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Abstract

Radial fluxes of parallel momentum due to E × B and curvature
(and ∇B) drifts are shown to be correlated in tokamak plasmas. This
correlation comes from the onset of poloidal convective cells gener-
ated by turbulence. The entire process requires a symmetry breaking
mechanism, e.g. a mean shear flow. An analytical calculation shows
that anti-correlation between the poloidal and parallel components of
the turbulent Reynolds stress results in anti-correlation of the fluxes
of parallel momentum generated by E ×B and curvature drifts.

1 Introduction

Interplay between neoclassical and turbulent transport processes has
been recently uncovered thanks to the implementation of accurate
collision operators in gyrokinetic codes. Examples of non trivial inter-
action have been found for heat [1, 2], momentum [3, 4, 5, 6, 7, 14] and
particle [15] transport channels. Two types of mechanisms that may
explain such an interplay have been proposed so far: turbulent colli-
sional scattering in the velocity space, and interaction via large scale
flows. This question is not always easy to apprehend in the literature,
because of some differences in terminology and definitions. Turbulent
transport is often defined as due to E × B drift contribution, while
”neoclassical” is associated with curvature (and ∇B) drift. Though
legitimate when looking at each problem separately, this definition is
somewhat restrictive in the general case, since poloidal asymmetries of
the E × B drift velocity may contribute to neoclassical transport [1].
It is therefore safer to talk about fluxes due to E × B and curvature
drifts, while keeping in mind that they are somewhat representative
of ”turbulent ” and ”neoclassical” contributions.

Curvature and E ×B drift components of fluxes were found anti-
correlated in several global simulations of turbulent transport, when
calculated on an equal footing. This is particularly striking for mo-
mentum transport [6, 7], and transport of impurities [15]. A hint of a
similar behavior is observed in simulations of ion heat transport near
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threshold [1]. A mechanism is proposed here to explain a correlation
between the contributions of curvature and E × B drifts to momen-
tum transport, based on turbulent generation of poloidal convective
cells. The chain of causes starts with the well established correlation
between E × B radial fluxes of parallel and poloidal momentum due
to mean shear flow or any other mechanism responsible for an up-
down asymmetry of turbulence intensity. Turbulence is ballooned in
a tokamak, i.e. is more intense on the low field side. The resulting
asymmetry of the turbulent stress tensor generates poloidal convec-
tive cells, i.e. flows that are zonal in the toroidal rotation, but not in
the poloidal direction. It appears that these flows are weakly damped
at low frequency, and drive poloidal asymmetries of the distribution
function, which contribute to a non zero flux of parallel momentum
due to curvature drift. Hence it appears that the curvature driven
component of the flux of parallel momentum is tied to the E ×B ra-
dial flux of poloidal momentum. Anti-correlation of the poloidal and
parallel components of the turbulent Reynolds stress leads to anti-
correlated radial fluxes of parallel momentum due to curvature and
E×B drifts. This scheme is illustrated in Fig.1. A schematic view of
the circulation pattern in a tokamak poloidal plane is also shown in
Fig.2.

A simplified calculation is presented here, where the mean parallel
velocity and its gradient are small. In other words only the residual
stress tensor is calculated. It appears that the sign of the correlation
between the poloidal and parallel components of the E ×B Reynolds
stress translates in a correlation of the curvature and E×B drift con-
tributions to the radial flux of parallel momentum. This general result
comes from a simple relationship between the momentum flux due to
curvature and the turbulent Reynolds stress (summarized in Fig.2).
Although poloidal convective cells do not appear explicitly in this rela-
tionship, they are instrumental to this mechanism. The overall process
is illustrated by a quasi-linear calculation of stress tensors and fluxes
based on linear Ion Temperature Gradient (ITG) driven modes in the
hydrodynamic limit. This calculation predicts similar amplitudes for
the ExB and curvature drift components of the parallel momentum
flux, but a sign of correlation that depends on plasma parameters.
Typically for modes drifting in the ion diamagnetic direction, positive
correlation is found for weak drive, and anti-correlation for strong
drive. Since the hydrodynamic limit is valid only in the strong drive
limit, this result can be considered as encouraging in view of previous
numerical calculations, which found anti-correlation [6, 7]. The fact
that poloidal asymmetries of the turbulent generated flows produce a
significant flux of momentum implies that neoclassical and turbulent
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fluxes of momentum should be calculated all together.
The paper is organized as follows. General expressions of radial

fluxes of parallel momentum are derived in section 2. The contribution
from the curvature drift is detailed in section 3. The E×B and curva-
ture driven fluxes of parallel momentum are compared and discussed
in section 4. A conclusion follows.

Figure 1: Schematic chart that illustrates the link between correlated radial fluxes
of parallel momentum due to E × B and curvature drifts, and the correlation
between the poloidal and parallel components of the turbulence stress tensor.

2 Fluxes of parallel momentum

Momentum flux is the same as the Reynolds stress tensor up to a
mass density Nm, where N is the unperturbed density and m the
ion mass. Both names will be used indistinctly throughout the paper.
We calculate separately the contributions from the E × B drift and
curvature drift velocities to the Reynolds stress tensor, i.e.

ΠE
‖ =

1

N

∫
d3vFv‖vE (1)

and

ΠD
‖ =

1

N

∫
d3vFv‖vD (2)

where F is the distribution function, v‖ is velocity that is aligned with
the unperturbed magnetic field, vE is the E×B drift velocity and vD
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is the drift velocity due to curvature and gradient of the unperturbed
magnetic field. It is dubbed ”curvature drift velocity” hereafter. The
analysis is restricted to electrostatic turbulence, i.e.

vE = b× ∇φ
B

(3)

where φ is the electric potential, b = B
B and B is the (unperturbed)

magnetic field. Also we use a simplified expression of the curvature
drift velocity, valid at low values of the plasma β and normalized
gyroradius ρ∗,

vD =
m

eB

(
v2
⊥
2

+ v2
‖

)
b× ∇B

B
(4)

where m is the mass, e the charge, and v⊥ is the modulus of the
perpendicular velocity.

A simplified geometry of circular concentric magnetic surfaces is
considered here. The spatial coordinates are (r, θ, ϕ), where r is the
minor radius, θ and ϕ the poloidal and toroidal angles (see Fig.2).
The corresponding unperturbed magnetic field is

B = B0R0

(
∇ϕ+

r

q(r)R0
∇ϕ×∇r

)
(5)

where R0 the major radius, q(r) the safety factor, and B0 the magnetic
field on the magnetic axis.

Figure 2: Schematic illustration of the flow pattern in a tokamak poloidal plane.
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2.1 Turbulence parametrization

2.1.1 Electric potential fluctuations

Since an evaluation of the turbulent Reynolds stress tensor is needed,
it is necessary to postulate a spatial structure of the fluctuations of
the electric potential. The periodicity in the toroidal direction allows
a Fourier expansion

φ(r, θ, ϕ, t) =
∑
n

φ̃n(r, θ, t) exp (inϕ) (6)

The perturbed electric potential tends to align with the magnetic field.
It is characterized by a ballooned poloidal structure, which plays an
important role. We therefore adopt the following representation

φ(r, θ, ϕ, t) =
∑
k

φ̃k(r0, θ, t) exp {in [ϕ− q(r) (θ − θk)]} (7)

where θk measures the departure from up-down symmetry on a given
field line ϕ = q(r)θ + α. Non zero values of θk result from symmetry
breaking mechanisms. The vector k is a label for the couple (n, θk).
Therefore the sum over k designates a summation over the toroidal
wave number n and also an integral over a distribution of angles θk.
The value of the angle θk depends on time, as shown by simulations
[7]. To some extent, this time dependence can be represented by
such a distribution. Quantities labeled with a index k will be called
”Fourier” harmonics, since θk can be seen as the Fourier counterpart
of the radial variable nq(r). The variable r0 indicates a slow radial
variation, i.e. r0 = εr, where ε � 1. In practice Eq.(7) offers a local
description of turbulence in the neighborhood of a reference radius r0.
All quantities depends on r0 with a typical scale that is larger than a
typical vortex size, but is smaller than a gradient length. The label r0

is omitted to simplify the notations, unless specified otherwise. Eq.(7)
is in principle not acceptable since it is not periodic in θ. Nevertheless
it is a reasonable proxy for a turbulence localized on the low field side
of a tokamak (i.e. maximum near θ = 0) since φ̃k(θ, t) is then small for
θ = ±π. Hence each Fourier component φ̃k(θ, t) contains the informa-
tion on the poloidal localization of fluctuations, and therefore poloidal
asymmetries. This formulation is close to the ballooning representa-
tion, while θk is reminiscent of a ballooning angle [8, 9, 10, 11, 12, 13].
We will keep up with this terminology in the following. As in the bal-
looning representation, ”fast” radial variations comes from the radial
dependence of the safety factor q(r) in the exponential argument of
Eq.(7), whereas ”slow” radial variations come from the amplitude φ̃k.
We insist on the fact that a ”slow” radial scale is not a mean gradient
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length - the only constraint is that it should be larger than a distance
between resonant surface 1

n dq
dr |r=r0

.

In the linear picture, a complete mode is given by an integral over
the ballooning angle θk weighted by an envelope, the width of which is
mesoscale and typically scales as (aρi)

1/2, where a is the minor radius
and ρi the ion thermal gyroradius radius. Calculating an envelope in
turbulent regime has little sense since a global mode has no time to
form before turbulent decorrelation occurs, except very close to the
threshold. We postulate a Gaussian form for i.e. φ̃k(θ, t), i.e.

φ̃k(θ, t) = φ̃k(t)ak exp

{
−1

2
αk (θ − λkθk)2

}
(8)

where αk and λk are complex numbers, and ak is a normalizing factor
(αk, λk and ak may depend on r0). This formulation is exact in the
linear case, and appears as a reasonable proxy in the non linear regime.

2.1.2 Wave numbers

A reference poloidal wave number is defined as Kθ = −nq(r0)
r0

. Since
transfers of momentum between waves and particles are needed, it is
also useful to define effective radial and parallel wave numbers. These
wave numbers depend on the poloidal angle. We prefer to use here
the Fourier components of these effective wave numbers, defined for
each k as

Kr,k` = −i
∫∞
−∞ dθe

−i`θ ∂φ̃n
∂r φ̃

∗
n∫∞

−∞ dθ
∣∣∣φ̃n∣∣∣2 (9)

K‖,k` = −i
∫∞
−∞ dθe

−i`θ 1
qR0

∂φ̃n
∂θ φ̃

∗
n∫∞

−∞ dθ
∣∣∣φ̃n∣∣∣2

The index ` is used here instead of the traditional notation m because
it is anticipated that the useful values of ` are small, typically ` =
0, ` = ±1, ..., and therefore different from the much larger turbulent
poloidal wave numbers. Indeed the Fourier components that will be
needed are representative of long wavelength poloidal asymmetries.
Calculations in Appendix A indicate that the poloidal average radial
and parallel wave numbers are of the form

Kr,k` = Cr,k`Kθθk (10)

K‖,k` = C‖,k`Kθθk (11)
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where Cr,k` and C‖,k` are numbers, which depend on plasma parame-
ters, and are close to the ` = 0 components for small ballooning angles
θk � 1, i.e.

Cr,k` = Cr,k0 + o
(
`2θ2

k

)
(12)

C‖,k` = C‖,k0 + o
(
`2θ2

k

)
(13)

Explicit expressions of the potential structure Eq.(7) are (see Ap-
pendix A)

Cr,k0 = s0
<(αkδk)

< (αk)
(14)

C‖,k0 =
1

q0KθR0
|αk|2

=(δk)

< (αk)
(15)

where

s0 =
r

q

dq

dr

∣∣∣∣
r=r0

(16)

is the magnetic shear calculated at r = r0, δk = λk − 1, and < (resp.
=) designates the real (resp. imaginary) part of a complex number. In
view of the field structure Eq.(8), the real part of αk must be positive,
i.e. < (αk) ≥ 0, since modes must be spatially localized in the poloidal
direction. As expected, the average radial and parallel wave numbers
are correlated and proportional to θk, which measures the strength
of the symmetry breaking mechanism. However a close inspection of
Eqs.(14,15) indicates that the proportionality coefficients are not the
same. For instance, in the limit < (αk) � = (αk) (non propagative
localized mode), it appears that Cr,k0 is of the sign of <(δk)s0, while
C‖,k0 is of the sign of =(δk)Kθq0. Hence the sign and amplitude of the
correlation between the poloidally averaged radial and parallel wave
numbers is by no way trivial. This relationship has been discussed in
[18], in the context of turbulent momentum transport in slab geometry.

2.1.3 Ballooning angle

The value of the ballooning angle θk is not easy to determine. In the
ballooning formalism, it comes from a calculation of the mode enve-
lope. However, as already mentioned, this calculation is questionable
for a turbulent state. An estimate can be found by using a rapid dis-
tortion theory [16]. Indeed a structure with initially a zero ballooning
angle θk = 0 will acquire an effective radial wave number due to a
shear flow that is equal to θk = − 1

s0
V ′Et after a time t. Here V ′E is the

shear flow rate, i.e. the radial derivative of the mean ExB velocity.
Defining a correlation time τc, one gets the following estimate

θk = − 1

s0
V ′Eτc (17)
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Other expressions of θk have been given in the past [10, 11, 12, 13,
17], with similar structures as Eq.(17) when envelopes are spatially
localized. The exact expression of θk has no real importance here,
since we are interested in the relative signs and amplitudes of the
momentum fluxes. Sources of symmetry breaking different from shear
flow will lead to different expressions of θk, but will cause correlated
radial and parallel wavenumbers.

2.2 E ×B drift stress tensor

We estimate now the radial fluxes of poloidal and parallel momen-
tum due to E ×B drift, which are proportional to the corresponding
components of the Reynolds stress

ΠE
rθ(θ, t) =

1

N

∫ 2π

0

dϕ

2π

∫
d3vFvErvEθ (18)

ΠE
r‖(θ, t) =

1

N

∫ 2π

0

dϕ

2π

∫
d3vFvErv‖ (19)

The distribution function is decomposed in the same way as the po-
tential

F (r, θ, ϕ, v‖, µ, t) =
∑
k

Fk(θ, v‖, µ, t) exp {in [ϕ− q(r) (θ − θk)]}

(20)

where µ =
mv2⊥
2B is the adiabatic invariant. The equations Eqs.(18,19)

can then be recast as

ΠE
rθ(θ, t) = −

∑
k

Ak(θ)s0(θ − θk) |vEk(t)|2 (21)

ΠE
r‖(θ, t) =

∑
k

Ak(θ)v∗Ek(t)V‖k(t) (22)

where

V‖k =
1

N

∫
d3vFkv‖ (23)

is the Fourier component of the parallel fluid velocity and

vEk = −iKθ
φ̃k
B0

(24)

is the Fourier component of the radial component of the E×B drift ve-
locity. The poloidal structure function Ak(θ) is defined as (see details
in Appendix A)

Ak(θ) = lim
θk→0

∣∣∣φ̃k(θ, t)
∣∣∣2

|φk(t)|2
(25)
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∫ ∞
−∞

dθA2
k(θ) = 1 (26)

The amplitude Ak does not depend on time for the structure Eq.(7).
Note that at this stage, the fluxes depend on the poloidal angle and
time (plus a slow radial variation in r0). A rough estimate of V‖k is

obtained by a rapid distortion argument [16], i.e. V‖k ' −iK‖ em φ̃kτk,
where τk is a correlation time. The components of the Reynolds stress
can be expanded as Fourier series in the poloidal direction

ΠE
rθ(θ, t) =

+∞∑
`=−∞

ΠE
rθ,`(t)e

i`θ (27)

ΠE
r‖(θ, t) =

+∞∑
`=−∞

ΠE
r‖,`(t)e

i`θ (28)

Using the expressions Eqs.(10,11), one finds

ΠE
rθ,`(t) = −

∑
k

Cr,k` |vEk(t)|2 θk (29)

ΠE
r‖,`(t) =

∑
k

C‖,k`ωcτk |vEk(t)|2 θk (30)

where ωc = eB0
m > 0 is the cyclotron pulsation. The components Cr,k`

and C‖,k` are even functions of `, i.e.

Cr,k,−` = Cr,k`

C‖,k,−` = C‖,k` (31)

so that ΠE
rθ(θ, t) and ΠE

r‖(θ, t) are even functions of θ. This is because
the ballooning angle is supposed to be small θk � 1, and calculations
are run at order one in θk.

Since we are interested in signs, a rapid distortion theory may not
be accurate enough. A quasi-linear theory provides a more precise
value of the time and poloidal average of ΠE

r‖. The calculation is done

in Appendix B, and confirms the estimate Eq.(30). The structure of
the later is in line with previous calculations of the residual stress
(see [19, 20, 21], and overviews [22, 23]). The structure of the flux
of poloidal momentum Eq.(29) is well-known [25] and was used abun-
dantly in the context of transport barrier formation. We note that
ΠE
rθ,` and ΠE

r‖,` are anti-correlated when Cr,k` and C‖,k` are of the
same sign.
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3 Flux of parallel momentum due to

curvature drift

The expression Eq.(2) of the radial flux of parallel momentum due
to curvature shows that a finite flux can only be due to up-down
symmetries of the distribution function. The rationale here is as fol-
lows: because turbulence is ballooned, the stress tensor is ballooned
too, thus leading to poloidal asymmetries of the poloidal flow, and
therefore of the electric potential. The resulting distorted distribution
function is correlated with the E × B Reynolds stress, and therefore
with the E ×B radial flux of parallel momentum.

3.1 Generation of E × B poloidal convective
cells

Damping of time dependent and poloidally asymmetric flows is not
primarily due to collisions, but rather wave particle resonant effects.
An estimate can be obtained by solving the linear gyrokinetic equation

∂G

∂t
+ vE · ∇G+ vD · ∇G+ v‖∇‖G =

FM

(
∂

∂t
+ v∗ · ∇

)
e

T
(J · φ) (32)

coupled to the Poisson equation

−∇ ·
(
Nm

B2
∇⊥
)
φ+

Ne2

T

(
φ− 〈φ〉ψ

)
= e

∫
d3vJ · (F − FM ) (33)

where N is the unperturbed density, J the gyroaverage operator,
v∗ = T

eB0

∂ lnFM
∂r the kinetic diamagnetic velocity, FM is the unshifted

Maxwellian distribution function built with the density N and tem-
perature T , and G = F −FM +FM

eφ
T is the non adiabatic part of the

distribution function. The distribution functions F and G are func-
tions of the gyrocenter-center position, the adiabatic invariant µ and
parallel velocity v‖. The parallel non linear term has been neglected.
The mirror force is also ignored since the quantity of interest is the
ion parallel flux, to which passing particles contribute mot. To assess
the large scale flow dynamics, the limit J → 1 can be safely kept. For
non zonal modes 〈φ〉ψ = 0, this gives an equation for the potential

vorticity φ− ρ2
i∇2
⊥φ, i.e.

N

(
∂

∂t
+ vE · ∇

)(
1− ρ2

i∇2
⊥
) eφ
T

+ ∇‖Γ‖ +∇ · (NvE +Nv∗p) = 0 (34)
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where Γ‖ is the ion parallel flux, and v∗p the diamagnetic velocity.
The vorticity equation Eq.(34) has been derived by assuming that the
electric potential wavelength is smaller than the gradient lengths of
density and temperature. The axisymmetric electric potential n = 0
is Fourier expanded in poloidal angle and time

φn=0(θ, t) =
∑
`ω

φ`ωexp {i (`θ − ωt)} (35)

where ` 6= 0 since zonal flows are excluded. One can show the following
variant of the Taylor identity [24] (see Appendix C)

1

B0

∫ 2π

0

dϕ

2π
(vE · ∇)∇2

⊥φ = ∇2
⊥ΠE

rθ (36)

where

∇2
⊥ΠE

rθ =
1

r0

∂

∂r0

(
r0

∂

∂r0
ΠE
rθ

)
(37)

It is reminded that r0 is the reference radius in the neighborhood of
which the calculations are performed. A subsidiary small parameter
ρπ = ρi

λπ
< 1 is introduced at this point, which is the ratio of the ther-

mal Larmor radius to the typical radial wavelength of the turbulent
Reynolds stress tensor. Only terms of order ρ2

π are retained in the
following.

The divergence of the parallel flux in the vorticity equation Eq.(34)
can be calculated by computing the axisymmetric components n =
0, ` 6= 0 of the perturbed distribution function, which is a linear solu-
tion of the gyrokinetic equation Eq.(32), i.e.

G`ω = FM
ω

ω − ` v‖
q0R0

+ i0+

eφ`ω
T

(38)

It appears that the ` component of the parallel flux divergence is{
∇‖
[∫

d3vv‖F

]}
`

= −iω (σ`ω + iν`ω)
eφ`ω
T

(39)

where σ`ωω is a frequency shift and ν`ωω is the flow damping rate
(ν`ωω > 0). The explicit expressions of σ`ω and ν`ω are

σ`ω = P.P.
1

(2π)1/2

∫ +∞

−∞
dζe−

ζ2

2

−` vTiq0R0
ζ

ω − ` vTiq0R0
ζ + i0+

(40)

and

ν`ω =
(π

2

)1/2 ω

|`|ωt
e
− ω2

2`2ω2t (41)
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where ωt =
∣∣∣ vTiq0R0

∣∣∣ is a thermal transit frequency. Some useful proper-

ties are
σ−`ω = σ`ω ν−`ω = ν`ω
σ−`−ω = σ`ω ν−`−ω = −ν`ω

(42)

The last term in the vorticity equation Eq.(34) cancels out since the
divergence of the diamagnetic current term is linear so that its toroidal
average is zero. The other term is a particle flux which is equal to
zero for an ITG turbulence. The vorticity equation Eq.(34) can then
be solved by combining the Taylor identity Eq.(36) with the parallel
flow divergence Eq.(39), thus providing the Fourier components of the
electric potential φ`ω

φ`ω
B

= −
K2
⊥,`ρ

2
i

1 + σ`ω + iν`ω

ΠE
rθ,`ω

−iω
(43)

where the Reynolds stress tensor has been expanded in a Fourier series

ΠE
rθ(θ, t) =

∑
`ω

ΠE
rθ,`ωexp {i (`θ − ωt)} (44)

and K2
⊥,` has to be understood as an operator that acts on ΠE

rθ,`ω,

K2
⊥,`Π

E
rθ,`ω = −∇2

⊥ΠE
rθ,`ω. It is reminded that only the leading term

in ρ2
π ' K2

⊥,`ρ
2
i is kept.

The expression of the electric potential Fourier components Eq.(43)
is of central interest since it provides the structure of time-dependent
poloidal convective cells which are driven by turbulent eddies. Hence
it calls for several comments:

1. Using the properties Eq.(42), it appears that φ∗`ω = φ−`−ω, as
expected. However, even if the stress tensor is up-down symmet-
rical at lowest order in ballooning angle, i.e. ΠE

rθ,−`ω = ΠE
rθ,`ω

(a consequence of Eq.(31)), this is not the case for the potential,
which develops up-down asymmetries φ−`ω 6= φ`ω, due to damp-
ing.

2. Poloidal convective cells are Landau damped due to their finite
poloidal wave number, as expected. However it appears that
their damping rate is small at low frequencies, hence favoring
their onset and sustainment. This result can be understood as
follows : for a steady axisymmetric potential (ω = 0, n = 0)
the 3 invariants of motion (energy, kinetic toroidal momentum,
adiabatic invariant) are preserved, so that the motion is inte-
grable and no damping is possible is the distribution function is
smooth in the phase space. It will be seen in the next section
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that the 1/ω scaling of their amplitude plays an important role
in the generation of parallel flow via curvature drift. At very low
frequencies however, collisions take over, thus regularizing the
infrared singularity.

3. The value of K⊥,`ρi ' ρπ is of central importance. First, it is
assumed that K2

⊥,`ρ
2
i is positive, i.e. we consider here the case of

radial oscillations of the Reynolds stress. Secondly, the mecha-
nism presented here requires values of ρπ that are not too small,
i.e. corrugations of the Reynolds stress with a spatial scale of
a few gyroradii [3, 6, 7]. This may push the present model to
its validity limit, since it was assumed that the variation with
r0 correspond to scales larger than the distance between reso-
nant surfaces, itself of the order of the ion gyroradius. A more
accurate calculation for ρπ ' 1 is intricate as it requires a more
precise procedure to solve the vorticity equation, as done for
zonal flows ([26] and references therein).

4. The ordering of gyrokinetic theory is not broken since the ampli-
tude of the normalized potential eφ`ωTi remains small, of the order
of ρ∗. This can be verified by using Eq.(43) , and noting that the
turbulence stress tensor scales as ρ2

∗v
2
T , frequencies as vT

R so that
eφ`ω
Ti
' ρ2

πρ∗. Macroscopic flows ρπ ' ρ∗ would lead to very small
amplitudes of the potential turbulence on the electric potential
eφ`ω
Ti
' ρ3

∗ with a negligible effect, as discussed in [4]. Numerical
simulations suggest that ρπ is rather in the range of 0.1 [6].

3.2 Curvature driven flux of parallel momen-
tum

The banana-plateau component of the neoclassical flux of parallel mo-
mentum is known to cancel. Obviously the Pfirsch-Schlüter contribu-
tion vanishes too in the collisionless regime so that the overall stan-
dard neoclassical momentum flux is null [27, 28, 29] (see [30] for an
overview). Therefore one is left with the cross-correlation between
the curvature drift and the perturbed distribution function due to the
electric potential fluctuations φ`ω driven by turbulent eddies. This
cross-correlation is responsible for a finite flux of parallel momentum.
The time dependent radial flux of parallel momentum due to curvature
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drift reads 〈
ΠD
r‖

〉
θ

=
1

N

∫ 2π

0

dϕ

2π

∫ 2π

0

dθ

2π

∫
d3vFvDrv‖

=
+∞∑
`=−∞

∫
d3vv‖F`v

∗
Dr` (45)

Here vDr is the geodesic component of the curvature drift velocity

vDr = vD
1

2i
(δ`,1 − δ`,−1) (46)

where

vD = −
µB0 +mv2

‖

eB0R0
(47)

We compute the momentum flux by using again the linear solution
Eq.(38) of the gyrokinetic equation Eq.(32). The frequency Fourier
components of the parallel momentum flux Eq.(45) read〈

ΠD
r‖ω

〉
θ

= −q0

∑
`=±1

∫ +∞

−∞

dζ

(2π)1/2
e−

ζ2

2

−` vTiq0R0
ζ

ω − ` vTiq0R0
ζ + i0+

(
1 + ζ2

) 1

2
(δ`,1 + δ`,−1)

−iωφ`ω
B

(48)

Using Eq.(39) (or equivalently Eqs.(41,40)), the integral over the ve-
locity can be expressed as a function of σ`ω and ν`ω, namely〈

ΠD
r‖ω

〉
θ

= −q0

∑
`=±1

[
1 +

(
1 +

ω2

ω2
t

)
(σ`ω + iν`ω)

]
1

2
(δ`,1 + δ`,−1)

−iωφ`ω
B

(49)

We note that it is essential to deal with time dependent perturbations
to get a finite flux. Static perturbations resonate at zero parallel ve-
locity v‖ = 0 and therefore do not contribute to the flux of parallel
momentum. This is the basic reason why the banana-plateau neo-
classical flux of parallel momentum is zero. In the present case, this
cancellation is prevented by the increase of the potential amplitude
at low frequency, as shown by the expression of φ`ω Eq.(43). In other
words, it is the time derivative of the electric potential that matters.
Eq.(49) combined with Eq.(43) leads to the following expression of the
time Fourier transform of the momentum flux

〈
ΠD
r‖ω

〉
θ

= q0

1 +
(

1 + ω2

ω2
t

)
(σ`ω + iν`ω)

1 + σ`ω + iν`ω
K2
⊥,1ρ

2
iΠ

E
rθ,1ω (50)
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where the up-down symmetry of the turbulent Reynolds stress ΠE
rθ,−1ω =

ΠE
rθ,1ω has been used (consequence of Eq.(31). The next step con-

sists in taking the zero frequency limit of Eq.(50), which is equivalent
to a time average. For frequencies lower than the transit frequency,
ω � ωt, the frequency shift is close to unity, σ`ω = 1 + o(ω2/ω2

t ),
while the damping rate ν`ω ' ω/ωt vanishes. The expression Eq.(50)
becomes remarkably simple〈

ΠD
r‖

〉
θ,t

= −q0

〈
cos (θ) ρ2

i∇2
⊥ΠE

rθ

〉
θ,t

(51)

For a ballooned turbulence, the Reynolds stress is ballooned too. If
fluctuations are strongly localized on the low field side, the prefactor
cos(θ) can be replaced by 1 in Eq.(51). This can also be demonstrated
by using the structure of the stress tensor Eq.(29) and the expression
of Cr,k` with ` (see Eq.(12)), which allows replacing ΠE

rθ,1ω by ΠE
rθ,0ω

at low values of the ballooning angle, where ΠE
rθ,0ω is the poloidal

average ` = 0 of the E ×B Reynolds stress.
The reader may actually be surprised by the result Eq.(51), which

is quite simple. One may actually wonder whether a more direct
calculation of ΠD

r‖ is possible, and indeed it is. Since the parallel
velocity plays a subdominant role in the curvature drift, essentially
because the resonant velocity goes like the pulsation, the curvature
driven flux of momentum Eq.(45) can be reformulated as〈

ΠD
r‖

〉
θ,t

= − T

NeB0R0

∫ 2π

0

dϕ

2π

∫ 2π

0

dθ

2π
sin(θ)Γ‖ (52)

An integration by part allows a reformulation in terms of the parallel
gradient of the parallel flux〈

ΠD
r‖

〉
θ,t

= −q0
T

NeB0

∫ 2π

0

dϕ

2π

∫ 2π

0

dθ

2π
cos(θ)∇‖Γ‖ (53)

Using the vorticity equation Eq.(34), and the Taylor identity Eq.(36),
one finds Eq.(51). It is quite remarkable that this result does not
depend on the details of the poloidal convective cells, which act as
mediators. Their emergence in simulations is nevertheless essential
to this process. An example of turbulence self-organization via the
generation of poloidal convective cells is shown in Fig.3. This figure
comes from simulations run with the GYSELA gyrokinetic code [31].
It turns out that poloidal convective cells play also a role in the in-
terplay between turbulent and neoclassical impurity transport [15].
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Figure 3: Small scale eddies and poloidal convective cells in a GYSELA simulation.

4 Comparison of E ×B and curvature

driven momentum fluxes

4.1 General expressions of momentum fluxes
fluxes

The expression Eq.(51) of the radial flux of parallel momentum due to
the curvature drift can be expressed in the Fourier space using Eq.(29)〈

ΠD
r‖

〉
θ,t

= −q0

∑
k

Cr,k0K
2
⊥,`ρ

2
i

〈
|vEk|2

〉
t
θk (54)

This expression can be compared with the E × B flux of momentum
Eq.(84) 〈

ΠE
r‖

〉
θ,t

=
∑
k

ωcτkC‖,k0

〈
|vEk|2

〉
t
θk (55)

It appears that these two components of the total flux of parallel mo-
mentum are anti-correlated when Cr,k0 and C‖,k0 are of the same sign
(for positive q0). This is also the condition for anti-correlation of the
E ×B poloidal and parallel components of the Reynolds stress. This
is the main result of this paper. The final answer is clearly sensi-
tive to processes that determine the radial and parallel wavelengths,
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which are presumably determined by non linear effects. Nevertheless
it is interesting to calculate the linear values of Crk and C‖k, and the
corresponding sign of the correlation.

4.2 Application to Ion Temperature Gradient
driven turbulence

An instructive example is the case of an unstable linear toroidal Ion
Temperature Gradient (ITG) driven mode. General expressions of
Crk and C‖k are derived in the hydrodynamic limit in the Appendix
D. In the long wavelength limit K2

θρ
2
i � 1/s2

0 and strong magnetic
shear |s0| � 1, explicit expressions of the coefficients Cr,k0 and C‖,k0

can be found
Cr,k0 = crks0 (56)

C‖,k0 = c‖k
ρi
R0

(Kθρis0)2 q0s0 (57)

The numbers crk and c‖k depend on the normalized frequencies ωk
ωd

and γk
ωd

only, where ωk and γk are the real and imaginary parts of
the linear frequency in the plasma frame (frame where the local radial
electric field is zero), and

ωd = −2
KθT

eB0R0
(58)

is a thermal magnetic field curvature frequency. More precisely

crk =
1

2

1(
1 +

γ2k
ω2
k

)1/2
(λ− − sgn (ωkωds0)) (59)

c‖k = 21/2 1

|q0|

∣∣∣∣ ωk

ωds0

∣∣∣∣3/2(1 +
γ2
k

ω2
k

)1/2

λ
1/2
− (60)

and

λ− =

[(
1 +

γ2
k

ω2
k

)1/2

− sgn (ωkωds0)

]
(61)

The coefficient λ− is always positive. These expressions are valid for
any sign of q0 and s0. We now restrict the discussion to the generic
case q0 > 0 and s0 > 0. These considerations lead to the following
estimates of the momentum fluxes〈

ΠD
r‖

〉
θ,t
' s0q0

∑
k

crk (K⊥,1ρi)
2
〈
|vEk|2

〉
t
θk (62)
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and 〈
ΠE
r‖

〉
θ,t
' −s0q0

∑
k

c‖kωtτk (Kθρis0)2
〈
|vEk|2

〉
t
θk (63)

For ωk ' γk ' ωd, the two numbers crk and c‖k are of the same
order of magnitude. The two fluxes are therefore comparable when
K⊥,1ρi ' ρπ ' Kθρi (ωtτk)1/2. This condition appears as reason-
able since the intensity wave number spectrum typically peaks at
Kθρi ' 0.1, provided ωtτk ' o(1) [32, 33] .

Regarding the signs, it appears that for modes that drift in the ion
diamagnetic direction sgn (ωkωd) = 1, crk is negative for a weak drive
γk � ωk, and positive for strong drive γk ≥ ωk. Since c‖k is always
positive, this means that C‖,k0 and Cr,k0 are positively correlated near
threshold, and anti-correlated far from threshold. Consequently the
two fluxes or parallel momentum are positively correlated for low drive
γk � ωk and anti-correlated for strong drive γk ≥ ωk. For modes
drifting in the electron diamagnetic direction, sgn (ωkωd) = −1, anti-
correlation always occurs. For ITG modes, drift in the ion diamag-
netic direction is expected, so that anti-correlation is expected only
far enough from the instability threshold. It is not clear whether this
finding agrees or not with previous numerical findings for momentum
transport [6, 7]. Nevertheless it is stressed that the hydrodynamic
limit that is being used here, is a rather demanding approximation
that becomes correct well above the instability threshold, i.e. for
γk > ωk. This is precisely the regime where an agreement with sim-
ulations is found, i.e. anticorrelation. In that regard some further
analysis of the numerical simulations would be helpful. An encourag-
ing observation though [7] is that the E×B flux of parallel momentum
is anti-correlated with the ballooning angle θk, which suggests positive
c‖k in view of Eq.(63). Moreover, it is possible (if not likely) that the
two terms crk and c‖k are determined by non linear processes and not
well captured by a linear analysis.

5 Conclusion

It is shown here that the E × B Reynolds stress tensor generates
poloidal asymmetries of the plasma flow due to turbulence balloon-
ing. These poloidal convective cells are weakly damped at low fre-
quency. Their radial scale is dictated by the turbulent Reynolds stress,
and their poloidal wavenumbers are small. These cells drive up-down
asymmetries of the distribution function, which are responsible for a
non-zero radial flux of parallel momentum due to the geodesic com-
ponent of the particle curvature drift. The entire process requires a
symmetry breaking mechanism, for instance a mean shear flow. Since
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the turbulent Reynolds can be seen as a flux of momentum, it appears
that the two components of the radial flux of parallel momentum due
to curvature and E×B drift are correlated. This general result comes
from a simple relationship between the momentum flux due to cur-
vature and the turbulent Reynolds stress. Although poloidal convec-
tive cells do not appear explicitly in this relationship, they play an
essential role in this mechanism. A analytic calculation shows that
anti-correlation between the components of the turbulent Reynolds
stress results in anti-correlation of the two contributions to the flux
of parallel momentum that come from E ×B and curvature drifts. A
quasi-linear calculation of all quantities, based on ITG linear stability
indicates that positive correlation is expected near threshold, and anti-
correlation for strong drive. Hence no firm conclusion can be drawn
as to the relevance of this mechanism to explain the numerical results.
Nevertheless the fact that the hydrodynamic limit that has been used
is only valid well above the stability threshold, i.e. strong drive, is en-
couraging since it is the case where anti-correlation is found, in agree-
ment with numerical findings. It is likely that poloidal convective
cells generated by turbulence have other consequences on turbulent
transport and turbulence. Indeed they may participate in turbulence
self-regulation via vortex shearing processes similar to zonal flows.

APPENDICES

A Mode structure

The mode structure Eq.(8) lead to a turbulence intensity that reads∣∣∣φ̃k(θ, t)
∣∣∣2 = |φk(t)|2Ak(θ) (64)

where Ak(θ) is a form factor

Ak(θ) =
( ᾱk

π

)1/2

exp
{
−ᾱk

(
θ − λ̄kθk

)2}
(65)

and

ᾱk =
1

2
(αk + α∗k) = < (αk) (66)

λ̄k =
αkλk + α∗kλ

∗
k

αk + α∗k
=
<(αkλk)

< (αk)

The amplitude ak in Eq.(8) has been chosen such that∫ ∞
−∞

dθ
∣∣∣φ̃k(θ, t)

∣∣∣2 =
∣∣∣φ̃k(t)

∣∣∣2 (67)
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namely

ak =
( ᾱk

π

)1/4

exp

{
|αk|2

2
(
αk + α∗k

) (λk − λ∗k)2

}
(68)

The poloidal Fourier components of the radial and parallel wave num-
bers Eq.(9) and Eq.(10) can then be recast as

Kr,k` = Kθs0

∫ ∞
−∞

dθe−imθ (θ − θk)Ak(θ) (69)

K‖,k` =
1

q0R0

∫ ∞
−∞

dθe−imθ (θ − λkθk)Ak(θ)

For a strongly ballooned turbulence αk � 1, and small values of the
ballooning angle θk � 1 , one gets at first order in θk

Kr,k` = Kr,0 = Kθs0
<(αkδk)

< (αk)
θk (70)

K‖,k` = K‖,0 =
|αk|2

q0R0

=(δk)

< (αk)
θk (71)

where δk = λk−1. Hee <(z) and =(z) indicate the real and imaginary
parts of a complex number z.

B Quasilinear expression of E×B mo-

mentum flux

We start from the expression of the E × B drift contribution to the
momentum flux, and readily get its time average Eq.(19)〈

ΠE
r‖(θ, t)

〉
t

=
1

N

∑
kω

∫
d3vF̃kωv‖ṽ

∗
Ekω (72)

To calculate the distribution function versus the potential, we use a
ballooning representation. The electric potential is written in the form

φ(r, θ, ϕ, t) =

+∞∑
p=−∞

φ̃kω(θ + 2pπ, t)

exp {in [ϕ− q(r) (θ + 2pπ − θk)]− iωt} (73)

where θk is the ballooning mode. The single term p = 0 is kept for
strongly ballooned fluctuations. A similar expansion is used for the
non adiabatic part of the distribution function, i.e. G̃kω = F̃kω +
e
Ti
φ̃kω. The gyrokinetic equation Eq.(32) reads

(ω −K‖v‖ − ωD)G̃kω = FM (ω − ω∗)
e

Ti

(
J · φ̃kω

)
(74)
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Here K‖ is an operator

K‖ = −i 1

q0R0

∂

∂η
(75)

where η = θ − θk is a shifted poloidal angle. The kinetic curvature
drift frequency ωD is defined as

ωD(η) =

(
v2
⊥

2v2
T i

+
v2
‖

v2
T i

)
ωd(η) (76)

where

ωd(η) = − 2KθTi
eB0R0

[cos (θk + η) + s0η sin (θk + η)] (77)

vT i =
√
Ti/mi is the thermal ion velocity, and Kθ = −nq0

r0
is the

poloidal wavenumber - q0 is the safety factor at the reference radius
r0. The definition of the kinetic diamagnetic frequency ω∗ is the usual
one

ω∗ = ω∗n + ω∗T

(
v2
⊥
v2
T i

+
v2
‖

v2
T i

− 3

2

)
(78)

where
ω∗n = − KθTi

eB0Lni

ω∗T = − KθTi
eB0LTi

(79)

are the density and temperature diamagnetic frequencies and Lni and
Lpi are the density and pressure gradient lengths calculated at the
reference radius r0. The gyroaverage J is fairly well represented by a
Bessel function with an argument K⊥ρc, i.e. J0 (K⊥ρc), where ρc =
miv⊥
eB0

is the kinetic ion gyroradius and

K2
⊥ = K2

θ

[
1 + s2

0η
2
]

(80)

The solution of the gyrokinetic equation Eq.(74) involves an integro-
differential operator that relates G̃kω to φ̃kω [34, 36]. A formal solu-
tion can be written in a Wentzel-Kramers-Brilloin (WKB) sense by
dividing the r.h.s. of Eq.(74) by the resonant term ω −K‖v‖ − ωD

F̃kω = −FM
{

1− ω − ω∗
ω − ωD −K‖v‖ + i0+

}
eφ̃kω
T

(81)

We assume that the spectral turbulence intensity is of the form∣∣∣φ̃kω∣∣∣2 = Ak(θ) |φk|2
1

π

∆ωk

(ω − ωk)2 + ∆ω2
k

(82)
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which gives〈
ΠE
r‖(θ, t)

〉
t

=
1

N

∑
kω

∫
d3vFMv‖ |vEk|2

eB0

KθTi
(ω − ω∗)

∆ωk

(ω − ωk)2 + ∆ω2
k

δ
(
ω −K‖v‖ − ωD

)
(83)

In the hydrodynamic limit ωD
ω '

K2
‖v

2
‖

ω2 � 1, one gets the result〈
ΠE
r‖

〉
θ,t

=
∑
k

C‖,k0
ωc∆ωk

ω2
k + ∆ω2

k

〈
|vEk|2

〉
t
θk (84)

This result is identical to Eq.(30) with τk = ∆ωk

ω2
k+∆ω2

k
. Strictly speaking

there is also a contribution to the E × B flux of parallel momentum
that comes from the axisymmetric perturbations of the potential φ`ω
Eq.(43) and the distribution function response Eq.(38) . However this
contribution is of second order in ballooning angle θk and will not be
retained here. Hence the E ×B flux of momentum is in this peculiar
case ”turbulent”, i.e. produced by small scale fluctuations.

C Taylor identity

The purpose of this appendix is to demonstrate the identity

1

B0

∫ 2π

0

dϕ

2π
(vE · ∇) Ω = ∇2

⊥ΠE
rθ (85)

where Ω = ∇2
⊥φ is the vorticity, and vE = b × ∇φB the E × B drift

velocity. The demonstration is restricted to a geometry of concentric
circular surfaces with large aspect ratio . We use the mode structure
Eq.(7)

φ(r, θ, ϕ, t) =
∑
k

φ̃k(r0, θ, t) exp {inχk} (86)

where χk = ϕ − q(r) (θ − θk), and the dependence on r0 is explicit
for clarity throughout this section. The average over φ implies that
the l.h. s. of Eq.(85) appears as a sum over the index k of operators
acting on φ̃k, namely∫ 2π

0

dϕ

2π

b

B2
0

· (∇φ×∇Ω) =
∑
k

b

B2
0

· [(∇φ)k × (∇Ω)∗k] (87)

where

(∇φ)k =
∂φ̃k
∂r0
∇r0 +

∂φ̃k
∂θ
∇θ + in∇χkφ̃k (88)
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and (∇Ω)k is given by a similar expression. This suggests a change of
variables for each k, namely

r0 = r (89)

χk = ϕ− q(r) (θ − θk) (90)

η = θ (91)

The variable η plays the role of a coordinate along the field line, r0

represents the slow variation of the field in the radial electric field,
and χk is a coordinate transverse to the field. We use the following
ordering

1

R0

∂φ̃k
∂η
� ∂φ̃k

∂r0
� nq0

r0
φ̃k (92)

which allows neglecting the slow variation of the field along the field
line. We note that the unit vector along the magnetic field can be
written,

b =
r0

q0
∇χk ×∇r0 (93)

for any k. Ignoring the derivatives with respect to η, one finds the
following identity∫ 2π

0

dϕ

2π

b

B2
0

· (∇φ×∇Ω) =
1

B2
0

q0

r0

∂

∂r0

{∑
k

(
inφ̃kΩ∗k

)}
(94)

where |∇χk|2 '
q20
r0

for a ballooned turbulence. Using ∇2
⊥ = ∇·∇−(b·

∇)2, and neglecting again the derivatives along the field lines. Each
Fourier harmonics of the vorticity can be written as

Ωk =
1

r0

∂

∂r0
r0

∂

∂r0

(
r0φ̃k

)
+ 2in (∇χk · ∇r0)

∂

∂r0
φ̃k − n2 |∇χk|2 φ̃k

(95)
where it has been used that the variation of φ̃k with r0 is faster than
the radial variation of (∇χk · ∇r0). The largest term is the third one
in the r.h.s. of Eq.(95) , but it does not contribute to Eq.(94) for
parity reasons. The largest contribution therefore comes from the
second term of the r.h.s. of Eq.(95) , i.e.∫ 2π

0

dϕ

2π

b

B2
0

· (∇φ×∇Ω) ' ∇2
⊥

−∑
k

s0(η − θk)

∣∣∣∣∣nq0

r0

φ̃k
B0

∣∣∣∣∣
2
 (96)

where

∇2
⊥ =

1

r0

∂

∂r0
r0

∂

∂r0
(97)

The expression within the brackets of the r.h.s. of Eq.(96) is the rθ
component of the E×B stress tensor, as can be verified from Eq.(21).
Eq.(96) demonstrates the Taylor identity Eq.(85).
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D Linear calculation of radial and par-

allel wavenumber

Assuming an electron adiabatic response, and using the solution of the
gyro-kinetic equation Eq.(81), the following electroneutrality equation
is obtained for a non axisymmetric mode n 6= 0{

τ + 1− 1

N

∫
d3vFMJ

ω − ω∗
ω −K‖v‖ − ωD

J
}
φ̃kω = 0 (98)

where τ = Ti
Te

is the ratio of the ion to electron temperature at r = r0.
This equation, which describes reasonably well toroidal ITG modes,
can be easily extended to non adiabatic electrons [34](see also [35] and
references therein). In the hydrodynamic limit

ωD
ω
∼
K2
‖v

2
T i

ω2
∼ K2

⊥ρ
2
i � 1 (99)

the electro-neutrality condition Eq.(98) can be expanded at first or-

der in ωD
ω ,

K2
‖v

2
Ti

ω2 and K2
⊥ρ

2
i , where ρi = mivTi

eB0
is the thermal ion

gyroradius. The equation that rules φ̃kω now reads [36][
−ω

2
t

ω2

∂2

∂η2
−K2

θρ
2
i (1 + s2

0η
2) + Λ(ω, η)

]
φ̃kω = 0 (100)

where

Λ(ω, η) =
τω + ω∗n
ω∗p − ω

+
ωd(η)

ω
(101)

is the η dependent local dispersion relation. The transit frequency is

defined ωt =
∣∣∣ vTiq0R0

∣∣∣ and ω∗p is the pressure diamagnetic frequency

ω∗p = − KθTi
eB0Lpi

(102)

where Lpi is the pressure gradient length. The next step consists in
expanding the curvature drift frequency near η = 0 up to o(η2) and
o(θ2

k). After regrouping the various terms, one finds[
−ω

2
t

ω2

∂2

∂η2
+

(
ωd
ω

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

)
(η − ηk)2 + Λ

]
φ̃kω = 0

(103)
where Λ is now a local dispersion relation independent of η and

Λ(ω) =
τω + ω∗n
ω∗p − ω

+
ωd
ω
−K2

θρ
2
i−

1

4

ω2
d

ω2

(s0 − 1)2[
ωd
ω

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

]θ2
k (104)
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where ωd is the local curvature drift frequency. Strictly speaking ωd =
−2 KθT

eB0R0

(
1− θ2

k

)
, but the analysis is restricted here to low values of

θk. Calculations are run at first order in θk, so that the curvature drift
is the one defined in Eq.(58). The complex number ηk is proportional
to the ballooning angle θk

ηk = −1

2

ωd
ω

(s0 − 1)[
ωd
ω

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

]θk (105)

The smoothest solution of this differential equation is

φ̃kω = φ0 exp

{
−1

2
αk (η − ηk)2

}
(106)

with the conditions

ω2
t

$2
k

α2
k =

ωd
$k

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0 (107)

ω2
t

$2
k

αk = −Λ($k) (108)

The two equations Eqs.(107, 108) provide the values of αk and of
the complex mode frequency $k. Moreover, the solution Eq.(106) is
acceptable only if < (αk) > 0, to guarantee mode spatial localization.
The mode frequency $k is written as $k = ωk + iγk , where ωk is
the real part, and γk the growth rate. The later is positive above the
instability threshold. We will focus on that case. A limit of interest

is Kθρi � 1, and
ω2
t
ω2αk � Λ. The dispersion relation then becomes

Λ($k) = 0, i.e.

τ$2
k − (ωd − ω∗n)$k + ω∗pωd = 0 (109)

which yields

ωk =
1

2τ
(ωd − ω∗n) (110)

γk =
1

2τ

[
4τω∗pωd − (ωd − ω∗n)2

]1/2
(111)

It is recovered that modes drift linearly in the ion diamagnetic direc-
tion for flat density profiles ω∗n ' 0, while they rotate in the electron
diamagnetic direction for strong density gradients [36]. We now turn
to the quantities of interest, i.e. the radial and parallel wavenum-
ber given by Eq.(14,15). Since Eq.(108) depends on the detail of the
local dispersion relation, we will use exclusively Eqs.(107) and leave
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$k arbitrary, except at the very end, when making estimates for ITG
modes. It appears that δk = λk − 1 is given by the following relation

δk = −
ωd

2$k
(s0 − 1)

ωd
$k

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

= −1

2

ωd$k

ω2
t

1

α2
k

(s0 − 1) (112)

from which its imaginary part = (δk) can be deduced

= (δk) = −1

2

K2
θρ

2
i s

2
0(s0 − 1)∣∣∣ ωd$k

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

∣∣∣2
γkωd

|$k|2
(113)

thus leading to

K‖,0 = − 1

2q0R0
K2
θρ

2
i s

2
0(s0 − 1)

1

< (αk)

∣∣∣∣ $k

αkωt

∣∣∣∣2 γkωdω2
t

θk (114)

Using the relation ωd = −2 |q0|Kθρiωt, one gets the expression of
C‖,k0

C‖,k0 = sgn(q0)
ρi
R0

(Kθρis0)2 (s0 − 1)
1

< (αk)

∣∣∣∣ $k

αkωt

∣∣∣∣2 γkωt (115)

The calculation of Kr,0 is somewhat more delicate because of compen-
sation effects. Using the r.h.s of Eq.(112), one finds

Cr,k0 =
Kr,0

Kθθk
= −1

2

ωd
ω2
t

s0 (s0 − 1)
<
(
$k
αk

)
< (αk)

(116)

It appears readily that

Cr,k0 = −1

2
s0 (s0 − 1)

ωdωk

ω2
t

σk

|αk|2
(117)

where

σk = 1− = (αk)

< (αk)

γk
ωk

(118)

The condition Eq.(107) can be used to provide a relation between
< (αk) and = (αk), i.e.

2< (αk)= (αk) =
γkωk

ω2
t

[
ωd
ωk

(
s0 −

1

2

)
− 2K2

θρ
2
i s

2
0

]
(119)

from which one gets the following result

σk = 1−
[
ωd

2ωk

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

]
γ2
k

[< (αk)]2 ω2
t

(120)
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An explicit expression of [< (αk)]2 can be found by solving Eq.(107) ,
i.e.

[< (αk)]2 =
1

2ω2
t

[
ωkωd

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

{
ω2
k − γ2

k

}]
+

1

2ω2
t

{[
ωkωd

(
s0 −

1

2

)
−K2

θρ
2
i s

2
0

{
ω2
k − γ2

k

}]2

+ γ2
k

[
ωd

(
s0 −

1

2

)
− 2K2

θρ
2
i s

2
0ωk

]2
}1/2

(121)

It results from Eq.(120) that Cr,k0 changes sign when

γ2
k

[< (αk)]2 ω2
t

≥ 1
ωd

2ωk

(
s0 − 1

2

)
−K2

θρ
2
i s

2
0

(122)

provided the r.h.s. is positive. The positivity condition is fulfilled
for modes drifting in the ion diamagnetic direction sgn (ωdωk) for low
wave numbers and positive magnetic shear. This change of sign typ-
ically occurs when one moves from the situation of weak drive (near
threshold) γk � ωk to a situation of strong drive γk � ωk.

To make these expressions more explicit, we concentrate on the
limit of a strong magnetic shear |s0| >> 1 and low wavenumbers
K2
θρ

2
i � 1. Using the relations Eq.(119, 121), explicit expressions of

< (αk), = (αk) can be found

[< (αk)]2 =
1

2

|ωkωds0|
ω2
t

λ+ (123)

[= (αk)]2 =
1

2

|ωkωds0|
ω2
t

λ− (124)

from which σk and |αk|2 can be derived

σk = 1− sgn (ωkωds0)λ− (125)

|αk|2 =
|ωkωds0|
ω2
t

(
1 +

γ2
k

ω2
k

)1/2

(126)

where

λ± =

[(
1 +

γ2
k

ω2
k

)1/2

± sgn (ωkωds0)

]
(127)

The numbers λ+ and λ− are always positive, and satisfy the useful
relationships

λ+λ− =
γ2
k

ω2
k

(128)
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λ+ + λ− = 2

(
1 +

γ2
k

ω2
k

)
(129)

The expression Eq.(126) of |αk|2 can be obtained directly from Eq.(107),
thus providing a cross-check . Plugging Eqs.(128,129) in the expres-
sions of C‖,k0 and Cr,k0 Eqs.(114,117), one obtains the following rela-
tions

Cr,k0 = crks0 (130)

C‖,k0 = c‖k
ρi
R0

(Kθρis0)2 q0s0 (131)

where crk and c‖k are numbers that depend on the normalized fre-
quencies ωk

ωd
and γk

ωd
only, namely

crk =
1

2

1(
1 +

γ2k
ω2
k

)1/2
(λ− − sgn (ωkωds0)) (132)

c‖k = 21/2 1

|q0|

∣∣∣∣ ωk

ωds0

∣∣∣∣3/2(1 +
γ2
k

ω2
k

)1/2

λ
1/2
− (133)

References

[1] T. Vernay, S. Brunner, L. Villard et al., Physics of Plasmas 19,
042301 (2012).

[2] M. Oberparleiter, Ph.D. thesis, Universität Ulm (2015); M.
Oberparleiter, F. Jenko, D. Told, H. Doerk, T. Görler, sub-
mitted to Phys. Plasmas (2015).

[3] G. Dif-Pradalier, V. Grandgirard, Y. Sarazin et al., Phys. Rev.
Lett. 103, 065002 (2009).

[4] F.I. Parra and P.J. Catto, Plasma Phys. Control. Fusion 52,
059801 (2010).

[5] M. Barnes, F. I. Parra, J. P. Lee et al., Phys. Rev. Letters 111,
055005 (2013).

[6] J. Abiteboul, X. Garbet, V. Grandgirard, S. J. Allfrey, Ph.
Ghendrih, G. Latu, Y. Sarazin, and A. Strugarek, Phys. Plas-
mas 18, 082503 (2011).

[7] Y. Idomura Phys. Plasmas 21, 022517 (2014).

[8] J.W. Connor, R.J. Hastie and J.B. Taylor, Proc. R. Soc. London
Ser. A 365, 1 (1979).

[9] F. Romanelli and F. Zonca, Phys. Fluids B 5, 4081 (1993).

28



[10] J. W. Connor, J. B. Taylor, and H. R. Wilson, Phys. Rev. Letters
70, 1803 (1993).

[11] J.Y. Kim and M. Wakatani, Phys. Rev. Letters 73, 2200 (1994).

[12] R. E. Waltz, R. L. Dewar, and X. Garbet, Physics of Plasmas
5, 1784 (1998).

[13] Y. Kishimoto, J.-Y. Kim, W. Horton, T. Tajima, M. J. LeBrun,
and H. Shirai, Plasma Phys. Controlled Fusion 41, A663 (1999).

[14] C. J. McDevitt, Xian-Zhu Tang, and Zehua Guo, Phys. Rev.
Letters 111, 205002 (2013).
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