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Abstract We propose a new variational framework to

remove random-valued impulse noise from images. This

framework combines, in the same energy, a nonlocal Lp

data term and a total variation regularization term. The

nonlocal Lp term is a weighted Lp distance between

pixels, where the weights depend on a robust distance

between patches centered at the pixels. In a first part,

we study the theoretical properties of the proposed en-

ergy, and we show how it is related to classical denois-

ing models for extreme choices of the parameters. In a

second part, after having explained how to numerically

find a minimizer of the energy thanks to primal-dual

approaches, we show extensive denoising experiments

on various images and noise intensities. The denoising

performance of the proposed methods is on par with

state of the art approaches, and the remarkable fact
is that, unlike other successful variational approaches

for impulse noise removal, they do not rely on a noise

detector.
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1 Introduction

Image denoising is one of the most studied inverse prob-

lems in image processing. Given a noisy version v of an

original image f , image denoising aims at recovering

f from the degraded observation v. In full generality,

this inverse problem can only be managed thanks to

well chosen priors on the noise distribution or on the

regularity of the original image.

The different types of noise encountered in image

processing result from random phenomena happening

during acquisition and transmission steps of a digital

image. In this paper, we focus on the case of random-

valued impulse noise. Assuming that the original un-

observed image f : Ω → R is defined on a discrete

rectangular domain Ω, the degraded image v can be

written

∀i ∈ Ω, v(i) = (1− b(i))f(i) + b(i)w(i),

where all the b(i) and w(i) are realizations of indepen-

dent variables, following respectively a Bernoulli distri-

bution of parameter ρ ∈ [0, 1] (called the intensity of

the impulse noise) for the b(i), and a uniform distribu-

tion on the range of all possible gray-levels Γ = [γ0, γ1]

for the w(i). Random-valued impulse noise can be due

to errors in the transmission process (for instance with

satellite images that are transmitted to the ground) or

to errors in the acquisition process (when some captors

are deficient or “jump” as it sometimes the case in re-

sistivity borehole images, producing therefore random

measurements).

Several strategies have been developed over the

years to remove random-valued impulse noise. The sim-

plest methods rely on the median and its extensions [51,

37], and modify all pixels indifferently. More evolved
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methods usually make use of a well chosen noise detec-

tor to avoid oversmoothing non corrupted pixels, and

combine it with a restoration method restricted to the

set of corrupted pixels. The restoration approach can

be based on filtering [25] or variational principles [47,

21], can be patch-based [56,31,18] or combine the last

two approaches via dictionary learning [55,60], to name

just a few. Several recent approaches are also dedicated

to the mixture of Gaussian and impulse noise [33,56,

31,55,18]. In this paper, we propose to study a vari-

ational approach combining the total variation with a

well designed non local “generalized” median.

Variational approaches. Variational methods for de-

noising an image v usually consist in the following op-

timization problem:

argmin
u∈RΩ

Edata(u, v) + λEreg(u),

where Edata is related to the noise distribution, Ereg

comes from a prior assumption on the solution u (and

is thus related to the image formation model) and λ

is a regularization weight balancing both terms. In the

case of impulse noise reduction, a natural choice for

Edata should rely on a L0 term. In order to keep a con-

vex formulation, it is usually advocated to rely on a

L1 fidelity term instead. One of the first attempts to

remove impulse noise with a L1 fidelity term is due to

Nikolova [47] in 2004. She proposes to solve the follow-

ing minimization problem

argmin
u∈RΩ

‖u− v‖1 + λ
∑
i

φ(∇u(i)),

where φ is a convex and edge-preserving function, and

where ‖u− v‖1 =
∑
i |u(i) − v(i)|. The specific case of

a L1 norm for φ yields the famous (anisotropic) TV-L1

model

uTV-L1 ∈ argmin
u∈RΩ

‖u− v‖1 + λTV(u),

with TV(u) =
∑
i ‖∇u(i)‖1. This model, introduced in

signal processing by Alliney [1] in 1992 and explored

by Nikolova in image processing [46], has been studied

extensively in the last fifteen years, both from the the-

oretical and numerical points of view [22]. Let us also

mention that the same model can also be studied with a

more isotropic total variation term, replacing ‖∇u(i)‖1
by ‖∇u(i)‖2 in the previous sum: See for instance the

paper of Condat [15] in which the definition of the total

variation for discrete images is discussed.

If the TV-L1 model performs well on edges and is

simple to use in practice, it does not recover well tex-

tured areas, and it tends to produce piecewise constant

regions in flat areas, a phenomenon which is known

as the famous staircasing effect. Different directions

have been proposed to improve this model for impulse

noise removal. A first possibility is to reduce the num-

ber of pixels to be restored by relying on noise de-

tectors. In 2004, Chan et al. [9] observe that the re-

sults can be widely improved by first detecting cor-

rupted pixels and restricting the regularization to the

detected locations. Several impulse noise detectors have

been developed in the literature for this detection task,

such as the Adaptive Center-Weighted median Filter

(ACWMF) [12], the Rank Ordered Absolute differences

(ROAD) [25] or the Rank Ordered Logarithmic Dif-

ferences (ROLD) [20]. As pointed out by Duval in his

PhD thesis [22], the Rank Ordered Absolute Differences

(ROAD) usually yields the best detection performance

in terms of stability and sensitivity to outliers.

Another direction of improvement, proposed by Du-

val in [22], consists in spatially adapting the value of λ.

Duval proposes to use large values of λ for pixels de-

tected as noisy, and very small values for the other pix-

els. The Total Variation hence plays its regularization

role only on pixels that are suspected to be corrupted.

As mentioned before, the TV-L1 model can actually

be seen as a convex relaxation of the nonconvex TV-L0

model [59]

uTV-L0 ∈ argmin
u∈RΩ

‖u− v‖0 + λTV(u),

where ‖u− v‖0 =
∑
i 1u(i) 6=v(i) counts the nonzero en-

tries of u − v. This model ensures sparsity but the

minimization of this nonconvex, nonsmooth problem is

known to be NP-hard [45]. Various solutions have been

investigated to compute good approximate or exact so-

lutions: convex relaxation [53,11] (hence the L1 mini-

mization problem), greedy algorithms such as Match-

ing Pursuit and its variants [43], or continuous but non-

convex approximations such as the Log-Sum penalty [5],

the Smoothly Clipped Absolute Deviation [23], or the Lp

norms, 0 < p < 1 [24]. The latter problems are still not

convex, but a global minimizer can be computed using

graph-cut techniques [38,34] or functional lifting [49,

50]. In the context of impulse noise removal, the TV-L0

model is studied by the authors of [59], who find a local

minimum of the problem with a proximal ADMM. In a

similar direction, the author of [57] proposes a formu-

lation which finds simultaneously the damaged pixels

and the restored image, with a TV data term on the

image u, a sparsity L0 term on the set of noisy pixels

and a quadratic data term on undamaged pixels.

Patch-based approaches. TV regularization works well

to reconstruct an image consisting of smooth regions
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and sharp edges, but it fails on fine textures and image

details. In contrast, nonlocal approaches are very effec-

tive on repetitive patterns. These methods, introduced

about ten years ago, led to very significant improve-

ments in solving ill-posed inverse problems by combin-

ing repeated structures in images. The first denoising

algorithms based on this idea appeared in 2005 with

the NL-means [4] on the one hand, and UINTA fil-

tering [2] and the DUDE algorithm [44] on the other

hand. These nonlocal approaches have inspired in the

last ten years a considerable number of works in im-

age denoising, most of them being focused on Gaussian

additive noise [35,36,39,61,58,54]. An enthralling and

enlightening review of the recent advances on the sub-

ject is proposed in [40]. Different extensions to other

noise models have been proposed, for instance in [16,

17].

The specific adaptation to impulse noise is the sub-

ject of several recent works. The most direct adapta-

tion is a similar formulation to the NL-means developed

in [10], leading to a Non-Local-Median formulation, so-

lution of

uNL-Med ∈ argmin
u∈RΩ

∑
i∈Ω

∑
j∈Ω

wi,j |u(i)− v(j)|,

where the weights wi,j reflect the similarity between

two patches centered at v(i) and v(j).

Several other papers adapt the NL-means approach

to impulse noise removal. For instance in [41] and [31],

the authors modify the trilateral filter of [25] and obtain

a patch-based weighted means filter where the weights

depend on the ROAD detector, the distance between

the pixels and the similarity between patches (that is a

L2 distance weighted by the detector ROAD). In [56],

the authors introduce a new “measure of outlyingness”

and cluster pixels in groups depending on this measure.

They rely on this measure to develop a coarse to fine

strategy for impulse noise detection and then apply the

NL-means using a “reference image”. In [18], Delon and

Desolneux propose a nonlocal approach that uses the

maximum likelihood estimator instead of the mean or

the median, and which measures the similarity between

neighboring pixels thanks to a robust distance between

patches. This method, called PARIGI, has good denois-

ing performance (to test it online, see [19]) and does not

use any noise detector.

Hybrid methods. The idea to combine nonlocal ap-

proaches and variational methods has been the subject

of several works, often referred to as hybrid methods.

An interesting review of such methods can be found in

Section 6 of [52].

Inspired by the success of the NL-means algorithm

for Gaussian noise removal, several variational interpre-

tations of nonlocal methods have been proposed in the

past ten years. In [26], Gilboa and Osher consider the

nonlocal smoothness term
∑
i∈Ω

∑
j∈Ω

(u(i)−u(j))2ωi,j , and

extend it to define the nonlocal total variation (NLTV)

in [27]. It is then used to define a nonlocal version

of the classical ROF (Rudin-Osher-Fatemi) model. In

[32], Huang et. al use a nonlocal low rank regularizer

in the regularization term to exploit the nonlocal self-

similarity of natural images. In an orthogonal direction,

Sutour et al. [52] propose a model where the nonlocality

is introduced in the data term, while the regularization

term is the total variation. This model is given by the

energy

ERNL2(u) =
∑
i∈Ω

∑
j∈Ω

wi,j(u(i)− v(j))2 + λTV(u),

where the weights are the nonlocal weights of NL-

means. This is therefore equivalent to an adaptive TV

regularization of the NL-means functional to restore im-

ages corrupted by Gaussian noise. The same authors

propose a more general framework where the weighted

L2 term is replaced by the negative log-likelihood of

the true pixel value given the observed noisy value, and

their framework then applies to various noise models

belonging to the exponential family: Gaussian, Gamma,

Poisson, etc. Nonetheless, the impulse noise model re-

quires a specific framework.

Contributions. In this paper, we explore strategies in-

spired by the recent work [52] to remove random-valued

impulse noise from images. While some of the methods

presented above [27,32] use nonlocal regularizers, we

propose here to keep a classic TV regularization term

and to express the nonlocality in the data fidelity term

of the energy. Our model can be written as minimizing

the energy

ERNLp(u) =
∑
i∈Ω

∑
j∈Ω

wi,j |u(i)− v(j)|p + λTV(u), (1)

with p > 0, and where the wi,j are patch-based weights

that measure the similarity between the patches cen-

tered respectively at i and j. We discuss several pos-

sible choices for the weights and for the power p, and

we study the theoretical properties of the proposed en-

ergy. We also show which algorithms can be developed

to find a minimizer of ERNLp. Finally, we end with ex-

tensive experiments to show the performance and the

limits of this proposed hybrid model. Let us empha-

size that, unlike state-of-the-art impulse noise removal

methods, this approach does not rely on any impulse

noise detector.
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2 A common variational framework

In this section, we discuss some of the theoretical prop-

erties of the energy ERNLp and its possible links with

similar energies.

2.1 The model: The Regularized

Non-Local-Lp-Regression

Let v : Ω → R denote the noisy image. We propose here

to study the hybrid model given by the energy (1).

where λ ≥ 0 and where the weights wi,j are positive,

but not necessarily normalized. These weights measure

a “similarity” between the pixels i and j. The differ-

ent possible choices for these weights will be discussed

in details in the following section. For this section, we

assume that the weights are fixed.

When p ≤ 1, the energy might admit several min-

ima. In the following, we will denote by uRNLp one of

the minimizers

uRNLp ∈ argmin
u∈RΩ

ERNLp(u).

2.1.1 Case λ = 0 (NLp-Regression)

Let us first notice that if we take λ = 0, then the min-

imizers uNLp of ERNLp satisfy

uNLp ∈ argmin
u∈RΩ

∑
i∈Ω

∑
j∈Ω

wi,j |u(i)− v(j)|p.

The complete energy ERNLp is hence called the “Reg-

ularized Non-Local-Lp-Regression” energy, the regular-

ization being performed thanks to the additional Total

Variation term λTV(u).

When p = 1, the Non-Local-Lp-Regression solutions

are given by usual median values:

∀i ∈ Ω, uNL1(i) = uNL-Med(i)

= Median{(v(j), wi,j), j ∈ Ω}.

Here, assuming the xj are increasingly ordered, the no-

tation Median{(xj , pj), 1 ≤ j ≤ J} corresponds to any

value y in the interval [xj0 , xj0+1] where j0 is such that∑j0
j=1 pj ≤

1
2

∑J
j=1 pj ≤

∑j0+1
j=1 pj . The solution uNL1

turns out to be exactly the Non-Local-Median intro-

duced in [10].

When p = 2, the NL2-Regression is simply the

weighted mean, and therefore the solutions are given

by

∀i ∈ Ω, uNL2(i) = Mean{(v(j), wi,j), j ∈ Ω}

=

∑
j wi,jv(j)∑
j wi,j

= uNL-Means(i),

and turns out to be exactly the solution computed by

the NL-means algorithm, for the appropriate choice of

the weights wi,j [4].

When p = 0, the solutions are given by the modes

of the set of values v(j), weighted by the values wi,j ,

∀i ∈ Ω, uNL0(i) = Mode{(v(j), wi,j), j ∈ Ω}.

Here, the notation Mode{(xj , pj), 1 ≤ j ≤ J} means

the value xj0 such that pj0 is the max of the pj . Such a j0
is not necessarily unique. This mode estimator is closely

related to the method developed in the patch-based ap-

proach PARIGI [18]. Indeed, the authors of PARIGI es-

timated a denoised value at pixel i as being the mode

of the empirical histogram of the values v(j) (only the

n values with highest weights wij were kept), convolved

with the probability density of the noise model (a mix-

ture of uniform and Gaussian law). Here, in the NL0

approach, the framework is a bit different: the weights

wij are taken into account, and there is no convolution

with a parametric distribution.

2.1.2 RNLp or NLp-TV?

The authors of [52] consider the minimization problem

uRNL2 = argmin
u∈RΩ

ERNL2(u)

= argmin
u∈RΩ

∑
i∈Ω

∑
j∈Ω

wi,j(u(i)− v(j))2 + λTV(u).

An elementary computation shows that this solution

can also be written as

uRNL2 = argmin
u∈RΩ

ENL2-TV(u)

= argmin
u∈RΩ

∑
i∈Ω

wi (u(i)− uNL2(i))
2

+ λTV(u),

where wi =
∑
j wi,j . The two energies ERNL2 and

ENL2-TV are equal up to a constant independent of u

(it just depends on v and on the weights w). There-

fore, as noticed by Sutour et al. in [52], finding a min-

imizer of ERNL2 is equivalent to applying a spatially

varying (with adaptive weights) TV-L2 regularization

to the Non-Local means uNL2. We can wonder if the

situation is similar in our framework. Indeed, in a sim-

ilar way, replacing the L2 norm by the Lp one, we can

consider the TV-Lp regularization of the Non-Local-Lp-

Regression uNLp, that is the energy

ENLp-TV(u) =
∑
i∈Ω

wi|u(i)− uNLp(i)|p + λTV(u). (2)

Now, when p 6= 2, this energy can generally not be

written as ERNLp plus a constant, and more generally

one can show that the two energies may not admit the
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same minimizers, even for different values of λ. This is

the aim of the following proposition that presents an

example. Let us however remark that, when λ = 0 the

two energies have the same minimizers u = uNLp.

Proposition 1 When p 6= 2, the two energies ERNLp

(1) and ENLp-TV (2) do not necessarily have the same

minimizers.

To prove this proposition, a numerical counter-

example suffices in that case. It is postponed to the

Appendix.

The above theoretical difference between the mini-

mizers of the two energies can also be checked from an

experimental viewpoint. This is illustrated on Figure 1,

with p = 1. For the same value of λ, the minimizers of

the energies ERNL1 and ENL1-TV are clearly different.

We have also tried using different values of λ for the

second energy ENL1-TV. The minimizer, for an optimal

choice of λ becomes very similar to the one of the first

energy, but is however still different.

2.2 The choice of the weights

In this section we discuss some possible choices for the

weights in ERNLp.

A first very simple choice would be

wδi,j = 1Ii=j .

In this case, the energy ERNLp boils down to a simple

TV-Lp model.

A second possibility considered in this paper is to

use patch-based weights. To this aim, we need to de-

fine a distance between patches which remains robust

in the presence of impulse noise. In the following, we

write Pi for a square patch in v centered at pixel i.

In the work [18], the different possible distances be-

tween patches were studied in details. The conclusion

was that a distance able to take small values only for

similar patches despite the presence of impulse noise

was given by

d(Pi, Pj)
2 =

(2s+1)2∑
k=1

B((2s+ 1)2, k, (1−ρ)2) |Pi−Pj |2(k),

(3)

where (2s + 1)2 is the number of pixels in the patches

(the half-patch size is s), |Pi − Pj |(1) ≤ |Pi − Pj |(2) ≤
· · · ≤ |Pi−Pj |(2s+1)2 are the values obtained by ordering

the (2s + 1)2 values of the differences |Pi(z) − Pj(z)|
for z ∈ [−s, s]2, ρ is the impulse noise intensity and B

denotes the tail of the binomial distribution given for

all 0 ≤ k ≤ n integers and q ∈ [0, 1] by

B(n, k, q) =

n∑
i=k

(
n

i

)
qi(1− q)n−i.

Notice in particular that when ρ = 0, the distance

d(Pi, Pj) is simply the L2 distance between the two

patches. The idea underlying the distance in Equation

(3) is the following property: if P and Q are two in-

dependent random patches obtained by adding impulse

noise to the same original patch P 0 = Q0, the proba-

bility that the kth difference |P −Q|(k) stems from two

untouched pixels is B((2s+1)2, k, (1−ρ)2) (with the ap-

proximation that the smallest distances correspond to

untouched pixels). Observe that this distance requires

to know or to estimate the impulse noise intensity ρ. In

this paper, for the sake of simplicity, we assume that

ρ is known, but a rather precise estimation could be

obtained with a noise estimator [18]. From the robust

distance between patches, one can obtain different pos-

sible weights. We will here consider three of them:

– In a way similar to the NL-means, replacing the L2

distance by the robust distance, we can define the

weights

w̃Pi,j =
1

Zi
e−d(Pi,Pj)

2/2h2

, (4)

where h > 0 is a filtering parameter that has to be

tuned, and Zi =
∑
j e
−d(Pi,Pj)2/2h2

is a normalizing

factor that ensures that
∑
j w̃

P
i,j = 1.

– Now, there is no obligation to have normalized

weights. Indeed, some patches may be rare, in the

sense that there are not many patches that are close

to them for the distance d, and we may not want to

take them too much into account. Therefore, we can

also consider the nonnormalized weights given by

wPi,j = e−d(Pi,Pj)
2/2h2

. (5)

– Finally, as it is also sometimes done in variants of

NL-means, we can consider the n nearest patches to

Pi for the distance d, and denoting by V dn (i) the set

of central pixels of these patches, we can define

wNNi,j = 1Ij∈V dn (i).

Note that in each case, the computation of the weights

can be restricted to a search window Ni centered

around each pixel i, by setting wi,j = 0 for j /∈ Ni.
This allows to reduce the amount of computations, as

well as the number of possibly not relevant candidates.

In practice, we always restrict the search window to a

square neighborhood of half-size 7, while the patch half-

size is always set to s = 3. The different choices for the

weights will be further discussed in Section 4.
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Fig. 1 Comparison between ERNL1 and ENL1-TV. First line: left, the original image (a part of the Simpson image); right,
the noisy image v, with an impulse noise of intensity ρ = 0.2. Second line: left, the NL-Median uNL1 obtained with weights
wij of Equation (4) (see next subsection) with h = 0.8; right, minimizer uRNL1 of the energy ERNL1 with λ = 0.5. Third

line: left, minimizer uNL1-TV of the energy ENL1-TV with λ = 0.5 and right, minimizer u
(0.95)
NL1-TV of the energy ENL1-TV with

λ = 0.95. This value of λ is the one such that ‖u(λ)
NL1-TV −uRNL1‖2 is the smallest. The PSNR values are 30.9 for uNL1, 37.22

for uRNL1, 34.63 for uNL1-TV, and 36.87 for u
(0.95)
NL1-TV.

3 Algorithms

In this section, we present different algorithms that can

be used to find a minimizer of the energy ERNLp given

by Equation (1) when p ≤ 1. For p > 1, the energy is

the sum of a differentiable function and the total vari-

ation, and can be minimized with a forward-backward

splitting algorithm [13]. However, choosing p > 1 in

the data term makes little sense in the presence of im-

pulse noise. For p = 1, the formulation is nonsmooth

but still convex. Such problems can be efficiently mini-

mized thanks to augmented Lagrangian type techniques

such as the Alternative directions method of multi-

pliers (ADMM) [28,3] or the split-Bregman algorithm

[29], or using the primal-dual algorithm of Chambolle

and Pock [7], although some work is necessary here to

compute the proximal operator of the nonlocal data

term. For p ∈ (0, 1) though, the formulation is not con-

vex anymore and its minimization requires more tools.

When p = 1, observe that the energy ERNLp might

have several global minima, and several local ones when

p < 1.
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3.1 Case p = 1

When p = 1, we rely on the primal-dual algorithm of

Chambolle and Pock [7] to minimize ERNLp efficiently.

We first recall the general setting of this algorithm, then

we explain how it can be adapted to our problem. The

energy we deal with can be written as

E(u) = G(u) + F (Ku),

where in our setting: u ∈ R|Ω|, Ku = λ∇u, F (q) =∑
i |q(i)| for q ∈ R|Ω| × R|Ω| (since we use the

anisotropic version of the total variation), and G(u) =∑
i∈Ω

∑
j∈Ni wi,j |u(i)−v(j)|. For the discrete gradient,

we use finite differences: for a discrete image u of size

nr × nc,

∇u(1)(ix, iy) =

{
u(ix + 1, iy)− u(ix, iy) if ix < nr

0 else

∇u(2)(ix, iy) =

{
u(ix, iy + 1)− u(ix, iy) if iy < nc

0 else.

In the following, we will denote by F ∗ the convex

conjugate of F , given by

F ∗(q) = χC(q) =

{
0 if q ∈ C,
+∞ if q /∈ C,

where

C = {q = (q(1), q(2)) ∈ R|Ω| × R|Ω| ;

|q(k)(i)| ≤ 1 ∀k ∈ {1, 2}, ∀i ∈ Ω}.

Let K∗ denote the dual operator of the linear oper-

ator K = λ∇, given by

K∗(q) = −λdiv(q),

where div is the (discrete) divergence operator, defined

as the adjoint of the discrete gradient:

div(q)(ix, iy) =
q(1)(ix, iy)− q(1)(ix − 1, iy) if 1 < ix < nr

q(1)(ix, iy) if ix = 1

−q(1)(ix − 1, iy) if ix = nr

+


q(2)(ix, iy)− q(2)(ix, iy − 1) if 1 < iy < nc

q(2)(ix, iy) if iy = 1

−q(2)(ix, iy − 1) if iy = nc

.

Our convex but nonsmooth energy can be mini-

mized thanks to the algorithm of Chambolle and Pock,

summarized in Algorithm 1. This algorithm has been

proved to converge [7], provided that the step sizes sat-

isfy στL2 ≤ 1, where L = ‖K‖ is the norm of the

Algorithm 1 Chambolle-Pock Primal-Dual Algo-

rithm
Parameters: τ, σ > 0
Initialization: u0 = u0 = 0, q0 = 0
repeat

Dual Step: qn+1 = proxσF ∗(qn + σKun);
Primal Step: un+1 = proxτG(un − τK∗qn+1);
un+1 = 2un+1 − un;
n = n+ 1;

until convergence

gradient operator (see [14]). Given such step sizes, we

can use the primal-dual residual as a stopping criterion,

putting an end to the algorithm when the primal-dual

residual gets below a certain threshold ε = 10−4.

This algorithm uses proximal operators. We re-

call that they are defined in the following way. For

ϕ : RN → R, its proximal operator is proxϕ : RN → RN
given by

proxϕ(x) = argmin
y∈RN

ϕ(y) +
1

2
‖y − x‖22.

In particular, since F ∗ is the indicator function of a

convex set, proxσF∗ is the orthogonal projection on this

set for any σ > 0:

proxσF∗(q)i = proxF∗(q)i

=
(

q(1)(i)
max(1,|q(1)(i)|) ,

q(2)(i)
max(1,|q(2)(i)|)

)
.

Now, we also need to compute the proximal operator

of G that is a sum of L1 terms. When there is just one

term in the sum, the proximal operator is well-known,

it is the soft-thresholding :

∀τ > 0,∀x ∈ R, proxτ |·|(x) = max

(
0, 1− τ

|x|

)
x,

which can also be reformulated as a median of three

values

∀τ > 0,∀x ∈ R, proxτ |·|(x) = Median{0, x− τ, x+ τ}.

This result can be generalized for a sum of L1 norms,

as shown by the following proposition.

Proposition 2 Assume that the data v and the weights

w are given. Let G : R|Ω| → R be

G(u) =
∑
i∈Ω

∑
j∈Ni

wi,j |u(i)− v(j)|,

where for all i, Ni is a set of pixels j such that wi,j > 0.

For each i, assuming that Ni contains J pixels, we sort

the {v(j)}j∈Ni in a sequence

vj1 ≤ · · · ≤ vjJ .
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Then, for all τ > 0, the proximal operator of τG is:

∀u ∈R|Ω|, proxτG(u)i =

Median{vj1 , . . . , vjJ , u(i) + τW0, . . . , u(i) + τWJ},

where Median denotes the usual median value of a set

(no weights), and where

∀k = 0, . . . , J, Wk = −
∑
l≤k

wi,l +
∑

k+1≤l≤J

wi,l.

Proof: The proof is an adaptation of a more general re-

sult shown by Li and Osher in [42]. Their result is more

generic since it gives a formula to find the minimizer of

a function that is a weighted sum of L1 terms plus a

differentiable strictly convex function. For the sake of

completeness, we still provide the proof in our simpler

framework.

Let us first notice that Wk −Wk−1 = −2wi,k < 0

and therefore

WJ < WJ−1 < . . . < W0.

Computing the ith coordinate of the prox of τG,

with τ ∈ R+, at u is equivalent to find

y∗ = argmin
y∈R

1

2
(u(i)− y)2 + τ

J∑
l=1

wi,l|y − vjl |.

Let us denote y 7→ Au,τG(y) the right-hand side

function. It is a strictly convex function of y and there

is thus a unique minimizer y∗.

We consider two cases. The first case is y∗ /∈
{vj1 , . . . , vjJ}. Then, Au,τG is differentiable at y∗ and

its derivative is equal to 0 at this point. This implies

that

0 = y∗ − u(i) + τ

J∑
l=1

wi,l sgn(y − vjl).

Let us denote by l∗ ∈ {0, 1, . . . , J} the integer such that

vj0 < vj1 < . . . < vjl∗ < y∗ < vjl∗+1
< · · · < vjJ , (6)

with the convention that vj0 = −∞ and vjJ+1
= +∞.

This implies that

y∗ = u(i)− τ
J∑
l=1

wi,l sgn(y − vjl) = u(i) + τWl∗ .

And therefore

u(i) + τWJ < . . . < u(i) + τWl∗+1 < y∗ =

u(i) + τWl∗ < u(i) + τWl∗−1 < · · · < u(i) + τW0. (7)

Combining Equations (6) and (7), we conclude that y∗

belongs to the set {vj1 , . . . , vjJ , u(i) + τW0, . . . , u(i) +

τWJ}, that is has J+1 values below it and J+1 values

above it in this set. This shows that

y∗ = Median{vj1 , . . . , vjJ , u(i) + τW0, . . . , u(i) + τWJ}.

Now, we have to consider a second case: there ex-

ists l∗ ∈ {1, . . . , J} such that y∗ = vjl∗ . Then Au,τG
is not differentiable at y∗, but it admits a subdifferen-

tial at this point. The condition that y∗ is the point of

minimum of Au,τG becomes

0 ∈ ∂Au,τG(y∗)

= y∗ − u(i) + τ
∑
k 6=l∗

wi,k sgn(y − vjk) + τwi,l∗ [−1, 1].

This is equivalent to

u(i) +Wl∗ < y∗ = vjl∗ < u(i) +Wl∗−1.

As in the first case we again conclude that y∗ belongs to

the set {vj1 , . . . , vjJ , u(i) + τW0, . . . , u(i) + τWJ}, and

that it is moreover the median value of this set. �

3.2 Case p ∈ (0, 1)

Minimizing ERNLp for p ∈ (0, 1) is not obvious since the

energy is not convex anymore. Nonetheless, the energy

belongs to the class of minimization problems with a

nonconvex data term and TV regularization, and global

solutions can be computed by lifting the problem to

a higher dimensional space where the formulation be-

comes convex, following the ideas of [50,49,6]. We re-

call in the following the main steps of this approach in

a spatially continuous setting.

3.2.1 A convex formulation of a nonconvex problem

Consider the continuous variational problem

min
u
G(u) + λTV(u)

:= min
u

∫
Ω0

g(u(x), x) + λ|∇u(x)|dx, (8)

where u : Ω0 → Γ0 is an image defined on a continu-

ous image domain Ω0 ⊂ R2, Γ0 = [γ0, γ1] is the range

of image intensities and g : Γ0 × Ω0 → R+ is a non-

negative, nonconvex function. It can be seen as the

continuous analog to (1) where we note g(u(x), x) =∫
Ω0
w(x, y)|u(x)− v(y)|pdy.

The key idea to deal with such a nonconvex formu-

lation is to lift the functional using the level set repre-

sentation given as follows:

φ : Ω0 × Γ0 → {0, 1}

φ(x, γ) = 1u>γ(x) =

{
1, if u(x) > γ,

0, otherwise.
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Algorithm 2 Primal-Dual Algorithm for (11)

Parameters: σ, τ > 0
Initialization: φ0 = φ̄0 = 0, q0 = 0
repeat

φk+1 = PC
(
φk + τdivqk

)
qk+1 = PK

(
qk + σ∇φ̄k+1

)
φ̄k+1 = 2φk+1 − φk

until convergence.
return φ∗ = φk+1, compute the binary solution 1φ∗>µ

and the final estimate u∗ using (10).

The authors of [50] showed that problem (8) is equiva-

lent to the following problem:

min
φ∈D

∫
Ω0×Γ0

λ|∇xφ(x, γ)|+ g(γ, x)|∂γφ(x, γ)| dxdγ, (9)

where ∇xφ denotes the spatial bi-

dimensional gradient of φ, and D =

{φ : Ω0 × Γ0 → {0, 1} | φ(x, γ0) = 1 and φ(x, γ1) = 0}
is the feasible set of such level set functions φ.

Note that the original image u can be recovered from

φ using the following formula:

u(x) = γ0 +

∫
Γ0

φ(x, γ) dγ. (10)

Interestingly here, the nonconvex function g in (9)

is now only a function of (γ, x) and not (γ, u(x)), thus

this formulation gets rid of the nonconvex part in u.

This problem is however still not convex, due to the

constraint φ ∈ D. Hence, one can relax the problem

and consider the following convex formulation:

min
φ∈C

∫
Ω0×Γ0

λ|∇xφ(x, γ)|+ g(γ, x)|∂γφ(x, γ)| dx dγ,

with (11)

C = {φ : [Ω0 × Γ0]→ [0, 1] |
φ(x, γ0) = 1 and φ(x, γ1) = 0}.

This time the set C is convex, so the global min-

imizer of problem (11) can be computed. It is then

shown in [50] that for a given φ∗ ∈ C solution of (11), a

global minimizer of the binary problem (9) can be ob-

tained by computing the characteristic function 1φ∗>µ

for almost every threshold µ ∈ [0, 1].

3.2.2 Implementation

Problem (11) can be written equivalently in the follow-

ing primal-dual formulation:

min
φ∈C

max
q∈K

∫
Ω0×Γ0

∇φ · q,

where ∇ denotes the three-dimensional gradient and

K =
{
q =

(
q(1), q(2), q(3)

)
: Ω0 × Γ0 → R3 |

|q(1)| ≤ λ, |q(2)| ≤ λ, and |q(3)| ≤ g
}
.

Note that the inequalities are meant point-wise, e.g., for

all (x, γ) ∈ Ω0 × Γ0, |q3(x, γ)| ≤ g(x, γ). Based on this

formulation, one can then derive a primal-dual itera-

tion scheme where the updates for the primal and dual

variables are given in Algorithm 2. The projections PC
and PK are respectively the projections onto the sets

C and K. The former is simply obtained by truncat-

ing the iterate φ to the interval [0, 1] and by setting

φ(., γ0) = 1 and φ(., γ1) = 0. The latter is a point-wise

projection of the dual variable q computed as follows:

PK(q) = q(1)

max
(
|q(1)|
λ , 1

) , q(2)

max
(
|q(2)|
λ , 1

) , q(3)

max
(
|q(3)|
g , 1

)
 .

Discretization. Similarly to the case p = 1, we use fi-

nite differences to define the discrete gradient and di-

vergence operators. We define the lifted image φ on a

discrete Cartesian grid of size nr × nc × nt, and we get

the following discrete gradient operator:

∇φ(1)(ix, iy, iz) =

{
φ(ix+1,iy,iz)−φ(ix,iy,iz)

hr
if ix < nr,

0 else.

∇φ(2)(ix, iy, iz) =

{
φ(ix,iy+1,iz)−φ(ix,iy,iz)

hc
if iy < nc,

0 else.

∇φ(3)(ix, iy, iz) =

{
φ(ix,iy,iz+1)−φ(ix,iy,iz)

ht
if iz < nt,

0 else.

Then the discrete divergence operator is computed as

follows:

div(q)(ix,iy,iz) =
q(1)(ix,iy,iz)−q(1)(ix−1,iy,iz)

hr
if 1 < ix < nr

q(1)(ix,iy,iz)
hr

if ix = 1

− q
(1)(ix−1,iy,iz)

hr
if ix = nr

+


q(2)(ix,iy,iz)−q(2)(ix,iy−1,iz)

hc
if 1 < iy < nc

q(2)(ix,iy,iz)
hc

if iy = 1

− q
(2)(ix,iy−1,iz)

hc
if iy = nc.

+


q(3)(ix,iy,iz)−q(3)(ix,iy,iz−1)

ht
if 1 < iz < nt

q(3)(ix,iy,iz)
ht

if iz = 1

− q
(3)(ix,iy,iz−1)

ht
if iz = nt.
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For the spatial components of the gradient it is com-

mon to use discretization steps hr = hc = 1, however

for the third coordinate it depends on the discretiza-

tion of the intensity range. When dealing with a third

dimension, for example time, it is not always clear how

to deal with regularity and discretization in this third

dimension [30]. In our case, we have chosen to consider

nt = 256 gray levels and a discretization step ht = 1
100

which matches the spatial regularity and allows for a

regularization parameter λ of the same range as in the

convex formulation when p = 1. Note that in order

to accelerate the computation, one can subsample the

intensity range by a factor κ, in which case the dis-

cretization step then becomes ht × κ.

Convergence and acceleration. The convergence of the

algorithm has been proven provided that the stepsizes

in Algorithm 2 fulfill the condition στL2 ≤ 1, where

L = ‖∇‖ is the norm of the (three-dimensional) gra-

dient operator. The convergence is assumed when the

primal-dual residual gets below a certain convergence

tolerance ε = 5.10−4.

However, since in this specific problem the data

term is locally adaptive, based on the nonlocal weights,

the value of the data-term g is greatly spatially-

dependent. This makes the constraint on the dual vari-

able q really local, which results in a nonspatially uni-

form convergence. Indeed, we have observed that the

primal-dual residual might be really close to zero in

most areas, while in some localized regions, where the

data term g is high, a satisfactory convergence might

not be reached.

To remedy this behavior, we have investigated the

use of diagonal preconditioning [48,8]. We denote by n

the number of elements of the variable φ, i.e. n = nc ×
nr×nt, and m = 3n the size of the dual variable. Then,

given a sequence of stepsizes (τ̃i)1≤i≤n and (σ̃j)1≤j≤m
and α ∈ [0, 2], the diagonal matrices T = diag(τi) and

Σ = diag(σj), with

τi =
τ̃i∑m

j=1 σ̃j |∇j,i|2−α
, and σj =

σ̃j∑n
i=1 τ̃i|∇j,i|α

,

satisfy the convergence criterion ‖Σ1/2∇T 1/2‖ ≤ 1.

Note that the case ∇j,i = 0 is not an issue in practice,

since it leads in Algorithm (2) to no gradient update

for the dual variable q, so the step σj can be arbitrarily

chosen in this case.

In order to take into account the local adaptivity of

our problem, we use α = 1 and we have found that the

following sequences provide an efficient accelerated and

uniform convergence:

τ̃ = 1Rn , and σ̃ = [1Rn 1Rn g],

where g ∈ Rn is the vector of the evaluation of the

data-term g on the grid Ω × Γ :

g(γ, i) =
∑
j∈Ω

wi,j |γ − v(i)|p, i ∈ Ω, γ ∈ Γ.

The practical implementation however requires a lot of

memory if the image size |Ω| and the gray level grid |Γ |
are large.

4 Experimental analysis

In this section, several experiments are performed to

analyze the influence of the different parameters and

weights proposed in Section 2. We first study in Sec-

tion 4.1 the influence of the filtering parameters h and

λ in the different models with p = 1. Section 4.2 is de-

voted to the choice of the weights in ERNL1. Finally,

Section 4.3 illustrates the influence of the power p in

the RNLp data term. All these experiments are carried

out on two subimages of Simpson and Barbara (see Fig-

ure 3 for these subimages and Figure 2 for the complete

images). In this section, the noise level is always set to

ρ = 30%. Results are provided both under the form

of PSNR tables and restored images. Recall that the

PSNR is a way to measure the quality of a restored

image û in comparison to an uncorrupted one u0. It is

given by the formula

PSNR(u0, û) = 10 log10

γ21 |Ω|∑
i∈Ω(u0(i)− û(i))2

,

where |Ω| is the size of the support of u0 and γ1 the

maximum intensity of u0 (typically, γ1 = 255). More

systematic denoising results for different complete im-

ages and different noise levels are provided in Section 5.

4.1 Influence of the parameters h and λ

Figures 3, 4 and 5 show the denoising results obtained

by minimizing ERNL1 with exponential weights (given

by Equation (5)) for different values of the parameters h

and λ. Recall that for a given value of h, the parameter

λ controls the amount of smoothing of the total vari-

ation term. The influence of h is more subtle since it

both controls the number of similar patches taken into

account in the restoration and the balance between the

Non-Local-Median and the TV regularization.

Note that for a given value of h, when λ tends to-

ward 0, the energy ERNL1 converges to ENL1. On the

contrary, when λ is fixed and h decreases toward 0, then

ERNL1 with (normalized or not) exponential weights

tends toward ETV-L1. Both models can thus be seen as

limits of ERNL1 for particular values of λ and h.
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Fig. 2 Images used in the experiments. From top to bottom, left to right : Baboon, Barbara, Boat, Bois, Bridge, Cameraman,
Converse, Goldhill, Lena, Peppers, SanFrancisco and Simpson.
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Fig. 3 Influence of h and λ on the results of ERNL1. On each line, the original extract image is shown the left, and the
PSNR results are on the right. The vertical axis of the table represents the values of λ ∈ [0.1 : 0.1 : 3] and the horizontal axis
represents the values of h ∈ [0.1 : 0.1 : 2]. The impulse noise intensity is ρ = 0.3.

On Figures 4 and 5, we observe that for λ = 0

and for small values of h, residual impulse dots are still

present in the denoised images. For these small values

of the filtering parameter h, the number of patches that
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are taken into account in the Non-Local Median is too

small at some points, particularly in rare or textured

areas. This can be corrected by choosing a larger value

for h. This is indeed necessary to restore properly the

texture on Barbara, but at the cost of oversmoothing

the details. This is less important on the much more

regular image Simpson. As a consequence, the optimal

value for the parameter h is larger on Barbara.

Another solution to remove the remaining impulse

dots is to increase λ, which usually allows to smooth

out the residual impulse noise not discarded by the

Non-Local-Median. It is particularly useful for regular

regions, like those of Simpson, but results in very poor

texture recovery. Observe on Figure 3 that the value

of λ giving the best performance is usually smaller for

textures than for smooth regions, illustrating the more

contrasted behavior of the TV regularization on such

areas.

4.2 Choosing the weights

We now discuss the choice of judicious weights in the

RNL1 model. We consider all the weights defined in

Section 2:

– the weights wδ, in which case the model boils down

to TV-L1,

– the exponential weights wP between patches,

– the normalized exponential weights w̃P ,

– the weights wNN that take only into account the

nearest neighbors of each patch.

4.2.1 The weights wδ

The energy ERNL1 with weights wδ is equal to ETV-L1.

As explained before, this energy can also be seen as a

limit of ERNL1 with exponential weights wP when the

parameter h tends toward 0. The results are thus very

similar to those displayed on the first columns of Fig-

ures 4 and 5 obtained with h = 0.1. The TV-L1 model

is unable to handle textures properly and has a ten-

dency to turn them into molten areas, resulting in very

poor PSNR results on such regions. On the contrary,

the model is much better suited for a regular image

such as Simpson.

4.2.2 Influence of normalization: wP or w̃P ?

Figure 6 illustrates the influence of normalizing the

exponential weights in the energy. With normalized

weights, the regularizing power of λ becomes similar ev-

erywhere, since it is balanced by a nonlocal term whose

total weight is always one. On the contrary, with un-

normalized weights, λ will have a stronger influence on

singular regions with few similar patches. On an image

of uniform regularity, like Simpson, both models seems

to provide similar results, probably because the sum of

weights at each pixel is close to a constant. On a more

complex image like Barbara, normalizing the weights

reduces the denoising performance of the model.

This is also illustrated on Figure 7, which shows the

optimal results of RNL1 on the extract of Barbara with

30% of impulse noise. On the left, the optimal result

with unnormalized weights is obtained for h = 0.8 and

λ = 0.4. In the middle, the optimal result with nor-

malized weights is obtained with h = 0.8 and λ = 0.1.

Observe that both results are quite similar on regular

areas but that some impulse dots are still present when

the weights are normalized.

4.2.3 Exponential weights or fixed number of

neighbors?

Our last experiment in this section compares exponen-

tial weights with binary weights taking into account a

fixed number of neighbors for each image patch. The

corresponding PSNR tables are shown on Figure 8.

Note that when the number of neighbors is fixed for

each point, the relative weights of the data term and

of the smoothing term are identical everywhere. The

quantitative results obtained on these subimages with

a fixed number of neighbors are similar or slightly better

than those obtained with exponential weights. However,

we observed that in practice, fixing the same number

of neighbors for each pixel results in the same artifact

as normalizing the weights (see Figure 7, right).

4.3 Influence of the power p in RNLp

As advocated in [18], the choice p = 0 provides good

results in the NLp-Regression setting, in particular for

strong impulse noise. Together with optimization con-

siderations, this motivates the choice for a rather non-

convex though continuous model with 0 < p < 1. Fig-

ures 9 and 10 illustrate the performance of the RNLp

model for different values of p on the two test images

corrupted by impulse noise with parameter ρ = 0.3

and 0.5 respectively. For a low noise level, all methods

efficiently remove noise. The Simpson image benefits

from good results with all three settings, and Barbara

has better preserved textures on the scarf with p < 1,

while with a lower p some residual noise remains on

the fine textures. The same observations seem to ap-

ply to a higher noise level. The nonconvex model with

p < 1 offers slightly better performance, in particular
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λ = 0, h = 0.1 λ = 0, h = 0.8 λ = 0, h = 2

λ = 0.4, h = 0.1 λ = 0.4, h = 0.8 λ = 0.4, h = 2

λ = 2, h = 0.1 λ = 2, h = 0.8 λ = 2, h = 2

Fig. 4 Influence of λ and h on the results of ERNL1, with an impulse noise intensity ρ = 0.3. On this figure, we show the
effect of varying the smoothing parameter λ and the parameter h used in the exponential weights. It can be seen that these
two parameters have a significant impact on the denoising results. In the middle, we show the result (and the corresponding
values of h and λ) that has the best PSNR.

for the smooth image Simpson. However for Barbara,

more residual noise on the scarf can be observed for

p = 0.2. All in all, a power p = 0.5 seems to offer overall

good performance, as it acts as a compromise between

the nonconvex model which offers good behavior for

strong impulse noise, while behaving more smoothly.

Note also that for smaller values of p, the nonconvex-

ity gets more important, hence convergence is harder

to achieve.

5 Denoising results

5.1 RNL1

This section gathers experiments comparing RNL1 with

the classical models TV-L1 and NL-Median. We also

provide a comparison with the recent algorithm PA-

RIGI [18]. Tables 2 and 3 illustrate the PSNR per-

formance of the different models for several images,

displayed on Figure 2. All images have the same size

(512× 512), with the exception of Simpson, whose size

is 1024× 1024. All results of the models RNL1, TV-L1

and NL-Median are obtained by optimizing the param-
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λ = 0, h = 0.1 λ = 0, h = 0.4 λ = 0, h = 2

λ = 0.6, h = 0.1 λ = 0.6, h = 0.4 λ = 0.6, h = 2

λ = 1.9, h = 0.1 λ = 1.9, h = 0.4 λ = 1.9, h = 2

Fig. 5 Influence of λ and h on the results of ERNL1, with an impulse noise intensity ρ = 0.3. On this figure, we show the
effect of varying the smoothing parameter λ and the parameter h used in the exponential weights. It can be seen that these
two parameters have a significant impact on the denoising results. In the middle, we show the result (and the corresponding
values of h and λ) that has the best PSNR.

eters λ and h. Figures 11 and 12 show a zoom on the

results of the different algorithms on Simpson, Baboon,

Barbara and Bois when ρ = 20% and ρ = 40%.

First, observe that the results of TV-L1 and NL-

Median are complementary. The variational model

gives excellent results on smooth images, while the non-

local model performs much better on textured images.

This is especially visible on an image like Barbara (see

Figures 11 and 12) where the TV-L1 model is clearly

not able to handle the texture properly, while the Non-

Local Median restores them almost perfectly. At the

same time, the Non-Local Median shows a tendency to

oversmooth the details and fine regions. Most of the

time, TV-L1 gives better results for small amounts of

noise, but its performance decreases faster when the

noise level ρ increases. The gap between the two mod-

els also tends to decrease with the level of noise, and

they appear to be more or less equivalent (PSNR-wise)

for most images when ρ = 50%. The RNL1 model can

be seen as a generalization of both TV-L1 and NL-

Median, since it boils down to the NL-Median when

λ = 0 and is equivalent to TV-L1 when the parameter

h tends toward 0. It follows that good choices of these

two parameters always permit to reach better restora-

tion results with RNL1 than with those two models.

Observe on Figures 11 and 12 how RNL1 is able to
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Fig. 6 Influence of normalization. Each figure displays the PSNR as a function of λ ∈ [0.1 : 0.1 : 3] on the vertical axis and of
h ∈ [0.1 : 0.1 : 2] on the horizontal axis. On the first line, extract of Barbara and extract of Simpson on the second line. Left:
unnormalized weights. Right: normalized weights.

Fig. 7 Results of RNL1 on the extract of Barbara with 30% of impulse noise. Left, with unnormalized weights, h = 0.8 and
λ = 0.4. Middle, with normalized weights, h = 0.8 and λ = 0.1. Right, with a fixed number of n = 11 of neighbors and λ = 0.7.
All parameters are chosen to optimize the PSNR. Observe that the three results are quite similar on regular areas but that
some impulse dots are still present on the middle and on the right images.
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Fig. 8 Same experiment with a fixed number of nearest neighbors instead of exponential weights. The x-axis represents the
number of nearest neighbors in the range [5:35]. On the left, extract of Barbara. On the right, extract of Simpson.

handle textures properly while preserving much more

image details than the NL-Median.

For most images, the PSNR results of RNL1 are

on par with the results of the recent PARIGI algo-

rithm [18], even if the restored images are visually quite

different. PARIGI can be seen as a refinement of the

NL-Median. It is also purely patch-based, without ad-

ditional regularization, but instead of a nonlocal me-

dian it computes a Maximum Likelihood at each pixel

and happens to be more robust for large values of ρ.

In practice, this algorithm proves to be very effective

and far better than other approaches on very textured
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RNL1 RNLp, p = 0.5 RNLp, p = 0.2

PSNR = 27.90 PSNR = 27.91 PSNR = 27.62

PSNR = 35.91 PSNR = 36.69 PSNR = 36.11

Fig. 9 Denoising of Barbara and Simpson corrupted with 30% of impulse noise, using the RNLp model with p = 1 (left),
p = 0.5 (middle) and p = 0.2 (right).

RNL1 RNLp, p = 0.5 RNLp, p = 0.2

PSNR = 23.64 PSNR = 24.16 PSNR = 22.44

PSNR = 30.37 PSNR = 32.54 PSNR = 30.39

Fig. 10 Denoising of Barbara and Simpson corrupted with 50% of impulse noise, using the RNLp model with p = 1 (left),
p = 0.5 (middle) and p = 0.2 (right).
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images like Barbara. However, if it performs very well

quantitatively, we can see on Figures 11 and 12 that

its restoration results tend to present the same artifacts

(loss of details, oversmoothing) as the NL-Median, even

if to a lesser extent. In practice, we think that images

restored with RNL1 present a better balance between

texture preservation, restoration of smooth regions and

detail recovery, especially for small values of ρ.

A possible refinement proposed in the PARIGI al-

gorithm (but not used in the results of Table 2 and

Table 3) consists in applying the algorithm twice after

mixing the original noisy image and the restoration re-

sult thanks to a map of detected noisy pixels. Such a

refinement could also be considered for RNL1. Observe

also that none of the models studied in this paper make

use of an explicit noise detection (such as the ROAD

or ROLD detectors). The detection is only weakly con-

tained in the robust distance presented in Section 2. It

goes without saying that taking into account the result

of external noise detectors could in practice improve the

different denoising results. However, let us point out

here that the goal of this paper is not to yield the best

possible denoising results but rather to thoroughly com-

pare and understand the advantages and weaknesses of

different models in presence of impulse noise.

5.2 RNLp

Due to the heavy computations involving the noncon-

vex optimization when p < 1, we have devoted the com-

parisons to a selected number of images. Note that the

performance of the method for p < 1 depends on the

discretization of the gray level set Γ , i.e., on the num-

ber of gray levels chosen to represent the level sets.

In order to limit the amount of required memory and

computation time, we have chosen to consider only 128

gray levels for the full size images and 64 for the larger

Simpson image (i.e. a subsampling factor κ = 2 and 4

respectively, see Section 3.2). The results could be im-

proved with a finer intensity range. Figures 11 and 12

include the result obtained with RNLp, with p = 0.5.

The PSNR results for these images are also compared

to the above studied methods in Table 1. These results

show that the RNLp model is on par with RNL1.

6 Conclusion

In this paper, we have shown that a hybrid model com-

posed of a Non-Local Median data term and a TV

regularization could be a solid basis for impulse noise

reduction. Other hybrid models had been studied in

the literature, especially with nonlocal regularization

term. However, to the best of our knowledge, this is

the first study making use of a nonlocal Lp data term,

with p ≤ 1, adapting the recent work of Sutour et al.

[52]. We have shown how to minimize this nonsmooth

model in practice, both in the convex (p = 1) and non-

convex (p < 1) cases. It is illustrated on several experi-

ments that this approach permits to attain state of the

art denoising performance for different type of images

and different levels of noise. The proposed model, using

adaptive weights, is generic enough to include exter-

nal additive information on the image to be restored

or on the noise, such as a precomputed noise map for

instance.
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Fig. 11 Zooms of comparative results on Simpson, Baboon, Barbara and Bois with ρ = 20% of random-valued impulse noise.
From top to bottom: original images, noisy images, minimizers of ETV -L1, of ERNL1, of ERNLp (p = 0.5), of ENL1 and the
results of PARIGI. Images should be seen at full resolution on the electronic version of the paper.
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Fig. 12 Zooms on comparative results on Simpson, Baboon, Barbara and Bois with ρ = 40% of random-valued impulse noise.
From top to bottom: original images, noisy images, minimizers of ETV -L1, of ERNL1, of ERNLp (p = 0.5), of ENL1 and the
results of PARIGI. Images should be seen at full resolution on the electronic version of the paper.
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TV-L1 NL-Median PARIGI RNL1 RNLp,
(1 it.) p = 0.5

Baboon
ρ = 20%
ρ = 40%

24.17
21.56

22.89
21.42

25.04
21.96

24.96
22.24

25.05
22.01

Barbara
ρ = 20%
ρ = 40%

25.71
23.48

29.83
27.13

34.16
29.47

30.89
27.49

30.57
27.67

Bois
ρ = 20%
ρ = 40%
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21.40

22.69
21.41

23.19
21.32

24.82
22.25

24.88
22.32

Simpson
ρ = 20%
ρ = 40%

37.85
33.08

35.98
33.25

39.55
35.83

39.65
35.73

38.92
36.23

Table 1 PSNR results of different restoration methods for the 512 × 512 images Baboon, Barbara and Bois, and for the
1024 × 1024 image Simpson. All results of RNLp, RNL1, TV-L1 and NL-Median are obtained by optimizing the parameters
λ and h.
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local means filter, image redundancy and adaptive dic-
tionaries for noise removal. In: Scale Space and Varia-



22 Julie Delon et al.

tional Methods in Computer Vision (SSVM), pp. 520–
532. Springer (2007)

37. Ko, S.J., Lee, Y.H.: Center weighted median filters and
their applications to image enhancement. IEEE Trans-
actions on Circuits and Systems, 38(9):984–993 (1991)

38. Kolmogorov, V., Zabin, R.: What energy functions can be
minimized via graph cuts? IEEE transactions on pattern
analysis and machine intelligence 26(2), 147–159 (2004)

39. Lebrun, M., Buades, A., Morel, J.M.: A Nonlocal
Bayesian Image Denoising Algorithm. SIAM J. Imag-
ing Sci. 6(3), 1665–1688 (2013). DOI 10.1137/120874989.
URL http://epubs.siam.org/doi/abs/10.1137/120874989

40. Lebrun, M., Colom, M., Buades, A., Morel, J.M.: Secrets
of image denoising cuisine. Acta Numerica 21, 475–576
(2012)

41. Li, B., Liu, Q., Xu, J., Luo, X.: A new method for re-
moving mixed noises. Science China Information sciences
54(1), 51–59 (2011)

42. Li, Y., Osher, S.: A new median formula with applications
to PDE based denoising. Communications in Mathemat-
ical Sciences 7(3), 741–753 (2009)

43. Mallat, S.G., Zhang, Z.: Matching pursuits with time-
frequency dictionaries. IEEE Trans. Signal Process.
41(12):3397–3415 (1993)

44. Motta, G., Ordentlich, E., Ramı́rez, I., Seroussi, G.,
Weinberger, M.J.: The dude framework for continuous
tone image denoising. In: IEEE International Confer-
ence on Image Processing (ICIP) 2005, vol. 3, pp. III–345.
IEEE (2005)

45. Natarajan, B.K.: Sparse approximate solutions to linear
systems. SIAM journal on computing 24(2), 227–234
(1995)

46. Nikolova, M.: Minimizers of Cost-Functions Involving
Nonsmooth Data-Fidelity Terms. Application to the Pro-
cessing of Outliers. SIAM J. Numer. Anal. 40(3), 965–
994 (2002). DOI 10.1137/s0036142901389165. URL
http://dx.doi.org/10.1137/s0036142901389165

47. Nikolova, M.: A variational approach to remove outliers
and impulse noise. Journal of Mathematical Imaging and
Vision 20(1), 99–120 (2004)

48. Pock, T., Chambolle, A.: Diagonal preconditioning for
first order primal-dual algorithms in convex optimization.
In: Computer Vision (ICCV), 2011 IEEE International
Conference on, pp. 1762–1769. IEEE (2011)

49. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global
solutions of variational models with convex regulariza-
tion. SIAM Journal on Imaging Sciences 3(4), 1122–1145
(2010)

50. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cre-
mers, D.: A convex formulation of continuous multi-label
problems. Computer Vision–ECCV 2008 pp. 792–805
(2008)

51. Pratt, W.K.: Median filtering. Technical report, Image
Proc. Inst., Univ. Southern California (1975)

52. Sutour, C., Deledalle, C.A., Aujol, J.F.: Adaptive reg-
ularization of the NL-means: Application to image
and video denoising. IEEE Trans. Image Process.
23(8):3506–3521 (2014)

53. Tibshirani, R.: Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological) pp. 267–288 (1996)

54. Wang, Y.Q., Morel, J.M.: SURE Guided Gaussian Mix-
ture Image Denoising. SIAM J. Imaging Sci. 6(2),
999–1034 (2013). DOI 10.1137/120901131. URL
http://epubs.siam.org/doi/abs/10.1137/120901131

55. Xiao, Y., Zeng, T., Yu, J., Ng, M.K.: Restoration of im-
ages corrupted by mixed Gaussian-impulse noise via l1-
l0 minimization. Pattern Recognition 44(8), 1708–1720
(2011). http://dx.doi.org/10.1016/j.patcog.2011.02.002

56. Xiong, B., Yin, Z.: A universal denoising framework with
a new impulse detector and nonlocal means. Image Pro-
cessing, IEEE Transactions on 21(4), 1663–1675 (2012).
URL http://dx.doi.org/10.1109/TIP.2011.2172804

57. Yan, M.: Restoration of images corrupted by impulse
noise and mixed gaussian impulse noise using blind in-
painting. SIAM Journal on Imaging Sciences 6(3), 1227–
1245 (2013)

58. Yu, G., Sapiro, G., Mallat, S.: Solving inverse prob-
lems with piecewise linear estimators: from Gaus-
sian mixture models to structured sparsity. IEEE
Trans. Image Process. 21(5), 2481–99 (2012). DOI
10.1109/TIP.2011.2176743

59. Yuan, G., Ghanem, B.: l0tv: A new method for im-
age restoration in the presence of impulse noise. In:
2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015)

60. Zhou, Y., Ye, Z., Xiao, Y.: A restoration algorithm for
images contaminated by mixed Gaussian plus random-
valued impulse noise. Journal of Visual Communication
and Image Representation 24(3), 283–294 (2013)

61. Zoran, D., Weiss, Y.: From learning models of natural
image patches to whole image restoration. In: 2011 Int.
Conf. Comput. Vis., pp. 479–486. IEEE (2011). DOI
10.1109/ICCV.2011.6126278

Appendix

Proof of Proposition 1 :

We will here produce examples where the two ener-

gies have different minimizers (when p 6= 2), even for

different values of λ. We will need the following lemma,

whose proof is simple and therefore left to the reader.

Lemma 1 Let ω and c be strictly positive real numbers.

Let p ≥ 0. Then the minimum of the function f defined

on [0, c] by

∀x ∈ [0, c], f(x) = |x|p + ω|c− x|p

is achieved, when p > 1 at

x∗ =
cωβ

1 + ωβ
, where β = 1/(p− 1).

When p ≤ 1, f is concave and the minimum is achieved

at

x∗ = 0 if ω < 1 and at x∗ = c if ω > 1.

When ω = 1 and p = 1, f is constant on [0, c], and

when ω = 1 and p < 1, 0 and c are both minimizers of

f .

Let us first consider the case p > 1. When p = 2,

these two energies are equal up to a constant, and have

therefore the same minimizers. Now, this is the only
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p for which these two energies are equivalent. Indeed,

consider the following one dimensional example:

1 ≤ i ≤ 5, v = (0, 0, 1, 0, 0) and

w = (wij)1≤i,j≤5 =


2/3 1/3 0 0 0

1/3 1/3 1/3 0 0

0 1/3 1/3 1/3 0

0 0 1/3 1/3 1/3

0 0 0 1/3 2/3

 .

The TV(u) term is defined as

TV(u) =

4∑
i=1

|u(i+ 1)− u(i)|.

We can then compute that uNLp is given by

uNLp = (0, cp, cp, cp, 0),

where cp =
1

1 + 2β
, with β = 1/(p− 1).

The energy ENLp-TV is thus

ENLp-TV(u) = |u(1)|p +

4∑
i=2

|u(i)− cp|p + |u(5)|p

+ λTV(u),

Whereas the energy ERNLp is

ERNLp(u) = |u(1)|p + |u(5)|p

+
1

3

4∑
i=2

|u(i)− 1|p +
2

3

4∑
i=2

|u(i)|p + λTV(u).

For symmetry reasons, ENLp-TV and ERNLp are

both minimized for signals u of the form

u = (a, b, b, b, a)

with 0 ≤ a ≤ b ≤ 1, (or cp for ENLp-TV). We then can

write

ERNLp(u) = 2ap + 2bp + (1− b)p + 2λ(b− a)

and

ENLp-TV(u) = 2ap + 3(cp − b)p + 2λ(b− a).

When λ > 2p then a 7→ ERNLp(u) is decreasing and b 7→
ERNLp(u) is increasing, therefore ERNLp is minimized

for a = b. The same result holds for ENLp-TV.

As a consequence, when λ is large, the two ener-

gies will both be minimized for constant signals, but

the constant is not the same for ERNLp and ENLp-TV.

Indeed, the constant signal that minimizes ERNLp has

value

a =
1

1 + 4β
.

Whereas the constant signal that minimizes ENLp-TV

has value

ã =
cp3

β

2β + 3β
=

3β

(1 + 2β)(2β + 3β)
.

The two constants a and ã are different as soon as p 6= 2.

Indeed we have

a = ã⇔ 3β(1 + 4β) = (1 + 2β)(2β + 3β)

⇔ 6β = (1 + 2 + 3)β = 1 + 2β + 3β

⇔ β = 1⇔ p = 2.

When p ≤ 1, we consider the same v but different

weights w. More precisely, we consider

1 ≤ i ≤ 5, v = (0, 0, 1, 0, 0) and

w = (wij)1≤i,j≤5 =


1/3 0 2/3 0 0

1/6 0 2/3 0 1/6

0 1/3 0 2/3 0

0 0 2/3 0 1/3

0 2/3 0 1/3 0

 .

We can then compute that uNLp is given, whatever

the value of p ≤ 1, by

uNLp = (1, 0, 1, 0, 1).

And with the same reasoning as above, we have

that, when λ is large enough, the minimizers of

ERNLp and ENLp-TV are constants. And a simple

computation, using Lemma 1, shows that the mini-

mizer of ERNLp is the constant 0, whereas the min-

imizer of ENLp-TV is the constant 1. Notice also

that for any λ > 0, ERNLp(0, 0, 0, 0, 0) = 2 and

ERNLp(1, 1, 1, 1, 1) = 3 while ENLp-TV(1, 1, 1, 1, 1) = 2

and ENLp-TV(0, 0, 0, 0, 0) = 3, so the minimizer of the

first energy will never be a minimizer of the second one,

and vice versa, even for a different value of λ.


