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Abstract

Radial fluxes of parallel momentum due to E × B and magnetic
drifts are shown to be correlated in tokamak plasmas. This correla-
tion comes from the onset of poloidal convective cells generated by
turbulence. The entire process requires a symmetry breaking mech-
anism, e.g. a mean shear flow. An analytical calculation shows that
anti-correlation between the poloidal and parallel components of the
turbulent Reynolds stress results in anti-correlation of the fluxes of
parallel momentum generated by E ×B and curvature drifts.

1 Introduction

Calculating particle, momentum and heat fluxes is of utmost impor-
tance in magnetized fusion plasmas. Indeed the confinement time
is mainly determined by fluxes across the magnetic surfaces. These
fluxes can be computed as velocity momenta of the distribution func-
tion for each species. At the microscopic level, the motion of a charged
particle in a strong guide field can be separated into a cyclotron and
gyrocenter motion. The velocity of particle gyrocenters perpendicular
to the magnetic field can itself be split into two components. The first
one is the E × B drift velocity, while the second one is the magnetic
drift, due to field curvature and gradient of the magnetic field mod-
ulus. Hence gyrokinetic fluxes, defined here as fluxes of gyrocenters,
contain contributions from the E×B and magnetic drifts. Exact con-
servation laws can be derived in this framework [1]. Another approach,
may be more intuitive, has been used in the past. It consists in sepa-
rating the fluxes in collisional and turbulent parts. In toroidal fusion
devices, collisional processes are amplified by trajectory effects. The
resulting fluxes are called ”neoclassical”. Neoclassical and turbulent
fluxes are often calculated separately and added up. Without turbu-
lence, neoclassical fluxes match fluxes due to curvature drift, because
the contribution of the E×B drift velocity is small [2, 3]. Cases exist
however where the electric drift matters, like the neoclassical flux of
toroidal momentum [4, 5], or impurity transport when poloidal asym-
metries are large (e.g. due to the centrifugal force) [6]. Conversely,
turbulent fluxes are usually computed by keeping only the fluctuating
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E ×B velocity [7]. Hence a common methodology consists in using a
code to calculate neoclassical fluxes (i.e. without turbulence), and a
gyrokinetic code to compute turbulent fluxes, usually without direct
contributions of the magnetic drift to fluxes. Both outputs are then
added. This procedure can be justified under conditions of scale sep-
aration [8].

Recently several gyrokinetic codes have been upgraded to compute
both collisional and turbulent transport, thanks to the implementa-
tion of accurate collisional operators. Results have been published for
heat [9, 10], momentum [11, 12, 13, 14, 15, 16] and particle [17] trans-
port channels. These recent developments have raised the question
of defining neoclassical and turbulent fluxes in a proper and practical
way, and thus the issue of the interplay between collisional and tur-
bulent processes. One way consists in defining the neoclassical flux as
due to magnetic drift only, while turbulent fluxes are due to E × B
drift velocity fluctuations. This procedure finds some justification in
the fact that it coincides with the conventional definition of a neoclas-
sical flux in absence of turbulence, under the conditions given above,
while the turbulent flux agrees with previous results that discarded
the magnetic drift contribution to the flux. However this approach
leads to inconsistencies, as shown in the references aforementioned.
One reason is turbulent scattering in the velocity space, which plays
a role similar to Coulomb collisions [15]. Another reason is the devel-
opment of large scale poloidal asymmetries of the mean E × B drift
velocity due to turbulence. These asymmetries contribute to the neo-
classical flux [9], whereas they are small in conventional neoclassical
theory. These effects are sometimes called ”synergistic”. To avoid any
misunderstanding and lengthy debates, fluxes are split in the present
paper into contributions due to E × B and curvature drifts, without
using the words ”turbulent ” and ”neoclassical”. We note that another
possible definition would consist in separating fluxes due to large and
small scales. Though the latter definition seems now to prevail, previ-
ous numerical works used the former one. Given these preliminaries,
the question addressed in this paper is the following. Is the flux due
to magnetic drift significant in a collisionless turbulent state? Since
this is still a broad subject, it is limited here to toroidal momentum
transport. This topic has triggered much attention due to the obser-
vation of intrinsic toroidal rotation in tokamaks, i.e rotation without
external torque (see [18] for an overview).

In several previous works, only the E×B drift contribution to the
parallel (or toroidal) momentum flux was calculated [19, 20, 21, 14].
However it was stressed in ref [22] that the contribution of the mag-
netic drift to the flux of momentum could be significant in non linear
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regime. Moreover two research teams recently computed both mag-
netic and E × B drift contributions to the momentum flux. Both
found that these two contributions are anti-correlated [13, 16], lead-
ing in some cases to an almost vanishing total flux. A mechanism is
proposed here to explain the correlation between the contributions of
magnetic and E × B drifts to momentum transport, based on turbu-
lent generation of poloidal convective cells. Poloidal convective cells
are zonal structures with zero toroidal wavenumber, and finite poloidal
wave numbers. We will make the difference with zonal flows by re-
stricting the definition of zonal flows to structures with zero toroidal
and poloidal wave numbers. The chain of causes starts with the well
established correlation between E × B radial fluxes of parallel and
poloidal momentum due to mean shear flow or any other mechanism
responsible for an up-down asymmetry of turbulence intensity. Tur-
bulence is ballooned in a tokamak, i.e. is more intense on the low field
side. The resulting asymmetry of the turbulent stress tensor gener-
ates poloidal convective cells, i.e. flows that are zonal in the toroidal
rotation, but not in the poloidal direction. It appears that these flows
are weakly damped at low frequency, and drive poloidal asymmetries
of the distribution function, which contribute to a non zero flux of
parallel momentum due to magnetic drift. Hence it appears that the
magnetic drift component of the flux of parallel momentum is tied
to the E × B radial flux of poloidal momentum. Anti-correlation of
the poloidal and parallel components of the turbulent Reynolds stress
leads to anti-correlated radial fluxes of parallel momentum due to
magnetic and E × B drifts. This scheme is illustrated in Fig.1. A
schematic view of the circulation pattern in a tokamak poloidal plane
is also shown in Fig.2. The interplay between low wavenumber con-
vective cells and turbulent transport has already been mentioned in
the context of internal transport barrier formation [23].

A simplified calculation is presented here, where the fluid parallel
velocity and its gradient are small. In other words only the residual
stress tensor is calculated. It appears that the sign of the correlation
between the poloidal and parallel components of the E ×B Reynolds
stress translates in a correlation of the curvature and E×B drift con-
tributions to the radial flux of parallel momentum. This general result
comes from a simple relationship between the momentum flux due to
curvature and the turbulent Reynolds stress (summarized in Fig.2).
Although poloidal convective cells do not appear explicitly in this rela-
tionship, they are instrumental to this mechanism. The overall process
is illustrated by a quasi-linear calculation of stress tensors and fluxes
based on linear Ion Temperature Gradient (ITG) driven modes in the
hydrodynamic limit. This calculation predicts similar amplitudes for
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the E ×B and magnetic drift components of the parallel momentum
flux, but a sign of correlation that depends on plasma parameters.
Typically for modes drifting in the ion diamagnetic direction, positive
correlation is found for weak drive, and anti-correlation for strong
drive. Since the hydrodynamic limit is valid only in the strong drive
limit, this result can be considered as encouraging in view of previous
numerical calculations, which found anti-correlation [13, 16].

The paper is organized as follows. General expressions of radial
fluxes of parallel momentum are derived in section 2. The contribution
from the magnetic drift is detailed in section 3. The E×B and curva-
ture driven fluxes of parallel momentum are compared and discussed
in section 4. A conclusion follows. Most technical demonstrations can
be found in the appendices, and may be skipped on first reading.

Figure 1: Schematic chart that illustrates the link between correlated radial fluxes
of parallel momentum due to E × B and magnetic drifts, and the correlation
between the poloidal and parallel components of the turbulence stress tensor.

2 Fluxes of parallel momentum

Momentum flux is the same as the Reynolds stress tensor up to a
mass density Nm, where N is the unperturbed density and m the
ion mass. Both names will be used indistinctly throughout the paper.
We calculate separately the contributions from the E × B drift and
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magnetic drift velocities to the flux of parallel momentum, i.e.

ΠE
‖ =

1

N

∫
d3vFv‖vE (1)

and

ΠD
‖ =

1

N

∫
d3vFv‖vD (2)

where F is the distribution function, v‖ is velocity that is aligned with
the unperturbed magnetic field, vE is the E × B drift velocity and
vD is the magnetic drift velocity due to curvature and gradient of the
unperturbed magnetic field. The analysis is restricted to electrostatic
turbulence, i.e.

vE = b× ∇φ
B

(3)

where φ is the electric potential, b = B
B and B is the (unperturbed)

magnetic field. Also we use a simplified expression of the magnetic
drift velocity, valid at low values of the plasma β and normalized
gyroradius ρ∗,

vD =
m

eB

(
v2
⊥
2

+ v2
‖

)
b× ∇B

B
(4)

where m is the mass, e the charge, and v⊥ is the modulus of the
perpendicular velocity.

A simplified geometry of circular concentric magnetic surfaces is
considered here. The spatial coordinates are (r, θ, ϕ), where r is the
minor radius, θ and ϕ the poloidal and toroidal angles (see Fig.2) and
the magnetic field is

B = B0
r

q(r)
∇ (ϕ− q(r)θ)×∇r (5)

where R0 the major radius, q(r) the safety factor, and B0 the magnetic
field on the magnetic axis. The inverse aspect ratio r/R0 is a small
parameter throughout the paper.

2.1 Turbulence parametrization

2.1.1 Electric potential fluctuations

Since an evaluation of the turbulent Reynolds stress tensor is needed,
it is necessary to postulate a spatial structure of the fluctuations of
the electric potential. We follow a rationale that is close in spirit to
the ballooning representation [24, 25, 26, 27, 28, 29]. In a magnetized
plasma with strong guide field, turbulent structures tend to align with
the magnetic field. Given the structure of the magnetic field Eq.(5), it
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Figure 2: Schematic illustration of the flow pattern in a tokamak poloidal plane.

is convenient to use the variable ϕ−q(r)θ instead of the toroidal angle.
The periodicity in the toroidal direction allows using a a Fourier series

φ(r, θ, ϕ, t) =
∑
n

φ̃n(r, θ, t) exp [in (ϕ− q(r)θ)] (6)

where each Fourier component φ̃n(r, θ, t) can be written as a Fourier
integral

φ̃n(r, θ, t) =

∫ +∞

−∞

dΘk

2π
φ̃n(Θk, θ, t) exp [iΘknq(r)] (7)

valid locally near a reference magnetic surface. The periodicity con-
dition in the poloidal direction imposes φ̃n(Θk + 2π, θ + 2π, t) =
φ̃n(Θk, θ, t). In linear ballooning theory, the function φ̃n(Θk, θ, t) is
found to be separable in Θk and θ for each n and pulsation ω, i.e.
φ̃n(Θk, θ, t) = Φnω(Θk)φ̂nω(θ)e−iωt. Separability is not always rigor-
ously demonstrated, but is a good proxy. The amplitude Φn is called
envelope, usually a localized around an angle θk called ballooning an-
gle, with a narrow width of the order of (Lpρi)

−1/2, where Lp is a gra-
dient length and ρi the ion thermal gyroradius radius. The ballooning
angle θk measures the departure from up-down symmetry on a given
field line. Non zero values of θk result from symmetry breaking mecha-
nisms, as will be seen later on. This leads to a slow radial dependence
of φ̃n(r, θ, t) in r. Hence ”fast” radial variations of φ̃n(r, θ, t) come
from the radial dependence of the safety factor q(r) in the exponen-
tial argument of Eq.(6), with a characteristic scale 1/(ndqdr ), whereas
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”slow” radial variations come from the amplitude φ̃k, with a mesoscale
length (Lpρi)

1/2. We insist here on the fact that a ”slow” radial scale
is not a mean gradient length - the only constraint is that it should
be larger than the ”fast” scale 1/(ndqdr ).

Calculating a mode envelope in turbulent regime is questionable
since a global mode has presumably no enough time to form before tur-
bulent decorrelation occurs, except very close to the threshold. Nev-
ertheless simulations show that an instantaneous ballooning angle can
still be identified [16]. We therefore adopt the following representation
in non linear regime

φ(r, θ, ϕ, t) =
∑
k

φ̃k(θ, t) exp {in [ϕ− q(r) (θ − θk)]} (8)

The vector k is a label for the couple (n, θk) so that the sum over k
designates a summation over the toroidal wave number n and also an
integral over a distribution of angles θk. The value of the angle θk
depends on time, as shown by simulations [16]. To some extent, this
time dependence can be represented by such a distribution. Quanti-
ties labeled with a index k will be called ”Fourier” harmonics, since
θk can be seen as the Fourier counterpart of the radial variable nq(r).
Each harmonic φ̃k(θ, t) depends also slowly on the radius r. We will
use in the following a ”slow” radial variable r0 = εr, where ε is a small
parameter. All quantities depends on r0 with a typical scale that is
larger than a typical turbulent vortex size, but is smaller than a gra-
dient length. The label r0 is omitted to simplify the notations, unless
specified otherwise. Eq.(8) is in principle not acceptable since it is not
periodic in θ. Nevertheless it is a reasonable proxy for a turbulence
localized on the low field side of a tokamak (i.e. maximum near θ = 0)
since φ̃k(θ, t) is then small for θ = ±π. Hence each Fourier component
φ̃k(θ, t) contains the information on the poloidal localization of fluctu-
ations, and therefore poloidal asymmetries. We postulate a Gaussian
form for i.e. φ̃k(θ, t), exact in the linear framework

φ̃k(θ, t) = φ̃k(t)ak exp

{
−1

2
αk (θ − λkθk)2

}
(9)

where αk and λk are complex numbers, and ak is a normalizing factor
(αk, λk and ak depend on r0).

2.1.2 Ballooning angle

The value of the ballooning angle θk is not easy to determine. In the
ballooning formalism, it comes from a calculation of the mode enve-
lope. However, as already mentioned, this calculation is questionable
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for a turbulent state. An estimate can be found by using a rapid dis-
tortion theory [30]. Indeed a structure with initially a zero ballooning
angle θk = 0 will acquire an effective radial wave number due to a
shear flow that is equal to θk = − 1

s0
V ′Et after a time t. Here V ′E is the

shear flow rate, i.e. the radial derivative of the mean E ×B velocity.
Defining a correlation time τc, one gets the following estimate

θk = − 1

s0
V ′Eτc (10)

Other expressions of θk have been given in the past [26, 27, 28, 29,
31], with similar structures as Eq.(10) when envelopes are spatially
localized. The exact expression of θk has no real importance here,
since we are interested in the relative signs and amplitudes of the
momentum fluxes. Sources of symmetry breaking different from shear
flow will lead to different expressions of θk, but will cause correlated
radial and parallel wavenumbers.

2.2 E ×B drift stress tensor

We estimate now the radial fluxes of poloidal and parallel momen-
tum due to E ×B drift, which are proportional to the corresponding
components of the Reynolds stress

ΠE
rθ(θ, t) =

1

N

∫ 2π

0

dϕ

2π

∫
d3vFvErvEθ (11)

ΠE
r‖(θ, t) =

1

N

∫ 2π

0

dϕ

2π

∫
d3vFvErv‖ (12)

The distribution function is decomposed in the same way as the po-
tential

F (r, θ, ϕ, v‖, µ, t) =
∑
k

Fk(θ, v‖, µ, t) exp {in [ϕ− q(r) (θ − θk)]}

(13)

where µ =
mv2⊥
2B is the adiabatic invariant. The equations Eqs.(11,12)

can then be recast as

ΠE
rθ(θ, t) = −

∑
k

Ak(θ)s0(θ − θk) |vEk(t)|2 (14)

ΠE
r‖(θ, t) =

∑
k

Ak(θ)v∗Ek(t)V‖k(t) (15)

where

V‖k =
1

N

∫
d3vFkv‖ (16)
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is the Fourier component of the parallel fluid velocity and

vEk = −iKθ
φ̃k
B0

(17)

is the Fourier component of the radial component of the E × B drift
velocity. The wavenumber Kθ is a reference poloidal wave number
defined as Kθ = −nq(r0)

r0
. The poloidal structure function Ak(θ) is

defined as (see details in Appendix A)

Ak(θ) = lim
θk→0

∣∣∣φ̃k(θ, t)
∣∣∣2

|φk(t)|2
(18)

with the normalization ∫ ∞
−∞

dθA2
k(θ) = 1

The amplitude Ak does not depend on time for the structure Eq.(8).
Note that at this stage, the fluxes depend on the poloidal angle and
time (plus a slow radial variation in r0). A rough estimate of V‖k is

obtained by a rapid distortion argument [30], i.e. V‖k ' −iK‖ em φ̃kτk,
where τk is a correlation time. The components of the Reynolds stress
can be expanded as Fourier series in the poloidal direction

ΠE
rθ(θ, t) =

+∞∑
`=−∞

ΠE
rθ,`(t)e

i`θ (19)

ΠE
r‖(θ, t) =

+∞∑
`=−∞

ΠE
r‖,`(t)e

i`θ (20)

Using the expressions Eqs.(23,24), one finds

ΠE
rθ,`(t) = −

∑
k

Cr,k` |vEk(t)|2 θk (21)

ΠE
r‖,`(t) =

∑
k

C‖,k`ωcτk |vEk(t)|2 θk (22)

where ωc = eB0
m > 0 is the cyclotron pulsation. The coefficients Cr,k`

and C‖,k` measure the distortion of turbulent structures in the radial
and parallel directions. They can be formally written as (see Appendix
A)

Cr,k` =
Kr,k`

Kθθk
(23)

C‖,k` =
K‖,k`

Kθθk
(24)
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and

Kr,k` = −i
∫∞
−∞ dθe

−i`θ ∂φ̃n
∂r φ̃

∗
n∫∞

−∞ dθ
∣∣∣φ̃n∣∣∣2 (25)

K‖,k` = −i
∫∞
−∞ dθe

−i`θ 1
qR0

∂φ̃n
∂θ φ̃

∗
n∫∞

−∞ dθ
∣∣∣φ̃n∣∣∣2

The wave number ` characterizes fluctuation poloidal symmetries. The
useful values of ` are low, typically ` = 0, ` = ±1, ..., and therefore
different from the much larger turbulent poloidal wave numbers. The
coefficients Kr,k` and K‖,k` can be seen as effective radial and parallel
wavenumbers for a given set (k, `).

2.2.1 Wave numbers

Calculations in Appendix A show that the coefficients Cr,k` and C‖,k`
are close to their ` = 0 components for small ballooning angles θk � 1,
i.e.

Cr,k` = Crk + o
(
`2θ2

k

)
(26)

C‖,k` = C‖k + o
(
`2θ2

k

)
(27)

where Crk and C‖k are short notations for Cr,k0 and C‖,k0, i.e. ` = 0
components of the coefficients Cr,k` and C‖,k`. These coefficients are
related to the parameters used for the turbulent field representation

Crk = s0
<(αkδk)

< (αk)
(28)

C‖k =
1

q0KθR0
|αk|2

=(δk)

< (αk)
(29)

where

s0 =
r

q

dq

dr

∣∣∣∣
r=r0

(30)

is the magnetic shear calculated at r = r0, and δk = λk − 1. The
symbol < (resp. =) designates the real (resp. imaginary) part of a
complex number.

In view of the field structure Eq.(9), the real part of αk must
be positive, i.e. < (αk) ≥ 0, since modes are spatially localized in
the poloidal direction. As expected, the average radial and paral-
lel wave numbers are correlated and proportional to θk, which mea-
sures the strength of the symmetry breaking mechanism. However a
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close inspection of Eqs.(28,29) indicates that the proportionality coef-
ficients are not the same. For instance, in the limit < (αk) � = (αk)
(non propagative localized mode), it appears that Crk is of the sign
of <(δk)s0, while C‖k is of the sign of =(δk)Kθq0. Hence the sign
and amplitude of the correlation between the radial and parallel wave
numbers is by no way trivial. This relationship has been discussed in
[32], in the context of turbulent momentum transport in slab geome-
try. The components Cr,k` and C‖,k` are even functions of `, so that

ΠE
rθ(θ, t) and ΠE

r‖(θ, t) are even functions of θ. Here calculations are
restricted to order one in θk.

Since we are interested in signs, a rapid distortion theory may not
be accurate enough. A quasi-linear theory provides a more precise
value of the time and poloidal average of ΠE

r‖. The calculation is done

in Appendix B, and confirms the estimate Eq.(22). The structure of
the later is in line with previous calculations of the residual stress
(see [33, 34, 35], and overviews [19, 21]). The structure of the flux
of poloidal momentum Eq.(21) is well-known [36] and was used abun-
dantly in the context of transport barrier formation. We note that
ΠE
rθ,` and ΠE

r‖,` are anti-correlated when Cr,k` and C‖,k` are of the
same sign.

3 Flux of parallel momentum due to

magnetic drift

The expression Eq.(2) of the radial flux of parallel momentum due
to magnetic drift shows that a finite flux can only be due to up-
down symmetries of the distribution function. The rationale here
is as follows: because turbulence is ballooned, the stress tensor is
ballooned too, thus leading to poloidal asymmetries of the poloidal
flow, and therefore of the electric potential. The resulting distorted
distribution function is correlated with the E×B Reynolds stress, and
therefore with the E ×B radial flux of parallel momentum.

3.1 Generation of E × B poloidal convective
cells

Damping of time dependent and poloidally asymmetric flows is not
primarily due to collisions, but rather wave particle resonant effects.
An estimate can be obtained by solving the linear gyrokinetic equation
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(see [37, 38] for overviews on gyrokinetic theory)

∂G

∂t
+ vE · ∇G+ vD · ∇G+ v‖∇‖G =

FM

(
∂

∂t
+ v∗ · ∇

)
e

T
(J · φ) (31)

coupled to the Poisson equation

−∇·
(
Nm

B2
∇⊥
)
φ+

Ne2

T

(
φ− 〈φ〉ψ

)
= e

∫
d3vJ −1 · (F − FM ) (32)

where N is the unperturbed density, J the gyroaverage operator and
J −1 its inverse, v∗ = T

eB0

∂ lnFM
∂r the kinetic diamagnetic velocity, FM

is the unshifted Maxwellian distribution function built with the den-
sity N and temperature T , and G = F − FM + FM

eφ
T is the non

adiabatic part of the distribution function. The distribution functions
F and G are functions of the gyrocenter-center position, the adiabatic
invariant µ and parallel velocity v‖. The parallel non linear term has
been neglected. The mirror force is also ignored since the quantity
of interest is the ion parallel flux, to which passing particles mostly
contribute. This nevertheless sets a lower bound in frequency, namely
the trapped ion bounce frequency of the order of vTi

q0R0

√
r0/R0 . It is

reminded that the inverse aspect ratio r0/R0 is a small parameter in
the present work. To simplify the calculation, we use the long wave-
length limit of the gyroaverage operator J → 1, i.e the polarization
term is kept, but not the Finite Larmor Radius (FLR) effects. For
non zonal modes 〈φ〉ψ = 0, this gives an equation for the potential

vorticity φ− ρ2
i∇2
⊥φ, i.e.

N

(
∂

∂t
+ vE · ∇

)(
1− ρ2

i∇2
⊥
) eφ
T

+ ∇‖Γ‖ +∇ · (NvE +Nv∗p) = 0 (33)

where Γ‖ is the ion parallel flux, and v∗p the diamagnetic velocity.
The vorticity equation Eq.(33) has been derived by assuming that the
electric potential wavelength is smaller than the gradient lengths of
density and temperature. The axisymmetric electric potential n = 0
is Fourier expanded in poloidal angle and time

φn=0(θ, t) =
∑
`ω

φ`ωexp {i (`θ − ωt)} (34)

where ` 6= 0 since zonal flows are excluded. One can show the following
variant of the Taylor identity [39] (see Appendix C)

1

B0

∫ 2π

0

dϕ

2π
(vE · ∇)∇2

⊥φ = ∇2
⊥ΠE

rθ (35)
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where

∇2
⊥ΠE

rθ =
1

r0

∂

∂r0

(
r0

∂

∂r0
ΠE
rθ

)
(36)

It is reminded that r0 is the reference radius in the neighborhood
of which the calculations are performed. Keeping FLR effects would
replace one component of the drift velocity vE by vE + v∗p in the
stress tensor ΠE

rθ, i.e. vErvEθ becomes (vEr + v∗pr) vEθ. This does not
change the structure of the calculation as long as pressure fluctuations
are proportional to potential fluctuations. Implications are discussed
in section 4.2. A subsidiary small parameter ρπ = ρi

λπ
< 1 is intro-

duced at this point, which is the ratio of the thermal Larmor radius to
the typical radial wavelength of the turbulent Reynolds stress tensor.
Only terms of order ρ2

π are retained in the following.
The divergence of the parallel flux in the vorticity equation Eq.(33)

can be calculated by computing the axisymmetric components n =
0, ` 6= 0 of the perturbed distribution function, which is a linear solu-
tion of the gyrokinetic equation Eq.(31), i.e.

G`ω = FM
ω

ω − ` v‖
q0R0

+ i0+

eφ`ω
T

(37)

It appears that the ` component of the parallel flux divergence is{
∇‖
[∫

d3vv‖F

]}
`

= −iω (σ`ω + iν`ω)
eφ`ω
T

(38)

where σ`ωω is a frequency shift and ν`ωω is the flow damping rate
(ν`ωω > 0). The explicit expressions of σ`ω and ν`ω are

σ`ω = P.P.
1

(2π)1/2

∫ +∞

−∞
dζe−

ζ2

2

−` vTiq0R0
ζ

ω − ` vTiq0R0
ζ + i0+

(39)

and

ν`ω =
(π

2

)1/2 ω

|`|ωt
e
− ω2

2`2ω2t (40)

where ωt =
∣∣∣ vTiq0R0

∣∣∣ is a thermal transit frequency. The last term in the

vorticity equation Eq.(33) cancels out since the divergence of the dia-
magnetic current term is linear so that its toroidal average is zero. The
other term is a particle flux which is equal to zero for an ITG turbu-
lence. The vorticity equation Eq.(33) can then be solved by combining
the Taylor identity Eq.(35) with the parallel flow divergence Eq.(38),
thus providing the Fourier components of the electric potential φ`ω

φ`ω
B

= −
K2
⊥,`ρ

2
i

1 + σ`ω + iν`ω

ΠE
rθ,`ω

−iω
(41)
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where the Reynolds stress tensor has been expanded in a Fourier series

ΠE
rθ(θ, t) =

∑
`ω

ΠE
rθ,`ωexp {i (`θ − ωt)} (42)

and K2
⊥,` has to be understood as an operator that acts on ΠE

rθ,`ω,

K2
⊥,`Π

E
rθ,`ω = −∇2

⊥ΠE
rθ,`ω. It is reminded that only the leading term

in ρ2
π ' K2

⊥,`ρ
2
i is kept.

The expression of the electric potential Fourier components Eq.(41)
is of central importance since it provides the structure of time-dependent
poloidal convective cells which are driven by turbulent eddies. This
result calls for several comments:

1. It appears that φ∗`ω = φ−`−ω, as expected. However, even if the
stress tensor is up-down symmetrical at lowest order in balloon-
ing angle, i.e. ΠE

rθ,−`ω = ΠE
rθ,`ω (a consequence of the parity of

Cr,k` and C‖,k` with `), this is not the case for the potential,
which develops up-down asymmetries φ−`ω 6= φ`ω, due to damp-
ing.

2. Poloidal convective cells are Landau damped due to their finite
poloidal wave number, as expected. However it appears that
their damping rate is small at low frequencies ω � ωt, hence
favoring their onset and sustainment. It appears that the 1/ω
scaling of the frequency spectrum plays an important role in the
generation of parallel flow via the magnetic drift. Obviously the
limit ω = 0 is an artifact. In fact two cut-off frequencies appear,
that correspond to the approximations made in this calculation:
the trapped ion bounce pulsation, and the ion collision frequency.
The highest is the ion bounce pulsation, which remains never-
theless lower than the ion transit frequency in the limit of low
aspect ratio. Collisions regularize the 1/ω infrared singularity
via resonance broadening.

3. The value of K⊥,`ρi ' ρπ plays also an important role. First,
it is assumed that K2

⊥,`ρ
2
i is positive, i.e. we consider here the

case of radial oscillations of the Reynolds stress. Secondly, the
mechanism presented here requires values of ρπ that are not too
small, i.e. corrugations of the Reynolds stress with a spatial scale
of a few gyroradii [11, 13, 16]. This may push the present model
to its validity limit, since it was assumed that the variation with
r0 correspond to scales larger than the distance between reso-
nant surfaces, itself of the order of the ion gyroradius. A more
accurate calculation for ρπ ' 1 is intricate as it requires a more
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precise procedure to solve the vorticity equation, as done for
zonal flows ([40] and references therein, and also for convective
cells driven by turbulence at low magnetic shear [23]).

4. The ordering of gyrokinetic theory is not broken since the am-
plitude of the normalized potential eφ`ω

Ti
remains small, of the

order of ρ∗. This can be verified by using Eq.(41) , and noting
that the turbulence stress tensor scales as ρ2

∗v
2
T , frequencies as

vT
R so that eφ`ω

Ti
' ρ2

πρ∗. Macroscopic flows ρπ ' ρ∗ would lead to
very small amplitudes of the potential turbulence on the electric
potential eφ`ω

Ti
' ρ3

∗ with a negligible effect, as discussed in [12].
Numerical simulations suggest that ρπ is rather in the range of
0.1 [13].

3.2 Magnetic drift contribution to the flux of
parallel momentum

The banana-plateau component of the neoclassical flux of parallel mo-
mentum is known to exhibit a Pfirsch-Schlüter scaling and thus van-
ishes in the collisionless regime [41, 4, 5] (see [42] for an overview).
Therefore one is left with the cross-correlation between the magnetic
drift and the perturbed distribution function due to the electric poten-
tial fluctuations φ`ω driven by turbulent eddies. This cross-correlation
is responsible for a finite flux of parallel momentum. The time depen-
dent radial flux of parallel momentum due to magnetic drift reads〈

ΠD
r‖

〉
θ

=
1

N

∫ 2π

0

dϕ

2π

∫ 2π

0

dθ

2π

∫
d3vFvDrv‖

=
+∞∑
`=−∞

∫
d3vv‖F`v

∗
Dr` (43)

where vDr is the geodesic component of the magnetic drift velocity.
This flux can be calculated using the expression Eq.(41) of the am-
plitudes of poloidal convective cells (see Appendix D). A compact
expression is found for its time average〈

ΠD
r‖

〉
θ,t

= −q0

〈
cos (θ) ρ2

i∇2
⊥ΠE

rθ

〉
θ,t

(44)

For a ballooned turbulence, the Reynolds stress is ballooned too. If
fluctuations are strongly localized on the low field side, the prefactor
cos(θ) can be replaced by 1 in Eq.(44). This can also be demonstrated
by using the structure of the stress tensor Eq.(21) and the expression
of Cr,k` with ` (see Eq.(26)).
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Given the simplicity of Eq.(44), one may actually wonder whether
a more direct calculation of ΠD

r‖ is possible, and indeed it is. Since
the parallel velocity plays a subdominant role in the magnetic drift,
essentially because the resonant velocity goes like the pulsation, the
curvature driven flux of momentum Eq.(43) can be reformulated as〈

ΠD
r‖

〉
θ,t

= − T

NeB0R0

∫ 2π

0

dϕ

2π

∫ 2π

0

dθ

2π
sin(θ)Γ‖ (45)

An integration by part allows a reformulation in terms of the parallel
gradient of the parallel flux〈

ΠD
r‖

〉
θ,t

= −q0
T

NeB0

∫ 2π

0

dϕ

2π

∫ 2π

0

dθ

2π
cos(θ)∇‖Γ‖ (46)

Using the vorticity equation Eq.(33), and the Taylor identity Eq.(35),
one finds Eq.(44). It is quite remarkable that this result does not de-
pend on the details of the poloidal convective cells, which act as medi-
ators. An example of turbulence self-organization via the generation
of poloidal convective cells is shown in Fig.3. This figure comes from
simulations run with the GYSELA gyrokinetic code [43]. It turns out
that poloidal convective cells play also a role in the interplay between
turbulent and neoclassical impurity transport [17].

4 Comparison of E ×B and curvature

driven momentum fluxes

4.1 General expressions of momentum fluxes
fluxes

The expression Eq.(44) of the radial flux of parallel momentum due to
the magnetic drift can be expressed in the Fourier space using Eq.(21)〈

ΠD
r‖

〉
θ,t

= −q0

∑
k

CrkK
2
⊥,`ρ

2
i

〈
|vEk|2

〉
t
θk (47)

This expression can be compared with the E × B flux of momentum
Eq.(77) 〈

ΠE
r‖

〉
θ,t

=
∑
k

ωcτkC‖k

〈
|vEk|2

〉
t
θk (48)

It appears that these two contributions to the total flux of parallel mo-
mentum are anti-correlated when Crk and C‖k are of the same sign (for
positive safety factor q0). This is also the condition for anti-correlation
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Figure 3: Small scale eddies and poloidal convective cells in a GYSELA simulation.

of the E×B poloidal and parallel components of the Reynolds stress.
The final answer is clearly sensitive to processes that determine the
radial and parallel wavenumbers, which are presumably determined
by non linear effects. Nevertheless it is interesting to calculate the
linear values of Crk and C‖k, and the corresponding signs of fluxes.

4.2 Application to Ion Temperature Gradient
driven turbulence

An instructive example is the case of an unstable linear toroidal Ion
Temperature Gradient (ITG) driven mode. General expressions of
Crk and C‖k are derived in the hydrodynamic limit in the Appendix
E. In the long wavelength limit K2

θρ
2
i � 1/s2

0 and strong magnetic
shear |s0| � 1, explicit expressions of the coefficients Crk and C‖k can
be found

Crk = crks0 (49)

C‖k = c‖k
ρi
R0

(Kθρis0)2 q0s0 (50)

The numbers crk and c‖k depend on the normalized frequencies ωk
ωd

and γk
ωd

only, where ωk and γk are the real and imaginary parts of
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the linear frequency in the plasma frame (frame where the local radial
electric field is zero), and

ωd = −2
KθT

eB0R0
(51)

is a thermal magnetic field curvature frequency. More precisely

crk =
1

2

1(
1 +

γ2k
ω2
k

)1/2
(λ− − sgn (ωkωds0)) (52)

c‖k = 21/2 1

|q0|

∣∣∣∣ ωk

ωds0

∣∣∣∣3/2(1 +
γ2
k

ω2
k

)1/2

λ
1/2
− (53)

and

λ− =

[(
1 +

γ2
k

ω2
k

)1/2

− sgn (ωkωds0)

]
(54)

The coefficient λ− is always positive. These expressions are valid for
any sign of q0 and s0. We now restrict the discussion to the generic
case q0 > 0 and s0 > 0. These considerations lead to the following
estimates of the momentum fluxes〈

ΠD
r‖

〉
θ,t
' s0q0

∑
k

crk (K⊥,1ρi)
2
〈
|vEk|2

〉
t
θk (55)

and 〈
ΠE
r‖

〉
θ,t
' −s0q0

∑
k

c‖kωtτk (Kθρis0)2
〈
|vEk|2

〉
t
θk (56)

For ωk ' γk ' ωd, the two numbers crk and c‖k are of the same
order of magnitude. The two fluxes are therefore comparable when
K⊥,1ρi ' ρπ ' Kθρi (ωtτk)1/2. This condition appears as reason-
able since the intensity wave number spectrum typically peaks at
Kθρi ' 0.1, provided ωtτk ' o(1) [44, 45] .

Regarding the signs, it appears that for modes that drift in the
ion diamagnetic direction sgn (ωkωd) = 1, crk is negative for a weak
drive γk � ωk, and positive for strong drive γk ≥ ωk. Since c‖k is
always positive, this means that C‖k and Crk are positively correlated
near threshold, and anti-correlated far from threshold. Consequently
the two fluxes or parallel momentum are positively correlated for low
drive γk � ωk and anti-correlated for strong drive γk ≥ ωk. For modes
drifting in the electron diamagnetic direction, sgn (ωkωd) = −1, anti-
correlation always occurs. For ITG modes, drift in the ion diamag-
netic direction is expected, so that anti-correlation is expected only
far enough from the instability threshold. It is not clear whether this
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finding agrees or not with previous numerical findings for momentum
transport [13, 16]. Nevertheless it is stressed that the hydrodynamic
limit that is being used here, is a rather poor approximation that
becomes correct only well above the instability threshold, i.e. for
γk � ωk. This is precisely the regime where an agreement with simu-
lations is found, i.e. anticorrelation. In that regard some further anal-
ysis of the numerical simulations would be helpful. An encouraging
observation though [16] is that the E×B flux of parallel momentum is
anti-correlated with the ballooning angle θk, which suggests positive
c‖k in view of Eq.(56). Let us note that adding the FLR effects men-
tioned in section 3.1 may change the correlation sign. Indeed changing
the stress tensor vErvEθ into (vEr + v∗pr) vEθ is roughly equivalent to

multiplying crk in Eq.(52) by a factor
(

1− ω∗p
ωk

)
, where ω∗p is the

pressure diamagnetic frequency. Since the later tends to be larger
than the mode pulsation ωk for realistic parameters, this may change
the sign of the coefficient crk, and therefore the relative signs of the
E × B and magnetic drift components of the momentum flux. As a
final note, it is possible (if not likely) that the two terms crk and c‖k
are determined by non linear processes and not well captured by a
linear analysis.

5 Conclusion

It is shown here that the E × B Reynolds stress tensor generates
poloidal asymmetries of the plasma flow due to turbulence ballooning.
These poloidal convective cells are weakly damped at low frequency.
Their radial scale is dictated by the turbulent Reynolds stress, and
their poloidal wave numbers are small. These cells drive up-down
asymmetries of the distribution function, which are responsible for a
non-zero radial flux of parallel momentum due to the geodesic com-
ponent of the particle magnetic drift. The entire process requires a
symmetry breaking mechanism, for instance a mean shear flow. Since
the turbulent Reynolds can be seen as a flux of momentum, it ap-
pears that the two components of the radial flux of parallel momen-
tum due to curvature and E × B drift are correlated. This general
result comes from a simple relationship between the momentum flux
due to magnetic drift and the turbulent Reynolds stress. Although
poloidal convective cells do not appear explicitly in this relationship,
they play an essential role in this mechanism. An analytic calculation
shows that anti-correlation between the components of the turbulent
Reynolds stress results in anti-correlation of the two contributions to
the flux of parallel momentum that come from E × B and magnetic
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drifts. A quasi-linear calculation of all quantities, based on ITG linear
stability indicates that positive correlation is expected near threshold,
and anti-correlation for strong drive. Hence no firm conclusion can
be drawn as to the relevance of this mechanism to explain the nu-
merical results. Nevertheless the hydrodynamic limit that has been
used is a rather poor representation of the turbulence near threshold.
In fact it is valid only well above the stability threshold, i.e. strong
drive. This is encouraging since it is the case where anti-correlation is
found, in agreement with numerical findings. It is likely that poloidal
convective cells generated by turbulence have other consequences on
turbulent transport and turbulence. Indeed they may participate in
turbulence self-regulation via vortex shearing processes similar to the
well documented effect of zonal flows on turbulence.

APPENDICES

A Mode structure

The mode structure Eq.(9) lead to a turbulence intensity that reads∣∣∣φ̃k(θ, t)
∣∣∣2 = |φk(t)|2Ak(θ) (57)

where Ak(θ) is a form factor

Ak(θ) =
( ᾱk

π

)1/2

exp
{
−ᾱk

(
θ − λ̄kθk

)2}
(58)

and

ᾱk =
1

2
(αk + α∗k) = < (αk) (59)

λ̄k =
αkλk + α∗kλ

∗
k

αk + α∗k
=
<(αkλk)

< (αk)

The amplitude ak in Eq.(9) has been chosen such that∫ ∞
−∞

dθ
∣∣∣φ̃k(θ, t)

∣∣∣2 =
∣∣∣φ̃k(t)

∣∣∣2 (60)

namely

ak =
( ᾱk

π

)1/4

exp

{
|αk|2

2
(
αk + α∗k

) (λk − λ∗k)2

}
(61)
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The poloidal Fourier components of the radial and parallel wave num-
bers Eq.(25) and Eq.(26) can then be recast as

Kr,k` = Kθs0

∫ ∞
−∞

dθe−i`θ (θ − θk)Ak(θ) (62)

K‖,k` =
1

q0R0

∫ ∞
−∞

dθe−i`θ (θ − λkθk)Ak(θ)

For a strongly ballooned turbulence αk � 1, and small values of the
ballooning angle θk � 1 , one gets at first order in θk

Kr,k` = Kr,0 = Kθs0
<(αkδk)

< (αk)
θk (63)

K‖,k` = K‖,0 =
|αk|2

q0R0

=(δk)

< (αk)
θk (64)

where δk = λk−1. Hee <(z) and =(z) indicate the real and imaginary
parts of a complex number z.

B Quasilinear expression of E×B mo-

mentum flux

We start from the expression of the E × B drift contribution to the
momentum flux, and readily get its time average Eq.(12)〈

ΠE
r‖(θ, t)

〉
t

=
1

N

∑
kω

∫
d3vF̃kωv‖ṽ

∗
Ekω (65)

To calculate the distribution function versus the potential, we use a
ballooning representation. The electric potential is written in the form

φ(r, θ, ϕ, t) =

+∞∑
p=−∞

φ̃kω(θ + 2pπ, t)

exp {in [ϕ− q(r) (θ + 2pπ − θk)]− iωt} (66)

where θk is the ballooning mode. The single term p = 0 is kept for
strongly ballooned fluctuations. A similar expansion is used for the
non adiabatic part of the distribution function, i.e. G̃kω = F̃kω +
e
Ti
φ̃kω. The gyrokinetic equation Eq.(31) reads

(ω −K‖v‖ − ωD)G̃kω = FM (ω − ω∗)
e

Ti

(
J · φ̃kω

)
(67)

Here K‖ is an operator

K‖ = −i 1

q0R0

∂

∂η
(68)
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where η = θ − θk is a shifted poloidal angle. The kinetic magnetic
drift frequency ωD is defined as

ωD(η) =

(
v2
⊥

2v2
T i

+
v2
‖

v2
T i

)
ωd(η) (69)

where

ωd(η) = − 2KθTi
eB0R0

[cos (θk + η) + s0η sin (θk + η)] (70)

vT i =
√
Ti/mi is the thermal ion velocity, and Kθ = −nq0

r0
is the

poloidal wavenumber - q0 is the safety factor at the reference radius
r0. The definition of the kinetic diamagnetic frequency ω∗ is the usual
one

ω∗ = ω∗n + ω∗T

(
v2
⊥
v2
T i

+
v2
‖

v2
T i

− 3

2

)
(71)

where
ω∗n = − KθTi

eB0Lni

ω∗T = − KθTi
eB0LTi

(72)

are the density and temperature diamagnetic frequencies and Lni and
Lpi are the density and pressure gradient lengths calculated at the
reference radius r0. The gyroaverage J is fairly well represented by a
Bessel function with an argument K⊥ρc, i.e. J0 (K⊥ρc), where ρc =
miv⊥
eB0

is the kinetic ion gyroradius and

K2
⊥ = K2

θ

[
1 + s2

0η
2
]

(73)

The solution of the gyrokinetic equation Eq.(67) involves an integro-
differential operator that relates G̃kω to φ̃kω [46, 47]. A formal solu-
tion can be written in a Wentzel-Kramers-Brilloin (WKB) sense by
dividing the r.h.s. of Eq.(67) by the resonant term ω −K‖v‖ − ωD

F̃kω = −FM
{

1− ω − ω∗
ω − ωD −K‖v‖ + i0+

}
eφ̃kω
T

(74)

We assume that the spectral turbulence intensity is of the form∣∣∣φ̃kω∣∣∣2 = Ak(θ) |φk|2
1

π

∆ωk

(ω − ωk)2 + ∆ω2
k

(75)

which gives〈
ΠE
r‖(θ, t)

〉
t

=
1

N

∑
kω

∫
d3vFMv‖ |vEk|2

eB0

KθTi
(ω − ω∗)

∆ωk

(ω − ωk)2 + ∆ω2
k

δ
(
ω −K‖v‖ − ωD

)
(76)
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In the hydrodynamic limit ωD
ω '

K2
‖v

2
‖

ω2 � 1, one gets the result〈
ΠE
r‖

〉
θ,t

=
∑
k

C‖k
ωc∆ωk

ω2
k + ∆ω2

k

〈
|vEk|2

〉
t
θk (77)

This result is identical to Eq.(22) with τk = ∆ωk

ω2
k+∆ω2

k
. Strictly speaking

there is also a contribution to the E × B flux of parallel momentum
that comes from the axisymmetric perturbations of the potential φ`ω
Eq.(41) and the distribution function response Eq.(37) . However this
contribution is of second order in ballooning angle θk and will not be
retained here. Hence the E ×B flux of momentum is in this peculiar
case ”turbulent”, i.e. produced by small scale fluctuations.

C Taylor identity

The purpose of this appendix is to demonstrate the identity

1

B0

∫ 2π

0

dϕ

2π
(vE · ∇) Ω = ∇2

⊥ΠE
rθ (78)

where Ω = ∇2
⊥φ is the vorticity, and vE = b × ∇φB the E × B drift

velocity. The demonstration is restricted to a geometry of concentric
circular surfaces with large aspect ratio . We use the mode structure
Eq.(8)

φ(r, θ, ϕ, t) =
∑
k

φ̃k(r, θ, t) exp {inχk} (79)

where χk = ϕ− q(r) (θ − θk), and the dependence on r of φ̃k(r, θ, t) is
made explicit for clarity throughout this section. The average over φ
implies that the l.h. s. of Eq.(78) appears as a sum over the index k
of operators acting on φ̃k, namely∫ 2π

0

dϕ

2π

b

B2
0

· (∇φ×∇Ω) =
∑
k

b

B2
0

· [(∇φ)k × (∇Ω)∗k] (80)

where

(∇φ)k =
∂φ̃k
∂r
∇r +

∂φ̃k
∂θ
∇θ + in∇χkφ̃k (81)

and (∇Ω)k is given by a similar expression. This suggests a change of
variables for each k, namely

r0 = r (82)

χk = ϕ− q(r) (θ − θk) (83)

η = θ (84)
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The variable η plays the role of a coordinate along the field line, r0

represents the slow variation of the field in the radial electric field,
and χk is a coordinate transverse to the field. We use the following
ordering

1

R0

∂φ̃k
∂η
� ∂φ̃k

∂r0
� nq0

r0
φ̃k (85)

which allows neglecting the slow variation of the field along the field
line. We note that the unit vector along the magnetic field can be
written,

b =
∇χk

|∇χk|
× ∇r0 (86)

where
|∇χk| =

q0

r0

[
1 + s2

0(η − θk)2
]1/2

(87)

For a strongly ballooned turbulence |∇χk| ' q0
r0

. Ignoring the deriva-
tives with respect to η, one finds the following identity∫ 2π

0

dϕ

2π

b

B2
0

· (∇φ×∇Ω) =
1

B2
0

q0

r0

∂

∂r0

{∑
k

(
inφ̃kΩ∗k

)}
(88)

Using ∇2
⊥ = ∇ · ∇ − (b · ∇)2, and neglecting again the derivatives

along the field lines. Each Fourier harmonics of the vorticity can be
written as

Ωk =
1

r0

∂

∂r0
r0

∂

∂r0

(
r0φ̃k

)
+ 2in (∇χk · ∇r0)

∂

∂r0
φ̃k − n2 |∇χk|2 φ̃k

(89)
where it has been used that the variation of φ̃k with r0 is faster than
the radial variation of (∇χk · ∇r0). The largest term is the third one
in the r.h.s. of Eq.(89) , but it does not contribute to Eq.(88) for
parity reasons. The largest contribution therefore comes from the
second term of the r.h.s. of Eq.(89) , i.e.

∫ 2π

0

dϕ

2π

b

B2
0

· (∇φ×∇Ω) ' ∇2
⊥

−∑
k

s0(η − θk)

∣∣∣∣∣nq0

r0

φ̃k
B0

∣∣∣∣∣
2
 (90)

where

∇2
⊥ =

1

r0

∂

∂r0
r0

∂

∂r0
(91)

The expression within the brackets of the r.h.s. of Eq.(90) is the rθ
component of the E×B stress tensor, as can be verified from Eq.(14).
Eq.(90) demonstrates the Taylor identity Eq.(78).
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D Explicit calculation of the flux of

parallel momentum

The purpose of this section is to compute the radial flux of parallel
momentum due to magnetic drift Eq.(43). The geodesic component
vDr of the magnetic drift velocity reads

vDr = vD
1

2i
(δ`,1 − δ`,−1) (92)

where

vD = −
µB0 +mv2

‖

eB0R0
(93)

We compute the momentum flux by using again the linear solution
Eq.(37) of the gyrokinetic equation Eq.(31). The frequency Fourier
components of the parallel momentum flux Eq.(43) read〈

ΠD
r‖ω

〉
θ

= −q0

∑
`=±1

∫ +∞

−∞

dζ

(2π)1/2
e−

ζ2

2

−` vTiq0R0
ζ

ω − ` vTiq0R0
ζ + i0+

(
1 + ζ2

) 1

2
(δ`,1 + δ`,−1)

−iωφ`ω
B

(94)

Using Eq.(38) (or equivalently Eqs.(40,39)), the integral over the ve-
locity can be expressed as a function of σ`ω and ν`ω, namely〈

ΠD
r‖ω

〉
θ

= −q0

∑
`=±1

[
1 +

(
1 +

ω2

ω2
t

)
(σ`ω + iν`ω)

]
1

2
(δ`,1 + δ`,−1)

−iωφ`ω
B

(95)

We note that it is essential to deal with time dependent perturbations
to get a finite flux. Static perturbations resonate at zero parallel
velocity v‖ = 0 and therefore do not contribute to the flux of parallel
momentum. This is also the basic reason why the banana-plateau
neoclassical flux of parallel momentum is zero. In the present case, this
cancellation is prevented by the increase of the potential amplitude at
low frequency, as shown by the expression of φ`ω Eq.(41). In other
words, it is the time derivative of the electric potential that matters.
Eq.(95) combined with Eq.(41) leads to the following expression of the
time Fourier transform of the momentum flux

〈
ΠD
r‖ω

〉
θ

= q0

1 +
(

1 + ω2

ω2
t

)
(σ`ω + iν`ω)

1 + σ`ω + iν`ω
K2
⊥,1ρ

2
iΠ

E
rθ,1ω (96)

where the up-down symmetry of the turbulent Reynolds stress ΠE
rθ,−1ω =

ΠE
rθ,1ω has been used (consequence of the parity of Cr,k` and C‖,k`

25



with `). The next step consists in taking the zero frequency limit of
Eq.(96), which is equivalent to a time average. For frequencies lower
than the transit frequency, ω � ωt, the frequency shift is close to
unity, σ`ω = 1 + o(ω2/ω2

t ), while the damping rate ν`ω ' ω/ωt van-
ishes. The expression Eq.(96) becomes Eq.(44).

E Linear calculation of radial and par-

allel wavenumber

Assuming an electron adiabatic response, and using the solution of the
gyro-kinetic equation Eq.(74), the following electroneutrality equation
is obtained for a non axisymmetric mode n 6= 0{

τ + 1− 1

N

∫
d3vFMJ −1 · ω − ω∗

ω −K‖v‖ − ωD
J ·
}
φ̃kω = 0 (97)

where τ = Ti
Te

is the ratio of the ion to electron temperature at r = r0.
This equation, which describes reasonably well toroidal ITG modes,
can be easily extended to non adiabatic electrons [46](see also [7] and
references therein). In the hydrodynamic limit

ωD
ω
∼
K2
‖v

2
T i

ω2
∼ K2

⊥ρ
2
i � 1 (98)

the electro-neutrality condition Eq.(97) can be expanded at first or-

der in ωD
ω ,

K2
‖v

2
Ti

ω2 and K2
⊥ρ

2
i , where ρi = mivTi

eB0
is the thermal ion

gyroradius. The equation that rules φ̃kω now reads [47][
−ω

2
t

ω2

∂2

∂η2
−K2

θρ
2
i (1 + s2

0η
2) + Λ(ω, η)

]
φ̃kω = 0 (99)

where

Λ(ω, η) =
τω + ω∗n
ω∗p − ω

+
ωd(η)

ω
(100)

is the η dependent local dispersion relation. The transit frequency is

defined ωt =
∣∣∣ vTiq0R0

∣∣∣ and ω∗p is the pressure diamagnetic frequency

ω∗p = − KθTi
eB0Lpi

(101)

where Lpi is the pressure gradient length. The next step consists in
expanding the magnetic drift frequency near η = 0 up to o(η2) and
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o(θ2
k). After regrouping the various terms, one finds[
−ω

2
t

ω2

∂2

∂η2
+

(
ωd
ω

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

)
(η − ηk)2 + Λ

]
φ̃kω = 0

(102)
where Λ is now a local dispersion relation independent of η and

Λ(ω) =
τω + ω∗n
ω∗p − ω

+
ωd
ω
−K2

θρ
2
i−

1

4

ω2
d

ω2

(s0 − 1)2[
ωd
ω

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

]θ2
k (103)

where ωd is the local magnetic drift frequency. Strictly speaking ωd =
−2 KθT

eB0R0

(
1− θ2

k

)
, but the analysis is restricted here to low values of

θk. Calculations are run at first order in θk, so that the magnetic drift
is the one defined in Eq.(51). The complex number ηk is proportional
to the ballooning angle θk

ηk = −1

2

ωd
ω

(s0 − 1)[
ωd
ω

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

]θk (104)

The smoothest solution of this differential equation is

φ̃kω = φ0 exp

{
−1

2
αk (η − ηk)2

}
(105)

with the conditions

ω2
t

$2
k

α2
k =

ωd
$k

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0 (106)

ω2
t

$2
k

αk = −Λ($k) (107)

The two equations Eqs.(106, 107) provide the values of αk and of
the complex mode frequency $k. Moreover, the solution Eq.(105) is
acceptable only if < (αk) > 0, to guarantee mode spatial localization.
The mode frequency $k is written as $k = ωk + iγk , where ωk is
the real part, and γk the growth rate. The later is positive above the
instability threshold. We will focus on that case. A limit of interest

is Kθρi � 1, and
ω2
t
ω2αk � Λ. The dispersion relation then becomes

Λ($k) = 0, i.e.

τ$2
k − (ωd − ω∗n)$k + ω∗pωd = 0 (108)

which yields

ωk =
1

2τ
(ωd − ω∗n) (109)

γk =
1

2τ

[
4τω∗pωd − (ωd − ω∗n)2

]1/2
(110)

27



It is recovered that modes drift linearly in the ion diamagnetic direc-
tion for flat density profiles ω∗n ' 0, while they rotate in the electron
diamagnetic direction for strong density gradients [47]. We now turn
to the quantities of interest, i.e. the radial and parallel wavenum-
ber given by Eq.(28,29). Since Eq.(107) depends on the detail of the
local dispersion relation, we will use exclusively Eqs.(106) and leave
$k arbitrary, except at the very end, when making estimates for ITG
modes. It appears that δk = λk − 1 is given by the following relation

δk = −
ωd

2$k
(s0 − 1)

ωd
$k

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

= −1

2

ωd$k

ω2
t

1

α2
k

(s0 − 1) (111)

from which its imaginary part = (δk) can be deduced

= (δk) = −1

2

K2
θρ

2
i s

2
0(s0 − 1)∣∣∣ ωd$k

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

∣∣∣2
γkωd

|$k|2
(112)

thus leading to

K‖,0 = − 1

2q0R0
K2
θρ

2
i s

2
0(s0 − 1)

1

< (αk)

∣∣∣∣ $k

αkωt

∣∣∣∣2 γkωdω2
t

θk (113)

Using the relation ωd = −2 |q0|Kθρiωt, one gets the expression of C‖k

C‖k = sgn(q0)
ρi
R0

(Kθρis0)2 (s0 − 1)
1

< (αk)

∣∣∣∣ $k

αkωt

∣∣∣∣2 γkωt (114)

The calculation of Kr,0 is somewhat more delicate because of compen-
sation effects. Using the r.h.s of Eq.(111), one finds

Crk =
Kr,0

Kθθk
= −1

2

ωd
ω2
t

s0 (s0 − 1)
<
(
$k
αk

)
< (αk)

(115)

It appears readily that

Crk = −1

2
s0 (s0 − 1)

ωdωk

ω2
t

σk

|αk|2
(116)

where

σk = 1− = (αk)

< (αk)

γk
ωk

(117)

The condition Eq.(106) can be used to provide a relation between
< (αk) and = (αk), i.e.

2< (αk)= (αk) =
γkωk

ω2
t

[
ωd
ωk

(
s0 −

1

2

)
− 2K2

θρ
2
i s

2
0

]
(118)
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from which one gets the following result

σk = 1−
[
ωd

2ωk

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

]
γ2
k

[< (αk)]2 ω2
t

(119)

An explicit expression of [< (αk)]2 can be found by solving Eq.(106) ,
i.e.

[< (αk)]2 =
1

2ω2
t

[
ωkωd

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

{
ω2
k − γ2

k

}]
+

1

2ω2
t

{[
ωkωd

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

{
ω2
k − γ2

k

}]2

+ γ2
k

[
ωd

(
s0 −

1

2

)
− 2K2

θρ
2
i s

2
0ωk

]2
}1/2

(120)

It results from Eq.(119) that Crk changes sign when

γ2
k

[< (αk)]2 ω2
t

≥ 1
ωd

2ωk

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

(121)

provided the r.h.s. is positive. The positivity condition is fulfilled
for modes drifting in the ion diamagnetic direction sgn (ωdωk) for low
wave numbers and positive magnetic shear. This change of sign typ-
ically occurs when one moves from the situation of weak drive (near
threshold) γk � ωk to a situation of strong drive γk � ωk.

To make these expressions more explicit, we concentrate on the
limit of a strong magnetic shear |s0| >> 1 and low wavenumbers
K2
θρ

2
i � 1. Using the relations Eq.(118, 120), explicit expressions of

< (αk), = (αk) can be found

[< (αk)]2 =
1

2

|ωkωds0|
ω2
t

λ+ (122)

[= (αk)]2 =
1

2

|ωkωds0|
ω2
t

λ− (123)

from which σk and |αk|2 can be derived

σk = 1− sgn (ωkωds0)λ− (124)

|αk|2 =
|ωkωds0|
ω2
t

(
1 +

γ2
k

ω2
k

)1/2

(125)

where

λ± =

[(
1 +

γ2
k

ω2
k

)1/2

± sgn (ωkωds0)

]
(126)
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The numbers λ+ and λ− are always positive, and satisfy the useful
relationships

λ+λ− =
γ2
k

ω2
k

(127)

λ+ + λ− = 2

(
1 +

γ2
k

ω2
k

)
(128)

The expression Eq.(125) of |αk|2 can be obtained directly from Eq.(106),
thus providing a cross-check . Plugging Eqs.(127,128) in the expres-
sions of C‖k and Crk Eqs.(113,116), one obtains the following relations

Crk = crks0 (129)

C‖k = c‖k
ρi
R0

(Kθρis0)2 q0s0 (130)

where crk and c‖k are numbers that depend on the normalized fre-
quencies ωk

ωd
and γk

ωd
only, namely

crk =
1

2

1(
1 +

γ2k
ω2
k

)1/2
(λ− − sgn (ωkωds0)) (131)

c‖k = 21/2 1

|q0|

∣∣∣∣ ωk

ωds0

∣∣∣∣3/2(1 +
γ2
k

ω2
k

)1/2

λ
1/2
− (132)
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