Christine Solnon
email: christine.solnon@liris.cnrs.fr

AllDifferent-based Filtering for Subgraph Isomorphism

Keywords: Subgraph Isomorphism, Constraint Programming, All Different constraint

AllDifferent-based Filtering for Subgraph Isomorphism

Introduction

Graphs are widely used in real-life applications to represent structured objects such as, for example, molecules, images, or biological networks. In many of these applications, one looks for a copy of a pattern graph into a target graph [START_REF] Conte | Thirty years of graph matching in pattern recognition[END_REF]. This problem, known as subgraph isomorphism, is NP-complete in the general case [START_REF] Garey | Computers and Intractability[END_REF].

Subgraph isomorphism problems may be solved by a systematic exploration of the search space composed of all possible injective matchings from the set of pattern nodes to the set of target nodes: starting from an empty matching, one incrementally extends a partial matching by matching a non matched pattern node to a non matched target node until either some edges are not matched by the current matching (the search must backtrack to a previous choice point and go on with another extension) or all pattern nodes have been matched (a solution has been found). To reduce the search space, this exhaustive exploration is combined with filtering techniques that aim at removing candidate couples of non matched pattern-target nodes. Different levels of filtering may be considered; some are stronger than others (they remove more nodes), but also have higher time complexities.

In this paper, we describe and compare existing filtering algorithms for the subgraph isomorphism problem, and we introduce a new filtering algorithm which is stronger. We experimentally evaluate this new filtering algorithm on a wide benchmark of instances, and we show that it is much more efficient on many instances.

Definitions and notations

A graph G = (N, E) consists of a node set N and an edge set E ⊆ N × N , where an edge (u, u) is a couple of nodes. The set of neighbors of a node u is denoted adj(u) and is defined by adj(u) = {u | (u, u) ∈ E}. In this paper, we implicitely consider non directed graphs, such that (u, u) ∈ E ⇔ (u , u) ∈ E. The extension of our work to directed graphs is discussed in Section 5.

A subgraph isomorphism problem between a pattern graph G p = (N p , E p) and a target graph G t = (N t , E t) consists in deciding whether G p is isomorphic to some subgraph of G t . More precisely, one should find an injective matching f : N p → N t , that associates a different target node to each pattern node, and that preserves pattern edges, i.e., ∀(u, u) ∈ E p , (f (u), f (u)) ∈ E t

The function f is called a subisomorphism function.

Note that the subgraph is not necessarily induced so that two pattern nodes that are not linked by an edge may be matched to two target nodes which are linked by an edge. This problem is also called subgraph monomorphism or subgraph matching in the literature.

In the following, we assume G p = (N p , E p) and G t = (N t , E t) to be the underlying instance of subgraph isomorphism problem, and we assume without loss of generality that N p ∩ N t = ∅. We usually denote u or u (resp. v or v) nodes of G p (resp. G t).

We denote #S the cardinality of a set S. We also define N = N p ∪ N t , E = E p ∪ E t , n p = #N p , n t = #N t , e p = #E p , e t = #E t , and d p and d t the maximal degrees of the graphs G p and G t .

Filtering for subgraph isomorphism

Subgraph isomorphism problems may be modelled as constraint satisfaction problems in a very straightforward way. In this section, we first show how to model and solve subgraph isomorphism problems within a constraint satisfaction framework. Then, we describe different filtering algorithms for subgraph isomorphism in Sections 3.3 to 3.6, and we compare them in Section 3.7.

Modeling and solving subgraph isomorphism by means of constraints

A constraint satisfaction problem (CSP) is defined by a set of variables, such that each variable is associated with a domain (i.e., the set of values that it may be assigned to), and a set of constraints (i.e., relations that restrict the set of values that may be assigned to some variables simultaneously). Solving a CSP involves finding an assignment of values to all variables such that all constraints are satisfied.

A subgraph isomorphism problem may be modelled as a CSP by associating a variable (denoted x u) with every pattern node u. The domain of a variable x u (denoted D u) contains the set of target nodes that may be matched to u. Intuitively, assigning a variable x u to a value v corresponds to matching the pattern node u to the target node v. The domain D u is usually reduced to the set of target nodes the degree of which is higher or equal to the degree of u as node u may be matched to node v only if #adj(u) ≤ #adj(v).

Constraints ensure that the assignment of variables to values corresponds to a subisomorphism function. There are two kinds of constraints:

• edge constraints ensure that pattern edges are preserved, i.e., ∀(u, u) ∈ E p , (x u , x u) ∈ E t

• difference constraints ensure that the assignment corresponds to an injective function, i.e., ∀(u, u) ∈ N 2 p , u = u ⇒ x u = x u Within this framework, solving a subgraph isomorphism problem involves finding an assignment of the variables that satisfies all constraints. We shall consider that a variable is assigned whenever its domain is reduced to a singleton, i.e., D u = {v} ⇔ x u = v.

Subgraph isomorphism problems modeled as CSPs may be solved by building a search tree that explores all possible variable assignments until finding a so-lution. The size of this search tree may be reduced by using filtering techniques which propagate constraints to remove values from domains.

We briefly recall some basic principles of contraint propagation in Section 3.2. Then, we describe different filtering techniques that may be used to solve subgraph isomorphism problems in Sections 3.3 to 3.6. Note that some of these filterings (i.e., FC(Diff), GAC(AllDiff), FC(Edges), and AC(Edges)) are generic constraint propagation techniques that may be used to solve any CSP whereas some others (i.e., LV2002 and ILF(k)) are dedicated to the subgraph isomorphism problem.

Recalls on constraint propagation

Constraint propagation aims at filtering variable domains by removing inconsistent values, that is, values that do not belong to any solution. This constraint propagation step may be done at each choice point of the search. If it removes all values in the domain of a variable, then the search can backtrack to a previous choice.

A pioneering work for constraint propagation has been done in 1972 by Waltz for a scene drawing application [START_REF] Waltz | Generating semantic descriptions from drawings of scenes with shadows[END_REF]. Since then, many different constraint propagation algorithms have been proposed. These algorithms achieve different partial consistencies and also have different time and space complexities. In this section, we do not aim at describing all existing propagation algorithms. We only briefly describe two basic and well known generic techniques, that is, forward-checking and maintaining arc-consistency. The reader may refer to [START_REF] Rossi | Handbook of Constraint Programming (Foundations of Artificial Intelligence)[END_REF][START_REF] Lecoutre | Constraint Networks: Techniques and Algorithms[END_REF] for more information.

Forward-checking

The basic idea of forward-checking is to propagate all constraints involving a variable just after its assignment in order to remove from the domains of the non assigned variables any value which is not consistent with this assignment. More precisely, after the assignment of x i to v i , one propagates binary constraints between x i and any non assigned variable x j by removing from the domain of x j any value v j such that the assignment {(x i , v i), (x j , v j)} violates the constraint holding between x i and x j . When constraints have arities greater than two, one may propagate constraints such that all variables but one are assigned.

Maintaining arc-consistency A stronger filtering, but also a more expensive one, is obtained by maintaining arc-consistency, also called 2-consistency.

Roughly speaking, a binary CSP is arc-consistent if each value v i in the domain of a variable x i has at least one support in the domain of every other variable, thus ensuring that if x i is assigned to v i then each other variable still has at least one consistent value in its domain. More precisely, given a variable x i ∈ X and a value v i ∈ D(x i), a support of (x i , v i) for a variable x j is a value v j ∈ D(x j) such that the partial assignment {(x i , v i), (x j , v j)} is consistent. A binary CSP (X, D, C) is arc-consistent if every value in every domain has at least one support in the domain of each other variable.

To maintain arc-consistency while constructing a partial assignment A, we filter variable domains after each variable assignment by removing non supported values. Such a filtering must be repeated until no more domain is reduced: as soon as a value is removed, we must check that this value is not the only support of some other values. There exist many different algorithms for ensuring arc-consistency, which exhibit different time and space complexities. For instance, a widely used algorithm for achieving arc consistency of a set of binary constraints is AC4 [START_REF] Mohr | Arc and path consistency revisited[END_REF] whose time and space complexities are O(ck 2), where c is the number of constraints and k the maximum domain size. Although AC4 is worst-case optimal in time, it always reaches this worst case because of its expensive initialisation phase; many improvements have been proposed since AC4, leading for example to AC6, AC7 and AC2001 (see [START_REF] Rossi | Handbook of Constraint Programming (Foundations of Artificial Intelligence)[END_REF] for more details). Arc consistency may also be generalized to non binary CSPs. In this case, it is called generalized arc consistency.

Propagation of difference constraints (FC(Diff) and GAC(AllDiff))

Difference constraints may be propagated by forward-checking (denoted FC (Diff)): each time a pattern node u is matched to a target node v, FC(Diff) removes v from the domains of all non matched nodes. This may be done in O(n p).

FC(Diff)

propagates each binary difference constraint separately. A stronger filtering may be obtained by propagating the whole set of difference constraints in order to ensure that all pattern nodes can be assigned to different target nodes. More precisely, achieving the generalized arc consistency of a global AllDifferent constraint (denoted GAC(AllDiff)) removes from the domain of every pattern node u every target node v such that, when u is matched to v, the other pattern nodes cannot be matched to all different target nodes.

In [START_REF] Regin | A filtering algorithm for constraints of difference in CSPs[END_REF], Régin has shown how to use the matching algorithm of Hopcroft and Karp for achieving GAC(allDiff). The time complexity of this algorithm is O(n 2 p • n 2 t).

Example 1 Let us consider four variables x 1 , x 2 , x 3 , and x 4 such that D 1 = {a}, D 2 = D 3 = {a, b, c}, and D 4 = {a, b, c, d}.

FC(Diff) removes a from the domains of x 2 , x 3 , and x 4 .

GAC(AllDiff) also removes a from the domains of x 2 , x 3 , and x 4 . It further removes b and c from the domain of x 4 as if x 4 is assigned to b or c, then x 2 cannot be assigned to a value different from both x 3 and x 4 .

3.4 Propagation of edge constraints (FC(Edges) and AC(Edges))

Edge constraints may be propagated by forward checking (denoted FC(Edges)): each time a pattern node u is matched to a target node v, FC(Edges) removes from the domain of every node adjacent to u any target node that is not adjacent to v. This may be done in O(d p • n t).

One may go one step further and maintain the arc consistency of edges constraints (denoted AC(Edges)) so that

∀(u, u) ∈ E p , ∀v ∈ D u , ∃v ∈ D u , (v, v) ∈ E t
As a CSP modeling a subgraph isomorphism problem has e p edge constraints and the maximum domain size is n t , the time complexity of AC(Edges) is O(e p • n 2 t) when using AC4.

Example 2 Let us consider the subgraph isomorphism problem displayed in Fig. 1. Note that this instance has no solution as G p cannot be mapped into a subgraph of G t . Let us suppose that node 3 has been matched to node E so that D 3 = {E}, and that E has been removed from the domains of all other pattern nodes (e.g., by FC(Diff) or GAC(AllDiff)).

FC(Edges) removes B, C, and F from the domains of nodes 1, 2, and 4 because B, C, and F are not adjacent to E whereas 1, 2, and 4 are adjacent to 3.

Like FC(Edges), AC(Edges) removes B, C, and F from the domains of nodes

F(u, v) = ∪ u ∈adj(u) (D u ∩ adj(v)) F(u, v
) is a superset of the set of nodes that may be matched to nodes that are adjacent to u if u is matched to v. Therefore, one can remove v from D u whenever #F(u, v) < #adj(u). One can also remove v from D u whenever there exists a pattern node u ∈ adj(u) such that D u ∩ adj(v) = ∅, thus enforcing arc consistency of edge constraints. The LV2002 filtering algorithm has a time complexity of O(n 2 p • n 2 t).

Example 3 Let us consider the subgraph isomorphism problem displayed in Fig. 1. Let us suppose that node 3 has been matched to node E so that D 3 = {E}, and that E has been removed from the domains of all other pattern nodes (e.g., by FC(Diff) or GAC(AllDiff)).

Like AC(Edges), LV2002 removes nodes B, C, F , and G from the domains of nodes 1, 2, and 4. It is also able to remove values A and D from the domain of 1. Indeed,

F(1, A) = (D 2 ∪ D 3 ∪ D 4) ∩ adj(A) = {D, E} F(1, D) = (D 2 ∪ D 3 ∪ D 4) ∩ adj(D) = {A, E}
As, #F(1, A) < #adj(1) and #F(1, D) < #adj(1), both A and D are removed from D 1 so that the domain of 1 becomes empty and an inconsistency is detected.

Iterated Labelling Filtering (ILF(k))

Zampelli et al have proposed in [START_REF] Zampelli | Solving subgraph isomorphism problems with constraint programming[END_REF] a filtering algorithm (called ILF(k)) which exploits the graph structure in a global way to compute labels that are associated with nodes and that are used to filter domains. More precisely, a compatibility relationship is defined over the set of node labels. This compatibility relationship is used to remove from the domain of a pattern node u every target node v such that the label of u is not compatible with the label of v.

ILF(k) is an iterative procedure that starts from an initial labeling. This initial labeling may be defined by node degrees. In this case, the compatibility relationship is the classical ≤ order. This labeling is used to remove from the domain of a pattern node u every target node v such that #adj(u) ≤ #adj(v) as u cannot be matched to v if u has more adjacent nodes than v.

This initial labeling is extended to filter more values. Given a labeling l and a compatibility relationship between labels of l, one defines a new labeling l such that the new label l (u) of a node u is the multiset which contains all labels of nodes adjacent to u. The compatibility relationship is such that l (u) l (v) if for every occurrence x of a label in l (u) there exists a different occurrence y of a label in l (v) such that x y. The key point relies on the computation of the new compatibility relationship , which is done in

O(n p • n t • d p • d t • √ d t)
thanks to the matching algorithm of Hopcroft and Karp (see [START_REF] Zampelli | Solving subgraph isomorphism problems with constraint programming[END_REF] for more details).

Such labeling extensions are iterated. A parameter k is introduced, that determines the number of labeling extensions. Note that iterated labeling extensions may be stopped before reaching this bound k if some domain has been reduced to an empty set, or if a fixpoint is reached -such that no more value may be filtered. The ILF(k) procedure has a time complexity of

O(min(k, n p • n t) • n p • n t • d p • d t • √ d t).
[ZDS10] also introduces a weaker filtering, called ILF*(k). The idea is to approximate, at each iteration, the label compatibility relationship by a total order so that the next compatibility relation may be computed by sorting the multisets and sequentially comparing them. The time complexity of this weaker filtering is

O(min(k, n p • n t) • n p • n t • d t).
Example 4 Let us consider the subgraph isomorphism problem displayed in Fig. 1. The initial degree-based labeling is the labeling l such that

• l(5) = l(6) = 2 • l(1) = l(3) = l(C) = l(E) = l(F) = l(G) = 3 • l(2) = l(4) = l(A) = l(B) = l(D) = 4
and the order over this set of labels is such that

• 2 is compatible with 2, 3, and 4,

• 3 is compatible with 3 and 4,

• 4 is compatible with 4.

Hence, one can remove the target nodes C, E, F , and G from the domains of the pattern nodes 2 and 4.

The extension of this initial degree-based labeling is the labeling l such that

• l (1) = l (3) = l (E) = l (F) = {{3, 4, 4}} • l (2) = l (4) = {{2, 2, 3, 3}} • l (5) = l (6) = {{4, 4}} • l (A) = {{3, 3, 4, 4}} • l (B) = l (D) = {{3, 3, 3, 4}} • l (C) = {{4, 4, 4}} • l (G) = {{3, 3, 4}}
and the order over this set of labels is such that

• {{3, 4, 4}} is compatible with {{3, 3, 4, 4}} and {{3, 4, 4}} • {{2, 2, 3, 3}} is compatible with {{3, 3, 4, 4}} and {{3, 3, 3, 4}} • {{4, 4}} is compatible with {{3, 3, 4, 4}}, {{4, 4, 4}} and {{3, 4, 4}}
As l (1) is not compatible with l (B), B is removed from D 1 . For the same reasons, B, D and G are removed from the domains of nodes 1, 3, 5 and 6.

This new labeling l can be further extended, thus removing more values, and finally proving the inconsistency of this instance.

Discussion

Most of the algorithms that have been proposed for solving the subgraph isomorphism problem may be described by means of the filtering algorithms described in Sections 3.3 to 3.6. In particular:

• These different filterings achieve different consistencies. Some of them are stronger than others. In particular,

• GAC(AllDiff) is stronger than FC(Diff);

• LV2002 is stronger than AC(Edges) which is stronger than FC(Edges).

However, GAC(AllDiff) and FC(Diff) are not comparable with FC(Edges), AC(Edges), LV2002, and ILF(k) as they do not propagate the same constraints.

The relations between ILF(k) and other filterings that propagate edge constraints (i.e., LV2002, AC(Edges), and FC(Edges)) depend on initial domains: if the initial domain of every variable contains all target nodes, then ILF(k) is stronger than LV2002, provided that the number of labeling extensions k is greater or equal to 21 . However, if some domains have been reduced (which is usually the case when the filtering is done at a node which is not at the root of the search tree), then ILF(k) is not comparable with LV2002 and AC(Edges).

Indeed, ILF(k) does not exploit domains to filter values as labelings and compatibility relationships that are iteratively computed do not depend at all on domains. To allow ILF(k) to propagate some domain reductions, the iterative labeling extension process has been combined, before each labeling extension, with the two following steps:

• Reduction of the target graph with respect to domains: if a target node v does not belong to any domain, then this node and its incident edges are discarded from the target graph. • Strengthening of a labeling with respect to singleton domains: if a domain D u is reduced to a singleton {v}, then nodes u and v are labeled with a new label which is not compatible with any other label, except itself, thus preventing other pattern nodes from being matched with v.

When adding these two steps, ILF(k) is stronger than FC(Edges). However, it is still not comparable with LV2002 and AC(Edges).

To propagate more domain reductions, one may start the iterative labeling extension process from an initial labeling which fully integrates domain reductions in the compatibility relation, so that if a target node v does not belong to the domain of a pattern node u, then the label associated with v is not compatible with the label associated with u. More formally, Zampelli et al have defined in [START_REF] Zampelli | Solving subgraph isomorphism problems with constraint programming[END_REF] such an initial labeling, denoted l dom , as follows:

• a different unique label l x is associated with every different (pattern or target) node x ∈ N p ∪ N t ;

• ∀(u, v) ∈ N p ×N t , l u is compatible with l v iff v ∈ D u and #adj(u) ≤ #adj(v).
They have shown that, in this case, ILF(k) is stronger than LV2002 provided that k ≥ 2. However, if this filtering is stronger, it is also very expensive to achieve as the complexity of ILF(k) highly depends on the number of different labels. Indeed, the theoretical complexity of one iteration of ILF(k

) (i.e., O(n p • n t • d p • d t • √ d t)
) corresponds to the worst case where all nodes have different labels. If the number of different pattern and target labels respectively are l p and l t , then the complexity of one iteration of

ILF(k) is O(e p +l p •l t •d p •d t • √ d t).

Global neighborhood constraints and LAD-filtering

We introduce a global neighborhood constraint in Section 4.1, and we describe a propagation algorithm which achieves the generalized arc consistency of this constraint in Section 4.2. We compare this consistency with other partial consistencies in Section 4.3.

Global neighborhood constraints

For each subisomorphism function f : N p → N t and for each pattern node u ∈ N p , we have:

(1) ∀u ∈ adj(u), f (u) ∈ adj(f (u)) (2) ∀(u , u") ∈ adj(u) × adj(u), u = u" ⇒ f (u) = f (u")
The first property is a direct consequence of the fact that edges are preserved by subisomorphism functions whereas the second property is a direct consequence of the fact that subisomorphism functions are injections.

When considering the CSP associated with a subgraph isomorphism problem, these two properties may be expressed by the following constraint on the neighborhood of u:

x u = v ⇒ ∀u ∈ adj(u), x u ∈ adj(v) ∧allDiff ({x u |u ∈ adj(u)})
Note that the filtering algorithm LV2002 introduced by Larrosa and Valiente in [START_REF] Larrosa | Constraint satisfaction algorithms for graph pattern matching[END_REF] actually propagates this neighborhood contraint (although it has not been explicitely introduced in [LV02]). However, LV2002 only ensures a partial consistency: it basically ensures that the number of nodes adjacent to u is smaller or equal to the number of target nodes that are both adjacent to v and belong to domains of nodes adjacent to u. In Section 4.2, we describe a filtering algorithm which ensures the generalized arc consistency of neighborhood constraints.

Example 5 Let us consider the subgraph isomorphism problem displayed in Fig. 1, and let us define initial domains with respect to node degrees, i.e.

D 1 = D 3 = D 5 = D 6 = {A, B, C, D, E, F, G} D 2 = D 4 = {A, B, D}
The neighborhood constraint for the couple of nodes (1, G) is

x 1 = G ⇒ x 2 ∈ {B, F, E} ∧ x 3 ∈ {B, F, E} ∧ x 4 ∈ {B, F, E} ∧allDiff ({x 2 , x 3 , x 4 })
Achieving the generalized arc consistency of this constraint allows us to remove G from D 1 : if x 1 = G then both x 2 and x 4 must belong to the singleton {B} (corresponding to the intersection of their domains with {B, F, E}) so that x 2 and x 4 cannot be assigned to different values. Note that on this example, the filtering

LV2002 cannot remove G from D 1 as F(1, G) = (D 2 ∪ D 3 ∪ D 4) ∩ adj(G) = {B, E, F } so that #F(1, G) ≥ #adj(1).
Note also that a simple allDiff constraint on the set of variables {x 2 , x 3 , x 4 } cannot be used to remove G from D 1 : one has to combine this allDiff constraint with the fact that, if 1 is matched to G, then 2, 3, and 4 must be matched to nodes that are adjacent to G.

A filtering algorithm for propagating global neighborhood constraints

The generalized arc consistency of a neighborhood constraint may be ensured by looking for a covering matching in a bipartite graph, as proposed by Régin in [START_REF] Regin | A filtering algorithm for constraints of difference in CSPs[END_REF] for the AllDifferent global constraint. Let us recall that a matching of a graph G = (N, E) is a subset of edges m ⊆ E such that no two edges of m share a same endpoint. A matching m ⊆ E covers a set of nodes N i if every node of N i is an endpoint of an edge of m. In this case, we shall say that m is a N i -covering matching of G.

For every couple of nodes (u, v) such that v ∈ D u , we define a bipartite graph that associates a node with every node adjacent to u or v and an edge with every couple (u , v) such that v ∈ D u .

Definition 1 Given two nodes (u, v) ∈ N p × N t such that v ∈ D u , we define the bipartite graph G (u,v) = (N (u,v) , E (u,v)) such that • N (u,v) = adj(u) ∪ adj(v); • E (u,v) = {(u , v) ∈ adj(u) × adj(v) | v ∈ D u }
If there does not exist a matching of the bipartite graph G (u,v) that covers adj(u), then the nodes adjacent to u cannot be matched to all different nodes, and therefore v can be removed from D u . This filtering must be iterated. Indeed, when v is removed from D u , the edge (u, v) is removed from other bipartite graphs so that some bipartite graphs may no longer have covering matchings. A key point for an incremental implementation of this filtering lies in the fact that the edge (u, v) only belongs to bipartite graphs G (u ,v) such that u ∈ adj(u) and v ∈ adj(v) ∩ D(u). Filtering is iterated until either a domain becomes empty -thus detecting an inconsistency-or reaching a fixpoint such that generalized arc consistency has been enforced, i.e., such that for every couple (u, v) there exists a adj(u)-covering matching of G (u,v) .

Example 6 The bipartite graph G (1,G) used to propagate the neighborhood constraint of Example 5 is displayed in the left part of Fig. 2. There does not exist a matching of this graph that covers adj(1) because both 2 and 4 can only be matched to B. As a consequence, one can remove G from D 1 .

The bipartite graph G (3,E) used to propagate the neighborhood constraint associated with the couple (3, E) is displayed in the right part of Fig. 2. There exists a matching of this graph that covers adj(3) (e.g., m = {(1, G), (2, A), (4, D)}) so that E is not removed from D 3 . However, once G has been removed from D 1 , the edge (1, G) is removed from G (3,E) and there no longer exists a matching that covers adj(3) (as both 1, 2, and 3 can only be matched to A and D).

Hence, E is also removed from D 3 .

Algorithm 1 describes the resulting filtering procedure, called LAD (Local All Different) filtering. This procedure takes in input a set S of couples of pattern/target nodes to be filtered. At the root of the search tree, this set Algorithm 1. LAD-filtering Input: A set S of couples of pattern/target nodes to be filtered Output: failure (if an inconsistency is detected) or success.

In case of success, domains are filtered so that ∀u ∈ N p , ∀v ∈ D u , there exists a matching of G (u,v) that covers adj(u). begin while S = ∅ do Remove a couple of pattern/target nodes (u, v) from S if there does not exist a matching of G (u,v) that covers adj(u) then

Remove v from D u if D u = ∅ then return failure S ← S ∪ {(u , v) | u ∈ adj(u), v ∈ adj(v) ∩ D u } end end return success end should contain all couples of pattern/target nodes, i.e., S = {(u, v) | u ∈ N p , v ∈ D u }.
Then, at each choice point of the search tree, S should be initialized with the set of all couples (u, v) such that v ∈ D u and a node adjacent to v has been removed from the domain of a node adjacent to u since the last call to LAD-filtering.

For each couple of nodes (u, v) that belongs to the set S, LAD-filtering checks if there exists a matching of G (u,v) that covers adj(u). If this is not the case, then v is removed from D u , and all couples (u , v) such that u is adjacent to u, and v is adjacent to v and belongs to D u are added to S.

The key point is to efficiently implement the procedure that checks if there exists a covering matching of G (u,v) . Régin has shown in [START_REF] Regin | A filtering algorithm for constraints of difference in CSPs[END_REF] that one can use the algorithm of Hopcroft and Karp [START_REF] Hopcroft | An n 5/2 algorithm for maximum matchings in bipartite graphs[END_REF] to find such a matching. The time complexity of this algorithm is O(a √ b) where a and b respectively are the number of edges and nodes in the bipartite graph. As the bipartite graph G (u,v) has #adj(u) + #adj(v) nodes and, in the worst case (if no domain has been reduced), #adj(u) • #adj(v) edges, and as d t ≥ d p (otherwise the subgraph isomorphism problem instance is trivially inconsistent), the complexity of checking if there exists a covering matching of

G (u,v) is O(d p • d t • √ d t).
This complexity may be improved by exploiting the fact that the algorithm of Hopcroft and Karp is incremental: starting from an empty matching, it iteratively computes new matchings that contain more edges than the previous matching, until the matching is maximal. Each iteration basically consists in a breadth first search and is in O(d p • d t) whereas the number of iterations is bounded by 2 • d t + d p . However, if one starts the algorithm from a matching that already contains k edges, and if the maximal matching has l edges, then the number of iterations is also bounded by l -k (as the size of the matching increases of at least one at each iteration).

We use this property to improve the time complexity of LAD-filtering. More precisely, for each pattern node u ∈ N p and each target node v ∈ D u , we memorize the last computed matching of G (u,v) . The space complexity of memorizing the covering matchings of all bipartite graphs is O(n p • n t • d p) (there are at most n p • n t bipartite graphs, and the covering matching of G (u,v) is composed of #adj(u) edges). As it would be very expensive, both in time and memory, to create a copy of all covering matchings at each choice point, we simply update these covering matchings whenever this is necessary. More precisely, each time we need to check if there exists a covering matching of a bipartite graph G (u,v) , we proceed as follows:

(1) we scan the last recorded matching of adj(u) and remove every couple (u , v) such that v no longer belongs to D(u);

(2) if one or more couples have been removed, then we call Hopcroft Karp to complete it; (3) if Hopcroft Karp actually succeeds in completing it, then we record the computed complete matching.

Theorem 1 The time complexity of LAD-filtering is

O(n p • n t • d 2 p • d 2 t).
Proof.

•

Comparison of LAD-filtering with other filterings

In this section, we compare the consistency ensured by LAD-filtering with other partial consistencies.

Theorem 2 LAD-filtering (algorithm 1 with S initialized to all couples (u, v) such that u ∈ N p and v ∈ D u) ensures the Generalized Arc Consistency of neighborhood constraints, denoted GAC(Neighborhood).

Proof. If there exists a pattern node u ∈ N p such that for every target node v ∈ D u , it is not possible to assign every different pattern node u ∈ adj(u) to a different target node which is adjacent to v and belongs to D u , then LADfiltering removes every value v ∈ D u (because every bipartite graph G (u,v) does not have a adj(u)-covering matching), and returns failure. Otherwise, it returns success and filters domains so that for every pattern node u ∈ N p and every target node v ∈ D u , every different pattern node u ∈ adj(u) can be assigned to a different target node which is adjacent to v and belongs to D u (as every bipartite graph G (u,v) has an adj(u)-covering matching).

Theorem 3 GAC(Neighborhood) is stronger than LV2002

Proof. GAC(Neighborhood) is at least as strong as LV2002 because, for each pattern node u ∈ N p and each target node v ∈ D u , if there exists a adj(u)covering matching of G (u,v) , then all target nodes of this covering matching belong to the set F(u, v) and therefore #F(u, v) ≥ #adj(u). It is actually strictly stronger: for example, it is able to detect the inconsistency of the instance displayed in Figure 1 whereas LV2002 is only able to reduce the domains of the variables associated with nodes 2 and 4 to {A, B, D} whereas the domains of the other variables are not reduced.

Theorem 4 GAC(Neighborhood) is as strong as ILF(k) when labeling extensions are started from the initial labeling l dom and when they are iterated until reaching a fixpoint, i.e., k = ∞.

Proof. The initial labeling l dom associates a unique different label with every node, and the label of a pattern node u is compatible with the label of a target node v iff #adj(u) ≤ #adj(v) and v ∈ D u . With such an initial compatibility relationship, the multiset m u that contains all labels of nodes adjacent to u is compatible with the multiset m v that contains all labels of nodes adjacent to v iff there exists a covering matching of G (u,v) (as a label of m u is compatible with a label of m v iff there is an edge between the corresponding nodes in G (u,v)). When a node v is removed from a domain D u , both ILF(∞) and LAD check, for every couple (u , v) ∈ adj(u)×adj(v)∩D u , that every node adjacent to u may still be matched to a different node adjacent to v . In both cases, this is done in an iterative process, until a fixpoint is reached. The difference between ILF(∞) and LAD is that ILF(∞) recomputes all matchings, for all possible pattern/target couples, at each iteration, whereas LAD only updates matchings that have actually been impacted by domain reductions. Hence, LAD has a lower time complexity.

Actually, ILF(k) performs very poorly when it is started from the initial labeling l dom . It performs much better when it is started from an initial labeling defined with respect to node degrees: with such an initial labeling, the number of different labels is usually strongly reduced and, therefore, the number of compatibility relationships to compute is also strongly reduced.

Theorem 5 GAC(Neighborhood) is weaker than Singleton Arc Consistency of Edge and AllDifferent constraints (denoted SAC(Edges + AllDiff)).

Proof. Let us first recall that singleton arc consistency ensures that we can enforce arc consistency without failure after any assignment of a value to a variable [START_REF] Bessiere | Theoretical analysis of singleton arc consistency and its extensions[END_REF]. Hence, SAC(Edges + AllDiff) ensures that, ∀u ∈ N p , ∀v ∈ D u , if D u is reduced to the singleton {v}, then AC(Edges) combined with GAC(AllDiff) does not detect an inconsistency.

• SAC(Edges+AllDiff) is at least as strong as GAC(Neighborhood): when reducing a domain D u to a singleton {v}, if AC(Edges) combined with GAC(AllDiff) does not detect an inconsistency, then there exists a adj(u)covering matching of the bipartite graph G (u,v) . Indeed, AC(Edges) will reduce domains of nodes adjacent to u to nodes which are adjacent to v, while GAC(AllDiff) will ensure that all nodes adjacent to u can be assigned to all different values. • SAC(Edges+AllDiff) is actually stronger than GAC(Neighborhood) as it is able to detect the inconsitency of the subgraph isomorphism problem instance displayed in Fig. 3 whereas GAC(Neighborhood) does not reduce any domain.

(However, the optimal worst-case time complexity of enforcing singleton arc consistency of a binary CSP is O(nd 3 e) where e is the number of constraints, n is the number of variables and d is the domain size [START_REF] Bessiere | Theoretical analysis of singleton arc consistency and its extensions[END_REF].

Extension to directed graphs

LAD-filtering may be extended to directed graphs in a rather straightforward way. In directed graphs, edges are ordered couples of nodes and, for each node u, one distinguishes the set of successor nodes succ(u) that may be reached by an outgoing edge (i.e., succ(u) = {u ∈ N | (u, u) ∈ E}), from the set of predecessor nodes pred(u) that may be reached from an ingoing edge (i.e., pred(u

) = {u ∈ N | (u , u) ∈ E}).
To extend LAD-filtering to directed graphs, one has to associate two bipartite graphs with every couple (u, v) such that u ∈ N p and v ∈ D u :

• the bipartite graph used to check that each successor of u may be matched to a different successor of v, i.e., G succ

(u,v) = (N succ (u,v) , E succ (u,v)) with N succ (u,v) = succ(u)∪ succ(v) and E succ (u,v) = {(u , v) ∈ succ(u) × succ(v) | v ∈ D u } • the bipartite graph used to check that each predecessor of u may be matched to a different predecessor of v, i.e., G pred (u,v) = (N pred (u,v) , E pred (u,v)) with N pred (u,v) = pred(u) ∪ pred(v) and E pred (u,v) = {(u , v) ∈ pred(u) × pred(v) | v ∈ D u } Algorithm 2.

LAD-filtering

Input: A set S of triples (u, v, x) such that x ∈ {pred, succ} Output: failure (if an inconsistency is detected) or success.

In case of success, domains are filtered so that ∀u ∈ N p , ∀v ∈ D u , there exist a matching of G pred (u,v) that covers pred(u) and a matching of G succ

(u,v)
that covers succ(u). begin while S = ∅ do Remove a triple (u, v, x) from S if there does not exist a matching of

G x (u,v) that covers x(u) then Remove v from D u if D u = ∅ then return failure S ← S ∪ {(u , v , succ) | u ∈ succ(u), v ∈ succ(v) ∩ D u } ∪ {(u , v , pred) | u ∈ pred(u), v ∈ pred(v) ∩ D u } end end return success end
Algorithm 2 extends Algorithm 1 to directed graphs. The main difference is that it maintains a set of triples (u, v, x) such that x ∈ {pred, succ} instead of a set of couples (u, v). At each iteration, a triple (u, v, x) is removed from the set, and if the graph G x (u,v) does not have a covering matching, then v is removed from D u and S is updated by adding all triples (u , v , x) such that an edge has been removed from the bipartite graph G x (u ,v) .

6 Experimental results

Test suite

We consider 1993 subgraph isomorphism instances that come from three different databases.

Scale-free database (classes sf-d-D-n and si-d-D-n) This database has been used in [START_REF] Zampelli | Solving subgraph isomorphism problems with constraint programming[END_REF] to evaluate ILF(k). Graphs of these instances are scale-free networks that have been randomly generated using a power law distribution of degrees P (d = k) = k -λ with λ = 2.5 (see [START_REF] Zampelli | Solving subgraph isomorphism problems with constraint programming[END_REF] for more details). There are 5 classes. Each of the first four classes, denoted sf-d-D-n, contains 20 feasible instances such that the target graph has n nodes which degrees are bounded between d and D, and the pattern graph is extracted from the target graph by randomly selecting 90% of nodes and edges from the target graph in such a way that the pattern graph is still connected. The fifth class, denoted si-d-D-n, contains 20 non feasible instances that have been generated like instances of the first four classes, excepted that 10% of new edges have been added in pattern graphs in order to obtain infeasible instances.

GraphBase database (class LV) This database has been used in [START_REF] Larrosa | Constraint satisfaction algorithms for graph pattern matching[END_REF] to evaluate LV2002. It contains 113 undirected graphs with different properties, i.e., simple, acyclic, connected, biconnected, triconnected, bipartite and planar. We have considered the 50 first graphs. This set contains graphs ranging from 10 to 128 nodes. Using these graphs, we have generated 793 instances of the subgraph isomorphism problem by considering all couples of graphs (G p , G t) that are not trivially solved, i.e., such that e p > 0, n p ≤ n t and d p ≤ d t .

Vflib database (classes bvg-n, bvgm-n, m4D-n, m4Dr-n, and r-dn) This database has been used in [START_REF] Cordella | Performance evaluation of the vf graph matching algorithm[END_REF] to evaluate Vflib, a program dedicated to graph and subgraph isomorphism problems. It contains 63 classes of instances, and each class contains instances such that the target graph has from 20 to 1000 nodes. For each class, we have only considered 4 sizes and, for each size, we have only considered the first 10 instances. We have grouped classes as follows (see [START_REF] Foggia | A database of graphs for isomorphism and sub-graph isomorphism benchmarking[END_REF] for more details on the original classes):

• bvg-n (where n ∈ {100, 200, 400, 800} corresponds to the number of nodes of the target graphs); These classes contain fixed-valence graphs and are composed of the first 10 instances of the original classes si x -b y -n where x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to the target graph (i.e., 20%, 40%, or 60%) and y ∈ {3, 6, 9} corresponds to the valence. Hence, each class bvg-n contains 90 instances.

• bvgm-n (where n ∈ {100, 200, 400, 800} corresponds to the number of nodes of the target graphs); These classes contain modified bounded-valence graphs and are composed of the first 10 instances of the original classes si x -b y m-n where x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to the target graph (i.e., 20%, 40%, or 60%) and y ∈ {3, 6, 9} corresponds to the valence. Hence, each class bvgm-n contains 90 instances.

• m4D-n (where n ∈ {81, 256, 526, 1296} corresponds to the number of nodes of the target graphs); These classes contain graphs that correspond to 4D regular meshes and are composed of the first 10 instances of the original classes si x -m4D-n where x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to the target graph (i.e., 20%, 40%, or 60%). Hence, each class m4D-n contains 30 instances.

• m4Dr-n (where n ∈ {81, 256, 526, 1296} corresponds to the number of nodes of the target graphs): These classes contain graphs that correspond to 4D irregular meshes and are composed of the first 10 instances of the original classes si x -m4Dr r -n where x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to the target graph (i.e., 20%, 40%, or 60%) and r ∈ {2, 4, 6} corresponds to the degree of irregularity. Hence, each class m4Dr-n contains 90 instances.

• r-p-n (where n ∈ {100, 200, 400, 600} corresponds to the number of nodes and p ∈ {0.01, 0.05, 0.1} corresponds to the probability of adding an edge between two nodes). These classes contain graphs that have been randomly generated and are composed of the first 10 instances of the original classes si x -rand-r p -n where x ∈ {2, 4, 6} corresponds to the size of the pattern graph with respect to the target graph (i.e., 20%, 40%, or 60%). Hence, each class r-p-n contains 30 instances.

Considered solvers

LAD LAD-filtering has been implemented in C and has been integrated in a complete tree search. At each node of the search tree, the next pattern node to be assigned is chosen with respect to the minDom heuristic, i.e., we choose the non assigned pattern node that has the smallest number of target nodes in its domain. A choice point is created for each target node that belongs to the domain of the variable to be assigned, and these different choice points are explored by increasing order of values. At each node of the search tree, LAD-filtering is combined with GAC(AllDiff). This search procedure is called LAD.

LAD is compared with ILF(k), with k ∈ {1, 2, 4}, Abscon(GAC), Abscon(FC), and Vflib.

ILF(k)

The original implementation of ILF(k) was in Gecode. We consider here a new implementation in C which uses the same data structures and the same ordering heuristics as LAD, and which is also combined with GAC(AllDiff). This new implementation is much more efficient than the original one. For example, instances of class sf5-8-1000 are solved in 0.19 seconds with the new implementation of ILF(1) whereas they were solved in 11.2 seconds with the old implementation.

We compare results obtained with different numbers of labeling extension iterations, i.e., with k ∈ {1, 2, 4}. We do not report results with k > 4 as this never improves the solution process.

Abscon Abscon is a generic CSP solver written in Java by Lecoutre and Tabary (see [START_REF] Lecoutre | Abscon 112: towards more robustness[END_REF] for more details). The fact that Abscon is implemented in Java whereas all other approaches are implemented in C or C++ must be taken into account since Java programs have running times several time larger than their C/C++ counterparts. We consider two variants of this solver:

• Abscon(FC) performs a forward checking propagation of the constraints, i.e., FC(Edges) and FC(Diff). • Abscon(AC) maintains Arc Consistency of edge constraints. For the difference constraints, it maintains a consistency that is stronger than AC(Diff) but weaker than GAC(AllDiff). It also uses symetry breaking techniques.

Both variants consider the minDom ordering heuristic for choosing the next variable to assign.

Vflib Vflib [CFSV99,CFSV01] is a solver dedicated to graph and subgraph isomorphism problems, and it is considered as the state-of-the-art for subgraph isomorphism. It basically performs a forward checking propagation of edge and difference constraints, but this propagation is limited to nodes that are adjacent to already matched nodes for difference constraints. It uses specific variable and value ordering heuristics: variable and values are chosen so that the subgraph induced by the matched nodes is connected (except when the pattern or the target graphs are composed of different connected components).

Experimental comparison on the problem of finding all solutions

Let us first consider the problem of finding all solutions to an instance, thus allowing a comparison that is less dependent on value ordering heuristics. For this first experiment, we have discarded instances that have too many solutions. Hence, we have only considered classes from the scalefree database, and the smallest classes of the vflib database (such that the target graph has 100 or 81 nodes).

Table 1 displays, for each class and each considered approach, the number of instances for which all solutions have been found in less than one hour on a 2.26 GHz Intel Xeon E5520, and the average corresponding CPU time. On these classes, LAD has solved 1 (resp. 3, 3, 23, 29, and 143) more instances than ILF(1) (resp. ILF(2), ILF(4), Abscon(AC), Abscon(FC), and Vflib. When comparing CPU times, we note that LAD is slower than the three variants of ILF on classes sf-5-8-* and bvg, but these instances are easy ones and LAD solves them in less than one second. However, on harder classes such as si20-300-300, r0.05-100, and r0.1-100, LAD is significantly quicker than ILF. On all classes, LAD and ILF are an order quicker than Abscon. Vflib is competitive on classes bvg-100, m4D-81, and m4Dr-81, but it is not competitive at all on all other classes.

Table 2 displays the average number of fail nodes (i.e., the number of times an inconsistency is detected), for each class and each approach except Vflib (because this information is not available in Vflib). On some classes, such as sf5-8-*, LAD and ILF have comparable numbers of failed nodes, and this corresponds to the classes that are more quickly solved by ILF than by LAD. However, on some other instances, such as r*-100, LAD explores many fewer nodes than ILF. The number of fail nodes of both ILF and LAD is an order smaller than Abscon. On some classes, Abscon(AC) has more fail nodes than Abscon(FC), but this corresponds to the fact that Abscon(AC) solves more instances than Abscon(FC) and, for these harder instances, the number of fail nodes is significantly higher than for the instances that are solved by both approaches.

Experimental comparison on the problem of finding the first solution

To illustrate scale-up properties of the different approaches and compare them on a larger set of instances, we now consider the problem of finding the first solution (or proving inconsistency). For this comparison, we consider instances of the LV class and the larger classes of the vflib database (such that the target graph has more than 100 nodes). 3 Finding the first solution of instances of the LV class: #solved is the number of solved instances (in less than one hour on a 2.26 GHz Intel Xeon E5520), Time and #fail respectively give the CPU time and the number of fail nodes (average on the completed runs). and sizes; some instances are feasible and have many solutions, some others are inconsistent). For this class, LAD has solved 29 (resp. 29, 30, 66, 81, and 260) more instances than ILF(4) (resp. ILF(2), ILF(1), Abscon(AC), Abscon(FC), and Vflib). This table also shows us that Abscon(AC) and ILF(1) have comparable number of fail nodes, and nearly four times as less as Abscon(FC). ILF(2) and ILF(4) have smaller number of fail nodes but the reduction of the search space is not enough to allow ILF(2) and ILF(4) to become competitive. The number of fail nodes of LAD is much smaller (more than 20 times as small as Abscon(AC) and ILF(1)).

Tables 4 and 5 allow us to compare scale-up properties of the different considered approaches. Table 4 displays results on rather easy classes of the Vflib database. LAD is able to solve the 900 instances of these classes in less than 1.5 seconds on average, and it is nearly 4 times as fast as ILF(k). It is also significantly faster than Abscon. Interestingly, Vflib is very efficient and exhibits very good scale-up properties on some classes such as bvg-*, bvgm-*, and m4Dr-*. Actually, Vflib uses variable and value ordering heuristics that are not used by the other approaches: at each iteration, it chooses the next couple (u, v) of nodes to match so that both u and v are adjacent to some nodes that have already been matched (whenever this is possible). These ordering heuristics may explain the very good behavior of Vflib on some instances when the goal is to find only one solution. It may also explain the fact that it is able to solve 29 instances of the m4D-256 class in less than 0.01 second, whereas it is not able to solve the last instance of this class in one hour. However, Table 5 shows us that the different approaches exhibit different scaleup properties on the random classes r-p-n. Indeed, when the probability p of adding an edge is 0.01, LAD is better than Abscon which is better than ILF, whereas when this probability increases, Abscon is better than ILF which is better than LAD. Actually, the denser and the larger the graphs, and the worse LAD. This may come from the fact that the complexity of LAD-filtering is

O(n p • n t • d 2 p • d 2 t)
: the degree is 10 times bigger (on average) for the graphs of classes r0.1-* than for those of classes r0.01-*. Therefore, when graphs are rather sparse, it is worth filtering with LAD whereas when graphs are denser, one has better consider a simpler filtering procedure such as AC(Edges).

Conclusion

We have introduced a new filtering algorithm for subgraph isomorphism that basically ensures that all nodes adjacent to a same pattern node may be matched to nodes that are all different and that are all adjacent to a same target node. This filtering is stronger than LV2002. Actually, it achieves the same consistency as the strongest variant of ILF(k), i.e., when the initial la- 5 Finding the first solution of hard instances of the Vflib base: for each class, the first line displays the number of solved instances (in less than one hour on a 2.26 GHz Intel Xeon E5520) and the second line the CPU time (average on completed runs).

beling fully integrates domain reductions and when labeling extensions are iterated until reaching a fixpoint. However, this consistency is achieved at a lower cost by updating matchings incrementally instead of recomputing them from scratch at each iteration, and by updating only the matchings that are impacted by a domain reduction instead of recomputing all matchings.

We have experimentally shown on a wide benchmark of 2000 or so instances that this new filtering is able to solve more instances quicker, and that it drastically reduces the search space so that many instances are solved without backtracking. However, this filtering is outperformed by arc consistency on the densest random graphs, such that edge density is greater or equal to 10%. This filtering procedure could be easily integrated within a constraint programming language. In particular, we plan to integrate it in our constraintbased graph matching system [START_REF] Le Clément | Constraint-based graph matching[END_REF] that is built on top of Comet [START_REF] Van Hentenryck | Constraint-Based Local Search[END_REF].

We also plan to improve LAD-filtering by studying different strategies for choosing, at each iteration, the next couple (u, v) that is removed from S. In the results reported in this paper, we have considered a basic last in first out strategy as S is implemented with a stack. However, we could use a priority queue that orders couples with respect to the number of edges that have been removed from the corresponding bipartite graph. Further work will also concern the extension of this filtering procedure to the maximum common subgraph problem, which involves finding the largest graph that is subisomorphic to two given graphs. Indeed, the algorithm of Hopcroft and Karp may be used to compute the maximal matching of bipartite graphs G (u,v) , thus giving a bound on the largest number of edges that may be matched when u is matched to v.

Fig. 1 .

 1 Fig. 1. Instance of subgraph isomorphism problem.

 McGregor [McG79] combines FC(Diff) and FC(Edges); • Ullmann [Ull76] combines FC(Diff) and AC(Edges); • Régin [R 95] combines GAC(AllDiff) and AC(Edges); • Larrosa and Valiente [LV02] combine GAC(AllDiff) and LV2002; • Zampelli et al combine GAC(AllDiff), AC(Edges), and ILF(k).

Fig. 2 .

 2 Fig. 2. Bipartite graphs associated with (1, G) and (3, E).

Fig. 3 .

 3 Fig. 3. Instance of subgraph isomorphism problem. Let us suppose that the initial domains are D 1 = D 2 = D 3 = {A, B, C, D}. GAC(Neighborhood) does not reduce any domain as every bipartite graph G (u,v) has an adj(u)-covering matching (see, e.g., the bipartite graph G (1,a) displayed on the right part of the Figure). However, SAC(Edges + AllDiff) detects an inconsistency: if D 1 is reduced to {A}, then AC(Edges) reduces D 2 and D 3 to nodes that are adjacent to A (i.e., to {C, B}) and the edge (3, 2) is no longer supported (as G t has no edge between C and B) so that AC(Edges) detects an inconsistency.

 1, 2, and 4. It is also able to remove G from the domain of 1 as the matching (1, G) has no support for the edge (1, 4). Indeed, none of the adjacent nodes of G (i.e., B, F , and E) belongs to the domain of 4. For the same reasons, AC(Edges) also removes G from the domains of 2 and 4.

	3.5 Propagation of a set of edge constraints (LV2002)
	Both FC(Edges) and AC(Edges) propagate each edge constraint separately. A
	stronger filtering is obtained by propagating edge constraints in a more global
	way, i.e., by propagating the fact that a whole set of nodes must be adjacent
	to a given node. Indeed, a pattern node u may be matched to a target node
	v only if the number of nodes adjacent to u is smaller or equal to the number
	of target nodes that are both adjacent to v and belong to domains of nodes
	adjacent to u (otherwise some nodes adjacent to u cannot be matched to nodes
	adjacent to v). Hence, Larrosa and Valiente have proposed in [LV02] a filtering
	algorithm (denoted LV2002) which propagates this constraint. More precisely,
	they define the set

 For our subgraph isomorphism CSP, if we only consider the binary edge constraints, we have n = n p , d = n t , and e = e p so that enforcing SAC(Edges) is in O(n p • n 3 t • e p). Let us consider the case of fixed-degree graphs such that e p = (n p • d p)/2. In this case, the time complexity of enforcing SAC(Edges) is O(n 2 p • n 3 t • d p), which should be compared to the time complexity of LAD-filtering, i.e., O(n p • n t • d 2 p • d 2 t). In the worst case, i.e., if both G p and G t are complete graphs so that d p = n p -1 and d t = n t -1, enforcing SAC(Edges) and LAD-filtering have the same time complexity. However, for sparser graphs, LAD-filtering has a lower time complexity.

 Finding all solutions: for each class, the first line gives the number of solved instances (in less than one hour on a 2.26 GHz Intel Xeon E5520), and the second line gives the CPU time (average on the completed runs).

				Abscon			ILF		LAD
	Class (#solutions)	Vflib	FC	Abscon AC		k=1	ILF k=2	k=4	LAD
	Class sf5-8-200 (1.10)			FC 3,076	AC 108	k=1 5	k=2 0	k=4	0	0
	sf5-8-200 sf5-8-600 (1.00)		16	418	20	418	20	20 4	20 0	20 0	20 0
	sf5-8-1000 (1.05)	72.45	2.04 557	1.75 557	0.00 7	0.02 0	0.03 0	0.02 0
	sf5-8-600 sf20-300-300 (4.45)	0	397,844	20	29,338	20	20 38	20 13	20 7	20 0
	si20-300-300 (0.00)		-	138.10 913,730	135.01 61,191	0.07 15,342	0.15 62	0.15 22	0.29 27
	sf5-8-1000 bvg-100 (218)		0	10,037	20	2,862	20	20 461	20 391	20 391	20 0
	bvgm-100 (145,855)		8,977		95,618		641	379	222	1
			-1651.11 1631.88	0.19	0.55	0.59	0.83
	m4D-81 (1,253)			1,904		327		701	669	652	23
	sf20-300-300 m4Dr-81 (30,642)		0	22,920	16	23,592	16	20 1,356	20 1,304	20 1,300	20 12
	r0.01-100 (57,291,325)	-	386.87 38,853 6,749,220 474.11	0.35 10,621	5.95 6,717	8.24 6,175	2.56 60
	si20-300-300 r0.05-100 (6,062,230)	0	233,044	6	5 615,882 2,857,279 20	19 539,522	19 539,167	20 5,243
	r0.1-100 (30,501,838)	-	823.20 1046.91 819,714 1,985,225 2,227,792 2,224,579 2,224,408 320,067 132.33 30.42 48.75 27.77
	bvg-100	90		90		90	90	90	90	90
		0.02	1.99	2.78	0.04	0.07	0.13	0.75
	bvgm-100		89		89		90	90	90	90	90
		6.55	11.06	16.57	0.48	0.49	0.48	0.53
	m4D-81	30		30		30	30	30	30	30
		0.09	1.08	1.04	0.03	0.05	0.05	0.02
	m4Dr-81	90		90		90	90	90	90	90
		1.65	3.70	2.40	0.18	0.19	0.20	0.18
	r0.01-100		21		23		28	29	29	29	29
		83.60	121.98	322.67 158.35 170.63 170.53	180.24
	r0.05-100		2		22		23	23	22	22	23
	513.01	28.60	56.78	135.81 107.18 108.99	19.73
	r0.1-100		0		25		28	28	28	28	29
			-	64.91	218.38	217.17 242.00 243.12 148.38
	All instances	338		451	460	480	478	478	481
		13.83	118.72	144.86	34.41	31.09	32.07	22.34
	Table 1									

Table 2

 2 Number of fail nodes (average on the completed runs); numbers in brackets after class names give the average number of solutions of the instances of the class.

Table 3

 3 displays the number of solved instances for the LV class, which contains 793 instances with many different features (graphs have different properties

		Vflib	Abscon			ILF		LAD
			FC	AC	k=1	k=2	k=4	
	#solved	468	647	662	698	699	699	728
	Time	73.72	72.51	54.25	30.85	31.12	30.77	14.57
	#fail	-1,202,372 324,075 297,107 182,588 159,493 13,560
	Table							

 Finding the first solution of easy instances of the vflib base: for each class, the first line displays the number of solved instances (in less than one hour on a 2.26 GHz Intel Xeon E5520) and the second line the CPU time (average on completed runs).

			Vflib Vflib	Abscon Abscon				ILF	ILF	LAD	LAD
	Class Class			FC FC	AC AC		k=1 k=1	k=2	k=4 k=2	k=4
	bvg-200 r0.01-200		90 3	90 28	90 30	90	28	90	90 28	90 28	30
		0.00 1735.93	0.68 192.14	0.78 0.99	0.00 0.00 0.00 27.48 44.09	0.14 46.49	0.04
	bvg-400 r0.01-400		90 0	90 20	90 29	90	14	90	90 14	90 14	30
			0.00 -	2.85 33.14	2.99 69.68	0.01 175.83	0.01 228.78 0.01	1.06 214.85	45.58
	r0.01-600		0	23	23		12			9	7	29
	bvg-800		90 -	90 226.38	90 236.14	90 428.14 1069.96 90 90	90 806.96 113.51
			0.02	54.13	54.86		0.03			0.04	0.05	8.41
	r0.05-200		0	25	28		28			28	28	30
	bvgm-200		90 -	90 266.77	90 142.80	90 125.57	90 198.68 90	90 198.66	38.28
	r0.05-400		0.00 0	0.95 22	0.73 24	0.00 0.00 0.00 25 25	0.01 25	17
	bvgm-400		90 -	89 632.84	89 647.48	90 519.04	90 500.54 494.12 1190.88 90 90
	r0.05-600		0.01 0	3.20 14	1.66 14	1.55 0.01 0.01 13 5	0.04 5	1
	bvgm-800		90 -1915.65 1936.98 1505.51 2319.68 2304.85 2100.61 90 90 90 90 90 90
	r0.1-200		0.03 0	12.02 27	12.07 29	0.06	26	0.04 0.03 26	0.19 26	21
	m4D-256		29 -	30 143.36	30 309.54	30 320.52	30 357.70 30	30 351.10	646.31
	r0.1-400		0.00 0	2.88 6	1.73	6	0.01 0.01 0.01 5 5	0.04 5	1
	m4D-526		23 -1764.63 1972.18 1950.67 1917.68 2070.81 30 30 29 30 29 30	961.35
	r0.1-600		4.11 159.76 164.90 0 0	0	9.61 32.93 30.72 1.71 0 0 0	0
	m4D-1296		20 -	23 -	23	-	29		-	29	-	29	30 -	-
	All inst.		0.05 252.73 242.47 52.93 61.21 73.33 5.67 3 165 183 151 140 138	159
	m4Dr-256 Table	90 1735.93	90 443.14	90 409.55	90 414.03	90 447.36 90	426.67 90	268.48
			0.00	7.91	1.44		0.23			1.05	2.24	0.06
	m4Dr-526		90	89	89		89			89		89	90
			0.01	23.47	23.35 14.02 18.31 19.08	0.33
	m4Dr-1296		90	89	89		90			90	90	90
			0.06 193.27 188.44		6.41			5.46	5.43	1.63
	All instances	882	890	890		897			898	897	900
			0.12	41.95	40.60		4.25			5.55	6.04 1.43
	Table 4											

k must be greater or equal to

if the initial labeling from which the iterative labeling extension process is started is the empty labeling, that associates the same label to all nodes. If the initial labeling is defined by node degrees, then one iteration is enough to obtain a stronger consistency (see[START_REF] Zampelli | Solving subgraph isomorphism problems with constraint programming[END_REF] for more details).

Acknowledgements Many thanks to Yves Deville for enriching discussions, to Jean-Christophe Luquet for having implemented a first version of ILF, to Christophe Lecoutre for guiding me in the use of Abscon, and to anonymous reviewers for their valuable remarks who helped me improving this paper. This work was done in the context of project Sattic (Anr grant Blanc07-1_184534).