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Abstract

The subgraph isomorphism problem involves deciding if there exists a copy of a
pattern graph in a target graph. This problem may be solved by a complete tree
search combined with filtering techniques that aim at pruning branches that do not
contain solutions. We introduce a new filtering algorithm based on local all different
constraints. We show that this filtering is stronger than other existing filterings —
i.e., it prunes more branches— and that it is also more efficient —i.e., it allows one
to solve more instances quicker.

Key words: Subgraph Isomorphism, Constraint Programming, All Different
constraint

1 Introduction

Graphs are widely used in real-life applications to represent structured objects
such as, for example, molecules, images, or biological networks. In many of
these applications, one looks for a copy of a pattern graph into a target graph
[CFSV04]. This problem, known as subgraph isomorphism, is NP-complete in
the general case [GJ79].

Subgraph isomorphism problems may be solved by a systematic exploration of
the search space composed of all possible injective matchings from the set of
pattern nodes to the set of target nodes: starting from an empty matching, one
incrementally extends a partial matching by matching a non matched pattern
node to a non matched target node until either some edges are not matched
by the current matching (the search must backtrack to a previous choice point
and go on with another extension) or all pattern nodes have been matched (a
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solution has been found). To reduce the search space, this exhaustive explo-
ration is combined with filtering techniques that aim at removing candidate
couples of non matched pattern-target nodes. Different levels of filtering may
be considered; some are stronger than others (they remove more nodes), but
also have higher time complexities.

In this paper, we describe and compare existing filtering algorithms for the
subgraph isomorphism problem, and we introduce a new filtering algorithm
which is stronger. We experimentally evaluate this new filtering algorithm on
a wide benchmark of instances, and we show that it is much more efficient on
many instances.

2 Definitions and notations

A graph G = (N,E) consists of a node set N and an edge set E ⊆ N × N ,
where an edge (u, u′) is a couple of nodes. The set of neighbors of a node u is
denoted adj(u) and is defined by adj(u) = {u′ | (u, u′) ∈ E}. In this paper, we
implicitely consider non directed graphs, such that (u, u′) ∈ E ⇔ (u′, u) ∈ E.
The extension of our work to directed graphs is discussed in Section 5.

A subgraph isomorphism problem between a pattern graph Gp = (Np, Ep) and
a target graph Gt = (Nt, Et) consists in deciding whether Gp is isomorphic to
some subgraph of Gt. More precisely, one should find an injective matching
f : Np → Nt, that associates a different target node to each pattern node, and
that preserves pattern edges, i.e.,

∀(u, u′) ∈ Ep, (f(u), f(u′)) ∈ Et

The function f is called a subisomorphism function.

Note that the subgraph is not necessarily induced so that two pattern nodes
that are not linked by an edge may be matched to two target nodes which
are linked by an edge. This problem is also called subgraph monomorphism
or subgraph matching in the literature.

In the following, we assume Gp = (Np, Ep) and Gt = (Nt, Et) to be the
underlying instance of subgraph isomorphism problem, and we assume without
loss of generality that Np ∩Nt = ∅. We usually denote u or u′ (resp. v or v′)
nodes of Gp (resp. Gt).

We denote #S the cardinality of a set S. We also define N = Np ∪ Nt,
E = Ep ∪ Et, np = #Np, nt = #Nt, ep = #Ep, et = #Et, and dp and dt the
maximal degrees of the graphs Gp and Gt.
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3 Filtering for subgraph isomorphism

Subgraph isomorphism problems may be modelled as constraint satisfaction
problems in a very straightforward way. In this section, we first show how to
model and solve subgraph isomorphism problems within a constraint satisfac-
tion framework. Then, we describe different filtering algorithms for subgraph
isomorphism in Sections 3.3 to 3.6, and we compare them in Section 3.7.

3.1 Modeling and solving subgraph isomorphism by means of constraints

A constraint satisfaction problem (CSP) is defined by a set of variables, such
that each variable is associated with a domain (i.e., the set of values that it
may be assigned to), and a set of constraints (i.e., relations that restrict the
set of values that may be assigned to some variables simultaneously). Solving
a CSP involves finding an assignment of values to all variables such that all
constraints are satisfied.

A subgraph isomorphism problem may be modelled as a CSP by associating
a variable (denoted xu) with every pattern node u. The domain of a variable
xu (denoted Du) contains the set of target nodes that may be matched to u.
Intuitively, assigning a variable xu to a value v corresponds to matching the
pattern node u to the target node v. The domain Du is usually reduced to the
set of target nodes the degree of which is higher or equal to the degree of u as
node u may be matched to node v only if #adj(u) ≤ #adj(v).

Constraints ensure that the assignment of variables to values corresponds to
a subisomorphism function. There are two kinds of constraints:

• edge constraints ensure that pattern edges are preserved, i.e.,

∀(u, u′) ∈ Ep, (xu, xu′) ∈ Et

• difference constraints ensure that the assignment corresponds to an injective
function, i.e.,

∀(u, u′) ∈ N2
p , u 6= u′ ⇒ xu 6= xu′

Within this framework, solving a subgraph isomorphism problem involves find-
ing an assignment of the variables that satisfies all constraints. We shall con-
sider that a variable is assigned whenever its domain is reduced to a singleton,
i.e., Du = {v} ⇔ xu = v.

Subgraph isomorphism problems modeled as CSPs may be solved by building
a search tree that explores all possible variable assignments until finding a so-
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lution. The size of this search tree may be reduced by using filtering techniques
which propagate constraints to remove values from domains.

We briefly recall some basic principles of contraint propagation in Section
3.2. Then, we describe different filtering techniques that may be used to solve
subgraph isomorphism problems in Sections 3.3 to 3.6. Note that some of
these filterings (i.e., FC(Diff), GAC(AllDiff), FC(Edges), and AC(Edges))
are generic constraint propagation techniques that may be used to solve any
CSP whereas some others (i.e., LV2002 and ILF(k)) are dedicated to the
subgraph isomorphism problem.

3.2 Recalls on constraint propagation

Constraint propagation aims at filtering variable domains by removing in-
consistent values, that is, values that do not belong to any solution. This
constraint propagation step may be done at each choice point of the search. If
it removes all values in the domain of a variable, then the search can backtrack
to a previous choice.

A pioneering work for constraint propagation has been done in 1972 by Waltz
for a scene drawing application [Wal72]. Since then, many different constraint
propagation algorithms have been proposed. These algorithms achieve differ-
ent partial consistencies and also have different time and space complexities. In
this section, we do not aim at describing all existing propagation algorithms.
We only briefly describe two basic and well known generic techniques, that
is, forward-checking and maintaining arc-consistency. The reader may refer to
[RvBW06,Lec09] for more information.

Forward-checking The basic idea of forward-checking is to propagate all
constraints involving a variable just after its assignment in order to remove
from the domains of the non assigned variables any value which is not con-
sistent with this assignment. More precisely, after the assignment of xi to vi,
one propagates binary constraints between xi and any non assigned variable
xj by removing from the domain of xj any value vj such that the assignment
{(xi, vi), (xj, vj)} violates the constraint holding between xi and xj. When
constraints have arities greater than two, one may propagate constraints such
that all variables but one are assigned.

Maintaining arc-consistency A stronger filtering, but also a more expen-
sive one, is obtained by maintaining arc-consistency, also called 2-consistency.
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Roughly speaking, a binary CSP is arc-consistent if each value vi in the do-
main of a variable xi has at least one support in the domain of every other
variable, thus ensuring that if xi is assigned to vi then each other variable still
has at least one consistent value in its domain. More precisely, given a variable
xi ∈ X and a value vi ∈ D(xi), a support of (xi, vi) for a variable xj is a value
vj ∈ D(xj) such that the partial assignment {(xi, vi), (xj, vj)} is consistent. A
binary CSP (X,D,C) is arc-consistent if every value in every domain has at
least one support in the domain of each other variable.

To maintain arc-consistency while constructing a partial assignment A, we
filter variable domains after each variable assignment by removing non sup-
ported values. Such a filtering must be repeated until no more domain is
reduced: as soon as a value is removed, we must check that this value is not
the only support of some other values. There exist many different algorithms
for ensuring arc-consistency, which exhibit different time and space complex-
ities. For instance, a widely used algorithm for achieving arc consistency of a
set of binary constraints is AC4 [MH86] whose time and space complexities
are O(ck2), where c is the number of constraints and k the maximum domain
size. Although AC4 is worst-case optimal in time, it always reaches this worst
case because of its expensive initialisation phase; many improvements have
been proposed since AC4, leading for example to AC6, AC7 and AC2001 (see
[RvBW06] for more details). Arc consistency may also be generalized to non
binary CSPs. In this case, it is called generalized arc consistency.

3.3 Propagation of difference constraints (FC(Diff) and GAC(AllDiff))

Difference constraints may be propagated by forward-checking (denoted FC
(Diff)): each time a pattern node u is matched to a target node v, FC(Diff)
removes v from the domains of all non matched nodes. This may be done in
O(np).

FC(Diff) propagates each binary difference constraint separately. A stronger
filtering may be obtained by propagating the whole set of difference constraints
in order to ensure that all pattern nodes can be assigned to different target
nodes. More precisely, achieving the generalized arc consistency of a global
AllDifferent constraint (denoted GAC(AllDiff)) removes from the domain of
every pattern node u every target node v such that, when u is matched to
v, the other pattern nodes cannot be matched to all different target nodes.
In [Reg94], Régin has shown how to use the matching algorithm of Hopcroft
and Karp for achieving GAC(allDiff). The time complexity of this algorithm
is O(n2

p · n2
t ).

Example 1 Let us consider four variables x1, x2, x3, and x4 such that D1 =
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{a}, D2 = D3 = {a, b, c}, and D4 = {a, b, c, d}.

FC(Diff) removes a from the domains of x2, x3, and x4.

GAC(AllDiff) also removes a from the domains of x2, x3, and x4. It further
removes b and c from the domain of x4 as if x4 is assigned to b or c, then x2

cannot be assigned to a value different from both x3 and x4.

3.4 Propagation of edge constraints (FC(Edges) and AC(Edges))

Edge constraints may be propagated by forward checking (denoted FC(Edges)):
each time a pattern node u is matched to a target node v, FC(Edges) removes
from the domain of every node adjacent to u any target node that is not
adjacent to v. This may be done in O(dp · nt).

One may go one step further and maintain the arc consistency of edges con-
straints (denoted AC(Edges)) so that

∀(u, u′) ∈ Ep,∀v ∈ Du,∃v′ ∈ Du′ , (v, v′) ∈ Et

As a CSP modeling a subgraph isomorphism problem has ep edge constraints
and the maximum domain size is nt, the time complexity of AC(Edges) is
O(ep · n2

t ) when using AC4.

Example 2 Let us consider the subgraph isomorphism problem displayed in
Fig. 1. Note that this instance has no solution as Gp cannot be mapped into
a subgraph of Gt. Let us suppose that node 3 has been matched to node E so
that D3 = {E}, and that E has been removed from the domains of all other
pattern nodes (e.g., by FC(Diff) or GAC(AllDiff)).

FC(Edges) removes B, C, and F from the domains of nodes 1, 2, and 4 because
B, C, and F are not adjacent to E whereas 1, 2, and 4 are adjacent to 3.

Like FC(Edges), AC(Edges) removes B, C, and F from the domains of nodes

1

2 3 4

5

6

Pattern graph Gp

A

CB D E

F

G

Target graph Gt

Fig. 1. Instance of subgraph isomorphism problem.
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1, 2, and 4. It is also able to remove G from the domain of 1 as the matching
(1, G) has no support for the edge (1, 4). Indeed, none of the adjacent nodes
of G (i.e., B, F , and E) belongs to the domain of 4. For the same reasons,
AC(Edges) also removes G from the domains of 2 and 4.

3.5 Propagation of a set of edge constraints (LV2002)

Both FC(Edges) and AC(Edges) propagate each edge constraint separately. A
stronger filtering is obtained by propagating edge constraints in a more global
way, i.e., by propagating the fact that a whole set of nodes must be adjacent
to a given node. Indeed, a pattern node u may be matched to a target node
v only if the number of nodes adjacent to u is smaller or equal to the number
of target nodes that are both adjacent to v and belong to domains of nodes
adjacent to u (otherwise some nodes adjacent to u cannot be matched to nodes
adjacent to v). Hence, Larrosa and Valiente have proposed in [LV02] a filtering
algorithm (denoted LV2002) which propagates this constraint. More precisely,
they define the set

F(u, v) = ∪u′∈adj(u)(Du′ ∩ adj(v))

F(u, v) is a superset of the set of nodes that may be matched to nodes that
are adjacent to u if u is matched to v. Therefore, one can remove v from Du

whenever #F(u, v) < #adj(u). One can also remove v from Du whenever
there exists a pattern node u′ ∈ adj(u) such that Du′ ∩ adj(v) = ∅, thus
enforcing arc consistency of edge constraints. The LV2002 filtering algorithm
has a time complexity of O(n2

p · n2
t ).

Example 3 Let us consider the subgraph isomorphism problem displayed in
Fig. 1. Let us suppose that node 3 has been matched to node E so that D3 =
{E}, and that E has been removed from the domains of all other pattern nodes
(e.g., by FC(Diff) or GAC(AllDiff)).

Like AC(Edges), LV2002 removes nodes B, C, F , and G from the domains of
nodes 1, 2, and 4. It is also able to remove values A and D from the domain
of 1. Indeed,

F(1, A) = (D2 ∪D3 ∪D4) ∩ adj(A) = {D,E}

F(1, D) = (D2 ∪D3 ∪D4) ∩ adj(D) = {A,E}

As, #F(1, A) < #adj(1) and #F(1, D) < #adj(1), both A and D are re-
moved from D1 so that the domain of 1 becomes empty and an inconsistency
is detected.
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3.6 Iterated Labelling Filtering (ILF(k))

Zampelli et al have proposed in [ZDS10] a filtering algorithm (called ILF(k))
which exploits the graph structure in a global way to compute labels that are
associated with nodes and that are used to filter domains. More precisely, a
compatibility relationship is defined over the set of node labels. This compat-
ibility relationship is used to remove from the domain of a pattern node u
every target node v such that the label of u is not compatible with the label
of v.

ILF(k) is an iterative procedure that starts from an initial labeling. This ini-
tial labeling may be defined by node degrees. In this case, the compatibility
relationship is the classical ≤ order. This labeling is used to remove from the
domain of a pattern node u every target node v such that #adj(u) 6≤ #adj(v)
as u cannot be matched to v if u has more adjacent nodes than v.

This initial labeling is extended to filter more values. Given a labeling l and
a compatibility relationship � between labels of l, one defines a new labeling
l′ such that the new label l′(u) of a node u is the multiset which contains
all labels of nodes adjacent to u. The compatibility relationship �′ is such
that l′(u) �′ l′(v) if for every occurrence x of a label in l′(u) there exists a
different occurrence y of a label in l′(v) such that x � y. The key point relies
on the computation of the new compatibility relationship �′, which is done
in O(np · nt · dp · dt ·

√
dt) thanks to the matching algorithm of Hopcroft and

Karp (see [ZDS10] for more details).

Such labeling extensions are iterated. A parameter k is introduced, that de-
termines the number of labeling extensions. Note that iterated labeling ex-
tensions may be stopped before reaching this bound k if some domain has
been reduced to an empty set, or if a fixpoint is reached —such that no
more value may be filtered. The ILF(k) procedure has a time complexity of
O(min(k, np · nt) · np · nt · dp · dt ·

√
dt).

[ZDS10] also introduces a weaker filtering, called ILF*(k). The idea is to ap-
proximate, at each iteration, the label compatibility relationship by a total
order so that the next compatibility relation may be computed by sorting
the multisets and sequentially comparing them. The time complexity of this
weaker filtering is O(min(k, np · nt) · np · nt · dt).

Example 4 Let us consider the subgraph isomorphism problem displayed in
Fig. 1. The initial degree-based labeling is the labeling l such that

• l(5) = l(6) = 2
• l(1) = l(3) = l(C) = l(E) = l(F ) = l(G) = 3
• l(2) = l(4) = l(A) = l(B) = l(D) = 4
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and the order over this set of labels is such that

• 2 is compatible with 2, 3, and 4,
• 3 is compatible with 3 and 4,
• 4 is compatible with 4.

Hence, one can remove the target nodes C, E, F , and G from the domains of
the pattern nodes 2 and 4.

The extension of this initial degree-based labeling is the labeling l′ such that

• l′(1) = l′(3) = l′(E) = l′(F ) = {{3, 4, 4}}
• l′(2) = l′(4) = {{2, 2, 3, 3}}
• l′(5) = l′(6) = {{4, 4}}
• l′(A) = {{3, 3, 4, 4}}
• l′(B) = l′(D) = {{3, 3, 3, 4}}
• l′(C) = {{4, 4, 4}}
• l′(G) = {{3, 3, 4}}

and the order over this set of labels is such that

• {{3, 4, 4}} is compatible with {{3, 3, 4, 4}} and {{3, 4, 4}}
• {{2, 2, 3, 3}} is compatible with {{3, 3, 4, 4}} and {{3, 3, 3, 4}}
• {{4, 4}} is compatible with {{3, 3, 4, 4}}, {{4, 4, 4}} and {{3, 4, 4}}

As l′(1) is not compatible with l′(B), B is removed from D1. For the same
reasons, B, D and G are removed from the domains of nodes 1, 3, 5 and 6.

This new labeling l′ can be further extended, thus removing more values, and
finally proving the inconsistency of this instance.

3.7 Discussion

Most of the algorithms that have been proposed for solving the subgraph
isomorphism problem may be described by means of the filtering algorithms
described in Sections 3.3 to 3.6. In particular:

• McGregor [McG79] combines FC(Diff) and FC(Edges);
• Ullmann [Ull76] combines FC(Diff) and AC(Edges);
• Régin [R9́5] combines GAC(AllDiff) and AC(Edges);
• Larrosa and Valiente [LV02] combine GAC(AllDiff) and LV2002;
• Zampelli et al combine GAC(AllDiff), AC(Edges), and ILF(k).

These different filterings achieve different consistencies. Some of them are
stronger than others. In particular,
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• GAC(AllDiff) is stronger than FC(Diff);
• LV2002 is stronger than AC(Edges) which is stronger than FC(Edges).

However, GAC(AllDiff) and FC(Diff) are not comparable with FC(Edges),
AC(Edges), LV2002, and ILF(k) as they do not propagate the same con-
straints.

The relations between ILF(k) and other filterings that propagate edge con-
straints (i.e., LV2002, AC(Edges), and FC(Edges)) depend on initial domains:
if the initial domain of every variable contains all target nodes, then ILF(k)
is stronger than LV2002, provided that the number of labeling extensions k is
greater or equal to 2 1 . However, if some domains have been reduced (which is
usually the case when the filtering is done at a node which is not at the root of
the search tree), then ILF(k) is not comparable with LV2002 and AC(Edges).

Indeed, ILF(k) does not exploit domains to filter values as labelings and com-
patibility relationships that are iteratively computed do not depend at all on
domains. To allow ILF(k) to propagate some domain reductions, the iterative
labeling extension process has been combined, before each labeling extension,
with the two following steps:

• Reduction of the target graph with respect to domains: if a target node v
does not belong to any domain, then this node and its incident edges are
discarded from the target graph.
• Strengthening of a labeling with respect to singleton domains: if a domain
Du is reduced to a singleton {v}, then nodes u and v are labeled with a
new label which is not compatible with any other label, except itself, thus
preventing other pattern nodes from being matched with v.

When adding these two steps, ILF(k) is stronger than FC(Edges). However,
it is still not comparable with LV2002 and AC(Edges).

To propagate more domain reductions, one may start the iterative labeling
extension process from an initial labeling which fully integrates domain re-
ductions in the compatibility relation, so that if a target node v does not
belong to the domain of a pattern node u, then the label associated with v is
not compatible with the label associated with u. More formally, Zampelli et
al have defined in [ZDS10] such an initial labeling, denoted ldom , as follows:

• a different unique label lx is associated with every different (pattern or
target) node x ∈ Np ∪Nt;

1 k must be greater or equal to 2 if the initial labeling from which the iterative
labeling extension process is started is the empty labeling, that associates the same
label to all nodes. If the initial labeling is defined by node degrees, then one iteration
is enough to obtain a stronger consistency (see [ZDS10] for more details).
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• ∀(u, v) ∈ Np×Nt, lu is compatible with lv iff v ∈ Du and #adj(u) ≤ #adj(v).

They have shown that, in this case, ILF(k) is stronger than LV2002 provided
that k ≥ 2. However, if this filtering is stronger, it is also very expensive to
achieve as the complexity of ILF(k) highly depends on the number of different
labels. Indeed, the theoretical complexity of one iteration of ILF(k) (i.e.,O(np·
nt · dp · dt ·

√
dt)) corresponds to the worst case where all nodes have different

labels. If the number of different pattern and target labels respectively are lp
and lt, then the complexity of one iteration of ILF(k) is O(ep+lp ·lt ·dp ·dt ·

√
dt).

4 Global neighborhood constraints and LAD-filtering

We introduce a global neighborhood constraint in Section 4.1, and we describe
a propagation algorithm which achieves the generalized arc consistency of
this constraint in Section 4.2. We compare this consistency with other partial
consistencies in Section 4.3.

4.1 Global neighborhood constraints

For each subisomorphism function f : Np → Nt and for each pattern node
u ∈ Np, we have:

(1) ∀u′ ∈ adj(u), f(u′) ∈ adj(f(u))
(2) ∀(u′, u”) ∈ adj(u)× adj(u), u′ 6= u”⇒ f(u′) 6= f(u”)

The first property is a direct consequence of the fact that edges are preserved
by subisomorphism functions whereas the second property is a direct conse-
quence of the fact that subisomorphism functions are injections.

When considering the CSP associated with a subgraph isomorphism problem,
these two properties may be expressed by the following constraint on the
neighborhood of u:

xu = v ⇒ ∀u′ ∈ adj(u), xu′ ∈ adj(v)

∧allDiff ({xu′|u′ ∈ adj(u)})

Note that the filtering algorithm LV2002 introduced by Larrosa and Valiente
in [LV02] actually propagates this neighborhood contraint (although it has
not been explicitely introduced in [LV02]). However, LV2002 only ensures a
partial consistency: it basically ensures that the number of nodes adjacent to
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u is smaller or equal to the number of target nodes that are both adjacent
to v and belong to domains of nodes adjacent to u. In Section 4.2, we de-
scribe a filtering algorithm which ensures the generalized arc consistency of
neighborhood constraints.

Example 5 Let us consider the subgraph isomorphism problem displayed in
Fig. 1, and let us define initial domains with respect to node degrees, i.e.

D1 = D3 = D5 = D6 = {A,B,C,D,E, F,G}

D2 = D4 = {A,B,D}

The neighborhood constraint for the couple of nodes (1, G) is

x1 = G⇒ x2 ∈ {B,F,E} ∧ x3 ∈ {B,F,E} ∧ x4 ∈ {B,F,E}

∧allDiff ({x2, x3, x4})

Achieving the generalized arc consistency of this constraint allows us to remove
G from D1: if x1 = G then both x2 and x4 must belong to the singleton {B}
(corresponding to the intersection of their domains with {B,F,E}) so that x2

and x4 cannot be assigned to different values.

Note that on this example, the filtering LV2002 cannot remove G from D1 as
F(1, G) = (D2∪D3∪D4)∩adj(G) = {B,E, F} so that #F(1, G) ≥ #adj(1).
Note also that a simple allDiff constraint on the set of variables {x2, x3, x4}
cannot be used to remove G from D1: one has to combine this allDiff constraint
with the fact that, if 1 is matched to G, then 2, 3, and 4 must be matched to
nodes that are adjacent to G.

4.2 A filtering algorithm for propagating global neighborhood constraints

The generalized arc consistency of a neighborhood constraint may be ensured
by looking for a covering matching in a bipartite graph, as proposed by Régin
in [Reg94] for the AllDifferent global constraint. Let us recall that a matching
of a graph G = (N,E) is a subset of edges m ⊆ E such that no two edges of
m share a same endpoint. A matching m ⊆ E covers a set of nodes Ni if every
node of Ni is an endpoint of an edge of m. In this case, we shall say that m is
a Ni-covering matching of G.

For every couple of nodes (u, v) such that v ∈ Du, we define a bipartite graph
that associates a node with every node adjacent to u or v and an edge with
every couple (u′, v′) such that v′ ∈ Du′ .
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Fig. 2. Bipartite graphs associated with (1, G) and (3, E).

Definition 1 Given two nodes (u, v) ∈ Np ×Nt such that v ∈ Du, we define
the bipartite graph G(u,v) = (N(u,v), E(u,v)) such that

• N(u,v) = adj(u) ∪ adj(v);
• E(u,v) = {(u′, v′) ∈ adj(u)× adj(v) | v′ ∈ Du′}

If there does not exist a matching of the bipartite graph G(u,v) that covers
adj(u), then the nodes adjacent to u cannot be matched to all different nodes,
and therefore v can be removed from Du.

This filtering must be iterated. Indeed, when v is removed from Du, the edge
(u, v) is removed from other bipartite graphs so that some bipartite graphs
may no longer have covering matchings. A key point for an incremental im-
plementation of this filtering lies in the fact that the edge (u, v) only belongs
to bipartite graphs G(u′,v′) such that u′ ∈ adj(u) and v′ ∈ adj(v) ∩ D(u′).
Filtering is iterated until either a domain becomes empty —thus detecting
an inconsistency— or reaching a fixpoint such that generalized arc consis-
tency has been enforced, i.e., such that for every couple (u, v) there exists a
adj(u)-covering matching of G(u,v).

Example 6 The bipartite graph G(1,G) used to propagate the neighborhood
constraint of Example 5 is displayed in the left part of Fig. 2. There does not
exist a matching of this graph that covers adj(1) because both 2 and 4 can only
be matched to B. As a consequence, one can remove G from D1.

The bipartite graph G(3,E) used to propagate the neighborhood constraint asso-
ciated with the couple (3, E) is displayed in the right part of Fig. 2. There exists
a matching of this graph that covers adj(3) (e.g., m = {(1, G), (2, A), (4, D)})
so that E is not removed from D3. However, once G has been removed from
D1, the edge (1, G) is removed from G(3,E) and there no longer exists a match-
ing that covers adj(3) (as both 1, 2, and 3 can only be matched to A and D).
Hence, E is also removed from D3.

Algorithm 1 describes the resulting filtering procedure, called LAD (Local
All Different) filtering. This procedure takes in input a set S of couples of
pattern/target nodes to be filtered. At the root of the search tree, this set
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Algorithm 1. LAD-filtering
Input: A set S of couples of pattern/target nodes to be filtered
Output: failure (if an inconsistency is detected) or success.

In case of success, domains are filtered so that ∀u ∈ Np,∀v ∈ Du, there
exists a matching of G(u,v) that covers adj(u).

begin
while S 6= ∅ do

Remove a couple of pattern/target nodes (u, v) from S
if there does not exist a matching of G(u,v) that covers adj(u) then

Remove v from Du

if Du = ∅ then return failure
S ← S ∪ {(u′, v′) | u′ ∈ adj(u), v′ ∈ adj(v) ∩Du′}

end
end
return success

end

should contain all couples of pattern/target nodes, i.e., S = {(u, v) | u ∈
Np, v ∈ Du}. Then, at each choice point of the search tree, S should be
initialized with the set of all couples (u, v) such that v ∈ Du and a node
adjacent to v has been removed from the domain of a node adjacent to u since
the last call to LAD-filtering.

For each couple of nodes (u, v) that belongs to the set S, LAD-filtering checks
if there exists a matching of G(u,v) that covers adj(u). If this is not the case,
then v is removed from Du, and all couples (u′, v′) such that u′ is adjacent to
u, and v′ is adjacent to v and belongs to Du′ are added to S.

The key point is to efficiently implement the procedure that checks if there
exists a covering matching of G(u,v). Régin has shown in [Reg94] that one can
use the algorithm of Hopcroft and Karp [HK73] to find such a matching. The
time complexity of this algorithm is O(a

√
b) where a and b respectively are

the number of edges and nodes in the bipartite graph. As the bipartite graph
G(u,v) has #adj(u) + #adj(v) nodes and, in the worst case (if no domain has
been reduced), #adj(u) · #adj(v) edges, and as dt ≥ dp (otherwise the sub-
graph isomorphism problem instance is trivially inconsistent), the complexity
of checking if there exists a covering matching of G(u,v) is O(dp · dt ·

√
dt).

This complexity may be improved by exploiting the fact that the algorithm
of Hopcroft and Karp is incremental: starting from an empty matching, it
iteratively computes new matchings that contain more edges than the previous
matching, until the matching is maximal. Each iteration basically consists in
a breadth first search and is in O(dp · dt) whereas the number of iterations is
bounded by 2 ·

√
dt + dp. However, if one starts the algorithm from a matching

that already contains k edges, and if the maximal matching has l edges, then
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the number of iterations is also bounded by l− k (as the size of the matching
increases of at least one at each iteration).

We use this property to improve the time complexity of LAD-filtering. More
precisely, for each pattern node u ∈ Np and each target node v ∈ Du, we mem-
orize the last computed matching of G(u,v). The space complexity of memoriz-
ing the covering matchings of all bipartite graphs is O(np ·nt ·dp) (there are at
most np ·nt bipartite graphs, and the covering matching of G(u,v) is composed
of #adj(u) edges). As it would be very expensive, both in time and memory,
to create a copy of all covering matchings at each choice point, we simply
update these covering matchings whenever this is necessary. More precisely,
each time we need to check if there exists a covering matching of a bipartite
graph G(u,v), we proceed as follows:

(1) we scan the last recorded matching of adj(u) and remove every couple
(u′, v′) such that v′ no longer belongs to D(u′);

(2) if one or more couples have been removed, then we call Hopcroft Karp
to complete it;

(3) if Hopcroft Karp actually succeeds in completing it, then we record the
computed complete matching.

Theorem 1 The time complexity of LAD-filtering is O(np · nt · d2
p · d2

t ).

Proof.

• The complexity for computing a first covering matching for all bipartite
graphs is O(np ·nt ·dp ·dt ·

√
dt); this step is performed once, at the beginning

of the search process.
• Each time a value v is removed from a domain Du, one has to update

the matchings of all bipartite graphs G(u′,v′) such that u′ ∈ adj(u) and
v′ ∈ Du′ ∩ adj(v), i.e., of dp · dt bipartite graphs in the worst case, and each
update is done incrementally in O(dp · dt).
• In the worst case, only one value is removed when updating the covering

matchings of all neighbours and there are np · nt values to remove.

4.3 Comparison of LAD-filtering with other filterings

In this section, we compare the consistency ensured by LAD-filtering with
other partial consistencies.

Theorem 2 LAD-filtering (algorithm 1 with S initialized to all couples (u, v)
such that u ∈ Np and v ∈ Du) ensures the Generalized Arc Consistency of
neighborhood constraints, denoted GAC(Neighborhood).
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Proof. If there exists a pattern node u ∈ Np such that for every target node
v ∈ Du, it is not possible to assign every different pattern node u′ ∈ adj(u) to
a different target node which is adjacent to v and belongs to Du′ , then LAD-
filtering removes every value v ∈ Du (because every bipartite graph G(u,v)

does not have a adj(u)-covering matching), and returns failure. Otherwise, it
returns success and filters domains so that for every pattern node u ∈ Np and
every target node v ∈ Du, every different pattern node u′ ∈ adj(u) can be
assigned to a different target node which is adjacent to v and belongs to Du′

(as every bipartite graph G(u,v) has an adj(u)-covering matching).

Theorem 3 GAC(Neighborhood) is stronger than LV2002

Proof. GAC(Neighborhood) is at least as strong as LV2002 because, for each
pattern node u ∈ Np and each target node v ∈ Du, if there exists a adj(u)-
covering matching of G(u,v), then all target nodes of this covering matching
belong to the set F(u, v) and therefore #F(u, v) ≥ #adj(u). It is actually
strictly stronger: for example, it is able to detect the inconsistency of the
instance displayed in Figure 1 whereas LV2002 is only able to reduce the
domains of the variables associated with nodes 2 and 4 to {A,B,D} whereas
the domains of the other variables are not reduced.

Theorem 4 GAC(Neighborhood) is as strong as ILF(k) when labeling exten-
sions are started from the initial labeling ldom and when they are iterated until
reaching a fixpoint, i.e., k =∞.

Proof. The initial labeling ldom associates a unique different label with every
node, and the label of a pattern node u is compatible with the label of a target
node v iff #adj(u) ≤ #adj(v) and v ∈ Du. With such an initial compatibility
relationship, the multiset mu that contains all labels of nodes adjacent to u is
compatible with the multiset mv that contains all labels of nodes adjacent to
v iff there exists a covering matching of G(u,v) (as a label of mu is compatible
with a label of mv iff there is an edge between the corresponding nodes in
G(u,v)). When a node v is removed from a domain Du, both ILF(∞) and LAD
check, for every couple (u′, v′) ∈ adj(u)×adj(v)∩Du′ , that every node adjacent
to u′ may still be matched to a different node adjacent to v′. In both cases,
this is done in an iterative process, until a fixpoint is reached. The difference
between ILF(∞) and LAD is that ILF(∞) recomputes all matchings, for all
possible pattern/target couples, at each iteration, whereas LAD only updates
matchings that have actually been impacted by domain reductions. Hence,
LAD has a lower time complexity.

Actually, ILF(k) performs very poorly when it is started from the initial la-
beling ldom . It performs much better when it is started from an initial labeling
defined with respect to node degrees: with such an initial labeling, the num-
ber of different labels is usually strongly reduced and, therefore, the number
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of compatibility relationships to compute is also strongly reduced.

Theorem 5 GAC(Neighborhood) is weaker than Singleton Arc Consistency
of Edge and AllDifferent constraints (denoted SAC(Edges + AllDiff)).

Proof. Let us first recall that singleton arc consistency ensures that we can
enforce arc consistency without failure after any assignment of a value to a
variable [BD08]. Hence, SAC(Edges + AllDiff) ensures that, ∀u ∈ Np,∀v ∈
Du, if Du is reduced to the singleton {v}, then AC(Edges) combined with
GAC(AllDiff) does not detect an inconsistency.

• SAC(Edges+AllDiff) is at least as strong as GAC(Neighborhood): when
reducing a domain Du to a singleton {v}, if AC(Edges) combined with
GAC(AllDiff) does not detect an inconsistency, then there exists a adj(u)-
covering matching of the bipartite graph G(u,v). Indeed, AC(Edges) will
reduce domains of nodes adjacent to u to nodes which are adjacent to v,
while GAC(AllDiff) will ensure that all nodes adjacent to u can be assigned
to all different values.
• SAC(Edges+AllDiff) is actually stronger than GAC(Neighborhood) as it is

able to detect the inconsitency of the subgraph isomorphism problem in-
stance displayed in Fig. 3 whereas GAC(Neighborhood) does not reduce any
domain.

(1,A)

1 B

C

2

3

A

D

Pattern graph Gp Target graph Gt

2

3

B

C

Bipartite graph G

Fig. 3. Instance of subgraph isomorphism problem. Let us suppose that the initial
domains are D1 = D2 = D3 = {A, B, C, D}. GAC(Neighborhood) does not reduce
any domain as every bipartite graph G(u,v) has an adj(u)-covering matching (see,
e.g., the bipartite graph G(1,a) displayed on the right part of the Figure). How-
ever, SAC(Edges + AllDiff) detects an inconsistency: if D1 is reduced to {A}, then
AC(Edges) reduces D2 and D3 to nodes that are adjacent to A (i.e., to {C, B}) and
the edge (3, 2) is no longer supported (as Gt has no edge between C and B) so that
AC(Edges) detects an inconsistency.

However, the optimal worst-case time complexity of enforcing singleton arc
consistency of a binary CSP is O(nd3e) where e is the number of constraints,
n is the number of variables and d is the domain size [BD08]. For our subgraph
isomorphism CSP, if we only consider the binary edge constraints, we have n =
np, d = nt, and e = ep so that enforcing SAC(Edges) is in O(np ·n3

t ·ep). Let us
consider the case of fixed-degree graphs such that ep = (np ·dp)/2. In this case,
the time complexity of enforcing SAC(Edges) is O(n2

p · n3
t · dp), which should

be compared to the time complexity of LAD-filtering, i.e., O(np ·nt ·d2
p ·d2

t ). In
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the worst case, i.e., if both Gp and Gt are complete graphs so that dp = np−1
and dt = nt − 1, enforcing SAC(Edges) and LAD-filtering have the same
time complexity. However, for sparser graphs, LAD-filtering has a lower time
complexity.

5 Extension to directed graphs

LAD-filtering may be extended to directed graphs in a rather straightforward
way. In directed graphs, edges are ordered couples of nodes and, for each node
u, one distinguishes the set of successor nodes succ(u) that may be reached
by an outgoing edge (i.e., succ(u) = {u′ ∈ N | (u, u′) ∈ E}), from the set
of predecessor nodes pred(u) that may be reached from an ingoing edge (i.e.,
pred(u) = {u′ ∈ N | (u′, u) ∈ E}).

To extend LAD-filtering to directed graphs, one has to associate two bipartite
graphs with every couple (u, v) such that u ∈ Np and v ∈ Du:

• the bipartite graph used to check that each successor of umay be matched to
a different successor of v, i.e., Gsucc

(u,v) = (N succ
(u,v), E

succ
(u,v)) with N

succ
(u,v) = succ(u)∪

succ(v) and Esucc
(u,v) = {(u′, v′) ∈ succ(u)× succ(v) | v′ ∈ Du′}

• the bipartite graph used to check that each predecessor of umay be matched
to a different predecessor of v, i.e., Gpred

(u,v) = (Npred
(u,v), E

pred
(u,v)) with Npred

(u,v) =

pred(u) ∪ pred(v) and Epred
(u,v) = {(u′, v′) ∈ pred(u)× pred(v) | v′ ∈ Du′}

Algorithm 2. LAD-filtering
Input: A set S of triples (u, v, x) such that x ∈ {pred, succ}
Output: failure (if an inconsistency is detected) or success.

In case of success, domains are filtered so that ∀u ∈ Np,∀v ∈ Du, there
exist a matching of Gpred

(u,v) that covers pred(u) and a matching of Gsucc
(u,v)

that covers succ(u).
begin

while S 6= ∅ do
Remove a triple (u, v, x) from S
if there does not exist a matching of Gx

(u,v) that covers x(u) then
Remove v from Du

if Du = ∅ then return failure
S ← S ∪ {(u′, v′, succ) | u′ ∈ succ(u), v′ ∈ succ(v) ∩ Du′} ∪
{(u′, v′, pred) | u′ ∈ pred(u), v′ ∈ pred(v) ∩Du′}

end
end
return success

end
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Algorithm 2 extends Algorithm 1 to directed graphs. The main difference is
that it maintains a set of triples (u, v, x) such that x ∈ {pred, succ} instead
of a set of couples (u, v). At each iteration, a triple (u, v, x) is removed from
the set, and if the graph Gx

(u,v) does not have a covering matching, then v is
removed from Du and S is updated by adding all triples (u′, v′, x′) such that
an edge has been removed from the bipartite graph Gx′

(u′,v′).

6 Experimental results

6.1 Test suite

We consider 1993 subgraph isomorphism instances that come from three dif-
ferent databases.

Scale-free database (classes sf-d-D-n and si-d-D-n) This database
has been used in [ZDS10] to evaluate ILF(k). Graphs of these instances are
scale-free networks that have been randomly generated using a power law
distribution of degrees P (d = k) = k−λ with λ = 2.5 (see [ZDS10] for more
details). There are 5 classes. Each of the first four classes, denoted sf-d-D-n,
contains 20 feasible instances such that the target graph has n nodes which
degrees are bounded between d andD, and the pattern graph is extracted from
the target graph by randomly selecting 90% of nodes and edges from the target
graph in such a way that the pattern graph is still connected. The fifth class,
denoted si-d-D-n, contains 20 non feasible instances that have been generated
like instances of the first four classes, excepted that 10% of new edges have
been added in pattern graphs in order to obtain infeasible instances.

GraphBase database (class LV) This database has been used in [LV02]
to evaluate LV2002. It contains 113 undirected graphs with different proper-
ties, i.e., simple, acyclic, connected, biconnected, triconnected, bipartite and
planar. We have considered the 50 first graphs. This set contains graphs rang-
ing from 10 to 128 nodes. Using these graphs, we have generated 793 instances
of the subgraph isomorphism problem by considering all couples of graphs
(Gp, Gt) that are not trivially solved, i.e., such that ep > 0, np ≤ nt and
dp ≤ dt.

Vflib database (classes bvg-n, bvgm-n, m4D-n, m4Dr-n, and r-d-
n) This database has been used in [CFSV99] to evaluate Vflib, a program
dedicated to graph and subgraph isomorphism problems. It contains 63 classes
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of instances, and each class contains instances such that the target graph has
from 20 to 1000 nodes. For each class, we have only considered 4 sizes and,
for each size, we have only considered the first 10 instances. We have grouped
classes as follows (see [FSV01] for more details on the original classes):

• bvg-n (where n ∈ {100, 200, 400, 800} corresponds to the number of nodes
of the target graphs);
These classes contain fixed-valence graphs and are composed of the first

10 instances of the original classes six-by-n where x ∈ {2, 4, 6} corresponds
to the size of the pattern graph with respect to the target graph (i.e., 20%,
40%, or 60%) and y ∈ {3, 6, 9} corresponds to the valence. Hence, each class
bvg-n contains 90 instances.
• bvgm-n (where n ∈ {100, 200, 400, 800} corresponds to the number of nodes

of the target graphs);
These classes contain modified bounded-valence graphs and are composed

of the first 10 instances of the original classes six-bym-n where x ∈ {2, 4, 6}
corresponds to the size of the pattern graph with respect to the target graph
(i.e., 20%, 40%, or 60%) and y ∈ {3, 6, 9} corresponds to the valence. Hence,
each class bvgm-n contains 90 instances.
• m4D-n (where n ∈ {81, 256, 526, 1296} corresponds to the number of nodes

of the target graphs);
These classes contain graphs that correspond to 4D regular meshes and

are composed of the first 10 instances of the original classes six-m4D-n where
x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to the
target graph (i.e., 20%, 40%, or 60%). Hence, each class m4D-n contains 30
instances.
• m4Dr-n (where n ∈ {81, 256, 526, 1296} corresponds to the number of nodes

of the target graphs):
These classes contain graphs that correspond to 4D irregular meshes and

are composed of the first 10 instances of the original classes six-m4Drr-n
where x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect
to the target graph (i.e., 20%, 40%, or 60%) and r ∈ {2, 4, 6} corresponds to
the degree of irregularity. Hence, each class m4Dr-n contains 90 instances.
• r-p-n (where n ∈ {100, 200, 400, 600} corresponds to the number of nodes

and p ∈ {0.01, 0.05, 0.1} corresponds to the probability of adding an edge
between two nodes).
These classes contain graphs that have been randomly generated and are

composed of the first 10 instances of the original classes six-rand-rp-n where
x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to
the target graph (i.e., 20%, 40%, or 60%). Hence, each class r-p-n contains
30 instances.
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6.2 Considered solvers

LAD LAD-filtering has been implemented in C and has been integrated in
a complete tree search. At each node of the search tree, the next pattern node
to be assigned is chosen with respect to the minDom heuristic, i.e., we choose
the non assigned pattern node that has the smallest number of target nodes
in its domain. A choice point is created for each target node that belongs to
the domain of the variable to be assigned, and these different choice points
are explored by increasing order of values. At each node of the search tree,
LAD-filtering is combined with GAC(AllDiff). This search procedure is called
LAD.

LAD is compared with ILF(k), with k ∈ {1, 2, 4}, Abscon(GAC), Abscon(FC),
and Vflib.

ILF(k) The original implementation of ILF(k) was in Gecode. We con-
sider here a new implementation in C which uses the same data structures
and the same ordering heuristics as LAD, and which is also combined with
GAC(AllDiff). This new implementation is much more efficient than the orig-
inal one. For example, instances of class sf5-8-1000 are solved in 0.19 seconds
with the new implementation of ILF(1) whereas they were solved in 11.2 sec-
onds with the old implementation.

We compare results obtained with different numbers of labeling extension
iterations, i.e., with k ∈ {1, 2, 4}. We do not report results with k > 4 as this
never improves the solution process.

Abscon Abscon is a generic CSP solver written in Java by Lecoutre and
Tabary (see [LT08] for more details). The fact that Abscon is implemented
in Java whereas all other approaches are implemented in C or C++ must be
taken into account since Java programs have running times several time larger
than their C/C++ counterparts. We consider two variants of this solver:

• Abscon(FC) performs a forward checking propagation of the constraints,
i.e., FC(Edges) and FC(Diff).
• Abscon(AC) maintains Arc Consistency of edge constraints. For the differ-

ence constraints, it maintains a consistency that is stronger than AC(Diff)
but weaker than GAC(AllDiff). It also uses symetry breaking techniques.

Both variants consider the minDom ordering heuristic for choosing the next
variable to assign.
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Vflib Vflib [CFSV99,CFSV01] is a solver dedicated to graph and subgraph
isomorphism problems, and it is considered as the state-of-the-art for subgraph
isomorphism. It basically performs a forward checking propagation of edge
and difference constraints, but this propagation is limited to nodes that are
adjacent to already matched nodes for difference constraints. It uses specific
variable and value ordering heuristics: variable and values are chosen so that
the subgraph induced by the matched nodes is connected (except when the
pattern or the target graphs are composed of different connected components).

6.3 Experimental comparison on the problem of finding all solutions

Let us first consider the problem of finding all solutions to an instance, thus
allowing a comparison that is less dependent on value ordering heuristics.
For this first experiment, we have discarded instances that have too many
solutions. Hence, we have only considered classes from the scalefree database,
and the smallest classes of the vflib database (such that the target graph has
100 or 81 nodes).

Table 1 displays, for each class and each considered approach, the number of
instances for which all solutions have been found in less than one hour on a 2.26
GHz Intel Xeon E5520, and the average corresponding CPU time. On these
classes, LAD has solved 1 (resp. 3, 3, 23, 29, and 143) more instances than
ILF(1) (resp. ILF(2), ILF(4), Abscon(AC), Abscon(FC), and Vflib. When
comparing CPU times, we note that LAD is slower than the three variants of
ILF on classes sf-5-8-* and bvg, but these instances are easy ones and LAD
solves them in less than one second. However, on harder classes such as si20-
300-300, r0.05-100, and r0.1-100, LAD is significantly quicker than ILF. On
all classes, LAD and ILF are an order quicker than Abscon. Vflib is competitive
on classes bvg-100, m4D-81, and m4Dr-81, but it is not competitive at all on
all other classes.

Table 2 displays the average number of fail nodes (i.e., the number of times
an inconsistency is detected), for each class and each approach except Vflib
(because this information is not available in Vflib). On some classes, such
as sf5-8-*, LAD and ILF have comparable numbers of failed nodes, and this
corresponds to the classes that are more quickly solved by ILF than by LAD.
However, on some other instances, such as r*-100, LAD explores many fewer
nodes than ILF. The number of fail nodes of both ILF and LAD is an order
smaller than Abscon. On some classes, Abscon(AC) has more fail nodes than
Abscon(FC), but this corresponds to the fact that Abscon(AC) solves more
instances than Abscon(FC) and, for these harder instances, the number of fail
nodes is significantly higher than for the instances that are solved by both
approaches.
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Vflib Abscon ILF LAD

Class FC AC k=1 k=2 k=4

sf5-8-200 16 20 20 20 20 20 20

72.45 2.04 1.75 0.00 0.02 0.03 0.02

sf5-8-600 0 20 20 20 20 20 20

- 138.10 135.01 0.07 0.15 0.15 0.29

sf5-8-1000 0 20 20 20 20 20 20

- 1651.11 1631.88 0.19 0.55 0.59 0.83

sf20-300-300 0 16 16 20 20 20 20

- 386.87 474.11 0.35 5.95 8.24 2.56

si20-300-300 0 6 5 20 19 19 20

- 823.20 1046.91 132.33 30.42 48.75 27.77

bvg-100 90 90 90 90 90 90 90

0.02 1.99 2.78 0.04 0.07 0.13 0.75

bvgm-100 89 89 90 90 90 90 90

6.55 11.06 16.57 0.48 0.49 0.48 0.53

m4D-81 30 30 30 30 30 30 30

0.09 1.08 1.04 0.03 0.05 0.05 0.02

m4Dr-81 90 90 90 90 90 90 90

1.65 3.70 2.40 0.18 0.19 0.20 0.18

r0.01-100 21 23 28 29 29 29 29

83.60 121.98 322.67 158.35 170.63 170.53 180.24

r0.05-100 2 22 23 23 22 22 23

513.01 28.60 56.78 135.81 107.18 108.99 19.73

r0.1-100 0 25 28 28 28 28 29

- 64.91 218.38 217.17 242.00 243.12 148.38

All instances 338 451 460 480 478 478 481

13.83 118.72 144.86 34.41 31.09 32.07 22.34
Table 1
Finding all solutions: for each class, the first line gives the number of solved instances
(in less than one hour on a 2.26 GHz Intel Xeon E5520), and the second line gives
the CPU time (average on the completed runs).
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Abscon ILF LAD

Class (#solutions) FC AC k=1 k=2 k=4

sf5-8-200 (1.10) 3,076 108 5 0 0 0

sf5-8-600 (1.00) 418 418 4 0 0 0

sf5-8-1000 (1.05) 557 557 7 0 0 0

sf20-300-300 (4.45) 397,844 29,338 38 13 7 0

si20-300-300 (0.00) 913,730 61,191 15,342 62 22 27

bvg-100 (218) 10,037 2,862 461 391 391 0

bvgm-100 (145,855) 8,977 95,618 641 379 222 1

m4D-81 (1,253) 1,904 327 701 669 652 23

m4Dr-81 (30,642) 22,920 23,592 1,356 1,304 1,300 12

r0.01-100 (57,291,325) 38,853 6,749,220 10,621 6,717 6,175 60

r0.05-100 (6,062,230) 233,044 615,882 2,857,279 539,522 539,167 5,243

r0.1-100 (30,501,838) 819,714 1,985,225 2,227,792 2,224,579 2,224,408 320,067
Table 2
Number of fail nodes (average on the completed runs); numbers in brackets after
class names give the average number of solutions of the instances of the class.

6.4 Experimental comparison on the problem of finding the first solution

To illustrate scale-up properties of the different approaches and compare them
on a larger set of instances, we now consider the problem of finding the first
solution (or proving inconsistency). For this comparison, we consider instances
of the LV class and the larger classes of the vflib database (such that the target
graph has more than 100 nodes).

Table 3 displays the number of solved instances for the LV class, which contains
793 instances with many different features (graphs have different properties

Vflib Abscon ILF LAD

FC AC k=1 k=2 k=4

#solved 468 647 662 698 699 699 728

Time 73.72 72.51 54.25 30.85 31.12 30.77 14.57

#fail - 1,202,372 324,075 297,107 182,588 159,493 13,560
Table 3
Finding the first solution of instances of the LV class: #solved is the number of
solved instances (in less than one hour on a 2.26 GHz Intel Xeon E5520), Time and
#fail respectively give the CPU time and the number of fail nodes (average on the
completed runs).
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and sizes; some instances are feasible and have many solutions, some others are
inconsistent). For this class, LAD has solved 29 (resp. 29, 30, 66, 81, and 260)
more instances than ILF(4) (resp. ILF(2), ILF(1), Abscon(AC), Abscon(FC),
and Vflib). This table also shows us that Abscon(AC) and ILF(1) have com-
parable number of fail nodes, and nearly four times as less as Abscon(FC).
ILF(2) and ILF(4) have smaller number of fail nodes but the reduction of the
search space is not enough to allow ILF(2) and ILF(4) to become competitive.
The number of fail nodes of LAD is much smaller (more than 20 times as small
as Abscon(AC) and ILF(1)).

Tables 4 and 5 allow us to compare scale-up properties of the different con-
sidered approaches. Table 4 displays results on rather easy classes of the Vflib
database. LAD is able to solve the 900 instances of these classes in less than
1.5 seconds on average, and it is nearly 4 times as fast as ILF(k). It is also
significantly faster than Abscon. Interestingly, Vflib is very efficient and ex-
hibits very good scale-up properties on some classes such as bvg-*, bvgm-*, and
m4Dr-*. Actually, Vflib uses variable and value ordering heuristics that are
not used by the other approaches: at each iteration, it chooses the next couple
(u, v) of nodes to match so that both u and v are adjacent to some nodes
that have already been matched (whenever this is possible). These ordering
heuristics may explain the very good behavior of Vflib on some instances when
the goal is to find only one solution. It may also explain the fact that it is able
to solve 29 instances of the m4D-256 class in less than 0.01 second, whereas
it is not able to solve the last instance of this class in one hour.

However, Table 5 shows us that the different approaches exhibit different scale-
up properties on the random classes r-p-n. Indeed, when the probability p of
adding an edge is 0.01, LAD is better than Abscon which is better than ILF,
whereas when this probability increases, Abscon is better than ILF which is
better than LAD. Actually, the denser and the larger the graphs, and the worse
LAD. This may come from the fact that the complexity of LAD-filtering is
O(np · nt · d2

p · d2
t ): the degree is 10 times bigger (on average) for the graphs

of classes r0.1-* than for those of classes r0.01-*. Therefore, when graphs are
rather sparse, it is worth filtering with LAD whereas when graphs are denser,
one has better consider a simpler filtering procedure such as AC(Edges).

7 Conclusion

We have introduced a new filtering algorithm for subgraph isomorphism that
basically ensures that all nodes adjacent to a same pattern node may be
matched to nodes that are all different and that are all adjacent to a same
target node. This filtering is stronger than LV2002. Actually, it achieves the
same consistency as the strongest variant of ILF(k), i.e., when the initial la-

25



Vflib Abscon ILF LAD

Class FC AC k=1 k=2 k=4

bvg-200 90 90 90 90 90 90 90

0.00 0.68 0.78 0.00 0.00 0.00 0.14

bvg-400 90 90 90 90 90 90 90

0.00 2.85 2.99 0.01 0.01 0.01 1.06

bvg-800 90 90 90 90 90 90 90

0.02 54.13 54.86 0.03 0.04 0.05 8.41

bvgm-200 90 90 90 90 90 90 90

0.00 0.95 0.73 0.00 0.00 0.00 0.01

bvgm-400 90 89 89 90 90 90 90

0.01 3.20 1.66 1.55 0.01 0.01 0.04

bvgm-800 90 90 90 90 90 90 90

0.03 12.02 12.07 0.06 0.04 0.03 0.19

m4D-256 29 30 30 30 30 30 30

0.00 2.88 1.73 0.01 0.01 0.01 0.04

m4D-526 23 30 30 29 30 29 30

4.11 159.76 164.90 9.61 32.93 30.72 1.71

m4D-1296 20 23 23 29 29 29 30

0.05 252.73 242.47 52.93 61.21 73.33 5.67

m4Dr-256 90 90 90 90 90 90 90

0.00 7.91 1.44 0.23 1.05 2.24 0.06

m4Dr-526 90 89 89 89 89 89 90

0.01 23.47 23.35 14.02 18.31 19.08 0.33

m4Dr-1296 90 89 89 90 90 90 90

0.06 193.27 188.44 6.41 5.46 5.43 1.63

All instances 882 890 890 897 898 897 900

0.12 41.95 40.60 4.25 5.55 6.04 1.43
Table 4
Finding the first solution of easy instances of the vflib base: for each class, the first
line displays the number of solved instances (in less than one hour on a 2.26 GHz
Intel Xeon E5520) and the second line the CPU time (average on completed runs).
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Vflib Abscon ILF LAD

Class FC AC k=1 k=2 k=4

r0.01-200 3 28 30 28 28 28 30

1735.93 192.14 0.99 27.48 44.09 46.49 0.04

r0.01-400 0 20 29 14 14 14 30

- 33.14 69.68 175.83 228.78 214.85 45.58

r0.01-600 0 23 23 12 9 7 29

- 226.38 236.14 428.14 1069.96 806.96 113.51

r0.05-200 0 25 28 28 28 28 30

- 266.77 142.80 125.57 198.68 198.66 38.28

r0.05-400 0 22 24 25 25 25 17

- 632.84 647.48 519.04 500.54 494.12 1190.88

r0.05-600 0 14 14 13 5 5 1

- 1915.65 1936.98 1505.51 2319.68 2304.85 2100.61

r0.1-200 0 27 29 26 26 26 21

- 143.36 309.54 320.52 357.70 351.10 646.31

r0.1-400 0 6 6 5 5 5 1

- 1764.63 1972.18 1950.67 1917.68 2070.81 961.35

r0.1-600 0 0 0 0 0 0 0

- - - - - - -

All inst. 3 165 183 151 140 138 159

1735.93 443.14 409.55 414.03 447.36 426.67 268.48
Table 5
Finding the first solution of hard instances of the Vflib base: for each class, the first
line displays the number of solved instances (in less than one hour on a 2.26 GHz
Intel Xeon E5520) and the second line the CPU time (average on completed runs).

beling fully integrates domain reductions and when labeling extensions are
iterated until reaching a fixpoint. However, this consistency is achieved at a
lower cost by updating matchings incrementally instead of recomputing them
from scratch at each iteration, and by updating only the matchings that are
impacted by a domain reduction instead of recomputing all matchings.

We have experimentally shown on a wide benchmark of 2000 or so instances
that this new filtering is able to solve more instances quicker, and that it
drastically reduces the search space so that many instances are solved without
backtracking. However, this filtering is outperformed by arc consistency on
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the densest random graphs, such that edge density is greater or equal to 10%.

This filtering procedure could be easily integrated within a constraint pro-
gramming language. In particular, we plan to integrate it in our constraint-
based graph matching system [lCDC09] that is built on top of Comet [HM05].

We also plan to improve LAD-filtering by studying different strategies for
choosing, at each iteration, the next couple (u, v) that is removed from S. In
the results reported in this paper, we have considered a basic last in first out
strategy as S is implemented with a stack. However, we could use a priority
queue that orders couples with respect to the number of edges that have been
removed from the corresponding bipartite graph.

Further work will also concern the extension of this filtering procedure to
the maximum common subgraph problem, which involves finding the largest
graph that is subisomorphic to two given graphs. Indeed, the algorithm of
Hopcroft and Karp may be used to compute the maximal matching of bipartite
graphs G(u,v), thus giving a bound on the largest number of edges that may
be matched when u is matched to v.
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