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Abstract. Necking is an instability phenomenon observed in round bars under tensile loading and
has been investigated in numbers of works. In the present work, it is modeled within the framework of
finite rate-independent plasticity. The theory is based on thermodynamical foundations for standard
materials1 and results in a total Lagrangian formulation for finite plasticity. The total strain is
decomposed additively according to Green and Nagdhi2. The yield function is of von Mises type and
depends on the symmetric Piola-Kirchhoff stress tensor. Considering nonlinear isotropic hardening,
the hardening law is written in the form of an exponential function. However, here it relates
Lagrangian (material) variables, namely the Lagrangian hardening variable and the Lagrangian
effective plastic strain. The local integration is carried out using the fully implicit integration scheme
(backward Euler difference scheme), which ensures both the stability and the symmetry of the
consistent tangent modulus.

The numerical implementation is simple as it works with classical finite elements. For the necking
problem considered herein the proposed algorithm is robust enough to pass through the first critical
point with no use of line-search.

The numerical computations are performed both on shear free end bars including an initial small
geometrical defect and geometrically perfect bars with gripped ends. The derived load-displacement
curve compares very well with those obtained in the literature, although the material considered and
particularly the formulations adopted are quite different.
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1  INTRODUCTION

Necking is an instability phenomenon observed in round bars under tensile loading and has
been investigated in numbers of works for its modeling and numerical computation. The
pionnering papers dated back to the 70's and were due to Needleman3, Mc Meeking and
Rice4, Argyris and Doltsinis5. The obtained results were rather limited, in particular the
computed deformed meshes did not resemble experimental observations. Besdo6 gave first a
realistic necking configuration, he also seems to be the only one to solve the problem with a
total Lagrangian formulation in the strain space for finite plasticity. More recent studies using
other formulations have been developed by Simo7-9 and Brünig10, providing further results on
necking. The numerical solution by Simo necessitates mixed finite elements, moreover the
line search method is used to get across the critical point.

Whereas most papers considered a cylindrical circular bar with both ends assumed to be
shear free, Needleman3 dealt with two types of boundary conditions, shear free ends and
cemented to rigid grips ones. Brünig10 went further by also considering the whole tensile
specimen with shear free stiff heads and then compared the results corresponding to the three
cases.

In the present work, necking is studied within the framework of finite rate-independent
plasticity. The theory is based on thermodynamical foundations for standard materials1 and
results in a total Lagrangian formulation for finite plasticity. The total strain is decomposed
additively according to Green and Nagdhi2. The yield function is of von Mises type and
depends on the symmetric Piola-Kirchhoff stress tensor. Considering nonlinear isotropic
hardening, the hardening law is written in the form of an exponential function as in
References 7 to 9. However, here it relates Lagrangian (material) variables, namely the
Lagrangian hardening variable and the Lagrangian effective plastic strain. The local
integration is carried out using the fully implicit integration scheme (backward Euler
difference scheme), which ensures both the stability and the symmetry of the consistent
tangent modulus.

2  THEORETICAL BACKGROUND

Below we summarize the total Lagrangian formulation which is derived from
thermodynamical foundations for standard materials1. The initial configuration is chosen as
the reference one and the equations of the problem will be expressed using Lagrangian
variables relative to this configuration.

The Green strain tensor defined in terms of the displacement U
�

)Ugrad.UgradUgradUgrad(
2
1E TT ++= (1)

is decomposed additively as
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According to Naghdi et al2,11, the so-called plastic strain 
p

E  in Equation (2) is assumed to

be symmetric and objective, with the result that the elastic strain 
e

E  is symmetric too.
The equilibrium equation reads

0fdiv oo

�

=ρ+Π (3)

where Π  is the first Piola-Kirchhoff stress tensor. The stress Π  is not symmetric contrary to
the second Piola-Kirchhoff stress tensor Σ  defined by Σ=Π .F , where F  is the deformation
gradient.

The free energy per unit volume w is assumed to be the sum of the elastic energy we -

function of the elastic strain 
e

E - and the hardening energy wα - function of one scalar
hardening variable denoted by α

)(w)E(w),E(w
e

e
e

α+=α α (4)

Here we choose the elastic energy as a quadratic function of the elastic strain 
e

E , and the
hardening energy containing exponential terms
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where J~I~2D~ λ+μ=  ( I~  is the fourth-order identity tensor, ijji eeeeI~ ⊗⊗⊗= , IIJ~ ⊗= ,

I  the second order identity tensor) denotes the isotropic elasticity tensor and the coefficients
ci are material constants.

The state laws then yield the stress-strain relation and the nonlinear hardening law relating
the hardening variable A to its conjugate α

)EE(:D~E:D~

E

w pe

e −==
∂

∂=Σ (7)

))cexp(1)(cc(ccwA 30120 α−−−+α+=
α∂

∂= (8)

The yield function f depending on the second Piola-Kirchhoff Σ  and the hardening
variable A is of von Mises type
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where S  is the deviator of stress Σ  and σo the initial yield stress. The evolution laws provide
the plastic strain and hardening variable rates

Σ∂

∂λ= fE
.
p

�

A
f.

∂
∂λ=α− � (10)

where the plastic multiplier λ�  satisfies λ� ��� ��� ��Σ ,A) = 0 and 
.

:f Σ
Σ∂

∂
���� 	
��
����� λ� =0.

Since the plastic strain 
p

E  is a Lagrangian variable, its rate is obtained by ordinary
differentiation with respect to time t. There follows from relations (9)-(10) that the hardening
rate is equal to the Lagrangian equivalent plastic strain rate :

.
p

.
p

3
2 E:EP ==α ��

(11)

Relations (1)-(3), (7)-(10) form a system of 30 scalar equations with 30 scalar unknowns

U , E , 
e

E , 
p

E , Σ , A, α, and λ� .

3 NUMERICAL IMPLEMENTATION

The above stated elastoplastic problem is now numerically solved using the weak
formulation, where the equilibrium equation (3) is replaced by the virtual power principle

0dSN..UdU.fdUgrad:,U oS

*
o

*
ooo

*T

ooo

=Π−Ωρ−ΩΠ∀ ∫∫∫ ΩΩ

∗ ����
(12)

where Ωo and So denote the reference initial domain and boundary of the body, respectively.
The nonlinear matrix system resulting from the discretization of the virtual power principle

is solved by a time-stepping incremental procedure. The solution is computed at every time
step by using the standard finite element method combined with a Newton type iterative
scheme. Within each iteration, the local integration of the elastoplastic equations set (7)-(10)
is carried out in order to compute the stress Π  (or Σ ) for a given strain increment EΔ  and to
build up the internal force vector. The integration procedure is the same as in small strains,
the rate equations are discretized using the fully implicit integration scheme (backward Euler
scheme) and we get the correction for the plastic multiplier at each local iteration

h3

A
S

S:S
2
3

1noE

E
E

+μ

−σ−

+λΔ−=λΔΔ
−

(13)
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where h stands for the material property c2 in (6), μ is the shear modulus, 
E

S  the deviator of

the elastic trial stress E:D~1n
E

Δ+Σ≡Σ − . The subscript (n-1) denotes known quantities at the
previous time step. Then, the plastic multiplier increment Δλ obtained at convergence of the
local integration allows us to update state variables in the classical way for the herein
considered nonlinear isotropic hardening model.

We also compute the consistent tangent modulus E/ ∂Σ∂  at each iteration by

)
S

SS
3
J~I~(

S2
34

S

SS
h3
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∂
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(14)

Eventually, the consistent tangent tensor F/ ∂Π∂  entering in the construction of global
structural tangent matrix is derived from tensor E/ ∂Σ∂  according to the following
proposition.

Proposition. By using an appropriate change of variables, the following symmetry condition
can always be satisfied for expression of Σ  :

∀ T  (not necessarily symmetric), )at tstate,T()at tstate,T( 1n

T

1n −− Σ=Σ (15)

then one has

T
T F.

E
.F).I~(

F ∂

Σ∂+Σ=
∂

Π∂ (16a)

In Cartesian co-ordinates, relation (16a) reads :

ln
mjkn

imkjil
ijkl

F
E

F
F

⎟⎠
⎞⎜⎝

⎛
∂

Σ∂+Σδ=⎟⎠
⎞⎜⎝

⎛
∂

Π∂ (16b)

4  NUMERICAL RESULTS

The numerical computations are performed on a circular cylindrical bar of initial length
2�0=48mm and of initial radius r0=4mm. The Young modulus is E=2.1011Pa, the Poisson ratio
ν=0.3 and the initial yield stress σ0=400MPa. The coefficients of the hardening law (8) are so
adjusted that the numerically derived load-displacement curve best approximates the
experimental curve of a given standard steel (XC48C) : c0=0 (no initial hardening),
c1=220MPa, c2=-560MPa and c3=15.

The ends of the bar remain shear free so that the radial displacement there is not prevented,
and the onset of necking is due to an initial small geometrical defect. Here we consider an
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axisymmetric imperfection in shape of a full cosine wave with an amplitude of 1% of the
initial radius.

Because of obvious symmetry, we only have to consider one quarter of the specimen the
length of which is �0=24mm. The numerical computations are carried out using two
axisymmetric meshes :

(i) A coarse mesh with 125 eight-node isoparametric quadrilaterals, figure 1a.
(ii) In order to check the sensitivity of the numerical results to mesh refinement, another

computation is performed over a finer mesh with 400 elements, figure 1b.
The results corresponding to the two meshes are found to be indistinguishable.
The bar is subjected to axial end displacements corresponding to a maximum relative

elongation of 23% attained after 25 time steps. On average 4 iterations are necessary to satisfy
the convergence tolerance of 1.e-6, with a peak of 8 iterations just after going through the
limit point on the load-displacement curve shown in Figure 2.

a. Mesh no. 1. b. Mesh no. 2.

Figure 1. Undeformed and deformed meshes.
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The load-displacement curve representing the tensile load F versus the axial end
displacements UB is shown in Figure 2. The tensile load, after reaching its maximum value
equal to 1.48 times the elastic yield force, decreases when the necking takes place. For a
relative elongation of 23%, it falls down to 76% of its maximum value.
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Figure 2. Load-displacement curve.

In order to emphasize the role of the geometrical imperfection we take up again the
computations over a perfectly cylindrical bar. Obviously, the bar remains now cylindrical
along the whole deformation process and the necking never takes place. The corresponding
tensile force plotted in Figure 2 attains its maximum value later than the imperfect bar and
very slightly decreases afterwards.

Now let us look at the change in the radius of the central cross-section of the bar which is
an essential indicator of the necking. At the beginning, the deformation is almost
homogeneous and the bar remains cylindrical. However, beyond a certain elongation the
radial displacement becomes suddenly more pronounced in the central region of the bar, and
eventually the high concentration of strain there leads to necking phenomena.
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The curve in Figure 3 giving the central cross-section radius versus elongation is tangent as
expected to that of the geometrically perfect bar, which is virtually a straight line. Beyond an
engineering axial strain of 10%, the former rapidly deviates from the latter : at an elongation
of 23%, the current radius drops to about 36% of its initial value. This behaviour is very close
to the numerical and experimental results depicted by Simo7, although the material considered
and particularly the formulations adopted in the quoted reference and the present work are
quite different. However, the curve shown in Figure 3 is rather diferent from that computed
by Brünig10 (note that the change in cross-section area is reported in Reference 10 instead of
the change in cross-section radius).

Bar with 1% imperfection

Geometrically perfect bar
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Figure 3. Necking radius vs. axial elongation.

So far the ends of the bar are shear free and the onset of necking is due to an initial small
geometrical defect, as most commonly modeled in the literature. It should be noted that
Needleman3 and Brünig10 also considered another manner to simulate the necking, by taking a
geometrically perfect bar with its ends cemented to rigid grips. For comparison, we resume
the numerical computations with the new geometry and boundary conditions by applying the
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presented formulation herein. The corresponding results show that the deformed
configurations and the load-displacement curves are analogous to those of the imperfect bar.
In contrast, the change in the cross-sectional radius in the necked region is rather different : in
the case of the perfect bar with gripped ends, the change in the central cross-section radius is
slower on the end part of the curve : at an elongation of 23%, the radius is equal to 44% of its
initial value instead of 36% as in the case of shear free ends.

5  CONCLUSIONS

It is the purpose of this work to show the abilities of the proposed formulation to deal with
necking instability problems. Thoroughly expressed in terms of Lagrangian variables, it
automatically satisfies the material frame indifference and requires no objective rates for the
constitutive equations. The numerical implementation is simple as it works with classical
finite elements. The same computer program can be used to solve different types of problems
in finite displacements or finite plastic strains, with or without instability. In particular, it
allows to study buckling and advanced post-buckling of structures of beam, plate or shell
type. For these problems as for the necking one the proposed algorithm is robust enough to
pass through the first critical point with no use of line-search.

REFERENCES

[1] Halphen B., Nguyen Q. S., "Sur les matériaux standard généralisés", J. de Mécanique,
14, 1, 39-63, (1975).

[2] Green A. E., Naghdi P. M., "A general theory of an elastic-plastic continuum",
Archive for Rational Mechanics and Analysis, 18, 251-281, (1965).

[3] Needleman A., "A numerical study of necking in circular cylindrical bars", J. Mech.
Phys. Solids, 20, 111-127, (1972).

[4] Mc Meeking R. M., Rice J. R., "Finite-element formulations for problems of large
elastic-plastic deformation", Int. J. Solids & Struct., 11, 601-616, (1975).

[5] J. H. Argyris, J. St. Doltsinis, "On the large strain inelastic analysis in natural
formulation. Part I : quasistatic problems", Comp. Meth. Appl. Mech. Eng., 20, 213-
251, (1979).

[6] Besdo D., "Total lagrangian strain-space-representation of the elasto-plasticity of
metals", pp. 1357-1364, in Proceedings of the 2nd Int. Conf. on Constitutive Laws for
Eng. Materials : Theory and Applications, vol. II, ed. by C.S. Desai et al, January 5-8,
1987, Tucson, Arizona, USA, (1987).

[7] Simo J. C., "A framework for finite strain elastoplasticity based on maximum plastic
dissipation and the multiplicative decomposition. Part I : Continuum formulation",
Comp. Meth. Appl. Mech. Eng., 66, 199-219, (1988); "Part II : Computational
aspects", Comp. Meth. Appl. Mech. Eng., 68, 1-31, (1988).

9



[8] Simo J. C., "Algorithms for static and dynamic multiplicative plasticity that preserve
the classical return mapping schemes of the infinitesimal theory", Comp. Meth. Appl.
Mech. & Engng., 99, 61-112, (1992).

[9] Simo J. C., Hughes T. H. R., Computational Inelasticity, Springer, (1998).

[10] Brünig M., "Numerical analysis and modeling of large deformation and necking
behavior of tensile specimens", Finite Elements in Analysis and Design, 28, 303-319,
(1998).

[11] Casey J., Naghdi P. M., "A remark on the use of the decomposition F=FeFp in
plasticity", J. Appl. Mech., 47, 672-675, (1980).

10




