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Document Ink bleed-through removal with
two hidden Markov random fields and a

single observation field
Christian Wolf

Abstract— We present a new method for blind
document bleed through removal based on separate
Markov Random Field (MRF) regularization for the
recto and for the verso side, where separate priors
are derived from the full graph. The segmentation
algorithm is based on Bayesian Maximum a Posteriori
(MAP) estimation. The advantages of this separate ap-
proach are the adaptation of the prior to the contents
creation process (e.g. superimposing two hand written
pages), and the improvement of the estimation of the
recto pixels through an estimation of the verso pixels
covered by recto pixels; Moreover, the formulation
as a binary labeling problem with two hidden labels
per pixels naturally leads to an efficient optimization
method based on the minimum cut/maximum flow in a
graph. The proposed method is evaluated on scanned
document images from the 18th century, showing an
improvement of character recognition results com-
pared to other restoration methods.

Index Terms— Markov Random Fields, Bayesian
estimation, Graph cuts, Document Image Restoration.

I. INTRODUCTION

General image restoration methods which do not deal
with document image analysis have mostly been de-
signed to cope with sensor noise, quantization noise
and optical degradations as blur, defocussing etc. (see
[31] for a survey). Document images, however, are
often additionally subject to further and stronger degra-
dations:

1) non stationary noise due to illumination changes.

2) curvature of the document.
3) ink and coffee stains and holes in the document.

4) ink bleed through : the appearance of the verso
side text or graphics on the scanned image of the
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recto side. This is an important problem when
very old historical documents are processed.

5) low print contrast.
6) errors in the alignment of multiple printing or

imaging stages.

In this paper we concentrate on ink bleed through
removal, i.e. the separation of a single scanned doc-
ument image into a recto side and a verso side. We
assume that a scan of the verso side is not available
(blind separation). In this case, the task is equivalent to
a segmentation problem: classify each pixel as either
recto, verso, background, or eventually recto-and-verso
(simultaneously), making immediately available the
vast collection of widely known segmentation tech-
niques. However, document images are a specific type
of images with their own properties and their own
specific problems.

At first thought it might be a good idea to inter-
pret the task as a blind source separation problem
similar to the “cocktail party” problems successfully
dealt with by the (audio) signal processing community.
The widely used technique independent components
analysis (ICA) has been applied to document bleed
through removal, mainly by Tonazzini et al. [34].
However, ICA assumes a linear model which makes
this formulation questionable: ds = Afs where ds is
the observation vector, fs is the source vector and A is
the mixing matrix. The source vectors, corresponding
to the pixels at sites s, are mostly chosen to be three
dimensional: the recto signal, the verso signal and an
additional signal adding the background color [34]. In
this case, the column vectors of the mixing matrix
become the color vectors for, respectively, recto pixels,
verso pixels and background pixels, as can be seen
setting fs = [ 1 0 0 ]T , [ 0 1 0 ]T and [ 0 0 1 ]T

and ds to the respective color vector and solving for
A. We can easily verify that the linear hypothesis
cannot be justified for ink bleed through by calculating
the color of an observed pixel created by a source
pixel which contains overlapping recto and verso pixels
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(fs = [ 1 1 0 ]T ), thus the sum of the color vectors
for the recto and the verso pixel, which is unlikely.

The same authors present a non-blind technique
also applicable to grayscale images [37], the differ-
ent components corresponding to the recto scan and
the verso scan. The inverse of the mixing matrix is
calculated using orthogonalization justified by several
assumptions on the degradation process. In [35] the
same authors introduce a double MRF model similar to
our proposition combined with a likelihood term con-
sisting of a linear mixing model. However, whereas our
graphical model is directly employed for classification,
the MRF in [35] guides an EM algorithm estimating
the inverse of the mixing matrix. As with the other
algorithms based on mixing, the biggest weakness
is the linearity of the model. In [36], the model is
extended to convolutive mixtures.

Sharma presents a non-blind restoration algorithm,
i.e. a method which requires a scan of the recto as
well as the verso side of the document [32]. The two
images are aligned using image registration techniques.
A reflectance model taking into account a bleed-
through spread function is created, approximated and
corrected with an adaptive linear filter. Another non-
blind method is proposed by Dubois and Pathak [14],
where the emphasis is set to the image registration part,
the restoration itself is performed using a thresholding-
like heuristic.

Tan et al. propose a non-blind method where the
alignment is done manually [33]. Foreground strokes
are detected using both images and enhanced using
a wavelet decomposition and restoration. The same
authors also present a directional blind wavelet method
exploiting the hypothesis that handwriting is (very)
slanted, and therefore that the strokes of the recto and
the verso side are oriented differently [41].

Nishida and Suzuki describe a method based on
the assumption that high frequency components of the
verso side are cut off in the bleeding process [28]. Their
restoration process uses a multi-scale analysis and edge
magnitude thresholding. Leydier et al. propose a seri-
alized (i.e. adaptive) version of the k-means algorithm
[24]. Drira et al. propose an iterative algorithm which
recursively applies the k-means algorithm to the image
reduced with principal components analysis [13].

The method presented by Don [11] is justified by
a noise spot model with Gaussian spatial distributions
and Gaussian gray value distributions. Under this as-
sumption, thresholds near the class means produce spu-
rious connected components. A histogram of connected
component counts is created and thresholded using
standard techniques.

MRF regularization has already been used for this
kind of problem. For instance, Tonazzini et al. present
a document recognition system which restores selected
difficult parts of the document image with MRF reg-
ularization [38]. As prior model they chose an Ising
model with non-zero clique types of 1, 2, 3, and 9
pixels. The observation model contains a convolution
term with an unknown parameter. Donaldson and My-
ers apply MRF regularization with two priors to the
problem of estimating a super-resolution image from
several low-resolution observations [12]. A first prior
measures smoothness, whereas a second prior measures
a bi-modality criterion of the histogram.

In this approach we ignore degradations no. 1 (non
stationarity) and 3 (stains) mentioned at the begin-
ning of the paper and propose an approach based
on a stationary model. Non homogeneous observation
models will be developed in forthcoming publications.
The geometry changes in curvature degradations can
be treated with preprocessing, e.g. with the method
developed in our team [23] or other recent work [7],
[44]. The illumination changes inherent in strong cur-
vature degradation can be tackled by non homogeneous
observation models.

We formulate our method as Bayesian MAP (maxi-
mum a posteriori) estimation problem in terms of two
different models:
• the a priori knowledge on the segmented docu-

ment is captured by the prior model. In our case,
the prior model consists of two MRFs, one for
each side of the document.

• the observation model captures the knowledge on
the document degradation process.

In a previous paper, we described a MRF model for
document image segmentation [42]. The goal, how-
ever, was to learn the spatial properties of text in
document images in order to improve the binarization
performance. In this paper the emphasis is set to
regularization. Therefore, a parametric prior model has
been chosen.

The contribution of this paper is threefold:
1) Creation of a double MRF model with a single

observation field.
2) Formulation of an iterative optimization algo-

rithm based on the minimum cut/maximum flow
in a graph. The proposed inference algorithm
is an extension of the widely used α-expansion
move algorithm [4][19].

3) A complete restoration process beginning with
an algorithm for the initial recognition of recto
and verso labels without using any color or
gray value information and finishing with a hi-
erarchical algorithm for the calculation of the



3

background gray value replacing the verso pixel.
This paper is organized as follows. Section II proposes
a dependency graph for the joint probability density of
the full set of variables (the hidden recto and verso vari-
ables as well as the observed variables) and derives the
prior probability. Section III proposes the observation
model. Section IV describes the posterior probability
and formulates an iterative inference algorithm based
on graph cuts. Section V outlines the estimation pro-
cedure for the prior parameters and the parameters of
the observation model. Section VI illustrates the pre-
and post processing steps of the method and section
VII presents the experiments we performed on scanned
document images in order to evaluate the performance
of the proposed method. Section VIII finally concludes.

II. THE PRIOR MODEL

MRFs capture the spatial distribution of the pixels of
an image by assigning a probability (or an energy) to
a given configuration, i.e. a given segmentation result.
This is normally used to regularize the segmentation
process, i.e. to favor certain configurations which are
considered more probable. One of the most widely
used assumptions is the smoothness criterion - ho-
mogeneous areas are considered more probable then
frequent label changes.

This assumption is normally justified1 considering
that very often high frequencies in the image content
correspond to noise and assuming that the MRF model
has been adapted to the prior knowledge on the image
content. However, this changes when the observed
image is the result of the superposition of two or more
“source” images, which is the situation dealt with in
this work. In this case, a priori knowledge may be
available for each of the source images, but not for the
mixture of these images. Applying a simple regular-
ization on the combined image may over-smooth areas
which should actually contain high frequency edges
due to the superposition process.

We therefore propose to create a prior model with
two different label fields : one for the recto side
(F 1) and one for the verso side (F 2). Instead of a
segmentation problem with a configuration space of
3 or eventually 4 labels for each site (recto, verso,
background, and eventually recto-and-verso), we get
a segmentation problem where each pixel corresponds
to two different hidden labels, one for each field,
and where each label is chosen from a space of two
labels: text and background. The advantages of this
formulation are three-fold:

1Label changes on the borders of regions can be ignored, dealt
with by a separate line processes[15] or directly in the main
process [8].

• the separation into two different label fields cre-
ates a situation where the priors regularize fields
which directly correspond to the natural process
“creating” the contents (e.g. hand writing letters),
as opposed to the single field case, where the prior
tries to regularize a field which is the result of
overlapping two content fields.

• Correctly estimating verso pixels which are shad-
owed by recto pixels, which is only possible with
two separate fields, is not just desirable in the
case where the verso field is needed. More so,
a correct estimation of the covered verso pixels,
through the spatial interactions encoded in the
MRF, helps to correctly estimate verso pixels
which are not covered by a recto pixel, increasing
the performance of the algorithm.

• As we will see in section IV, the formulation
with separate labels leads to a simple optimization
routine based on graph cuts.

Note, that a similar result could be achieved with a sin-
gle hidden label field and by adapting the prior model
such that its regularization handles different label in-
teractions differently. In general this produces rather
complicated energy functions equivalent to rather sim-
ple interactions in the respective fields. Moreover, the
formulation of the inference algorithm would have
been more complex.

In the following and as usual, uppercase letters
denote random variables or fields of random variables
and lower case letters denote realizations of values of
random variables or of fields of random values. In
particular, P (F=f) will be abbreviated as P (f) when
it is convenient.

MRFs [15][25] are non causal models on undirected
graphs which treat images as stochastic processes. A
field F of random variables Fs, s=1 . . . N , where N is
the number of variables (pixels in our case), is a MRF
if and only if

P (F=f) > 0 ∀f ∈ Ω and
P (Fs=fs|Fr=fr, r 6= s) = P (Fs=fs|Fr=fr, r ∈ Ns)

(1)
where f is a configuration of the random field, Ω

is the space of all possible configurations and Ns is
the neighborhood of the site s. In other words, the
conditional probability for a pixel depends only on the
pixels of a pre-defined neighborhood around it.

On a graph, each neighborhood defines a set of
cliques, where a clique is fully connected sub graph.
According to the Hammersley-Cifford theorem [16]
[2], the joint probability density functions of MRFs
are equivalent to Gibbs distributions defined on the
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Fig. 1. The dependency graph for a 2×2 pixel image. The model
consists of the two label fields F 1 and F 2 (“empty” nodes) and
the single observation field D (shaded nodes).

maxima cliques, i.e. are of the form

P (f) =
1

Z
exp {−U(f)/T} (2)

where Z =
P
f e
−U(f)/T is a normalization constant,

T is a temperature factor which can be assumed to be
1 for simplicity, U(f) =

P
c∈C Vc(f) is a user defined

energy function, C is the set of all possible cliques
of the field and Vc(f) is the energy potential for the
realization f defined on the single clique c.

Given the nature of the problem, the three different
label fields (two hidden and one observed) should
be considered in a holistic way in order to precisely
describe the interactions between the two fields and to
define a joint probability distribution on the full set of
labels. In the rest of this paper we therefore consider
a full graph G = {V,E} with a set of nodes V and a
set of edges E. V is partitioned into three subsets: the
two fields of hidden variables F 1 and F 2 and the field
of observed variables D. The three fields are indexed
by the same indices corresponding to the pixels of
the image, i.e. F 1

s , F 2
s and Ds denote, respectively,

the hidden recto label, the hidden verso label and the
observation for the same pixel s. The hidden variables
F 1
s and F 2

s may take values from the set Λ = {0, 1},
where 0 corresponds to background and 1 corresponds
to text. The set of edges E defines the neighborhood
on the graph, i.e. there is an edge between two nodes
r and s if and only if r ∈ Ns and s ∈ Nr .

The model described in this work is generative,
i.e. it tries to explain the process of creating the
observed variables from the hidden ones. Considering
the relationships between the observed variables and
the hidden variables, i.e. the degradation process (see
section III), we assume a first-order MRF, which means
that the following two conditions hold (a common
assumption in the MAP-MRF framework):

1) The observations Ds are independent conditional

to the hidden labels F 1 and F 2.
2) P (Ds|F 1, F 2) = P (Ds|F 1

s , F
2
s )

As a consequence, the dependency graph (see figure
1) contains the following clique types: first order and
second order “intra-field”2 cliques in the subgraph F 1,
first order and second order “intra-field” cliques in the
subgraph F 2 (we will assume the 3-node clique po-
tentials to be zero) and finally the “inter-field” cliques
between F 1, F 2 and D. For reasons which will become
clear in section III, we will set the potentials for the
pairwise inter-field cliques to zero, i.e. the second order
cliques with one node ∈ F 1 and one node ∈ D as well
as the second order cliques with one node in ∈ F 2 and
one node ∈ D. The only contributing inter-field cliques
are therefore three-node cliques with one node of each
respective field (F 1, F 2 and D).

The joint probability distribution of the whole graph
can therefore be given as follows:

P (f1, f2, d)

=
1

Z
exp

n
−
“
U(f1) + U(f2) + U(f1, f2, d)

”
/T
o
(3)

Splitting the partition function 1
Z into two factors 1

Z1

and 1
Z2

and uniting the cliques involving hidden labels
only in a single function U(f1, f2), which is a change
of notation only, we get:

P (f1, f2, d) =
1

Z1
exp

n
−U(f1, f2)/T

o
·

1

Z2
exp

n
−U(f1, f2, d)/T

o
(4)

Using the Hammersely-Clifford theorem (1) and Bayes
rule, we can interpret equation (4) as a Bayesian
problem, which leads us to:

P (f1, f2, d) = P (f1, f2)P (d|f1, f2) (5)

The first factor on the right hand side corresponds
to the prior knowledge and the second factor cor-
responds to the data likelihood determined by the
observation/degradation model. Inferring the set of
hidden labels from the observed labels corresponds to
a maximization of the posterior probability (see section
IV).

Let us now direct our attention to the prior proba-
bility P (f1, f2). In the derivation above we saw that
the prior was composed of cliques involving hidden
variables only, and that there are no cliques containing
variables from both fields F 1 and F 2, which can
also directly be seen in the dependency graph: the

2The reader may have noticed that we frequently denote the
subsets of sites F 1, F 2 and D as “fields” and will excuse
the slight ambiguity with the “full” Markov random field which
consists of all three fields.
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two hidden label fields F 1 and F 2 do not share any
common nodes nor edges. Therefore,

P (f1, f2) =
1

Z
exp

n
−U(f1, f2)/T

o
=

1

Z
exp

n
−
“
U(f1) + U(f2)

”
/T
o

=
1

Z1′
exp

n
−U(f1)/T

o
·

1

Z2′
exp

n
−U(f2)/T

o
= P (f1)P (f2)

(6)
We can see that the prior probability is actually the
product of the two probabilities of the two fields F 1

and F 2. In other words, the writing on the recto is
independent of the writing on the verso page, which
makes sense since the two different pages do not
necessarily influence each other — they may even
have been created by different authors. However, this
independence only concerns the situation where no
observation has been made. In the presence of observa-
tions (the scanned image), the two hidden fields are not
independent anymore due to the cliques involving pairs
of hidden variables and one observed variable. Intu-
itively speaking this can be illustrated by the following
example: if the observation of a given pixel suggests
that at least one of the document sides contains text on
this spot (e.g. the gray value is rather low for a white
document with dark text), then the knowledge that the
recto label is background will increase the probability
that the verso pixel will be text.

For a single hidden field, we adopted the widely used
Potts model:

U(f) =
X
{s}∈C1

αfs +
X

{s,s′}∈C2

βs,s′δfs,fs′ (7)

where C1 is the set of single site cliques, C2 is the set
of pair site cliques and δ is the Kronecker delta defined
as δi,j=1 if i=j and 0 else. We chose a stationary and
anisotropic model, therefore the single site parameter
α depends on the label fs of the corresponding site s
whereas the pair site parameters βs,s′ depend on the
direction of the clique (horizontal or vertical).

Combining (6) and (7), we can see that the whole
prior energy defined on both hidden fields is given as
the sum of two Potts models:

U(f1, f2)

=
X
{s}∈C1

α1f1
s +

X
{s,s′}∈C2

β1
s,s′δf1

s ,f
1
s′

+
X
{s}∈C1

α2f2
s +

X
{s,s′}∈C2

β2
s,s′δf2

s ,f
2
s′

(8)

Note that only the intra-field cliques from the sets C1
and C2 are used in the prior model, the clique potentials

from the set C3 are part of the observation model and
will be defined in the next section.

This choice results in a prior parameter vector θp
which consists of 6 parameters (3 for the recto field
and 3 for the verso field):

θp = [α1, β1
h, β

1
v α

2, β2
h, β

2
v ]T (9)

where superscripts denote the chosen field (1 corre-
sponds to the recto field whereas 2 corresponds to the
verso field) and subscripts indicate the direction of the
pairwise clique (h denotes horizontal and v denotes
vertical).

III. THE OBSERVATION MODEL

We propose a degradation model which allows for
several variations and degradations:
• There is no assumption whatsoever on the spe-

cific gray level or color of the recto and verso
text. However, we assume constant or Gaussian
variability of the colors of recto text, verso text
and background.

• Eventual linear attenuation of the verso colors by
the bleed-through process.

• 100% opaque ink, i.e. that in the observation field
a recto text pixel totally covers the corresponding
verso pixel, whereas a recto background pixel
does not.

• Additional Gaussian noise from the scanning de-
vice.

The Gaussian assumption may seem to be an over-
simplification of the complex process involved in the
degradation of historic documents which very often
have been stored for centuries in not optimal con-
ditions. However, the choice is motivated by several
reasons : the simplicity of the Gaussian function makes
the mathematical formulation of the model easy and
very often the oversimplifications of the observation
model are compensated by the regularizing effect of
the prior.

Degradation models designed for document images
do exist and are widely used in the document image
community. Unfortunately most of them have been
developed for the evaluation of document analysis
algorithms and therefore have been designed as binary
operations, e.g. a series of morphological operations
[1] [45]. In [17], Kanungo et al. propose a degradation
model which takes into a account the page bend-
ing process as well as the perspective distortion and
the illumination change which results from it. These
formulations are hard, up to impossible to use in a
probabilistic estimation framework.

The assumption of 100% opaque ink could theoret-
ically lead to problems in a situation where the verso
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strokes are darker than the recto strokes, requiring that
a lighter recto stroke splits a darker verso strokes into
two parts. However, this situation is somewhat unlikely
due to the fact that the verso strokes are normally
brightened by the ink bleeding process. In our large
archive of manuscripts and early printed documents,
we did not a find a single occurrence of a situation
violating this assumption.

The given assumption has not been chosen to sim-
plify the problem. Partial transparent ink would allow
us to use a mixture model and therefore infer infor-
mation on the value of a verso pixel even if the recto
pixel is “text”. In this case, the mixture model can
sometimes be inverted using ICA or related methods,
or it can be included into the likelihood term of our
proposed model. This does not question neither the
framework itself nor the inference algorithm.

The assumptions described above can be expressed
as follows:

D = φ(F 1, F 2, µr,Σr, µv,Σv, µbg,Σbg) +N (0,ΣN )

(10)
where N is the normal law, µr, µv, µbg are, respec-
tively, the mean of the recto, verso and background and
the covariances Σ∗ are defined similarly. ΣN denotes
the covariance of the noise process and φ is given as
follows:

φ(. . .) =

8<:
N (µr,Σr) if F 1 = 1

A(N (µv,Σv))− b if F 1 = 0 ∧ F 2 = 1

N (µbg,Σbg) else
(11)

The matrix A and the vector b correspond to a possible
dampening of the colors by the bleed-through process.
For completely transparent paper, A corresponds to the
identity matrix and b to the null vector.

As can be seen from the form of the combining
function φ, the degraded process D consists of three
different classes, each following a normal law. The zero
mean Gaussian noise of the scanning device as well
as the dampening of the verso color are not explicitly
modeled, as their effect can be integrated into the
parameters of the normal laws of the degraded image.
Note that the conditional independence assumptions
stated on page 4 are justified by the given model.

As a consequence, the likelihood factorizes as fol-
lows:

P (d|f1, f2) =
Y
s

N (ds; µs,Σs) (12)

where µs is the mean for class fs (in the degraded
image) and Σs is the covariance matrix for class fs

given as follows (note that generally µr 6= µr etc.):

µs =

8<:
µr if f1

s = text
µv if f1

s = background and f2
s = text

µbg else

Σs =

8<:
Σr if f1

s = text
Σv if f1

s = background and f2
s = text

Σbg else
(13)

where µr,µv and µbg are, respectively, and in the de-
graded image, the means for the recto class, the verso
class and the background class, and the covariances are
denoted equivalently.

IV. THE POSTERIOR PROBABILITY AND ITS

MAXIMIZATION WITH GRAPH CUTS

Applying Bayes rule to equation (5) and combining
the result with equation (6), we get the posterior
probability of the two label fields:

P (f1, f2|d) =
1

P (d)
P (f1, f2)P (d|f1, f2)

∝ P (f1)P (f2)P (d|f1, f2)
(14)

As usual, we can ignore the factor 1
P (d)

not depending
on the hidden variables and maximize the joint proba-
bility, or minimize its energy. Combining (7), (12) and
(14) we get the following energy potential function:

U(f1, f2, d)

=
X
{s}∈C1

α1f1
s +

X
{s,s′}∈C2

β1
s,s′δf1

s ,f
1
s′

+
X
{s}∈C1

α2f2
s +

X
{s,s′}∈C2

β2
s,s′δf

2
s , f

2
s′

+
X
{s}∈C1

1

2
(ds − µs)

TΣ−1
s (ds − µs)

(15)

where and µs and Σs are the sufficient statistics for
the observation model given by the labels fs and fs′ .
To estimate the binary images, equation (14) must be
maximized. Unfortunately, the function is not convex
and standard gradient descent methods will most likely
return a non global solution. Simulated Annealing has
been proven to return the global optimum under certain
conditions [15], but is painfully slow in practice. Loopy
belief propagation is another option, giving an approx-
imative solution by iteratively applying Pearl’s belief
propagation algorithm originally designed for belief
networks [29]. In this work we will take advantage
of the nature of the dependency graph (binary labels
and cliques with not more than 2 hidden labels) in
order to derive an optimization algorithm based on the
calculation of the minimum cut/maximum flow in a
graph [4][5][10][19].
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For convenience we will rewrite the energy function
for the whole graph in terms of unary functions U1 and
two types of binary functions U2 and U ′2 as follows:

U(f1, f2, d)

=
X
{s}∈C1

h
α1U1(f1

s ) + α2U1(f2
s )
i

+
X

{s,s′}∈C2

h
β1
s,s′U2(f1

s , f
1
s′) + β2

s,s′U2(f2
s , f

2
s′)
i

+
X
{s}∈C1

U ′2(f1
s , f

2
s ; ds)

(16)
where U1(fs) = fs, U2(fs, fs′) = δfs,fs′ and
U ′2(f1

s , f
2
s ; ds) = 1

2 (ds − µs)TΣ−1
s (ds − µs). We

consider U ′2(., .; .) as a binary function since we do
not maximize over the third argument, which is an
observed variable.

Although the problem involves two possible labels
for each hidden variable (|Λ| = 2), the exact solution
for equation (16) cannot be found using algorithms
based on graph cuts. As shown by Kolmogorov et
al. [19], a function of binary variables composed of
unary terms and binary terms is graph-representable,
i.e. it can be minimized with algorithms based on the
calculation of the maximum flow in a graph, if and only
if each binary term E(., .) is regular, i.e. it satisfies the
following equation:

E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0) (17)

It can easily be seen that this is the case of the
terms U2(., .) in equation (16), but not necessarily
for all terms U ′2(., .; .). According to the value of
the observation ds at site s, U ′2(f1

s , f
2
s ; ds) may be

regular or not. In other words, only if the observation
likelihood for equal labels f1

s and f2
s is higher than

the observation likelihood for different labels, then the
term is regular for site s.

We therefore propose an adaptation and extension of
the iterative α-expansion move algorithm proposed by
Boykov et al. [5] for labeling problems with multiple
labels (|Λ| > 2) and improved by Kolmogorov et al.
[19]. In the original iterative formulation for multi label
problems, each subproblem is a binary problem where
each hidden variable may take two virtual labels: xs
and α, where xs is the original (current) label, and α is
a new label, whose value is changed at each iteration.

In our case, the iteratively solved binary labeled and
regular subproblems arise fixing the hidden labels of
one of the two fields F 1 and F 2 and estimating the
labels of the other one. Completely fixing a whole set
of variables corresponds to running an α-expansion
move algorithm on a single field dependency graph
where each single hidden variable fs may take 4

Fig. 2: The inference algorithm iteratively opti-
mizing two different binary subproblems. H is a
matrix storing for each pixel whether its likeli-
hood term is regular or not. U 7→2(f1, f2, d,H)

and U 7→1(f1, f2, d,H) correspond to the posterior
energy with different hidden variables clamped.

Input: d (a realization of the observed field)
Output: f1, f2 (estimated label fields)

F 1, F 2 ← Initialize the label fields (e.g. with
k-means)
H ← Determine the regular sites s
repeat

- Fix f1
s for Hs = 0, optimally estimate f2

s

for all s and f1 for Hs = 1 maximizing
U 7→2(f1, f2, d,H)

- Fix f2
s for Hs = 0, optimally estimate f1

s

for all s and f2 for Hs = 1 maximizing
U 7→1(f1, f2, d,H)

until Convergence

values (background, recto, verso, recto-verso) and the
pairwise clique potentials are adapted accordingly.

This optimization schedule may be improved by
fixing only the variables whose sites s are not regular,
and jointly estimating the variables f1

s and f2
s for

the regular sites s. For convenience we introduce a
binary matrix H indicating for each site s whether it
is regular or not, i.e. whether the associated function
U ′2(f1

s , f
2
s ; ds) is regular or not:

Hs =

8<:
1 if U ′2(0, 0, ds) + U ′2(1, 1, ds) ≤

U ′2(0, 1, ds) + U ′2(1, 0, ds)

0 else
(18)

Figure 2 outlines the inference algorithm, which it-
eratively calculates the exact solution of two dif-
ferent binary subproblems, maximizing, respectively,
U 7→2(f1, f2, d,H) and U 7→1(f1, f2, d,H). These two
energy functions are actually equivalent, however, the
set of fixed variables and the set of estimated vari-
ables being different, they lead to two different cut
graphs. In order to show the derivation of the cut
graphs, we will rewrite the two functions by reordering
some terms. Without loss of generality, in the rest
of this section we describe U 7→2(f1, f2, d,H), i.e.
the subproblem where a subset of the variables in
F 1 is fixed, whereas the variables of F 2 and the
complementary subset of variables in F 1 are estimated.
The function U 7→1(f1, f2, d,H) corresponding to the
complementary subproblem can be derived in similar
way
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After separating terms according to the contents of
H , the corresponding energy function can be given as
follows:

U 7→2(f1, f2, d,H)

1 =
X

{s}∈C1:Hs=0

α1U1(f1
s )

2 +
X

{s}∈C1:Hs=1

α1U1(f1
s )

3 +
X
{s}∈C1

α2U1(f2
s )

4 +
X

{s,s′}∈C2:Hs=0∧Hs′=0

β1
s,s′U2(f1

s , f
1
s′)

5 +
X

{s,s′}∈C2:Hs=1∧Hs′=1

β1
s,s′U2(f1

s , f
1
s′)

6 +
X

{s,s′}∈C2:Hs 6=Hs′

β1
s,s′U2(f1

s , f
1
s′)

7 +
X

{s,s′}∈C2

β2
s,s′U2(f2

s , f
2
s′)

8 +
X

{s}∈C1:Hs=0

U ′2(f1
s , f

2
s ; ds)

9 +
X

{s}∈C1:Hs=1

U ′2(f1
s , f

2
s ; ds)

(19)
Written in this notation, The energy functions can be
directly translated into a cut graph using the method
introduced by Kolmogorov et al. [19]. The cut graph
then contains, besides the terminal nodes source and
sink, one node for each variable F 2

s as well as one
node for each variable F 1

s satisfying Hs = 1. Each
unary term is translated into a t-edge, and each binary
term is translated into an n-edge as well as two t-edges.

The terms in lines 1 and 4 of equation (19) do
not depend on estimated variables and therefore can
be omitted during the minimization. The terms in
lines 2 and 3 contain standard unary functions and
will be represented by t-edges. The terms in lines
5 and 7 contain standard binary functions (pairwise
cliques of the Potts model) and will be represented
by n-edges. The terms in line 6 are binary functions
(also pairwise cliques of the Potts model) in the full
original expression (equation (16)), but one of the two
arguments is fixed in equation (19) describing the sub
problem. They can therefore be represented as t-edges
in the cut graph. Similarly, the terms in line 8 are non-
regular pairwise functions of the observation model,
which can be represented as t-edges. The terms in line
9, finally, correspond to the regular pairwise function
of the observation model, which can be represented as
n-edges.

Table I gives a full description of the different edges
of the cut graph and their weights. Figure 3 shows an
example of a dependency graph for a toy problem, a

3 × 1 image, and two different cut graphs. Figure 3b
shows the cut graph for the α-expansion move like
algorithm, i.e. all sites s are considered as non-regular.
The cut graph is shown for the case where the complete
set of variables F 1 is fixed whereas the complete set
of variables F 2 is estimated.

Figure 3c shows the extended algorithm, where
the middle and the right site are considered regular,
whereas the left site is considered non-regular. For the
middle and the right site, the variables F 1

s and F 2
s are

jointly estimated, whereas for the left site only F 2
s is

estimated whereas F 1
s is fixed.

V. PARAMETER ESTIMATION

Since realizations of the label fields F 1 and F 2 are not
available, the parameters of the prior model and the ob-
servation model must be estimated from the observed
data or from intermediate estimations of the label
fields. In this work we chose to estimate the parameters
in a unsupervised manner, i.e. different parameters are
estimated specifically from and for each input image.
To this end, we create initial label fields with the k-
means method and median filter them before applying
the supervised estimation technique described below.
Alternatives to this unsupervised approach would be,
for instance, iterated conditional estimation [6] or the
mean field theory [43].

The parameters of the observation model are esti-
mated using the classical maximum likelihood estima-
tors, i.e. the empirical means and covariances.

A. The MRF hyper-parameters

For the supervised estimation of the MRF parame-
ters we use least squares estimation, which was first
proposed by Derin et al. [9]. For a single MRF the
estimation procedure may be described as follows.

The potential function for a single site s may be
given as

U(fs, fNs
, θp) = θTp N(fs, fNs

) (20)

where Ns are the intra-field neighbors of s: Ns =

{fwe, fea, fno, fso}, θp is the prior parameter vector
and N(fs, fNs

) can be derived from (7) as follows:

N(fs, fNs
) = [ δfs,1,

δfs,fwe
+ δfs,fea

δfs,fno
+ δfs,fso

]T
(21)

From (20) and the basic definition of conditional
probabilities on MRFs:

P (fs|Ns) =
e−U(fs,fNs ,θp)P

fs∈L e
−U(fs,fNs ,θp)

(22)
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n-edges for node pairs: Weight Line in
eq. (19)

F 2
s , F

2
s′ : (s, s′) ∈ C2 −β2

s,s′ 7
F 1
s , F

1
s′ : (s, s′) ∈ C2 ∧Hs =

1 ∧Hs′ = 1

−β1
s,s′ 5

F 1
s , F

2
s : Hs = 1 U ′2(0, 1, ds) + U ′2(1, 0, ds)− U ′2(0, 0, ds)− U ′2(1, 1, ds) 9

(a)
t-edges (to source if weight>
0) for nodes:

Weight Line in
eq. (19)

F 2
s α2 3
F 2
s : Hs = 0 U ′2(f1

s , 1, ds)− U ′2(f1
s , 0, ds) 8

F 1
s : Hs = 1 α1 2
F 1
s : Hs = 1

X
s′:Hs′=0∧f1

s′=1

β1
s,s′ −

X
s′:Hs′=0∧f1

s′=0

β1
s,s′ 6

F 1
s : Hs = 1 U ′2(1, 0, ds)− U ′2(0, 0, ds) 9
F 2
s : Hs = 1 U ′2(1, 1, ds)− U ′2(1, 0, ds) 9

(b)

TABLE I
THE EDGES ADDED TO THE CUT GRAPH FOR THE PROPOSED INFERENCE ALGORITHM: EACH EDGE CORRESPONDS TO A TERM IN

EQ. (19). EACH T-EDGE IS CONNECTED TO THE SOURCE IF THE WEIGHT IS POSITIVE, OR CONNECTED TO THE SINK IF THE

WEIGHT IS NEGATIVE, IN WHICH CASE THE ABSOLUTE VALUE OF THE WEIGHT IS USED. MULTIPLE EDGES BETWEEN SAME

NODES (TAKING INTO ACCOUNT THE ORIENTATION) ARE REPLACED BY A SINGLE EDGE, ITS WEIGHT BEING THE SUM OF THE

INDIVIDUAL WEIGHTS.

D

F2

F1

F2

source(0/non− text)

sink(1/text)

F2

F1

source(0/non− text)

sink(1/text)

Fig. 3. (a) The dependency graph of a simple model containing three pixels in a single row; (b) the cut graph for an α-expansion
move like inference algorithm: inference of the verso pixels; (c) the cut graph for the proposed inference algorithm: joint inference
of the verso pixels and of a subset of the recto pixels. In this example, the potential functions related to the observation model are
regular for the middle and for the right pixel (Hs = 1), but not for the left one (Hs = 0).

the following relationship can be derived [9]:

θTp [N(f ′s, fNs
)−N(fs, fNs

)] = ln

„
P (fs, fNs

)

P (f ′s, fNs
)

«
(23)

where f ′s is a label different of fs. The RHS of (23) can
be estimated using histogram techniques [9], counting
the number of occurrences of the clique labellings in
the label field. Considering all possible combinations
of fs, f ′s and fNs

, (23) represents an over determined
system of linear equations which can be rewritten in

matrix form as follows:

Nθp = p (24)

where N is a M × 6 matrix, M being the number of
data points, i.e. the number of different combinations
of label pairs fs and f ′s having the same neighborhood
labels fNs

. The rows of N contain the transposed
vectors [N(f ′s, fNs

) − N(fs, fNs
)]T . The rows of the

vector p contain the corresponding values from the
RHS of (23). The system (24) can be solved using
standard least squares techniques, as for instance the
pseudo inverse.
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For practical purposes, note that labeling pairs
with one or both of the probabilities P (fs, fNs

) and
P (f ′s, fNs

) equal to zero cannot be used. Furthermore,
Derin et al. suggest to discard equations with low
labeling counts in order to make the estimation more
robust.

Adapting the estimation procedure for a double MRF
is straight forward. We estimate the parameters on the
recto field only, since this field is more stable — all
its labels are directly related to the observation field.
We get the parameters of the verso field from the
assumption that, statistically speaking, the verso field
is a flipped version of the recto field, which does not
change the parameters.

VI. PRE- AND POSTPROCESSING

A. Initialisation of the label fields

An initial estimation of the two label fields f1 and
f2 is needed for the iterative algorithm described in
the previous section. A natural choice is to apply a
segmentation technique without regularization, e.g. a
k-means segmentation, in order to classify the pixels
into three clusters. However, we need to determine for
each cluster whether it is background, recto or verso.
For most images that could be done using gray level
information only, background being the lightest cluster
and recto being the darkest one. In order to make this
choice more robust, we developed a cluster labeling
method which does not use the gray level of the pixels.
Instead, it is based on the following two assumptions:

Assumption 1: Most space on the document page is
occupied by background.

Assumption 2: The ink is 100% opaque and there-
fore a recto text pixel completely covers a verso pixel.
The first assumption is used to determine the back-
ground cluster as the one having most pixels, which is
rather straightforward and very efficient. The second
assumption is used to determine which one of the
two remaining cluster labels — henceforth denoted
label a and label b — is the recto label. The basic
idea is the following: since recto pixels cover verso
pixels, connected components in the (unobservable)
verso label field are often cut into several connected
components in the observation field when they interact
with connected components from the (unobservable)
recto label field.

Since we do not have the unobservable label fields
— which would make the task trivial — we use his-
togram statistics on the initial segmentation to exploit
this fact. We search for all the places in the image
where the two labels interact, i.e. where there are two
neighboring pixels, one having label a and the other
having label b. The recto label is obtained counting

A B

(a) (b)

Fig. 4. (a) an input image; (b) the result of the initial k-
means clustering. As described by assumption 2, the word in
the upper part of the image, which belongs to the verso side of
the document, has been cut into several connected components
by a letter written on the recto side.

the different connected components touching each label
and choosing the label having a minimum number of
different components.

As an example, consider the two transitions indi-
cated by the two points A and B in figure 4. For these
two transitions, 2 connected components are counted
for the gray-ish label, while only one connected com-
ponent is counted for the darker label.

B. Restoration

The principle of the restoration algorithm is simple:
replace the color or gray value of the pixels classified
as verso by the color or gray value of the background.
Directly using the mean of the background class will
produce visible artifacts due to the noise in the image.
A better solution is to use the mean of the neighboring
pixels classified as background.

Searching these pixels might be laborious in cases
where we need to fill larger areas of verso pixels. We
therefore resort to a hierarchical pyramidal structure for
the calculation of the replacement values. The pyramid
is characterized by a 2 × 2 reduction function and
a receptive field of 3 × 3 children for each parent
site. Each sites holds the mean value of the children’s
grayvalues as well as the number of children which
have been labeled as background. In order to replace
a verso pixel, we traverse the pyramid from bottom to
the top and stop at a level where enough pixels have
been found contributing to a meaningful background
value.

VII. EXPERIMENTAL RESULTS

Evaluating document restoration algorithms is a non
trivial task since ground truth is very hard to come by.
Short of manually classifying each pixel in a scanned
image, the only way to get reliable ground truth data
on pixel level is to test the algorithm on synthetic
data. These tests, on the other hand, may not be
realistic enough to capture all the subtleties of a real
environment. To evaluate our algorithm we therefore
decided to test its ability to improve the performance
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of an OCR algorithm when applied to real scanned
documents.

We chose a dataset consisting of 104 pages of low
quality printed text from the 18th century, the Gazettes
de Leyde. This journal in French language was printed
from 1679 to 1798 in the Netherlands in order to
escape the censorship in France at the 18th century and
relates news of the world. The Gazettes are currently
used by several research projects in social and political
sciences, some of which are currently collaborating
with our team in the framework of digitization projects.

From an image processing point the view, the data
situates itself between the difficulty of manuscripts
and the regularity of printed documents. The images
of sizes around 1030×1550 pixels are of very low
quality compared to modern printed text. Recognition
is possible, although the performance on the non-
restored images is not very high. We chose the open
source OCR software “Tesseract” published by Google,
mainly because it is easily scriptable3, but we also
performed some selected experiments with the prod-
uct of the market leader, Abby Finereader 84, which
performs slightly better without changing the ranking
of the restoration methods.

As mentioned in section V, the parameters of the
method have been estimated in an unsupervised man-
ner, i.e. for each image we estimate specific parameters.

We compared the proposed method with several
competing methods. One group of algorithms purely
exploits the fact that, according to the hypothesis
stated in section III, set recto pixels completely cover
verso pixels, without taking into account interactions
between neighboring pixels. Examples are the k-means
clustering algorithm with k=3 clusters (followed by
our restoration algorithm replacing verso pixels, ex-
plained in section VI-B), as well as two thresholding
algorithms. We chose two methods which represent
the state of the art in adaptive thresholding: Niblack’s
algorithm [27] which performed best in a widely cited
evaluation paper [39] as well as an improvement of
Niblack’s algorithm by Sauvola et al. [30]. Since a
restoration is not straightforward from a binary output,
we directly fed the binary images to the OCR in the
case of the two thresholding algorithms.

As mentioned in section I, statistical source separa-
tion is one of the most active areas in bleed-through
removal with several works published by Tonazzini
et al. on this subject [34][35][36][37]. We therefore
decided to compare the proposed method with two
of them: since the scans of the Gazettes de Leyde
are in color, the color model introduced in [34] and

3http://code.google.com/p/tesseract-ocr
4http://finereader.abbyy.com

Color space Distance Recall Prec. Cost
RGB Euclidean 78.91 68.23 42,835
Grayvalue Euclidean 79.82 68.43 42,675
L*u*v* Euclidean 78.30 68.50 41,800
L*a*b* Euclidean 78.57 69.43 40,375
L*a*b* CIE94 [26] 78.50 68.95 41,142

TABLE III
OCR RESULTS FOR THE K-MEANS METHOD USING SEVERAL

DIFFERENT COLOR SPACES.

which we described in section I is applicable. The
second method, introduced in [37] and based on or-
thogonalization, is non-blind and therefore requires
the presence of the verso side of the image. In a
personal communication sent for the experiments in
this paper, Prof. Tonazzini recommended the use of
two different planes of the color image as recto and
verso observations, which we did in our experiments.
The source codes have kindly been provided by the
author, Prof. Tonazzini herself.

The tested source separation methods are not auto-
matic, they need user interaction in order to chose the
correct output source plane. While the number of the
correct recto plane may be different between different
images, tests showed that for all 104 images of the
Gazettes de Leyd, the order of the source images was
the same. The source planes resembling the most to the
assumed recto plane where, for both methods, source
#1 and source #2, which we both included into the
experiments. This was not the case for other images,
as for instance the manuscripts shown in figures 8 and
9.

The last method compared to the proposed algorithm
is a standard single MRF with a Potts model and
three labels (recto, verso and background), optimized
using Kolmogorov et al’s version of the α-expansion
move algorithm [19] and combined with the same
parameter estimation and pre- and post-processing as
our proposed method.

The k-means method has been tested with different
color spaces: grayscale, RGB, L*a*b*, L*u*v*, using
the Euclidean distance for each space. Additionally,
the CIE94 color metric [26] has been tested for the
L*a*b* space (see table III). The best results have been
obtained with the L*a*b* and the Euclidean distance.

Figures 5 to 7 illustrate the OCR results on a small
image taken from the Gazettes dataset. As we can
see, being based on segmentation, the results for k-
means and the two MRF methods are similar. The k-
means result (Figure 5b) is noisy as opposed to the
MRF results, the double MRF (Figure 5d) improves
the regularity of the single MRF (Figure 5c). The OCR
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bras de l:ı̂C0mP;rg1rrE: Il étoit accompagné dé (on _
Oncle ,’ Frère de fu Mere. Le ierzne Prince avoit .
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‘àië’r<<· iter ‘\}>>:· Père du triûe état,. ou il étoit réduit.:

Fig. 5. Small extracts of the OCR results obtained on scanned document images: (a) input image (no restoration); (b) k-means
segmentation + restoration; (c) single MRF segmentation [19] + restoration; (d) double MRF (proposed method).
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Not available

Fig. 6. Small extracts of the OCR results obtained on scanned document images: (a) segmentation with Niblack [27]; (b) segmentation
with Sauvola et al. [30]; (c) Tonazzini et al. [37] source #1, Tonazzini et al. [37] source #2
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Fig. 7. Small extracts of the OCR results obtained on scanned document images: (a) Tonazzini et al. [34] source #1 (b) Tonazzini
et al. [34] source #2 (c) Tonazzini et al. [34] source #3 (d) Tonazzini et al. [34] all three sources combined.
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Fig. 8. Restoration results on manuscripts. From left to right, top to bottom: input image, k-means, single MRF & α-exp. move
[19], double MRF (proposed method), Tonazzini et al. [37] source #1, Tonazzini et al. [37] source #2, Tonazzini et al. [34] source
#1, Tonazzini et al. [34] source #2 (source #3 not displayed).



16

Fig. 9. Restoration results on manuscripts. From left to right, top to bottom: input image, k-means, single MRF & α-exp. move
[19], double MRF (proposed method), Tonazzini et al. [37] source #2, Tonazzini et al. [37] source #1, Tonazzini et al. [34] source
#3, Tonazzini et al. [34] source #1 (source #2 not displayed).
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Method- Method Recall Prec. Cost Size of
type (in %) (in %) (abs.) dataset

(in %)
— No restoration 65.65 49.91 76,752 100
Context- Niblack [27] (segm. only) - - - -
free Sauvola et al. [30] (segm. only) 78.75 66.78 45,363 100

K-Means (k=3) 78.57 69.43 40,375 100
Source- Tonazzini et al. [37] - src #1 ‡ 41.00 30.05 74,819 66
sep. Tonazzini et al. [37] - src #2 † - - - -

Tonazzini et al. [34] - src #1 † - - - -
Tonazzini et al. [34] - src #2 † - - - -
Tonazzini et al. [34] - 3 sources ‡ 50.52 33.90 101,280 89

MRF Single MRF & α-exp. move [19] 81.99 72.12 36,744 100
Double MRF (proposed method) 83.23 74.85 32,537 100

†Not available: lack of OCR performance makes a correct evaluation impossible
‡results obtained with a subset of the images only (absolute cost is not comparable).

TABLE II
OCR RESULTS ON A DATABASE OF 104 SCANNED DOCUMENT IMAGES: NON-RESTORED INPUT IMAGES AND DIFFERENT

RESTORATION METHODS.

output is a little bit cleaner for the double MRF case.
The results of Niblack’s algorithm and Sauvola et

al.’s algorithm show the typical weaknesses of these
approaches: Niblack (Figure 6a) produces spurious
components, especially in areas with few text, and
Sauvola (Figure 6b) tends to cutting characters into
several parts due to its assumptions on the grayvalue
distribution in the image.

Figures 6c and 6d show the first two source compo-
nents of the non-blind source separation method [37]
applied to the color components red and green of the
color input image. All source separation results are
shown without the post processing recommended by
the authors (see below).

The second, blind method [34], shown in Figures
7a-c, delivers similar results: although we can identify
a source component which does not include the verso
text, the response itself is quite noisy and faint. Post-
processing the image slightly improves the latter but
tends to increase the noise. Figure 7d shows an image
which corresponds to a grayscale conversion of a
color image composed of the three different source
components obtained with the color based method [34].
Although this result was not intended, as the verso
component is still part of the image, the result seems
to be better than the ones consisting of a single source
component only. Surprisingly, this result is the only one
which produces at least limited OCR output, whereas
the other images do not produce anything meaningful.

In order to evaluate the amount of recognition im-

provement of the restoration method, we manually
created groundtruth for the 104 images, and calculated
the Levenstein edit distance between two strings [40],
which finds the optimal transformation from on string
into another with elementary operations (insertion,
deletion, substitution) minimizing the global cost of
these operations. Additionally, we calculated character
recall and character precision derived from the trans-
formation operation of this distance. Table II compares
the measures for the different methods described above,
as well as the recognition performance on not restored
images. Note, that precision and recall are independant
of the dataset size, whereas the total transformation
cost is not.

We can see that all methods based on identifying the
verso component (k-means and the two MRF methods,
including the proposed one) are capable of signif-
icantly improving the recognition results compared
to no restoration at all. Not surprisingly, regularizing
the segmentation with a priori knowledge boosts the
performance. Separating the regularization of the recto
and verso side further improves recognition, gaining
1.2 percent points in recall compared to the single
MRF and 2.7 percentage points in precision. Totally,
compared to no restoration at all, the proposed method
improves recognition at about 17 percentage points in
terms of recall and around 25 percentage points in
terms of precision.

Recognition on the results of Niblack’s method
produces only gibberish, probably because of the small
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ghost objects it creates. Sauvola et al.’s method over-
comes this problem and the recognition performance
almost attains the quality of the three class segmenta-
tion of performed by the k-means algorithm.

Surprisingly, the recognition performance on the
results of the two source separation results was very
disappointing. We performed recognition experiments
for both planes of the first method [37] and all three
planes of the second method [34], respecting the au-
thor’s recommendations to darken the images after
applying the inverted mixture matrix. In a personal
communication for the experiments in this paper, Prof.
Tonazzini recommended subtracting the K component
of the CMYK color decomposition. However, we ob-
tained better results with a histogram stretch instead of
the proposed method.

Unfortunately, the recognition performance on these
results was not good enough to include it in the table.
Most of the output was blank or gibberish, making
an evaluation impossible. We managed to get some
statistics on the first source plane of the first method,
as well as on output images combining all three source
planes of the second method. However, this was only
possible when a subset of the dataset was removed.
Even then, the results where not competitive.

Figures 8 and 9 show restoration results on two
different manuscript images. The source separation
methods remove more of the verso text in Figure 8,
but unfortunately the contrast is very low and they
are significantly disturbed by the JPEG artifacts in
the input image. The performance shown in figure 9
reveils similar strengths and weaknesses, typical to the
two types of approaches: the regularized segmentation
approaches create crisp images but show localized
artifacts, whereas the artifacts created by the source
separation methods are more spread out across the
image and seem to touch more of the low frequency
components.

A. Computational complexity

The computational complexity of the proposed method
is dominated by the inference part based on the mini-
mum cut/maximum flow in a graph whose complexity
is bounded by O(|E| ∗ f), where |E| is the number
of edges in the graph and f is the maximum flow.
We use the graph cut implementation by Boykov and
Kolmogorov [4] which has been optimized for typical
graph structures encountered in computer vision and
whose running time is nearly linear in running time
in practice [5]. Table IV gives effective run times
measured on a laptop computer equipped with an Intel
Core 2 processor running at 2.5Ghz and 4GB of RAM
(only one core was used). The running time of the

proposed method is comparable to the running time of
a single MRF with graph cut optimization and quite
competitive given its restoration performance.

VIII. CONCLUSION AND OUTLOOK

We presented a method to separate the verso side from
the recto side of a single scan of document images.
The novelty of the method is the separation of the
MRF prior into two different label fields, each of which
regularizes one of the two sides of the document. This
separation allows to estimate the verso pixels of the
document which are covered by the recto pixels, which,
again through the MRF prior, improves the estimation
of the verso pixels not covered by recto pixels, thus
increasing the performance of the regularization. We
showed that this formulation leads to an efficient
algorithm based on graph cuts.

The performance of the method has been evaluated
on scanned document images from the 18th century,
showing that the restoration is able to improve the
recognition performance of an OCR significantly, com-
pared to non restored images but also compared to
competing methods.

Involved in several digitization projects around the
world, our team is currently looking into the following
perspectives of this work:
• Creation of a homogeneous (adaptive) observation

model, which increases the performance on larger
images. This model needs to take into account
several text colors, as well as other kinds of
degradation (see section I).

• Creation of a hierarchical Markov model in the
lines of [3][18][21] which is able to take into
account larger neighborhood structures.

• Creation of a discriminative model, as for instance
a CRF [22][20] adapted to the nature of the prob-
lem, allowing us to model dependencies between
the observations.
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