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Abstract

We introduce a new causal hierarchical belief net-
work for image segmentation. Contrary to classi-
cal tree structured (or pyramidal) models, the factor
graph of the network contains cycles. Each level of
the hierarchical structure features the same number
of sites as the base level and each site on a given
level has several neighbors on the parent level. Com-
pared to tree structured models, the (spatial) random
process on the base level of the model is stationary
which avoids known drawbacks, namely visual arti-
facts in the segmented image. We propose different
parameterizations of the conditional probability dis-
tributions governing the transitions between the im-
age levels. A parametric distribution depending on a
single parameter allows the design of a fast inference
algorithm on graph cuts, whereas for arbitrary distri-
butions, we propose inference with loopy belief prop-
agation. The method is evaluated on scanned docu-
ments, showing an improvement of character recog-
nition results compared to other methods.
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1 Introduction

Image segmentation techniques aim at partitioning
images into a set of non overlapping and homoge-
neous regions taking into account prior knowledge
on the results as well as a probabilistic model of the
observation (degradation) process. Belief networks,
but also undirected probabilistic graphical models,
are widely used to incorporate spatial dependencies

between the pixels into the classification process, of-
ten formulating the problem as Bayesian estimation.

In their seminal paper [8], Geman and Geman in-
troduced a maximum a posteriori (MAP) estima-
tion technique for Markov random fields (MRF). An
alternative to the two-dimensional MRFs are hid-
den Markov chains (MC) on one-dimensional traver-
sals (Hilbert-Peano scans) of an image [1] or hybrid
MC/MRF techniques [7]. The Markov chain models
have been extended to belief networks with a pseudo
2D structure [12] and to full 2D connectivity [14].

Hierarchical models introduce a scale dependent
component into the classification algorithm, which
allows the algorithm to better adapt itself to the
image characteristics. The nodes of the graph are
partitioned into different scales, where lower scale
levels correspond to finer versions of the image and
higher scale levels correspond to coarser versions of
the image. Lower scales manage interactions on pixel
level, whereas higher scales manage interactions of
groups of pixels (regions). Examples are stacks of
flat MRFs [2], pyramidal graph structures [9] and the
scale causal multi-grid [15]. Bouman and Shapiro
were among the first to propose a hierarchical be-
lief network for image segmentation [3] (refined by
Laferte et al. [13]). A quad tree models the spatial
interactions between the leaf pixel sites through their
interactions with neighbors in scale. The main prob-
lem of the quad tree structure is the non stationarity
it induces into the random process of the leaf sites,
which results in “blocky” artifacts in the segmented
image.

In the same paper a second model is proposed,
where each node has three parents. At first sight, the
structure of the dependency graph is similar to our
solution (which features four parents for each site),
however, the model proposed by Bouman is a pyra-



midal model in that the number of nodes decreases at
each level. Moreover, as an approximation the infer-
ence algorithm proposes a change of the graph after
each inference step, whereas in our work the whole
graph keeps its full connectivity.

The work described in this paper concentrates on
the solution to the lack of shift invariance of the quad
tree structured network. Our new model combines
several advantages:

- Adaptation to the image characteristics with a
hierarchical graph structure (similar to the quad
tree)

- A stationary random process at the base level
(where each site corresponds to one pixel of the
input image).

- Fast inference using minimum cut/maximum
flow algorithms for a subclass of transition prob-
ability distributions.

The paper is organized as follows: section 2 describes
the quad tree structured network and section 3 ex-
tends it to the cube. Section 4 presents an inference
algorithm using loopy belief propagation and section
5 outlines an interpretation of the hidden variables of
the model. Section 6 presents a fast inference algo-
rithm for a parametric class of transition probability
distributions. Section 7 describes parameter estima-
tion for the latter class of distributions and section 8
deals with the computational complexity and mem-
ory requirements. Section 9 experimentally validates
the method. Finally, section 10 concludes.

2 Quad tree structured models

In the following we describe belief networks, thus
graphical models defined on directed acyclic graphs
G = {G, E}, where G is a set of nodes (sites) and E
is a set of edges. The edges of the graph assign, to
each site s, a set of parent sites (written as s~) and
a set of children sites (written as s_). The hierar-
chical nature of the graph partitions the set of nodes
into levels G, i € 0..L — 1, G being the base level
corresponding to finest resolution.

Each site s is assigned a discrete random variable
X, taking values from the label set A = {0,...,C—1}
where C' is the number of classes. Xg, or short X
denotes the field of random variables of the graph,
whereas X denotes the field of random variables
at level [. The space of all possible configurations of
the field X is denoted as Q = AlI.

In the case of the quad tree structured model
[3, 13], the graph G forms a tree structure with a sin-
gle root node r € G—Y _ four children nodes for each
node and a single parent node for each node except

Figure 1: The quad tree structured model with and
without observed nodes.

the root node (see Fig. 1a). Each hidden variable X
is related to an observed variable Y which is condi-
tionally independent of the other observed variables
given a realization of Xg: P(ys|r) = P(ys|zs) and
P(y’x) = HSEG P(ys‘xs) (See Fig. 1b).

The objective is to estimate the hidden variables
x given the observed variables y, in the case of the
MAP estimator this is done maximizing the posterior
distribution: = arg max,cq p(z|y). The absence of
cycles in the dependency graph allows the application
of an extension of the Viterbi algorithm [21, 13].

3 The proposed cube model

The main disadvantage of the Markov quad tree is
the non stationarity introduced into the random pro-
cess of the leaf sites G(9 due to the fact that, at any
given level, two neighboring sites may share a com-
mon parent or not depending on their position on
the grid. We therefore propose an extension shown
in figures 2a-d (for easier representation the one di-
mensional case — a dyadic tree — is shown)

First, a second dyadic tree is added to the graph,
which adds a common parent to all neighboring leaf
sites which did not yet share a common parent. In
the full 2D case, three new quad trees are added. The
problem is solved for the first level, where the number
of parents increased to 4 (for the full 2D model). The
result of this step is seen in figure 2b. We repeat the
process for each level. New trees connect sites of the
original quad tree, but also sites of the trees added
at the lower levels. The final result can be seen in
figure 2d. Note, that the final graph is not a pyramid
anymore, since each level contains the same number
of nodes. In general, each node has 4 parents (2 in
the 1D representation) except border nodes.

The whole graph can be efficiently implemented by
a cube of dimensions N x M x [logy max(N, M)], N x
M being the size of the image. In practice, the full
height of the cube is not always required, althought a
certain number of levels is needed to ensure a proper
amount of high-level interaction. The parents and



Figure 2: A one dimensional representation of the
stepwise extension of the quad tree [13] (shown as a
dyadic tree) to the proposed cube model

children of site s with coordinates z and y on level [
are given as follows:

T+ A"y + A" T+ Ay + Ap
_ ) z+ A"y + AP )+ Any+ A,
T z+Ary+Ar T T+ Ay y+ A,

x+ AP y+ AP r+Apy+ A,
where

-1 ifl=0 0 ifl=0
n — P —
A { —9l=1 ¢lse A {2l_1 else

0 ifl=1 1 ifl=1
A"{ —9l=2 ¢lge Ap{ 21=2 glge

Sampling from the joint probability distribution rep-
resented by the graph can be done in a single top
down sweep, since the directed dependency graph
does not contain cycles (taking into account the di-
rection of the edges). The graph as it is described
in figure 2d (in a 1D representation) corresponds to
the hidden part, i.e. the prior model p(z) in the
Bayesian sense. As for the quad tree, we consider
one observed node related to each hidden node and
independence of the observed nodes conditional to
the hidden nodes, i.e. the full joint probability dis-
tribution factorizes as follows:

pey) = [[ e I

s€G(0) seGW), 1>0

p(xs|zs-) H p(ys|zs)

seG

(1)
The full Markov cube including observed nodes is
parametrized through three probability distributions:
the discrete prior distribution of the top level la-
bels p(z), the transition probabilities p(xs|x,—) and
the likelihood of the observed nodes given the corre-
sponding hidden nodes p(ys|xs).

For the inference algorithm, observations at differ-
ent cube levels are needed. These observations may
directly be taken from multi-resolution data, as long
as the specific reduction function of the graphical
structure is taken into account. In most cases this
will require resampling the data in all levels except
the finest one. In image segmentation applications,
the only available observations are at the base level
(Yc0)). The higher levels can be calculated recur-
sively, e.g. through a mean filter.

4 Inference with loopy belief prop-
agation

The MAP estimator maximizes equation (1), which
is hard if done directly. Indeed, the graph of the
model contains cycles when the direction of the edges
is not taken into account. In other words, the factor
graph of the model contains cycles, which makes an
exact calculation using message passing algorithms
intractable. The junction tree algorithm is capable
of calculating the exact solution on general graphs,
however, its complexity is exponential in the maxi-
mal clique size of the graph after moralization and
triangulation. Calculating the optimal triangulation
of a general graph being NP-complete. We applied
heuristics to find good triangulations of the graph,
which did not manage to provide us with tractable
clique sizes, i.e. clique sizes which are independent of
the size of the graph. Looking at the energy function
derived from the (1), i.e. its negative logarithm, Kol-
mogorov and Zabih showed [10] that the minimiza-
tion of the general form of energy functions involving
terms of second order or higher is NP-complete, un-
less the energy potentials are submodular and the
number of labels is equal to two' .

Loopy belief propagation (LBP) is an approxima-
tive inference technique for general graphs with cycles
[17]. In practice, convergence does occur for many
types of graph structures. Murphy et al. present an
empirical study [16] which indicates that with LBP
the marginals often converge to good approximations
of the posterior marginals.

Loopy belief propagation is equivalent to the sum-
product (or max-product) algorithm proposed for

!Note that the mode of posterior marginals (MPM) estima-
tor [13] is equally difficult to calculate due to the presence of
cycles in the dependency graph. Although the partial posterior
marginals p(zs|ya(s)), where d(s) denotes the set of all descen-
dants of s, are computable in O(C®), i.e. with high complexity
but still in polynomial time, the computation of the posterior
marginals p(zs|y) is difficult due to the lack of a common root
node which could start a recursion.
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Figure 3: A cube (left) and its factor graph (right)
in one dimension (top) and two dimensions (bottom)

factor graphs [11]. Any directed or undirected de-
pendency graph can be transformed into a factor
graph, and Figure 3 shows the 1D representation of
a Markov cube without observed nodes as well as a
small part of the full 2D Markov cube with observed
nodes and their corresponding factor graphs.

The sum-product algorithm operates by passing
messages between the nodes of the graph, each mes-
sage being a function of the corresponding variable
node. The message passing schedule for the cube al-
ternates between bottom up and top down passes.

5 Interpretation of the hidden
variables

In this section, we propose a methodology to estimate
the conditional probability distributions p(zs|z,—) by
taking into account statistical invariance of images
belonging to the same corpus. We propose to give
an interpretation of the hidden variables x (i.e. the
variables belonging to level 1>0) such that :

1. the independence model given by the structure
is satisfied. Given a topological enumeration of
vertices, a variable zs should be independent of
all smaller index variables given its parents z .

2. the conditional probabilities are significantly dif-
ferent of conditional probabilities obtained on
randomly binary images.

3. the conditional probabilities are close for all im-
ages of the corpus

For simplicity reasons, in the following we describe
the binary case (C' = 2), the adaptation to multiple
labels is straightforward. Let xs; be a vertex of the
Markov cube and [ its level. We call U, the set of
vertices of level 0 reachable by a directed path from
x. U,, is a 2! % 2! square on the image. Then, we
naturally define the class of x5 as the class with the
maximum number of variables Uy, (in case of equality,
we choose the class randomly). In order to achieve
estimation, we just have to compute the frequency of
label 0 (resp 1) for each parent configuration. In our
corpus, the 3 issues claimed above were verified. This
interpretation allows several strategies for estimation
of the conditional probabilities:

- Nonparametric definition of the conditional
probabilities. Given initial labels at the base
level, the labels at the upper levels are computed
as described above and the probabilities are es-
timated using histograming.

- Parametric functions are fitted to the his-
tograms. This strategy is pursued in the next
section.

6 Inference with graph cuts

Algorithms calculating the minimum cut/maximum
flow in a graph are a powerful tool able to calculate
the exact MAP solution on a number of binary la-
beling problems [4, 5, 10] with low order polynomial
complexity. It has been shown recently, that energy
functions for which the optimal solution is equivalent
to the minimum cut in an appropriate graph con-
tain only submodular terms on binary labels [10],
where submodular means that any projection of a
term E(z;,x;,2k,...) onto any subset of two of its
arguments satisfies the following condition?:

E(0,0)+ E(1,1) < E(0,1) + E(1,0) (2)
In the case of the proposed model, not all energy
terms are submodular, especially the terms corre-
sponding to the logarithm of the transition proba-
bilities In p(z4|x,-), so the general model cannot be
solved with graph cuts. However, for a large sub class
with interesting properties, graph cut solutions can
be found. We propose a regularizing term based on
the number of parent labels which are equal to the

child label:

1 Ts,T —
plasle,) = Sag )

(3)

?In [10], the term regular is used instead of submodular
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Figure 4: The cut graph constructed for the binary
problem from the dependency graph shown in Fig.
3b, including the two terminal nodes S and 7.

where «; is a parameter depending on the level [,
&(xs, x4~ ) is the number of labels in x,- equal to x4
and Z is a normalization constant. The such defined
transition probabilities favor homogeneous regions,
which corresponds to the objective of an image seg-
mentation algorithm. We then decompose it into a
sum of binary terms:

np(zsles-) = ) [(Ina) doa,] =2 (4)

s'es—

where 9,5 is the Kronecker delta defined as 1 if
a = b and 0 else. It should be noted that each bi-
nary term is submodular since the J,; is submod-
ular for all a,b. Fig. 4 shows a cut graph con-
structed for the dependency graph of Fig. 3b: the
cut with minimum cost separating source S from
sink T corresponds to the exact MAP estimate for
a Markovcube with binary labels (C' = 2). Each non
terminal node is connected to one of the terminal
nodes with weight |Inp(ys|zs = 1)/p(ys|zs = 0)], ac-
cording to the sign inside the absolute value. The
weights of top level nodes s contain an additional
term Inp(zs = 1)/p(zs = 0). Additionally, each non
terminal node is connected to each of its parents with
an undirected edge and weight In a.

Minimum cut algorithms are restricted to binary
labeling problems (C' = 2). Discontinuity preserving
energy minimization with multiple labels is NP-hard
[5], but the a-expansion move algorithm introduced
in [5] allows to find a local minimum with guaran-
teed maximum distance to the global minimum. It
consists of iteratively applying the minimum cut al-
gorithm to the sub problem of labeling each node of
the whole graph between two labels: keeping the cur-
rent label and changing the a new label a, which is
changed at each iteration.

7 Parameter estimation

We chose the unsupervised technique Iterative Con-
ditional Estimation (ICE) [18] for parameter identi-

fication. Given supervised estimators of the param-
eters from a realization of the full set of variables
(X,Y), an iterative procedure estimates a new set of
parameters as the conditional expectation of the pa-
rameters conditioned on the observed field Y and the
current parameters. In pratice, the expectations are
hard to calculate but can be approximated by simu-
lations of the label field based on the current param-
eters. The initial set of parameters can be obtained
from an initial segmentation of the input image.

The prior probabilities of the top level labels j;
can be estimated using histogram techniques. Sim-
ilarly, for most common observation models, maxi-
mum likelihood estimators of the sufficient statistics
of the conditional distributions are readily available.
In this paper, we work with a simple observation
model assuming Gaussian noise, requiring as param-
eters means and (co)-variances for each class. Arbi-
trary complex likelihood functions are possible using
Gaussian mixtures.

For the parameters a; of the transition probabil-
ities, we propose a solution based on least squares
estimation similar to the works proposed by Derin
et al. for the estimation of Markov random field pa-
rameters [6]. For each level I, we consider pairs of
different site labels zs and zy (s € G(l)) with equal
parent labels z,- = x,-. Note that the parent sites
are different, whereas their labels are equal. From
(3) the following relationship can be derived:

f(xs,:ps_)
P(zg|zs-) _ Q (5)
P(x8’|l‘s*) ag(xshxsf)

Expressing the conditional probabilities through ab-
solute probabilities and taking the logarithm we get:

P(zg,xy)
(6)
The right hand side of the equation can be esti-
mated from the label process, e.g. by histogramming,
whereas the factor in the left hand side can be cal-
culated directly. Considering a set of different label
pairs, we can augment this to b’ [In ;] = a where b is
a vector where each element corresponds to the value
in the left hand side of equation (6) for a given label
pair and each value in the vector a corresponds to the
right hand side of equation (6) for a given label pair.
The solution of the over determined linear system can
be found using standard least squares techniques.

oy €(es2,-) — E(zyi2,-) ] = In [M}



Method

K-means

Quad tree

MRF-GC

Cube-LBP (4 levels, non-param.) 103 | 46
Cube-LBP (4 levels, parametric) 103 | 46
Cube-LBP (5 levels, parametric) 150 | 64
Cube-GC (5 levels, parametric) ~180 4

Table 1: Execution times and memory requirements
of different algorithms.

Method H Error rate
K-means 27.01
K-means (incl. low pass filter) 9.01
Quad tree 7.57
MRF-GC 6.28
Cube-LBP (4 levels, non-parametric) 6.82
Cube-LBP (4 levels, parametric) 6.91
Cube-LBP (5 levels, parametric) 6.84
Cube-GC (5 levels, parametric) 5.58

Table 2: Pixel level segmentation performance on
synthetic images of size 512x512 and (C'=2)

8 Complexity and storage

Inference complexity for LBP can be given as O(I-N-
M - (H —1)-C®) where I is the number of iterations
and H is the height of the cube and bounded by
[log, max(N, M)|. Storage requires N - M - (H —
1) - 15C variables. In practice, LBP in its original
form is applicable for low numbers of classes (2, 3 or
maximum 4), which is enough for a large number of
problems. For higher numbers of classes, the classes
may be quantized and the message passing equations
slightly changed.

Inference with minimum cut/maximum flow is con-
siderably faster with a complexity bounded by O(FE
f), where E is the number of edges in the graph and
F' is the maximum flow. We use the graph cut imple-
mentation by Boykov and Kolmogorov [4] which has
been optimized for typical graph structures encoun-
tered in computer vision and whose running time is
nearly linear in running time in practice [5]. Table
1 gives effective run times and memory requirements
measured on a computer equipped with a single core
Pentium-M processor running at 1.86Ghz.

Figure 5: Zoom into the results shown in figure 6:

segmentation and restoration results for MRF (left)
and markovcube+GC (right).

Method | | Recall§ | Precision§
No restoration ] - -
K-Means (k=3) 61.23 51.74
Tonazzini et al. [20] || t - -
Tonazzini et al. [19] || t - -
Tonazzini et al. [19] || § | 13.13 25.43
MRF [10] 69.10 58.42
Simple markovcube 69.34 61.19

tNot available: lack of OCR performance makes a correct
evaluation impossible

fResults obtained combining all source planes
$Recall=number of correctly recognized characters di-
vided by number of correct characters in the groundtruth;
Precision=number of correctly recognized characters di-
vided by number of recognized characters.

Table 3: Evaluation of the OCR improvement caused
by different restoration methods when applied to
scanned document images.

9 Experimental results

We evaluated the model on synthetic data as well as
real scanned images. In all experiments, we initial-
ized the label field with k-means clustering after low
pass filtering.

Pixel level evaluation - To be able to evalu-
ate the model’s segmentation performance quantita-
tively, we applied it to 30 synthetic images of size
512x512 (60 images total) and very low quality sub-
ject to multiple degradations: low pass filtering, am-
plification of ring shaped frequency bands causing
ringing artifacts, low quality JPEG artifacts and ad-
ditional Gaussian noice in various stages (with vari-
ances between 0=20 and 0=40). We compared the
cube model with different methods of the state of
the art: flat MRF segmentation with a Potts model
and graph cut optimization [10], a quad tree [13] and
k-means clustering. The k-means algorithm is only
method whose performance is improved when the im-
age is low pass filtered before the segmentation. Ta-
ble 2 shows the error rates on the different sets, and
figure 7 shows a zoom on an example image.
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Figure 6: Restoration and OCR results on real data, from left to right, top to bottom: input image, k-means,
MRF[10], markovcube+GC, 4x Tonazzini et. al [19] (plane #1, plane #2, plane #3, all 3 planes combined),

2x Tonazzini et al. [20] (plane #1, plane #2).
li

F

Figure 7: Zoom on binarization (C=2) results on syn-
thetic images. From top to bottom, left to right: in-
put image, kmeans+filtering, quad tree, MRF-GC,
Cube-LBP, Cube-GC.

Measuring OCR improvement - To further
evaluate our algorithm we tested it on a real appli-
cation, namely the restoration of images degraded
with ink bleedthrough. The goal is to remove the
verso component from the recto scan, which makes
it a three class segmentation problem. We chose
a dataset consisting of 6 images of pages scanned
with 600dpi containing low quality printed text from
the 18" century, the Gazettes de Leyde, a journal

in French language printed from 1679 to 1798. We
tested our method’s ability to improve the perfor-
mance of an optical character recognition (OCR) al-
gorithm and compared it to several widely cited al-
gorithms: k-means clustering, a flat Markov random
field (MRF) with graph cuts optimization [10], as well
as two well known methods® based on source separa-
tion [19, 20].

Figure 6 shows parts of the images together with
the OCR results. As can be seen, the cube tends
to regularize stronger, which smoothes the region
boundaries. We manually created groundtruth and
calculated the recall and precision measures on char-
acter level, which are given in table 3.

As we can see, our general purpose model outper-
forms all other segmentation algorithms. The flat
MRF directly models the interactions between pixels,
which in theory is more powerful than the scale in-
teractions of the markov cube. However, this is only
interesting in cases where no long run interactions are
needed, e.g. in images with small structures. In im-
ages with larger and, more importantly, scale varying

3We thank Anna Tonazzini for providing us with the source
code of the two source separation methods and her kind help
in setting up the corresponding experiments as well as for the
interesting discussions.



content, the hierarchical nature of the markov cube
manages to better model the image contents, which
directly translates into a better restoration segmen-
tation and restoration performance.

Surprisingly, the two source separation results per-
formed so poorly that we were unable include their
recognition performance in the table, since most of
the output was blank or gibberish.

Figure 5 shows a zoom into the results comparing
the flat MRF and the markov cube and shows that
the hierarchical nature of the cube results outper-
forms the MRF, removes artifacts and fills holes.

10 Conclusion and discussion

We presented a causal model featuring the advan-
tages of hierarchical models, i.e. scale dependent
behavior and the resulting adaptivity to the image
characteristics, without the main disadvantage of the
quad tree model, i.e. the lack of shift invariance.
Bayesian MAP estimation on this model has been
tested on binarization and ink bleed through removal
tasks and compared to widely used methods. Seg-
mentation quality is better or equal to the results of
a MRF model, the difference depending on the scale
characteristics of the input image. LBP and a graph
cut based algorithm are proposed for inference. Fi-
nally, let’s note that the model can be extended to 3D
data trivially, albeit with an increase in complexity.
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