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Abstract

The widespread adoption of handheld devices (e.g.,
smartphones, tablets) makes mobility traces of users
broadly available to third party services. These traces
are collected by means of various sensors embedded in
the users’ devices, including GPS, WiFi and GSM. We
study in this paper the mobility of 300 users over a period
up to 31 months from the perspective of the above three
types of data and with a focus on two cities, i.e., Lausanne
(Switzerland) and Lyon (France). We found that users’
mobility traces, no matter if they are collected using GPS,
WiFi or GSM antennas, are highly unique. We show
that on average only four spatio-temporal points from the
WiFi, GSM and GPS traces are enough to uniquely iden-
tify 94% of the individuals, on both datasets. In addi-
tion, we show that using the temporal dimension (i.e.,
whether users move or are in a meaningful location such
as their home or their working place) drastically improves
the capacity to uniquely identify them compared to when
only exploiting the spatial dimension (by 14% on aver-
age). In some cases, using the temporal dimension alone
can represent a better mobility footprint than the spatial
dimension to discriminate users. We further conduct a
de-anonymisation attack to assess how mobility traces
can be re-identified, and show that almost all users can
be de-anonymised with a high success rate. Finally, we
apply different location privacy protection mechanisms
(LPPMs), including spatial filtering, temporal cloaking,
adding spatial noise to mobility data, or using generali-
sation, and analyse the impact of these mechanisms on

both the uniqueness of users’ mobility traces and the out-
come of the de-anonymisation attack. We show that spa-
tially obfuscating mobility data is not enough to protect
users, and that classical LPPMs are not able to protect
users against a de-anonymisation attack. We finally con-
clude this paper by drawing some insights towards future
spatio-temporal LPPMs.

1 Introduction

The large adoption of mobile devices with embedded
geolocation capabilities makes it possible to track the
movements of a large number of individuals during their
daily life. These mobility traces have a huge commercial
value [1] and consequently raise increasing interest from
the one hand and open the door to increasing threats on the
other hand. These traces can be collected using various
sensors embedded in users’ handheld devices. While the
Global Positioning System (GPS) is largely exploited to
identify the location of users due to its high precision, the
WiFi and the GSM can also be leveraged to track individ-
uals’ mobility [2]. Indeed, MAC addresses of WiFi access
points or identifiers of GSM antennas users are associated
to can be easily mapped to GPS coordinates using public
repositories (e.g., WiGLE 1 or Google 2).

Following the seminal work by De Montjoye and al. [3]
that analysed user mobility traces inferred from call logs,

1WiGLE: Wireless Network Mapping, http://wigle.net
2Google Maps Geolocation API: https://developers.

google.com/maps/
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we present in this paper a similar study performed on user
mobility traces coming from three other types of data,
namely GPS, WiFi and GSM traces. Specifically, we used
two datasets comprising 200 and 100 users spanning over
31 and 15 months, respectively. Our results show that
on average only four random spatial and spatio-temporal
points from the WiFi, the GSM and the GPS data col-
lections are enough to uniquely identify 94% of the indi-
viduals with the two datasets. Moreover, we show that
considering temporal-only mobility traces (i.e, whether
users are moving or inside meaningful locations such as
their home or work place) can represent a mobility foot-
print able to highly discriminate between individuals (i.e.,
uniquely identify up to 84% of the individuals). In ad-
dition, we show that the temporal information improves
the capacity to uniquely identify individuals by 14% on
average compared to only considering spatial informa-
tion. Furthermore, by analysing the degree of uniqueness
of individual users, we show that the latter is heteroge-
neous (i.e., some users have more discriminative mobil-
ity patterns than others). We also compared the unique-
ness given by two different models and we show that
the probabilistic uniqueness assessment proposed by De
Montjoye and al. [3] gives an upper bound of the unique-
ness compared to the deterministic assessment proposed
by Zang and Bolot [4]. Finally, we analyse the impact
of applying classical location privacy protection mecha-
nisms (LPPMs), namely spatial filtering, temporal cloak-
ing, spatial noise addition providing ε-differential privacy
properties, and generalization ensuring k-anonymity, on
the uniqueness of mobility traces. We show that obfus-
cating only the spatial dimension of mobility data is not
enough to reduce the uniqueness of users.

Measuring the uniqueness does not mean re-
identification of users. Indeed, pseudo-anonymised
mobility traces themselves do not disclose the identity
of a user. However, using external knowledge can
lead to infer the identity of users [5, 6, 7]. Instead of
analysing the re-identification of users which requires
external knowledge, we analysis here how users can be
de-anonymised from their mobility traces. To achieve
that, we also conduct a de-anonymisation attack [8]
trying to associate each individual inside a training set
of mobility traces to its anonymous counterpart inside a
testing set. We show using our datasets that geolocated
data can be almost fully de-anonymised. Furthermore,

we show that applying LPPMs based on noise or general-
ization on mobility traces fail to protect users against this
de-anonymisation attack.

In this paper, we seek to answering several questions
such as: is the uniqueness of mobility traces from GSM,
GPS, and WiFi similar to the one observed on previ-
ous studies? ; are the temporal and the spatial dimen-
sions similarly discriminating? ; does the uniquess vary
from one user to another? ; do all uniqueness assessment
models provide similar results? ; what is the impact of
LPPMs on the uniqueness of individuals? ; do LPPMs ef-
ficiently protect users against a de-anonymisation attack?
We hope that the observations we make while answering
these questions can lead to the development of more effec-
tive LPPMs in the future. To summarise, the takeaways of
this study are:

• User mobility traces extracted from GPS, WiFi and
GSM data are highly unique, which generalises the
results of the study performed in [3] on call logs.

• Temporal data is as discriminative as spatial data in
human mobility traces, which shall be considered in
the development of future LPPMs.

• The uniqueness degree of mobility traces is user de-
pendent while most existing LPPMs are statically
configured for all users. Consequently personalisa-
tion shall thus be introduced in future LPPMs.

• Applying mechanisms to reduce the uniqueness of
mobility traces drastically impacts the utility of the
data, which comforts previous study [4, 2].

• Probabilistic uniqueness assessment based on the
methodology proposed De Montjoye and al. [3]
gives an upper bound of the uniqueness compared
to a deterministic approach proposed by Zang and
Bolot [4].

• Depending on the nature of the LPPMs, obfuscating
the data collection, the results in term of uniqueness
can be very different.

• Applying a de-anonymisation attack leads to re-
identify users with a high success rate, even if the
raw data is obfuscated by classical LPPMs.
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The remaining of this paper is organised as follow. Sec-
tion 2 presents background and related works. Section 3
and 4 then describe the methodology and the evaluation,
respectively. Finally, Section 5 discusses and concludes
this paper.

2 Background
The idea of finding criteria for uniquely identifying users
is not new. In criminal investigations, finding seven points
of minutiae in a fingerprint is commonly used to uniquely
identify an individual and provide matching evidence. In
computer science, the research community has investi-
gated various types of user traces that may act as dig-
ital fingerprints such as the personalised configurations
of mobile devices [9] or Web browsers [10], the logs of
in-car sensors [11], or the writing style of users on the
Web [12]. Recently, the uniqueness of human mobility
traces has been extensively analysed by De Montjoye and
al. [3]. In this paper, the authors analysed mobility traces
coming from the call logs of 1.5M users at the scale of a
country. Their results show that only four random spatio-
temporal points were enough to uniquely identify 95% of
the individuals of the dataset. In this paper we run a com-
plementary study by using mobility traces coming from
three different data sources, i.e., GPS, WiFi and GSM
logs.

Zang and Bolot [4], also show that mobility patterns of
users often make them unique within a large population
but with another model to assess the uniqueness. Instead
of using a set of random mobility patterns for each user to
quantify the uniqueness (i.e. probabilistic approach fol-
lowed by De Montjoye and al. [3]), these authors used
a deterministic approach which evaluates the uniqueness
of the mobility pattern composed of the most frequently
visited locations by the associated user. In this paper, we
compared both models and show that the probabilistic one
gives an upper bound of the uniqueness compared to the
deterministic one.

Finally, previous studies [4, 3, 13, 2] show that reducing
the uniqueness requires severe reductions of the spatio-
temporal granularity which limits the usability of the data.
In this paper, we confirm this observation with data from
other sensors.

Uniqueness does not mean re-identification, since

pseudonymity is used to avoid revealing the real iden-
tity of users (i.e., only mobility traces of users do not
disclose their identity). However pseudonymity alone is
not enough to guarantee anonymity [14]. Furthermore,
inferring user identity may become possible by leverag-
ing external knowledge. Using crowdsourcing or a cross-
database methodology, recent works have demonstrated
the re-identification risks from smartphone metadata [5],
social network data [6], or movie databases [7]. To ad-
dress the challenge of location privacy, many LPPMs
have been recently proposed in the literature [15, 16, 17,
18]. These LPPMs apply different schemes to obfus-
cate the location information of users. The two most
adopted privacy guarantees provided by LPPMs are k-
anonymity [19] and ε-differential privacy [20]. While the
former hides each user within a cloaking area containing
at least k−1 other users, the latter disturbs mobility traces
in such a way that it theoretically bounds the impact of the
presence or absence of a single element of the dataset. For
instance, [21] describes a protection mechanism provid-
ing k-anonymity by relying on a centralised anonymisa-
tion proxy. In this protocol, the proxy receives all queries
from the user, generates a cloaking area for each of them
before sending the obfuscated query to a location-based
service (LBS). Then the proxy extracts a more precise
answer from the response coming from the LBS, before
returning the results to the user. In [22], the authors
removed the dependency to a trusted proxy by present-
ing a fully distributed protection mechanism dynamically
building cloaking areas of at least k users during their
mobility. To ensure k-anonymity, many approaches have
been proposed to build cloaking areas including general-
ization and suppression [23], condensation [24] or space
translation [25]. For instance, Wait 4 Me [25] (W4M for
short) ensures k-anonymity by transforming the GPS co-
ordinates of a moving object to a cylindrical volume rep-
resenting the trajectory of this object, where the radius
δ of the cylinder represents the possible location impre-
cision (i.e., we do not know exactly where the object is
located within the cylinder). In this context, k-anonymity
is guaranteed if k objects move within the same cylinder.

Geo-Indistinguishability (GEO-I) [16] was proposed as
a generalisation of differential privacy applied to mobility
data. The guarantee can be enforced by adding calibrated
noise drawn from a two-dimensional Laplace distribution.
GEO-I has been successfully applied in an online context
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when a user is querying an LBS in real-time, and in an of-
fline context when an entire dataset gathering the mobility
traces of a set of users has to be protected before to be re-
leased. The practical impact of GEO-I has been studied
in [26]. Authors analyse the effect of this LPPM on vari-
ous location privacy attacks. They show that by adapting
the algorithms to the underlying LPPM, it is possible to
decrease or counteract most of its effects.

While several LPPMs have been proposed in the liter-
ature, their impact on the uniqueness of mobility traces
have not been evaluated. In addition, a better under-
standing of the characteristics of mobility fingerprints can
lead to improve LPPMs. For instance, most of the above
LPPMs focus on obfuscating the spatial dimension while
neglecting the temporal one [16]. Furthermore, most of
them are static and do not evolve according to the consid-
ered user. In this paper, we highlight these limitations in
numbers.

To infer the identity of a particular individual behind a
set of mobility traces, Gambs and all [8] proposed a de-
anonymisation attack. This attack is based on two phases,
the first one is used to build a Mobility Markov Chain
model on a training set which is used in the second one
to re-identify users in a testing set. Freudiger and all [27]
also try to re-identify users of geolocated datasets. In this
study, the pair of POIs home/work is inferred and used
as pseudo-identifier to de-anonymise users. As far as we
know, no previous works analyse the impact of GEO-I and
W4M on de-anonymisation attack. In this paper, we im-
plement such an attack and analyse the impact of classical
LPPMs on its outcome.

3 Methodology
This section starts with the presentation of the considered
datasets and the methodology to extract mobility traces
from these data collections. We then describe how the
uniqueness is quantified. Finally we present the consid-
ered de-anonymisation attack and the LPPMs used to pro-
tect the data.

3.1 Datasets
This work was performed using the PRIVAMOV and the
Mobile Data Challenge (MDC) mobile phone datasets.

Both datasets contain data about users during their daily
life, captured through different modalities (i.e., commu-
nication, location, motion, application usage, etc.). Table
1 displays information on these datasets and the mobility-
based data collections considered in this work. More pre-
cisely, the considered data collections gather information
from the GSM, the WiFi, and the GPS sensors.

Dataset Users Period Sensor #Records
10/2014 WiFi 25,655,480

PRIVAMOV 100 - GSM 8,076,512
01/2016 GPS 156,041,576
10/2009 WiFi 53,432,599

MDC 200 - GSM 50,895,615
03/2011 GPS 11,077,061

Table 1: Our uniqueness study uses the PRIVAMOV and
the Mobile Data Challenge (MDC) mobile phone datasets
with data collections captured through different sensors.

The PRIVAMOV dataset involves 100 students and staff
from various campuses in the city of Lyon [28] equipped
with smartphones running a data collection software. The
data collection took place from October 2014 to Jan-
uary 2016. The MDC dataset involves around 200 volun-
teers [29, 30]. The data collection took place from Oc-
tober 2009 to March 2011 in the Lake Geneva region,
Switzerland.

No filtering scheme was applied on the raw data con-
tained in the PRIVAMOV dataset. However, a privacy pro-
tection scheme based on k-anonymity has been performed
on the raw data before releasing the MDC dataset. This
concerns all the location data including the information
from the GPS, the WiFi, and the GSM sensors. Unfortu-
nately, as described in [29], this privacy preserving opera-
tion includes many manual operations which are difficult
to fully understand and reproduce. Yet, as shown later in
Section 3.2, the impact of these manipulations are notice-
able through different data distributions.

3.2 Mobility trace extraction

From the GSM, WiFi and GPS data collections, we ex-
tracted and built mobility traces. Each mobility trace is
a list of spatio-temporal points belonging to a given user.
The temporal component is the time of an interaction (the
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Dataset Identifier Global Sub-area
GSM Antenna 19,033 3,816

PRIVAMOV WiFi Access Point 407,690 168,741
Point Of Interest 756 204
GSM Antenna 100,168 589

MDC WiFi Access Point 566,390 6,018
Point Of Interest 2,816 343

Table 2: Human mobility traces are built using GSM an-
tennas and WiFi access points users encounter, and ex-
tracted POI for the whole datasets and a restricted sub-
area.

temporal resolution is by default of one hour) and the spa-
tial component depends on the data collection. For in-
stance, for mobility traces coming from the GSM data col-
lection (noted Tgsm), the spatial component of each point
corresponds to the identifier of the GSM antenna to which
the user is connected. Further, for mobility traces coming
from the WiFi data collection (noted Twifi) the spatial
component corresponds to the MAC address of the WiFi
access point. Finally, for mobility traces coming from the
GPS data collection (noted Tgps), we extracted Points of
Interest (POIs) from each trace, assigned an identifier to
each unique POI inside the whole dataset and used this
identifier as the spatial component. This means that for
GPS traces, we only have points if the user is inside a
POI.

To compute points of interest, we used a methodology
similar to [31]. The idea behind this method is to iden-
tify restricted areas where users stay more than a specific
duration. More precisely, POIs can be extracted using a
simple spatio-temporal clustering algorithm parametrised
with a maximum POI diameter d and a minimum stay
time t. This POIs extraction is done in two clustering
steps, the first one identifies POIs for each user and the
second one assigns identifiers to unique POIs, thus allow-
ing to identify POIs shared by several users. In this paper,
by default, we use a diameter of 250 meters (d = 250)
and a stay time of 30 minutes (t = 30). For instance,
Figure 1 illustrates the POIs of users for the PRIVAMOV
dataset in the Lyon sub-area for t = 30 minutes (a) and
t = 20 minutes (b). Obviously, a shorter temporal resolu-
tion gives more POIs. Darker spots represent areas where
more users generate and share common traces, and conse-
quently less unique traces. We assessed the impact of both
spatial and temporal resolutions in the POI extraction (pa-

(a) d=30 minutes

(b) d=20 minutes

Figure 1: Points of interest (POI) identify specific loca-
tions where a user stays in the same place longer than a
specific delay d. These figures show the POIs of users
across the Lyon area according to a delay considered to
identify POIs of 30 and 20 minutes for figures (a) and (b),
respectively. A shorter d provides more POIs.

rameter d and t) on the uniquenesses in Section 4.3.
Mobility traces do not contain duplicate entries at a

given time resolution. For instance, if a user stays at the
same location during one hour, even if the data collection
software collects multiple records stating that its smart-
phone is associated to the same WiFi access point during
this time slot, only one entry will be present in her mobil-
ity traces Twifi at this given time. Conversely, if a user
moves and gets connected to different WiFi networks, the
resulting mobility trace Twifi will contain several entries
(i.e., one per WiFi access point associated to her smart-
phone). As a consequence, the number of points at a given
hour reflects if the user is static (i.e., one point) or mobile
(i.e., multiple points).

To evaluate separately the impact of the spatial and the
temporal information, we also build spatial only and tem-
poral only mobility traces. The spatial mobility traces for
one user contains only the set of GSM antenna identifiers,
WiFi access point’s MAC addresses, or POI identifiers for
traces from the GSM, WiFi and GPS data collections, re-
spectively. The temporal mobility traces, in turn, are built
to reflect when a user is moving or static. To achieve
that, the temporal mobility trace of a user contains a set of
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Figure 2: Methodology to build the mobility traces from
the GSM, GPS, and WiFi data collections.

times (i.e., hours) where this user has met at least 3 WiFi
access points or 3 GSM antennas for WiFi and GSM data
collections, respectively. For POI-based temporal mobil-
ity traces, the set contains the times when a user is inside
a POI.

Lastly, we also built mobility traces gathering only
spatio-temporal points contained in a restricted sub-area.
We consider the Lyon area for the PRIVAMOV dataset and
Lausanne area for the MDC dataset excluding suburbs in
both cases. Table 2 shows the number of unique GSM
antennas, WiFi access points and POIs found inside each
dataset, while Figure 2 depicts the methodology to build
the mobility traces from the raw data collections.

To deeper analyse the resulting mobility traces, Fig-
ure 3 shows various Complementary Cumulative Distri-
bution Function (CCDF, defined as P (X > x)) for both
datasets. Figures 3a-3c-3e-3g show the number of unique
GSM antennas, WiFi access points and POIs per user.
Figures 3b-3d-3f-3h depict the number of unique users
identified per GSM antenna, WiFi access point and POI.
These tail distributions show that most of GSM antennas,
WiFi access points and POIs have been visited only by
one user. For instance, 75% of the PRIVAMOV WiFi ac-
cess points have been seen by only one user. Conversely,
mobility traces of most of the users are composed of sev-
eral GSM antennas, WiFi access points and POIs. Inter-
estingly, fewer MDC users have a small number of POIs,
GSM antennas and WiFi access points than PRIVAMOV
users. This difference is certainly due to the privacy pro-
tection scheme applied on the MDC dataset compared to
the PRIVAMOV one. Finally, these figures show that users

have been attached to more WiFi access points than GSM
antennas, and the number of POIs is lower than the two
others.

3.3 Uniqueness assessment
To quantify the uniqueness, we use the same methodol-
ogy as presented in [3]. More precisely, as previously
described, datasets contain for each user three mobility
traces Tgps, Twifi, Tgsm. These traces list the spatio-
temporal points containing respectively the identifiers of
POIs that the user has visited, MAC addresses of WiFi ac-
cess points and identifiers of GSM antennas that the user
was connected to, associated with the time of the interac-
tion. For each mobility trace T , we evaluate the unique-
ness of a given sub-trace Ip of p randomly chosen spatio-
temporal points. A sub-trace Ip is said to be unique if only
one user has Ip ∈ T . To measure this uniqueness, we per-
formed a brute force search of users who have the p points
composing Ip in their mobility trace T . The size of this
set of users sharing the same Ip, noted k, characterizes the
uniqueness of the sub-trace Ip. If k = 1, the sub-trace is
unique. The uniqueness of traces is estimated as the per-
centage of 2500 random sub-traces that are unique given
the p points composing them. We use the same methodol-
ogy to evaluate the uniqueness of spatial or temporal only
mobility traces. In this case, the sub-trace Ip contains spa-
tial or temporal points, respectively. As reported in Sec-
tion 3.2, we consider both no restriction for the chosen
p points and specific sub-areas focusing on denser urban
areas. Additionally, we also consider the case where the
sub-trace Ip contains multi-sensor information and gath-
ers spatial points from the GPS, WiFi, and the GSM data
collections at once.

Finally, we also consider the deterministic model pro-
posed in [4] to quantify uniqueness. In this model, the
sub-trace Ip of a user is composed of the most frequent
points (i.e., POIs, WiFi access points, and GSM antennas)
that the user has visited the most frequently.

3.4 De-anonymisation attack
We also implement and conduct a de-annonymization at-
tack similar to the one proposed by Gambs and all [8].
This attack aims at inferring the identity of a particular
individual behind a set of mobility traces. More precisely,
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Figure 3: The tail distributions (i.e., Complementary Cumulative Distribution Function defined as P (X > x)) of the
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the mobility traces are split into a training and a testing
set, and the attack tries to map each user of the testing
set to the corresponding user in the training set. In our
experiment, the training set of each user contains 70% of
their first spatial points, and the testing set contains the
remaining 30%. Only a limited knowledge is preserved
from the training set. Specifically, we build for each user
u the set Topn which contains the Top n most frequently
visited POIs, WiFi access points, and GSM antennas from
the training set. Then, to re-identify a user, we measure
the cosine similarity distance between all Topn sets and
the considered testing set. The re-identification is consid-
ered successful if only one user has the greatest similarity
distance, otherwise the considered testing set is not asso-
ciated to a particular user as the confidence of the map-
ping is not entirely undoubted. The outcome of the at-
tack is measured through the precision and the recall met-
rics according to the value of n. Let us define U the set
of users, M(n) the set of users re-identified through the
de-annonymization attack, and C(n) the set of users cor-
rectly re-identified. Precision and recall are then defined
as follow:

Precision(n) =
|C(n)|
|M(n)|

, Recall(n) =
|C(n)|
|U |

The precision quantifies the accuracy of the re-
identification while the recall assesses its completeness.

3.5 Location Privacy Protection Mecha-
nisms (LPPM)

Lastly, we also quantify the impact of different LPPMs on
the uniqueness and the outcome of the de-anonymisation
attack on the resulting obfuscated mobility traces of users.
We considered four different LPPMs, a naive spatial
filter-based mechanism, a temporal cloaking, an obfus-
cation mechanism providing ε-differential privacy prop-
erties (i.e., Geo-Indistinguishability), and an obfuscation
mechanism enforcing k-anonymity (i.e., Wait 4 Me).

3.5.1 Spatial Filtering

We consider here a mechanism that filters out the identi-
fiers of POIs, GSM antennas or WiFi access points that
have been only visited by f different users or less.

3.5.2 Temporal Cloaking

In this mechanism, we replace timestamps by a coarser
grain temporal information. To achieve that, we vary the
temporal resolution of the mobility traces from 1 hour up
to 1 month.

3.5.3 Geo-Indistinguishability

GEO-I [16] ensures ε-differential privacy by adding a cal-
ibrated noise drawn from a two-dimensional Laplace dis-
tribution. This LPPM takes a parameter names ε (ex-
pressed in meters−1) determining the amount of noise to
add (the smaller the value of ε, the higher the amount of
noise added to the raw data). As reported in [32], we
consider three values of ε: 0.01, 0.004, and 0.001, defin-
ing a low, medium, and high noise injection, respectively.
As this LPPM obfuscates GPS coordinates, we apply this
mechanism only on POI-based mobility traces.

3.5.4 Wait 4 Me

W4M [33] ensures k-anonymity by transforming the GPS
coordinates of a moving object to a cylindrical volume of
radius δ representing the possible location imprecision of
this object. To achieve that, W4M can temporally and spa-
tially move input records of raw mobility traces, as well as
insert and delete records. We configure W4M with the fol-
lowing parameters: δ = 200 meters (i.e., the uncertainty),
k = 2 (i.e., the anonymity level), MaxTrash = 10% of
the dataset’s size (i.e., the global maximum trash size),
and maxradius = 1000 meters (i.e., the initial maximum
radius used in clustering). This means that at any time,
any two traces in the protected dataset are in a cylinder
that has a 200 meters diameter. To comply with the usage
restriction [33] (i.e., only 10,000 GPS records per user),
we prepared a specific PRIVAMOV dataset containing only
one record every minute and where records are randomly
removed for users that exceeds this limit (i.e. 22 users
over 92). As W4M obfuscates GPS coordinates, we only
applied this mechanism on POI-based mobility traces.

4 Experimental Evaluation
This section exhaustively evaluates the uniqueness of mo-
bility traces before analysing the impact of different loca-
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Figure 4: PRIVAMOV: Four spatio-temporal points are enough to uniquely identify 94% of the individuals. Focusing
the analysis on restricted urban area reduces slightly the uniqueness.

9



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

P
ro

b
a

b
ili

ty
 o

f 
U

n
iq

u
e

n
e

s
s

Number of points

Spatial
Temporal

Spatio-Temporal

(a) Global, GSM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

P
ro

b
a

b
ili

ty
 o

f 
U

n
iq

u
e

n
e

s
s

Number of points

Spatial
Temporal

Spatio-Temporal

(b) Global, WiFi

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

P
ro

b
a

b
ili

ty
 o

f 
U

n
iq

u
e

n
e

s
s

Number of points

Spatial
Temporal

Spatio-Temporal

(c) Global, POI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

P
ro

b
a

b
ili

ty
 o

f 
U

n
iq

u
e

n
e

s
s

Number of points

Spatial
Temporal

Spatio-Temporal

(d) Lausanne, GSM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

P
ro

b
a

b
ili

ty
 o

f 
U

n
iq

u
e

n
e

s
s

Number of points

Spatial
Temporal

Spatio-Temporal

(e) Lausanne, WiFi

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9
P

ro
b

a
b

ili
ty

 o
f 

U
n

iq
u

e
n

e
s
s

Number of points

Spatial
Temporal

Spatio-Temporal

(f) Lausanne, POI

Figure 5: MDC: Four spatio-temporal points are enough to uniquely identify 94% of the individuals. Except for the
WiFi-based mobility traces in the Lausanne area, exploiting the spatial information provides a better uniqueness.
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Figure 6: PRIVAMOV: Uniqueness assessment from the probabilistic model [3] gives an upper bound of the uniqueness
compared to the deterministic approach [4].
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tion privacy-preserving mechanisms and the outcome of
the previously defined de-anonymisation attack.

4.1 Quantifying Uniqueness
We quantify the uniqueness of mobility traces built from
the GPS, WiFi, and GSM data collections. Figures 4 and
5 depict for the PRIVAMOV and the MDC datasets respec-
tively the probability to be unique according to the num-
ber of points in the considered mobility trace. The eval-
uation reports results for spatial, temporal, and spatio-
temporal traces, and for both the global dataset and a sub-
area excluding the suburbs of the respective cities.

As shown in these figures, the results for spatio-
temporal mobility traces from GSM, WiFi, and GPS re-
port a strong uniqueness. More precisely, four spatio-
temporal points are enough to identify between 89% and
99% of the users, depending on the mobility traces. This
high uniqueness is the result of combining the temporal
and the spatial mobility information of users, which are
discriminative enough to uniquely identify them.

Furthermore, results show the high importance of the
temporal information for uniquely identifying individu-
als. For instance, in the PRIVAMOV dataset, using the
temporal information provides almost the same unique-
ness as leveraging the spatial information for WiFi-based
mobility traces and a better uniqueness for mobility traces
extracted from the GSM data collection (83% against
74% with 4 points). These temporal traces reflect the
time when a user moves or when he is inside a POI. Re-
sults show that this temporal information can also pro-
vide an important mobility footprint, which is sufficient
to uniquely identify a large proportion of users. This
temporal information is however not efficient for mobil-
ity traces extracted from POIs for the PRIVAMOV dataset.
This means that the temporal information reflecting when
a user moves provides a better fingerprint than the infor-
mation reflecting when this user is inside a POI such as
home or work place. Indeed, a user spends more time in a
POI during the day than time moving, making this infor-
mation more unique. For the MDC dataset, the temporal
traces provides a 10% lower uniqueness than the spatial
traces for GSM-based mobility traces while providing on
average a 45% lower uniqueness for mobility traces ex-
tracted from WiFi and GPS data collections. Furthermore,
results show that in the considered sub-areas, the temporal
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Figure 7: Using a multi-sensor fingerprints does not im-
prove the uniqueness compared to using a fingerprint from
one sensor.

traces provide a better uniqueness than the spatial traces
for mobility traces based on the GSM and the WiFi re-
spectively on both datasets.

Interesting enough, the uniqueness evaluation of mobil-
ity traces extracted from POIs for the PRIVAMOV dataset
shows that the spatial only mobility patterns are more
unique than the spatio-temporal ones (89% against 86%
with 4 points). This is mainly due to the particularly low
uniqueness provided by the temporal information in mo-
bility traces from POIs in this dataset.

Moreover, results for the MDC dataset report a slightly
smaller uniqueness than in the PRIVAMOV dataset. In ad-
dition, the uniqueness of spatial only mobility traces from
the Lausanne area reflects that an anonymisation mecha-
nism has been applied on the raw data before the release
of the dataset (shown also by the shape of the CCDF Fig-
ure 3g where most of the users have been associated to
many different WiFi access points).

Additionally, we show that considering a sub-area
slightly reduces the uniqueness. Indeed, focusing on the
mobility of users in a limited and dense urban sub-area
excludes isolated points that could be unique to users and
may lead to easily identify them (e.g. a weekend in a fam-
ily home).

We also evaluate the uniqueness of multi-sensor mobil-
ity traces instead of considering only information from the
same sensor. Specifically, we build multi-sensor spatial
only mobility traces mixing information from the GPS,
the WiFi, and the GSM sensors. These multi-sensor mo-
bility traces gather the same quantity of information from
each data collection, as a consequence the number of
points of these traces is a multiple of three. Figure 7 com-
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Figure 8: PRIVAMOV: the uniqueness of users from spa-
tial mobility traces is highly heterogeneous over users
while the temporal information drastically increases the
uniqueness compared to only considering the spatial in-
formation.

pares for both datasets the probability of uniqueness of
these multi-sensor mobility traces against mobility traces
from the GPS, the WiFi, and the GSM sensor only with
the same number of points (i.e. multiple of three). Results
show that mixing information from each sensor does not
improve the uniqueness compared to the data collection
which provides the best uniqueness (i.e., the POI-based
mobility traces in our case). However, using information
from multiple sensors avoids to know a priori which sen-
sor provides the best uniqueness.

Finally, we compared the uniqueness measured by the
probabilistic model proposed in [3] and the determinis-
tic model proposed in [4]. As described in Section 3.3,
the former uses random mobility traces while the letter
uses mobility traces composed of the top n points the
most frequently visited by users. Figure 6 depicts for
the PRIVAMOV dataset the probability to be unique from
both models for mobility traces from the GSM, WiFi,
and POIs. Results show that the uniqueness measured
from the model using the most visited spatial points (i.e.,
Global Top and Lyon Top) is the lowest (up to 40% less).
Indeed, as shown in the CCDF Figure 3g, a majority of
WiFi access points, POIs, and GSM antenna have been
uniquely visited by one user. As a consequence, random-
based mobility traces are more likely to include points
with a strong uniqueness than mobility traces based on
the most frequently visited points.
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Figure 9: MDC - POI extraction: Only the temporal res-
olution used to build POI is directly correlated to the
uniqueness.

4.2 Variability of the Uniqueness
Depending on their mobility traces, all users do not have
the same level of uniqueness. To highlight the variabil-
ity of the uniqueness over the population of users, Fig-
ure 8 depicts the CCDF of the average uniqueness of
users. Results show that the uniqueness of users from
the GSM and the WiFi spatial only data collections are
almost uniformly distributed in [0 : 1] while this unique-
ness is stronger and distributed only on [0.5 : 1] for
mobility traces built from POIs. These distributions re-
flects the large variability of the uniqueness of the spa-
tial only mobility traces of users. Contrastingly, unique-
ness from spatio-temporal information has less variability
where most of the users are highly unique. This result also
clearly demonstrates that the temporal dimension drasti-
cally increases the uniqueness of users compared to only
considering spatial information.

4.3 Impact of POIs Extraction Parameters
The POIs extraction performed from the GPS data col-
lection has an impact on the POI-based mobility traces as
shown in Figure 1, especially the considered diameter and
the stay time. Shortly, a longer considered stay time re-
duces the number of identified POIs by filtering locations
where the user did not stay long enough, while a larger
diameter reduces also the number of identified POIs by
aggregating small POIs in larger POIs. To assess the im-
pact of these parameters, Figure 9 depicts the uniqueness
according to both a varying diameter and different values
of stay time. Results show that the temporal resolution
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Figure 10: MDC - WiFi: A naive spatial filtering scheme
removing too unique spatial information drastically de-
creases the uniqueness.

(i.e., parameter t) used to extract POIs has a direct corre-
lation to the uniqueness (Figure 9b), a larger t increases
the uniqueness. Indeed, a larger t reduces the number of
POIs in the resulting mobility traces, and consequently
decreases the probability to find other users sharing the
same POIs. However, while the spatial resolution (i.e.,
parameter d) impacts the uniqueness, there is no direct
correlation with d (Figure 9a).

4.4 Impact of Spatial Filtering

As shown by the CCDF in Section 3.2, many GSM anten-
nas, WiFi access points and POIs have been visited only
by one user. Obviously, the unique nature of this infor-
mation leads to improve the capacity to uniquely iden-
tify users. To quantify the impact of spatial components
(i.e., GSM antennas, WiFi access points, or POIs) only
visited by few users, we evaluate the uniqueness when
these points are filtered from the mobility traces of users.
Figure 10 reports the uniqueness of WiFi-based mobility
traces of 2 and 4 spatial and spatio-temporal points from
the MDC dataset when spatial points only visited by at
most 3 and 5 users have been removed. Results show that
this naive spatial filtering scheme drastically reduces the
uniqueness for spatial mobility traces. Indeed, this naive
filtering scheme tends to remove the too unique spatial
information. However, as this filtering scheme only re-
moves spatial information, the impact on the uniqueness
for spatio-temporal mobility traces is less important.
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Figure 11: MDC - WiFi: Reducing the temporal resolution
only slightly decreases the uniqueness.

4.5 Impact of Temporal Cloaking

Temporal cloaking reduces the temporal resolution of the
mobility traces. Reducing the temporal resolution means
aggregating spatial information in larger time units and
thus reducing the information provided by the mobility
traces. As a consequence, with a less precise timescale,
users are more likely to share common spatial points with
others at the same time slot. Figure 11 reports the unique-
ness of mobility traces of 2 and 4 spatio-temporal points
based on the WiFi data collection of the MDC dataset with
a varying temporal resolution, from 1 hour to 1 month.
This figures also reports the uniqueness when the tem-
poral resolution includes the whole dataset (noted all in
the figure) which means that all temporal information
are removed and only the spatial information is used.
Predictably, results show that a smaller temporal resolu-
tion reduces the uniqueness. This decrease is however
very small. Indeed, the uniqueness only slightly reduces
from 1 hour to 7 days regardless the number of spatio-
temporals points. As the uniqueness of spatio-temporal
mobility traces leverages information from both the tem-
poral and the spatial information of users, reducing only
the temporal information is not enough to counterbalance
the spatial information. This observation supports results
of previous studies [4, 3, 13, 2] showing that reducing the
uniqueness through generalization requires a very coarse-
grained information which drastically reduces the utility
of the protected data.
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Figure 12: MDC - POI: The impact of GEO-I on the POI
extraction on obfuscated data (i.e., the noise injection
drastically reduces the number of POI) affects the unique-
ness, the more noisy, the more unique.

4.6 Impact of GEO-I

As described in Section 3.5, GEO-I obfuscates the spa-
tial information of users with noise injection in the GPS
coordinates. The level of noise is controlled by an ε pa-
rameter, the smaller ε, the noisier the obfuscation. This
noise applied on the original dataset drastically impacts
the POI extraction in the obfuscated data. Indeed, this
noise injected in the GPS coordinates reduces the proba-
bility to have long enough data points in the same diame-
ter to identify a POI. In the MDC dataset for instance, users
have on average 28.9 POIs with an ε = 0.01 while this
number of POIs decreases to 19.8 and 4.7 with ε values
equal to 0.004 and 0.001, respectively. Figure 12 shows
the uniqueness of the spatial information according to dif-
ferent values of ε for the MDC dataset. Results show that
the more obfuscated the mobility traces, the more unique
they are. This result is mainly due to the decreasing num-
ber of POIs in the mobility traces when the obfuscation is
enhanced, and thus reduces the probability to find other
users sharing the same POIs. Interesting enough, using
GEO-I with a low obfuscation (i.e., ε = 0.01) provides al-
most the same uniqueness as exploiting the original mo-
bility traces.

4.7 Impact of W4M

As described in Section 3.5, W4M obfuscates the spatial
and the temporal information to provide k-anonymity by
ensuring that k users are within the same cylinder. Con-
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Figure 13: PRIVAMOV - POI: The impact of W4M on the
POI extraction affects the uniqueness, the more noisy, the
more unique.

trary to GEO-I, the spatial and temporal data manipulation
of W4M does not impact the POI extraction. In the con-
sidered PRIVAMOV dataset, users have on average 19.9
POIs without obfuscation while this number of POIs in-
creases to 21.7 when W4M is applied on the mobility
traces. Figure 13 depicts the probability of uniqueness
of both the spatial and spatio-temporal data collections
with and without obfuscation from W4M for the PRIVA-
MOV dataset. Results show in both cases (i.e., for spa-
tial and spatio-temporal data collections) that applying
this obfuscation scheme greatly decreases the uniqueness
(down to 32% and 67% for the spatial and the spatio-
temporal, respectively). This decrease is a direct result
of the k-anonymity scheme of W4M which aims to avoid
uniqueness by ensuring that each POI is shared by at least
k users.

4.8 De-anonymisation attack

As described Section 3.4, we implemented a de-
anonymisation attack to re-identity users from a training
to a testing set built from the spatial only data collection.
Figure 14 depicts for both datasets the precision and the
recall for a varying size of background knowledge pre-
served for each user from the training set (i.e., the num-
ber of identifiers the most visited). Results show that
the de-anonymisation attack can re-identify users with a
high success rate. Using as background knowledge the
most visited POIs provides up to almost a perfect preci-
sion for 80% and 98% of the users for PRIVAMOV and
MDC dataset, respectively. Using background information
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Figure 14: De-anonymisation attack re-identifies a large population of users with a high precision.

from the WiFi and the GSM reduces the precision by 20%
on average and the recall by 10% and 30% for PRIVA-
MOV and MDC dataset, respectively. While the precision
tends to decrease according to the size of the background
knowledge, the recall inversely tends to increase. Indeed,
as the size of the background information increases, iden-
tifying users from their mobility habits from the training
set become easier (i.e., a better recall) but the fault posi-
tives also increase (i.e., a smaller precision).

Similar results are observed when the attack is per-
formed on geolocated data restricted to a city (Figures
14c, 14d, 14g and 14h). Compared to using the data in
the whole dataset, the precision provided by the WiFi and
GSM data collections are slightly better while the recall
is 20% lower. Interesting enough, for the MDC dataset re-
stricted to Lausanne, both the precision and the recall pro-
vided by the GSM information are very low (i.e., around
20% regardless the size of the background knowledge).
These low values are certainly due to the privacy preserv-
ing scheme applied on the raw data before releasing the
dataset.

These results are consistent with the observations
done through the uniqueness assessment of Section 4.1:
the uniqueness drives the effectiveness of the de-

anonymisation attack (i.e., the more unique, the more
effective is the attack). Indeed, the POI-based spatial
only mobility traces are the more sensitive to the de-
anonymisation attack compared to the ones from the WiFi
and GSM data collections (Figure 14), which also provide
the stronger uniqueness (Figures 4 and 5). Moreover, the
de-anonymisation attack is slightly less effective for the
MDC dataset than for the PRIVAMOV dataset. Similarly,
the MDC dataset reports a slightly smaller uniqueness than
in the PRIVAMOV dataset. Lastly, considering smaller and
denser sub-area (resp.) reduces the effectiveness of the
attack, and reduces the uniqueness (resp.).

To fully understand the impact of LPPMs, we also
conduct the de-anonymisation attack on the obfuscated
data. Figure 15 reports the precision and the recall of the
de-anonymisation attack for the PRIVAMOV dataset per-
formed on both un-obfuscated and obfuscated data from
GEO-I and W4M. Results for W4M (Figure 15a and 15b)
show that excepting for n < 3 where the precision of
obfuscated data is higher than the un-ofuscated data, the
precision tends to decrease according to n, the number
of most visited points. However, slightly more users are
identified (i.e., a better recall) with un-obfuscated data.
Results for GEO-I (Figure 15c and 15d), show that the pre-
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Figure 15: GEO-I and W4M fail to protect users against a
de-anonymisation attack.

cision is similar with and without obfuscation and close to
1. The recall, in turn, slightly decreases according to the
level of the obfuscation but remains high (i.e., > 0.8 from
n = 2).

5 Discussions and conclusions
This paper reports an extensive experimental evaluation
of the uniqueness of mobility traces of users collected
through different sensors (i.e., GPS, GSM, and WiFi).
We show that these mobilty traces are highly unique:
on average only four statio-temporal points are enough
to uniquely identify on average 94% of the individuals.
Moreover, we assess the uniqueness of the spatial-only
(i.e., where users move) and the temporal-only (i.e., time
when users move or are in POIs) information related to
the mobility traces. Although the temporal information
does not identify users as much as the spatial informa-
tion on average, results show that the temporal footprint
is enough to uniquely identify a large proportion of users
and drastically improve the uniqueness when it is com-
bined with the spatial information. We also highlight the
heterogeneous nature of the uniqueness over the popula-

tion of users as the mobility traces of some users are more
unique than others. In addition, we compared two dif-
ferent models to quantify the uniqueness and show that
the probabilistic model proposed in [3] provides an up-
per bound compared to the deterministic model proposed
in [4]. Furthermore, similarly to previous studies, we
show that reducing the uniqueness through generalisation
requires a very coarse-grained information which drasti-
cally limits the utility of the data. Lastly, we show that a
de-anonymisation attack re-identifying anonymous users
using only a limited background information on the mo-
bility habit of users provides a very high success rate, even
if the raw data are obfuscated by classical LPPMs.

Besides, we evaluated the impact of different LPPMs
on the uniqueness and show that obfuscation of GPS co-
ordinates from GEO-I and W4M leads to opposite results.
The obfuscation from GEO-I tends to decreases the num-
ber of extracted POIs. This side effect of fewer extracted
POIs results in increasing the uniqueness. In contrast, the
obfuscation scheme of W4M based on k-anonymity meets
the expectations by greatly reducing the uniqueness.

We hope that the observations done in this paper can
lead to the development of more effective LPPMs in the
future. In particular, as most of the existing LPPMs are
static (i.e., they apply the same level of obfuscation to all
users) and focus their obfuscation on the spatial dimen-
sion, possible improvements may be the development of
an adaptive LPPM that dynamically adapts the obfusca-
tion simultaneously time and space with the respect of the
considered user.
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