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This paper addresses the definition of correlation energy within 4-component relativistic atomic and
molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference
between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice,
what is reported is the basis set correlation energy, where the “exact” value is provided by a full
Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of
this definition to the relativistic domain is not straightforward since the corresponding electronic
Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic
calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian
is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock
calculations are carried out with the implicit use of such projectors and only positive-energy orbitals
are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the
correlated level. We argue that the projection operators should be optimized also at the correlated level
and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that
is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the
negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation
energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy
contains an additional relaxation term. We explore numerically our theoretical analysis by carrying
out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored
basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF
procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying
minmax principle and our theoretical analysis. We also show that the relativistic correlation energy,
obtained from no-pair full MCSCF calculations, scales at worst as X−2 with respect to the cardinal
number X of our correlation-consistent basis sets optimized for the two-electron atoms. This is better
than the X−1 scaling suggested by previous studies, but worse than the X−3 scaling observed in the
nonrelativistic domain. The well-known 1/Z- expansion in nonrelativistic atomic theory follows from
coordinate scaling. We point out that coordinate scaling for consistency should be accompanied
by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the
relativistic domain an explicit scaling of the speed of light is required. This in turn explains why the
relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to
nonrelativistic theory. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4959452]

I. INTRODUCTION

Electron correlation remains a central challenge of
molecular quantum mechanics, as well as many other domains
of physics and chemistry. In 1958 Löwdin proposed the
following definition of the associated correlation energy: “The
correlation energy for a certain state with respect to a specified
Hamiltonian is the difference between the exact eigenvalue of
the Hamiltonian and its expectation value in the Hartree-Fock
approximation for the state under consideration.”1 Löwdin

a)Electronic mail: trond.saue@irsamc.ups-tlse.fr; http://dirac.ups-tlse.fr/
saue

carefully stressed that the exact energy so defined is not
equal to the experimental energy since it misses rovibrational
contributions and relativistic effects (as well as QED effects,
one may add). The present-day operational definition of the
nonrelativistic correlation energy is the energy difference
between a full Configuration Interaction (CI) and a Hartree-
Fock (HF) calculation in some specified 1-particle basis and
is more precisely denoted the basis set correlation energy.2

In the relativistic domain the situation is more prob-
lematic: when the nonrelativistic one-electron Hamiltonian is
replaced by the 4-component Dirac Hamiltonian the resulting
Dirac-Coulomb (DC) Hamiltonian has no bound solutions.
This unpleasant situation, first pointed out by Brown and

0021-9606/2016/145(7)/074104/15/$30.00 145, 074104-1 Published by AIP Publishing.
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Ravenhall,3 is due to the presence of negative-energy solutions
of the Dirac Hamiltonian, which for the many-electron
problem means that a chosen reference determinant of bound
electronic solutions is degenerate with an infinite number of
determinants containing continuum solutions of both positive
and negative energy. Brown and Ravenhall suggested to block
continuum dissolution by embedding the relativistic electronic
Hamiltonian in operators projecting out the negative-energy
solutions of the one-electron problem, leading to the so-called
“no-pair” Hamiltonian.4 Brown and Ravenhall furthermore
proposed to use projection operators defined with respect to the
free-particle Dirac Hamiltonian. Theoretical analysis shows,
though, that this may introduce negative-energy solutions into
the Hamiltonian rather than remove them,5 which can also be
shown numerically.6 Mittleman proposed instead to optimize
the projection operators according to the problem at hand
and demonstrated that the appropriate projection operators
for Hartree-Fock calculations are defined with respect to the
4-component relativistic Fock operator of the problem.7 This
is the approach taken by most modern-day 4-component
relativistic molecular calculations: the SCF algorithm of
Hartree-Fock (and Kohn-Sham) is based on the implicit use of
projectors in that the selection of orbitals for the construction
of the mean-field potential in each iteration is not based
on an Aufbau principle as in the nonrelativistic domain,
rather on the identification of the lowest bound orbitals in
the energy gap separating the negative- and positive-energy
continua (or rather the discrete representation in a finite basis
approximation). This in turn hinges on proper construction of
the 1-particle basis using the kinetic balance prescription.8,9

At the correlated level the no-pair approximation is imposed
by using only positive-energy orbitals from the preceding HF
calculation for the construction of the N-particle basis.

It should be mentioned that there have been reports
in the literature of 4-component relativistic CI calculations
using Slater determinants containing both positive- and
negative-energy orbitals, and where it was possible to identify
bound solutions amongst the sea of continuum solutions.10–14

Pestka et al. treat such solutions as resonances and extract
them by complex-coordinate rotation techniques.15 However,
these approaches imply that matter is not stable and are
therefore fundamentally not satisfactory. Another approach
is to go to full-fledged QED, which recently has attracted
considerable attention in the molecular domain.16–24 In the
present contribution, however, we seek a relativistic definition
of the electron correlation energy within the current paradigm
of relativistic molecular calculations, which is the no-pair
approximation and which implies that the negative-energy
orbitals are treated as an orthogonal complement. It is true
that even within the present paradigm negative-energy orbitals
come into play. For instance, in perturbative calculations
of magnetic properties, the diamagnetic contribution is
recovered from the negative-energy orbitals of the unperturbed
problem.25–27 However, in such calculations the negative-
energy orbitals simply constitute a basis for the construction
of perturbative corrections to the wave function, whereas in
QED they take on physical reality.

We argue that a full CI within the Hartree-Fock no-
pair approximation according to the proposal by Mittleman7

does not constitute an “exact” calculation for the evaluation
of the relativistic correlation energy since the projection
operators are not fully optimized, but remain frozen at the
HF level. This model is designated HF-CI in the following.
Saue and Visscher in 2003 therefore proposed that the proper
reference for molecular correlated calculations is a no-pair
Multiconfigurational SCF (MCSCF) calculation, that is, a
calculation in which the CI expansion is limited to positive-
energy orbitals only, but in which orbital rotations between
positive- and negative-energy solutions are allowed, thus
allowing full orbital (and projector) optimization.16 In the
present contribution we provide further arguments for this
view using variational perturbation theory and present no-pair
full HF-CI and MCSCF calculations of the helium-like rare
gases.

The helium isoelectronic series has been a test bench for
electron correlation methods since the beginning of quantum
theory. The 1913 Bohr model of the atom28 marks a milestone
in modern physics, providing a rationale for the Rydberg
formula for hydrogen. Yet, when Bohr in the same year
applied his model to the helium atom,29 the result was less
encouraging, overshooting the experimental ionization energy
(24.587 387 eV) by more than 4 eV. It took more than ten
years of concentrated efforts and the development of the
“new quantum theory” to reach acceptable results.30–34 The
contributions of Hylleraas deserve particular mention.35,36 His
1928 variational calculation gave a helium ground state energy
of −2.895 Eh.33 The year after he reported an improved value
of −2.9037 Eh,37 where the five digits agree with the five first
digits of the nonrelativistic energy calculated to over 40 digit
accuracy by Nakashima and Nakatsuji in 2007.38 Hylleraas
achieved this by explicit inclusion of the interelectronic
coordinate r12 in his trial function, thus providing a precursor
to modern-day explicitly correlated methods.39–41 Hylleraas
also introduced the expansion of the ground state energy of
the helium isoelectronic series in terms of inverse nuclear
charge Z42

Eexact = −Z2 +
5
8

Z − 0.15 767 +O
�
Z−1� (1)

(reported in Eh). A corresponding 1/Z expansion of the HF
energy was later reported by Linderberg43

EHF = −Z2 +
5
8

Z − 0.111 00 +O
�
Z−1� , (2)

showing that the nonrelativistic correlation energy to the
lowest order is independent of nuclear charge

Ecorr = Eexact − EHF = −0.046 67 +O
�
Z−1� . (3)

This fascinating result has been used to construct new models
of electron correlation.44,45 However, it is not valid in the
relativistic domain, as shown by no-pair full CI calculations
by Watanabe and Tatewaki.46

In the present contribution we report no-pair full
HF-CI and full MCSCF calculations of the helium-like
rare gas atoms He, Ne+8, Ar+16, Kr+34, Xe+52, Rn+84, and
Uuo+116 using a sequence of specially tailored correlation-
consistent Gaussian basis sets energy-optimized for the
1s2 ground states.47 Our paper is organized as follows:
in Section II we derive perturbation expressions for the
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correlation energy in the nonrelativistic and relativistic
domain. In Section III we provide computational details,
in particular about the generation of the specially tailored
basis sets employed in this study. In Section IV we present
and discuss our results and then conclude in Section V.
Throughout this work we employ SI-based atomic units,48

but retain electron mass m and fundamental charge e for
clarity.

II. THEORY

A. Variational perturbation theory

In this section we shall derive expressions for the electron
correlation energy of nonrelativistic and relativistic two-
electron atoms. Our tool will be variational perturbation theory
as defined by Helgaker and Jørgensen,49 in contrast to other
meanings,50 including the variational-perturbation procedure
developed by Hylleraas (the Hylleraas functional).51,52 The
key feature of this approach is to assume that the expectation
value E of the Hamiltonian

Ĥ = Ĥ0 + λĤ1,

with respect to some suitable trial function
�
0̃
�
≡
�
0̃ (ς̃)� with

variational parameters gathered in the vector ς̃, has been
optimized

∂E
∂ςi

�����λ
= 0 (4)

for any value of the perturbation strength λ. The optimized
variational parameters then become functions of the
perturbation strength λ, that is, ς ≡ ς (λ) and can be calculated
to any order starting from the variational condition (4). This
in turn allows us to calculate the perturbation expansion

E (λ) = E0 +
dE
dλ

�����λ=0
λ +

1
2

d2E
dλ2

�����λ=0
λ2 + · · ·.

We shall consider three variational methods. We employ
exponential parametrizations, which simplifies mathematical
manipulations since (i) redundant parameters (parameters that
do not change the energy) are easily identified and eliminated53

and (ii) no constraints (such as orthonormality of orbitals) need
to be introduced in terms of Lagrange multipliers. We express
the Hartree-Fock trial function as

|HF⟩ = exp [−κ̂] |0⟩ , κ̂ =

p>q

(
κpq p̂†q̂ − κ∗pqq̂†p̂

)
,

where κ̂ is the orbital rotation operator54–56 and |0⟩ the
reference determinant, corresponding to the variational
solution of the zeroth-order Hamiltonian Ĥ0. The CI trial
function, on the other hand, is parametrized in terms of the
state transfer operator57 Ŝ

|CI⟩ = exp
�
−Ŝ

� |0⟩ ,
Ŝ =


M ∈{|M⟩}/{|0⟩}

�
sM |M⟩ ⟨0| − s∗M |0⟩ ⟨M |� ,

(5)

where the summation runs over the elements of the
orthonormal N-particle (determinant) basis {|M⟩} excluding
the reference determinant |0⟩. The HF and CI methods may be

considered special cases of MCSCF, as is clearly seen when
the MCSCF trial function is expressed as

|MC⟩ = exp [−κ̂] exp
�
−Ŝ

� |0⟩ .
In Sec. II B we consider the nonrelativistic case which leads
to the partitioning of the electronic Hamiltonian chosen by
Hylleraas for two-electron atoms and which we afterwards
will extend to the relativistic domain. Further details are given
in the Appendix.

B. Nonrelativistic case

The nonrelativistic wave equation for two electrons in the
electrostatic field of a nucleus of charge Z and infinite mass
reads

ĤΨ (1,2) = EΨ (1,2) , Ĥ = ĥZ (1) + ĥZ (2) + Vee,

where the two-electron interaction is the instantaneous
Coulomb interaction

Vee =
e2

r12
.

The one-electron Hamiltonian is given by

hZ (i) = p2
i

2m
+ VeN (i) , VeN = −eφnuc,

φnuc (r1) = Ze


ρnuc (r2)
r12

d3r2,

where the nuclear charge distribution ρnuc is normalized to
unity. In the nonrelativistic domain the nucleus is usually
modeled as a point charge such that

VeN = −Ze2


δ (r2)
r12

d3r2 = −
Ze2

r
,

when the nucleus is placed at the origin.
Rather than focusing exclusively on the helium atom,

Hylleraas generalized his study to two-electron atoms of
arbitrary nuclear charge Z ,42 apparently spurred by the
accurate measurements of the ionization energies of Li+

and Be2+ by Ericson and Edlén.58 He observed35,51 that the
one-electron problem


− 1

2m
∇2 − Ze2

r


ϕZ (r) = εZϕZ (r) (6)

could be expressed as

− 1

2m
∇2 − e2

r


ϕZ=1 (r) = εZ=1ϕZ=1 (r) , εZ = Z2εZ=1,

upon coordinate scaling

r → Z−1r. (7)

The underlying physics is perhaps not entirely clear, but it may
be noted that spherical wave solutions to the corresponding
free-particle problem are given by

ϕ0 (r) = Rl(r, k)Ylm (θ,φ) , Rl (r, k) =


2
π

k jl (kr) ,
k2 = 2mE,
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where the radial functions are given in terms of spherical
Bessel functions of the first kind with the scaled coordinate
kr as argument.

Upon application of the same coordinate scaling (7) to
the two-electron problem one obtains


ĥZ=1 (1) + ĥZ=1 (2) + 1

Z
Vee


Ψ (1,2) = E ′Ψ (1,2) ,

E = Z2E ′,

where the two-electron interaction appears as a perturbation
with Z−1 as the corresponding perturbation parameter,
leading to the well-known 1/Z expansion. In particular,
one notes that in the limit of infinite nuclear charge the
two-electron interaction vanishes, which does make physical
sense.

Following Hylleraas, we partition the Hamiltonian as

Ĥ = Ĥ0 + Ĥ1, Ĥ0 = ĥZ (1) + ĥZ (2) , Ĥ1 =
e2

r12
.

The zeroth-order wave function, for all three methods cited
above, is a Slater determinant of orbitals of the one-electron
problem (6)

Φ0 =
���ϕ

(0)
1sαϕ

(0)
1s β

���
and is the exact solution of the zeroth-order Hamiltonian Ĥ0.
In the Appendix we derive a perturbation expansion of the HF
energy using variational perturbation theory

EHF =


0
�
Ĥ0

�
0
�
+


0
�
Ĥ1

�
0
�
+ EHF

2 +O
�
Z−1� ,

EHF
2 =


ai

���F
(2)
ia
���
2

εi − εa
, (8)

where the second-order contribution EHF
2 is expressed in terms

of the occupied-virtual block of two-electron Fock matrix F(2)
pq

using the orbitals of the one-electron problem. Here and in
the following indices i, j, k, l, . . . refer to occupied orbitals,
indices a,b,c,d, . . . refer to virtual orbitals, and indices
p,q,r, s, . . . refer to general orbitals. Eq. (8) corresponds
exactly to the expression (2) given by Linderberg.43 One
may note the relations F(2)

ai = Fai , 0, which is due to
the use of the orbitals of the one-electron problem, rather
than the optimized HF orbitals. From the denominator, the
second-order contribution EHF

2 is negative, in accordance with
the underlying minimization principle in the nonrelativistic
domain.

In the Appendix we also show that the corresponding
perturbation expansion of the HF-CI energy is

ECI =


0
�
Ĥ0

�
0
�
+


0
�
Ĥ1

�
0
�
+ ECI

2 +O
�
Z−1� ,

ECI
2 = EHF

2 −
1
4


i j


ab

|⟨i j∥ab⟩|2
εa + εb − εi − ε j

. (9)

The zeroth- and first-order terms are identical in the HF and
CI expansions and cancel out when calculating the correlation
energy. We also note that the second-order contribution
consists of two terms, of which the first is identical
to the second-order HF contribution and associated with
relaxation. Only the second term contributes to the correlation
energy

Ecorr = ECI
2 − EHF

2 +O
�
Z−1�

=

ia

⟨i j ∥ ab⟩ ⟨ab ∥ i j⟩
εi + ε j − εa − εb

+O
�
Z−1� .

To the lowest order the correlation energy is thereby given
by the second-order Møller-Plesset energy evaluated using
the orbitals of the one-electron problem. It should be noted
that due to the scaling properties shown above the energy
contribution to any given order for an atom of charge Z2
can be obtained by calculating the same contribution for a
reference atom of charge Z1 and then scaling this contribution
by (Z2/Z1) of appropriate order.

C. Relativistic case

Let us next consider the relativistic two-electron atom.
We start from a Hamiltonian of the form

Ĥ = ĥD(1) + ĥD(2) + Vee, (10)

where the one-electron part is now given by the Dirac
Hamiltonian

ĥD = βmc2 + c (α · p) + VeN ,

where c is the speed of light and β and α =
�
αx,αy,αz

�
are

the 4 × 4 Dirac matrices. The fully relativistic two-electron
interaction involves the complete history of the electrons and
will in the present work be approximated by the instantaneous
Coulomb interaction

Vee =
e2

r12
+O

�
c−2� ≈ e2

r12
.

This truncated form defines the Dirac-Coulomb Hamiltonian,6

upon which most present-day 4-component relativistic
molecular calculations are based.

We first consider the one-electron problem

βmc2 + c (α · p) − Ze2

r


ϕZ = εZϕZ, (11)

using a point charge model for the nucleus.
In his seminal 1928 paper on the relativistic wave

equation for the electron,59 Dirac derived the radial equation
for hydrogenic systems, but did not provide an exact
solution. This was done independently by Gordon60 and
Darwin.61 Remarkable are also the elegant solution provided
by Pidduck62 in 1929 and the unified nonrelativistic and
relativistic approach of Swainson and Drake.63 Interestingly,
Hylleraas also considered the relativistic hydrogen atom.64

A recent historical account is provided by Mawhin and
Ronveaux.65

The energy spectrum of the relativistic hydrogen-
like atom is sketched in Figure 1. We have aligned the
relativistic energy scale with the nonrelativistic one by
setting E → E ′ = E − mc2. This is formally done by the
substitution β → β′ = β − mc2 in Eq. (11). The spectrum
shows bound solutions appearing in the forbidden 2mc2

energy gap of the relativistic free-particle problem. We may
try to connect solutions of systems with different nuclear
charge by coordinate scaling (7), as in the nonrelativistic case.
However, this leads to the result
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FIG. 1. Energy spectrum of a relativistic hydrogen atom. The energy has
been shifted by mc2 in order to align with the nonrelativistic energy scale.


βmc2 + Zc (α · p) − Z2e2

r


ϕZ = εZϕZ,

from which it is not possible to factor out the nuclear charge.
On the other hand, one may note that scaling (7) of position
implies scaling of velocity, since the latter is the time derivative
of the former. In the nonrelativistic case the velocity operator
is p/m and scaling is achieved automatically. In the relativistic
case the velocity operator is cα, and one realizes that the
coordinate scaling (7) has to be accompanied by velocity
scaling c → Z−1c

Z2

βm(c/Z)2 + (c/Z) (α · p) − e2

r


ϕZ = εZϕZ .

Pursuing this approach the inverse nuclear charge will appear
in front of the interaction term Vee of the two-electron
Hamiltonian (10), but the limit Z → ∞ cannot be attained,
since the energy gap 2mc2, in which the bound solutions
live (cf. Figure 1), closes at Z ∼ 137 and the Dirac equation
effectively breaks down. It is still possible to connect energy
contributions for an atom of charge Z2 to those of a reference
atom of Z1, but the reference calculation then has to be carried
out at the appropriate scaled speed of light.

For relativistic atoms the 1/Z-expansion has been
generalized to a double perturbation expansion in 1/Z
and Z2α2,66,67 where α is the fine-structure constant. We
shall, however, retain the same partitioning of the electronic
Hamiltonian as in the nonrelativistic case, the one-electron
part now given by the Dirac Hamiltonian. The HF perturbation
expansion is the same as in the nonrelativistic case (8), but
it will be useful to distinguish between orbital rotations κ++ai

between positive-energy occupied (i) and virtual (a) orbitals
and orbital rotations κ−+ai between the positive-energy occupied
orbitals and negative-energy virtual orbitals. We therefore
write the second-order HF energy contribution as

EHF
2;rel =


a+i+

���F
(2)
i+a+

���
2

ε+i − ε+a
+


a−i+

���F
(2)
i+a−

���
2

ε+i − ε−a
, (12)

where the first and second terms are associated with κ++ai and
κ−+ai , respectively. Without further modifications of the Dirac-
Coulomb Hamiltonian (10) the CI perturbation expansion
is the same as in the nonrelativistic case (9), but now
problematic, as pointed out by Brown and Ravenhall:3 an
infinite number of doubly excited Slater determinants ���0

ab
i j


,

with one virtual orbital from the positive-energy continuum
and the other from the negative-energy one, are degenerate
with the reference determinant |0⟩ and so the Dirac-Coulomb
Hamiltonian has no bound solutions. In order to cure what later
became known as the Brown-Ravenhall disease, Brown and
Ravenhall proposed to embed the Dirac-Coulomb Hamiltonian
by projection operators eliminating the troublesome negative-
energy orbitals. There are several possible choices of
projectors: (i) one might use the projector Λfree

+ based on
the free-particle solutions of the Dirac Hamiltonian, or (ii)
the projector Λbare

+ based on the bare-nucleus solutions of the
Dirac Hamiltonian, that is, the one-electron part of the Dirac-
Coulomb Hamiltonian, or (iii) the projector ΛHF

+ based on the
solutions of the relativistic Hartree-Fock problem, as proposed
by Mittleman.7 In the present contribution we also explore a
fourth possibility at the correlated level, which is to use the
projector ΛMCSCF

+ based on a no-pair full MCSCF,16 which, as
explained in the introduction, allows the optimization of the
projection operator at the correlated level.

It may be noted that the perturbation expansion of the
HF energy (8) at the 4-component relativistic level already
refers to projection in that the reference state was not selected
as the state with the lowest energy, rather as the lowest
bound state within the energy gap between the positive-
and negative-energy continua. One may further note that the
two terms of the second-order relativistic HF contribution
(12) have opposite signs due to the denominators and reflect
the minmax principle of Talman:68 in the present context it
expresses that the relativistic HF energy is minimized with
respect to κ++ai rotations, but maximized with respect to κ−+ai
rotations.16 Continuing to the correlated level the second-order
no-pair HF-CI contribution reads

ECI
2;rel =


a+i+

���F
(2)
i+a+

���
2

ε+i − ε+a
− 1

4


i+ j+


a+b+

|⟨i j∥ab⟩|2
ε+a + ε

+
b
− ε+i − ε+j

, (13)

where we explicitly indicate that all orbital energies are
positive. Based on this reference the correlation energy reads

Ecorr;CI ≈ ECI
2;rel − EHF

2;rel

= −1
4


i+ j+


a+b+

|⟨i j∥ab⟩|2
ε+a + ε

+
b
− ε+i − ε+j

−

a−i+

���F
(2)
i+a−

���
2

ε+i − ε−a
.

(14)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.120.229.21 On: Mon, 22

Aug 2016 08:56:17



074104-6 Almoukhalalati et al. J. Chem. Phys. 145, 074104 (2016)

It immediately becomes apparent that the correlation energy, in
addition to the MP2-like correlation contribution, of negative
sign, also contains a relaxation contribution, associated
with orbital rotations κ−+ai , also of negative sign. The latter
contribution can be removed by instead using a no-pair
full MCSCF as reference. In the nonrelativistic domain the
orbital rotations of an MCSCF using a full CI expansion
become redundant and the MCSCF calculation will give the
same energy as a full CI one.53 However, in the relativistic
domain, in the limit of a no-pair full HF-CI expansion, the κ++ai
rotations become redundant, but not the κ−+ai rotations, which
allow complete relaxation of the projection operator. In the
Appendix we derive a perturbation expansion of the MCSCF
energy using variational perturbation theory. In the present
case it takes the form

EMCSCF =


0
�
Ĥ0

�
0
�
+


0
�
Ĥ1

�
0
�
+ EMCSCF

2 + · · ·,

EMCSCF
2;rel = EHF

2;rel −
1
4


i+ j+


a+b+

|⟨i j∥ab⟩|2
ε+a + ε

+
b
− ε+i − ε+j

.
(15)

This leads to the correlation energy

Ecorr;MCSCF ≈ EMCSCF
2;rel − EHF

2;rel

= −1
4


i+ j+


a+b+

|⟨i j∥ab⟩|2
ε+a + ε

+
b
− ε+i − ε+j

, (16)

which now only contains correlation and is as such more
satisfying. On the other hand, one should note that the
MCSCF-based correlation energy has a smaller magnitude
than the CI-based one. This will be explored numerically in
Section IV.

III. COMPUTATIONAL DETAILS

A. Basis set generation

The energy-optimized basis sets, denoted dyall_1s2.Xz
(with X = 2-7), were determined as follows: the SCF sets
for the 1s2 ground states were optimized with the basis
set adaption of the GRASP program69,70, using the standard
Gaussian model for the nucleus71, and the Dirac-Coulomb
Hamiltonian. An initial set was taken for Kr from the 4z basis
set of Dyall,72 in which the s exponent set was truncated to
include only the tightest 20 functions. This set was reoptimized
for the two-electron ion. Smaller sets were obtained by
removing one tight function at a time and reoptimizing the
basis sets. In this way, sets from 6 s to 20 s were generated.
The same was done for Xe, Rn, and Uuo (using the basis sets
from Refs. 72 and 73). For Ar, Ne, and He, the optimized Kr
sets were used as input and the exponents were scaled and then
optimized.

After generating these sets, the large component of
each set was examined and compared with those of other
elements, to choose basis sets that had approximately the same
coefficients for the maximum of the radial wave function.
The smallest set in each case was 6 s, which was used
for the double-zeta (2z) set; it has three functions with
large coefficients. This choice is in line with the observation
that, for energy balance, the first, nodeless, shell of a given

TABLE I. Number of s functions in the SCF sets for the two-electron rare
gas ions.

Basis He Ne Ar Kr Xe Rn Uuo

2z 6 6 6 6 6 6 6
3z 9 9 9 10 10 10 9
4z 11 11 11 12 12 12 11
5z 13 13 14 14 14 13 12
6z 14 16 16 16 16 14 13
7z 16 18 18 18 17 16 14

angular momentum usually has one more Gaussian for the
outer radial maximum than those that have nodes. Sets of
s functions of 2z, 3z, 4z, 5z, 6z, and 7z quality were
thereby determined. The sizes of the sets are reported in
Table I.

The correlating sets were optimized with the RAMCI
program,74 with common exponents for the spin-orbit
components for each ℓ value. Optimizations were performed
by considering single and double excitations into a virtual
space that consisted of functions with a single ℓ value (and
both j values). Each spinor in the correlating space was
derived from a single Gaussian function, for which the large
and small components were determined by diagonalization of
the 2 × 2 Fock matrix in a Thomas-Fermi potential. The set
of spinors thus derived was orthogonalized before performing
the CI calculations. Optimizations were performed to produce
correlating sets with up to 6 p functions, 5 d functions, 4 f
functions, 3 g functions, 2 h functions, and 1 i functions. These
sets were combined to form 1p, 2p1d, 3p2d1f, 4p3d2f1g,
5p4d3f2g1h, and 6p5d4f3g2h1i correlating sets for the 2z, 3z,
4z, 5z, 6z, and 7z basis sets, respectively.

The energy increments for adding functions in each
angular space are presented in Table II. These increments
were taken from the optimizations, where only one angular
momentum at a time was considered. Thus, the first value
in each column is the difference from the SCF energy,
the second is the difference between the correlation energy
with one function and with two functions, and so on. The
energy increments for each angular momentum are roughly
comparable for the addition of each shell (common n). For
the larger basis sets we observe that for high Z the addition of
lower angular momentum functions becomes more important,
whereas at lower Z it is the higher angular functions that
are more important. The change in behavior starts at about
Kr. Despite the overlap in the ranges of the increments for
different shells, shell-wise addition of functions is probably to
be preferred to a strict energy cutoff for defining the correlating
sets.

B. Other computational details

All calculations in this work have been carried out using
the DIRAC package for relativistic molecular calculations75

and are based on the Dirac-Coulomb Hamiltonian. The default
setting of the present release is to use the DC Hamiltonian,
but to replace the expensive calculation of two-electron
integrals containing small components only by a simple
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TABLE II. Correlation energy increments in microhartrees (µEh) for addition of functions in each angular
space.

ℓmax

Atom n 1 2 3 4 5 6

He
2 −17 826.69
3 −4 217.13 −2432.96
4 −748.21 −760.17 −604.98
5 −156.10 −210.77 −234.72 −205.61
6 −41.40 −65.22 −84.01 −92.87 −84.96
7 −13.67 −23.32 −32.40 −39.27 −42.86 −40.16

Ne
2 −20 365.53
3 −4 464.76 −2710.50
4 −766.03 −785.07 −666.57
5 −160.85 −208.19 −241.07 −224.79
6 −43.58 −62.95 −82.23 −95.17 −92.25
7 −14.57 −22.20 −30.70 −38.36 −43.84 −43.31

Ar
2 −20 467.82
3 −4 504.62 −2697.58
4 −771.94 −776.24 −657.58
5 −161.34 −203.52 −235.37 −219.82
6 −43.49 −60.82 −79.31 −92.04 −89.43
7 −14.47 −21.22 −29.30 −36.69 −42.08 −41.65

Kr
2 −20 027.59
3 −4 644.17 −2569.82
4 −824.38 −758.18 −614.55
5 −176.54 −201.76 −225.00 −202.88
6 −48.15 −60.97 −77.25 −87.31 −82.08
7 −16.20 −21.44 −29.02 −35.64 −39.91 −38.25

Xe
2 −19 252.18
3 −4 965.91 −2419.29
4 −961.75 −773.03 −578.38
5 −217.71 −218.30 −227.82 −193.43
6 −61.43 −68.71 −82.67 −89.02 −79.92
7 −21.46 −24.90 −32.39 −38.29 −41.26 −38.21

Rn
2 −17 870.22
3 −6 084.90 −2291.78
4 −1 469.82 −891.99 −580.19
5 −388.99 −294.68 −265.50 −206.76
6 −123.60 −104.11 −109.37 −106.93 −90.66
7 −47.77 −41.13 −47.37 −51.05 −51.37 −45.66

Uuo
2 −17 771.05
3 −8 203.67 −2505.91
4 −2 701.92 −1214.42 −687.20
5 −909.07 −496.91 −372.31 −260.02
6 −341.35 −208.00 −180.15 −154.14 −119.25
7 −146.68 −93.30 −89.02 −83.72 −75.76 −62.18

Coulombic energy correction.76 This approximation was,
however, deactivated in the present work (using the .DOSSSS
keyword). The electron-nucleus interaction was described in
terms of a Gaussian nuclear charge distribution

ρGnuc (r) = ρG0 exp
�
−ηr2� , ρG0 =

(
η

π

)3/2
,

where the exponent was chosen so as to reproduce the
empirical formula
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r2
n

�1/2
=
�
0.836 A1/3 + 0.570

�
,

for the root mean square (rms) nuclear charge radii (in fm).71,77

This leads to a dependence on atomic mass numbers A in the
Hamiltonian, but provides smoother basis set convergence
since the (weak) singularity of the electronic wave function
at nuclear origins, associated with nuclear point charges, is
removed. The mass numbers used were (from He to Uuo) 4,
20, 40, 84, 132, 222, and 294.

The variational no-pair full HF-CI and full MCSCF
calculations were carried out using the Kramers-restricted
MCSCF module of DIRAC,78,79 which in turn uses the
LUCIAREL CI module.80,81 Convergence problems were
observed for the heaviest atoms and were related to
optimization of positive-energy orbitals with extremely small
occupation numbers (orbital rotation between a negative-
energy orbital and an empty positive-energy orbital is
redundant and does not change the energy at all). These
problems were identified and fixed. In addition to the fully
optimized Hartree-Fock calculations of the two-electron rare
gas atoms we also performed calculations using the free-
particle projector Λfree

+ as well as the bare-nucleus projector
Λbare
+ (keywords .FREEPJ and .VEXTPJ, respectively). In

these calculations finite basis set representations of the
Dirac Hamiltonian defining the projector were first built and
diagonalized, and then the negative-energy solutions were
projected out of the variational space in the orthonormal basis
(for simplicity and numerical stability).

We also calculated second-order energy contributions
to the HF, HF-CI, and MCSCF energies (Eqs. (12), (13),
and (15), respectively). The second-order relativistic HF
contribution was calculated using the SCF linear response
module in the uncoupled mode (keyword .UNCOUP).82

The 2-electron Fock matrix was first constructed using the
orbitals of the one-electron problem and then defined as an
operator (keyword FOCKMAT). Contributions from κ++ai and
κ−+ai rotations were separated using the .SKIPEP and .SKIPEE
keywords, respectively. The MP2-like part of the second-order
HF-CI and MCSCF correlation energies (16) was calculated
using the direct MP2 module of DIRAC,83 but using orbitals
from the one-electron problem.

IV. RESULTS AND DISCUSSION

We first carried out relativistic HF calculations on
the selected two-electron atoms using different projection
operators. The results are compiled in Table III. With respect
to the reference ΛHF

+ projector, one sees that the free-particle
projector Λfree

+ shows very poor performance, giving errors of
−20 mEh for Ne8+ and exploding to −2677 Eh for Uuo116+, in
line with the theoretical analysis of Heully et al.5 and previous
numerical results.6 The bare-nucleus projector Λbare

+ , on the
other hand, is a good approximation toΛHF

+ , giving an error less
than −10 mEh for an atom as heavy as Uuo116+. This is not that
surprising since the shielding of the nuclear charge by the other
1s1/2 electron is only approximately 0.3 according to Slater’s
rules.84 Still according to Slater’s rules, the shielding of 1s1/2
electrons will be the same in the neutral atoms, whereas the
shielding will be more significant for outer shells. However,

TABLE III. Hartree-Fock energies (in Eh) of the two-electron rare gas atoms
based on the Dirac-Coulomb Hamiltonian using different projection operators
and the dyall_1s2.6z basis.

Z DC(ΛHF
+ ) DC(Λbare

+ ) DC(Λfree
+ )

2 −2.861 813 −2.861 813 −2.861 820
10 −93.982 761 −93.982 762 −94.002 680
18 −314.199 521 −314.199 525 −314.513 907
36 −1 296.165 168 −1 296.165 234 −1 303.570 815
54 −3 002.947 488 −3 002.947 788 −3 049.385 180
86 −8 245.261 661 −8 245.263 456 −8 674.425 715
118 −18 090.944 596 −18 090.952 854 −20 767.807 429

the deviation from the bare-nucleus situation for outer shells
will be compensated by the reduction of relativistic effects as
one moves from core to valence. The bare-nucleus projector
is therefore expected to be a good approximation to ΛHF

+

also for the neutral atoms, as shown in Table 1 of Ref. 6.
Under all circumstances, there is no computational savings
achieved through the use of Λbare

+ , so the ΛHF
+ projector is

clearly to be preferred in 4-component HF calculations. In
passing one may also note that 4-component calculations
based on the projectors Λfree

+ and Λbare
+ mimic the use of the

2-component first-order Douglas-Kroll-Hess (DKH1)85–87 and
eXact 2-Component (X2C)88–90 Hamiltonians, respectively,
and illustrate their relative performance (the second-order
DKH2 Hamiltonian is closer to X2C than to DKH1).6,91

We now turn to correlated calculations. It was noted by
Tatewaki and Watanabe14 that no-pair full CI results for the
helium isoelectronic series differed according to whether the
positive-energy orbitals were generated from a HF calculation
or by diagonalization of the Dirac Hamiltonian. At the no-pair
full CI level the latter results can be reproduced by carrying
out a HF calculation using the bare-nucleus projector Λbare

+ ,
as above. The dependence of the no-pair full CI results on the
choice of projector is easily understood since the separation
of the positive- and negative-energy space depends on the
potential. We argue, in line with Mittleman7 as well as Saue
and Visscher,16 that any ambiguity is removed by optimizing
the projectors to the actual potential experienced by the
electrons.

In Table IV we report total energies of the two-electron
rare gas atoms obtained at different levels of theory using
the dyall_1s2.6z basis. Results for all basis sets dyall_1s2.Xz
(with X = 2-7) are given in the supplementary material.113

We remind the reader that these results are obtained with
a Gaussian model for the nuclear charge distribution.71 In
Table V and Figure 2 we show the corresponding correlation
energies. We first note that the nonrelativistic correlation
energy is close to the reference value −0.046 67 Eh of Eq. (3).
The deviation is in part due to the use of a Gaussian nucleus in
the present calculations. The nonrelativistic correlation energy
is, however, not constant with respect to nuclear charge, as
suggested by Eq. (3). This is easily understood as an artifact
of our calculations, since we have used basis sets optimized
for relativistic calculations that thereby become increasingly
poor for the heavier atoms. Indeed, we see that the correlation
energy is reduced as a function of nuclear charge, in line
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TABLE IV. Total energies (in Eh) of the two-electron rare gas atoms using the dyall_1s2.6z basis.

Nonrelativistic 4-component relativistic (DC)

Z HF CI HF HF-CI MCSCF

2 −2.861 680 −2.903 452 −2.861 813 −2.903 585 −2.903 585
10 −93.861 077 −93.906 282 −93.982 761 −94.027 915 −94.027 913
18 −312.860 496 −312.906 101 −314.199 521 −314.244 994 −314.244 978
36 −1 273.597 042 −1 273.642 893 −1 296.165 168 −1 296.210 997 −1 296.210 809
54 −2 882.268 657 −2 882.314 567 −3 002.947 488 −3 002.994 523 −3 002.993 873
86 −7 341.554 142 −7 341.599 913 −8 245.261 661 −8 245.316 411 −8 245.313 992
118 −13 846.936 084 −13 846.980 364 −18 090.944 596 −18 091.033 473 −18 091.025 293

TABLE V. Correlation energies (in Eh) of the two-electron rare gas atoms using the dyall_1s2.6z basis and differ-
ent models. ∆MC/CI is the difference in correlation energy between the MCSCF and HF-CI. NR: nonrelativistic;
R: relativistic.

Variational Perturbative

Z CI(NR) HF-CI(R) MCSCF(R) ∆MC/CI HF-CI(R) MCSCF(R) ∆MC/CI

2 −0.041 772 −0.041 772 −0.041 772 0.000 000 −0.046 025 −0.046 025 0.000 000
10 −0.045 205 −0.045 154 −0.045 152 0.000 002 −0.046 040 −0.046 039 0.000 001
18 −0.045 605 −0.045 473 −0.045 457 0.000 016 −0.045 963 −0.045 953 0.000 010
36 −0.045 851 −0.045 829 −0.045 641 0.000 188 −0.046 198 −0.046 061 0.000 136
54 −0.045 910 −0.047 035 −0.046 385 0.000 650 −0.047 816 −0.047 202 0.000 615
86 −0.045 771 −0.054 750 −0.052 331 0.002 419 −0.058 574 −0.054 931 0.003 642
118 −0.044 280 −0.088 877 −0.080 697 0.008 180 −0.106 101 −0.089 368 0.016 733

with the minimization principle of nonrelativistic theory.
The relativistic correlation energy obtained using no-pair
full HF-CI as reference is clearly not constant with respect
to nuclear charge, but agrees well with the energies reported
by Watanabe and Tatewaki46 (indicated by the dashed line in
Figure 2), who used a uniformly charged sphere model for
the nuclear charge distribution. As discussed in Section II
C, a constant correlation energy can only be obtained by
scaling of the speed of light. The relativistic correlation
energy obtained using the no-pair full MCSCF is smaller than
the full HF-CI counterpart, in agreement with the theoretical
analysis of Section II C as well as the minmax principle of
relativistic SCF.16,68 The difference between the correlation
energies obtained with no-pair full HF-CI and full MCSCF
stays below 10 mEh. However, for Rn84+ it amounts to about
530 cm−1, and it would be interesting to know the impact of
such an energy difference when calculating QED effects.

In Table V we also report approximate correlation
energies calculated according to formulas (14) and (16). These
values agree quite well with the ones obtained by variational
calculations (perhaps with the exception of the full HF-CI
correlation energy for Uuo116+) and confirm the relevance of
the theoretical analysis in Section II.

Since we have a systematic series of correlation-
consistent basis sets at our disposal, we may investigate
the convergence of the HF-CI and full MCSCF correlation
energies in terms of the one-electron basis. From the
nonrelativistic domain the convergence is known to be
painstakingly slow due to the presence of a cusp at the point
of coalescence of two electrons,92 prompting the comment:
“We may regard the standard CI approach as a brave attempt

to expand the nondifferentiable interelectronic distance r12
in products of one-electron functions.”93 Schwartz found that
the partial wave increment of the second-order energy of
the 1/Z expansion (9) is to leading order proportional to
(ℓ + 1/2)−4,94,95 a result generalized to the variational case
by Hill.96 This result implies that the truncation error is to
leading order (ℓ + 1)−3, that is, it has an inverse cubic scaling
with respect to the lowest angular momentum value absent
in the partial wave expansion. Klopper and co-workers,97 on
the other hand, suggested, based on observations by Carroll
et al.,98 that the truncation error in an expansion of the exact

FIG. 2. Correlation energies (in Eh) of the two-electron rare gas atoms as a
function of nuclear charge Z , using the dyall_1s2.6z basis. NR: nonrelativis-
tic; R: relativistic. The blue dashed line refers to fullCI results (best estimate)
of Watanabe and Tatewaki.46
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TABLE VI. Fits of HF-CI and full MSCF correlation energies (in Eh) to the formula Ecorr,X = Ecorr,∞+aX−b,
where X is the cardinal number of the dyall_1s2.Xz basis set. Corr.cf. = correlation coefficient.

HF-CI full MSCF

Z Ecorr,∞ a b Corr.cf. Ecorr,∞ a b Corr.cf.

2 −0.042 120 0.057 06 2.8761 0.999 98 −0.042 098 0.057 76 2.8976 0.999 98
10 −0.045 781 0.065 12 2.5963 0.999 96 −0.045 779 0.065 13 2.5966 0.999 96
18 −0.046 121 0.066 41 2.5892 0.999 95 −0.046 102 0.066 55 2.5926 0.999 95
36 −0.046 486 0.067 85 2.5943 0.999 95 −0.046 303 0.069 00 2.6161 0.999 95
54 −0.047 756 0.068 87 2.5515 0.999 94 −0.047 128 0.070 83 2.5767 0.999 98
86 −0.055 768 0.072 14 2.3652 0.999 92 −0.053 210 0.080 89 2.4900 0.999 79
118 −0.091 747 0.074 22 1.8187 0.999 24 −0.082 685 0.089 07 2.0924 0.999 84

helium ground state function in terms of orbital principal
quantum number n scales as n−3, a result further corroborated
by Kutzelnigg.99 Although the definition of the principal
quantum number for a general molecular orbital is less than
obvious, the principal expansion is useful in that it corresponds
closely to the construction of correlation-consistent basis sets,
where basis functions are added in shell-wise fashion such that
the cardinal number X may be associated with the principal
quantum number n. Indeed, successful basis set extrapolation
schemes have been based on the approximate formula100–102

Ecorr,X = Ecorr,∞ + aX−3.

When the nonrelativistic electronic Hamiltonian is
replaced by the Dirac-Coulomb Hamiltonian, the correlation
cusp is replaced by a weak singularity,103,104 analogous to what
is observed at the point of coalescence of an electron and a
point nucleus. One may therefore expect slower convergence
of the correlation energy with respect to the one-electron
basis. Salomonsen and Öster 105 found that the partial wave
increment of the ground-state helium correlation energy, in
a calculation equivalent to the use of the Dirac-Coulomb
Hamiltonian with bare-nucleus projectors Λbare

+ , goes as
(ℓ + 1/2)−2 and indeed much slower than the corresponding
nonrelativistic expansion. Kutzelnigg et al.106,107 arrived at the
same result in the framework of direct perturbation theory. Of
interest in the present context is also the computational study
by Halkier et al. who found that the basis-set convergence of
the correlation contribution to the two-electron Darwin term in
nonrelativistic calculations obeyed a X−1 scaling with respect
to the cc-pVXZ basis sets.108 Based on the above observations,
we have fitted the HF-CI and full MCSCF correlation energies,
given in the supplementary material,113 to the formula

Ecorr,X = Ecorr,∞ + aX−b.

The results of the fits are given in Table VI. In all cases the
correlation coefficient109 is close to one and the listed value of
Ecorr,∞may be considered our best estimate for the correlation
energy. In the case of HF-CI, the fitted exponent b for helium
is close to three, but reduces to 1.72 for Uuo116+. This is
clearly better than the X−1 behaviour suggested by previous
studies. In the case of full MCSCF the convergence is even
faster, corresponding to X−2. As such this is good news for
relativistic correlated calculations, but the notable variation of
the fit parameters for different Z calls for further study.

V. CONCLUSIONS AND PERSPECTIVES

The goal of the present work is to provide a proper
definition of electron correlation energy within a well-defined
model for relativistic molecular calculations, which is the
no-pair approximation. Present-day relativistic molecular
electronic structure calculations treat the negative-energy
orbitals as an orthogonal complement which is continuously
updated at the SCF level and frozen at the correlated level.
We argue, however, as did Mittleman7 as well as Saue
and Visscher,16 that the projectors in which the Dirac-
Coulomb Hamiltonian is embedded should be optimized
also at the correlated level. This is possible with a no-
pair full MCSCF calculation, that is, an MCSCF calculation
based on a no-pair full CI expansion, but including orbital
rotations κ−+ai between positive-energy occupied orbitals and
negative-energy virtual orbitals. By theoretical analysis based
on variational perturbation theory we find that the energy
difference with respect to Hartree-Fock is, to the lowest order,
a pure MP2-like correlation contribution, whereas using no-
pair full HF-CI as reference leads to an additional relaxation
contribution associated with the κ−+ai rotations. Calculations
on the two-electron rare gas atoms show that full optimization
of the projection operator

Λ
HF
+ → ΛMCSCF

+

reduces the correlation energy in accordance with the
underlying minmax-principle and our theoretical analysis.
We may add that such optimization is also possible within a
truncated no-pair MCSCF, but will require inclusion of orbital
rotations κ++ai involving positive-energy virtual orbitals, since
they are no longer redundant. We would also like to stress
that no-pair full MCSCF, rather than no-pair full CI, provides
the reference correlation energy in the relativistic domain also
when two-electron terms beyond the instantaneous Coulomb
interaction, such as the Gaunt or Breit terms, are added. We
plan to explore this in future work.

An interesting observation from the present study is that
the relativistic correlation energy, obtained by no-pair full
MCSCF calculations, scales at worst as X−2 in terms of the
cardinal number of the dyall_1s2.Xz basis sets optimized for
the two-electron atoms. This is certainly more promising
than the X−1 scaling suggested in previous studies, but
slower than the X−3 observed in the nonrelativistic domain.
The basis set convergence can be significantly improved
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by switching to explicitly correlated methods.39–41 However,
the formulation of such methods within the relativistic
no-pair approximation is less straightforward due to the
need to eliminate determinants that lead to continuum
dissolution, yet recently promising steps have been taken
in this direction.104,110

For the helium isoelectronic series the correlation energy
is not, to the lowest order, independent of nuclear Z , as in the
nonrelativistic domain.46 Our analysis suggests that coordinate
scaling (7) should be accompanied by velocity scaling. In the
nonrelativistic domain this comes about automatically and
leads to the well-known 1/Z expansion for the correlation
energy, whereas explicit scaling of the speed of light would
be necessary in the relativistic domain.

A challenge for future work is to reproduce the
correlation energies obtained at the no-pair full MCSCF
level and shown in Figure 2 using coupled cluster (CC)
theory. This would require inclusion of the relaxation of the
negative-energy orbitals in CC calculations, without explicit
correlation of these orbitals. Such relaxation is also necessary
for calculations of magnetic properties based on response
theory.26 In a longer perspective we would also like to
go beyond the no-pair approximation and connect modern
relativistic quantum chemical variational methods to QED.
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APPENDIX: VARIATIONAL PERTURBATION THEORY
1. Introduction

In the following we shall employ variational perturbation
theory as defined by Helgaker and Jørgensen49 and which
underpins modern response theory: we start from a
Hamiltonian

Ĥ = Ĥ0 + λĤ1

parametrized in terms of a perturbation strength λ. We seek
a variational solution in terms of some suitable trial function
Φ with variational parameters collected in the vector ς̃ and
such that the energy, defined as the expectation value of the
Hamiltonian, becomes a function of those, that is

E ≡ E (ς̃) = E0 + λE1, Ek =


Φ (ς̃) �Ĥk

�
Φ (ς̃)� .

A key ingredient of variational perturbation theory is the
assumption that the energy is optimized for any value of the
perturbation strength, that is

∂E
∂ςi

�����λ
= 0, (A1)

which implies that the optimal values ς of the variational
parameters are functions of the perturbation strength

ς ≡ ς (λ) .
We write the perturbation expansion of the energy as a Taylor
series with respect to λ = 0

E (λ) = E0 +
dE
dλ

�����λ=0
λ +

1
2

d2E
dλ2

�����λ=0
λ2 + · · ·

such that the nth-order correction to the energy is expressed
in terms of the nth-order total energy derivative at zero field
strength. Explicit expressions for the first two derivatives
are

dE
dλ

�����λ=0
=



∂E
∂λ
+


i

∂E
∂ςi

dςi
dλ

λ=0

=
∂E
∂λ

�����λ=0
,

d2E
dλ2

�����λ=0
=



∂2E
∂λ2 +


i

∂2E
∂λ∂ςi

dςi
dλ
+


i

∂E
∂ςi

d2ςi

dλ2

λ=0

=



∂2E
∂λ2 +


i

∂2E
∂λ∂ςi

dςi
dλ

λ=0

,

where the simplifications are due to the variational condition
(A1). Further simplifications are obtained by assuming that the
trial function has no explicit dependence on the perturbation
strength

dE
dλ

�����λ=0
=


Φ (0) �Ĥ1

�
Φ (0)� ,

d2E
dλ2

�����λ=0
=




i

∂E1

∂ςi

λ=0

ς
[1]
i , ς

[n]
i =

dnςi
dλn

�����λ=0
.

The first-order energy obeys the Hellmann-Feynman theorem.
The nth-order variational parameters ς[n] are in turn

determined from the variational condition (A1). For
instance, the first-order variational parameters are determined
by


d

dλ

(
∂E
∂ςi

)
λ=0
=



∂2E
∂λ∂ςi

+

j

∂2E
∂ςi∂ς j

dς j

dλ

λ=0

= 0, (A2)

which simplifies to



∂E1

∂ςi
+


j

∂2E0

∂ςi∂ς j
ς
[1]
j

λ=0

= 0, (A3)

when there is no explicit dependence of the trial function
on the perturbation strength λ. We may recast the latter
expression on matrix form as

E[2]
0 ς

[1] = −E[1]
1 ,

where appears the Hessian matrix E[2]
0 and the gradient vector

E[1]
1 with elements

E[2]
0;i j =

∂2E0

∂ςi∂ς j

�����λ=0
, E[1]

1;i =
∂E1

∂ςi

�����λ=0
.

The variational parameters obey the (2n + 1) rule in that
variational parameters to order n define the energy through
order (2n + 1). In passing it may be interesting to note
that whereas the (2n + 1) rule is attributed to Wigner
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(1935),111 Hylleraas was clearly aware of it five years
earlier.51,112

2. Two-electron atoms

In Secs. 3–5 of the Appendix we restrict attention to
two-electron atoms and partition the electronic Hamiltonian
according to the Hylleraas scheme. In second quantization the
zeroth- and first-order Hamiltonians read

Ĥ0 =

pq

hpq p̂†q̂, (A4)

Ĥ1 =
1
4


pqr s

⟨pr ∥ qs⟩ p̂†r̂†ŝq̂, (A5)

with the antisymmetrized two-electron integrals in Dirac
notation

⟨pr ∥ qs⟩ = ⟨pr |qs⟩ − ⟨pr |sq⟩ .
In the following we shall consider three variational

methods: Hartree-Fock (HF), Configuration Interaction (CI),
and Multiconfigurational SCF (MCSCF), where the former
two may be considered as special cases of the latter. We
shall employ exponential parametrizations which preserve
the normalization of the reference (zero-field) solution and
thereby allow unconstrained optimization techniques (no
Lagrange multipliers). They furthermore allow straightfor-
ward identification and elimination of redundant variational
parameters, that is, parameters whose values do not change
the energy or whose effect can be described as a linear
combination of other parameters.

3. Hartree-Fock

The Hartree-Fock trial function is parametrized in terms
of the orbital rotation operator54–56 κ̂

|HF⟩ = exp [−κ̂] |0⟩ , κ̂ =

pq

κpq p̂†q̂, (A6)

where the matrix κ is anti-Hermitian (κpq = −κ∗qp) to assure
unitarity of the exponential operator. Here and in the
following indices i, j, k, l, . . . refer to occupied orbitals, indices
a,b,c,d, . . . refer to virtual orbitals, and indices p,q,r, s, . . .
refer to general orbitals. In terms of non-redundant parameters
the orbital rotation operator is expressed as

κ̂ =

ai

�
κaiâ†î − κ∗aiî

†â
�
.

Using the Baker-Campbell-Haussdorff (BCH) expansion an
expansion of the energy in orders of the variational parameters�
κpq

	
is obtained

EHF =


0
�
exp [κ̂] Ĥ exp [−κ̂]� 0� = 


0
�
Ĥ
�
0
�

+


0
��
κ̂, Ĥ

��
0
�
+

1
2


0
��
κ̂,
�
κ̂, Ĥ

���
0
�
+O

(
κ3
pq

)
,

which simplifies the calculation of energy derivatives. Further
simplification is obtained by noting that53

H̃ =
�
κ̂, Ĥ

�
=


pq

h̃pq p̂†q̂ +
1
4


pqr s

⟨pr ∥ qs⟩p̂†r̂†ŝq̂, (A7)

where appear one-index transformed integrals

h̃pq =

t

�
κpthtq − hptκtq

	
,

⟨pr ∥ qs⟩ =

t

��
κpt ⟨tr ∥ qs⟩ − ⟨pr ∥ ts⟩ κtq�

+
�
κr t ⟨pt ∥ qs⟩ − ⟨pr ∥ qt⟩ κtq�	 .

The HF energy expectation value may therefore be expressed
as a sum of expectation values of increasingly nested
Hamiltonians

EHF =


0
�
Ĥ
�
0
�
+


0
�
H̃
�
0
�
+

1
2


0 ���

˜̃H ��� 0

+O

(
κ3
pq

)
,

all with the same structure


0
�
Ĥ
�
0
�
=


i

hii +
1
2


i j

⟨i j ∥ i j⟩ ,

but expressed in terms of increasingly transformed integrals.
With our specific choice of zeroth-order Hamiltonian the

HF Hessian matrix is given by

EHF[2]
0 =



A B
B∗ A∗


,

Aai,b j =
∂2EHF

0

∂κ∗ai∂κb j

������λ=0

= δabδi j (εa − εi)

Bai,b j =
∂2EHF

0

∂κ∗ai∂κ
∗
b j

������λ=0

= 0

.

(A8)

The HF gradient vector takes the form

EHF[1]
1 =



g
g∗

, gai =

∂EHF
1

∂κ∗ai

������λ=0

= −F(2)
ai ,

where appear elements of the two-electron Fock matrix

F(2)
pq =


j

⟨pj || q j⟩ , (A9)

albeit with the important difference that it is expressed in terms
of the orbitals of the one-electron system. The second-order
HF energy therefore reads

EHF
2 =

1
2

d2EHF

dλ2

�����λ=0
=


ai

���F
(2)
ia
���
2

εi − εa
.

In the nonrelativistic case each individual term of the second-
order contribution is negative, reflecting that orbital relaxation
lowers the total energy.

4. Configuration interaction

The CI trial function is parametrized in terms of the state
transfer operator57 Ŝ

|CI⟩ = exp
�
−Ŝ

� |0⟩ ,
Ŝ =


M ∈{|M⟩}/{|0⟩}

�
sM |M⟩ ⟨0| − s∗M |0⟩ ⟨M |� ,

(A10)

where the summation runs over the elements of the
N-particle (determinant) basis {|M⟩} excluding the reference
determinant |0⟩. The CI Hessian is given by
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ECI [2]
0 =



A B
B∗ A∗


,

AM,N =
∂2ECI

0

∂s∗M∂sN

������λ=0

= δMN (EM − E0)

BM,N =
∂2ECI

0

∂s∗M∂s∗N

������λ=0

= 0

,

(A11)

whereas the CI gradient assumes the form

ECI [1]
1 =



g
g∗

, gM =

∂ECI
1

∂s∗M

������λ=0

= −


M |Ĥ1|0� .

Using these expressions and solving the first-order response
equation we find that the second-order CI energy may be
expressed as

ECI
2 =

1
2

d2ECI

dλ2

�����λ=0
= −


M,0



0|Ĥ1|M� 


M |Ĥ1|0�
EM − E0

.

Since Ĥ1 is a two-electron operator,


0|Ĥ1|M�

can only be
non-zero for singly or doubly excited determinants |M⟩, and
we may recast the above expression as

ECI
2 = −


ia



0|Ĥ1|0a

i

� 

0a
i |Ĥ1|0�

Ea
i − E0

− 1
4


i j


ab


0|Ĥ1|0ab

i j

 
0ab
i j |Ĥ1|0


Eab
i j − E0

=

ai

���F
(2)
ia
���
2

εi − εa
− 1

4


i j


ab

|⟨i j∥ab⟩|2
εa + εb − εi − ε j

.

The first term can be recognized as the second-order HF energy
and therefore cancels out when considering the nonrelati-
vistic CI correlation energy. To the lowest order we thus
obtain

ECI
corr,2 = ECI

2 − EHF
2 = −

1
4


i j


ab

|⟨i j∥ab⟩|2
εa + εb − εi − ε j

,

which is identical to the second-order Møller-Plesset energy,
but with the important difference that it is expressed in the
orbitals of the one-electron problem.

5. Multiconfigurational SCF

The MCSCF trial function is parametrized in terms of
both κ̂ and Ŝ

|MC⟩ = exp [−κ̂] exp
�
−Ŝ

� |0⟩ . (A12)

In the present case the MCSCF gradient is given by

EMCSCF[1]
1 =



go

g∗o
gc

g∗c



,

go,ai =
∂EMCSCF

1

∂κ∗ai

������λ=0

= −F(2)
ai

gc,M =
∂EMCSCF

1

∂s∗M

������λ=0

= −


M |Ĥ1|0�

,

whereas the MCSCF Hessian assumes the structure

EMCSCF[2]
0 =



E[2]
0;oo E[2]

0;oc

E[2]
0;co E[2]

0;cc


.

In the present case the pure orbital part E[2]
oo and the pure

configurational part E[2]
cc are analogous to the HF Hessian

(A8) and CI Hessian (A11), respectively, whereas the mixed
orbital-configurational part E[2]

oc is given by

EMCSCF[2]
0;oc =



A B
B∗ A∗


,

Aai,N =
∂2EMCSCF

0

∂κ∗ai∂sN

������λ=0

=


0a
i |N

� �
Ea
i − E0

�
=


0a
i |N

� (εa − εi)

Bai,N =
∂2EMCSCF

0

∂κ∗ai∂s∗N

������λ=0

= 0

.

The corresponding response equations are
b j

Aai,b jκ
(1)
b j
+


b j

Bai,b jκ
(1)∗
b j
+


N

Aai,N s(1)N +


N
Bai,N s(1)∗N = −gai,

b j
AM,b jκ

(1)
b j
+


b j

BM,b jκ
(1)∗
b j
+


N

AM,N s(1)N +


N
BM,N s(1)∗N = −gM,

and their complex conjugate partners. They translate into

(εa − εi) κ(1)ai +


N



0a
i |N

� (εa − εi) s(1)N = F(2)
ai ,

b j


M |0b

j

 �
εb − ε j

�
κ
(1)
b j
+ (EM − E0) s(1)M =



M |Ĥ1|0� .

For |M⟩ = �
0a
i

�
the above two equations become identical, showing that if both the determinant |M⟩ = �

0a
i

�
is present in the

CI-expansion of the MCSCF trial function and the orbital rotation operator κai is included, then linear dependency will occur
in the first-order response equation, indicating the possible presence of redundant variational parameters. Generally it is known
that if the N-particle basis {|M⟩} is complete, then the orbital rotation parameters

�
κpq

	
become redundant.53 In the case of

no-pair full MCSCF the κ++ai rotations are redundant, but not the κ−+ai rotations. The former parameters are accordingly excluded,
whereas the response equation for the latter simplifies to

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.120.229.21 On: Mon, 22

Aug 2016 08:56:17



074104-14 Almoukhalalati et al. J. Chem. Phys. 145, 074104 (2016)

�
ε−a − ε+i

�
κ
(1)−+
ai = F(2)

a−i+.

The second-order MCSCF energy is then given by

EMCSCF
2;rel = EHF

2;rel −
1
4


i+ j+


a+b+

|⟨i j∥ab⟩|2
ε+a + ε

+
b
− ε+i − ε+j

.
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