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Abstract

In this work, we investigate closure laws for the description of interfacial mass transfer in

cavitating flows under thermal regime. In a first part, we show that, if bubble resident time in

the low pressure area of the flow is larger than the inertial/thermal regime transition time, bubble

expansion are no longer monitored by Rayleigh equation, but by heat transfer in the liquid phase

at bubbles surfaces. The modelling of interfacial heat transfer depends thus on a Nusselt number

that is a function of the Jakob number and of the bubble thermal Péclet number. This original

approach has the advantage to include the kinetic of phase change in the description of cavitating

flow and thus to link interfacial heat flux to interfacial mass flux during vapour production. The

behaviour of such a model is evaluated for the case of inviscid cavitating flow in expansion tubes

for water and refrigerant R114 using a four equations mixture model. Compared with inertial

regime (Rayleigh equation), results obtained considering thermal regime seem to predict lower

local gas volume fraction maxima as well as lower gradients of velocity and gas volume fraction.

It is observed that global vapour production is closely monitored by volumetric interfacial area

(bubble size and gas volume fraction) and mainly by the Jakob number variations. It is found

that, in contrast with phase change occurring in common boiling flow, Jakob number variation is

influenced by phasic temperature difference but also by density ratio variation with pressure and

temperature (Ja ∝ (ρL/ρG)∆T ).
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• Inception of thermal regime appears very early especially for thermosensitive liquids.

• This enable to consider thermal controlled bubble growth to describe cavitation.

• Vapour production depends closely on local interfacial area and Jakob number.
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• In contrast with common boiling flows, Jakob number is also strongly affected by density ratio vari-

ations.

1. Introduction

Cavitation is involved in various flow applications such as hydraulic turbines, pumps, rocket

turbopump inducers, fuel injectors, marine propellers, underwater bodies, etc. In most of cases,

cavitation is an undesirable phenomenon, significantly degrading performance, resulting in lower

pressure head of pumps, asymmetric load on turbomachinery blades, vibrations, noise and ero-

sion. In industrial applications, cavitating flows usually take form as a turbulent vapour polydis-

persed bubbly flow with phase change, bubble break-up and coalescence. In the literature, various

gas-liquid mixture or two-fluid models have been developed to investigate isothermal and non-

isothermal cavitating flows. According to the assumptions made, those models differ on two main

points: equations solved and description of phase change.

Among cavitation models, different approaches can be found to describe phase change due to

cavitation: barotropic model [1], short relaxation time model [2], velocity divergence model [3]

and model based on inertial [4] or thermal bubble growth [5]. To estimate locally vapour volume

fraction, one first approach is to assimilate the gas-liquid mixture to a barotropic fluid. In other

words, the density of the gas-liquid mixture is considered to be a function of the local static pres-

sure in the flow. For the simulation of a cavitating flow through a venturi, [1] proposed a sinus

barotropic law considering a direct link between the gas volume fraction, phasic densities, local

pressure and vapour saturation pressure. For the simulation of cavitating flows in tubopump in-

ducers of spatial rockets, [6] proposed a sinus barotropic law with a vapour saturation pressure

calculated from local temperature in the flow. Those robust approaches have provided interesting

results for the simulation of hydrofoils [7], venturies [8], turbopump inducers [9, 10, 11], pump-

turbines [12] or fuel injectors [13]. Although the simplicity of this modelling approach, this model

enable to study complex industrial applications. However, the adaptability of such model for ther-

mosensitive liquids, where temperature gradients are significant, seem to suffer from a lake of

physical descriptions of mass and heat transfers induced by phase change at bubbles surfaces.

One second approach is to express explicitly mass and heat transfer terms and to consider

that interfacial transfers are instantaneous. In that case, as proposed by [2] or [14], by introduc-

ing infinite relaxation parameters (or infinite global transfer coefficients), momentum, mass and

heat transfers can be evaluated considering very short equilibrium relaxation times between pha-

sic pressures, velocities, temperatures, Gibbs free energy. This approach, initially devoted for the

simulation of diphasic detonation waves [15], is considered to be valid for cavitating flow at very

high velocity. As shown recently by [3], very similar results can be achieved considering simply

that the mass transfer term is proportional to the mixture velocity divergence. This approach has

been recently used for non isothermal cavitation by [16] for the 2D simulations of cavitating flow

through a venturi.

To describe cavitation, one last approach is to consider finite rate mass transfer and to express

explicitly mass transfer exchange term due to phase change. In the literature, a large number of

such cavitation models consider that vapour production in a cavitating flow is only driven by in-

ertial controlled growth of vapour bubbles. For example, considering the equation of [17], a large

number of authors [18, 4, 19, 20] have proposed a mass transfer exchange term proportional to the

square root of saturated vapour pressure and liquid pressure difference (
√
psat − pL). Similarly,
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[21] and [22] considered that vapour production depends on phasic pressure difference (psat − pL)

and on the convective characteristic time scale of the flow. As shown by [23], for some cases,

cavitation models of [19, 20] and [22] seem to provide very similar results. Inertial growth mod-

els have been also massively employed for the simulation of isothermal cavitating flow through

turbopump inducers [24], propellers [25], centrifugal pumps [26, 27], hydrofoils [28, 29, 30] and

fuel injectors [31]. For the simulation of cavitating flow in cryogenic fluids, [32] and [33] use the

formulation proposed by [21].

Various authors have attempted to take into account the effect of liquid phase thermal gradi-

ents in the flow on cavitation. For barotropic approach [34, 6] as well as for inertial controlled

growth model [33, 35, 36], it has been done meanly by calculating the saturated vapour pressure

as a function of the local temperature (psat(T )) and by estimating the bubble temperature variation

using energy balance at the bubble scale. In the same time, a few numerical works evoked that

vapour production can be driven by thermal controlled growth of vapour bubbles [37, 38, 39, 5]. In

[37], authors recall that bubble growth follow two steps. The increase of bubble volume is initially

controlled by the liquid inertial (inertial growth) and then is controlled by heat transfer at bubble

surface (thermal growth). One of the authors conclusions is that in future works "suitable bubble

growth law to model the so-called thermally controlled growth has to be implemented". Conserv-

ing short relaxation time for phasic pressures and velocities equilibrium, to take into account finite

rate phase change, [38] modified the relaxation model proposed by [2] by including finite rate heat

transfer between the dispersed phase and the continuous phase. Later, considering the strong sim-

ilarity with boiling flow simulations, [39, 5] proposed to describe vapour production in cavitating

flow assuming only thermal controlled bubble growth. In that approach, the vapour production at

bubble surfaces depends on heat flux brought by the liquid and the gas phase.

Despite the large variety of modelling, the numerical simulation of cavitating flow in ther-

mosensitive liquids remains a challenge. Experimentally, for cryogenic and refrigerant fluids,

numerous previous works have proved the settling of thermal gradients in the vicinity of cavitating

flows [40, 41, 42, 43, 44, 45, 46]. Recent progress in non intrusive temperature measurement in

diphasic flow have brought new insights in the field of heat transport in cavitating flow. For cavi-

tating flow trough a micro-diphragme, developing a laser induced two-colour fluorescence method

based on themosensitive nano-particles, [47, 48] have managed to access to a 3D mapping of

the liquid phase temperature showing the existence of strong temperature gradients near bubble

swarms in water at ambient temperature. For hot water, using infra-red measurements, [49] has

also confirmed the appearance of hot and cold liquid area in a the cavitating flow trough a macro-

scopic size venturi. Since the works of [50] and [51] the sensibility of cavitating flow to exhibit

liquid phase temperature gradients is often quantified by introducing a parameter named "B factor"

(for example [43, 32, 33, 44, 35, 6, 52]) that corresponds to the ratio between temperature variation

in the flow ∆T and a reference temperature variation ∆T ∗ as follows

B =
∆T

∆T ∗
, with ∆T ∗ =

ρGL

ρLCpL

, (1)

where L is the latent heat of vaporization, ρL and ρG are respectively densities for the liquid

and vapour phases, and CpL represents the specific heat capacity at constant pressure. An increase

of B factor is usually associated to intense phase change in cavitating flows. As a mater of fact,
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the description of heat transport and transfers in cavitating flows maybe one of the key to better

understand and describe phase change in such complex flows.

The objective of this paper is to investigate phase change model for the simulation of cavi-

tating flow with thermosensitive fluids and especially vapour production. The kinetic of bubble

condensation is not considered in the present work. The paper is organized as follows. Section

2 presents and identifies possible closure laws for cavitation modelling considering single bubble

growth under phase change for spherical vapour bubbles. Section 3 presents constitutive equations

of the proposed mixture (or homogeneous) model. Sections 4 introduces the test case considered

to study of the proposed model behaviour : 1D invicid expansion tube problem for cavitation of

water and freon R114. Section 5 presents breifly the numerical procedure. Then, section 6 details

the results for different flow simulation and try to discuss different points of interest. Section 7

summarizes the main conclusions.

2. Bubble growth under phase change

As recalled by [53, 54, 55, 56, 57] or [37], bubble growth under phase change follows two

consecutive main steps. First, just after nucleation, the bubble growth is controlled by the capacity

of the gas phase to struggle against liquid inertia. In other words, the gas phase needs to push the

liquid phase to enable the bubble expansion. During this early step, known as "inertial growth",

heat transfers at bubble surface are considered to be non limiting. Then, at a given time τ , bubble

growth is controlled by the capacity of the fluid (gas and liquid) to bring enough heat at the bubble

surface to enable phase change. During this second step, known as "thermal growth", heat transfers

control the bubble expansion, and mechanical energy necessary for the bubble growth is considered

to be non limiting.
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2.1. Inertial growth

As shown by [17] and [58], solving the momentum conservation equation with central sym-

metry for a spherical bubble, neglecting interfacial viscous stress, Laplace pressure jump and dis-

solved gas in the liquid phase, for an incompressible fluid, during inertial growth the bubble radius

time evolution verifies the following differential equation

ρL

[

R
d2R

dt2
+

3

2

(

dR

dt

)2
]

= pL(r=R) − pL(r=∞) , (2)

where pL(r=∞) is the pressure in the far field of the liquid phase and pL(r=R) is the pressure in the

liquid phase at the bubble surface. Eq. 2 is known as Rayleigh-Plesset equation. Considering that

pL(r=∞) = pL corresponds to bulk liquid phase pressure and that pL(r=R) = psat(TL) corresponds

to the pressure at saturation given for the liquid bulk temperature TL, with a small initial bubble

radius (R(t = 0) << R), integration of equation 2 shows that the bubble radius time derivative is

(

dR

dt

)

inertial

=

√

2

3

∆p

ρL
with ∆p = psat(TL)− pL (3)

Note that Laplace pressure jump can only be neglected for large enough bubble when (2s/R)/[pL−
psat(TL)] << 1, where s is the surface tension of the fluid. In the same way, the viscous normal

stress can be neglected for moderate pressure decrease and low viscosity fluids when (10µ2)/(R2ρL[pL−
psat(TL)]) << 1. According to Eq. 3, during inertial growth, for a given liquid density and pres-

sure difference ∆p, the bubble radius increases as R ∝ t. Consequently, equation 3 corresponds to

interfacial velocity during inertial growth just after bubble nucleation.

2.2. Thermal growth for a fixed bubble

At the gas-liquid interface scale, the respect of energy conservation shows that heat required

for phase change corresponds to the difference between interfacial heat fluxes as follows [59]

LJLoc = λL∇TL · ~n− λG∇TG · ~n , (4)

where JLoc is the local mass flow rate per surface unit, L = hG0 − hL0 is the latent heat of

vaporization, λk stands for the thermal conductivity of phase k and ~n is the vector normal to the

interface. Therefore, at the bubble surface, heat flux coming from each phase depends on thermal

conductivities and temperature normal gradients. For common cavitating fluids, one can show

that thermal conductivity of the liquid phase λL is several times larger than the one of the gas

phase λG (see Tab. 1). Thus, most of the part of heat necessary for phase change comes from the

liquid phase and gas phase heat flux can be neglected so that JLoc ≈ λL∇TL.~n/L (Eq. 4). Due

to the low thickness of the gas-liquid interface, at the bubble surface, thermodynamic equilibrium

is verified. The interfacial temperature corresponds therefore to the saturated vapour temperature

based on the local liquid pressure so that T I = T sat(pL). In addition, for common cavitating

fluids, gas phase thermal diffusivity Dth
G = λG/(ρGCpG) stays much larger than the liquid phase

thermal diffusivity Dth
L = λL/(ρLCpL) (see Tab. 1). It is thus possible to consider that the gas

phase temperature inside bubbles corresponds to the one settled at the gas-liquid interface so that

TG(r≤R) = TG(r=R) = TL(r=R) = T I = T sat(pL).
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Under those two assumptions, mass flux at the bubble surface is meanly controlled by heat

flux provided by the liquid phase (i.e. heat transfer around the bubble). At the bubble scale, the

enthalpy balance can thus be written as follows

d(VbLρG)

dt
= SbHL(TL(r=∞) − TL(r=R)) , (5)

with the bubble volume Vb = 4πR3/3 and surface Sb = 4πR2, ρG the gas density, HL the heat

transfer coefficient in the liquid phase (in W m−2 K−1), TL(r=∞) = TL the liquid phase tem-

perature far away from the bubble surface. Introducing the Nusselt number NuL that quantified

normalized heat flux around the bubble, the development of this equation with TL(r=R) = T sat(pL)
and ∆T = TL − T sat(pL) gives the following interfacial velocity

dR

dt
=

(

NuLλL

2R

)

∆T

ρGL
with NuL =

HL(2R)

λL

(6)

Assuming a fixed bubble (no buoyancy effect), taking into account only the bubble growth,

[60] shows analytically that the time derivative of the bubble radius depends on the Jakob number

Ja as follows

(

dR

dt

)

thermal

=

√

4Ja2f(Ja)Dth
L

πt
with Ja =

ρLCpL∆T

ρGL
, (7)

with (see [57])

f(Ja) =
πF

8Ja2
, (8)

where F is an implicit value given by solving the folowing equation

Ja = F exp

(

3

2
F

)
∫ ∞

1

1

x2
exp

(

−F

x
− F

2
x2

)

dx (9)

The Jakob number compares sensible heat available in a volume of liquid corresponding to

the bubble volume (VbρLCpL(TL − T sat(pL))) to latent heat necessary to form the bubble under

phase change (VbρGL). Thus, an increase of Jakob number corresponds to an increase of heat and

vapour mass transfer rates. As already reported by [61] and [62], it is very interesting to note that

Jakob number usually employed to study phase change in boiling flows corresponds in fact to the

definition of the B-factor (Eq. 1) used for the study of cavitating flows with thermal effects. And,

the temperature variation ∆T ∗ used to characterise the importance of thermal effects in cavitating

flows is thus the temperature variation corresponding to a Jakob number equals to unity Ja = 1.

This observation shows us how boiling and cavitating flows are close since both kind of flow

follows the physic of phase change.

Thus, during thermal growth, for given liquid phase properties and a given Jakob number, the

bubble radius increases as R ∝ t1/2. Consequently, equation 7 corresponds to interfacial velocity

during thermal growth, without slip induced by buoyancy between the gas and the liquid phase.
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Assuming a small initial radius (R(t = 0) << R), the corresponding Nusselt number based on

Scriven’s result is (Eq. 7)

NuL0 =
2ρGL

λL∆T
R
dR

dt
=

16

π
Ja f(Ja) (10)

We have reported in Fig. 1 this Nusselt number as a function of the Jakob number (—). As

shown in this figure, for low Ja, the Nusselt number tends logically to the pure diffusion solution

NuL0(Ja → 0) = 2. Then, when the Jakob number increases, typically for Ja > 10, the Nusselt

number tends gradually to the solution identified earlier by [63]: NuL0(Ja → ∞) = 12Ja/π. As

depicted in Fig. 1, Scriven’s solution is found to be in agreement with direct numerical simulation

performed by [57] (◦) describing the thermal growth for a fixed bubble. However, the analytical

solution found by [60] (Eq. 8-9) has the drawback to be implicit. An approximation of Scriven’s

result has been given by [64] as f(Ja) = π/(8Ja) + (1/16) [6π2/Ja2]
1/3

+ 3/4.

The corresponding Nusselt number is (Eq. 10)

NuL0 = 2 +

(

6Ja

π

)1/3

+
12

π
Ja (11)

As shown in Fig. 1, this approximation is in very good agreement with the analytical solution

describing the two asymptotic solutions at low and high Ja and the transition between them (−×).

2.3. Thermal growth for a bubble with slip

The above description of thermal growth kinetic remains valid as long as the interfacial velocity

dR/dt stays much larger than the relative velocity between the bubbles and the liquid phase vr =
vG − vL [57]. For that case, the heat transport at the bubble surface occurs essentially radially to

the bubble centre. Then, at a given time τ ′ during bubble thermal growth, the relative velocity of

bubbles (vr) can generate additional heat transport tangentially to the bubble surface. As shown by

[57] and as reported in Fig. 2, when advection due to bubble slip begins to affect heat transfer, the

Nusselt number increases gradually with instantaneous Péclet number Pe(t) = Re(t)Pr from the

Scriven’s solution to the analytical solution identified by [65] for (dR/dt)/vr << 1 and Re(t) =
2vr(t)R(t)/νL >> 1

NuL =
2√
π
Pe(t)1/2 (12)

where Pr = νL/D
th
L is the liquid phase Prandlt number that compares momentum and heat dif-

fusions. This behaviour was recently confirmed by [66] using Level Set/Ghost Fluid numerical

simulations for a spherical bubble. For this regime, bubble volume time variation is given by

introducing Eq. 12 in Eq. 6

(

dR

dt

)

thermal with slip

=
JaDth

L

R
√
π

Pe(t)1/2 (13)

Considering Levich’s drag for a spherical bubble [67], we get vr ∝ R2, and one can show using

Eq. 13 that, for thermal growth enhanced by the liquid advection around bubbles ((dR/dt)/vr <<
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1), bubble radius increases as R ∝ t3/2. Recently, to describe the smooth transition found by [57]

between Scriven’s and Ruckenstein’s results, [68] proposed the following empirical equation

NuL = NuL0

(

1 +

(

Pe

Pec

)n/2
)1/n

with Pec =
πN2

uL0

4
, (14)

with n ≈ 2.65. The critical Péclet number Pec corresponds to the Péclet number for which

we get the equality between Labuntsov’s Nusselt approximation and Ruckenstein’s solution. This

relation is found to be in agreement with direct numerical simulations of [57] for thermal growth

with a slip velocity. Consequently, under phase change, the bubble growth can be thought in three

steps : inertial growth (t < τ , R ∝ t), thermal growth without slip effect (τ < t < τ ′, R ∝ t1/2),

thermal growth enhanced by bubble slip (t > τ ′, R ∝ t3/2). In order to describe cavitating flow in

thermosensitive fluids, the next question of importance is to know how long is the inertial growth.

This is the objective of the next section.

2.4. Inception of thermal growth

Assuming that the transition between inertial and thermal growth regimes is very short, it is

possible to estimate the time τ corresponding to the inception of thermal growth considering the

equality between interfacial velocities (dR/dt)inertial = (dR/dt)thermal given respectively by Eq.

3 and 7 as

τ =
6

π

ρLf(Ja) Ja
2Dth

L

∆p
, (15)

where the pressure difference can be linked to a temperature difference as follows

∆p = psat(TL)− pL =
dpsat

dT
(TL − T sat(PL)) =

dpsat

dT
∆T , (16)

with dpsat/dT corresponding to the slope of the linearised saturation curve (psat vs T ). It is very

interesting to note that the time τ for which heat transfer prevails on inertial effects appears to be

independent to the bubble radius. In Fig. 3, we have estimated this time as a function of the Jakob

number for different common cavitating fluids. For this calculation, fluid properties (ρL, ρG, CpL,

λL, L, dpsat/dT ) are considered for T = T0 and at saturation. First, we can observe that curves

get the same shape and exhibit a vertical shift between them. For Ja < 0.1, it is found that for

cryogenic liquids (nitrogen, oxygen or hydrogen), refrigerant freon R114 and hot water the thermal

growth appears for a time larger than t > 1 µs during the bubble growth. At low Jakob number one

can show that τ tends to the constant value τ(Ja << 1) = (3/4)(ρ2LCpLD
th
L )/((dpsat/dT )ρGL).

For 1 <≤ Ja ≤ 100, it is shown that for hot water (T = 355K) and water at ambient temperature

(T = 293K) thermal growth appears later (at 1µs ≤ t ≤ 0.01s) while for other thermosensitive

fluids τ stays lower than 1µs. For larger Jakob number, τ begins to be proportional to Ja so

that τ(Ja >> 1) = [9/(2π)](ρ2LCpLD
th
L )((dpsat/dT )ρGL)Ja ∝ Ja. Thus for the range 0.001 <

Ja < 100, except for water at ambient temperature, the transition from inertial growth to thermal

regime appears for τ < 0.1ms. This time of transition τ needs to be compared to the resident
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time corresponding to the transport of bubbles τres = l/u, whith l is the length of bubble path

in the low pressure area where p < psat in cavitating flow and u the mean flow velocity along

that path. For the case of τ/τres << 1, thermal controlled bubble growth should be considered to

describe vapour production instead of inertial growth. It is clear that τres depends on the nature of

the flow. As a consequence, in the following, thermal controlled growth closure law is investigated

for cavitating flows caracterised by τ/τres << 1. As shown by Fig. 3, this condition is likely to be

fulfilled for cavitation in hot water and cryogenic fluids.

3. Modelling of non-isothermal cavitating flow

In this section we present a mixture model based on the simplification of the six equations two-

fluid model introduced by [59]. The reader can refer to [69] in order to have a complete description

of the parent two-fluid model. Then, considering different hypothesis, we introduce the closure of

the mixture model.

3.1. The Euler mixture model

In this work, for the sake of simplicity in order to test the different existing closure laws for

mass transfer, we neglect viscous and heat diffusion effects at the scale of the bubbly flow. In

addition, as usual with hydrodynamic cavitation, we are interested to liquid flow at large velocity

compared to bubble relative velocity (vr/vL = (vG − vL)/vL << 1) induced by buoyancy effect.

As a result, in such flow we can assume the equality between phasic velocities by introducing the

mixture velocity vm = vL = vG. In the present mixture model, by introducing the mixture density

ρm = αGρG + (1 − αG)ρL, we will consider the mass conservation equation of the gas-liquid

mixture

∂ρm
∂t

+∇ · (ρmvm) = 0 (17)

This equation results from the sum of phasic mass conservation equations, with the equality of

phasic mass transfer terms ΓG = −ΓL. Since we consider large velocity flows, gravity effect in

momentum conservation equations can also be neglected. In addition, viscous and turbulent mo-

mentum or heat phasic diffusive fluxes are neglected compared to advective fluxes. In other words,

at the scale of the cavitating flow, we consider a perfect fluid and Euler conservation equations.

By summing phasic momentum conservation equations, with the equality of phasic momentum

transfer terms, we consider the momentum conservation of the gas-liquid mixture,

∂(ρmvm)

∂t
+∇ · (ρmvmvm) = −∇p (18)

In the same way, we will consider the conservation of the mixture total energy ρmEm = αGρGEG+
(1− αG)ρLEL

∂(ρmEm)

∂t
+∇ · (ρmvmEm) = ∇ · (pI.vm) , (19)

with Ek = hk(Tk)−p/ρk+v2k/2 the total energy of phase k that corresponds to the sum of internal

energy (ek = hk(Tk) − p/ρk) with kinetic energy (v2k/2). This equation results from the sum
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of phasic energy conservation equations, with the equality of phasic energy transfer terms. For an

incompressible fluid, solving mass conservation equation 17 gives a direct access to the gas volume

fraction. But in the present approach, gas and liquid phase are considered to be compressible.

Consequenly, it is necessary to add one equation to access to the gas volume fraction αG. In the

literature, for numerical simulations of compressible diphasic flow, numerous authors [70, 71, 16]

have used the following gas volume fraction transport equations proposed by [72]

∂αG

∂t
+ vm∇ · (αG) = K∇ · (vm) +

1

ρI
ΓG , (20)

with K =
αGαL

αG + c2GρG/(c
2
LρL − c2GρG)

ρI =
αGc

2
L + αLc

2
G

αGc2LρL + αLc2GρG
,

where ck =
√

(γk − 1)CpkTk is the sound speed based on mass heat capacity at constant pressure

Cpk and Laplace coefficient γk = Cpk/Cvk in each phase k . The above transport equation is

established from phasic mass conservation equations assuming the equality between total eulerian

derivative of pressure in each phase. One can note that for c2L >> c2G and ρLc
2
L >> ρGc

2
G, we

have K ≈ αL and 1/ρI ≈ 1/ρL so that Kapila transport equation (20) tends to mass conservation

equation for the case of an incompressible liquid phase. The unknown variables of this model are

αG, ρG, ρL, TG, TL, p, vm. To close this model it is necessary to describe mass transfer due to phase

change ΓG and to choose two equations of states for the calculation of densities. This modelling

approach requires to solve 4 equations.

3.2. Equation of state

In this work, the following stiffened gas equation of state is used for both phases ([73])

p(ρk, ek) = (γk − 1)ρk(ek − πk)− γkp
∞
k , (21)

with ek internal energy of phase k, πk = hk0 − CpkT0 an internal energy of reference based

on the enthalpy of formation hk0 at the initial temperature Tk = T0, p∞k a pressure of reference.

Parameters for using the stiffened gas equation of state are given in Tab. 2. Note that, for the gas

phase with p∞G = 0, the use of stiffened gas equation of state is equivalent to the use of perfect gas

equation of state.

3.3. Calculation of gas phase temperature

As explained in section 2.2, the gas phase temperature is considered to be homogeneous in the

bubble (TG = T I) and it corresponds to saturation temperature given by the local pressure using

here Antoine’s equation as follows [74]

TG = T I = T sat(p) = B [A− log(p)]−1 − C , (22)

with p expressed in Torr, where constants are given in Tab. 3. This approach for the estimation of

gas phase temperature is only valid up to the triple point that corresponds to pressure and temper-

ature given in Tab. 4 (T T and pT ). Below this limit, phase change, such as solidification of liquid

and gas, may appear.
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3.4. Mass transfer term for thermal growth

Considering interfacial balances of mass and energy, one can show the link between interfacial

phasic mass transfer terms (ΓG, ΓL) and interfacial phasic heat transfer flux (q′′L, q′′G) [5]

ΓG = −ΓL = − (q′′L + q′′G)

(EGi − ELi)
, (23)

with (EGi−ELi) the difference of total energy at the bubble surface that is usually approximated

as the enthalpy difference at the initial temperature of the flow (EGi −ELi) ≈ hG0 − hL0 = L. As

reported before in section 2.2, since conductivity in the liquid phase is much larger than in the gas

phase, heat flux supplied by the gas phase at the bubble surface q′′G can be neglected compared to

heat flux supplied by the liquid phase q′′L so that

ΓG ≈ −q′′L
L

= −aIHL(T
I − TL)

L
with HL =

λLNuL

db
(24)

In addition, as written in the equation above, heat flux in the liquid phase at the bubble surface

is a function of the difference of temperature between the gas and the liquid (T I − TL), interfacial

area per volume unit aI and heat transfer coefficient HL in the liquid phase that is monitored by the

bubble Nusselt number. The Nusselt number can be estimated with Eq. 14 where relative velocity

between the bubbles and the liquid phase vr is estimated from physical properties at saturation

with the correlation of [75] considering the balance between buoyancy and drag forces applied on

bubbles.

Moreover, in this work, we consider flows where cavitation takes place as a dispersion of

bubbles that can be characterised by a mean Sauter diameter an average reference bubble diameter

db that results from bubbles growth, collapse, break-up and coalescence phenomena. This reference

diameter is consider to be representative of the bubble dispersion. The mean Sauter diameter that

corresponds to the ratio between the third and second moment of the bubble size distribution is

considered to be representative of the interfacial area of the bubble dispersion. The interfacial

exchange area per volume unit is thus calculated as aI = 6αG/db. Finally, for comparison with

this thermal regime closure law, we will also consider results obtained with an inertial regime

closure law, with velocity divergence model or with infinite relaxation parameter model. For the

sake of simplicity, in the following, the mean Sauter diameter db will be called simply bubble

diameter.

3.5. Mass transfer term for inertial growth

Even if inertial growth is only valid at the early age of bubbles, from Eq. 3, one can define the

corresponding mass transfer term as follows

ΓG = ρG
dαG

dt
= aI

dR

dt
= ρGaI

√

2

3

∆p

ρL
with ∆p = psat(T0)− pL , (25)

where ρL, ρG and psat(T0) are taken in this work as constant and equal to saturation values at

T = T0. This closure for mass transfer term is very close to the one proposed by [4] or [19] that,
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instead of fixing a bubble diameter, preferred to impose the nuclei concentration per unit volume

of pure liquid. This source term will be larger than the one based on thermal controlled growth

(Eq. 23). It is numerically very stiff generating easily oscillation of the solution. For this reason, it

was only possible to compare it to cases with low stretching velocity. Note that in this work only

growth of bubble under cavitation is studied. Thus, only positive source term is considered and ΓG

is set to zero elsewhere.

3.6. Mass transfer term proportional to velocity divergence

Recently, [3, 16] has proposed a mass transfer source term for vapour production and conden-

sation by assuming ΓG to be proportional to the divergence of the velocity as follows

ΓG =

(

1− c2EOS

c2W

)

ρLρG
ρL − ρG

∇ · vm , (26)

where cEOS is the speed of sound given by a mixture equation of state and cW is the speed of sound

proposed by [76] and [77] for a bubbly flow

c2W =
1

ρm

ρLρGc
2
Lc

2
G

αGρLc2L + αLρGc2G
, (27)

3.7. Mass transfer term based on an infinite relaxation parameter

For cavitation generated at very large flow velocity, considering the compressible two-fluid

model introduced by [15], [71] or [14] proposed to model heat transfer by introducing a relaxation

parameter θ for phasic temperature. As a result, heat transfer associated to phase change is ex-

pressed as θ(TL−T I) where θ in Wm−3K−1 is assumed to be infinite. In other words, this kind of

approach gives the asymptotic result for an instantaneous mass and heat transfers between phases.

4. Presentation of the expansion tube test case

To investigate cavitation in thermal regime we need to choose a test case that verify the condi-

tion τ/τres << 1. Among test cases existing in the literature, the expansion tube test case depicted

in Fig. 4 is particularly interesting since velocity of the flow in the centre of the tube, where cav-

itation takes place, is cancelled so that resident time of bubbles τres is very large compared to the

time required for the inception of thermal regime τ . In addition, this case has been already stud-

ied previously for hot water by [73] and [14] with respectively 5 and 7 equations models, where

momentum and mass transfer terms are described using infinite relaxation parameter. Recently,

this test case was also calculated by [3, 16] with a 4 equations model using a mass transfer source

term proportional to mixture velocity divergence for hot water and refrigerant freon R114. This

test case consists in a one meter long tube filled with water or R114 with physical properties and

initial conditions given in Tab. 4. To stretch the liquid initially at rest, a velocity is imposed at the

right and left hand side extremities. The initial velocity discontinuity is set at x = 0.5 m so that

vm(x ≤ 0.5 m) = −u and vm(x < 0.5 m) = u. To be able to initiate phase change (aI > 0), a

weak volume fraction of vapour αG = 0.01 is initially added to the liquid. The choice of R114 as

a second test fluid is motivated because it is expected to be more thermosensitive than hot water

(larger ∆T ∗ , Tab. 4).
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As reported by Eq. 24 or 25, mass transfer term ΓG closely depends on interfacial area and

thus on the reference bubble diameter db. Consequently, in the following, the bubble diameter will

be varied to appreciate the effect of this parameter on the intensity of phase change.

5. Numerical procedure

The conservation laws governing this mixture model can be written in the form

∂w

∂t
+∇ · F (w) = S , (28)

where w is the vector of variables, F the convective flux and S the source term (only for the gas

volume fraction equation). The gas volume fraction equation (Eq. 20) is written in its divergence

form

∂αG

∂t
+∇ · (αGvm) = (K + αG)∇ · (vm) +

1

ρI
ΓG , (29)

A regular mesh is considered, whose size ∆x is such that: ∆x = xi+1/2 − xi−1/2. The

time step complies with CFL condition in order to guarantee the stability requirement. ∆t de-

notes as usually the time step, where ∆t = tn+1 − tn. Let wn
i be the approximate value of

(1/∆x)
∫ xi+1/2

xi−1/2
w(x, tn)dx. A discrete form of Eq. 28 can be written in 1D as

∆x
(wn+1

i − wn
i )

∆t
+ F n

i+1/2 − F n
i−1/2 = Sn

i ∆x (30)

where F n
i+1/2 is the numerical flux through the cell interface xi+1/2 at time tn. Various formula-

tions of numerical flux have been proposed to solve multiphase compressible flows. In the present

study, we consider the formulation based on the Rusanov scheme [78] with a mesh composed of

5000 cells. Various tests on grid spacing influence have been performed with different meshes.

As reported in Tab. 5, a grid composed of more than 4000 cells is sufficiently fine to tackle grid

dependence effect on final results.

5.1. Treatment of the source term

The numerical simulations of the initial-boundary value problems are accomplished using the

splitting approach. One starts in solving the source-free homogeneous part of the whole system

∂w

∂t
+∇ · F (w) = 0 (31)

This is followed by solving the system of ordinary differential equations describing the mass

transfer between phases to obtain the complete solution

dw

dt
= S(w) (32)

5.2. Initial and boundary conditions

Initially, we impose the gas volume fraction (αG = 0.01) but also the densities of pure phases

and the velocity profiles. At the position x = 0, the fluid velocity is imposed and we cancel

the gradients of pressure, gas volume fraction and mixture density. At the position x = 1 m,

the pressure is imposed and we cancel the gradients of mixture velocity, gas volume fraction and

mixture density.
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6. Results and discussions

The first subsection presents results obtained from the model for hot water in the expansion

tube by considering no mass transfer between the gas and the liquid phase. Then, the second

subsection presents and analyses results obtained for cavitation of hot water and refrigerant R114.

A comparison of results obtained with different closure laws for mass transfer is proposed. The

third subsection analyses the mechanism of phase change in the cavitating flow. In the fourth and

fifth subsections, the influence of the heat advection at bubbles surface and the influence of fluid

properties variation in the calculation of Jakob number are discussed. Finally, in the last subsection,

the behaviour of the model for simulations at larger stretching velocity is achieved.

6.1. Rarefaction test case without mass transfer

In order to appreciate compressibility effects on cavitating flow, the first simulations are per-

formed by cancelling the mass transfer term (ΓG = 0). Velocity, pressure, gas volume fraction and

gas density profiles obtained for hot water at T = 355K with a stretching velocity of |u| = 2ms−1

are displayed in Fig. 5 for the different times t = 10−4, 0.8, 1.6, 3.2 ms and for initial conditions

presented in Tab. 4. As reported in this figure, while the velocity profile is developing, the pres-

sure in the centre of the tube decreases strongly. But since a gas phase is present, the pressure

cannot become negative. As already noticed by [73] or [14], this decrease of pressure induced an

important decrease of gas phase density ρG that is traduced as a peak of gas volume fraction up to

αG ≈ 10% in the centre of the tube. This test case without mass transfer shows us how compress-

ibility effects (i.e. gas phase expansion) take part in the variation of gas volume fraction in real

cavitating flows. As a result, the advantage of solving compressible formulation of equations is

that it enables to take into account both the phase change and the gas phase density variation with

pressure and temperature. Finally, we can notice that our results for t = 3.2 ms are found to be in

perfect agreement with the previous work of [14] (◦) using a 7 equations two-fluid model.

6.2. Simulation at moderate stretching velocity

In this section we consider the same case than previously: cavitation of hot water at T = 355K
with a stretching velocity of |u| = 2 ms−1, but now with mass transfer (ΓG ≥ 0). From Eq. 15,

we get τ ≈ 10−7 − 10−4 s (Fig. 3) and τres = l/u ≈ 0.5 s so that the condition τ/τres << 1 is

verified for that case and a thermal growth closure law should be employed.

Velocity, pressure, gas volume fraction and liquid phase temperature profiles obtained for this

case are displayed in Fig. 6 for the the time t = 3.2 ms. Even if in the present flow conditions,

bubble growth is in a thermal regime, it is interesting to compare results given by an inertial bubble

growth since in the literature phase change kinetics based on phasic pressure difference are the

most used modeling approach for cavitation. Thus, we will first consider results obtained by using

inertial bubble growth as a closure law for mass transfer (Eq. 25, red continuous line), with a

reference diameter of db = 0.5 mm. Compared to the previous test case (Fig. 5), because of mass

transfer and vapour production, the gas volume fraction reaches a value near αG = 70% instead of

10% in the centre of the tube. Moreover, in the centre of the tube the pressure tends to the initial

vapour saturated pressure (psat0 = 0.51 bar). The velocity profile is sharper with mass transfer

than without. And for such case, a liquid phase temperature decrease of less than one Kelvin is

induced by phase change. For comparison, results found by [14] (◦) with the infinite relaxation

parameter model and by [3] (�) with the velocity divergence model are also reported in this figure.
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It is very interesting to notice that globally the solution obtained with the inertial model (Eq. 25) is

very close to the one obtained previously by [14] and [3] that correspond to a pseudo instantaneous

mass transfer. This is due to the fact that mass transfer rate predicted by inertial growth are so

important that it is equivalent to considering an infinite rates of heat and mass transfers.

Secondly, we can now consider results obtained by using thermal bubble growth as a closure

law for mass transfer (Eq. 24 and 14) with three different reference bubble diameters db = 0.5 −
3 − 10 mm. One can notice that modifying the reference bubble diameter affect the whole final

solution. Increasing db results in smoothing the velocity profile. In addition, in the centre of the

tube the pressure tends to value lower or near the vapour saturated pressure and the production of

vapour results in a gas volume fraction peak of αG ≈ 30 − 70% depending the reference bubble

diameter chosen. Fig. 7 presents the gas volume fraction obtained in the centre of the tube at

x = 0.5 m and x = 0.45 m for t = 3.2 ms as a function of the chosen bubble reference diameters

(continuous lines). As reported in Fig. 7a, we can notice that the larger is the reference bubble

diameter, the smaller is the maximal value of gas volume fraction in the centre of the tube. In the

opposite, Fig. 7b shows that the increase of the reference bubble diameter produces a "spreading"

of the central bubble swarm. In the same time, with this closure, the liquid phase temperature

decrease is lower in the centre of the tube. Considering thermal regime for hot water, the choice

of the reference bubble diameter is found to influence greatly the prediction of the structure of the

flow. The question is now to know what is the effect of such modelling for a more thermosenstive

fluid.

In this work, the simulation of the cavitation of the refrigerant freon R114 in an expansion

tube has been also investigated. As shown in the value of reference temperature variation ∆T ∗

in Tab. 4, this fluid is expected to be more thermosensitive than hot water. Results obtained

for this fluid are reported in Fig. 8 at time t = 3.2 ms for the same reference diameters of

db = 0.5 − 3 − 10 mm with initial conditions from Tab. 4. As shown in this figure, as for water,

closure law considering inertial growth (red continuous line) gives again very similar results than

considering an instantaneous mass transfer with velocity divergence model (Eq. 26, �). When

considering now a thermal growth regime (Eq. 24 and 14), the same behaviours are found on

velocity, pressure (psat0 = 1.825 bar), gas volume fraction and liquid phase temperature. As

shown by Fig. 7, the maximal gas volume fraction in the center is decrease and a spreading of the

central bubble swarm is also observed.

Finally, to appreciate operating temperature effect, for a given operating pressure and reference

bubble diameter, some additional simulations, not reported here, with water (T = 290, 320K) and

R114 (T = 230, 260 K) have been performed with this model based on a thermal regime closure

law (Eq. 14, 11). It is found that the decrease of the operating temperature tend to decrease both

the pressure level in the center of the tube and to sharpen the vapour production on both sides

of the central gas pocket. This sharpens the resulting profiles generating larger local gradients of

velocity and gas volume fraction. But in any case, a temperature decrease of a few degree is also

found for the liquid phase in the center of the expansion tube is also found because at this location

bubbles are trapped in the flow during the evaporation process. But in any case, in the center of the

expansion tube, the liquid phase temperature is found to decrease of the same order of magnitude

than with hot water (1 − 2 K). However, in the literature, for the study of cavitating flows with

cold water, it is usual to consider the isothermal hypothesis considering that in the cavitation area

the temperature decrease of the liquid phase is insignificant. In fact, locally in cavitating cloud, the

liquid phase temperature drop is influenced by phase change intensity but also by fluid velocity.
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Whatever the flow conditions, when vapor is produced (condensed), the liquid temperature should

decrease (increase). But, in cavitating flow where the fluid velocity is high, such as over an

hydrofoil, it is harder to measure a temperature decrease contrary to the case of cavitating flow

where the fluid velocity is low, such as in the center of the tube of the present test case. Indeed

even if the reference temperature drop of cold water ∆T ∗ = 0.01 K is lower than the one of hot

water (0.27 K) or R114 (1.40 K) this only means that, for a given Jakob number, the temperature

difference between the liquid and gas phase would be lower than with those other fluids. In other

words having a low ∆T ∗ do not insure of having a low temperature drop in the liquid phase of a

cavitating flow. But having a very low (high) fluid velocity make easier (harder) the occurence and

the measurement of liquid temperature variations induced by phase change.

6.3. Phase change mechanism in the cavitating flow

To understand how the thermal regime closure law affects simulation results we have plotted

for the two considered test cases the evolution of the phasic temperature difference (TL − TG), the

density ratio (ρL/ρG), the bubble Jakob and Nusselt numbers, and the ratio aIHL/L as a function

of the time for x = 0.5 m and for different bubble diameters. Results obtained for water are

presented in Fig. 9. Globally, for all of bubble diameters considered, we can first notice that

the different profiles decrease with the time. The intensity of phase change is stronger at the

beginning of the simulation when temperature differences and density ratios are the largest. In the

centre of the tube the development of velocity profile produces a decrease of the pressure. This

decrease of pressure induces in fact a decrease of the gas phase temperature (Eq. 22) that quickly

begins to be lower than the liquid phase temperature (TG < TL) as well as a strong decrease

of gas phase density that induces an increase of density ratio ρL/ρG (ρL0/ρG0(H2O) ≈ 1900,

ρL0/ρG0(R114) ≈ 90). The temperature difference generates a heat flux toward the bubble surface

that is used for phase change. In the same time the decrease of ρG generates larger bubble volume

expansion. Considering large bubble diameter (db = 10 mm), we get large Jakob and Nusselt

numbers (100 < Ja < 104, 500 < Nu < 3 × 104) because the temperature difference and the

density ratio are very important. Considering now small bubble (db = 0.5 mm), the temperature

difference and density ratio are lower resulting in smaller Jakob (6 < Ja < 200) and Nusselt

numbers (40 < Nu < 1000). However, in the same time with large bubbles the interfacial area

aI = 6αG/db is lower than with smaller bubbles. As a result, the product aIHL/L (Fig. 9d) is

finally found to be smaller with large bubble than with small bubble and interfacial heat and mass

transfers are lower resulting in larger temperature difference, Nusselt an Jakob numbers but also

lower vapour production. Note that, the liquid phase temperature drop presented in Fig. 6d, 8d or

11d results from the evaporation process occurring at bubbles interfaces. On the opposite, if we

have considered a cavitating flow test case with condensation of bubbles, an increase of the liquid

phase temperature would have been observed.

As shown in Fig. 10 for refrigerant R114, the same effect of increasing bubble reference di-

ameter is found. This behaviour explained why for small reference bubble diameter the thermal

regime closure law supplies very similar results than those considering instantaneous mass trans-

fer. In addition, in comparison with models based on infinite relaxation parameter (or very small

relaxation time) such the ones used by [71] or [14], the ratio aIHL/L would in fact correspond to

the relaxation parameter for phasic temperatures divided by the latent heat of evaporation : θ/L
that in those approaches is considered to be infinite. As depicted in Fig. 9e and 10e, for the two
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considered cases, the ratio aIHL/L is bounded between 3 and 200 kg s−1m−2K−1. As a conse-

quence, considering the thermal growth regime is equivalent to admit that interfacial heat transfer,

and thus phase change, can be finite rate in cavitating flows. Moreover, the bubble size is found to

strongly affect the gas volume fraction distribution in the cavitating flow. One can also conclude

from those original results that the size of bubbles in cavitating flow in thermal regime is thus

very important for the estimation of the interfacial area through which heat and mass transfer takes

place. Finally, it is very interesting to notice that using the proposed closure law, the variation of

the gas density ρG with pressure and temperature is also taken into account in the calculation of

Jakob number since we have Ja ∝ (ρL/ρG)∆T . As a result, at a given position, a decrease of

the gas phase density induces an increase of the Jakob number, Nusselt number and heat transfer

coefficient. Our results show that, in contrast with common boiling flows, compressibility effects

influence phase change kinetic through variation of ρL/ρG. In addition, it is very interesting to

notice that for the case of bubble condensation due to a pressure increase, ρL/ρG should decrease

reducing Jakob number and interfacial heat and mass transfers.

6.4. Influence of heat advection at the bubble surface

In Fig. 7, 9 and 10, we have also reported results neglecting the effect of the Péclet number

on the estimation of the Nusselt number (continuous red lines). To do that, the calculation of

the Nusselt number was only based on the approximation of [64] so that NuL = NuL0 (Eq. 11).

As depicted in those figures, for present simulations, on one hand, it is found that for water the

effect of the bubble Péclet number on the global solution can be neglected. On the other hand,

for refrigerant R114, it is found that for large bubble the thermal Péclet number and thus the

additional heat advection at the bubble surface has a small positive effect on the estimation of

the transfer rates aIHL/L. This observation is mainly due to the fact that the Prandlt number in

liquid R114 (Pr = 4.8) is larger than in hot water (Pr = 2.2) resulting in larger bubble Péclet

number (2400 < Pe(R144) < 43400, 800 < Pe(H2O) < 17000). To quantify this effect on the

final solution we have compared the different profiles at the final time t = 3.2 ms for R114 at

|u| = 2 ms−1 and db = 10 mm. The differences are about 3% or less. This behaviour is manly

due to the fact that Nusselt number is more sensitive to Jakob number variation with the time than

to additional heat transfer due to bubble slip. As a result, for present simulations (flow conditions

and fluid properties), at first order the Nusselt number can be estimated from Eq. 11.

6.5. Influence of fluid properties variations on phase change kinetic

For the simulation of phase change in boiling flows, it is usual to consider a constant latent

heat and a constant liquid phase conductivity [53, 57, 68, 66]. For cavitating flow in thermal

regime, this point is still an open question. In results presented above, the Jakob number Ja =
ρLCpL∆T/(ρGL) is calculated with variable ρL, ρG, ∆T that are evaluated during the resolution

of equations while heat capacity CpL and vaporisation latent heat L are considered to be constant.

In addition, heat transfer coefficient and Péclet number are calculated with a constant conductivity

λL. An analysis of the variation of fluid properties of water for 273 < T < 355 K and of R114

for 273 < T < 293 K shows us that the variation of the constant pressure heat capacity of the

liquid with the temperature is less than 3% so that it does not influence the estimation of Jakob

numbers. However, a strongest dependency on the temperature is found in the estimation of the

liquid phase conductivity λL (15% for H2O, 7% for R114) and the latent heat of evaporation L (8%

for H2O, 5% for R114). The question is thus to know if taking into account the variation of latent
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heat and liquid phase conductivity influences the result. Correlation used to describe the variation

of L and λL with the temperature are based on data given by [79] at the saturation temperature.

The temperature that is considered for the calculation of the variation of L and λL is taken as the

temperature at the bubble surface that corresponds to the gas phase temperature TG. For simulation

with water at |u| = 2 m/s with db = 10 mm, some small differences can be denoted. Compared

to constant L and λL case, we get lower pressure (−15%) and lower gas volume fraction (−6%)

in the centre of the tube. For simulation with R114 at |u| = 2 m/s with db = 10 mm, the same

behaviour is found with a small decrease of pressure (−4%) and gas volume fraction (−6%) in

the centre of the tube. Consequently, at first order, the calculation of the Jakob number and heat

transfer induced by phase change can be performed with constant CpL, L and λL while phasic

density (ρL, ρG) and temperature difference (∆T ) are given by solving mixture model equations.

Consequently, taking into account the variation of latent heat L and heat conduction of the liquid

phase λL with the temperature can improve the accuracy of calculations. This can be a perspective

of a future work.

6.6. Simulation at larger stretching velocity

We consider here the cavitation of hot water at T = 355 K with a stretching velocity of

|u| = 50 ms−1. The resident time of bubble is now τres = l/u ≈ 0.02 s. With a transition time of

τ ≈ 10−7 − 10−4 s (Fig. 3), the condition τ/τres << 1 is also verified for that case and thermal

growth closure law can be employed. Velocity, pressure, gas volume fraction and liquid phase

temperature profiles obtained for this case are displayed in Fig. 11 for the time t = 2.5 ms and

reference bubble diameters of db = 0.5, 1 , 3 mm. One can note that, since inertial growth source

term (Eq. 25) is much larger than the one based on thermal growth (Eq. 23), it generates easily

oscillation of the solution. For this reason, it was only possible to use it at low stretching velocity.

We will thus compare our results with the one provided by the velocity divergence model (Eq.

26). As previously, for db = 0.5 mm, the solution obtained using the thermal regime closure is

found to be close to the one predicted by Eq. 26 corresponding to instantaneous mass transfer. As

for cases at lower stretching velocity, the development of the velocity profile generates a pressure

decrease that induces phase change by decreasing gas phase temperature below the liquid phase

temperature. For such rude conditions, the model predicts that, along a large part at the centre

of the tube for 0.4 < x < 0.6 m, the velocity is almost cancelled while the gas volume fraction

reaches unity αG = 1. The induced vapour production generates a strong decrease of liquid phase

temperature (30 − 50 K). As depicted in Fig. 11a and c, for a large stretching velocity the effect

of a change in reference bubble diameter as a weak effect on the profile of gas volume fraction and

velocity. However, variation of the bubble diameter seems to have more effect on the pressure and

temperature profiles.

For such cases where the gas volume fraction reaches locally its maximal value (αG = 1) on

a large part of the flow, the hypothesis on the structure of the gas-liquid flow as "a dispersion of

bubbles" begins to be questionable. Indeed, if the gas-liquid bubbly flow transforms into a large

gas pocket in the centre of the tube the calculation of the interfacial area aI = 6αG/db and the

closure on the Nusselt number to describe phase change need to be modified. For a large gas

pocket, such those observed in super cavitating flows [80], the interfacial area strongly decreases

and the heat transfer is also drastically different. But this point is out of the scope of the present

study that consider cavitation as a dispersed bubbly flow.
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7. Conclusions

In this work, we have first presented the two main bubble growth regimes that we can found

in bubbly flows with phase change: inertial and thermal growth. Thanks to the calculation of the

time τ corresponding to the inception of the thermal regime and the end of inertial regime, we

have shown that thermal controlled growth is very likely to occur in the majority of the cavitating

flow with thermosensitive liquids if the resident time of bubbles in the low pressure area is large

enough (τ/τres << 1). Surprisingly, the time of transition between the inertial and thermal regime

is found to be only dependant on the fluid physical properties.

To evaluate the effect of considering a phase change limited by interfacial heat transfer at

bubble surface, different simulations of cavitation in expansion tubes were performed with hot

water and refrigerant R114 using a four-equations mixture model with Euler formulation. For

those fluids and operating temperatures, a comparison of heat diffusivity and conductivity has

demonstrated that temperature in the gas phase can be considered as constant and equal to the

saturation temperature that is calculated here from the local pressure using the Antoine’s equation.

The model studied in this work is based on the Nusselt number calculating from Jakob and thermal

Péclet numbers in order to take into account bubble growth due to phase change and also bubble

relative velocity effect on bubble growth. This approach is based on recent works dedicated to

phase change modelling in bubbly flows.

Numerical simulations of cavitation with mass transfer at moderate stretching velocity have

been performed and compared to solutions obtained with mass transfer based on inertial growth and

instantaneous mass transfer models (infinite relaxation parameter or velocity divergence model).

It is found that model considering instantaneous mass transfer gives results very similar to those

obtained with mass transfer considering inertial regime. This is explained because interfacial ve-

locities predicted by inertial growth are so important that mass transfer can be considered as instan-

taneous. In the opposite, considering thermal growth gives finite rate heat and mass transfer terms

that strongly depends on Jakob number and reference bubble diameter (interfacial area). When

considering a thermal growth, the local maxima of gas volume fraction and the minimum pressure

in the flow are decreased. But indeed, when decreasing the reference bubble diameter, the solution

obtained in thermal regime match the one given by instantaneous mass transfer model. In addi-

tion, for present simulations, fluids and flow conditions, at first order the Nusselt number can be

estimated as a function of the Jakob number using the approximation proposed by [64]. It is also

shown that, in the calculation of the Jakob number, the latent heat and liquid phase conductivity

can be considered as constant so that Jakob number variation is monitored by phasic temperature

difference and density ratio variation so that Ja ∝ (ρL/ρG)∆T . As a consequence, for a local

pressure reduction, compressibility effects promote vapour production because both density ratio

and Jakob number increase. On the opposite, for a local pressure increase, compressibility effects

should slow down vapour condensation because both density ratio and Jakob number decrease.

Finally, some tests Moreover, simulations at large stretching velocity seem to show us that the

influence of bubble diameter on the solution is less important. However, for such cases, the limit

of the proposed closure law is reached since it results in the formation of a large central gas pocket

that can no longer be considered as a bubble dispersion characterised by a large interfacial area.

Finally, some tests on the effect of the description of fluid properties tend to show that taking into

account the variation of latent heat and liquid phase conduction with the temperature can affect the

result of around 4− 15%.
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The first perspective of this work is to complete this description of cavitation with a model for

vapour bubble condensation. Indeed, in this work, we have focus on bubble growth but the physical

description of bubble collapse due to vapour condensation is also a very important issue. The

second perspective is to implement this model based on thermal growth with a viscous formulation

and to test it on different applications such as venturis, diaphragms, pumps or turbopump inducers.

The third perspective is also to deepen the study of model behaviour respect to the influence of

fluid properties variations with the temperature. An other perspective, is also to take into account

the effect of dissolved gas in the liquid phase on the intensity of cavitation phenomena.
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Nomenclature

List of symbols

aI volumetric interfacial area, m−1

B B factor

Cpk specific heat capacity of phase k at constant pressure, J kg−1K−1

Cvk specific heat capacity of phase k at constant volume, J kg−1 K−1

cw Wood’s speed of sound, ms−1

cEOS speed of sound based on sinus equation of state, ms−1

ck speed of sound of phase k, ms−1

db reference mean Sauter diameter of the bubble size distribution, m
Dth

k thermal diffusivity of phase k, Dth
k = λk/(ρkCpk)

ek specific internal energie of phase k, J kg−1

Ek total energy of phase k, J kg−1

Em gas liquid mixture total energy, J kg−1

HL heat transfer coefficient in phase k, W m−2 K−1

hk specific enthalpie of phase k, J kg−1

Jloc local mass flux, kg m−2 s−1

Ja Jakob number, Ja = ρLCpL∆T/(ρGL)
l mean length of bubble path in the low pressure area where p < psat, m
L latent heat of vaporisation L = hG − hL, J kg−1

NuL Nusselt number

NuL0 Nusselt number wihout wlip

p pressure, Pa

p∞k pressure reference in stiffened gas equation of state, Pa
Pe thermal Péclet number, Pe = Udb/D

th
L

Pec critical thermal Péclet number,

Pr Prandtl number, Pr = νL/DLth

q′′k interfacial heat flux from phase k, J m−3 s−1

R bubble radius, m
Re bubble Reynolds number, Re = ρLvrdb/µL

s surface tension of the fluid, Nm−1

Sb bubble surface, m2

t time, s
Tk tempreature of phase k, K
u stretching velocity, ms−1

Vb bubble volume, m3

vk velocity of phase k, ms−1

vm gas liquid mixture velocity, ms−1

vr mean relative velocity between phases, vr = vG − vL, ms−1

Greek symbols

αk volume fraction of phase k
γk heat capacity ratio for phase k, γk = Cpk/Cvk

Γk mass transfer term of phase k, kg m−3 s−1
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λk conductivity of phase k, W m−1 K−1

µk dynamic viscosity of phase k, Pa s
νk kinematic viscosity of phase k, m2 s−1

πk internal energy reference in stiffened gas equation of state, J kg−1

ρk density of phase k, kg m−3

τ time for inception of thermal regime, s

τ ′ time for inception of thermal regime with effect of the relative velocity, s

τres resident time of bubbles in the low pressure area, s

Supercripts

I at the bubble surface

sat at saturation

T at triple point

Subscripts

G gas phase

k phase k
L liquid phase

m gas liquid mixture

0 initial value
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T λL/λG Dth

G
/Dth

L

K - -

water 293 30 1000

water 355 30 200

R114 293 5 20

N2 78 20 10

O2 90 20 20

H2 23 5 4

Table 1: Thermal conductivity ratio and thermal diffusion coefficient ratio for different common cavitating fluids.

p∞
L

p∞
G

πL πG

Pa Pa J kg−1 J kg−1

water 109 0 -1167000 2030000

R114 1.21× 108 0 -69000 144240

Table 2: Parameters used for stiffened gas equation of state.

A B C

− K K
water 8.05573 1723.6425 233.08
R114 6.871 942.3 232.6

Table 3: Parameters used for Antoine’s equation according to [81] and [82].
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T0 p0 ρL ρG µL λL CpL CpG

K bar kgm−3 kgm−3 Pas W (mK)−1 J(kgK)−1 J(kgK)−1

water 355 1 1149.9 0.59 0.0003 0.67 4267 1487

R114 293 3 1470.3 15.64 0.0003 0.062 984 700

γL γG L psat dT sat/dp ∆T ∗ T T pT

- - kJkg−1 bar Kbar−1 K K Pa
water 2.35 1.43 2304 0.51 50 0.27 273 611

R114 1.40 1.10 130 1.825 21 1.40 181 236

Table 4: Initial conditions and physical properties considered at saturation for T = T0.

29



nb. of cells 100 200 400 800 2000 3000 4000 5000 6000 8000

water - case 1 0.439 0.434 0.429 0.426 0.425 0.424 0.424 0.424 0.424 0.424

R114 - case 2 0.758 0.727 0.706 0.689 0.673 0.670 0.669 0.668 0.667 0.666

water - case 3 0.199 0.160 0.140 0.131 0.117 0.107 0.099 0.092 0.087 0.087

Table 5: Minimum value of pressure obtained in the expansion tube for different grid spacing (case 1: |u| = 2ms−1,

db = 1 mm, t = 3.2 ms; case 2: |u| = 2 ms−1, db = 3 mm, t = 3.2 ms; case 3: |u| = 50 ms−1, db = 1 mm,

t = 2.5 ms).
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Figure 1: Nusselt number NuL0 as a function of Jakob number for bubble thermal growth with no slip between the

bubble and the liquid phase: — [60] (Eq. 8, 9, 10), ... NuL0(Ja → 0) = 2, −− [63] NuL0(Ja → ∞) = 12Ja/π, ◦
direct numerical simulations of [57], −× [64] Eq. 11.
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Figure 2: Nusselt number NuL as a function of Péclet number for bubble thermal growth with a slip velocity between

the bubble and the liquid phase: ... [64] Eq. 11 without slip, −− [65] Eq. 12, direct numerical simulations of [57] for

: Ja = 1: ◦ Re0 = 0.1, � Re0 = 1, △ Re0 = 10, ▽ Re0 = 100; Ja = 10: • Re0 = 0.1, � Re0 = 1, N Re0 = 10,

H Re0 = 100 and — [68] Eq. 14.
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Figure 3: Time corresponding to the theoretical inception of thermal growth as a function of Jakob number for

different fluids: H2O −△ at Tref = 293 K and −▽ at Tref = 355 K, — R114 at Tref = 293 K, −×
N2 at Tref = 78 K, −◦ H2 at Tref = 23 K, −+ O2 at Tref = 90 K.
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Figure 4: Expansion tube 1D test case.
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Figure 5: Results for water at |u| = 2 ms−1 without mass transfer (ΓG = 0): velocity (a), pressure (b), gas density

(c) and gas volume fraction (d) versus position at time : ... 10−4 ms, −− 0.8ms, −.− 1.6ms and — 3.2ms; ◦ 7Eq.

model [14] at 3.2 ms.
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Figure 6: (colour online) Results for water at |u| = 2 ms−1 at time 3.2 ms: velocity (a), pressure (b), gas volume

fraction (c), liquid phase temperature (d) versus position for : — inertial growth with db = 0.5 mm (Eq. 25); thermal

growth (Eq. 24 and 14) with −− db = 0.5 mm, -.- db = 3 mm and — db = 10 mm; instantaneous phase change

with ◦ 7Eq. model of [14] and � from [3] 4Eq. model with dpsat/dT = 2000 PaK−1 (Eq. 26).
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Figure 7: Gas volume fraction for x = 0.5m and x = 0.45m at t = 3.2ms versus reference bubble diameter for —

test case with water and −−− test case with R114; .... results obtained considering NuL = NuL0 (Eq. 11).
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Figure 8: (colour online) Results for R114 at |u| = 2 ms−1 at time 3.2 ms: velocity (a), pressure (b), gas volume

fraction (c), liquid phase temperature (d) versus position for : — inertial growth with db = 0.5 mm (Eq. 25); thermal

growth (Eq. 24 and 14) with −− db = 0.5 mm, -.- db = 3 mm and — db = 10 mm; � instantaneous phase change

from [16] 4Eq. model with dpsat/dT = 4720 PaK−1 (Eq. 26).
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Figure 9: Influence of bubble diameter with water at x = 0.5 m for |u| = 2 ms−1 : (a) temperature difference,

(b) density ratio, (c) Jakob number, (d) Nusselt number and (e) aIHL/L versus time for −− db = 0.5 mm, -.-

db = 3mm, — db = 10mm; .... results obtained considering NuL = NuL0 (Eq. 11).
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Figure 10: Influence of bubble diameter with R114 at x = 0.5 m for |u| = 2 ms−1: (a) temperature difference,

(b) density ratio, (c) Jakob number, (d) Nusselt number and (e) aIHL/L versus time for −− db = 0.5 mm, -.-

db = 3mm, — db = 10mm; .... results obtained considering NuL = NuL0 (Eq. 11).
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Figure 11: Results for water at |u| = 50ms−1 at time 2.5 ms: velocity (a), pressure (b), gas volume fraction (c), liquid

phase temperature (d) versus position for : thermal growth (Eq. 24 and 14) with −− db = 0.5 mm, -.- db = 1 mm
and — db = 3mm; instantaneous phase change with � Eq. 26 with dpsat/dT = 1000 KPa−1.
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