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Abstract—The objective of this progressive research is to de-
velop a spatio-temporal source separation scheme using temporal
priors with parametric uncertainties. The method has potential
applications in single and multi-modal data analysis. It is shown
that the proposed scheme can be jointly used with classical
source separation techniques based on generalized eigenvalue
decomposition (GEVD) and joint approximate diagonalization
of eigenmatrices (JADE). As a case study, the proposed method
is evaluated over noninvasive fetal electrocardiogram signals.

I. INTRODUCTION

When dealing with multi-modal signals— such as

the simultaneous recording of the phonocardiogram and

electrocardiogram— a recurrent issue is how to deal with

simultaneous recordings with a common (yet hidden) ori-

gin; but with totally different temporal representations. In a

progressive research, we have been studying various source

separation techniques, with potential application in multi-

modal data analysis. Herein, we present preliminary results of

this progressive research, which has led to the development

of spatio-temporal filters, which are applicable to signals

belonging to some general class of temporal structure; but with

some parametric uncertainties in their temporal priors.

II. PROBLEM DEFINITION

Consider N -channel discrete-time noisy observations xi(t)
(t = 1, · · · , T ) and a set of linear (and generally time-variant)

filters hi(t, τ) (i = 1, · · ·N ). Defining the filtered observed

channels

yi(t) = 〈hi(t, τ), xi(τ)〉τ =
T
∑

τ=1

hi(t, τ)xi(τ), (1)

the objective is to find linear mixtures

zm(t) =
N
∑

i=1

wmiyi(t), m = 1, · · ·M (2)

with maximal total channel energy under some bounding

conditions on the weight vector wki (as detailed below).

To start with, if we simplify the problem to fixed linear

filter coefficient sets hi(t, τ) = h(t, τ) over all channels, the

problem can be stated in matrix form as follows

Z = WXH (3)

where

X = S+ η (4)
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is the matrix form of the noisy observations X ∈ R
N×T ,

S ∈ R
N×T is the desired multi-channel signal, η ∈ R

N×T

is additive noise, Z ∈ R
M×T is the filtered data, H ∈ R

T×T

is the matrix form of h(t, τ) considered as a finite impulse

response (FIR) temporal filter, and W ∈ R
M×N is the spatial

filter (in fact each row of W is a spatial filter). The desired

source signals S may generally be mixtures of some latent

variables θ (e.g., S = Aθ as in classical ICA); but we do not

explicitly use this fact in the current study.

With these definitions, we seek the spatial filter, such that

W
∗ = argmax

W

tr(WXHH
T
X

T
W

T )

tr(WXXTWT )
(5)

which is equivalent to the joint diagonalization of the follow-

ing two matrices using generalized eigenvalue decomposition

(GEVD):

A = XHH
T
X

T , B = XX
T (6)

III. KNOWN (PRESUMED) TEMPORAL STRUCTURE

As a linear filter, H can generally have an arbitrary struc-

ture. For time-invariant filtering, the filter takes a column-wise

Toeplitz form, obtained from a prototype impulse response

vector h = [h1, h2, · · · , hL]
T (L ≤ T ). The filter can be

causal, anti-causal, or non-causal, depending on whether H

is upper-triangular, lower-triangular, or non-triangular. The

impulse response of the filter may have been obtained from a

classical filter design procedure, or an optimal design scheme,

such as a matched filter or Wiener filter (smoother) design.

It can also be a linear map to a transform domain, such as

the wavelet or Fourier domain. In the latter case, H takes the

form of a DFT or DCT matrix.

In the more general case of nonlinear filters with different

per-channel filter responses, (2) becomes

zm(t) =

N
∑

i=1

wmihi(xi(t)), (m = 1, · · ·M) (7)

(notice the difference from the classical post-nonlinear data

model [1]). In this case, the diagonalized matrices defined in

(6) can be replaced by a symmetric kernel1

KX = [〈hi(xi(t)), hj(xj(t))〉t]ij (8)

1The kernel symmetry assumption, implies translational symmetry between
the correlation functions of the two filtered channels, which is generally
achieved in LTI systems. The asymmetric part of the cross-correlation can
be of interest for time-variant causal analysis, which is beyond the scope of
the current study as it takes the eigenvalue decomposition to the complex
domain (due to the asymmetry of the diagonalized matrices).
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Depending on the choice of the temporal filter h(·), the

problem reduces to classical time-domain separation methods

such as AMUSE [2], TDSEP [3], [4], πCA [5], [6], and a few

other time and transform domain source separation methods

described in [7].

The overall problem is trivial with a known (or set of

known) prior temporal filter(s)— either in the linear or kernel-

ized form— using GEVD. But how can one solve the problem

if the temporal structure is unknown? In the most general case

of unknown temporal structure, the problem is ill-posed as we

have more parameters than observations (H is a huge T × T

unknown matrix). In the kernelized form, the problem reduces

to kernel learning problem, which can be solved by prior

assumptions, such as stochastic independence, on the desired

sources. This approach is the basis of the well known kernel

ICA [8] and similar techniques.

Herein, we study the special case of temporal priors, with

parametric uncertainties in their temporal structure. Smooth-

ness priors are studied as a special case for this framework.

It is shown that the problem has a low computational com-

plexity and outperforms the fully blind scenario (especially in

presence of noise), as it makes the best of the temporal priors

despite their uncertainties.

IV. PARAMETRIC SPATIO-TEMPORAL FILTER DESIGN

Let us suppose that we know some general properties

regarding the temporal structure of the desired sources. For

instance, one might know (or assume) that the signal follows

an auto-regressive model of a certain order and spectra, or

that the signal is smooth up to a certain order (for example by

knowledge of its spectral decay rate [9, Ch. 2]), etc. At the

same time, there can be some uncertainties in the signal model,

such as the exact smoothness order or level of background

noise (SNR). Based on these assumptions, we propose two

spatio-temporal source separation schemes to overcome the

uncertainties in the temporal structure.

A. Multiple smoothness parameters using JADE

In the first approach, we assume that we have multiple

temporal priors regarding the sources, or a single prior with

unknown set of parameters. In case of multiple temporal

priors, one can have different temporal filters represented in

matrix form as Hk (k = 1, · · · ,K). The filters can be totally

different (each using a different temporal prior) or may belong

to the same class of filters; but with different set of parameters.

In this case, the problem is to find the spatial filter that jointly

(approximately) diagonalizes [10], [11], the matrices

Ak = XHkH
T
kX

T (k = 1, · · · ,K), B = XX
T (9)

(the matrix B is only required in the diagonalization set, if

we seek uncorrelatedness).

B. Iterative regularization factor estimation using GEVD)

In the second approach, we use the fact that the linear form

assumed in (3), implies that the spatial and temporal filters are

fully decoupled. In other words, the temporal filtering does not

mix the channels in space and the spatial mixture does not mix

the data in time and the order of applying the filters in time

and space is not important. However, due to the nonlinear

(quadratic) form of the cost function in (5), the two filters can

enhance the performance of one other, in the sense that one can

seek “a spatial filter that enhances some temporal structure and

vice versa a temporal filter that improves the spatial structure”.

Based on this idea, we propose to use successive iterations of

temporal and spatial filtering, each time improving the estimate

of one another. The general idea is summarized in Algorithm

1. We can notice that the idea is generic and may be extended

to other parametric spatio-temporal source separation schemes

and for kernelized formulations. In the next section, we will

study this iterative approach for the special case of signals

with parameterized smoothness priors.

Algorithm 1 Iterative spatio-temporal source separation

Require: Multichannel signals X ∈ R
N×T , with zero-mean

(per-channel)

Require: Parameterized temporal filter matrix H(θ) ∈ R
T×T ,

with parameter set θ

Require: Initial temporal filter parameter set θ0
Require: Number of iterations I

1: Calculate CX = XX
T

2: for i = 1, · · · , I do

3: Calculate Y = XH(θi−1)
4: Calculate KX = YY

T

5: Find the spatial filter W, using GEVD on the matrix

pair (KX,CX)
6: Find Z = WX = [z1, · · · , zN ]T

7: Optimize the temporal filter parameter set θi over z1,

(or over all channels of Zi in the kernelized form)

8: return Z and W

V. CASE STUDY: PARAMETRIC TEMPORAL SMOOTHNESS

As proof of concept, we study the problem of extracting

smooth signals from multichannel mixtures of signal and

noise. The order of signal smoothness and the background

noise level are assumed to be unknown2. Some related studies

in this field, which have used the slow temporal variations of

a signal for source separation, include [12], [13].

Numerous methods have been developed for data smoothing

in the literature. In this context, smoothing regularization (also

known as Tikhonov regularization) is a popular technique

based on constrained least squares estimation [14, p. 307].

Consider the second-order difference operator d2

∆
= [1,−2, 1]

2The extension of this case study to signals with arbitrary spectral models
is rather straightforward using, e.g., auto-regressive modeling; but beyond the
scope of this work.
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Fig. 1. An equivalent Wiener smoother scheme for Tikhonov regularization,
adopted from [15].
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The right multiplication of D2 in any matrix X containing

length T signals as its rows is equivalent to convolving

each row with d2, i.e., the second order difference of the

signal. This definition can be extended to order-d difference

operators dd and Dd [15]. Using a constrained least squares

optimization scheme, it has been shown that the following

matrix acts as a smoothing operator

H(d, λ) = (I+ λDdD
T
d )

−1 (11)

where d is the difference order and λ ≥ 0 is the regularization

parameter (λ = 0 for no smoothing) considered as an unknown

parameter in this work.

In a recent study [15], it was shown that H(·) is equivalent

to a linear zero-phase forward backward Wiener smoother,

with the following per-channel transfer function

ψd(z) =
1

1 + λdd(z)dd(z−1)
=

Ss(z)

Ss(z) + Sn(z)
(12)

which is in the form of an optimal Wiener smoother for a

signal s(t) having an auto-regressive all-pole model with a

spectra denoted by Ss(z), driven by input white (process)

noise with variance ε2, in presence of white observation noise

n(t) with a white spectra denoted by Sn(z) and variance δ2.

Fig. 1, illustrates the analogy between Tikhonov regularization

and optimal Wiener smoothing in the sample-wise formula-

tion. With this interpretation, the regularization factor λ is the

ratio between the observation and process noise variances, i.e.,

λ =
δ2

ε2
(13)

In [15], it was shown that this smoothing scheme can be

implemented as a forward-backward smoother for instance by

using the filtfilt functions in Matlab, Octave or R.

In a blind or semi-blind source separation scheme, the

smoothness order d and the noise variances δ2 and ε2 (and

their ratio λ) can be unknown. Therefore, one should optimize

the solution over the unknown parameter pair (d, λ).
Herein, we propose two approaches for optimized source

separation over the unknown set (d, λ).

A. A JADE solution

In our first approach, we choose (by intuition) different

combinations of integer values for dk and positive real values

λk in different orders of magnitude, to cover the possible

smoothness orders and signal to noise ratios. Next, we form

the following matrices:

Ak = XH(dk, λk)H(dk, λk)
T
X

T (k = 1, · · · ,K)
B = XX

T

(14)

and use the joint approximate diagonalization of eigenmatrices

(JADE) to simultaneously diagonalize these matrices (approxi-

mately). The joint diagonalization of these matrix set, accounts

for various orders of signal smoothness and unknown noise

levels.

B. An iterative GEVD solution

In our second approach, following Algorithm 1 detailed

in Section IV-B, successive stages of temporal and spatial

filtering are used. The only part of Algorithm 1, which requires

customization for different applications is to optimize the

parametric temporal filter in each iteration. For illustration

we fix the temporal filter smoothness order to d = 2, which

only leaves the regularization factor λ to be optimized in each

iteration.

In other contexts, methods such as the L-curve have been

proposed for finding the optimal regularization factor [14],

[16]–[19], which also has interpretations in terms of maximum

a posteriori (MAP) estimation [20].

In our case, using the notations of Algorithm 1, the L-curve

is the plot of ‖X − Y‖ versus ‖YDd‖, as λ is swept from

zero to infinity. The λ corresponding to the corner of the L-

curve (in our case, the point at which ‖X−Y‖+ ‖YDd‖ is

minimized) is empirically chosen as the optimal regularization

factor, which provides the best balance between the signal

smoothness and minimum mean square error. This optimal λ

is considered as the parameter for the temporal filter H(d, λ)
used in the next iteration of the algorithm.

VI. RESULTS

A potential domain of interest for the proposed methods

is for extracting multichannel electrocardiogram (ECG) from

background noise. In [6], a semi-blind source separation

scheme was developed for extracting maternal and fetal ECG

using pseudo-periodicity priors. This method has shown to

be very effective in practice; however, it highly relies on the

pseudo-periodicity of the ECG and its performance degrades

for arrhythmic and highly irregular ECG beats. On the other

hand, as noted in [15], due to the relatively high sampling

frequency of contemporary ECG recording systems, the ECG

(regular or irregular) is rather smooth as compared with the

background noise. Therefore, “smoothness priors” can be used

for designing ECG source separation schemes.
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Fig. 2. The DaISy dataset consisting of five maternal abdominal and three
thoracic channels [21]; adopted from [6].
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Fig. 3. Independent components extracted from the dataset of Fig. 2, using
JADE. Notice that components 1, 2, 3, and 5 correspond to the maternal
subspace and components 4 and 8 to the fetal subspace; adopted from [6].

A. Dataset

As proof of concept, we use the well-known DaISy fetal

ECG dataset for illustration [21]. The dataset consists of

five abdominal and three thoracic channels recorded from the

abdomen and chest of a pregnant woman at a sampling rate

of 250Hz. The eight channels of the dataset may be seen in

Fig. 2.

We use independent subspace decomposition using the

JADE algorithm as benchmark [22], [23]. The eight indepen-

dent components extracted by this algorithm are depicted in

Fig. 3.

To evaluate the hereby proposed method, we first use a

single temporal smoothing matrix with d = 2 and λ = 1.

The covariance of the original and smoothed data are jointly
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Fig. 4. Smooth components extracted from the dataset of Fig. 2, using GEVD
on the covariance matrix and a smoothed version of the data using d = 2 and
λ = 1. Notice that algorithm has extracted smooth components; but has not
separated the fetal and maternal ECG.

diagonalized using GEVD. The results obtained from this

method are shown in Fig. 4, accordingly although the extracted

components are smooth, only one fetal ECG channel has

been extracted (in channel 4), and the second fetal compo-

nent (channel 5) is diluted by the maternal peaks. This was

already anticipated as the method has only targetted smooth

components and not the separation of the fetal and maternal

ECGs.

In the next stage we consider a more blind scenario. We

first pre-whiten the data and form the smoothing matrix using

multiple regularization factors {0.008, 0.04, 0.2, 1, 5, 25, 125}.

In addition, we use the pseudo-periodicity matrices corre-

sponding to the mother and the fetus, as described in the πCA

algorithm [6]. We therefore obtain nine covariance matrices,

corresponding to pseudo-periodicity and temporal smoothness

priors. The joint (approximate) diagonalization of these matri-

ces [10], [11], accounts for pseudo-periodicity and an unknown

noise level. The resulting signals are shown in Fig. 5. It is

seen that this time the fetal and maternal components have

been very well extracted.

VII. CONCLUSION AND FUTURE WORK

In this work, a spatio-temporal source separation scheme

was proposed for the extraction of sources with prior temporal

structure having parametric uncertainties in their temporal

model.

The proposed method can be extended from various aspects

in future studies, including:

• The hereby developed spatio-temporal filter is based on

second order temporal statistics, which was shown to be

very effective for signal extraction from noise. The diag-

onalized matrices used in this study can be used together

with higher order statistics used in the classical ICA

algorithms such as JADE [24], to obtain simultaneous
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Fig. 5. Smooth components extracted from the dataset of Fig. 2, using
JADE on the covariance matrix and several smoothed versions of the data
using d = 2 and λ = {0.008, 0.04, 0.2, 1, 5, 25, 125}, plus two periodicity
matrices obtained using πCA [6]. Notice that algorithm has extracted smooth
components and separated the fetal and maternal ECG.

signal denoising (using spectral or temporal priors) and

independent components.

• Combining the proposed method with the deflation algo-

rithm proposed in [7] (for rank deficient data).

• Combining the method with generalized multi-view anal-

ysis (GMA) [25], for multiple modalities such as simul-

taneous ECG and PCG databases.

• One might be able to formulate the parameterized tem-

poral filter using kernels with the same eigenstructures

(sharing the same eigen-vectors) to guarantee that all

matrices are exactly diagonalized using JADE.

• The problem of finding a closed form solution for the

optimal temporal filter parameter should also be studied

in future studies.
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Télécom Paris, Tech. Rep., 1994.

[12] T. Blaschke and L. Wiskott, “Independent slow feature analysis and
nonlinear blind source separation,” in International Conference on

Independent Component Analysis and Signal Separation. Springer,
2004, pp. 742–749.

[13] T. Blaschke, T. Zito, and L. Wiskott, “Independent slow feature analysis
and nonlinear blind source separation,” Neural computation, vol. 19,
no. 4, pp. 994–1021, 2007.

[14] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[15] R. Sameni, “Online Filtering Using Piecewise Smoothness Priors:
Application to Normal and Abnormal Electrocardiogram Denoising,”
Mar. 2016, working paper or preprint. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01352281

[16] W. Gander, “Least squares with a quadratic constraint,” Numerische

Mathematik, vol. 36, no. 3, pp. 291–307, 1980.
[17] G. Golub and C. van Loan, Matrix Computations, 3rd ed. The Johns

Hopkins University Press, 1996.
[18] P. C. Hansen, The L-curve and its use in the numerical treatment

of inverse problems. IMM, Department of Mathematical Modelling,
Technical Universityof Denmark, 1999.

[19] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov
regularization and the l-curve for large discrete ill-posed
problems,” Journal of Computational and Applied Mathematics,
vol. 123, no. 12, pp. 423 – 446, 2000, numerical
Analysis 2000. Vol. III: Linear Algebra. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377042700004143

[20] S. Oraintara, W. Karl, D. Castanon, and T. Nguyen, “A method for
choosing the regularization parameter in generalized tikhonov regular-
ized linear inverse problems,” in Image Processing, 2000. Proceedings.

2000 International Conference on, vol. 1, 2000, pp. 93–96 vol.1.
[21] B. De Moor, Database for the Identification of Systems (DaISy), 1997.

[Online]. Available: http://homes.esat.kuleuven.be/∼smc/daisy/
[22] J.-F. Cardoso, “Multidimensional independent component analysis,” in

Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP ’98), vol. 4, May 1998, pp. 1941–1944.
[23] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian

signals,” IEE - Proceedings -F, vol. 140, pp. 362–370, 1993.
[24] J.-F. Cardoso, “Source separation using higher order moments,” in

Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989

International Conference on. IEEE, 1989, pp. 2109–2112.
[25] A. Sharma, A. Kumar, H. Daume, and D. W. Jacobs, “Generalized

multiview analysis: A discriminative latent space,” in Computer Vision

and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 2160–2167.

http://www.cs.cmu.edu/Groups/NIPS/00papers-pub-on-web/SaulAllen.pdf
https://hal.archives-ouvertes.fr/hal-01352281
http://www.sciencedirect.com/science/article/pii/S0377042700004143
http://homes.esat.kuleuven.be/~smc/daisy/

	Introduction
	Problem definition
	Known (Presumed) Temporal Structure
	Parametric Spatio-Temporal Filter Design
	Multiple smoothness parameters using JADE
	Iterative regularization factor estimation using GEVD)

	Case Study: Parametric Temporal Smoothness
	A JADE solution
	An iterative GEVD solution

	Results
	Dataset

	Conclusion and Future Work
	References

