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Abstract—This paper presents a framework for morphological
processing of graph signals and investigates its usage for colored
images and meshes editing tasks. The proposed method enables,
with the help of the construction of a manifold-based ordering
of color vectors, to define a new representation of graph signals
in the form of an ordering of vectors and an index. The ordering
relies on three steps: dictionary learning, manifold learning, and
out of sample extension. This enables to formulate morphological
operators for graphs signals and we demonstrate the performance
of the proposed method on various colored image and mesh
editing applications (simplification, abstraction, enhancement).

I. INTRODUCTION

Image filtering is recognized as one of the most impor-
tant operation in image processing. In particular, structure-
preserving filtering is an essential operation with a variety of
applications in computational photography and image editing
[1]. During the last decade, a lot of structure-preserving
smoothing filters have been proposed [2], [3], [4], [5], and
they aim at decomposing an image into prominent structures
and fine-scale details, making it easier for subsequent image
manipulation such as detail enhancement or visual abstraction.
These filters were originally designed for images, but some
have been extended to 3D meshes [6].

In this paper, we propose to investigate the use of Mathemat-
ical Morphology (MM) operators for such editing tasks. This
has never been investigated before in literature. Morphologi-
cal operators are non-linear vector-preserving filters (no new
vectors are introduced in the processed image), and therefore
they are not subject to the production of halos, which is a
common problem in image editing tasks [1]. The construction
of morphological operators relies on complete lattices [7]
that impose the need of an ordering relationship between the
elements to be processed. If MM is well defined for gray
scale functions, there exists no general admitted extension
that permits to perform morphological operations on vectors
since there is no natural ordering of vectors. We have recently
proposed in [8] a framework for the construction of complete
lattices for any kind of vector data. The latter learns a complete
lattice from a modeling of the vectors’ manifold. In this
paper, we consider these works as a basis for morphological
signal editing. In addition, to enable an application of the
proposed framework both to colored images and 3D meshes,
we consider a formalism based on graph signals [9].

The paper is organized as follows. In Section II, we in-
troduce a learned ordering of the vectors of a graph signal.
In Section III we derive a graph signal representation from

the learned ordering and define the associated morphological
graph signal operators. Section IV shows how the proposed
framework enables the editing of graph signals (with graphs
in the form of 2D grid graphs and 3D meshes).

II. MANIFOLD-BASED COMPLETE LATTICE LEARNING

A. Notations

A graph G = (V,E) consists in a finite set V =
{v1, . . . , vm} of vertices and a finite set E ⊂ V×V of edges.
Let (vi, vj) be the edge of E that connects two vertices vi and
vj of V. The notation vi ∼ vj is used to denote two adjacent
vertices. The considered graphs in the paper are undirected
and unweighted. A graph signal is defined as a function that
associates real-valued vectors to vertices of the graph. A graph
signal is represented by the mapping f : G→ T ⊂ Rn where
T is a non-empty set of vectors (we will consider only RGB
color vectors, i.e., n = 3). To each vertex vi ∈ G is associated
a vector vi = f(vi). The set T = {v1, · · · , vm} denotes all
the vectors associated to all vertices of the graph. We will use
the notation T [i] = vi to denote the i-th element of a set.

B. Complete lattice

To perform morphological processing of graph signals, we
build an ordering of the vertices’ vectors T . Ordering all the
values of the set T can be done with the use of an ordering
relation within vectors. This amounts to dispose of a complete
lattice (T ,≤), a key item for the definition of mathematical
morphology operators [7]. Unfortunately there is no universal
method for ordering vectorial data [10]. Many works have
proposed specific orderings for color vectors, mainly with the
use of lexicographic orderings [11], [12], but they use specific
assumptions on the ordering of channels. Our proposal is to
build on the ideas we presented in [8]. One way to define an
ordering relation between the vectors of a set T is to use the
framework of h-orderings [13]. This corresponds to defining
a surjective transform h from T to L where L is a complete
lattice equipped with the conditional total ordering [13]. We
refer to ≤h as the h-ordering given by:

h : T → L and v→ h(v),∀(vi, vj) ∈ T × T

vi ≤h vj ⇔ h(vi) ≤ h(vj) . (1)

Then, T is no longer required to be a complete lattice, since
the ordering of T can be induced upon L by means of h [14].
When h is bijective, this corresponds to defining a space filling



curve [15] or equivalently a rank transform [16]. It is obvious
that the projection h cannot be linear [17] since a distortion of
the space topology is inevitable. As a consequence, we choose
to focus our developments on learning the vectors’ manifold
to construct h and deduce the complete lattice (T ,≤h). In
addition, the same graph signal can be projected on many
different graphs (see first line of Figure 1). This shows that the
graph itself is not important for the definition of the complete
lattice: the manifold of the vertices’ vectors is much more
important.

C. Manifold-based ordering

Our approach consists in learning the manifold of vectors
from a graph signal with a nonlinear mapping and to define
the ordering from this projection. To learn the manifold, we
use Laplacian EigenMaps (LE), a technique for non-linear
dimensionality reduction [18]. Computationally, performing
LE on the whole space of vectors of the graph signal is not
tractable in reasonable time (especially for large sets), so we
use a strategy that enables us to construct efficiently a h-
ordering. We summarize its principle in the sequel.

Given a graph signal that provides a set T of m vectors in
R3, a dictionary D = {x′1, · · · , x′p} of p� m vectors is built
by Vector Quantization [19].

Manifold learning by Laplacian EigenMaps is performed on
this dictionary. One starts by computing a similarity matrix KD
that contains the pairwise similarities

KD(i, j) = exp

(
−
‖x′i − x′j‖22

σ2

)
(2)

between all the dictionary vectors x′i. To have a parameter-
free algorithm, we consider σ = max

(x′i,x
′
j)∈D

‖x′i − x′j‖22. The

normalized Laplacian matrix L = I − D
− 1

2

D KDD
− 1

2

D is then
computed with DD the degree diagonal matrix of KD. Then,
Laplacian Eigenmaps manifold learning consists in searching
for a new representation Φ obtained by minimizing

1

2

∑
ij

∥∥Φ(x′i)−Φ(x′j)
∥∥
2
KD(i, j) = Tr(ΦT LΦ) (3)

under the constraint ΦT DDΦ = I. This cost function encour-
ages nearby sample vectors to be mapped to nearby outputs.
The solution is obtained [20] by finding the eigenvectors ΦD
of L. Therefore, the decomposition L = ΦDΠDΦT

D is com-
puted with corresponding eigenvectors ΦD = [Φ1

D, · · · ,Φ
p
D]

and eigenvalues ΠD = diag[λ1, · · · , λp].
This obtained projection operator corresponds to construct-

ing a hD-ordering from the data of the dictionary D and a
new representation hD(x′i) is obtained for each element x′i of
the dictionary:

hD : x′i → (φ1D(x′i), · · · , φ
p
D(x′i))

T ∈ Rp . (4)

where φkD(x′i) denotes the i-th coordinate of the k-th eigen-
vector. Such a strategy of modeling the manifold from a patch
dictionary was also explored in [17]. This correspond to the

construction of the complete lattice (D,≤hD ) with a hD-
ordering, and this ordering is only valid for the set of vectors
of the dictionary. Since we need the complete lattice (T ,≤h),
the reduced dictionary lattice is extended to all the vectors of
the initial lattice T by Nyström extrapolation [21] of hD on
T . To do so, we compute the similarity matrix KDT between
sets D and T and the associated degree diagonal matrix DDT .
The extrapolated eigenvectors are then obtained by

Φ̃ = D
− 1

2

DT KT
DTD

− 1
2

D ΦD(diag[1]−ΠD)−1 . (5)

Finally, the projection operator h : T ⊂ R3 → L ⊂ Rp

on the manifold is defined as h(x) = (φ̃
1
(x), · · · , φ̃

p
(x))T ,

and the complete lattice (T ,≤h) is obtained by using the
conditional ordering on this new representation. Second line of
Figure 1 shows for a given graph signal the learned dictionary,
the learned manifold from the dictionary and the final manifold
by Nyström extrapolation.

III. GRAPH SIGNAL MORPHOLOGICAL PROCESSING

A. Graph signal representation

Once the complete lattice (T ,≤h) is available, a new
graph signal representation can be defined. Let P be a sorted
permutation of the elements of T according to the manifold-
based ordering ≤h, one has:

P = {v′1, · · · , v′m} with v′i ≤h v′i+1,∀i ∈ [1, (m− 1)]. (6)

This can also be written as P = PT with P a permutation
matrix of size m × m. From this ordered set of vectors, an
index graph signal can be defined. Let I : G→ [1,m] denote
this index graph signal. Its elements are defined as:

I(vi) = {k | v′k = f(vi) = vi} . (7)

Therefore, at each vertex vi of the index graph signal I , one
obtains the rank of the original vector f(vi) in P , the set
of sorted vectors. Given (I,P), a new representation of the
original graph signal f is obtained. When a graph signal is
encoded in this way, the information is not directly carried by
I , but is stored in a separate piece of data called a palette: the
set P of sorted vectors. The original graph signal f can be
directly recovered since f(vi) = P[I(vi)] = T [i] = vi. Third
line of Figure 1 shows examples of obtained graph signal
representations for the same graph signal on two different
graphs.

B. Morphological processing of graph signals

Now that a new representation has been proposed to repre-
sent graph signals, we present how morphological processing
tasks can be performed with the latter. The erosion and dilation
of a graph signal f at vertex vi ∈ G by a structuring element
Bk ⊂ G are defined as:

εBk
(f)(vi) = {P[∧I(vj)], vj ∈ Bk(vi)} (8)

δBk
(f)(vi) = {P[∨I(vj)], vj ∈ Bk(vi)} . (9)



f1 : G1 → Rn f2 : G2 → Rn

D hD : D ⊂ Rn → Rp h : T ⊂ Rn → Rp

I1 : G1 → [1,m1] P1 I2 : G2 → [1,m2] P2

Fig. 1. First line: The same graph signal on two different graphs (planar
grid graph and 3D mesh) with m1 = 262144, m2 = 10000. Second line:
the dictionary D with p = 64 colors, the mapping hD (projection shown on
the three first eigenvectors) learned from the dictionary D (dilated 5 times for
visualization purposes), the mapping h (projection shown on the three first
eigenvectors) interpolated to all the vectors of f1. Third line: the index graph
signals I1 and I2 and the associated sorted vectors P1 and P2 for the two
graph signals of the first line.

A structuring element Bk(vi) of size k defined at a vertex vi
corresponds to the set of vertices that can be reached from vi
in k walks:

Bk(vi) =

{
{vj ∼ vi} ∪ {vi} if k = 1

Bk−1(vi) ∪
(
∪∀vl∈Bk−1(vi)B1(vl)

)
if k ≥ 2

(10)
As detailed in [22], the number of vertices in a given k-hop
neighborhood Bk(vi) is highly dependent on the vertex vi, but
the associated erosion and dilation are symmetry preserving
operators. The formulation of the proposed morphological
operators shows that they operate on the index graph signal
I , and the processed graph signal is reconstructed through the
sorted vectors P that represent the learned complete lattice. It
is easy to see that these operators inherit the standard algebraic
properties of morphological operators [23]. From these basic
operators, we can obtain all standard morphological filters for
graph signals such a as openings γBk

(f) = δBk
(εBk

(f)) and
closings φBk

(f) = εBk
(δBk

(f)).

IV. GRAPH SIGNAL EDITING APPLICATIONS

To illustrate the benefit of our approach, we provide several
examples of its use for editing applications of graph signals.
We consider two different types of graphs signals: color
vectors assigned to 8-connected grid graphs or triangulated
meshes [24]. The first type of graph signal corresponds to
the classical case of 2D color images, whereas the second
case corresponds to colored 3D meshes. This last type of
graph signal has recently emerged as a new imaging modality
with the advent of low-cost 3D color scanners that enable to
simultaneously acquire both the 3D coordinates and color of

an object. Very few works have considered editing such a type
of graph signal [25].

We start by providing graph signal editing for the case
of colored 8-connected grid graphs. Figure 2 presents an
example of morphological image filtering with an opening by
reconstruction γrecBk

with a k = 2-hop as structuring element.
Such a processing performs an iterative geodesic dilation start-
ing from an erosion and enables to reconstruct the contours
of the objects that have not been totally removed by the
erosion [26]. As it can be seen, our method produces excellent
smoothing results with flat regions produced when similar
colors occur while preserving the important object edges.
In addition, no blurring is present on the object boundaries.
This last property is essential for structure-preserving filtering
and is a consequence of the vector-preserving property of
morphological filter. This shows the interest of morphological
operators for editing applications, that we investigate in the
sequel.

Original image Filtering result

Fig. 2. Morphological image filtering (opening by reconstruction on a 2-hop),
see text for details.

Such smoothed graph signals can be used for non-
photorealistic abstraction with simultaneous detail flattening
and edge emphasizing. To do so, the graph signal is strongly
smoothed with an Open Close Close Open (OCCO) filter
defined as pixel wise average of open-close and close-open



[11]:

OCCOBk
(f) =

γBk
(φBk

(f)) + φBk
(γBk

(f))

2
(11)

From the smoothed image, edges are extracted, enhanced and
composed back in the smoothed graph signal to augment the
visual distinctiveness of different regions. Figure 3 present
two examples of obtained results. Our proposed morphological
filtering effectively removes texture from structure and the
extracted structure can be used to obtain a non-photorealistic
rendering of the scene.

Original image Abstraction result

Fig. 3. Morphological image abstraction (OCCO on a 2-hop), see text for
details.

Figure 4 presents a first approach towards detail manipula-
tion. A morphological contrast mapping is iteratively applied
two times within a 2-hop. This enhances the local contrast of
the graph signal f by sharpening its edges with the following
transformation, similarly to a shock filter:

κBk
(f)(vi) =

{
δBk

(f)(vi) if ∆1
Bk

(f)(vi) ≤ ∆2
Bk

(f)(vi)

εBk
(f)(vi) if ∆1

Bk
(f)(vi) > ∆2

Bk
(f)(vi)

(12)
with

∆1
Bk

(f)(vi) = ‖f(vi)− δB(f)(vi)‖2
∆2

Bk
(f)(vi) = ‖f(vi)− εB(f)(vi)‖2

(13)

The obtained processed images can also be regarded as
another way of getting image abstraction results by enhancing
the local contrast with a sharpening of edges.

Usually, for detail manipulation, edge-aware transforms are
considered [4]. We adopt the the strategy of [1] that consists
in decomposing an image into a base layer and several detail
layers. We propose the following multi-scale morphological
decomposition of a graph signal:

f−1 = f ,

fi = OCCOBk−i
(fi−1), i ≥ 0,

di = di−1 − fi, i ≥ 0,

(14)

Original image Contrast mapping result

Fig. 4. Morphological image contrast mapping (2 iterations of a contrast
mapping on a 2-hop), see text for details.

where k gives the number of scales and Bk−i is a sequence of
structuring elements of decreasing sizes with i ∈ [0, k−1]. In-
deed, it is clear that in order to extract the successive layers in a
coherent manner, the sequence of scales should be decreasing
and therefore the size of the structuring element decreases,
expressed by Bk−i. In terms of graph signal decomposition,
this assumption has the following simple interpretation: as
the process evolves, the successive steps extract more details
from the original graph signal (similarly as [25]). The layer
f0 should be interpreted as a first sketch of the f , while the
residuals di are to be understood as detail layers. The graph
signal can then be represented by:

(∀k ≥ 0) f =

k−1∑
i=0

fi + dk−1. (15)

The fi’s thus represent different layers of f captured at
different scales. In Figure 5, we apply three levels of de-
composition (k = 3). The image is reconstructed from the
obtained decompositions with specific coefficients for each
layer. The base layer is kept unchanged but the two detail
layers are boosted with factors 2 and 3. One can see that the
image is recomposed without the presence of halos since the
decomposition is a vector-preserving one. This shows that our
framework can also be advantageously used for such edge-
aware image detail manipulation, and this has never been
explored before with morphological methods.

Up to now, we have presented results for graph signals
that correspond to colors defined on grid-graphs, the classical



Fig. 5. Morphological detail manipulation (3 levels of decomposition with
a OCCO filter of decreasing size with an initial 3-hop size - reconstruction
coefficients of each layer are 1, 2 and 3), see text for details.

case of images. Now we show results for much challenging
data: 3D colored meshes. Figure 6 presents results for detail
manipulation on two different meshes. The first (the horse)
was obtained by using a 3D color scanner and the second (the
fire hydrant) by photogrammetry. To manipulate the details of
these mesh and modify the colors of the vertices, we consider
this time a toggle contrast mapping filter:

τBk
(f)(vi) =


δBk

(f)(vi) if ∆Bk
(f)(vi) > 0

εBk
(f)(vi) if ∆Bk

(f)(vi) < 0

f(vi) otherwise
(16)

with the morphological Laplacian defined as

∆Bk
(f)(vi) = δBk

(f)(vi)− 2f(vi) + εBk
(f)(vi) . (17)

We applied 5 iterations of such a contrast enhancing filter on a
2-hop. As it can be seen, the colored mesh has been simplified
and the contrast around edges enhanced. This provides a way
of manipulating such graph signals to enhance and obtain an
abstracted result of a raw 3D scanning.

Original Toggle contrast mapping

Fig. 6. Morphological colored mesh toggle contrast mapping (5 iterations
of a toggle contrast mapping on a 2-hop), see text for details.

Finally, as for images, detail manipulation can be performed
by iterative signal decomposition into a base and several detail
layers. We consider, as for images, a morphological OCCO
filter as a basis for the decomposition and decompose the color
mesh graphs signal on 4 levels. The signal is then recomposed
with specific coefficients for each layer. Figure 6 presents an
exemple of such detail manipulation. For colored 3D meshes,
this enables to manipulate the colors of the mesh vertices to



sharpen it. Finally, it is important to note that, it is the first
time that a morphological method is proposed to sharpen 3D
colored meshes and this shows the innovation of our proposal.
The potential of this method is huge since many 3D scanners
now also acquire a color per vertex, but this information is
never used to manipulate the details of the point cloud.

Fig. 7. Morphological colored mesh detail manipulation (4 levels of
decomposition with a OCCO filter of decreasing size with an initial 4-hop
size - reconstruction coefficients of each layer are 1, 1.25, 1.5 and 1.75), see
text for details.

V. CONCLUSION

This paper has detailed an approach for the morphological
editing of graphs signals. To address this, a new graph signal
representation has been proposed in the form of an ordering
of vectors and a graph signal index. The ordering of vectors
is interpreted as the construction of a complete lattice and a
manifold-based approach is proposed towards this. A strategy
combining dictionary learning, manifold learning and out of
sample extension has been devised to learn the manifold used
to construct the complete lattice of color vectors. From the
new representation, morphological operators that operate on
graphs are formulated and their use for graphs signal editing
tasks has been studied. In particular, morphological multi-
scale decomposition of graph signals have been proposed for
detail manipulation. In future works, we will investigate which
morphological filter is best suited to produce the different
layers of the proposed morphological multi-scale graph signal
decomposition. Indeed, many potential morphological filters
can be considered (opening by reconstruction, OCCO, lev-
eling, alternate sequential filter, etc.) and this needs to be
investigated (similarly to what has been done in [27], [28]
for images).

ACKNOWLEDGMENT

This work received funding from the Agence Nationale de
la Recherche, ANR-14-CE27-0001 GRAPHSIP.

REFERENCES

[1] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Trans. Graph., vol. 27, no. 3, 2008.

[2] Qi Zhang, Xiaoyong Shen, Li Xu, and Jiaya Jia, “Rolling guidance
filter,” in ECCV, 2014, pp. 815–830.

[3] H. Cho, H. Lee, H. Kang, and S. Lee, “Bilateral texture filtering,” ACM
Trans. Graph., vol. 33, no. 4, pp. 128:1–128:8, 2014.

[4] E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware
image and video processing,” ACM Trans. Graph., vol. 30, no. 4, pp.
69, 2011.

[5] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient
minimization,” ACM Trans. Graph., vol. 30, no. 6, pp. 174, 2011.

[6] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,”
ACM Trans. Graph., vol. 22, no. 3, pp. 950–953, 2003.

[7] C. Ronse, “Why mathematical morphology needs complete lattices,”
Signal Processing, vol. 21, no. 2, pp. 129–154, 1990.
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