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Abstract
In this paper, we propose an automatic method for generating roads based on a weighted anisotropic shortest
path algorithm. Given an input scene, we automatically create a path connecting an initial and a final point.
The trajectory of the road minimizes a cost function that takes into account the different parameters of the scene
including the slope of the terrain, natural obstacles such as rivers, lakes, mountains and forests. The road is
generated by excavating the terrain along the path and instantiating generic parameterized models.

Categories and Subject Descriptors (according to ACM CCS): [Computer Graphics]: Three-Dimensional Graphics
and Realism

Keywords: Procedural modeling, road generation, discrete anisotropic shortest path.

1. Introduction

Modeling and rendering realistic images of landscapes and
cities is an important problem in computer graphics. The cre-
ation of compelling models is a crucial task, not only in the
entertainment industry but also in various training, planning
and simulation applications.

Over the years, researchers have made considerable
progress towards developing efficient techniques for gener-
ating natural landscapes covered with vegetation [DHL∗98]
and cities [PM01, MWH∗06]. Procedural algorithms have
been developed for generating large cities with complex
street networks [CEW∗08]. Several methods have been pro-
posed for sketching [BN08] and editing [MS09] roads. The
major limitation of editing approaches is that they require
a considerable effort to carefully control the trajectories to
obtain realistic roads. In contrast, the procedural generation
of countryside roads and highways with tunnels and bridges
remains an open area of research.

In this paper, we present an algorithm for generating a
road connecting an initial and a final point that adapts to the
characteristics of an input scene. Given an input scene, we
compute the shortest path connecting an initial and a final
point that minimizes a cost function that takes into account
the slope of the terrain as well as natural obstacles such as
rivers, lakes and forests. The discrete shortest path is then
converted into a set of piecewise clothoid splines represent-
ing the trajectory of the road. This trajectory is further seg-

Figure 1: A complex road generated by our system

mented according to the elevation of the terrain as well as
rivers to identify which parts are surface roads and which
parts should be instantiated as tunnels and bridges. Finally,
we excavate the terrain along the path and rely on generic
procedural road, bridge and tunnel models to create the final
mesh models. Our contributions are as follows.

Control We present a class of parameterized and control-
lable cost functions that takes into account the different pa-
rameters of the scene including the slope of the terrain, nat-
ural obstacles such as rivers, lakes, mountains and forests
(Section 4). Our generic cost function can also handle the
evaluation of the cost of tunnels and bridges between two
points in a consistent way.
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Anisotropic shortest path We address the computation of
the weighted anisotropic shortest path problem on a contin-
uous domain, i.e. the creation of a path that minimizes the
line integral of the cost function.

We present an algorithm that reduces the complex prob-
lem to an optimization over an implicit finite graph (Sec-
tion 5). Our method restricts the search to paths formed
by the concatenation of straight-line segments between grid
aligned points from a uniform discretization of the continu-
ous region. To overcome the limit-on-direction problem, we
introduce k-neighborhood connectivity masks so as to gen-
erate realistic smooth paths.

We show that our anisotropic shortest path algorithm can
generate tunnels and bridges in a consistent way by simply
generalizing the optimization process over a more complex
finite graph involving a huge number of arcs. Therefore, we
propose an accelerated technique based on a stochastic sam-
pling to speed up computations, at the expense of slightly
less accurate shortest path.

Procedural generation We present a compact procedural
model for representing roads, tunnels and bridges with a few
parameters describing their geometrical characteristics. Our
method automatically generates the smooth trajectory of the
road from the piecewise segment paths, excavates the terrain
around the path of the roads and generates the road mesh
as well as bridges and tunnels with the appropriate size and
characteristics (Section 6).

2. Related work

In this section, we briefly review research describing road
generation and editing techniques, variational curve design
on surfaces and shortest path algorithms.

City street modeling Several procedural techniques have
been proposed to generate street networks [MWH∗06] in
cities in the context of large-scale urban modeling. Parish
and Müller [PM01] first presented a solution to model street
networks based on L-systems. Sun et al. [SYBG02] pro-
posed a technique based on template road pattern and
Voronoï diagrams. Another approach consists in using ten-
sor fields to guide the generation of street graphs [CEW∗08],
which allows the user to interactively edit the street graph
by either modifying the underlying tensor field or chang-
ing the graph directly. Alternatively, example based meth-
ods [AVB08, VABW09] have been proposed for interac-
tively synthesizing urban street networks.

Interactive road editing and sketching Several techniques
have been proposed for interactively editing and sketching
roads. Bruneton et al. [BN08] presented a system to inter-
actively edit very large terrains with very detailed features
such as roads, rivers, lakes and fields. McCrae et al. [MS09]
proposed a system for interactively editing a road network

on a terrain based on user controlled piecewise clothoïd
curves [MS08]. Cabral et al. [CLDD09] proposed an ap-
proach for modeling architectural scenes by reshaping and
combining existing textured models, and demonstrated that
this technique could be successfully applied to build com-
plex road structures from simple initial pieces.

Variational path computation Paths can be generated
using variational curve design on surfaces as presented
in [HP04]. The proposed algorithm minimizes quadratic en-
ergy functionals involving first and second derivatives, but
with the nonlinear side condition that the solution curves are
confined to surfaces.

Anisotropic shortest path problem The solution to
shortest-path problem is an active area of research in com-
putational geometry. When strong assumptions on the cost-
weighting functions are imposed, efficient algorithms can be
used to compute the shortest-path.

A lot of techniques focus on the isotropic case when the
cost function only depend on the position. Several algo-
rithms have been proposed for planar regions and obsta-
cle spaces defined by polygons and when the cost func-
tion is independent of velocity [MM97, HS99]. The com-
plexity of the problem increases when the cost-weighting
function is continuous but still independent of the ve-
locity [MP91, AMS00]. Several efficient algorithms have
been proposed to solve an isotropic shortest-path problem
by solving a discretized Hamilton Jacobi Bellmann equa-
tion [Tsi95, PBT98]. However, none of these algorithms
seems to generalize to the anisotropic case.

Much less work has been devoted to the anisotropic case
when the cost function depends on the position, velocity and
acceleration. Several techniques were proposed for vehicles
taking into account the grade of the climb [RR90, LMS99].
Aleksandrov et al. [AMS00, AMS05] proposed a discretiza-
tion technique to solve the shortest path problem on a
weighted terrain. The method involves inserting Steiner
points on the edges of the polygonal terrain and then con-
structing an edge weighted graph. Therefore, the problem
simplifies to finding a shortest path between two points in the
graph. Kim et al. [KH03] proposed a method based on a non-
uniform discretization of the continuous region obtained by
a honeycomb sampling algorithm. An alternative technique
has been presented in [JV04] using a rectangular grid to dis-
cretize the region. Because the cost is anisotropic, rectilinear
paths connecting adjacent grid points may not approximate
the optimal path. To overcome this limit-on-direction prob-
lem, the method searches over shifted versions of the recti-
linear paths.

3. Discrete anisotropic shortest path algorithm

In this section, we present an overview of our discrete
anisotropic shortest path algorithm for generating roads, tun-
nels and bridges over complex terrains.
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Anisotropic shortest path problem Our paper addresses
the weighted anisotropic shortest-path problem on a contin-
uous domain, i.e., the computation of a path between two
points that minimizes the line integral of a cost-weighting
function along the path.

Consider a compact region Ω ∈ R2 and two initial and
final points denoted as a and b. Our goal is to compute a
continuous path ρ from a to b that minimizes the line in-
tegral over the path of a cost weighting function c(p, ṗ, p̈)
that depends on the position p and the first two derivatives
denoted as ṗ and p̈ respectively.

To formalize the problem, we denote P the set of all con-
tinuous paths in Ω from a to b that are piecewise twice con-
tinuously differentiable, i.e., P denotes the set of continu-
ous functions ρ : [0,T ]→ Ω, T > 0 for which ρ(0) = a and
ρ(T ) = b. Let C : P → [0,∞( denote the functional charac-
terizing the cost of a path ρ ∈ P:

C(ρ) =
∫ T

0
c(p(t), ṗ(t), p̈(t))dt

The continuous anisotropic shortest path problem consists
in finding a path ρ

∗ that minimizes the functional C(ρ):

C(ρ∗) = min
ρ∈P

C(ρ)

Discrete anisotropic shortest path To overcome the diffi-
culties that arise in solving the weighted anisotropic short-
est path problem exactly, we approximate the solution by
performing a uniform discretization of the region Ω into a
grid. We define the path as a concatenation of segments be-
tween points on the grid. For a finite number of grid points,
this procedure converts the original continuous shortest-path
problem into a shortest-path problem on a finite graph G.

pi j

pi+1 j

p k-1

M(p  )k 

kp 

Figure 2: Notations for the grid points pi j, the maskM(pk)
and the path ρ

∗ = {pk}k∈[0,n].

Grid sampling and graph definition Let pi j, (i, j) ∈
[0,n− 1]2 denote the grid points uniformly sampling the
search domain. Those points correspond to the nodes of the
graph G. Because the cost function c is anisotropic, the seg-
ments connecting a point pi j to adjacent grid points may
not give a good approximation of the optimal path [JV04].
The originality of our approach is to consider that every grid
point pi j is implicitly connected to a large set of neighboring
grid points within distance r. We define this subset as:

M(pi j)⊂ {q, ‖pi j−q‖ ≤ r}

Since explicitly storing those arcs would be memory de-
manding, we rely on generic path segment masks, denoted
asMk that will store the connectivity patterns between grid
points (Section 5). This technique enables us to overcome
the limit on direction problem that arise when considering
only 4 or 8 connectivity between the grid points pi j.

Shortest path computation We compute the discrete short-
est path by applying an A* algorithm to the graph G.

Recall that A* is a best-first graph search algorithm that
finds the least-cost path from a given initial node to a goal
node. We use the cost function c(p) plus an admissible
heuristic cost estimate function e(p) to determine the order
in which the search visits nodes. We define the function e(p)
as the cost of a straight-line road to the goal b so that it
never overestimates the actual minimal cost of reaching b.
The heuristic function e is monotonic, therefore A* itself is
admissible.

Let us present the outline of the algorithm. For every grid
point, we define its corresponding cost value c(pi j) and its
predecessor as p(pi j). The cost value of all the points c(pi j)
is first initialized with∞, whereas the value of the starting
point c(a) is set to h(b). We initialize a priority queue Q
with the initial point a. The main loop of the algorithm can
be written as follows:

1. WhileQ is not empty, select the point pi j from the prior-
ity queue with the smallest cost value c(pi j).

2. If destination has been found pi j = b, stop the algorithm.
3. For all points q ∈ Mk(pi j), evaluate the cost c(pi j,q)

over the segments [pi j,q]. If c(pi j,q)< c(q) then set the
predecessor of q as pi j.

This algorithm generates a discrete path characterized by a
set of grid points and denoted as ρ

∗ = {pk}, k ∈ [0,n].

Step 3 of the algorithm involves the computation of the set
of grid pointsMk(pi j) to define which nodes are connected
together. It also requires the evaluation of the cost function
along line segments connecting two grid points.This cost
will be computed on the fly as follows. Let [pk,pk+1] de-
note a segments of the path and tk, tk+1 the parameters cor-
responding to pk and pk+1. The line integral is defined as:

c(pk,pk+1) =
∫ tk+1

tk
c(p(t), ṗ(t), p̈(t))dt

We approximate the line integral as a finite sum by discretiz-
ing the integration domain into n intervals.

Cost functions definition We define a set of parameterized
cost functions c(p(t), ṗ(t), p̈(t)) that will be used to evaluate
the line integral of the cost function. Those functions are
defined by the user and indirectly control the trajectory of the
path by constraining the shortest path research. In the next
section, we address the computation of the cost functions.
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4. Cost functions

In this section, we present a class of cost functions that de-
fine the influence of the slope of the terrain and the natural
obstacles over the shortest path computation. We define the
global cost function c as a sum of several weighting func-
tions that evaluate relative influence of the different charac-
teristics of the terrain and the road. We propose to define the
cost function as follows:

c(p, ṗ, p̈) =
i=n−1

∑
i=0

µi ◦κi(p, ṗ, p̈)

The set of functions κi : R3×R3×R3→R evaluate the dif-
ferent characteristics of the terrain and the geometric charac-
teristics of the trajectory of the road at point p. The functions
µi are transfer functions that weight and combine the influ-
ence of the characteristics κi(p, ṗ, p̈). Transfer functions al-
low the user to control the relative influence of the parame-
ters of the scene and therefore control the shape of the mini-
mum shortest path.

4.1. Surface roads

The trajectory of a road on the surface of a terrain should be
constrained by the slope of the terrain and natural obstacles
such as rivers, lakes and forests (Figure 3). The cost func-
tion also takes into account the curvature of the road so as
to control and constrain whether the generated road should
avoid sharp curves.

Water 
w (p) 

. 
Slope s (p, p) 

p p . 
Ω(p,r) Vegetation v(p) 

r

Figure 3: Overview of the evaluation of the cost function
for surface roads: we evaluate the characteristics κi(p, ṗ, p̈)
of the scene in the neighborhood of p and apply transfer
functions µi to weight their relative influence.

Characteristic functions Let p denote a point on the trajec-
tory of a road on the surface of the terrain. We compute the
following characteristic functions: the density of vegetation
v(p), the water height w(p), the slope of the terrain in the di-
rection of the trajectory of the road s(p, ṗ) and the curvature
of the trajectory of the road c(p, ṗ, p̈).

The water height w(p) is defined as the maximum height
of water in a small area Ω(p,r) around the projection of p
onto the ground. Ω(p,r) denotes a sphere centered at point p
and of radius r. The density of vegetation v(p) is computed
by evaluating the number of trees that lie within Ω(p,r).

Transfer functions In this section, we present transfer
functions that weight the influence of the characteristics of
the scene and road trajectory. In our system, transfer func-
tions are characterized by their graph which is edited inter-
actively (Figure 4).

Water depth Slope

k (p, p, p) 

  

k (p) k (p, p) 

m m 

. 

∞ ∞

Curvature 
m 

. . . 

∞

k0 k0 k0

Figure 4: Synthetic representation of the cost functions for
surface roads.

Transfer functions are characterized by a threshold value,
denoted as κ0. If the input characteristic κ is greater than κ0,
the corresponding transfer function µ(κ) should return infin-
ity. This enables us to control the definition of regions where
path cannot be created. Let us review two transfer functions.

Slope Let s(p, ṗ) denote the slope of the terrain at point p. If
the slope is too steep, the transfer function should return in-
finity so as to prevent paths from climbing very steep slopes
which would generate unrealistic roads. Otherwise, we use a
function of the slope controlled by the maximum cost value
µ(κ0).

Water Let w(p) denote the maximum water depth in
Ω(p,r). If the water is too deep, it is impossible to create
a road and the water transfer function should return infin-
ity. Otherwise, the water height is small enough to create the
road at the expense of some banking. In that case, we use a
function of the water depth, and µ(κ0) represents the maxi-
mum cost corresponding to the maximum water depth.

4.2. Bridges and tunnels

Bridges and tunnels are complex structures whose creation
cost depends on many parameters including the geological
properties of the ground. In our system, the cost for bridges
is parameterized by the height of the bridge h(p), its slope
and the depth of water bodies the bridges crosses (Figure 5).

Slope s (p, p)

Heighth (p) 

Water

. 

w (p) 

Figure 5: Bridge cost function evaluation.

The cost function also takes into account the curvature so
as to avoid the generation of dangerous bridges with sharp
curves. The function h(p) denotes the vertical height of the
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bridge at point p with respect to the ground. The correspond-
ing transfer function µheight is a piecewise function that re-
turns infinity if the height is greater than maximum height
value for the considered type of bridge.

In the case of tunnels, the cost is parameterized by the
depth of the tunnel to the surface d(p), its slope, and the
depth of water bodies that may exist above the tunnel (Fig-
ure 6). This latter parameter enables us to simulate expensive
tunnels passing under rivers or seas.

s (p, p)Slope 

d (p)
Depth

. 

Figure 6: Tunnel cost function evaluation.

5. Segment path masks

In this section, we describe our method for computing the
anisotropic shortest path over a uniformly sampled grid.

The limit on direction problem An important problem of
uniform grid sampling is that it is not efficient as the number
of grid points grows very fast if we want the shortest discrete
path to approximate the position and direction of the short-
est continuous path. This is because of the limit-on-direction
effect (Figure 7).

a 

a = 90° 

a 

a = 45° 

pij pij

4 connexity 8 connexity 

Figure 7: The limit on direction problem when using 4 and
8 connexity between sample grid points.

Recall that the discrete path is a rectilinear path com-
posed of straight segments connecting sample points. Ex-
isting techniques only consider 4 or 8 connectivity between
sample points. Therefore, the segments of the discrete path
can only have 4 or 8 directions, with a maximal angle resolu-
tion of 45 degrees. Shift paths [JV04] can partially overcome
this problem by allowing paths to shift away from the grid
points, but require a computationally demanding relaxation
step to shift path segments.

Overview To overcome the limit on direction problem, we
propose to increase the neighborhood distance so as to intro-
duce more directions, which enables us to improve the angle
accuracy between path segments. This approach also allows
us to consider very long arcs connecting distant grid points,
which enables us to create bridge and tunnels.

5.1. Path segment masks

Since explicitly storing all the arcs between grid points
would be memory consuming, we propose to store the con-
nectivity information between grid points using a set of path
segment masks, denoted asMk (Figure 8).

α = 26.5° M  (p  ) α = 18.5° 2 ij M  (p  ) 3 ij 

p p ij ij 

Figure 8: Synthetic representation of the path segments for
the masksM2 andM3. Only a few path segments have been
drawn out of clarity.

Definition We define the path segment masksMk as the set
of segments connecting the origin (0,0) to a point (i, j) ∈
[−k,k]2 such that the greatest common divisor of i and j is 1
(Figure 8). Using this definition instead of all the (2k+ 1)2

segments with (i, j) ∈ [−k,k]2 avoids redundant path check-
ing when applying the discrete shortest path algorithm.

k 1 2 3 4 5 6

α 45 26.5 18.5 14.0 11.3 9.5

nk 8 16 32 48 80 96

Table 1: Statistics for segment path masks : α denotes the
angle resolution and nk the number of segment paths.

Influence of the size of the masks Increasing the size of the
segment path masks enables us to detect paths with a better
angle resolution and to reduce the limit on direction effect, at
the cost of an increasing number of iterations in the shortest
path algorithm. Table 1 reports the number of path segments
nk as well as the maximum angle α.

Figure 9 shows the influence of the parameter k over the
computation of the shortest path between an initial point in a
valley and a final point at the top of a steep hill. The cost
function has been set to take into account the slope. For
k = 1, the limited connectivity between grid points results
in a shortest path following an unrealistic direct path to the
top, ignoring the influence of the slope. As k increases, the
resulting path gets more realistic.

Table 2 reports timings (in seconds) as well as the cost (in
arbitrary unit) and the length (in meters) for computing the
anisotropic shortest path with different path segment masks
over a 60×60 grid. Timings increase in O(k2).

Experiments demonstrate that the cost of the shortest path
converges to a limit as the size of the mask increases. In gen-
eral, chosing k = 5 proved to be a good compromise between
speed and the angle resolution to generate realistic paths.
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Figure 9: Influence of the size of the masksM.

k Cost Time Length

1 29265 0.015 477

2 26441 0.031 808

3 26242 0.062 1225

4 26096 0.110 1757

Table 2: Statistics for different sizes of masks

5.2. Curvature

While segment path masks enable us to overcome the limit
on direction problem, the generated path often have too
many shape turns (Figure 9). Therefore, taking the curvature
into account is crucial to obtain realistic paths. Instead of us-

p 

pi j

p 

[p/4,p/2]

pi j

pi-2 j

pi+2 j+1

[0,p/4]
a = 0

a = 1

p/2 

p/6 

p 

(i, j, 0) (i-2, j, 0) 

(i+2, j+1, 1)

Three-dimensionnal grid structure

Corresponding Trajectory

Figure 10: Discrete representation of the domain Ω× [0,2π]
with m= 8, only the sub-domains Ω×{0} and Ω×{1} have
been represented out of clarity.

ing a two-dimensional discretization of the domain Ω⊂ R2,
we perform a three-dimensional discretization of the con-
tinuous domain Ω× [0,2π] which represents all the posi-

tions in Ω with all the possible orientations (Figure 10). We
discretize the angular domain [0,2π] into m intervals. Thus,
our approach consists in computing the discrete anisotropic
shortest path over a n2 ×m three-dimensional grid of ori-
ented points, denoted as pi ja, (i, j) ∈ [0,n]2, a ∈ [0,m− 1].
The segments path masksM generalize to extended masks,
denoted as E , such that E(pi ja) refers to the set of all the
pointsM(pi j) replicated for all a ∈ [0,m−1].

Figure 11: An uphill road with (left) and without (right) cur-
vature constraints.

This technique, combined with cost functions taking ac-
count the curvature of the path, enable us to keep track of
the influence of the curvature cost and to generate more real-
istic paths, at the expense of more computations (Figure 11).
Table 3 reports the corresponding statistics for a 60×60 grid
with an angle discretization set to m = 12.

Technique Cost Time Length

Without orientation 38884 0.110 1464

With orientation 37157 1.750 0998

Table 3: Curvature constrained shortest path: cost (in arbi-
trary unit), time (in seconds) and road length (in meters).

5.3. Tunnels and bridges

Tunnels and bridges can be processed in a consistent way
using an extension of path segments mask. The fundamen-
tal concept is to consider bridges and tunnels as long path
segments connecting two distant grid points.

Without loss of generality, let us first consider tunnels. As
for surface roads, we introduce generic tunnel masks, de-
noted as T , that represent which paths connecting two grid
points should be processed as tunnels by the shortest path
algorithm (Figure 12).

Those path segments have a minimum and a maximum
distance, denoted as ri and re, which correspond to the min-
imum and maximum length a given type of tunnel or bridge
can have. Therefore, we define:

T (pi j) = {q 6= pi j |ri ≤ ‖pi j−q‖ ≤ re}
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Internal radius r 

Connection points

p 

External radius r e

i

ij

Figure 12: Tunnel path segment masks T (pi j). Only three
segments have been drawn out of clarity.

Step 3 of the graph search algorithm is modified as fol-
lows. When processing a candidate grid point pi j, we com-
pute and update the value of the grid points in two sets
q ∈M(pi j) and q ∈ T (pi j).

3. For all points q ∈M(pi j), evaluate the surface road cost
c(pi j,q), and for all points q ∈ T (pi j), evaluate the tun-
nel cost c(pi j,q). If c(pi j,q)< c(q) then set the ancestor
of q as pi j.

Bridges are defined in the same way, the corresponding
masks for bridges will be referred to as B.

Figure 13: Left image shows a long road without bridge,
whereas right image shows a shorter path obtained by en-
abling the bridge generation.

Figure 13 presents two different roads generated with
and without bridges. The corresponding statistics (Table 4)
demonstrate that enabling bridges effectively reduces the
cost of the path, at the expense of demanding computations.

Technique Cost Time Length

Bridge enabled 38740 3.016 461

Road only 41778 0.078 1043

Table 4: Statistics for two different roads: cost (in arbitrary
unit), time (in seconds) and road lenth (in meters).

5.4. Stochastic sampling

Detecting all the possible tunnels and bridges in a scene in-
volves evaluating the corresponding cost function for a huge

Internal radius r 

p 

External radius r e

i

ij

Figure 14: Stochastic tunnel path segment masks S(pi j).
Only three segments have been drawn out of clarity.

number of arcs. The number of arcs becomes quadratic as
the external radius of the search region re increases.

Therefore, we propose a stochastic sampling technique
to speed up computations. Instead of evaluating the tunnel
and bridge functions values for all the grid points in the set
T (pi j) at every step of the algorithm, we only perform com-
putations for a restricted subset of segment paths S(pi j) ⊂
Tk(pi j). Candidate grid points are obtained by stochastically
selecting some of the grid points inside the hollow disc with
a low discrepancy sequence (Figure 14) at every iteration of
the algorithm.

Figure 15: Using stochastic path masks may result in
slightly different road trajectories.

Table 5 reports statistics corresponding to the shortest
paths illustrated in Figure 15 and demonstrating the effi-
ciency of the sampling technique. The tunnel and bridge
mask areas were set with ri = 50m and re = 300m over a
300× 300 grid with a sampling grid size of 10m. The cor-
responding number of grid points visited at every iteration
was equal to #T = 2728. In contrast, the number of sample
grid points in the stochastic approach was set to #S = 50.
Timings demonstrate that the speed up is proportional to the
ratio #S/#T .

Technique Cost Time Length

Bridge 21351 25.8 1120

Stochastic bridge 28952 3.2 752

Table 5: Statistics for segment path masks: cost (in arbi-
trary unit), time (in seconds) and road length (in meters).
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Figure 16: A mountain road following the path of a river.

Timings demonstrate that our stochastic algorithm dra-
matically speeds up the computation of tunnels and bridges,
with a very small cost overhead.

6. Procedural generation of road models

In this section, we present our method for generating the
road, tunnel and bridge models from the discrete shortest
path. Our method proceeds in three steps. First, the discrete
shortest path is converted into a set of piecewise clothoid
splines representing the trajectory of the road. We rely on
a piecewise clothoid splines as these curves matches real
world curvature constraints. The trajectory is further seg-
mented to identify which parts should be instantiated as
roads, tunnels or bridges. We modify the terrain and the veg-
etation along the trajectory, performing excavations and em-
bankments, and generate the mesh representation of roads,
tunnels and bridges from generic parameterized procedural
models.

Road  
surface 

Blending 
region 

Road mesh 
r R C 

Figure 17: Cross section of our surface road model.

Generic models Roads, tunnels and bridges are imple-
mented as procedural geometric models. This technique en-
ables us to adapt the geometry to the constraints of the trajec-
tory. Roads are characterized by a profile curve C parameter-
ized by the width r of the asphalt section and the width R of
a blending region (Figure 17). The blending region will be
used to characterize the shape of excavations and embank-
ments performed along the trajectory of the road.

6.1. Trajectory computation

Recall that our discrete anisotropic shortest path algorithm
generates a path defined as ρ

∗= {pk}k∈[0,n] where the points
pk are located on the grid points pi j discretizing the search

domain Ω. We create a piecewise clothoid curve, denoted as
Γ, from the control points pk as proposed in [WM05]. This
enables us to generate smooth and realistic road trajectories.

Tunnel 

Excavation

h(q)>h T 

0 < h(q) < h T 
Bridge 
h(q)>h B 

Embankment 
0 < h(q) < h B 

Figure 18: Segmentation of the trajectory of the road and
corresponding terrain modifications.

Because of the smoothing process, some parts of the curve
Γ corresponding to surface path segments may lie slightly
inside or above the terrain. Therefore, we perform a seg-
mentation of the trajectory with respect to the elevation of
the terrain so as to identify which parts should be generated
using the generic road, tunnel or bridge models (Figure 18).

The segmentation is performed by uniformly sampling Γ

so as to generate a piecewise linear curve denoted as Γ
∗ =

{qk}, k ∈ [0,n]. For every point in the discrete curve, we
compute h(qk) as the difference between the height of the
point qk and the height of its projection on the surface of
the terrain. Let hT the minimum height value for creating
a tunnel, and hB the minimum height value for creating a
bridge. The segmentation is performed as follows: if h(qk)<
hT : label qk as a tunnel point, if hT < h(qk)< hB: label qk
as a road point, otherwise label qk as a bridge point.

At the end of this process, the trajectory Γ
∗ is consistently

defined as a piecewise linear curve created from clothoid
splines and every point qk is unambiguously labeled as road,
tunnel or bridge.

6.2. Road generation

Recall that R denotes the width of the road model, we define
the neighborhood of the curve Γ

∗ as:

ΩΓ = {p ∈Ω |d(p,Γ)< R}

The road generation proceeds in two steps. First, we remove
the existing vegetation in the vicinity of the road by remov-
ing tree instances that lie in ΩΓ. The terrain is also modified
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Figure 19: Different road paths obtained by modifying the relative influence of the cost functions.

in the neighborhood of the trajectory as follows. First, we
perform an adaptive refinement of the mesh of the terrain in
the region ΩΓ (Figure 20). For every vertex v of the refined
mesh, we compute the distance d(v,Γ) to the trajectory. Ex-
cavation and embankment are performed as follows:

1. If d(v,Γ) < r, set the height of vertex v to the height of
the corresponding nearest point on the curve.

2. If r < d(v,Γ) < R, compute the height of the vertex by
interpolating the profile curve of the road C(d(v,Γ)) with
the height of the terrain.

Blending region 

Embankment

Excavation 
Road surface q k

Removed vegetation 

Figure 20: Cross section representation of terrain modifi-
cations performed after the road segmentation process.

Finally, we generate the road, tunnel and bridge mod-
els from their parameterized definition and the discrete seg-
mented trajectory which enables us to adapt to the character-
istics of the terrain automatically.

7. Results

We have implemented our procedural road generation tech-
nique into a modeling application coded in C++. We have
applied our method to create the different images shown
throughout this paper. Renderings were performed by using
Mental Ray on the textured meshes produced by our method.

Realism Our method creates realistic trajectories and com-
pares favorably in terms of efficiency and quality to existing
editing and sketching techniques [MS09]. The main reason
for this is that our algorithm generates an optimal path that
satisfies a combination of realistic cost constraints. In partic-
ular, combining slope and curvature based costs enables us

to automatically create very realistic mountain roads (Fig-
ure 16). Our algorithm also finds the best locations to create
bridges and tunnels with a view to avoiding long detours.

Control A very interesting and powerful feature of our ap-
proach is its simplicity and control. The road generation pro-
cess can be controlled very efficiently by tuning a few trans-
fer functions (slope, curvature, vegetation, water height). In
our system, the curves of those functions can be interactively
modified.

Figure 21: Influence of the water and forest cost functions.

Figure 21 illustrates the influence of the forest and wa-
ter cost functions over the trajectory of the road. When the
cost function of the forest is high and the bridge cost is low,
our algorithm generates a long bridge crossing the river (left
image). In contrast, when the impact of the forest over the
global cost function is low and when the bridge cost is high,
the method generates a longer road passing through forests
with two small bridges (right image).

Figure 22: Influence of the slope cost function.

Figure 22 shows the influence of the slope cost function
over the trajectory. By setting the maximum authorized slope
to a high value and lowering the influence of the slope cost
function over the global cost, the generated path is a long
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surface road (left image). In contrast, if the maximum au-
thorized slope is very low, it is no longer possible to create
a road going up the hills and the algorithm creates a tunnel
(right image).

Efficiency The performance of our algorithm depends on
the resolution of the underlying sampling grid. Our experi-
ments show that our optimized algorithm can generate realis-
tic trajectories in less than 1 second when using a 100×100
grid with both curvature control and tunnel and bridge de-
tection activated.

8. Conclusion

We have proposed a complete framework for generating re-
alistic roads in complex scenes. Our approach relies on a dis-
crete anisotropic shortest path algorithm applied to a graph
whose nodes are obtained by a uniform sampling of the
scene and whose arcs are implicitly defined using generic
segment path masks. The trajectory of roads can be easily
controlled by adjusting the parameters of the transfer func-
tions that weight the relative influence of the characteristics
of the terrain.

This work is the first step towards a solution to the much
more complex and general problem of modeling a complete
hierarchical road network connecting cities. We are currently
investigating this research field.
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