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Abstract. A novel multi-fiber beam finite element formulation based on the Timoshenko model

is proposed in this paper to simulate failure of reinforced concrete structural elements subjected to

static monotonic loadings. The beam section can have an arbitrary shape and each fiber has a local

constitutive law representing a specific material. The embedded discontinuity concept is adopted to

enrich the displacement field of the fibers in order to describe the opening of cracks and the develop-

ment of plastic hinges. The material behavior at the discontinuity is characterized by a cohesive law

linking the axial stress and the displacement jump by a linear relation, which allows capturing the

released fracture energy. The variational formulation is presented in the context of the incompatible

modes method. Moreover, the additional modes are statically condensed at the element level. The

corresponding computational procedure is detailed in the paper. Several numerical applications and

general remarks are finally provided to illustrate the performance of the proposed element.

1 Introduction

Different kinematic assumptions are used

in structural analysis in order to simplify the

global equilibrium equations and to reduce the

required number of degrees of freedom. The

Timoshenko beam theory considers that plane

sections remain plane after deformation but not

necessary normal to the deformed axis. The ad-

vantage of this theory is that it takes into ac-

count the influence of shear strains (contrary to

Euler-Bernoulli (EB) assumption.

In a multi-fiber beam context, the section of

the beam is divided into several fibers with spe-

cific stress/strain relations [1]. Finite elements

of this type are efficient for various applica-

tions in civil engineering: nonlinear analysis of

beam type or bearing wall structures with non-

homogenous sections (eg. reinforced concrete)

[2], [3], arbitrarily geometrical plane or hollow

shape sections [4], [5] submitted to bending,
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shear or torsion [6], Soil Structure Interaction

problems [4], vulnerability assessment cases [5]

and Fiber-Reinforced Polymer retrofitting [7].

In this paper we present a novel multi-

fiber beam finite element formulation based

on the Timoshenko model to simulate failure

of reinforced concrete structural elements sub-

jected to static monotonic loadings. The new

displacement-based Finite Element formulation

proposed by [8] is used. This formulation uses

shape functions of order three (3) for the trans-

verse displacements, and two (2) for the rota-

tions and an additional internal node. This re-

sults to a finite element free of shear locking.

We refer to [9] where we show the performance

of this formulation with respect to other formu-

lations in the literature [10], [11].

The multi-fiber section consists of concrete

and steel fibers. The concrete fibers behave ac-

cording to a damage law and the steel fibers are

modeled with an elasto-plastic behavior.

The lack of an internal length parameter in

the behavior laws leads to mesh dependency.

To solve this, different approaches can be found

in the literature: local approaches [13], [14];

non local approaches [15], [16], [17]; and the

enhanced approaches [18], [19]. In this work,

the focus is set on the enhanced approach [19],

and more specifically on the embedded discon-

tinuity approach (EDA) [20]. EDA represents

an alternative approach to the smeared and dis-

crete crack representations avoiding some of

their drawbacks as described in [21].

The EDA based on the strong disconti-

nuity approach [19] is adopted, hence local-

ized failure is incorporated into the standard

disablement-based Finite Element using dis-

continuities variables. The fibers are enhanced

in order to describe concrete crack openings

and the development of plastic hinges for steel

[22]. The strong discontinuity is introduced by

adding a jump in the displacement field. Ac-

cordingly, additional shape functions are added

to interpolate the displacement jump within the

enhanced finite element.

Furthermore, the materials behavior at the

discontinuity is characterized by a cohesive law

linking the axial stress and the displacement

jump by a linearly decreasing relation, which

allows capturing the released fracture energy.

The variational formulation is presented in

the context of the incompatible modes method.

The additional modes are statically condensed

at the element level in order to maintain the

same architecture of the global resolution.

The outline of the paper is as follows. In

the next section the governing equations of the

multi-fiber Timoshenko beam with the corre-

sponding interpolation functions describing the

new based-displacement Finite Element [8] are

briefly recalled. In section 3, we present shortly

the behavior laws for continuum and cohesive

materials. In section 4, we focus on the varia-

tional formulation. A numerical illustration of

the proposed model is presented in section 5.

The article ends with some concluding remarks.

2 Governing equations

Consider a beam of length Ł discretized into

n elements e = [xi; xj] of length L = xj − xi

and external nodes i and j. The generalized dis-

placement vector is approximated by an equa-

tion of the form U(x) = NUe, where Ue is a

vector containing the external nodal displace-

ments of the element e and N is the matrix of

the shape functions depending on x. For sim-

plicity reasons presentation is made hereafter in

2D.

U(x) =
[
Ux(x) Uy(x) Θz(x)

]
T (1)

Ux(x) being the longitudinal displacement,

Uy(x) the transverse displacement and Θz(x)
the rotation of the section at the neu-

tral axis. The continuous displacements

ux(x, y), uy(x, y) of another point of the section

(or of a “fiber” f(x, y)) can be evaluated using

the displacements of the section as follows:

ux(x, y) =Ux(x)− yΘz(x),

uy(x, y) =Uy(x)
(2)
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The strain field becomes:

εx(x, y) =
∂ux

∂x
= U ′

x(x)− yΘ′
z(x),

γxy(x, y) =
∂ux

∂y
+

∂uy

∂x
= U ′

y(x)−Θz(x)

(3)

with εx(x, y) the axial strain and γxy(x, y) the

transverse shear strain of the fiber f(x, y). The

line over the variables indicates that they are

continuous.

The theoretical formulation, based on equi-

librium equations and the kinematic assumption

and using the virtual work principle, provides

the beam element stiffness matrix and the inter-

nal nodal forces expressions as follows

Kelement =
∫ L

0
BTKSBdx

Fint,element =
∫ L

0
BTFSdx

(4)

where B is a matrix containing the derivatives

with respect to x of the shape functions, KS is

the multi-fiber section stiffness matrix and FS is

the generalized force vector of the section.

In order to enhance the element kinematics,

the fiber axial displacement field (2) is written

with an additional term ( [23], [24], [25] and

[22]), as follows:

ux(x, y) = ux(x, y) + αMα(x), (5)

where ux represents the continuum expression

of the axial displacement (2) and

•Mα(x) = Hα(x)−N(x), (6)

•Hα(x) = {1 if x > xα or 0 if x ≤ xα},
(7)

•N(x) =
x

L
, (8)

and α is the discontinuity variable, xα is the po-

sition of the discontinuity within the element.

Therefore the enhanced axial strain field be-

comes:

εx(x, y) =
∂

∂x
(ux(x, y)) +

∂

∂x
(αMα(x))

= εx(x, y) + α
∂

∂x
(−N(x)) + α

∂

∂x
(Hα(x))

= εx(x, y) + α G(x)
︸ ︷︷ ︸

ε̃

+ α δα(x)
︸ ︷︷ ︸

ε

(9)

where δα(x) is the Dirac function at xα. Thus,

the latter expression of the axial strain is sin-

gular (presence of ε). To solve this singular-

ity, [26] proposed to introduce a cohesive law,

that models the material discontinuity and thus

eliminates the singular term.

2.1 Displacement-based Finite Element

formulation

In this paragraph, the new displacement-

based Full Cubic Quadratic Finite Element

FCQ is presented [8]. Cubic functions are used

to interpolate the transverse displacements and

quadratic for the rotations. The element is free

of shear locking and uses an additional internal

node. Caillerie & al. [8] proved that one FCQ

element is able to predict the exact tip displace-

ments for any complex loading (shear/flexion)

submitted to an homogeneous elastic beam (see

also [9]).

i k j

Figure 1: FCQ element

The nodal displacement field takes the fol-

lowing form, UT
e =

[Uxi, Uyi,Θzi,∆U1

yk,∆Θzk,∆U2

yk, Uxj, Uyj,Θzj],

where ∆U1
yk, ∆Θzk and ∆U2

yk are the degrees of

freedom of the internal node (with no specific

physical meaning). The generalized displace-

ment field is U(x) = N(x)Ue, and the inter-

polation functions matrix N(x) can be found in

the original paper [8] and also in the appendix.

3 Material Constitutive laws

The constitutive laws for the continuum and

cohesive materials are briefly elaborated. We

notice that shear components for both contin-

uous models are linear elastic. Therefore the

fiber shear stress is:

τ = kGγ, (10)
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where k is the shear correction coefficient, G is

the shear modulus and γ is the fiber elastic shear

strain.

Figure 2: (a) Continuous model ; (b) Discontinuous

model

3.1 Bulk concrete behavior

In order to model the concrete, a simple dam-

age law based on the work of Ortiz 1985 [27] is

used. The thermodynamic free energy for such

model is expressed in function of the damage

deformation εd, the damage compliance modu-

lus D and the strain-like hardening variable ξ
d
:

Ψ
d
= σdT εd −

1

2
σdTDσd +

1

2
ξ
d
Kd

hξ
d

(11)

The strain-strain relation can be deduced as:

σd = D−1εd with D ∈ [E−1

c ,∞) (12)

where Ec is the concrete young modulus. The

hardening law takes a linear form qd = Kd
hξ

d

where Kd
h is the hardening modulus which is

different in compression and traction. The dam-

age criteria is defined by the following damage

surface

φ
d
= |σd| − (σd

i − qd) ≤ 0 (13)

σd
i =

{

σd
c for compression

σd
t for traction

3.2 Bulk steel behavior

The steel fibers are modeled with an elasto-

plastic behavior with isotropic hardening. The

main ingredients of the model are given in the

equations below. We start with the classical de-

composition of the continuous strain into elastic

and plastic terms:

ε = εe + εp (14)

The thermodynamic free energy is expressed in

terms of the internal variables: the elastic defor-

mation εe and the strain-like hardening variable

ξ
s
.

Ψ
s
(εe, ξ

s
) =

1

2
εeEsεe +

1

2
ξ
s
Ks

hξ
s

(15)

where Es is the steel elastic modulus and Ks
h is

the steel hardening modulus. The stress/strain

relation reads

σs = Es(ε− εe) with







ε̇
p
= γ̇

∂φ
s

∂σ

ξ̇
s

= γ̇
∂φ

s

∂q

(16)

where qs is the stress-like variable defining the

linear hardening law qs = Ks
hξ and φ

s
is the

elastic yield surface:

φ
s
= |σs| − (σs

e − qs) ≤ 0. (17)

3.3 Cohesive material behavior at the dis-

continuity

Linear cohesive laws are used. The thermo-

dynamic free energies relative to concrete and

steel:

Ψ
d

= 1

2
Kd2

cohξ
d

, Ψ
s

= 1

2
Ks2

cohξ
s

(18)

Kcoh is the softening modulus (< 0) of the

cohesive material. The cohesive laws are ex-

pressed as a relation between the traction at the

discontinuity and the discontinuity variable:

td = Kd
cohα

d , ts = Ks
cohα

s (19)

In order to pass from the continuum model to

the discrete one, a failure criteria should be ver-

ified. This criteria is defined by the function φ

such that:

φ
i

= |t(αi)| − (σi
u − q

i
) ≤ 0 (20)

where q
i
= −∂Ψ

i

∂ξ
i = −Ki

cohξ
i

and i = {d, s}.
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4 Variational formulation

The objective of this work is to embed

discontinuity into the fiber axial displacement

field. In the spirit of the Hu-Washizu variational

formulation [28], [29], the variational formula-

tion can be written within the framework of a

finite element problem and leads to the follow-

ing set of non linear equations,

nelem∧

e=1

nact
fib∧

f=1

[
f int
e,f (Ue, αe,f )− f ext

e,f

]
= 0 (21)

he,f (Ue, αe,f ) = 0, ∀e ∈ [1, nelm], ∀f ∈ [1, nact
fib]

(22)

where
∧

denotes the standard assembly opera-

tor, nact
fib indicates the fibers with active discon-

tinuity. The first equation above concerns the

global equilibrium, and the second one is rel-

ative to the local equilibrium corresponding to

the active embedded discontinuities in the fibers

(nact
fib).

The linearized form of the system of equa-

tions (21) at incremental pseudo-time n+1 and

iteration k + 1 reads

nelem∧

e=1

nact
fib∧

f=1

{[
KBB KBG

KGB KGG +Kcoh

]k

n+1

[
∆Ue,f

∆αe,f

]k+1

n+1

=

[
f int
e,f − f ext

e,f

he,f

]k

n+1

}

(23)

where,

KBB =
∂f int

e,f

∂Ue,f

=

∫

Vf

BT
f KfBfdVf ; (24)

KBG =
∂f int

e,f

∂αe,f

=

∫

Vf

BT
f KfGfdVf ; (25)

KGB =
∂he,f

∂Ue,f

=

∫

Vf

GT
f KfBfdVf ; (26)

KGG =
∂he,f

∂αe,f

=

∫

Vf

GT
f KfGfdVf ; (27)

and Bf represents the interpolation function of

the strain field at the fiber level, Gf is the en-

hanced interpolation function, Ue,f is the nodal

displacements of the fiber and Kf is the mate-

rial tangent modulus of the fiber.

The local equilibrium equation represented

by the second equation of the linearized sys-

tem (23) is solved locally for the active discon-

tinuities, therefore, we find the increment of the

jump ∆αe,f . Using the static condensation tech-

nique, the following condensed fiber stiffness is

found
Kcond = KBB −KBGK

−1

GGKGB (28)

5 Numerical applications

To illustrate our model, two numerical appli-

cations are presented hereafter.

5.1 Application 1

In order to prove the efficiency of the en-

hancement method to solve the mesh depen-

dence problem, we consider a cantilever beam

of length Ł = 1m subjected to transverse dis-

placement at the right end. Firstly, the fibers

of the beam are modeled with an elasto-plastic

material with continuum softening. The beam

is tested with several mesh sizes. Secondly, the

fibers are modeled with an elasto plastic behav-

ior for the continuum part coupled to a cohesive

law for the softening part. The results of both

applications are showed in the figures below.
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Figure 3: Elasto-plastic model with continuous softening
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Figure 4: Elasto-plastic model with cohesive law
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The difference between the figures (3) and

(4) is clear. The elasto-plastic behavior with

continuum softening is not objective relative

to the mesh size as we can see in figure (3).

Indeed, the quantity of dissipated energy de-

creases with fine discretization. On the other

hand, the enhanced multi-fiber beam improved

the softening response with respect to mesh de-

pendency since all the curves in figure (4) co-

incide at the end of the softening phase. Nev-

ertheless, the total response is not yet free of

mesh dependence. Furthermore, the dissipated

energy in the beam softening response for the

enhanced beam is captured by the cohesive law

according to the following expression D = tα̇−
˙
Ψ; therefore, since discontinuities appear only

in the first element whatever the mesh size, the

captured energy in the softening process is the

same.

The strain localization is also examined at lo-

cal level. The axial strain distribution in the ex-

treme fiber (located at section’s edge) along the

beam length is showed with both models (with

and without enhancement) in figures (5), (6).

The curves are obtained by joining the strain

values at the integration points of the elements.

We remark that the strain localization is regu-

larized once the fiber is enhanced. Figure (5)

clearly shows the strain localization within the

first element of the fiber by refining the mesh of

the beam. Otherwise, one can notice the pres-

ence of active discontinuity in the first enhanced

element of the fiber by the decreased strain val-

ues within the element, (6).
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Figure 5: Strain at fiber level : Elasto-plastic model with

continuous softening
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Figure 6: Strain at fiber level : Elasto-plastic model with

cohesive law

Furthermore, figure (7) shows that the num-

ber of the fibers in the section doesn’t have a

big influence on the global response of the beam

discretized into two elements.
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Figure 7: Influence of the fibers number on the global

response

5.2 Application 2

We consider a cantilever reinforced concrete

beam with fixed support at the left end, and sub-

mitted to transversal displacement at the free

end. The beam has a length of Ł = 1m and

the section (0.2 × 0.5) is divided into 62 fibers

(figure (8)). 2 bars of diameter 32mm are added

to the top of the section as reinforcement (fiber

4 in figure (8)). The materials properties are the

following:

Concrete properties

Ec = 40 GPa

νc = 0.2

Kd
h = 2 GPa

Kd
coh = −5.2 GPa

σ
comp
elastic = 40 MPa

σ
comp
crack = 45 MPa

σtrac
crack = 7 MPa
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Steel properties

Es = 200 GPa

νs = 0.3

Ks
h = 30 GPa

Ks
coh = −0.5 GPa

σs
elastic = 80 MPa

σs
ultimate = 90 MPa

Figure 8: Multi-fiber section

The global response of the reinforced beam,

the cohesive law at an active discontinuity and

the behavior of the extreme compressed fiber

are showed in the figures below:
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Figure 9: Global response of the enhanced multi-fiber re-

inforced concrete beam
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Figure 10: Cohesive law at the active discontinuity within

extreme concrete fiber (1)
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Figure 11: Behavior of the extreme compressed concrete

fiber (62)

Figure (11) shows that the extreme com-

pressed concrete fiber (number (62) in fig. (8))

is in the hardening phase. Figure (10) shows

that the extreme tight concrete fiber (1) is to-

tally cracked.

6 Conclusion

In this paper, a new multi-fiber displacement

based Timoshenko Finite Element is proposed.

Higher order shape functions with additional in-

ternal degrees of freedom are used to interpolate

the element displacement field. The embedded

discontinuity approach is used to enhance the

kinematic of the fibers. Therefore, the objec-

tiveness of the softening response with respect

to the mesh size is improved. The section is

divided into fibers of concrete and steel. Each

material is modeled with two coupled behav-

iors, a continuous model to describe the bulk

behavior and a cohesive model to illustrate the

localized zones. The variational formulation is

briefly elaborated. A numerical illustration of

the proposed model is presented and it showed

that the strain localization is limited. We are

currently working on improving the disconti-

nuity kinematic of the enhanced fibers, and we

look to extend the current model to make cyclic

applications in the forthcoming work.
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Appendix A FCQ element

The interpolation functions of the new dis-

placement based Full Cubic Quadratic Finite

Element FCQ [8] are

N(x) =




N1 0 0 0 0 0 N7 0 0
0 N11 0 N13 0 N15 0 N17 0
0 0 N21 0 N23 0 0 0 N27





(29)

where







N1 =1−
x

L

N7 =
x

L

N11 =(1−
x

L
)2(1 + 2

x

L
)

N13 =2(1−
x

L
)2(

x

L
)

N15 =− 2(
x

L
)2(1−

x

L
)

N17 =(
x

L
)2(3− 2

x

L
)

N21 =(1−
x

L
)(1− 3

x

L
)

N23 =1− (1− 2
x

L
)2

N27 =− (
x

L
)(2− 3

x

L
)

(30)

The three internal degrees of freedom can be

treated locally (inside the element subroutine)

using static condensation method (see [8] for

more details and the analytical expressions of

the condensed matrices and vectors).
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