
HAL Id: hal-01381481
https://hal.science/hal-01381481

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An approach for Web service discovery based on
collaborative structured tagging

Uddam Chukmol, Benharkat Aïcha-Nabila, Amghar Youssef

To cite this version:
Uddam Chukmol, Benharkat Aïcha-Nabila, Amghar Youssef. An approach for Web service discovery
based on collaborative structured tagging. 12th International Conference on Enterprise Information
Systems (ICEIS 2010), Jun 2010, Funchal, Portugal. pp.47-56, �10.5220/0002977300470056�. �hal-
01381481�

https://hal.science/hal-01381481
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

AN APPROACH FOR WEB SERVICE DISCOVERY BASED ON

COLLABORATIVE STRUCTURED TAGGING

Uddam Chukmol, Aïcha-Nabila Benharkat and Youssef Amghar
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, Villeurbanne, France

Keywords: Web Service Discovery, Structured Tagging, Semantic Annotation, Folksonomy, User-centricity.

Abstract: This research work presents a folksonomic annotation used in a collaborative tagging system to enhance the

Web service discovery process. More expressive than traditional tags, this structural tagging method is able

to reflect the functional capability of Web services, easy to use and very much accessible to users than

ontology or logic based formalism of annotation. We describe a Web service retrieval system exploiting the

aforementioned structural tagging. System user profiling is also approached in order to further assign

reputation and compute tag recommendation. We present some interesting usage scenarios of this system

and also a strategy to evaluate its performance.

1 INTRODUCTION

Web service discovery is a major operation in the

development cycle of service-oriented applications.

It consists of identifying services having functional

capabilities that are relevant to user needs. The

increasing number of Web services makes this task

even more complicated.

The existing solutions to this problem are often

based on information retrieval techniques (IR) which

suffers due to poor textual description of Web

services or semantic Web technologies. Keyword

search applying IR technique seems to be inefficient

because of the poor textual description of Web

services. Semantic Web technologies, if they are

applied within Web service discovery processes,

require the extension of original Web service

description with ontology-based annotations. The

latter hinders not only the service providers but also

the service users because the competence in

ontology or cognitive engineering is necessary to

master the process and to maintain the systems.

Besides, very few attempts consider the post-usage

information provided by service users to enhance

incrementally the process of Web service discovery.

Our proposal is inspired by the user centricity

and collaboration found in Web 2.0 environment

that aims at generating descriptive data associated to

a Web resource (image, document, video, etc.) and

the fact that other users exploit this evolving data to

share and classify online resources.

Within our research case, users can tag/annotate

a Web service that he/she has used with his/her own

vocabularies. By analyzing the functional

characteristics of Web service through numerous

WSDL contents, we propose a specific structural

tag/annotation model that takes into account the

capability of Web services and their usage domain.

We can consider that our tagging approach is based

on a folksonomic model that combines the

participation of users and the richness of their

vocabularies used in tagging process with the

structural aspect of annotation met in semantic Web

technologies.

Tagging provided by users is not used to extend

literally the original content of Web services

expressed in WSDL but associated to the invocation

URL of the service. We propose consequently a

Web service retrieval system that makes use of this

data, aggregates them when they are issued from

different users and offers a mechanism to search for

Web services and rank the output result.

In order to reinforce the quality of discovery and

help users in the selection of found Web services, a

user profiling scheme is approached and it is served

as information that our system further processes to

propose user reputation and tag recommendation.

The paper is organized as follows. Section 2

presents the related work. Section 3 describes our

system including tagging and query model, tags

1

aggregation, retrieval algorithm, result ranking and

user profiling. Section 4 shows the strategy that we

opt for evaluating our system performance and

Section 5 concludes the research work and envisions

its future perspectives.

2 RELATED WORK

The emergence of collaborative tagging system

(Golder & Huberman, 2005) and the abandon of

UDDI registry development by its initial creators

benefit the increasing number of Internet Web

service portals or catalogs (Chen Wu & Chang,

2007), (Al-Masri & Mahmoud, 2008) and facilitate

a lot the service suppliers in terms of publication and

maintenance. They also allow users to use a single

common search interface to look up for different

services published by various suppliers.

Traditional information retrieval (IR) or natural

language processing (NLP) techniques perform

poorly when they are used to solve Web service

discovery problems due to insufficient textual

descriptions of Web service WSDL contents

(Garofalakis, Panagis, Sakkopoulos, & Tsakalidis,

2006). They also do not seem to be scalable enough

and offer low search precision rate.

Besides, semantic Web community offers

another alternative solution to this discovery

problem by proposing several semantic annotation

techniques based on ontology or logical formalisms

such as WSMO (“Web Service Modeling

Ontology”), OWL-S (“OWL-S 1.2 Release”),

WSDL-S (“Web Service Semantics - WSDL-S”),

SAWSDL (“Semantic Annotations for WSDL and

XML Schema”) and WSMO-Lite (Kopecky &

Vitvar, 2008). They aim at allowing software agents

to operate Web service discovery automatically at

runtime (on-the-fly) when needed by primarily

extending WSDL contents of Web services by

semantic annotations. Without automatic semantics

annotation process, they may bring more burdens to

service suppliers. In effect, on one hand, they have

to be competent in cognitive or knowledge

engineering in order to master completely the

semantics designs and annotation process and on the

other hand, they have to choose among the existing

aforementioned formalisms the one that suits them

best without bringing more cost and effort in

training to their service engineers. More effort is

also needed to propose semantic-aware service

portals or registries in which services can be

published and Web service discoveries can be run

seamlessly and successfully. Additionally, with

multitude semantic annotation formalisms, rare, if

not to say, none has proposed such semantic

supported registries yet and users of such systems

have to be apt in constructing their discovery queries

conforming to the imposed semantic annotation

formalism from the providers. Despite the

theoretical efficiency proved by different semantic

Web service discovery proposals, they are struggling

at getting widely adopted by real world service

industries (Shi, 2007).

Some discovery methods exploit the data offered

implicitly or explicitly by users such as preference

or feedback on services. Service usage data is

collected throughout a framework based on Implicit

Culture via a deployment of a client-server system

and used to improve further Web service discovery

in (Birukou, Blanzieri, D'Andrea, Giorgini, & N.

Kokash, 2007). At the user side, a client application

must be installed to report the way Web services are

used to the server. This behavioral information is the

processed to compute the similarity between user’s

request and the set of used and stored services. The

system might fail due to the increasing number of

users and can be sensitive to confidentiality and

privacy policy at client side. Preference of user can

be treated as non-functional information to help

improve the quality of service discovery, such in

(Kovacs, Micsik, & Pallinger, 2007) where Web

services and user’s requests need to be enriched with

specific logic based formalism in order to compute

the similarity through a Prolog-based inference

engine. (Lamparter, Ankolekar, Studer, & Grimm,

2007) extend original Web service descriptions and

discovery queries with semantic data expressed in

OWL conforming to their developed preference

ontology before proceeding to service-request

similarity computing. However, they oblige users to

express the queries in logic based or ontology format

and finally increase effort, time and investment of

service suppliers to extend the descriptions of their

published services.

Users are allowed to express their service usage

satisfactions as tags (keyword tokens) in (Leitner,

Michlmayr, Rosenberg, & Dustdar, 2009). Those

tags are used to qualify the non-functional

constraints of services. These constraints are then

exploited to help in the selection of retrieved and

used services. Simpler method is adopted in

(Averbakh, Krause, & Skoutas, 2009) by allowing

users to rate (as a score) Web services referring to

some queries. These ratings are then exploited to

enhance the service discovery quality. These

approaches seem strongly to be more appropriate to

Web service selection rather than discovery because

2

no functional characteristics of services can be

reflected and expressed within their proposals.

(Hagemann, Letz, & Vossen, 2007) recommend

users to associate semantics to Web services using

tags – those are considered more light-weight and

accessible to real world use comparing to semantic

annotations in ontology-based formalisms. Such

annotation is introduced in (Meyer & Weske, 2006).

Then, by taking into account the user collaborations,

(Chukmol, Benharkat, & Amghar, 2008) propose a

Web service discovery method based on such

collaborative and folksonomic annotation.

Nonetheless, most of the latter makes use of flat

tags without any structure, relation or hierarchy.

Thus, it is still vague to consider that such tagging

can be used to reflect the functional capability of

Web service.

By considering all the drawbacks and advantages

met in analyzed related work, we are convinced that

through usage experiences, the quality of Web

service discovery can be notably improved by

exploiting post-experience data provided by users

referring to services. This Web 2.0 style of

lightweight semantic provision is not costly and can

be processed in a bottom-up and minimalistic way.

In effect, service suppliers are not forced to invest in

such process of semantic annotation and more

interesting semantics can be extracted from real user

perception on services.

In this research work, we are going to propose a

method for Web service discovery based on Web 2.0

collaborative tagging. Our tagging model is easy to

use and respects a structure that can reflect the

functional capability of services. A simple yet

efficient aggregation of tags is also proposed in the

overall system.

3 SOLUTION OUTLINE

A number of definitions related to Web service, tag,

query and user are proposed in order to facilitate the

further comprehension of our proposal.

3.1 Defining Web Service

Functionally, a Web service, through WSDL, can be

briefly defined as:

Definition 1. A Web service w is a triplet w<name,

doc, ope>, where name is the service name

corresponding to the attribute name of <definition>

tag of WSDL, doc is the functional description of

Web service corresponding to the <documentation>

tag of WSDL and ope is the list of operations of

Web service corresponding to <operation> tags of

WSDL.

Definition 2. An operation ope is quadruplet

ope<OName, ODoc, In, Out>, where OName is the

operation name corresponding to the attribute name

of <operation> tag, ODoc is the description of the

operation corresponding also to the

<documentation> tag under <operation>, In is the

list of input parameters of the operation

corresponding to <input> tags and Out is the list of

output parameters of the operation corresponding to

<output> tags.

Each input and output parameter has a name and

a data type.

Our tagging model aims at expressing with the

maximal ease of use the aforementioned functional

capability of Web services. We allow users to

express the contexts of service within their tags also.

In effect, it is important to bring forward the usage

experience perception of the service and share them

with other users. This may lead to more clarity in

understanding the situation in which a service is

successfully used and can respond at best to the

requester’s needs.

Through the above definitions, there can be

several basic operations or functions a service can

offer. Each operation can also be described by users

as atomic function offered by the incorporating

service. However, if we consider only such

operation by itself, it can be used in different

situation (e.g. an operation GetCityWeather that

outputs the weather forecast report given a city name

can be invoked in the situation of “Holiday

Preparation” or “Wedding party organization”).

More detail can also be added to make an

operation more precise. The operation profile can

also described by a set of inputs and outputs.

3.2 Defining Tag and Query

Therefore, according to the aforementioned

functional definition of Web service, we can

conformingly model our structured tag as:

Definition 3. A structured tag STag is a quadruplet

STag<ctxt, funct, input, output>, where ctxt contains

the list of keywords separated by ;, encapsulated in

“” and describing the situation in which the service

is / can be used or tested. Its structure is a single

dimension table indexed by keywords and each of

them has a weight referring to term frequency, funct

has the same format as ctxt but is for describing

different operations within the service that can be

3

used or tested, input has the same format as funct but

is for describing different input parameters that

service operations require to execute and output has

the same format as input but is for describing

different output parameters that service operations

produce.

Thus, when a service is tagged by a user

respecting the STag structure, it is associated to 4

keyword bags (a.k.a. cloud) - see Figure 1.

Hypothesis 1. A query q has the same structure as

the tag STag defined in Definition 3.

Our annotation or tagging model can be

considered as a folksonomy F defined by F ⊆ U × T

× R where U refers to users, R refers to resource that

is Web service description file in our case and T

refers to tags (conforming to STag structure defined

in Definition 3) provided by user U and associated to

resource R.

Figure 1: A Web service tagged by STag.

Our tagging process is collaborative which means

that many users can annotate a Web service by using

their own tags. The annotations are visible to other

users in the system. Annotated Web services are also

accessible to the system users. Therefore, in our

system, each Web service is associated to 4 tag

clouds and each of them represents accordingly each

element of STag (context, function, input and

output).

3.3 Tag Aggregation Algorithm

When there are several users annotating a Web

service, these annotations are aggregated. Each

element of STag structure is considered respectively

and separately. Thus, the 4 tag clouds associated to a

service evolves through the tagging activity from

users.

The aggregation between two STags can be

expressed by the following algorithm:

Let STagA and STagB two structured tags (STag)

provided by two users A and B to annotate the

Web service ws.

Let STagAgg the structured tag resulted from the

aggregation of STagA and STagB.

After the aggregation, STagAgg is the only tag that

is associated to ws. We can define STagAgg as

follows: STagAgg=aggregate(STagA, STagB).

The aggregate function executes 4 merging

operations on ctxt (respectively funct, in and out)

elements of STagA and STagB. The ctxt

(respectively funct, in and out) element of STagAgg

is the result of the merging between the ctxt

(respectively funct, in and out) elements of STagA

and STagB. We define merge as the merging

function. Therefore, each element of STagAgg can

be obtained by:

STagAgg.ctxt=merge(STagA.ctxt,STagB.ctxt)

STagAgg.funct=merge(STagA.funct,

STagB.funct)

STagAgg.input=merge(STagA.input,

STagB.input)

STagAgg.output=merge(STagA.output,

STagB.output)

We detail only the merging of ctxt elements of

STagA and STagB because it is applied exactly to

other elements.

We would like to recall that ctxt is a single

dimension table indexed by keywords and each of

them has a weight (see Definition 3). Suppose that ci

is a keyword and an index of ctxt and cwi the weight

of ci; then ctxt[ci]=cwi. Therefore, merging

STagA.ctxt and STagB.ctxt can be described by:

merge(STagA.ctxt,STagB.ctxt) {

//initialize STagAgg.ctxt with

 //STagA.ctxt

STagAgg.ctxt.Init(STagA.ctxt);

Foreach c of STagB.ctxt {

If c not in STagAgg.ctxt {

STagAgg.ctxt.add(c);

STagAgg.ctxt[c]=0;

 }

 STagAgg.ctxt[c]+=STagB.ctxt[c];

}

}

4

3.4 User, Tag and Web Service
Relation

We illustrate the different relations between each

element (user, tag and Web service) of our

folksonomy model with the goal to further exploit

them in computing of similarity between a discovery

request and the corpus of our tagged Web services.

The relation between Web services and tags or

annotations in our system is the space of 4 two-

dimension tables indexed by keywords and Web

service identifier (access path to its WSDL file).

Each table corresponds to every element or part of

the STag structure. We can model them as:

TabCtxtWS(Ctxt×WS) where Ctxt is the list of

keywords provided by users to annotate the

contextual part of a structured tag associated to a

service and WS is the list of annotated Web

services. Given a keyword ci∈Ctxt and a Web

service wsj∈WS, TabCtxtWS[ci, wsj] is the

frequency of the term ci that is used to annotate

the usage context of wsj.

TabFunctWS(Funct×WS) where Funct is the list

of keywords provided by users to annotate the

operation part of a structured tag and WS is the

list of annotated Web services. Given a keyword

fi∈Funct and a Web service wsj∈WS,

TabFunctWS[fi, wsj] is the frequency of the term fi

that is used to annotate the operations of wsj.

TabInputWS(Input×WS) where Input is the list of

keywords provided by users to annotate the input

part of a structured tag and WS is the list of

annotated Web services. Given a keyword

ini∈Input and a service wsj∈WS, TabInputWS[ini,

wsj] is the frequency of the term ini that is used

to annotate the input parameters of wsj.

TabOutputWS(Ouput, WS) where outi∈Output is

the list of keywords provided by users to

annotate the output part of a structured tag and

WS is the list of annotated Web services. Given a

keyword outi∈Output and a service wsj∈WS,

TabOutputWS[outi, wsj] is the frequency of the

term outi that is used to annotate the input

parameters of wsj.

The relation between users and tags is also a space

of 4 two-dimension tables indexed by keywords and

user identifiers because it refers to services tagged

by users. We define the 4 tables as:

TabCtxtUSER(Ctxt×User) where Ctxt is the list of

keywords provided by users to annotate the

contextual part of the structured tags associated

to Web services and User is the list of system

annotating users. Given a keyword ci∈Ctxt and a

user uj∈User, TabCtxtUSER[ci, uj] is the frequency

of the term ci that is used by the user uj to

annotate the usage context of the system Web

services.

TabFunctUSER(Funct×User) where fi∈Funct is

the list of keywords provided by users to

annotate the operation part of the structured tags

associated to Web services and User is the list of

system annotating users. Given a keyword

fi∈Funct and a user uj∈User, TabFunctUSER[fi, uj]

is the frequency of the term fi that is used by the

user uj to annotate the operation part of the

system Web services.

TabInputUSER(Input×User) where ini∈Input is the

list of keywords provided by users to annotate

the input part of the structured tags associated to

Web services and User is the list of system

annotating users. Given a keyword ini∈Input and

a user uj∈User, TabInputUSER[ini,uj] is the

frequency of the term ini that is used by the user

uj to annotate the input parameters of the system

Web services.

TabOutputUSER(Ouput×User) where Output is the

list of keywords provided by users to annotate

the output part of the structured tags associated

to Web services and User is the list of system

annotating users. Given a keyword outi∈ Output

and a user uj∈User, TabOutputUSER[outi, uj] is

the frequency of the term outi that is used by the

user uj to annotate the input parameters of the

system Web services.

The relation between users and services is the

simplest because it can be modeled as a two-

dimension table: TabUserWS(User×WS) where User

is the list of system annotating users and WS is the

list of annotated Web services. Given a user ui∈User

and a Web service wsj∈WS, TabUserWS[ui, wsj] is

the frequency number of how often the user ui

annotates the service wsj.

However, based on the Hypothesis 1, a discovery

request Q issued by user can be modeled as a space

of 4 single dimension tables indexed by keywords

such as:

TabCtxt(Ctxt) where Ctxt is the list of keywords

provided by the requestor as part of his query on

the contextual element of tagged Web service

corpus. Given a keyword ci∈Ctxt,

TabCtxt[ci]=cwi is the frequency of the keyword

ci in the table (or vector).

TabFunct(Funct) where Funct is the list of

keywords provided by the requestor as part of his

query on the operation element of tagged Web

service corpus. Given a keyword fi∈Funct,

5

TabFunct[fi]=fwi is the frequency of the

keyword fi in the table.

TabInput(Input) where Input is the list of

keywords provided the requester as part of his

query on the input element of tagged Web

service corpus. Given a keyword ini∈Input,

TabInput[ini]=inwi is the frequency of the

keyword ini in the table.

TabOutput(Output) where Output is the list of

keywords provided by requestor as part of his

query on the output element of tagged Web

service corpus. Given a keyword out∈Output,

TabOutput[outi]=outwi is the frequency of the

keyword outi in the table.

We are going to discus in more detail about how to

discover Web services using collaborative structured

tags.

3.5 Web Service Discovery based on
Collaborative Structured Tagging

Let Q a discovery request expressed by a user and

aWS∈WS an annotated Web service in the tagged

Web Service collection denoted by WS.

aWS is discovered by Q if and only if there is a

similarity degree between Q and its structured

annotation ∈ [0, 1].

Therefore a Web service aWS is represented in

this similarity computing by its structured annotation

denoted as STagaWS.

According to Hypothesis 1 and section 3.4, we

can present Q and STagWS as follows:

Q <TabCtxt, TabFunct, TabInput, TabOutput>

STagaWS<TabCtxtWS[Ctxt, aWS],

TabFunctWS[Funct, aWS],

TabInputWS[Input,aWS], TabOutputWS[Output,

aWS]>

Each element of STagaWS is a single dimension table

because it is a two-dimension table with a unique

column indexed by aWS.

The similarity of a Web service aWS

(represented by STagaWS) and the query Q is the

weighted sum of four basic similarities:

simCtxt(TabCtxt,TabCtxtWS[Ctxt, aWS]): the

context similarity between Q and STagaWS.

simFunct(TabFunct,TabFunctWS[Funct, aWS]):

the operation similarity between Q and STagaWS.

simInput(TabInput,TabInputWS[Input,aWS]): the

input similarity between Q and STagaWS.

simOutput(TabOutput,TabOutputWS[Output,

aWS]): the output similarity between Q and

STagaWS.

Each basic similarity value is ∈ [0,1]. We use 4

coefficients associated to each similarity and their

sum is 1: coeff_ctxt ∈ [0,1] is the coefficient for

usage context similarity, coeff_funct ∈ [0,1] is the

coefficient for operation similarity, coeff_input ∈

[0,1] is the coefficient for input similarity and

coeff_output ∈ [0,1] is the coefficient for output

similarity. Thus, the final similarity is computed by:

similarity = coeff_ctxt*simCtxt +

 coeff_funct*simFunct+

coeff_input*simInput+

coeff_output*simOutput; (1)

According to the previous modeling of STagaWS and

Q, each basic similarity can be computed by using

the vector space similarity. Some analytic studies

recommend using term frequency as the weight of

each keyword representing the context (respectively

operation, input and output part) of STagaWS. In

effect, keyword distribution in collaborative tagging

systems often respects the Zipf’s power law (Halpin,

Robu, & Shepherd, 2007)(Robu, Halpin, &

Shepherd, 2009) where a few representative tags

cover most of the distribution. We grant more

importance to most frequently used tags to represent

the tagged resource.

Thus, the basic similarity between the context

(respectively operation, input and output) part of the

STagaWS and the context (respectively operation,

input and output) part of the query Q is:

Float simCtxt(Q.TabCtxt,

STagaWS.TabCtxtWS[Ctxt, aWS]) {

return cosine(Q.TabCtxt,

STagaWS.TabCtxtws,aWS];

}

The detail of the cosine measure of similarity

between two term vectors can be consulted in (D.

Manning, Raghavan, & Schülze, 2008) and

(Markines et al., 2009).

In order to illustrate this basic similarity

computing, we propose a case example as follows:

Let:

VWS=STagaWS.TabCtxt[Ctxt,aWS]: the context

part vector of the structured annotation

associated to the service aWS.

Keyword Frequency

Auto 5

Mobile 10

Transport 15

Vehicle 3

VQ=Q.TabCtxt: the context part vector of the

discovery query Q

6

Keyword Frequency

Transport 1

Vehicle 1

The cosine measure of similarity between VQ and

VWS can be computed as:

cosine(VQ,VWS)=
222222 11315105

1311501005

+×+++

×+×+×+×

cosine(VQ,VWS)=0.95.

3.6 Result Set Filtering

The result set of the discovery is ranked by the

overall degree of similarity (see (1)). Users are

allowed to filter this result set in order to keep the

Web services that interest them only.

We propose two types of filtering: by threshold

and by user implicit profile.

3.6.1 Filtering by Threshold

This is the simplest yet efficient way of filtering a

retrieval or discovery result. It consists of

eliminating any discovered Web service in the result

set whose global similarity value given the

requestor’s query is below a limit value threshold.

This latter can be defined by user him/herself or

proposed by the discovery system.

3.6.2 Filtering by User Profile

A user signs up to the system by providing his/her

personal information (name, address, email,

signature, etc.) and his/her working domain or

expertise domain. This latter can be described using

a list of keywords (e.g. “networking”; “databases”;

“administration”).

While the user’s personal information is mainly

used by the system to authenticate a user, keyword

set related to expertise domain is evolved according

the way user employ the system (i.e. how often a

user tags? What tags does a user add? How many

Web services a user tags?, etc.)

The implicit user profile in our study case has the

same structure as the annotations of Web service

(see Definition 3). Therefore, a user profile is just a

structured annotation that is generated implicitly and

is changed throughout time and the tagging habit or

behavior of the user.

We opt for simple method for generating such

profile by taking into account the top k keywords

used regularly by the user to tag Web services. k is

an integer value that is computed automatically by

the system and it is variable for different part of

profile information (i. e. usage context, operation,

input and output). In effect, an active user that tags

more often different Web services with the

converging set of vocabularies can be described or

profiled by those frequent terms.

We discuss in more detail how k related to usage

context part of the profile is computed and how this

part of profile is generated as follows.

Assume that the profile of a user u is defined by

ImProf(u)=<TabCtxt[Ctxt, u], TabFunct[Funct,u],

TabInput[Input, u], TabOutput[Output, u]> where:

TabCtxt[Ctxt, u] is the usage context vector

associated to the profile of user u, in which Ctxt

is the list of keywords used to describe the usage

context part of the profile and TabCtxt[ci,u] is

the frequency of the keyword ci∈Ctxt used by the

user u in his/her overall tagging activities on the

usage context part of Web service collection.

TabFunct[Funct, u] is the operation vector

associated to the profile of user u, in which Funct

is the list of keywords used to describe the

operation part of the profile and TabFunct[fi,u] is

the frequency of the keyword fi∈Funct used by

the user u in his/her overall tagging activities on

the operation part of Web service collection.

TabInput[Input, u] is the input vector associated

to the profile of user u, in which Input is the list

of keywords used to describe the input part of the

profile and TabInput[ini, u] is the frequency of

the keyword ini∈ Input used by the user u in

his/her overall tagging activities on the input part

of Web service collection.

TabOutput[Output, u] is the output vector

associated to the profile of user u, in which

Output is the list of keywords used to describe

the output part of the profile and TabOutput[outi,

u] is the frequency of the keyword outi∈ Input

used by the user u in his/her overall tagging

activities on the output part of Web service

collection.

We are going to illustrate only how to compute the

user context part of the profile for the user u. The

other parts of the profile are generated by the same

way.

P=ImProf(u);

setEmpty(P.TabCtxt);

use TabCtxtWS[Ctxt,WS];

use TabCtxtUSER[Ctxt,User];

k=0;

foreach ci in Ctxt {

 foreach wsj in WS {

k+=TabCtxtWS[ci,wsj];

 }

k=k div length(WS);

7

 if (P.TabCtxtUSER[ci,u]>=k) {

 P.TabCtxt[ci,u]=TabCtxtUSER[ci,u] ;}

After generating the profile, we consider it as a

filtering query that is used with the result set of

discovered Web services annotated by structured

tags. The same similarity computing in (1) is used to

calculate the distance between the requestor’s profile

and the set of discovered Web services.

3.7 Initiation of Discovery System

When the proposed discovery system is at its initial

state, there are two particular tasks that need to be

done automatically:

3.7.1 Creating Structured Tags
Automatically

We can parse the WSDL content of each service and

extract only the WSDL tags (e.g. <documentation>,

<operation>, etc.) or their attributes that corresponds

to each part of our STag structure. For the primary

version of this proposal, we adapt the string

tokenization method of (Natallia Kokash, 2006) to

create keywords lists for different parts of the

structured tagging associated to the corresponding

service.

The initial structured annotation is evolved when

the tagging activities of users increase.

3.7.2 Creating Initial User’s Implicit Profile

When a user is signed up, except from prompting

him from offering his personal information (name,

address, mail, signature, etc.), a list of keywords

describing the working or expertise domain of the

user is required. These keywords are affected

directly to the usage context part of the user’s

implicit profile because they are susceptible to

describe best the situations in which the user can

employ the services.

User is recommended to have a digital identifier

to facilitate and reinforce his/her authentication with

the system. Digital signature based on OpenID

(“OpenID Foundation”) seems strongly to be an

interesting candidate model that we further take into

account.

To partially sum up, the proposed system suits

best semi-automatic and user-centric or user-assisted

discovery of Web service where users can

participate and collaborate with each other to make

public knowledge on the usage of Web services

emerge and exploitable to further enhance the

discovery quality. It is recommended that users test

or use at least once a service Web before annotating

it with our structured tagging. By doing so, he/she

has a clearer idea and perception of what feed back

or annotation he/she should attach to the Web

service.

4 APPLICATIVE SCENARIOS OF

THE DISCOVERY SYSTEM

Web Service Discovery at Design Time. Service

oriented application engineer can use our system to

assist his/her task is finding services that are relevant

to the functional requirement of clients. Such system

allows engineers to browse different services in the

enterprise collection by simple tags and formulating

easily his/her request by just following a simple

guide. Usage experience of services can be shared

among engineer community to improve the reuse of

locally available Web services, if those engineers

care enough participating in the tagging activities

after testing or using the services.

User-assisted Web Service Composition. When a

user would like to have on-time effects or

intervention on the composition of Web services,

he/she can check the tag clouds at his/her disposal

for atomic service that responds to his/her prompt

need in order to create his composite service. The

need formulation is easy and our tagging model

favors the annotations on input/output of Web

services which are habitually useful for the

composition process.

User-oriented and Semi-automatic Web Services

Clustering or Classification. With the increasing

number of tags on functionality of services provided

by users, the expression of actual usage of services

can be deduced. By employing efficient text or data

mining algorithms, the clustering or classification of

such annotated service collection are more than

feasible and can bring interesting outcome.

A prototype of our system is under development

and we have proposed a strategic evaluation of this

system that is discussed in the next section.

5 SYSTEM EVALUATION

METHOD

The performance of our discovery system can be

evaluated from several points of view, notably (i)

Tags: tag quantity can be the first parameter to let us

know more about the quality of discovered services.

8

The evolution of tag quantity needs to be followed

up for comparing the evolution of system

performance (ii) Users: user participation is to be

considered in terms of tagging provision and

frequency. This participation can influence the tag

quantity and quality also. We would like to study the

evolution of implicit user profile and determine if

this profile can be stable through continuing tagging

activities. It is also important to verify if the way we

recommend using user’s implicit profile can

improve the discovery result set (iii) Basic

Similarity Coefficients: our system computes the

overall similarity between a query and an annotated

Web service based on 4 coefficients. A tuning

mechanism of these coefficients is important so that

at the initial state of the system, coefficients by

default are suitably proposed to users (iv)

Precision/Recall rate: High precision and low recall

rates signify good performance of the system. (v)

Term Weight: term frequency is used as weight in

our case but there are also many more ways to

compute term weight such as shown in (D. Manning

et al., 2008) and (Markines et al., 2009). We would

like to define practically the best term weight

computing that can yield the best precision/recall

rate of discovery (vi) Similarity Measure: cosine

similarity measure is used in our system because in

general case, this measure outperforms other

measures. However, (Markines et al., 2009)

recommends other measures also such as Pearson,

Dice or Jaccard. We would like to verify if these

three latter can outperform the cosine measure.

These are the specification that we follow to

evaluate the performance of our under-development

prototype. We particularly accentuate our effort in

examining the precision/recall rates because they are

obvious indicators of a retrieval system.

6 CONCLUSIONS AND FUTURE

WORKS

In this research work, we have described a structured

tagging method of Web service that covers and

expresses the functional capability and the usage

context of the service easily.

A Web service discovery system based on

collaborative structured tagging is proposed to

exploit the aforementioned tags to enhance the Web

service discovery process. Tags issued from

different users on a Web service are aggregated

according the bag-of-word model. We also propose

a query model that takes the exact form as a tag for

users in order to search for Web services relevant to

their need.

The similarity of a query and an annotated Web

service is computed based on four basic similarities:

usage context, operation, input and output similarity.

Each one of them corresponds to a composite part of

our proposed tag model. This kind of query and

annotation is expressive enough and very easy to

construct and use in the task of discovering or

tagging the Web services. The proposed basic

similarities reflect the degree of relatedness between

a query and the functional capability of a Web

service, in case that the service is annotated. Finally,

the overall similarity degree between a query and an

annotated Web service is calculated a weighted sum

of the four basic similarities mentioned above.

We use four coefficients respectively for

computing the overall similarity because they can

allow users to tune the result sets of their discovery

request and give them more flexibility to improve

the quality of their discoveries by just according

more importance to a specific part describing the

functional capability of services, i. e. usage context,

operation, input or output.

The discovered services are ranked according to

their similarity values down from highest to lowest

values. Users can, however, filter this result set with

a defined or pre-defined threshold value to eliminate

the non-interesting, irrelevant or ignorable discovery

candidates. We offer another method of filtering

based on implicit user profile. The latter is gradually

built and evolved through the tagging activities of

the user. Finally this profile gives more important to

a user according to his/her tagging frequency, tag

quantity and annotated Web service number. The

implicit user profile takes the form a refining query.

The filtering processing based on this profile is no

other operation than computing the similarity

between the user profile and the set of already

discovered services. We apply the same discovery

algorithm in both cases: overall similarity computing

between initial discovery query and annotated Web

services and filtering based on user implicit profile

and discovered service candidates.

Then we propose some applicative scenarios in

which our approach can be employed and

recommend a strategic evaluation on our under-

development prototype.

Despite the ongoing work on this discovery

engine, we envisage some future extensions of the

system and future directions of the research work

already such as (i)Treating free text (document)

respecting minimally our tagging model as the

tagging data (ii)Tag disambiguation (iii) Alternative

9

discovery algorithm (iv) User profile and reputation

(v)Result ranking and (vi) Lowering ontology to

tags.

Based on our heuristic proposal, it seems

strongly plausible that Web service semantic

annotation become a much easier task for service

suppliers or requestors, the service discovery quality

can be enhanced based on this kind of annotation.

Nonetheless, users are strongly encouraged to

participate in the usage or testing of services before

he/she tags them with our proposed tagging model.

Participative data provided by users are crucial

source for our approach to process the degree of

semantic correspondence between a request and an

annotated Web service and for building up user

profile that is used in the result set filtering task.

It is finally very possible to combine our

approach with the exploitation of other semantic

annotations to propose a better Web service

discovery system.

REFERENCES

Al-Masri, E., & Mahmoud, O. (2008). Discovering Web

Services in Search Engines. Internet Computing,

IEEE, 12(3), 74-77.

Averbakh, A., Krause, D., & Skoutas, D. (2009).

Exploiting User Feedback to Improve Semantic Web

Service Discovery. In The Semantic Web - ISWC 2009

(pp. 33-48).

Birukou, A., Blanzieri, E., D'Andrea, V., Giorgini, P., &

Kokash, N. (2007). Improving Web Service Discovery

with Usage Data. Software, IEEE, 24(6), 47-54.

Chen Wu, & Chang, E. (2007). Searching Services "on the

Web": A Public Web Services Discovery Approach. In

the proceedings of Third International IEEE

Conference on Signal-Image Technologies and

Internet-Based System, 2007. SITIS '07. (pp. 321-328).

Chukmol, U., Benharkat, A., & Amghar, Y. (2008).

Enhancing Web Service Discovery by Using

Collaborative Tagging System. In 4th International

Conference on Next Generation Web Services

Practices, 2008. NWESP '08. (pp. 54-59).

D. Manning, C., Raghavan, P., & Schülze, H. (2008).

Introduction to Information Retrieval (Cambridge

University Press.).

Garofalakis, J., Panagis, Y., Sakkopoulos, E., &

Tsakalidis, A. (2006). Contemporary Web service

discovery mechanisms. Journal of Web Engineering,

Volume 5(Issue 3), 265-290.

Golder, S., & Huberman, B. (2005). The Structure of

Collaborative Tagging Systems. Retrieved February

18, 2010, from http://arxiv.org/abs/cs.DL/0508082.

Hagemann, S., Letz, C., & Vossen, G. (2007). Web

Service Discovery – Reality Check 2.0. Eds.: Becker,

J. et al. Münster. Working paper, European Research

Center for Information Systems.

Halpin, H., Robu, V., & Shepherd, H. (2007). The

complex dynamics of collaborative tagging. In

Proceedings of the 16th international conference on

World Wide Web (pp. 211-220). Banff, Alberta,

Canada.

Kokash, N. (2006). A Comparison of Web Service

Interface Similarity Measures. In Proceeding of the

2006 conference on STAIRS 2006: Proceedings of the

Third Starting AI Researchers' Symposium (pp. 220-

231).

Kopecky, J., & Vitvar, T. (2008). WSMO-Lite: Lowering

the Semantic Web Services Barrier with Modular and

Light-Weight Annotations. In IEEE International

Conference on Semantic Computing, 2008 (pp. 238-

244).

Kovacs, L., Micsik, A., & Pallinger, P. (2007). Handling

User Preferences and Added Value in Discovery of

Semantic Web Services. In IEEE International

Conference on Web Services, 2007. ICWS 2007. (pp.

225-232).

Lamparter, S., Ankolekar, A., Studer, R., & Grimm, S.

(2007). Preference-based selection of highly

configurable web services. In Proceedings of the 16th

international conference on World Wide Web (pp.

1013-1022). Banff, Alberta, Canada.

Leitner, P., Michlmayr, A., Rosenberg, F., & Dustdar, S.

(2009). Selecting Web Services Based on Past User

Experiences. In Proceedings of the IEEE Asia-Pasific

Services Computing Conference 2009. Singapore.

Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho,

A., & Stumme, G. (2009). Evaluating similarity

measures for emergent semantics of social tagging. In

Proceedings of the 18th international conference on

World Wide Web (pp. 641-650). Madrid, Spain.

Meyer, H., & Weske, M. (2006). Light-Weight Semantic

Service Annotations Through Tagging. In Service-

Oriented Computing – ICSOC 2006 (pp. 465-470).

OpenID Foundation website . Retrieved February 22,

2010, from http://openid.net/.

OWL-S 1.2 Release. Retrieved February 18, 2010, from

http://www.ai.sri.com/daml/services/owl-s/1.2/.

Robu, V., Halpin, H., & Shepherd, H. (2009). Emergence

of consensus and shared vocabularies in collaborative

tagging systems. ACM Trans. Web, 3(4), 1-34.

Semantic Annotations for WSDL and XML Schema.

Retrieved February 18, 2010, from

http://www.w3.org/TR/sawsdl/.

Shi, X. (2007). Semantic Web Services: An Unfulfilled

Promise. IT Professional, IEEE, 9(4), 42-45.

Web Service Modeling Ontology. Retrieved February 18,

2010, from http://www.wsmo.org/index.html.

Web Service Semantics- WSDL-S. Retrieved February 18,

2010, from http://www.w3.org/Submission/WSDL-S/.

10

