred to the model;
but does not study components higher than 3 and has
not given physiological interpretations for the extracted
components.

6) See [Bronzino, 2000, Ch. 16] for a propagation model.
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